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Abstract

Raman spectroscopy in the high‐wavenumber spectral region (HWR) is

particularly suited for fiber‐optic in vivo medical applications. The most‐used

fiber‐optic materials have negligible Raman signal in the HWR. This enables

the use of simple and cheap single‐fiber‐optic probes that can be fitted in

endoscopes and needles. The HWR generally shows less tissue luminescence

than the fingerprint region. However, the luminescence can still be stronger

than the Raman signal. Hardware‐ and software‐based strategies have been

developed to correct for these luminescence signals. Typically, hardware‐

based strategies are more complex and expensive than software‐based

solutions. Effective software strategies have almost exclusively been devel-

oped for the fingerprint region. First‐order polynomial baseline fitting (PBF)

is the most common background/luminescence estimation employed for the

HWR. The goal of this study was to characterize the luminescence back-

ground signals of HW spectra of human oral tissue and compare the perfor-

mance of two algorithms for correction of these background signals: PBF and

multiple regression fitting (MRF). In the MRF method, we introduce here,

prior knowledge of the range of Raman signals that can be obtained from

the tissues of interest is explicitly used. MRF is more robust than PBF

because it does not require an a priori choice of the polynomial order for

fitting the background signal. This is important because, as we show, no

single polynomial order can optimally characterize all backgrounds that are

encountered in HW tissue spectra. We conclude that MRF should be the

preferred method for background subtraction in the HWR.
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1 | INTRODUCTION

Raman spectroscopy has been broadly explored for medi-
cal applications in oncology aiming at early diagnosis,
biopsy guidance, and surgery guidance.[1–3] The technique
can provide qualitative and quantitative molecular infor-
mation about tissues and enables classification of tissues
with high sensitivity and specificity. Raman spectroscopy
is directly applicable for in vivo and ex vivo analysis of tis-
sue, without the need for labels and/or reagents.[4]

Elimination of interference from laser‐induced tissue
luminescence is still a challenge for many medical appli-
cations of Raman spectroscopy. This intrinsic lumines-
cence signal can be several orders of magnitude more
intense than the Raman signal, which limits the analy-
sis.[5] To overcome this, both hardware‐ and software‐
based strategies have been developed to reduce the
interference from luminescence.[3,5–29]

An example of a hardware‐based strategy is the use of
specific excitation wavelengths far from the visible range.
For example, the intensity of a fluorophore is dependent
on the excitation wavelength. With exception of porphyrins
and melanin,[17] the excitation and emission of most tissue
fluorophores exhibit maxima at ultraviolet and visible
wavelengths.[18] Thus, longer wavelengths are preferred
over ultraviolet/visible.[5,6] The selection of appropriate
near infrared source is an optimization between competing
factors. For example, while tissue luminescence decreases
with increasing wavelength, also the Raman scattering
cross section and the quantum efficiency of charge‐coupled
device (CCD) detectors decrease. For CCD detectors, the
quantum efficiency drops below 15% at 1,000 nm and can-
not be used at all above 1,100 nm. Detectors such as indium
gallium arsenide, germanium, and indium phosphide can
be used for wavelengths above 950 nm. Although these
detectors have lower quantum efficiency and exhibit much
more detector noise in comparison to silicon detectors,[5]

new types of indium gallium arsenide detectors are emerg-
ing which have very good noise characteristics,
approaching those of CCD detectors.[6]

Another hardware‐based strategy for luminescence
rejection is multiexcitation wavelength Raman spectros-
copy, also called as shifted excitation Raman difference
spectroscopy (SERDS).[29] Raman spectra shift with the
excitation wavelength, and luminescence is invariant for
small excitation‐wavelength shifts. The use of multiple
excitation frequencies can thus be employed to separate
the Raman signal from the luminescence background.
The efficiency of the rejection increases with the number
of excitation frequencies, which adds significant complex-
ity to this hardware solution.[20] This technique has been
mainly used on samples that have spectral bands with
similar spectral widths (powders, crystalines proteins,
etc.). Recently, Cordero et al.[29] demonstrated that this
technique may also be applicable for biological tissue,
demonstrating SERDS to correct background from
chicken meat. They concluded that SERDS could be a
good choice for background correction when
backgrounds are too complex to be estimated, and when
signal‐to‐noise of the spectra is not a limiting factor.[29]

Software‐based strategies aim at algorithms to accu-
rately subtract luminescence background signals from
tissue spectra. Such algorithms have been widely developed
and tested for the fingerprint region of the Raman spectrum
(400 to 2,000 cm−1), including methods based on wavelet
transformation,[21,22] iterative weighted least squares,[23]

geometric approach,[24] polynomial baseline fitting
(PBF),[7–9,25] iterative morphological and mollifier‐based
baseline correction,[26] auto‐adaptive background,[27] and
genetic algorithm‐based cubic spline smoothing.[28]

For the high‐wavenumber region (2,500 to 4,000 cm−1),
these methods have shown limited value, mainly because
of limited knowledge about the shape of the luminescence
backgrounds of high‐wavenumber Raman spectra of
human tissues. The high‐wavenumber region consists of
a small number of relatively broad and overlapping bands,
which makes the estimation of the background signals
much more difficult than for the fingerprint region.
Polynomial subtractions of first and fifth orders are the
few and most common solutions mentioned for
background correction in the high‐wavenumber
region.[3,10–15] First‐order polynomial subtraction has been
used on high‐wavenumber Raman spectra acquired from
oral cavity (gingiva, buccal, dorsal tongue, and palate), ade-
nomatous polyps, esophageal squamous cell carcinoma,
nasopharyngeal tissues, and breast tissue.[3,10,12–15] The spec-
tra in these studies were acquired with fiber‐optic Raman
probes and a confocal Raman microscope. The excitation
laser wavelengths used were 785 and 1,064 nm. A fifth‐order
polynomial subtraction method has been reported for high‐
wavenumber Raman spectra of urine samples, using a confo-
cal Raman system with a 785 nm laser.[11]

Raman spectroscopy in the high‐wavenumber region
demonstrates significant advantages for ex vivo and
in vivo medical applications when compared to the
commonly used fingerprint region. The intensity of the
signal is higher, and therefore, measurements can be
performed in shorter integrations times. Additionally,
much used fiber‐optic materials such as fused silica do
not have Raman signal at the high‐wavenumber region
of the Raman spectrum.[30] This enables the use of simple
and cheap single fiber optic probes that can be easily
inserted in endoscopes and needles to perform in vivo
measurements in hollow organs or surface assessment of
solid organs such as oral cavity,[31,32] lung,[33,34] upper
gastrointestinal tract, [35–37] and colorectal.[14,38]
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A study by Koljenović et al. showed that, for discrimi-
nating cancer from healthy tissue, essentially the same
diagnostic information is obtained in either of the two
spectral regions (fingerprint or high‐wavenumber).[30]

Although the high‐wavenumber spectra show consider-
ably less interference from tissue luminescence compared
to spectra in the fingerprint region, the background lumi-
nescence signal in the high‐wavenumber can still be some
orders of magnitude higher than the Raman signal itself.

This study reports a more elaborate method for lumines-
cence background subtraction from tissue spectra in the
high‐wavenumber region. Themethod is based on a detailed
characterization of the shapes of the luminescence back-
ground signals in ex vivo high‐wavenumber Raman spectra
of freshly excised oral cavity tissue. The aim of this study
was to characterize the luminescence background and to
compare the performance of two algorithms for correction
of these backgrounds: the most used algorithm (PBF) and
a multiple regression fitting (MFR) based method.
2 | MATERIALS AND METHODS

2.1 | Instrumentation and spectral
preprocessing

For all Raman experiments, a confocal Raman
microscope was used. The setup comprised a
multichannel Raman Module (HPRM 2500, RiverD
International B.V., The Netherlands), a 671 nm laser
(CL671–150‐SO, CrystaLaser), and a CCD camera fitted
with a back‐illuminated deep depletion CDD‐chip
(Andor 316, Andor Technology Ltd., UK). All the differ-
ent parts of the instrument are described in detail in
earlier work.[39,40] All spectra acquired with this setup
were calibrated to a relative wavenumber axis and
corrected for the wavelength dependent detection
efficiency of the setup. The calibration was performed
following the instructions of the spectrometer supplier
(RiverD International B.V., The Netherlands). Spectral
preprocessing was performed by removal of cosmic ray
events and Raman signal generated in the instrument
(caused by the passage of laser light through optical
components), which was recorded by measuring a
Raman spectrum without a sample being present.
2.2 | Luminescence background signal

Bleaching experiments were performed to evaluate the
shapes of the luminescence background signals that are
present in ex vivo high‐wavenumber human tissue spec-
tra. The bleaching was induced by continuous exposure
of the samples to the focused Raman excitation laser light.
This produced spectra with an almost constant Raman
contribution and decaying luminescence contributions.
In this subsection, the bleaching experiments and the
method used to extract the luminescence background
signals from these experiments are described.
2.2.1 | Tissue samples

Ex vivo experiments were performed on fresh resection
specimens from patients undergoing surgery for oral
cavity squamous cell carcinoma. Informed consent was
obtained from the patients prior to the surgical procedure.
The study protocol has been approved by the Medical Ethics
Committee of the Erasmus MC, University Medical Center
Rotterdam, The Netherlands (MEC‐2013‐345). The surgeon
brought the specimen right after resection to the pathology
department. The pathologist performed assessment of resec-
tion margins by cutting the specimen, perpendicularly to the
resection surface, in about 5‐mm‐thick cross sections. After
this intraoperative assessment, one of the cross sections
was chosen by the pathologist for measurements, and the
remaining cross sections were immersed in formalin. Blood
was rinsed with physiological salt solution (0.9% NaCl) and
gently patted dry with gauze. The section was inserted in a
cartridge with the tissue in contact with a fused silica
window on one side of the cartridge. The window allowed
scanning of a 3 × 3 cm tissue area. Experiment time was
limited to 60 min, after which the section was immersed
in formalin and together with the rest of the resection
specimen, and followed the standard pathology workflow.
2.2.2 | Bleaching experiments to isolate
luminescence background signals

For bleaching experiments, Raman spectra were collected
from different tissue locations on the freshly excised oral
cavity tissue sections. Approximately 80 mW of laser light
was focused to a spot of 4 μm in diameter. Up to 120
spectra with 1 s exposure time were obtained at each
measurement location.

In the experiments, breakdown of the luminescence
molecules was induced by continuous exposure to the
focused Raman excitation laser light. Time decay of the
luminescence component of the signal and time invariance
of the Raman component were determined by calculating
difference spectra between consecutive spectra in a
bleaching experiment. If difference spectra showed a broad
background signal without observable Raman features, the
difference between the first spectrum (spectrum with the
highest background) and last spectrum (spectrum with
the lowest background) was used to estimate the lumines-
cence background signal. If Raman features were present
in the difference spectra between the first spectrum and
consecutive spectra, the experiment was discarded.



702 BARROSO ET AL.
2.2.3 | Optimization of polynomial
approximation to the background

The background signals estimated from each bleaching
measurement were normalized, and polynomials of
increasing orders from 1st to 10th order were fitted to
the normalized backgrounds by the classical least‐squares
method.[41] The norm of the residuals was plotted as a
function of polynomial order. The optimal polynomial
order was defined as the order after which there was no
more significant decrease in residual (<5%).
2.3 | Bovine serum albumin (BSA)
reference spectra

BSA was purchased from Sigma‐Aldrich (A9647, 66 kDa).
Eleven solutions of BSA and water were prepared with
mass percentages from 5% to 40%. Per solution, 60 spectra
were acquired with an exposure time of 1 s and then
averaged, resulting in a set of reference spectra character-
ized by a low background signal and varying fractions of
protein and water (CH3 stretching vibrations, 2,910–
2,965 cm−1, and OH stretching, 3,350–3,550 cm−1). First‐
order polynomial subtraction was used to subtract the
little existing background signal.
2.4 | Tissue reference spectra

A total of 10,147 tissue spectra, collected in Raman map-
ping experiments described earlier,[40] were used to create
a set of tissue reference spectra with low luminescence
backgrounds and a high variance with respect to Raman
content. Ratios between peak content and background
content were calculated based on the 2,910–2,965 cm−1

CH3 stretching band. A first‐order polynomial baseline
was fitted between the spectral points at 2910 and
2965 cm−1. Peak content was calculated as the integrated
area above this baseline. Background was calculated as
the integrated area below the baseline. The spectra with
the 25% highest CH3 content to background ratio were
selected for the reference set. These spectra were scaled
on the mean of the data set by an extended multiplicative
scatter correction algorithm.[41,42] Hierarchical cluster
analysis was used to find the largest clusters in the group
of the spectra with the 25% highest CH3 content to back-
ground ratio. Principal component analysis was first used
for data reduction.[43] The clustering method was Ward's
agglomerative algorithm with 1‐ R2 as the distance metric,
where R2 is the squared Pearson's correlation coefficient.
The result of the hierarchical cluster analysis is a
membership matrix N × N (N is the number of spectra)
that represents the clustering at each level of agglomera-
tion.[44] The largest clusters, composing 90% of the spectra
(from the group of spectra with the 25% highest CH3

content to background ratio), were selected as a represen-
tation of the most common tissue structures present in the
oral cavity with the lowest luminescence background.
Cluster averages were calculated, and the residual
background subtracted by first‐order PBF.
2.5 | Algorithms for luminescence
background subtraction

Two algorithms were compared for characterization and
subsequent subtraction of luminescence background
signals: a PBF algorithm and an algorithm based on MRF.
2.5.1 | PBF algorithm

The PBF algorithm used is an iterative function that fits a
polynomial, of a user‐specified order, through a selected
set of spectral points. In the first iteration, all points of
the spectrum are used, and in each iteration, the number
spectral points is reduced by only including spectral
points with lower intensity than the fitted polynomial at
those points. In this way, the polynomial is iteratively
adapted to fit the lowest points of the spectrum. The
iteration is stopped when the number of points used for
the baseline fit is below a threshold set by the user.
Finally, the offset of fitted baseline polynomial is adapted
to ensure that the value of the fitted baseline was never
above the value of the spectrum over the whole spectral
range.
2.5.2 | MRF algorithm

In the MRF method, the spectra were fitted with a set of
library spectra (independent variables), that have low
background, and a polynomial, of a user‐specified order,
using a nonnegative least squares method (constraining
fit coefficients to greater or equal to zero).
2.6 | Algorithm performance evaluation

The performance of the PBF and MRF algorithms was
evaluated using two artificial data test sets that were
constructed from the extracted luminescence background
spectra, BSA reference spectra, and tissue reference
spectra described above. Different luminescence
background spectra were digitally added to the reference
sets, which resulted in test spectra for which the lumines-
cence background component was exactly known. The
result of the luminescence background correction
methods was compared to the corresponding reference
spectrum (without artificially added luminescence back-
ground). Performance of the two background correction
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algorithms was evaluated for different values of the
polynomial order to define optimal values for both
methods. Evaluation criteria were the similarity between
the background corrected spectrum and the original
spectrum using Pearson's correlation coefficient, and sec-
ond, the influence of the background correction on the
calculated water percentage. The water concentration
was calculated from the ratio of the Raman bands at
3,390 and 2,935 cm−1, as described by Caspers et al.[45]
3 | RESULTS

3.1 | Luminescence background signal
data set

3.1.1 | Tissue samples & bleaching
experiments

Bleaching experiments were performed to isolate the
luminescence background signals that are present in
ex vivo tissue spectra. Freshly excised oral cavity speci-
mens from six patients were analyzed on 35 different
FIGURE 1 Example of background estimation from a bleaching exp

spectrum (light blue), and the difference between the two as the estimat

fits to the estimated background. (c) Estimated background (red), fitted

background (red), optimal (second order) polynomial (black), and residu

order after which there was no more significant decrease in residual (<5
tissue locations. An example of a bleaching experiment
is presented in the Figure 1a.
3.1.2 | Optimization of polynomial
approximation to the background

Table S1 shows the residuals of the polynomial fits to the
35 different luminescence background spectra and the
optimal polynomial order. The results for orders 1 to 7
are shown in the table. Three out of the 35 luminescence
backgrounds were optimally approximated by a first‐order
polynomial (8%), 22 background signals were optimally
approximated by a second‐order polynomial (63%), eight
by a third‐order polynomial (23%), and two by fourth‐
order polynomial (6%). An example of the polynomial
approximation to the background can be seen in the
Figure 1b–d.
3.2 | BSA test data set

Figure 2 shows the reference set of 11 spectra of BSA solu-
tions with different mass percentages (4.92%, 5.91%,
eriment. (a) Bleaching time‐series: first spectrum (dark blue), last

ed background (red). (b) Residuals for different polynomial order

first‐order polynomial (black), and residual (green). (d) Estimated

al (green). The optimal polynomial order is defined as the minimal

%) [Colour figure can be viewed at wileyonlinelibrary.com]
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FIGURE 2 Bovine serum albumin (BSA) reference spectra data set and BSA spectra test set. (a) Averaged Raman high‐wavenumber spectra

from different albumin solutions. The mass percentage (m%) of the solutions varied between 5% and 40%. For better visualization of Raman

signal, the low intensity background was subtracted as a first order polynomial. (b) BSA spectra test set: 280 Raman spectra with BSA signal

and luminescence content [Colour figure can be viewed at wileyonlinelibrary.com]
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9.86%, 14.80%, 19.74%, 24.70%, 29.66%, 31.65%, 34.64%,
37.62%, and 39.61%). Eight spectra were used for testing
of the PBF and MRF algorithms. The remaining three
spectra were used as independent data in the MRF
algorithm. Each of the eight BSA reference spectra was
combined with all 35 different background luminescence
spectra, resulting in a test set of 280 spectra shown in
Figure 2b.
3.3 | Tissue test data set

Nineteen tissue reference spectra with low luminescence
background were obtained, which are shown in Figure 3
a. Thirteen spectra were used for testing of the PBF and
MRF algorithms. The remaining six spectra were used as
independent data in the MRF algorithm, and each of the
FIGURE 3 Ex vivo high‐wavenumber tissue reference spectra data se

high‐wavenumber tissue reference spectra with low luminescence backg

spectra in the ex vivo tissue spectra data set. For better visualization of R

order polynomial. (b) Ex vivo high‐wavenumber tissue spectra test set: 4

[Colour figure can be viewed at wileyonlinelibrary.com]
13 tissue reference spectra was combined with all 35
different background luminescence spectra, resulting in
a test set of 455 spectra shown in Figure 3b.
3.4 | Algorithm performance evaluation

3.4.1 | BSA test data set

For all 280 spectra of the BSA test data set, the back-
ground was estimated with the two algorithms using a
first‐, second‐, third‐, fourth‐, and fifth‐polynomial orders
and subtracted. The similarity of the background‐
corrected data with the original data is listed in Table 1.
The mean and the standard deviation of the Pearson's
correlation coefficients are shown per test data set and
per algorithm used for testing. The table also shows the
t and high‐wavenumber tissue spectra test set. (a) Nineteen ex vivo

round were obtained after cluster analysis of the low luminescence

aman signal, the low intensity background was subtracted as a first

55 Raman spectra with known Raman and luminescence content

http://wileyonlinelibrary.com
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TABLE 1 Evaluation of the performance of the polynomial baseline fitting (PBF) andmultiple regression fitting (MRF) algorithms on bovine

serum albumin (BSA) spectra and on ex vivo high‐wavenumber tissue spectra. Average +/− standard deviation of the Pearson's correlation

coefficient between background corrected spectra and their reference spectra for the two different correction algorithms (PBF and MRF) and

different values of the algorithm background polynomial. Average +/− standard deviation of the absolute error in water concentration (%)

between background corrected spectra and their reference spectra for the two different background correction algorithms and different values

of the algorithm background polynomial

Background
polynomial

BSA spectra

Pearson's correlation coefficient Absolute error in H2O (%)

PBF MRF PBF MRF

1st order 0.973 ± 0.076 0.974 ± 0.075 2.74 ± 10.60 2.74 ± 10.60

2nd order 0.995 ± 0.009 0.996 ± 0.006 0.64 ± 0.57 0.61 ± 0.52

3rd order 0.993 ± 0.021 0.996 ± 0.006 0.74 ± 1.22 0.56 ± 0.48

4th order 0.747 ± 0.136 0.996 ± 0.007 29.24 ± 34.10 0.58 ± 0.54

5th order 0.516 ± 0.197 0.996 ± 0.006 46.54 ± 16.39 0.58 ± 0.52

Background
polynomial

Tissue spectra

Pearson's correlation coefficient Absolute error in H2O (%)

PBF MRF PBF MRF

1st order 0.996 ± 0.008 0.996 ± 0.007 0.81 ± 1.30 0.81 ± 1.30

2nd order 0.996 ± 0.010 0.997 ± 0.007 0.62 ± 1.00 0.52 ± 0.72

3rd order 0.996 ± 0.010 0.997 ± 0.006 0.60 ± 0.82 0.48 ± 0.54

4th order 0.728 ± 0.140 0.997 ± 0.007 12.99 ± 22.30 0.48 ± 0.53

5th order 0.578 ± 0.200 0.997 ± 0.007 37.00 ± 13.97 0.49 ± 0.52
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mean and the standard deviations of the differences in
calculated water concentrations.

Examples for the PBF algorithm with first‐, third‐, and
fourth‐polynomial orders are shown in Figure 4a–c. The
distributions of the corresponding Pearson's correlation
coefficients are shown in Figure 4d. Examples for the
MRF algorithmwith first‐, second‐, and fourth‐polynomial
orders are shown in Figure 4e–g. The distributions of the
corresponding Pearson's correlation coefficients are shown
in Figure 4h.
3.4.2 | Tissue reference test data set

For all 455 spectra of the tissue test data set, the
background was estimated with the two algorithms using
a first‐, second‐, third, fourth‐, and fifth‐polynomial
orders. The similarity of the background‐corrected data
with the original data and the errors in calculated water
concentration after background correction are listed in
Table 1. Two examples of the results obtained using PBF
algorithm and MRF algorithm are shown in Figure 6a–d.
4 | DISCUSSION & CONCLUSIONS

When measuring Raman spectra from biological tissue,
high luminescence backgrounds can (almost) completely
obscure the Raman signal. Both hardware‐ and software‐
based strategies have been developed to correct for these
luminescence background signals.

Hardware‐based strategies can be efficient, but their
implementation is associated with higher instrument
complexity and associated with higher costs. Software‐
based strategies are easier to implement and have lower
costs. Most software‐based strategies have been developed
for the fingerprint region. In contrast to the fingerprint
region, not many background subtraction algorithms
have been developed for the high‐wavenumber region of
the Raman spectrum.[7,9,21–28,46]

For high‐wavenumber region spectra, PBF is the only
solution mentioned for background correction, using
either a first‐order[3,10,12–15] or a fifth‐order polyno-
mials.[11] However, this method produced unsatisfactory
results for our ex vivo high‐wavenumber spectra of
human oral tissues. First, we experienced that not all
luminescence backgrounds could be characterized by a
first‐order polynomial, and the estimation of the
background by higher order polynomials did not produce
stable results. We observed that the polynomial fits have
problems in distinguishing between luminescence
background and the rather broad band Raman spectral
features in the high‐wavenumber region.

Therefore, in this article, we present a new and effec-
tive method for correction of luminescence backgrounds



FIGURE 4 Luminescence background correction on bovine serum albumin test data using the polynomial baseline fitting (PBF) and

multiple regression fitting (MRF) algorithms. PBF results are shown in the left column and MRF results in the right column. (a) Example

of PBF first‐order polynomial background subtraction. (b) PBF second‐order polynomial. (c) PBF fourth‐order polynomial. (d) Box plot of the

Pearson's correlation coefficients for PBF with different polynomial orders. (e) Example of MRF first‐order polynomial background

subtraction. (f) MRF second‐order polynomial. (g) MRF fourth‐order polynomial. Spectra displayed: test spectrum (red), estimated

background (blue), corrected spectrum (green), and corresponding reference spectrum (black) [Colour figure can be viewed at

wileyonlinelibrary.com]
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FIGURE 6 Luminescence background correction on tissue test data

fitting (MRF) algorithms. PBF results are shown in the left column and

polynomial background subtraction. (b) PBF fourth‐order polynomial. (c

Test spectrum (red), estimated background (blue), corrected spectrum (g

can be viewed at wileyonlinelibrary.com]

FIGURE 5 The six ex vivo high‐wavenumber tissue reference

spectra that were used as independent variables in the MRF

algorithm. For better visualization of the differences in the Raman

signal, the spectra were normalized [Colour figure can be viewed at

wileyonlinelibrary.com]
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in high‐wavenumber region Raman spectra. The method
is based on MRF and on high‐wavenumber lumines-
cence‐free Raman signal. The goal of this study was to
characterize the luminescence background signals of
ex vivo human oral tissue high‐wavenumber region
spectra and to compare the performance of the MRF
method with the more common PBF.

The luminescence background signals were measured
in laser‐induced bleaching experiments on freshly excised
human oral tissue. The bleaching process was not
complete for all the bleaching experiments performed,
due to time constraints (fresh specimen(s) that needed
to be sent to pathology department). Although the
estimated backgrounds did not bleach completely, we
do not believe that this affects the outcome of this study
in any way.

Polynomials of different orders were required for opti-
mal approximation of the luminescence backgrounds,
ranging from first order (8% of the cases), second order
(63% of the cases), third order (23%), to fourth order
(6%). These results indicate that it is not possible to choose
using the polynomial baseline fitting (PBF) and multiple regression

MRF results in the right column. (a) Example of PBF second‐order

) MRF fourth‐order polynomial. (d) MRF fourth‐order polynomial.

reen), and corresponding reference spectrum (black) [Colour figure

http://wileyonlinelibrary.com
http://wileyonlinelibrary.com
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a single optimal polynomial order that will give the best
background estimation for all cases. Hence, operator‐
supervision is required, and interoperator subjectivity
may play a role. Moreover, the selection of a polynomial
order that is not optimal can result in significant artifacts
in the Raman spectrum from residual luminescence
contributions or from removal of Raman signal by
polynomial overfitting.

The luminescence background signals obtained from
the bleaching experiments were used to generate test data
sets of spectra with known luminescence and Raman
contributions (Figures 2 and 3). For the Raman contribu-
tions, two different data sets were used: a set of spectra
from pure BSA solutions with different concentrations
and fresh ex vivo tissue spectra from oral cavity tissue
with very low luminescence background. Because the
luminescence backgrounds in the test data sets were
digitally added, the test data enabled accurate evaluation
of the performance of the background subtraction
algorithms (Figures 4-6). Evaluation criteria were spectral
correlation and error in the calculated water content after
background correction, as compared to the corresponding
reference spectra. The results in Table 1 show that for
both data sets, MRF performs equally well or better than
PBF for all the polynomial background orders evaluated.
The results test show that the MRF is more robust and
more effective than PBF in accurately estimating the
luminescence background in high‐wavenumber region
tissue and BSA spectra. Also here, it is clear that the
MRF algorithm gives significantly better results when
higher order polynomials are used in the fitting process.
For the tissue reference test data set, the MRF algorithms
gives better results and again especially for the higher
order polynomials.

For the classical PBF method, the overall best results
were obtained by fitting a second‐order polynomial. This
is mainly determined by the observation that the lumines-
cence backgrounds obtained from the bleaching experi-
ments predominantly had a second‐order polynomial
shape. Higher polynomial orders lead to large errors due
to overfitting artifacts. This is a common risk in polyno-
mial background fitting of high‐wavenumber region
Raman spectra of tissues because these spectra are charac-
terized by broad partially overlapping bands, and because
no reliable baseline points are available to anchor the
central part of the spectrum around 2,800–3,800 cm−1.
As a result, the broad high‐wavenumber Raman bands
are partly fitted as background by higher order
polynomials (see Figure 4c).

For MRF, second‐order polynomials or higher gave
the best results. This confirms that the MRF‐method is
robust and can be reliably used with higher order polyno-
mials, because the Raman signal is fitted by the
independent spectra included in the method. Thus, higher
order polynomials do not result in fitting of the Raman
signal as background. The MRF algorithm is not depen-
dent of the shape of the Raman signal, provided that the
independent data set of luminescence‐free Raman spectra
is representative of the Raman signal variance measured.
This effectively eliminates subjectivity in choosing an
optimal polynomial order, as required by the PBF
method, and the associated problem that a single optimal
polynomial order does not exist for a variety of
backgrounds, as shown in the Section 3.

The results of this study were obtained on high‐
wavenumber region Raman spectra. However, we
believe that the method may not be limited to this
spectral region but may prove equally useful for
luminescence background correction in the fingerprint
region. Further studies will be conducted to prove the
usefulness of MRF for luminescence background
subtraction in the fingerprint region.

In conclusion, this study has demonstrated that MRF
is a more accurate and robust solution than PBF for
correction of luminescence backgrounds and can be used
for unsupervised and automated background subtraction
as needed in real time tissue diagnostic applications.
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