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Abstract Emerging domains such as smart electric grids require decisions to be made
autonomously, based on the observed behaviors of large numbers of connected consumers.
Existing approaches either lack the flexibility to capture nuanced, individualized prefer-
ence profiles, or scale poorly with the size of the dataset. We propose a preference model
that combines flexible Bayesian nonparametric priors—providing state-of-the-art predictive
power—with well-justified structural assumptions that allow a scalable implementation. The
Gaussian process scalable preference model via Kronecker factorization (GaSPK) model
provides accurate choice predictions and principled uncertainty estimates as input to decision-
making tasks. In consumer choice settings where alternatives are described by few key
attributes, inference in our model is highly efficient and scalable to tens of thousands of
choices.
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1 Introduction

Data-driven modeling has become integral to informing a growing array of decisions, yet
autonomous decision-making remains elusive under all but themost highly structured circum-
stances. Two prominent application domains, dynamic flight pricing and automated credit
approvals, exemplify how automated business rule engines make most operative decisions
quickly, cheaply, and reliably (Baker 2013). However, in less structured settings involving
individual preferences—from planning the next vacation to trading in complexmulti-echelon
markets—autonomous decision-making through software agents remains an active area of
research, e.g., Adomavicius et al. (2009).

A key challenge in autonomous decision-making in unstructured settings is the identifi-
cation of what choices a given user deems best. Individuals may be unaware of the drivers
underlying their own preferences (Lichtenstein and Slovic 2006), making data-driven prefer-
ence models instrumental because they can elicit preferences by generalizing from observed
choices (Bichler et al. 2010). While we will typically see global patterns in preferences
(e.g. cheaper options preferred over more expensive options), we do not expect a single
model to capture all behavior. Two individuals may make different choices when faced
with the same options, and even a single individual may not always make consistent deci-
sions.

To see the benefit of preference modeling consider, for example, smart grids (Kassakian
and Schmalensee 2011), where data-driven learning is anticipated to play a key role in
facilitating efficient electricity distribution and use. Particular challenges in this context are
electric vehicles that are charged in varying locations, and the incorporation of intermit-
tent and variable renewable electricity sources, such as solar and wind (Valogianni et al.
2014). Data-driven modeling of electricity consumption preferences under different incen-
tives and contexts is essential for effectively incentivizing consumers to choose sustainable
behaviors (Watson et al. 2010; Peters et al. 2013). A number of factors may influence an
individual’s choice to use her electric vehicle—for example, time of day, cost of electric-
ity, or weather conditions. A preference model can learn that a user prefers not to use her
electric vehicle in the morning if electricity is at a higher price point, over not using the
vehicle if the cost of electricity is reduced. Such a model could be used to incentivize elec-
tric vehicle owners to make the car battery’s energy available to nearby consumers when
renewable energy is scarce. Electricity cost and emission reduction, informed by such data-
driven preference learning and autonomous decision-making, can be significant (Kahlen et al.
2014).

Prior work on preference learning has made significant advances in generating accurate
predictions fromnoisyobservations such as electricitymeter readings that are inconsistent and
heterogeneous (Kohavi et al. 2004; Evgeniou et al. 2005). Recently, non-parametric Bayesian
models have proved particularly advantageous. A Bayesian framework, such as that used by
Guo and Sanner (2010), explicitly models uncertainty and accommodates inconsistencies in
human choices rather than imposing stringent rationality assumptions. By allowing inconsis-
tencies in observed choices to be translated to uncertainty, Bayesian models can distinguish
between cases where estimates are certain enough to justify an autonomous action, and cases
when the model might benefit from actively acquiring additional evidence or transfer con-
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trol to a human decision-maker (Saar-Tsechansky and Provost 2004; Bichler et al. 2010).
Non-parametric Bayesian models are a particularly flexible class of Bayesian models that
minimize assumptions made about the structure underlying the data, instead automatically
adapting to the complexity of real-world observations (Guo and Sanner 2010; Bonilla et al.
2010; Houlsby et al. 2012).

Existing non-parametric Bayesian methods that achieve state-of-the-art predictive accu-
racies do not scale well to a large number of users. Their prohibitive computational costs
cannot be addressed with additional processing power or offline processing, making such
methods impractical for modeling a large number of users. Conversely, models that are
more scalable, such as the restricted value of information algorithm (Guo and Sanner 2010),
tend to be parametric models that offer inferior predictive performance compared with more
complex models (Bonilla et al. 2010). If non-parametric Bayesian methods are to become
widely adopted in practice, progress must be made to ensure that they both scale well and
achieve high-quality predictions. In particular, important domains such as energy markets
and healthcare require methods that are computationally efficient, and that scale gracefully
with respect to the number of users and observations. Contemporary electric distribution sys-
tems, for example, produce large amounts of data from up to ten million consumer meters,
each transmitting data every few minutes (Widergren et al. 2004). Such large amounts of
data must be processed quickly and at high granularity (i.e., unaggregated), as automated
responses often rely on fine-grained, local information. It is therefore important for prefer-
ence models to provide consistently fast training times, as well as to incorporate and act on
new data in a timely manner.

In this paper we develop and evaluate a novel, non-parametric, Bayesian approach
that offers an advantageous augmentation to the existing preference modeling toolset.
Our approach, Gaussian process Scalable Preference model via Kronecker factorization
(GaSPK), leverages common features of consumer choice settings, particularly the small
set of relevant product attributes, to yield state-of-the-art scalability. GaSPK formulates a
personalized preference model based on a shared set of trade-offs, designed in a way that
facilitates the use of Kronecker covariance matrices. While covariance matrices with Kro-
necker structure have been used in a preference learning context (Bonilla et al. 2010), no
prior work on preference learning has employed their favorable factorization and decom-
position properties to produce scalable algorithms. As we will see in Sects. 3.2 and 5,
this leads to improved theoretical and empirical scalability over related preference mod-
els.

We empirically evaluate GaSPK’s performance relative to that of key benchmarks on
three real-world consumer choice datasets. For this study we collected an electricity tariff
choice dataset on a commercial crowdsourcing platform for a U.S. retail electricity market.
To confirm our findings we evaluated the methods on two benchmark choice datasets on
political elections and car purchases. Our results establish that GaSPK is likely to often be
the method of choice for modeling preferences of a large number of users. GaSPK produces
state-of-the-art scalability, while often yielding favorable predictive accuracy as compared
to the accuracy achieved by existing approaches.

GaSPK introduces a new benchmark to the preference modeling toolset that is particu-
larly suitable for modeling a large number of users’ preferences when alternatives can be
described by a small number of relevant attributes. Its principled handling of uncertainty is
also instrumental for autonomous decision-making.
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2 Gaussian process scalable preference model via Kronecker factorization
(GaSPK)

We begin with outlining the GaSPK learning approach. As discussed above, GaSPK aims to
augment the non-parametric Bayesian preferencemodeling toolset to allow for scalability and
conceptual simplicity in consumer choice settings. Our discussion begins with a description
of the fundamentals of GaSPK. We outline our contributions to facilitate scalability and
conceptual simplicity in Sect. 3.

Let U = {
u1, . . . , unU

}
denote a set of users and X = {

x1, . . . , xnX | xi ∈ R
dX
}
a set of

instances, the objects or actions between which users choose. Each instance is described by
dX real-valued attributes. Data is presented as a set of observed, binary choices, denoted as:

C =
{
(u, x1, x2, y) | u ∈ U, xi ∈ X, y ∈ {+1,−1}

}

Here, y ∈ {−1,+1} denotes the user’s choice: (u, x1, x2,+1) reflects that user u prefers the
first alternative (instance x1) to the second alternative (instance x2), whereas (u, x1, x2,−1)
reflects the opposite preference. Table 1 summarizes themathematical notation used through-
out the paper. The goal of preference learning is to learn an order relation �u over instances

Table 1 Summary of mathematical notation (symbols are in alphabet order)

Symbol Definition

◦ Hadamard (element-wise) matrix product

⊗ Kronecker matrix product

C =
{
(u, x1, x2, y)

}
Choice situations: when presented with alternatives x1 and x2, user u
chose y = +1 (first alternative), or y = −1 (second alternative)

γ c
u , Γu , Γ Γu = (γ 1

u , . . . , γC
u ) is a probability vector indicating the extent of user u’s

possession of each of the nC characteristics; Γ ∈ R
nU×nc collects all Γu

dT , dX Dimensionality of elements in T , X

fu , f c Functions f : RdT → R describing users’ latent evaluation of trade-offs
and characteristic evaluation of trade-offs, respectively

θ = {ld } Lengthscale hyperparameters

I Identity matrix

K Covariance matrix, K ∈ R
(ncnT )×(ncnT )

L : LLT = W Lower Cholesky factor of W

nc Fixed number of characteristics

ne Number of Eigenvalues used in low-rank approximations

nT , nU , nX Number of elements in T , U , and X

N , Φ Probability density function (PDF), and cumulative distribution function
(CDF) of the standard normal distribution

p(C |{ fu}), ∇ p(C |{ fu}) Likelihood and its Jacobian ∂p(C | f )
∂ fi

t, t(d), T Trade-off t , its d-th element, and set of all trade-offs, respectively

U Set of all users

W = −∇∇ log p(C |{ fu}) Negative Hessian of the log likelihood

X Set of all instances

y ∈ {−1,+1} Single choice: y = +1 (first alternative), or y = −1 (second alternative)

Z Model evidence, also known as marginal likelihood
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for each user, so as to predict unobserved choices, including those of previously unobserved
users.

Rather than operating directly on order relations �u , some preference models estimate
latent functions from which the order relations can be inferred. For example, the standard
discrete choice models proposed by Thurstone (1927) and Bradley and Terry (1952) estimate
functions f̃u : X → R that capture the utility f̃u(x) that user u derives from each instance
x . When presented with a previously unobserved choice between instances x1 and x2, these
models will predict that x1 �u x2 if and only if f̃u(x1) ≥ f̃u(x2).

Two key disadvantages of such approaches include the absolute interpretation of utility
independently of context, and the stringent rationality assumptions that follow from this treat-
ment. When making decisions individuals have been shown to focus on trade-offs resulting
from their choices rather than on absolute outcomes and thus perceive alternatives within
the context in which they are presented (Tversky and Simonson 1993). The assumption of
utility models that individuals simply recall absolute, predetermined instance utilities f̃u(x),
and the strict transitivity of �u implied by this assumption, are frequently violated in prac-
tice. Therefore, we represent our choices in terms of trade-offs t = τ(x1, x2), where τ is
some mapping from R

dX × R
dX to R

dT , where dT ≤ dX . For example, we might choose
τ(x1, x2) = x1 − x2.1 If the dimensionality dX of X is high, we might choose τ to be a
dimensionality-reducing mapping, so that dT < dX ; such an approach is supported by find-
ings that, when dX is large, consumers tend to base their decisions on a small subset of the
dimensions of X (Hensher 2006).

Assume, for example, that electricity tariffs (i.e., rates or plans) are characterized by cost
per kilowatt-hour and whether the electricity is generated from renewable sources. Given
user u is presented with a choice between two alternative tariffs:

x1 =
[
32

¢

kWh
, 1 (renewable)

]
and x2 =

[
28

¢

kWh
, 0 (non-renewable)

]

our goal is to predictwhether the userwill prefer the first (y = +1 and x1 �u x2) or the second
tariff (y = −1 and x2 �u x1). The trade-off the user faces is t = (x1−x2) = (

4 ¢
kWh , 1

)
, i.e.,

by choosing tariff x1, the user pays an additional 4 ¢
kWh in exchange for a supply of renewable

energy. In this formulation of the trade-off, our goal is to classify whether a given user will
perceive the trade-off as favorable ( fu(t) positive) and choose the first tariff, or perceive the
trade-off as unfavorable ( fu(t) negative) and choose the second tariff instead. Thus, we aim
to classify trade-offs as favorable or unfavorable based on users’ latent evaluations fu(t).

From a decision-theoretic perspective, our approach is inspired by the trade-off contrast
principle (Tversky and Simonson 1993), and by case-based decision theory (Gilboa and
Schmeidler 1995), which posits that a user’s trade-off evaluation will resemble past evalua-
tions of similar trade-offs. Compared with models that index functions based on raw input
values, using trade-offs allows us to generalize preferences outside their original context, for
example learning that a user will pay an extra 4 ¢

kWh for renewable energy, regardless of the
base rate.

Given human preferences are latent and inconsistent, and because observed choices can
be biased and distorted by noise (Evgeniou et al. 2005), we cast the problem in probabilistic
terms, which accommodates these properties. Panel (a) in Fig. 1 outlines the generative pro-

1 One can alternatively formulate the trade-off using percentage increases or any other relevant transformation.
Such alternative transformations may increase the interpretability of the model’s outputs; however, in our
experiments we found them to have a negligible effect on the performance of our approach. We conjecture
that it is also possible to learn the τ mapping from the data using, e.g., warped Gaussian processes (Snelson
et al. 2004).
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(a) (b)

Fig. 1 Probabilistic graphical model of GaSPK. a users make choices based on their evaluations fu(t) of the
associated trade-offs. Users’ evaluations are linear combinations of nc behavioral characteristics f c which they
possess to different degrees γ c

u . Shaded circles represent observed data, white circles represent latent quantities
of interest. The two plates in the figure denote replication of the enclosed elements for each characteristic c
or user u, respectively. b Graphical table of contents for this article

cess underlying theGaussian process ScalablePreferencemodel viaKronecker factorization
(GaSPK). Reading Panel (a) from right to left: users make observable choices C between
alternatives based on their latent evaluation of trade-offs t , denoted as fu(t). Evaluations
are modeled as linear combinations of nc behavioral characteristics f c which individuals
possess to different degrees, denoted by γ c

u ∈ [0, 1]:

fu(t) =
nc∑

c=1

γ c
u · f c(t) with

∑

c

γ c
u = 1 (1)

We let Γu denote the nc-dimensional probability vector associated with user u, and Γ denote
the nU × nc matrix of all γ c

u .
The shared functions f c can capture global patterns of behavior—e.g. frugality, envi-

ronmental consciousness—that are exhibited in different quantities by different users (as
determined by the weights Γ ). Sharing information across users in this hierarchical manner
allows us to draw statistical strength across users, leading to better predictions even when
we have few choice observations for a particular user.

For now, we assume that Γ is known and focus on the problem of efficiently obtaining
probabilistic estimates of the f c. To do so in aBayesian context,we start by placing someprior
distribution p( f c) over these functions. We desire our prior to be flexible and make minimal
assumptions about the functional form of the f c. To this end, we select the nonparametric
Gaussian process (GP) prior (Rasmussen and Williams 2006; MacKay 1998). A GP is a
distribution over continuous functions f : Rd → R such that, for any finite set of locations
in R

d , the function evaluations have a joint multivariate Gaussian distribution. We write
f (·) ∼ GP(m(·), k(·, ·)), where m is a mean function (which we set to zero to reflect
indifference in the absence of other information), and k is a covariance function that specifies
how strongly evaluations of f at t and t ′ are correlated.

In our model, the input space is the product space of the dT trade-off dimensions, and we
evaluate the functions at the finite set of observed trade-offs T . A high value of the latent
characteristic function f c at trade-off t indicates that users with a large weight γ c

u for that
characteristic will tend to make a +1 choice at that trade-off. As is common when working
with GPs, we employ squared exponential covariances of the form:
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k(t, t ′) =
dT∏

d=1

exp

(

−
(
t (d) − t ′(d)

)2

2 · l2d

)

(2)

This covariance structure captures the desirable property that evaluations f (t), f (t ′) of trade-
offs t , t ′ become less correlated as the distance between them increases. This gives preference
to smooth functions f , reflecting the intuition that individuals make similar choices when
presented with similar trade-offs. The product structure of Eq. (2) corresponds to the assump-
tion that each dimension of a trade-off contributes independently to the covariance, a property
that will be crucial for efficient posterior inference. θ =:= {ld | d = 1, . . . , dT } denotes the
length-scale hyperparameters of the squared exponential covariance function. These length-
scales characterize, in each dimension, the magnitude at which a trade-off becomes material
to the users. Because the length-scales depend on the measurement of trade-offs in each
dimension (e.g., dollars vs. cents), we will learn them from the data in Sect. 3.2.3.

Evaluating k at all pairs of observed trade-offs (t1, t2) yields the covariance (kernel)
matrix K necessary for posterior inference. Importantly, the cost of many key operations
on K grows cubically in the number of unique trade-offs, which presents naïve inference
methods with significant scalability challenges. In Sect. 3.2 we show how the structure of
our preference learning task can be exploited to substantially reduce this cost, yielding state-
of-the-art scalability for our setting without significant loss in accuracy.

In order to complete our specification of the GaSPK, we must combine this prior distri-
bution over functions with a realistic likelihood model, relating the latent functions f c and
the user-specific weights γ c

u to the observed choices C . To translate the latent functions fu =∑
c γ c

u f c into probabilities ofmaking agiven choice,wepass the fu through a sigmoidal func-
tion, transforming the real-valued evaluations fu(t) to binomial probabilities pu,t and captur-
ing the intuition that a +1 choice is more likely when the latent function takes on high values.
The two most prominent candidates commonly used for such mappings are the Probit and
Logit functions (Train 2003). Given that both functions can be computed efficiently and that
no significant differences exist between them in terms of predictive accuracy (Rasmussen and
Williams2006), and since themarginal distributionof fu(t) is a normal distribution,we follow
earlier work (Chu and Ghahramani 2005; Houlsby et al. 2012) and use the Probit likelihood:

p(y| f c(t), Γ ) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Φ

fu (t)︷ ︸︸ ︷(
∑

c

γ c
u f c(t)

)

if y = +1

1 − �( fu(t)) = �(− fu(t)) if y = −1

(3)

where � denotes the cumulative distribution function of the standard normal distribution.2

The shape of our likelihood model is illustrated in Fig. 2.
We assume that the choices are independent conditioned on the latent functions, implying

that the order in which the choices are observed is irrelevant (i.e. they are exchangeable).
This exchangeability assumption is common in the preference modeling literature [see for
example Thurstone (1927), Bradley and Terry (1952), Guo and Sanner (2010)], and allows
us to write the joint likelihood as

2 In some models, the Probit likelihood also includes a noise variance term, p(y|·) = �

(
fu (t)
σ2
n

)
. However,

because our trade-off evaluation interpretation of the fu(t) is invariant under scaling, we set σ 2
n = 1 without

loss of generality.
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Fig. 2 Illustration of the Probit likelihood model. Probit likelihood model applied to a range of one-
dimensional trade-offs t . The evaluation function f (t) is fixed in the example. The bold line shows the
Probit likelihood that assigns higher probabilities p(y = +1| f (t)) from the interval [0, 1] (dotted lines, right
axis) to trade-offs with more positive evaluations

p(C | f c) =
∏

i

�(yi · fui (ti ))

Having specified both the likelihoodmodel and theGP prior, we can nowobtain a posterior
distribution p( f c |C), reflecting our updated belief about the latent f c. This belief can be used
to predict users’ choices with respect to unobserved trade-offs t∗. Specifically, the probability
that a user u chooses the first alternative when presented with trade-off t∗ is given by:

p(y∗ = +1 | t∗,C) =
∫

�( fu(t∗)) p ( fu(t∗) | C) d fu(t∗) (4)

= �

(
y · E[ fu(t∗)]√
1 + Var [ fu(t∗)]

)
(5)

3 Fast Bayesian inference in GaSPK

The modeling choices made in the basicGaSPK framework described in Sect. 2 are designed
to give flexible and powerful modeling capacity, allowing us to obtain high-quality predictive
performances. However, the goal of this work is to combine state-of-the-art performances
with computational efficiency. As described in Sect. 2, a naïve implementation of theGaSPK
will not scale well as we see more data, since GP inference typically scales cubically with the
number of datapoints. Further, the non-Gaussian likelihood means we are unable to evaluate
the posterior analytically, and must make judicious approximate inference choices to ensure
scalability.

In this section we address these issues of scalability. We first introducemodeling choices
that facilitate scalable inference (Sect. 3.1), then develop a scalable approximate inference
scheme in Sect. 3.2. Our inference algorithm alternates between using Laplace’s method to
efficiently obtain the approximate posterior distribution p( f c|C) ≈ q( f c|C)of characteristic
trade-off evaluations, and estimating the user characteristics Γ and the hyperparameters θ .

3.1 Structured Gaussian processes

When we condition on our finite set of trade-offs T , inferences about the f c correspond to
posterior inference in a multivariate Gaussian. Evaluating the covariance function k at all
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pairs of observed trade-offs (t1, t2) yields the covariance (kernel) matrix K necessary for
this posterior inference. Importantly, the cost of many key operations on K grows cubically
in the number of unique trade-offs, which presents naïve inference methods with significant
scalability challenges.

However, since our covariance structure factorizes across dimensions (Eq. 2), if we are
able to arrange our inputs on a grid, we can formulate our model using Kronecker covariance
matrices. Kronecker covariance matrices have favorable factorization and decomposition
properties that, as we describe in this section, facilitate scalable inference. While Kronecker-
structured covariances have appeared in other preference learningmodels (Bonilla et al. 2010;
Birlutiu et al. 2013), we believe we are the first to exploit their computational advantages in
this context.

In particular, as we will see later in this section, Kronecker covariance matrices are par-
ticularly appealing when our input space can be expressed as a low-dimensional grid with
a fairly small number of possible values along each dimension. Our problem setting is well
suited to the use of such a structure. Consumer and econometric research has established
that consumers focus on relatively small subsets of attributes as well as few possible val-
ues thereof when choosing amongst alternatives, e.g., Caussade et al. (2005) and Hensher
(2006). Motivated by this, we consider settings in which (1) the number of users, instances,
and observed choices is large and naïve methods are therefore computationally infeasible;
(2) trade-offs can be represented by a small number of attributes; and (3) each attribute has a
small number of values, or can be discretized. We show that when alternatives can be repre-
sented by a small number of attributes and values, it is possible to obtain matrices K which
are large, but on which important operations can be performed efficiently. In the empirical
evaluations that follow, we demonstrate that this approach yields computational advances
but also, despite introducing approximations, produces predictive performance that is often
superior to what can be achieved with current scalable approaches.

Concretely, we assume that trade-offs can be arranged on a dT -dimensional grid, and let
Td denote the set of unique values that occur on the dth attribute in T . In our electricity
tariffs example, trade-offs can be characterized by (1) price differences per kWh, and (2)
differences in renewable sources, so that we may have the following unique trade-off values:
T1 = {−0.10,−0.09, . . . , 0.09, 0.10} and T2 = {−1, 0, 1}. Not all possible combinations
of trade-offs are always observed (|T | < |T1| · |T2| = 63), and the covariance matrix
K̃ = [

k(t, t ′)
]
t,t ′∈T is therefore significantly smaller than 63×63.AGaussian process applied

to such a structured input space is known as a structured GP (Saatci 2011).
The key notion of structured GPs is that, rather than working directly with K̃ , we can

instead work with a larger matrix of the form (Saatci 2011):

K = K1 ⊗ · · · ⊗ KdT

where⊗ denotes theKronecker product.3 The entries Kd hold the covariance contributions of
the d-th dimension and they are generallymuch smaller than K̃ (in our example, K1 ∈ R

21×21

and K2 ∈ R
3×3). The Kronecker matrix K , on the other hand, holds the covariances between

3 For two arbitrarily sized matrices A, B, the Kronecker product is defined as:

A ⊗ B :=
⎡

⎢
⎣

a11B · · · a1n B
.
.
.

. . .
.
.
.

am1B · · · amn B

⎤

⎥
⎦ .
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all trade-offs in the Cartesian product×d Td , and it is thus much larger (in our example,
K ∈ R

63×63).
The significant computational savings that the Kronecker structure of K outlined above

enables follow from the fact that, instead of explicitly generating and manipulating K̃ , it is
now possible to operate on the smaller, Kd . In this setting, several key matrix operations
involving K can be performed efficiently. Most importantly:

– Matrix-vector products of the form Kb can be computed at a cost that is linear in the
size of b, in contrast to the quadratic cost entailed by standard matrix-vector products.

This follows from the fact that
(
Ki ⊗ K j

)
vec(B) = vec

(
Ki BK T

j

)
, where b = (B);

since the number of nonzero elements of B is the same as the length of b, this operation
is linear in the length of b.
As we will see in Algorithm 2, such products are required to find the posterior mode of
our GPs and in general dominate the overall computational budget; this speed-up means
that they are no longer the dominant computational cost.

– Eigendecompositions of the form K = QTΛQ can be computed from the Eigendecom-
positions of the Kd :

Q =
D⊗

d=1

Qd Λ =
D⊗

d=1

Λd

at cubic cost in the size of the largest Kd . This is a consequence of the mixed product
property of Kronecker products, that states that (A ⊗ B)(C ⊗ D) = (AC) ⊗ (BD) and
therefore,

(Qi�i Q
T
i ) ⊗ (Q j� j Q

T
j ) = (

(Qi�i ) ⊗ (Q j� j )
)
(QT

i ⊗ QT
j ) = (Qi ⊗ Q j )

(�i ⊗ � j )(Qi ⊗ Q j )
T .

In particular, this allows us to efficiently determine the Eigenvectors to the ne largest
Eigenvalues of K , allowing us to obtain computational speed-ups by replacing K with a
low-rank approximation.

Furthermore, note that all operations can be implemented by considering only the set of
unique, observed or predicted trade-offs. This reduces the region under consideration, from
the large space covered by K to a manageable superset of T . Unobserved trade-offs can be
modeled through infinite noise variances in Eq. (3). The corresponding likelihood terms then
evaluate to indifference (p = 0.5), and their derivatives to zero. The latter yield even sparser
matricesW and L in Algorithms 2 and 4 below, which can be directly exploited via standard
sparse matrix operations.

3.2 Approximate inference in GaSPK

The Kronecker structure described above has proved useful in a regression context, but
requires careful algorithmic design to ensure its benefits are exploited in the current context.
In Sect. 3.2.1, we develop a scalable inference algorithm using Laplace’s method to estimate
the posterior distributions p( f c|C, Γ ).

In a full Bayesian treatment of GaSPK, we would consider Γ another latent quantity of
interest, and infer its posterior distribution. Previouswork has addressed similar challenges by
either imposing aGaussian or aDirichlet process prior onΓ (Houlsby et al. 2012;Abbasnejad
et al. 2013). However, these approaches are computationally expensive, and it can be hard to
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interpret the resulting joint distribution over weights and characteristics. Instead, we treat Γ
as a parameter to be estimated; in Sect. 3.2.2 we show that we can either find the maximum
likelihood value by optimization, or find a heuristic estimator that we show in Sect. 5 performs
well in practice at a much lower computational cost.

We combine these two steps in an EM-type algorithm (Dempster et al. 1977) that jointly
learns Γ and the posterior distribution over the f c. The algorithm is outlined in Algorithm 1.

Algorithm 1AnEM-type algorithm for learning f c andΓ .GammaEstimator can be either
the ML estimator for Γ , or the heuristic estimator described in Algorithm 4.
1: function EMwrapper(covariance matrix K , choices C , # characteristics nc)
2: Γ ← random user characteristics
3: repeat

4: E
[
f̂ c
]

← LaplaceMode(K ,C, Γ )

5: Γ̂ ← GammaEstimator(C, E[ f̂ c])
6: until Γ , E[ f̂ c] converge
7: return user characteristics Γ , characteristic function modes E[ f̂ ]
8: end function

In the E-step, we use Laplace’s method to approximate the conditional expectation
E[ f c|C, Γ ]with the posterior mode E[ f̂ c|C, Γ ], as described in Sect. 3.2.1. We then obtain
one of the two estimators for Γ described in Sect. 3.2.2—an optimization-based estimator
that corresponds to the exactM-step but is slow to compute, or a heuristic-based estimator that
is significantly faster to compute. In practice, we suggest using the heuristic-based estimator;
as we show in Sect. 5 this approach strikes a good balance between predictive performance
and computational efficiency.

3.2.1 Learning the latent functions f c conditioned on Γ

Inferring the f c is complicated by the fact that the posterior p( f c|C, Γ ) is analytically
intractable under the Probit likelihood. Discrete choice models often use sampling-based
methods to approximate the posterior (Allenby and Rossi 1998; Train 2003). However, sam-
pling is slow, particularly for high-dimensional models based on GPs. Alternatives include
Laplace’s method, Expectation Propagation, and Variational Bayesian methods, all of which
seek to approximate p( f c|C) with a similar distribution q( f c|C) that can be computed and
represented efficiently (Bishop 2006).

In this paper we use Laplace’s method, because it is computationally fast and concep-
tually simple. Laplace’s method is a well known approximation for posterior inference in
regular GPs (Rasmussen andWilliams 2006) and simpler preference learning scenarios (Chu
and Ghahramani 2005). Laplace’s method aims to approximate the true posterior p with a
single Gaussian q , centered on the true posterior mode f̂ c, and with a variance matching
a second-order Taylor expansion of p at that point (see Fig. 3). Approximating the pos-
terior with a single multivariate Gaussian allows us to conveniently re-use it as the prior
in subsequent Bayesian updates which is important for online and active learning from user
interactions (Saar-Tsechansky and Provost 2004).While the approximation can become poor
if the true posterior is strongly multi-modal or skewed, prior work has shown this limitation
has no significant impact in the preference learning context, e.g., Chu andGhahramani (2005).

In principle, we could directly apply the Laplace mode and variance calculations used
by Chu and Ghahramani (2005), which assume a full covariance matrix. However, doing so
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Fig. 3 Laplace approximation q( f c|C) of the true posterior p( f c|C) The solid line shows the approximation
q( f c|C) of the true posterior p( f c|C) for a one-dimensional marginal distribution. The approximation is
centered on the mode f̂ c of the true posterior and its variance is matched to a second-order Taylor expansion
of the true posterior at that point

would negate the benefit of using a structured covariance function. Instead, we formulate our
calculations to exploit properties of our covariance matrix, yielding an algorithm which, as
we show later in this section, has better scaling properties directly applying the algorithms
in (Chu and Ghahramani 2005).

Our development of Laplace inference inGaSPK proceeds in two steps. First, we describe
an efficient procedure for finding the posterior mode f̂ (Algorithm 2). We then describe how
the posterior variance and predictions for new trade-offs t∗ can be computed (Algorithm 3).
Additional mathematical details are provided in “Appendix A”.

The mode f̂ of the posterior is the maximizer of the log posterior log p( f c|C, Γ ) ∝
log p(C | f c, Γ ) + log p( f c) which can be found by setting the first derivative of
log p( f c|C, Γ ) to zero and solving for f c. Because the Probit likelihood is log concave,
there exists a unique maximum f̂ , which we obtain iteratively by using the Newton–Raphson
method (Press et al. 2007) with the update step

f new = (K−1 + W )−1 (W f + ∇ log p(C | f ))
︸ ︷︷ ︸

b

= K (b − L(I + LT K L)−1LT Kb).

(6)

We repeatedly assign f ← f new and recompute Eq. (6) until f converges. The matrix
W in the first line of Eq. (6) denotes the negative Hessian of the log likelihood, W =
−∇∇ log p(C | f c, Γ ), a sparse matrix consisting of nc × nc diagonal sub-matrices of size
nT × nT . W is computed using Eq. (10) described in “Appendix A.1”, along with additional
computational details regarding our Probit likelihood. The sparsity ofW allows us to compute
its Cholesky decomposition W = LLT in O(nT n3c) time, rather than the O(n3cn

3
T ) time that

would be typical of a dense matrix. We use this decomposition instead of W in the second
line of Eq. (6), eliminating the numerically unstable K−1 and the unwieldy inverse of the first
factor in the previous line.Allmatrices in the second line of Eq. (6) are of size (ncnT )×(ncnT )

and therefore usually large. However, as we discuss in Sect. 3.1, L has at most nT nc(nc−1)
2

non-zero elements (less if not all possible trade-offs from T are observed), and thus it is never
necessary to generate K explicitly.

Using Eq. (6), we can efficiently compute the posterior mode by following the steps
outlined inAlgorithm2.Note, that all operations in the algorithmare simplematrix operations
available in most programming environments. Furthermore, the operations in lines 6 through
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Algorithm 2 Laplace mode finding
1: function LaplaceMode(covariance matrix K , choices C , user characteristics Γ )
2: f = 0
3: repeat
4: W ← −∇∇ log p(C | f, Γ )

5: L ← Cholesky(W )
6: b ← W f + ∇ log p(C | f, Γ )

7: a ← b − L(I + LT K L)−1LT Kb � using conjugate gradients
8: f ← Ka
9: until f converges
10: return posterior mode f̂
11: end function

8 are all matrix-vector operations which generate vectors as intermediate results. Rather than
calculating the inverse in line 7 explicitly, we use conjugate gradients (Press et al. 2007) to
solve the system (I + LT K L)x = LT Kb by repeatedly multiplying the parenthesized term
with candidates for x , as in Cunningham et al. (2008).

Because K hasKronecker structure and L consists only of diagonal sub-matrices,multipli-
cations with K and L have linear time and space complexity, hence the overall computational
cost is dominated by the O(nT n3c) cost of the Cholesky decomposition. Without the Kro-
necker structure, these multiplications would be O(n2T n

2
c), and their cost would therefore

dominate when nT > nc.
We next compute the variance Vq( f ) of the approximate posterior q , which can be written

as (Rasmussen and Williams 2006):

Vq( f ) = diag(K ) − diag(K L(I + LT K L)−1LT K ) (7)
The computations in Eq. (7) involve full matrix operations, and are therefore more expen-
sive than the matrix-vector operations used for mode-finding. However, we can limit the
computations to points of interest t∗ only, which reduces the number of rows in K being
considered. To further reduce the size of the involved matrices, we approximate K via a
low-rank decomposition with exact diagonal given by:

K ≈ QSQT + Λ, where Λ = diag(K ) − diag(QSQT ) (8)

Importantly, the decomposition can be efficiently computed when K has Kronecker
structure, as discussed in Sect. 3.1. Specifically, the matrix S in Eq. (8) is a diagonal matrix
with the ne largest Eigenvalues of K on its main diagonal. Q contains the corresponding
Eigenvectors, and it has the same number of rows as K but only ne columns. Λ is a diag-
onal matrix of the same size as K , making the low-rank approximation of K exact on the
diagonal (Quiñonero-Candela and Rasmussen 2005; Vanhatalo et al. 2010). The number of
Eigenvalues ne in the approximation is a user-defined input and it can be used to balance
computing time against accuracy of the approximated posterior variance. As we will show
below, even choices of small numbers of Eigenvalues ne often yield posterior variances close
to those obtained with the full matrix K . Under this low-rank approximation, Eq. (7) can be
re-written as:

Vq( f ) ≈ diag(K ) − diag(K L(I + LT (QSQT + Λ)L)−1LT K )

= diag(K ) − diag(K�K ) + diag(K�Q(S−1 + QT�Q︸ ︷︷ ︸
P

)−1QT�K ) (9)

where P is a small matrix of size ne × ne, and where � = L(I + LTΛL)−1LT can be
computed efficiently, because L is sparse andΛ is diagonal.� itself is also sparse, consisting
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Fig. 4 Outputs of Algorithms 2 and 3 for a single user from a popular preference benchmark dataset. Observed
choices are represented by black pluses (favorable trade-offs) andwhite circles (unfavorable trade-offs); darker
colors represent higher values; bold lines represent the boundaries where E[ fu ] = 0 (a, b), or p(y = +1| f ) =
0.5 (c). The diamond-like shape of the plot results from mapping the four-dimensional trade-off space to two
dimensions using its first two principal components. a Posterior mode, b posterior variance and c prediction
(Color figure online)

of nc × nc diagonal blocks like W . Because K has Kronecker structure, the first two terms
in Eq. (9) can be computed efficiently and without resorting to approximations. We address
the computation of the third term next.

Algorithm 3 Laplace prediction

1: function LaplacePredict(covariance matrix K , choices C , user characteristics Γ , posterior mode f̂ ,
trade-offs T∗, # Eigenvalues ne , Cholesky factor L)

2:
3: QSQT + � ← LowRankApproximation(K , ne) � Equation (8)
4: � ← L · ForwardSolve(I + LT �L , LT )
5: C ← Cholesky(S−1 + QT �Q)
6: V = K∗ · BackwardSolve(�Q, C)
7: v∗ ← diag(K∗) − (K ◦ K ) · diag(�)

∣∣∗ +∑
j [V ◦ V ]i, j � Equation (9)

8:

9: p∗ ← �

(
f̂∗√
1+v∗

)
� Equation (4)

10: return posterior variances v∗, predictive probabilities p∗ = p(y = +1| f, T∗)

11: end function

InAlgorithm3,wefirst calculate theCholesky factorC of P (line 5),which is subsequently
used in solving4 the system�QC−1. The product V in line 6 is equivalent to ne matrix-vector
products with a Kronecker matrix and is computationally inexpensive when ne is sufficiently
small. In line 7, we exploit the symmetry of the third term in Eq. (9), and the fact that only its
diagonal is needed, to reduce calculations to an efficient element-wise product of the smaller
V . Finally, in line 9, we use the posterior variances to calculate the predictive probabilities
p∗ at the trade-off points T∗ using Eq. (4).

Figure 4 illustrates the output of Algorithms 2 and 3 for the choices of a single user, using
data from a popular preference benchmark dataset (Kamishima and Akaho 2009). Panel (a)
shows the posterior mode f̂u = E[ fu], which is expectedly high in regions of the trade-off
space perceived as favorable, and low otherwise. The bold line indicates the zero boundary
f̂u = 0, and it is sufficient as a predictor of future choices when predictive certainty estimates

4 ForwardSolve denotes the operation that solves the linear system Ax = b for x . BackwardSolve
similarly solves x A = b.
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are not required. Importantly, it can be computed using only Algorithm 2 and is therefore
very fast.

The key distinguishing feature of our probabilistic approach are the variance estimates
shown in Panel (b). As shown, the algorithm correctly identifies the region at the center of
the panel where the decision boundary already follows a closely determined course to match
earlier observations (pale yellow coloring, lowvariance). If additional observationswere to be
acquired for the purpose of improving predictions, they should be located in the upper or lower
regions of the decision boundary instead, where fewer evidence is currently available (dark
red coloring, high variance). Panel (c) shows the combination of both outputs to compute the
predictive probabilities p(y = +1| f ).While the decision boundary at p(y = +1| f ) = 0.5 is
the same as the one in Panel (a), this panel also incorporates predictive variances by shrinking
the predictive probabilities towards indifference (p = 0.5) in high-variance regions [see
Eq. (4)]. Consequently, the corridor in which GaSPK is indifferent (intermediate intensity
orange coloring, intermediate probabilities) is narrower in areaswith extensive evidence from
the data, and wider towards the edges of the panel. This information is an important input to
subsequent decision-making tasks which require information on whether existing evidence
is conclusive enough to make an autonomous decision.

3.2.2 Learning user characteristics

To complete our EM-type algorithm, we must estimate the user characteristics Γ = [
γ c
u

]
u,c

from the data. Recall from Sect. 2 that γ c
u denotes the fraction of user u’s behavior explained

by characteristic c, that is, fu(t) = ∑
c γ c

u · f c(t)with∑c γ c
u = 1. An exactM-step estimator

for Γ , that returns argmax
∏

i �
(
yi
∑

c γ c
ui · f c(ti )

)
s.t.
∑

c γ c
u = 1, u = 1, . . . ,U , can be

obtained using an interior-point optimizer. This yields a (local) optimum for Γ , but is more
computationally expensive.

As an alternative, we propose a heuristic approximation to this M-step, described in
Algorithm 4. We note that if γ c

u > γ c′
u , then fu is likely to be closer to f c than to f c

′
.

Therefore, approximating fu with f c is likely to give a higher likelihood than approximating
fu with f c

′
. The heuristic “M-step” in line 3 computes an approximation to the likelihood that

characteristic c alone generated the observed choices. Each iteration of the surrounding loop
calculates one column of the Γ matrix, corresponding to one characteristic. The resulting
user characteristics are then re-scaled so that they add to one in line 5.

As we will see in Sect. 5, while it lacks the theoretical justification of the exact M-step,
empirically the heuristic Algorithm 4 obtains good results with much lower computational
cost. Finally, while the number of user characteristics nc has to be set manually, we find that
consistent with prior work, our method is insensitive to the choice of this parameter when it
is not excessively small, e.g., Houlsby et al. (2012).

Algorithm 4 A heuristic estimator for the user characteristics Γ

1: function HeuristicGammaEstimator(function modes E
[
f̂ c
]
, choices C , # characteristics nc)

2: for c = 1 : nc do
3: Γ∗,c ← ∏

i �(yi · E
[
f̂ cti

]
)

4: end for
5: NormalizeRows(Γ )
6: return user characteristics Γ

7: end function
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3.2.3 Learning hyperparameters

As in the case of Γ , a full Bayesian treatment the hyperparameters, θ = {ld}, is prohibitively
expensive. Prior work has often resorted to either gradient-based optimization of themarginal
likelihood Z , e.g., Chu and Ghahramani (2005), or to heuristics, e.g., Stachniss et al. (2009)
to learn the hyperparameters from the data. In the experiments that follow, we employ a
heuristic and set the length-scales to the median distance between trade-offs t . This has
been found in prior work to be a computationally fast heuristic yielding consistently good
empirical results (Houlsby et al. 2012).

4 Related work

Machine learning research has produced preference models based on a broad variety of
learning frameworks (Fürnkranz andHüllermeier 2011). Of particular interest to this research
is work on probabilistic preference models that derive principled uncertainty estimates from
noisy preference observations. Chu andGhahramani (2005)were the first tomodel preference
learning using Gaussian processes. However, that approach does not capture heterogeneity
across users—an essential property for modeling large, heterogeneous sets of users. More
recent work (Bonilla et al. 2010; Birlutiu et al. 2013; Houlsby et al. 2012) has alleviated
this shortcoming; however, these contributions have focused on solutions for incorporating
heterogeneous preferences, rather than ensuring scalability.

More specifically, the Hierarchical GP model (Birlutiu et al. 2013) is derived from a
semi-parametric Bayesian formulation that builds on the framework proposed by Bradley
and Terry (1952). The authors model each user’s utility function using a GP, which they
represent using a basis decomposition fu(x) = wT

u φ(x). A hierarchical Gaussian prior on
the base weights wu induces correlations between users (hence our choice of name for the
approach). An EM-type algorithm is then used for learning, which iteratively refines the
parameters of the hierarchical prior. While the Hierarchical GP model offers state-of-the-
art accuracy, inference is computationally expensive since we need to effectively learn a
Gaussian process for each user.

The Collaborative GPmethod of Houlsby et al. (2012) also builds on Bradley and Terry
(1952). Like GaSPK, it represents users’ utility functions using a weighted superposition of
globally shared GPs. Unlike GaSPK, the weights are unnormalized; this adds a redundant
degree of freedom which makes interpretability harder. Further, the weights are treated as
random variables to infer rather than parameters to optimize, increasing the computational
burden. Another key distinction between GaSPK and Collaborative GP is that the latter
operates on pairs of alternative instances (xi , x j ) instead of the associated trade-offs t =
τ(xi , x j ), and it estimates instance utilities rather than trade-off evaluations. This makes
inference in the model significantly more demanding, and the authors employ a combination
of Expectation Propagation and Variational Bayes to address this challenge. As shown in
Sect. 5, this design choice yields comparable accuracies to those produced by theHierarchical
GPmethod at lower computational cost, likely due to the smaller number of GPs. However, in
general the Collaborative GP will not scale as well asGaSPK: inference still scales cubically
in the number of distinct trade-offs, and approximating the full posterior over weights adds
computational complexity.

In the limit of a single latent characteristic, Collaborative GP reduces to regular GP
classificationwith a specific preference kernel (Rasmussen andWilliams 2006;Houlsby et al.
2012). Inference in this model is fast and conceptually simple, and as such GP classification
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constitutes the strongest computational benchmark for GaSPK. As shown in Sect. 5, GaSPK
is valuable as it can both achieve GP classification’s computational performance as well as a
substantial improvement in predictive accuracy.

Bonilla et al. (2010) presented an earlier GP approach that aimed to accommodate hetero-
geneity amongst users. However, their approach has been shown to be inferior in both predic-
tive accuracy and computational cost relative to other state-of-the-art approaches (Houlsby
et al. 2012).Note, that Bonilla et al. (2010)make use of a singleKronecker product tomultiply
one item-covariance matrix with one user-covariance matrix. The purpose of this product is
fundamentally different from the manner in which the Kronecker product is used in GaSPK,
namely to dealwith the growing item-covariancematrix. Furthermore, inBonilla et al. (2010),
capturing heterogeneity yields an even larger matrix, making the resulting method extremely
slow, as noted and demonstrated in Houlsby et al. (2012). By contrast, GaSPK uses (D − 1)
Kronecker products, where D refers to the dimensionality of the data, and the Kronecker
product is used to factor the trade-off-covariance matrix, thereby effectively addressing its
growth.

Marketing and Econometrics research considered preference measurement methods
such as conjoint analysis, Logit and Probit models, and other discrete choice prediction
techniques (Greene 2012). Early preference measurement was limited to population-level
estimates, but more recent techniques accommodate heterogeneity across consumer seg-
ments (Allenby and Rossi 1998; Evgeniou et al. 2007). The primary objective of these
models is to inform human decision makers, and thus their outputs are interpretable coef-
ficients. By contrast, GaSPK work focuses on preference learning for use in autonomous
decision-making settings, and has to consider scalability, incremental updates, and other prac-
tical issues that arise when moving from passive preference measurements to autonomous
decision-making (Netzer et al. 2008). In Sect. 5, we illustrate these differences by bench-
markingGaSPK against theMixedLogitmodel, awell-established standard inMarketing and
Econometrics. TheMixed Logitmodel estimates f iu = wuxiu +εiu where εiu is extreme-value
distributed, and thewu are drawn from a hierarchical prior. Like the other benchmarks,Mixed
Logit accommodates random variations in taste among users. This makes inference more
difficult than in the standard Logit model—a challenge that is addressed by a computation-
ally expensive sampling procedure. Moreover, as demonstrated in our empirical evaluations,
Mixed Logit is less flexible to adapt to the data in comparison to the non-parametric models.

5 Empirical evaluation

In the empirical evaluations that follow we consider learning preferences in consumer choice
settings and aim to evaluate whether GaSPK offers a valuable addition to the existing set
of non-parametric Bayesian approaches that similarly provide principled uncertainly esti-
mates. To do so, we compareGaSPK to three non-parametric Bayesian approaches shown to
yield state-of-the-art performance either in scalability or predictive accuracy.We compare the
heuristic estimator of Algorithm 4 with an exact M-step, and show that the heuristic method
offers comparable accuracy with much lower computational cost. Further, we show that,
compared with other methods, GaSPK (using this heuristic estimator) offers an impressive
combination of predictive accuracy and computational efficiency. Our evaluations are per-
formed on an electricity tariff preference dataset collected specifically for this work, as well
as two benchmark datasets used earlier in the literature. In our implementation ofGaSPKwe
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used the GP toolbox (Vanhatalo et al. 2013), and we make both our code and data publicly
available at https://bitbucket.org/gtmanon/gtmanon.

5.1 Datasets and benchmark methods

The first benchmark with which we compare GaSPK is GP classification (Rasmussen and
Williams 2006; Houlsby et al. 2012), a non-parametric Bayesian method that exhibits state-
of-the-art scalability and whichGaSPK aims to approximate. Inference was performed using
expectation propagation. Because scalability often comes at the cost of predictive accuracy,
this evaluation aims to establish whether GaSPK is able to match GP classification for an
increasing number of users, and to produce better predictive accuracy, thereby offering an
advantageous augmentation of the non-parametric Bayesian toolset for a large number of
users.

We also compare GP classification and GaSPK to non-parametric Bayesian approaches
that are shown to yield state-of-the-art predictive performance but to be computationally
intensive. These comparisons aim to assess the relative loss in accuracy incurred by GaSPK
and GP classification to produce their respective scalabilities. To do so, we evaluate the
performance of Hierarchical GP (Birlutiu et al. 2013) and Collaborative GP (Houlsby
et al. 2012), both shown to yield state-of-the-art accuracy but to be computationally more
expensive. As done in prior work (Houlsby et al. 2012), to allow evaluations with these
computationally intensive methods, the data sets used in the empirical evaluations include
a moderate number of users. As we will see, the differences in the scalabilities are clearly
apparent for these data sets, and the performances differ in order of magnitude.5

We also contrast the non-parametric Bayesian approaches with the well-established, para-
metric Mixed Logit model (see above). These results will aim to establish the benefits
from adopting a non-parametric Bayesian framework in our setting. Mixed Logit estimates
f iu = wuxiu+εiu where εiu is extreme-value distributed, and thewu are drawn from a hierarchi-
cal prior. Like the other benchmarks, Mixed Logit accommodates variations in taste among
users. This makes inference more difficult than in the standard Logit model, a challenge that
is addressed by a computationally expensive sampling procedure. Moreover, in comparison
to the non-parametric models, Mixed Logit is also less flexible to adapt to the data. In the
evaluations reported below we used the implementation by Train (2003).

We evaluated the methods on three preference datasets collected from human decision-
makers. Recall that a key motivation for this work is the need for computationally fast and
scalable preferencemodels towards contemporary applications, such as to automate decisions
in dynamic energy markets. One application domain of significant global importance is the
modeling of electricity tariff choices of smart grid consumers. In future smart grids, tariffs
may be revised frequently and automatically to reflect changes in the cost and availability of
renewable energy (such as solar or wind); consequently, tariff choice is expected to become
a near-continuous process in which both retailers and customers will rely on automated,
data-driven decision agents. The ability to predict and act upon tariff choices quickly and
with adequate accuracy is therefore an important challenge. To evaluate our approach in this
setting, we used data on real electricity tariffs from the Texas retail electricity market. This
retail market is the most advanced in the United States, and it provides daily information on

5 Even for such small size data sets it was not possible to evaluate the method proposed by Bonilla et al.
(2010)—as noted by the authors, this method is not suitable for modeling a large number of users. This is in
agreement with the findings of Houlsby et al. (2012), who show that the method of Bonilla et al. (2010) is both
slower and achieves lower predictive performance than the Collaborative GP. This limitation underscores the
practical significance of scalable approaches with respect to the number of users.
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Table 2 Characteristics of the datasets used in this study

Dataset Instances Users Trade-offs stated preferences Orig. dim. Sel. dim. Grid size

Tariffs 261 61 610 9 9 12,288

Cars 10 53 2362 5 5 216

Elections 8 264 7392 20 8 30,375

Instances, Users, and Trade-Offs refer to the number of elements in X , U , and T , respectively. Orig. Dim.
and Sel. Dim. refer to the number of trade-off dimensions (the size of each t) before and after feature selection
(note that feature selection is only done before GaSPK, not the comparison methods). And Grid Size refers
to the number |T | of points on GaSPK’s grid

available tariffs (see http://www.powertochoose.org). Using the Amazon Mechanical Turk
crowdsourcing platform, we acquired data on American participants’ choices between pairs
of tariffs offered in Austin, Texas in February 2013. Tariff preferences were acquired on
randomly drawn tariff pairs from a set of 261 tariffs, and all modeling techniques were
evaluated on predicting consumers’ preference for the same pairs of tariffs.

“Appendix B” provides complete details on the Tariffs data set collection, as well as an
example of tariff choice (Table 3). The Tariffs data set reflects important characteristics of
many real world applications where the data correspond to many choice alternatives (tar-
iffs), but relatively few observed choices per individual user (see Table 2). As commonly
encountered in practice, choices of different users likely correspond to different alternatives
and are thus sparsely distributed and difficult to generalize from. This property of the Tar-
iffs dataset is common in real world applications, but is not reflected in other benchmark
datasets.

Our evaluations on the Tariffs data set are complemented with two benchmark datasets.
Specifically, we used the Cars dataset that contains stated preferences for automobile pur-
chases (Abbasnejad et al. 2013), and theElections dataset compiled by Houlsby et al. (2012),
which captures revealed voters’ preferences over eight political parties in the United King-
dom. The full Elections dataset contains 20 trade-off dimensions, resulting in a Kronecker
covariancematrix thatwas too large to hold inmemory.As described in Sect. 3.1, our trade-off
function τ(x1, x2) need not involve all dimensions of X , and indeed prior research (Hensher
2006) indicates that, when the number of dimensions are large, users tend to base their choices
on a smaller subset of dimensions. We therefore applied greedy forward feature selection to
reduce the dimensionality of this datasets to a subset of important predictive features, such
that the accuracies after feature selection were comparable to those reported by Houlsby et al.
(2012) on the complete feature set using the most accurate benchmark method (Birlutiu et al.
2013).

Since our comparison methods do not involve the large Kronecker matrix, we ran them
on two versions of the Elections dataset: one with all 20 covariates, and one with the 8
covariates used by GaSPK. As we will see in Sect. 5.2, for each model, using the full
set of covariates only yields a fairly modest improvement in performance. That much of
the information content was maintained by the feature selection procedure reaffirms prior
findingswhichGaSPK exploits, namely, that a subset of relevant dimensions often effectively
informs human choices. A summary of the key characteristics of these datasets is presented
in Table 2.

GaSPK was applied to versions of the datasets in which the continuous attributes were
discretized to between 5 and 25 levels, with the objective of minimizing information loss
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while keeping the resulting grid sizemanageable.6 All othermethods ran on the original, non-
discretized datasets. We employed the Natural Breaks algorithm (Jenks and Caspall 1971)
to identify bins for discretization. Natural Breaks is a univariate variation of the k-means
algorithm, which selects bin boundaries such that within-bin variances are minimized while
between-bin variances are maximized.

In the empirical evaluations below we will aim to evaluate whether GaSPK offers advan-
tageous improvements over the existing, scalable GP classification. Simultaneously, the
state-of-the-art predictive accuracies exhibited by Hierarchical GP and Collaborative GP
allow us to assess the reduction in predictive accuracy that GP classification and GaSPK’s
computational benefits entail.

5.2 Model scalability and predictive accuracy

The learning curves reported below show averages over repeated-sampling cross-validation,
using 20 random splits of the data into training and test sets. Error bars reflect 90% confidence
intervals. In allGaSPK runs, the number of characteristicswas set to nc = 10, andwe used the
Eigenvectors corresponding to the ne = 100 largest Eigenvalues in the sparse approximation.
For all experiments the length-scale hyperparameters were heuristically set to the median
distance between feature vectors, as proposed by Houlsby et al. (2012).

Figure 5 shows the training time incurred by each approach for increasing training set sizes.
Training times correspond to running Algorithms 2 through 4. As expected, GP classification
has the fastest training time, since there is only a single GP to be learned. While the cost of
matrix inversion increases cubically with the number of distinct trade-offs, the simplicity of
the GP classification model means this cost remains small relative to other operations and we
see little change in the training time as we increase the number of observations. By contrast,
the more sophisticated comparison methods display a clear increase in computational cost
as we increase the size of the training set.

Looking at the twoGaSPK implementations, we immediately see that using interior point
optimization to perform the M-step is significantly slower than the heuristic approach. As
shown, the heuristic version ofGaSPK’s training efficiencymatches that of GP classification,
thereby achieving two key goals. First, it trains significantly faster than the Hierarchical GP,
CollaborativeGP, or theMixedLogitmodels. Second,GaSPK’s training times barely increase
with the size of the training set. GaSPK’s fast training times and scalability as a function of
the number of training observations follow directly from our proposed use of the Kronecker-
structured covariance matrices. Once a given grid size is set for inference, new observations
entail merely a modest increase in training time through additional likelihood terms. In
contrast, in the computationally intensive methods we compare with, additional observations
increase the size of the covariance matrices. The added (typically cubic) costs of matrix
operations are the primary factor undermining scalability in the number of observations.

We now aim to establish whether GaSPK can yield improved accuracy over GP classifi-
cation, thereby offering an advantageous addition to the set of highly scalable methods, and
whether the time-saving heuristic EM algorithm is effective in practice. Figure 6 presents the
proportion of correctly predicted test choices as a function of the training set sizes shown
in Fig. 5. We note that in all cases, the heuristic version of the GaSPK algorithm shows
comparable performance to the optimization-based version, motivating its use. In all future
experiments, we will consider only this heuristic-based algorithm.

6 On our hardware, we restricted overall grid sizes to 104−105 points.
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Fig. 5 Training time. Training times with respect to the fraction of data used for training the model. Error
bars show 90% confidence intervals. The available hierarchical GP implementation failed to predict on the
Tariffs dataset due to numerical errors. a Tariffs, b elections and c cars

As shown, for the Tariffs dataset, the two GaSPK variants exhibit the highest predictive
accuracy relative to the accuracy offered by GP classification and that of the computation-
ally slower approaches. It is useful to recall here that, similar to common real-world choice
settings, the Tariffs dataset contains many alternatives but relatively few choice observations
for each user (see Table 2). GaSPK’s focus on estimating the f c is likely instrumental in this
setting relative to other methods’ focus on determining user characteristics Γ . As compared
to GP classification, GaSPK yields comparable scalability as well as improved accuracy on
the Tariffs and Elections data sets. On the Cars data set, GP classification performs well, sug-
gesting that the problem is fairly simple and does not benefit from the additional modeling
flexibility afforded by the personalized models. Here, the optimization-based GaSPK per-
forms as well as the best competing algorithm, while the heuristic GaSPK performs slightly
less well than the other GP-based methods. We hypothesize that, in this simple setting, where
the modeling flexibility of the personalized models does not seems to yield significant advan-
tages, the approximation induced by the heuristic has a more notable effect. Importantly, as
compared to the computationally intensive approaches’ predictive performances, when we
use the heuristic EM Algorithm 4, GaSPK’s fast training and scalability are accompanied by
predictive accuracies that are consistently good across domains, and which are not signifi-
cantly worse than the most accurate and computational intensive methods. In the Elections
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Fig. 6 Predictive accuracy. Predictive accuracy on held-out test data corresponding to the training time
measurements in Fig. 5. Solid lines indicate results trained on 8 dimensions; dotted lines indicate results
trained on the full dataset (20 dimensions). a Tariffs, b elections and c cars

dataset, we note that the GaSPK performs comparably with the competing methods even
when the competing methods have access to the full set of 20 predictors, rather than the
subset of 8 used by GaSPK. Indeed, in support of the hypothesis that users tend to base their
choices on a smaller subset of dimensions, the comparison methods only report a modest
improvement when using 20 rather than 8 predictors.

By contrast, GP classification’s scalability comes at the cost of highly inconsistent pre-
dictive performance—GP classification yields particularly poor predictions on the Elections
dataset, where it is unable to benefit from additional training data.

Key to our discussion is that additional training data allows non-parametric methods to
capture more predictive structure in the data, as reflected by the inclining accuracy curves
(see, in particular, Fig. 6b). In sharp contrast, the parametric Mixed Logit fails to benefit from
additional data because its fixed set of parameters underfits larger training sets.A related effect
can be observed in GP classification’s performance on the Elections dataset. On this revealed
preference dataset, the Hierarchical and Collaborative GPmethods benefit substantially from
additional training data early on in the learning curve. As shown, once a representative
training sample is available, these methods are able to exploit more observations to capture
the heterogeneity in the data. GP classification, however, benefits less from additional training
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data—its single latent characteristic yields a significant speed-up in computation, but it also
undermines the flexibility to capture the rich heterogeneity inherent in the Elections data.

In summary, GaSPK strikes a new and advantageous balance relative to existing
approaches by offering a combination of the scalability of GP classification with the
modeling flexibility and expressiveness of more complicated and computationally costly
non-parametric GP approaches. GaSPK effectively adapts to the complexity in the data
while scaling gracefully as more data becomes available. GaSPK’s scalability along with its
consistently good predictive performance suggests that GaSPK can often be the method of
choice in large-scale applications involving a large number of users and observations.

5.3 Dimensionality characteristics

GaSPK aims to produce state-of-the-art scalability in the number of observations to accom-
modate real-world applications with a large number of observed choices. Our solution is
inspired by prior findings that human choices are determined by a small number of dimen-
sions.GaSPK has thus been designed to provide superior scalability for learning and inference
when trade-offs can be characterized by a small number of dimensions. Our experiments
also demonstrate that dimensionality reduction in these settings incurs only a modest loss in
predictive accuracy. The trade-off inherent in GaSPK’s ability to offer state-of-the art scala-
bility in the number of observations and consistently good predictive performance is typical
of structured GP methods: GaSPK is fast and highly scalable with respect to the number
of observations for low-dimensional settings, while it is unsuitable in domains with high
dimensions as this yields exponential growth in its grid size.

To demonstrate the implications of this trade-off, we studied the performance of GaSPK
and the two fastest benchmarks, GP classification and Collaborative GP, on synthetic choice
datasets for which we can directly control the number of users (nU ) and dimensions (dX ).
Specifically, for each user, we randomly constructed a utility plane in a dX -dimensional
instance space from which we read utilities for nX = 15 randomly drawn instances. These
instance utilities were distorted with Gaussian noise, and then used to compute each user’s
choices between all 15·14

2 = 105 instance pairs. Eighty percent of these choices were used to
train themodel while the remaining 20%were held out for evaluation. Note, that our synthetic
generation procedure closely follows the key assumption underlying the Hierarchical GP and
Collaborative GP, namely that users make choices based on their predetermined, latent utility
functions. Our synthetic generation procedure should therefore work in the favor of these
methods.

Figure 7 shows the resulting training times for several dimensionalities (panels) and levels
of discretization (three GaSPK lines per plot). GaSPK’s computational costs are dominated
by the fixed cost associated with a given grid size. In particular, becauseGaSPK’s grid grows
exponentially in the number of dimensions, this fixed cost outgrows the variable cost of other
methods as the data’s dimensionality increases (see Panel (c) for 9 dimensions and 7 levels).
At the same time, as shown in Fig. 7,GaSPK’s training curves are relatively flat; thus, it scales
better for large numbers of users and choices in the consumer choice settings for which it is
designed.

5.4 Sparse approximation quality

Another parameter affecting GaSPK’s overall computational cost is the number of Eigen-
vectors ne used in the sparse approximation in Algorithm 3. In our experiments, we used
ne = 100 throughout, and we now illustrate that GaSPK’s output is relatively unaffected by
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Fig. 7 Scalability in the number of dimensions. Training times for GaSPK at various levels of discretization,
relative to GP Classification and Collaborative GP. Experiments are based of synthetic data of varying dimen-
sionalities. Half of the dimensions are binary and the other half are continuous. Continuous dimensions were
discretized to the indicated number of levels forGaSPK only. Error bars show 90% confidence intervals based
on ten random repetitions. a 6 Dimensions, b 8 dimensions and c 9 dimensions

this choice as long as ne is not excessively low. Note, that ne has no bearing on predictive
accuracy as the sparse approximation is only used in the posterior variance computation. The
posterior mode, and therefore also the iterative procedure for learning user characteristics Γ

(Algorithm 4), are unaffected by ne.
Figure 8 depicts the posterior variance for the first user from a popular preference bench-

mark dataset, and for varying numbers of Eigenvectors. Note, that the general shape of the
posterior variance is similar in all three panels, which indicates that our sparse Laplace
approach delivers reasonable results starting from small ne values. Differences between pan-
els are primarily limited to the step from ne = 10 [Panel (a)] to ne = 100 [Panel (b)]. In
Panel (b), the low-variance area at the center of the panel is noticeably larger than in Panel
(a). Surrounding areas similarly shift to lower variances. The subsequent step to ne = 1000
[Panel (c)] entails almost no further change in posterior variance. A quantitative analysis
supports this interpretation: when the model was learned on a randomly selected training set
of 80% of the data and evaluated on the remainder, the log predictive likelihood (two standard
errors) was −0.4988 (0.0067) for ne = 10, and −0.4992 (0.0065) for both ne = 100 and
ne = 1000.
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Fig. 8 Posterior variance for different numbers of Eigenvectors (ne) in the low-rank approximation. Panels
show increasingly finer posterior variance estimates for a single user from a popular preference benchmark
dataset. Between a and b, the low-variance area in the center expands, and the adjacent regions shift towards
lower variance, reflecting the better estimate. The addition of more Eigenvalues in (c) has no noticeable effect,
however. a 10 Eigenvectors, b 100 Eigenvectors and c 100 Eigenvectors

6 Discussion and conclusions

The GaSPK preference model we develop here aims to offer a novel and advantageous bal-
ance between computational scalability and predictive performance targeted at preference
learning, such as in consumer choice settings, involving a large number of users and alter-
natives. GaSPK provides state-of-the-art scalability when human choices are informed by a
small set of dimensions, allowing it to accommodate data on a large number of users and
observations. These properties are particularly critical in important emerging applications,
including modeling preferences in smart electric grids and in complex Business-to-Business
marketplaces, where preference models must be learned in real-time from a large number of
users and observations. GaSPK provides principled probabilistic uncertainty estimates that
are fundamental for automated, data-driven decisions.

GaSPK exploits common characteristics of consumer choice settings to yield good per-
formance in settings where the number of users, instances, and observed choices is very
large and excellent scalability is critical. Because users have been shown to approximate
when evaluating alternatives (Caussade et al. 2005), GaSPK takes advantage of settings in
which trade-offs can be captured by a small number of attributes and levels for each attribute.
Our empirical evaluations demonstrate that exploiting these properties allows GaSPK to
offer order-of-magnitude performance improvements over state-of-the-art computationally
intensive approaches, making it possible to deploy preference modeling in a wide vari-
ety of contemporary, large-scale consumer choice domains. Our empirical evaluations also
demonstrate that GaSPK’s computational benefits allow for consistently good predictive
performance as compared to the scalable GP Classification, and that the scalability improve-
ments incur only a modest reduction in predictive accuracy as compared to computationally
intensive alternatives.

Figure 9 summarizes the settings under which different approaches are beneficial, and
when GaSPK constitutes a new benchmark and an advantageous trade-off. We show that for
settings with large numbers of users and choice observations where choices can be effectively
characterized with few dimensions and levels, GaSPK offers good scalability as well as con-
sistently good predictive performance. Thus, GaSPK offers a new benchmark that can often
be the method of choice in these settings. In settings where both the dimensionality and the
number of observations is high, GP classification provides similarly fast predictions as does
GaSPK in lower-dimensional settings, but its predictive performance remains inconsistent
due to its limited expressive power to capture complex patterns. When the number of users
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Fig. 9 Summary of empirical results. Darker colors indicate higher predictive accuracy. GaSPK provides
high predictive accuracy and higher scalability than existing methods for consumer choice settings with
few dimensions and attribute levels. In higher-dimensional settings, the Hierarchical and Collaborative GP
models are more efficient, but their scalability with respect to the number of users and choices is limited.
GP classification scales to high dimensions and large numbers of observations, but its predictive accuracy is
inconsistent across datasets due to its limited expressive power

and observations is small, Hierarchical GP and Collaborative GP are feasible, and they offer
state-the-art predictive performance.

The research we present here focuses on fast learning of probabilistic trade-off evaluations
f c that characterize different segments of the user population. We solved the related problem
of learning what combination of these evaluations describes each user through a simple, yet
effective iterative scheme. We find that existing alternatives to this simple iterative scheme
entail significantly higher computational costs, making them impractical for the settings we
consider. It would be valuable for future work to explore alternatives that learn the number
of characteristics nc from the data at a reasonable cost.

GaSPK learns frompairwise choices of the form “User u prefers alternative a to alternative
b,” which are objective and cognitively less demanding for humans to express, but which are
also more difficult to learn from than learning from ratings. However, the natural separation
between model and observations inherent in Bayesian modeling makes it possible to adapt
GaSPK to learn from other data types, in addition to pairwise choices. In particular, Jensen
and Nielsen (2014) provide likelihood models for ordinal ratings that are compatible with the
framework underlying GaSPK, and that would allow GaSPK to learn from heterogeneous
observations of pairwise choices and ratings simultaneously.

The contributions presented here towards efficient and scalable inference also generalize
to other important classification problems such as those arising in credit scoring, quality
assurance, and other impactful practical challenges. As such, GaSPK offers meaningful
contributions to a broad range of domains, where its reliable and consistent computational and
predictive performance make it suitable for supporting users’ autonomous decision-making.
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A Derivations used in fast inference

A.1 Probit likelihood

TheLaplacemodefinding procedure (Algorithm2) requires computation of the log likelihood
log p(C | f c), and of its first two derivatives with respect to the values f ct of the characteristic
evaluations f c at all trade-offs t (i.e., the Jacobian ∇ log p(·), and the Hessian ∇∇ log p(·)).
The Probit likelihood of a single observation is given by Eq. (3) as:

log p(y| f ct ) = logΦ(y · fu,t )

= logΦ

(

y ·
[ nc∑

c=1

γ c
u · f ct

])

where Φ denotes the cumulative distribution function (CDF) of the standard normal dis-
tribution. The argument to Φ is sometimes scaled by a precision factor σ−2. But because
our interpretation of the f c is invariant under scaling, we can set σ−2 = 1 without loss of
generality. The Jacobian and the Hessian of the log likelihood are given by:

∇ log p(C | f c) = ∂ log p(y| f ct )

∂ f c1ti
= yiγ

c1
u N ( fti )

Φ(y fti )
(10)

∇∇ log p(C | f c) = ∂2 log p(y| f ct )

∂ f c1ti ∂ f c2ti
= −y fti γ

c1
u γ

c2
u N ( fti )

Φ(y fti )
− γ

c1
u γ

c2
u N 2( fti )

Φ2(y fti )
(11)

where the derivatives are with respect to the evaluations of characteristics c1 and c2 for
trade-off ti , and u denotes the user making choice y.

A.2 Laplace mode finding

In Laplace mode finding, we approximate the posterior p( f |C) using a single Gaussian

q( f |C) = N ( f | f̂ , A−1)

centered on the true mode f̂ = argmax f p( f |C), and with a precision of A =
−∇∇ log p(C | f )∣∣ f = f̂ obtained through a second-order Taylor expansion (Rasmussen and
Williams 2006). This mode is unique for the Probit because the Hessian of the log-likelihood
is negative definite, and we can find it by setting the first derivative ∇Ψ of the unnormalized
log posterior Ψ = log p(C | f ) + log p( f ) to zero:

∇Ψ = ∇ log p(C | f ) − K−1 f
!= 0 (12)

The second term in Eq. (12) results from differentiating the GP prior p( f ). The mode can
then be found using the Newton–Raphson algorithm (Press et al. 2007) with the update step:

f new = f − (∇2Ψ )−1∇Ψ

= (K−1 + W )−1 (W f + ∇ log p(y| f ))
︸ ︷︷ ︸

b
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Table 3 Example choice situation used for collecting the tariffs dataset

Imagine having to choose between the following two
tariffs for the household that you currently spend most
of your time in. Which one would you prefer?

1. A fixed tariff with 100% renewable energy content.
Your monthly cost of electricity will be

57.00$ if you consume 500kWh,

106.00$ if you consume 1000kWh, and

204.00$ if you consume 2000kWh

under this tariff. You pay your monthly electricity bill at
the end of each month. A 12months notice period
applies before you can cancel this tariff

2. A variable tariff with 0% renewable energy content. The cost of electricity in the first
month will be

54.50$ if you consume 500kWh,

101.00$ if you consume 1000kWh, and

194.00$ if you consume 2000kWh

under this tariff. After the first month, the price of electricity may go up or down in accordance with
the tariff’s terms (and within legal bounds). You will have to pre-pay your monthly electricity bill at the
beginning of the month. You can cancel your tariff anytime.

= K (b − L(I + LT K L)−1LT Kb)︸ ︷︷ ︸
a

The last step uses the matrix inversion lemma (Petersen and Pedersen 2008), and is valid for
any symmetric decomposition W = LLT .

B Tariffs dataset collection

For this study, we collected a dedicated set of pairwise choice data on Amazon Mechani-
cal Turk (MTurk, http://www.mturk.com), a commercial crowdsourcing platform. Several
scholars have studied the demographics of MTurk workers, and have proposed guidelines
for assuring the quality of data collected through MTurk tasks (Paolacci et al. 2010). These
studies give reason to believe that (1) MTurk data can be of equal or better quality than data
selected through channels such as student surveys, (2) MTurk workers are highly diverse
(increasing external validity), and (3) the unsupervised nature of MTurk tasks may reduce
the risk of experimenter bias (increasing internal validity), all if proper precautions are taken
against distractions and random responses.

Eighty adult American participants were invited to fill in an academic survey about their
electricity tariff preferences in exchange for a payment of $0.30. All American MTurk work-
ers could theoretically preview our survey through the MTurk platform, and 80 workers
ultimately self-selected to participate. The survey consisted of three parts:

1. First, we reviewed basic electricity tariff concepts: fixed, variable, indexed tariffs, and
those guaranteeing that a certain percentage of delivered electricity is produced from
renewable sources.

2. Next, participants were asked to make ten choices between pairs of tariffs (see Table 3
for an example). Each pair was randomly generated from a total of 261 tariffs offered
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in Austin, Texas in February 2013. Texas has one of the most advanced retail electricity
markets in theUnited States and provides daily information on available tariffs, see http://
www.powertochoose.org.

3. Finally, we asked participants to answer ten questions on their demographics and electric-
ity consumption behavior, some of which were attention checkers for which the correct
answer had to be consistent with an answer given to another question.

Participants had amaximumof thirtyminutes to fill out all questions, but could submit their
results before that time. Participants could also withdraw, allowing another MTurk worker
to fill out the survey instead. Next to the given answers, we recorded the time between self-
selecting for participation and the submission of results. In pretests among colleagues, we
had established that it took a quick reader at least three minutes to process all provided infor-
mation. We therefore discarded surveys submitted before that time. As a further safeguard
against random answers, we asked two pairs of attention check questions in the demograph-
ics section where the answers to one question depended on the answer of the other. We also
discarded surveys where at least one of the attention check pairs was answered inconsistently,
leaving us with a total of 61 surveys that met our quality standards.
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