




IMAGING GENETICS
Methodological approaches to 

overcoming high dimensional barriers

Gennady Roshchupkin



Acknowledgements:

This work was carried out in the ASCI graduated school. ASCI dissertation number: 386.

This work is part of the research programme STW ImaGene with project number 12723, 

which is financed by the Netherlands Organisation for Scientific Research (NWO).

Financial support for the publication of this thesis the following organizations are gratefully 

acknowledged: NWO, the ASCI graduated school, the departments of Epidemiology, Radiol-

ogy and Nuclear Medicine (Erasmus MC) and Quantib BV. 

 

ISBN: 		  978-94-9301-450-3

Cover: 		  Natalia Mishchenko

Layout: 	 Ilse Modder, www.ilsemodder.nl

Printing: 	 Gildeprint - Enschede, www.gildeprint.nl

© Gennady Roshchupkin, 2018

For all articles published, the copyright has been transferred to the respective publisher. No 

part of this thesis may be reproduced, stored in a retrieval system, or transmitted in any form 

or by any means, without written permission from the author or, when appropriate, from the 

publisher.



IMAGING GENETICS
Methodological approaches to 

overcoming high dimensional barriers

BEELDEN RELATEREN AAN GENETISCHE DATA

     Methodologische benaderingen om hoog-dimensionale barrières te overwinnen

PROEFSCHRIFT

ter verkrijging van de graad van doctor aan de

Erasmus Universiteit Rotterdam

op gezag van de

rector magnificus

Prof. dr. R.C.M.E. Engels 

en volgens besluit van het College voor Promoties.

De openbare verdediging zal plaatsvinden op

dinsdag 25 september 2018 om 13.30 uur

door

Gennady Vasilievich Roshchupkin

geboren te Sergiev Posad, Rusland



PROMOTIECOMMISSIE 

Promotoren 		  Prof.dr. W.J. Niessen 

			   Prof.dr. M.A. Ikram

Overige leden 		  Prof.dr.ir.B.P.F. Lelieveldt

			   Prof.dr. A.G. Uitterlinden

			   Prof.dr. M.W. Vernooij

	  



“Per aspera ad astra”



8



TABLE OF CONTENTS

1. Introduction

2. Searching for the best high-dimensional endophenotypes

2.1 Voxel-wise grey matter heritability in family-based and population-based studies. 

2.2 Heritability of subcortical structures

3. High-dimensional phenotypes as a fine-mapping instrument

3.1 Fine-mapping the effects of Alzheimer’s disease risk loci on brain morphology

3.2 The neural substrate of cognition

4. Overcoming methodological issues

4.1 HASE: Framework for efficient high-dimensional association analyses

4.2 Sum ranking: a new method to quantify pleiotropic loci for multiple phenotypes

5. Application of the new imaging genetics approaches

5.1 Genetic architecture of the human anterior commissure 

5.2 Genome-wide association study of cortical regions: thickness, surface area 

    and volume

5.3 Voxel-wise genome wide-association study of gray matter

6. General discussion

7. Summary

   Dutch Summary

8. Acknowledgements / Dankwoord

   List of Publications

   PhD portfolio 

   About the author

   

   

11

19

21

49

69

71

103 

135

137

157

175

177

195

217

229 

247

250 

253 

261

267

271

9



11

Introduction
1



MANUSCRIPTS IN THIS THESIS

CHAPTER 2

S. J. van der Lee *, G.V. Roshchupkin*, et al. (2017). “Gray matter heritability in fami-

ly-based and population-based studies using voxel-based morphometry.” Human Brain Map-

ping

G.V. Roshchupkin, B. A. Gutman, et al. (2016). “Heritability of the shape of subcortical 

brain structures in the general population.” Nature Communications

CHAPTER 3

G.V. Roshchupkin, H. H. Adams, et al. (2016). “Fine-mapping the effects of Alzheimer’s 

disease risk loci on brain morphology.” Neurobiology of Aging

H. I. Zonneveld*, G.V. Roshchupkin* et al “The neural substrate of cognition in general 

population.” Submitted

CHAPTER 4

G.V. Roshchupkin, H. Adams, et al. (2016). “HASE: Framework for efficient high-dimen-

sional association analyses.” Scientific Reports

G.V. Roshchupkin et al “Sum Ranking, simple but powerful method for detecting pleiotro-

pic loci.” In preparation

CHAPTER 5

H.H. Adams*, A. Teumer*, D.P. Hibar*, G.V. Roshchupkin* et al “Genetic architecture of 

the human anterior commissure.” In preparation

E. Hofer*, G.V. Roshchupkin*, et al. “GWAS of cortical thickness, surface area and vol-

ume in cortical regions of interest.” Submitted

G.V. Roshchupkin et al „Genome-wide association studies of 1.5 million features of brain 

morphometry.“ In preparation

12

CHAPTER 1



INTRODUCTION

Evidence that heredity, and later on genetics, shapes human brain structure and function has 

been accumulating for nearly two centuries1,2. However, the way in which this relation could 

be studied was quite limited for a long time. Many of the initial links that were observed be-

tween genetics and brain structure arose from clinical observations of patients with a family 

history of diseases or observations during surgical interventions 3. In the last decades, through 

several revolutionary steps in both the field of imaging and genetics, our possibilities to study 

the relation between genetics and brain structure and function have dramatically increased. 

First, the development of magnetic resonance imaging (MRI) technology made it possible 

to observe human brain anatomy, function and pathology in vivo, and to study its changes 

during the lifespan. Subsequently, genotyping and other omics data technologies4 were devel-

oped and became sufficiently cheap to allow to collect large datasets with sufficient statistical 

power to analyze genetic influence on the brain. 

For a long time neuroimaging and genetics have developed independently, with most of brain 

related findings being driven by one of this field. A multitude of case-control genome-wide 

association studies (GWAS) have been conducted to screen the whole genome for causal loci 

of complex brain diseases5-7, without specifically using imaging information. At the same time, 

in the imaging domain, researchers compared MRI brain scans from healthy persons and pa-

tients in an attempt to reveal spatiotemporal patterns of brain changes related to disease8-10. 

This has led to a situation where we have many genetic variants which have been linked to 

diseases, and knowledge which brain regions are affected by disease, but almost no clue if 

and how genetic variants, linked with disease, associate with brain structures. 

Owing to the increasing availability of studies with both genetic and imaging data11, a new 

research domain has developed in the last decade, i.e. the field of imaging genetics. Within 

the neuro domain, this has become a very active and rich research field. By combining genetic 

and neuroimaging data we do not only have new opportunities to significantly improve our 

understanding of brain genetic architecture but we also have the potential to discover genetic 

disease factors, by directly linking variants to brain structures. For example, if a gene is found 

that influences hippocampus volume or shape, it is quite possible that this gene plays a role 

in illnesses associated with changes in the hippocampus (e.g., Alzheimer disease). 

Recently, due to large-scale international efforts by researchers organized in different consor-

tiums, such as CHARGE and ENIGMA, several large-scale GWAS studies of brain structures 

have been performed12,13 (the combined dataset includes more than 30.000 scans collected 

from all over the world). These studies have found new loci with potential links to neurode-
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generation, Alzheimer’s disease, microcephaly, and schizophrenia. While this is a fantastic 

result, this is only the tip of the iceberg of how the field of imaging genetics can contribute to 

our understanding of brain genetics.

Like any emerging field, imaging genetics has its own challenges and issues. Despite the 

evidence that most of the neuropsychiatric disorders are to varying degrees genetically deter-

mined14, unraveling which genetic variants are responsible for such effect remains difficult. 

One way to address this challenge is to use so-called endophenotypes in the analysis. An 

endophenotype is a phenotype which is assumed to have a simpler genetic architecture or 

reduced genetic complexity than other phenotypes, and which has a higher penetrance for 

genetic variants because they are biologically closer to the genes. The advantages of en-

dophenotypes is not only in increasing statistical power in gene discovery studies, but also, 

especially for neuroimaging, in improved interpretability and insight into underlying degener-

ative and developmental conditions. 

Determining which the optimal imaging endophenotypes are is non-trivial. Currently, in neu-

roimaging studies mainly aggregate measures such as volume, mean cortical thickness or 

surface area are mostly used. These are limited in the sense that they do not capture the 

complexity of brain structures. For example, the hippocampus is made up of several subfields, 

each with partially independent functional roles, as well as thalamus consist of multiple nu-

clei. The same is known for the cerebral cortex, it has been shown that genetic influence and 

genetic correlation between different regions does not necessarily overlap with biologically 

defined boundaries15. 

Using more-refined brain mapping techniques allows localizing genetic effects to specific 

tissue layers and sub-regions as opposed to using aggregate measures. Studying the relation 

between genetics and brain anatomy, at the higher resolution, would likely benefit research-

es aimed to advance our understanding of the brain and of the underlying neurobiology of 

complex disorders.

Neuroimaging methods are now able to provide hundreds or even thousands of different 

types of high-dimensional (HD) phenotypes, and it is therefore critical to select the most 

appropriate for analysis. Not all of them have genetic architecture or provide additional in-

formation beyond the standard measures. 

Therefore, the overall aim of this thesis is to address a number of challenges in imaging ge-

netics field. First, to demonstrate the utility of high-dimensional neuroimaging phenotypes for 

genetics analysis. Second, to develop methods and software which are able to handle compu-
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tationally and data size wise the HD imaging genetics analysis. Third, to apply such technique 

on multi-center level and discover the genetic architecture of HD phenotypes. 

In chapter 2, we explore two different HD endophenotypes and their relevance for genetic 

analysis. First, in chapter 2.1, using voxel-based morphometry (VBM), we study gray matter 

density on the voxel level (the highest level of possible resolution derived from MRI). We inves-

tigate to what extent gray matter density at the voxel level is heritable (how much of variability 

can be explained by genetics) and analyze the consistency of results between different popu-

lations. In chapter 2.2 we propose subcortical shapes as a new endophenotype for genetic 

analysis and study their genetic architecture in relation to volumetric measures. 

Chapter 3 focuses on the application of these endophenotypes in population studies. In 

chapter 3.1 we describe the relation between brain gray matter voxels and genetic variants 

of Alzheimer Disease. We also introduce a novel technique which integrates 3D brain maps 

of genes expression with spatially localized associations from VBM results. In chapter 3.2, 

we demonstrate how HD phenotypes can help in mapping the relation between brain and 

cognitive functions.  

Given the enormous potential of high-dimensional phenotypes and the increasing availabil-

ity of large biobank initiatives with hundreds of thousands participants with both MRI and 

omics data, it becomes crucial to have methodology to be able to effectively analyze such 

large datasets. In chapter 4.1 I developed a framework (HASE) which dramatically reduces 

computational time for HD GWAS analysis from years to only hours and implemented a new 

meta-analytical approach, which requires just several gigabytes to be exchanged between 

collaborators, compare to terabytes in conventional methods. 

At the same time, multi-center and consortia efforts make GWAS summary data more easily 

accessible for many different diseases and phenotypes. Therefore approaches to mine bio-

logically meaningful information from such summary statistic, without access to the raw data, 

become indispensable. In chapter 4.2, I propose a new method for pleiotropy detection, 

the phenomena when one gene affects many outcomes. This method is very powerful for 

single loci pleiotropy detection and only requires GWAS summary data.

In chapter 5.2, 5.3, I apply the HASE framework for GWAS analyses of neuroimaging phe-

notypes. In chapter 5.2 we performed GWAS analyses of cortical thickness, surface area 

and volume in the whole cortex as well as in 34 regions of interest in 22.000 individuals from 

18 cohorts within the CHARGE consortium and UK Biobank. In chapter 5.3 we collected 

VBM data from several cohorts (more 18.000 subjects) and were able to perform HD vox-
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el-wise genome-wide association study (1.5 million GWASes) just within 20 hours. 

Finally, Chapter 6 provides a broader discussion of the main findings and results of this 

thesis, along with my opinion about the future perspective of the imaging genetics field and 

directions of further research.
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CHAPTER 2.1
Grey matter heritability 
in family-based and 
population-based studies 
using voxel-based morphometry



ABSTRACT 

Background

The combination of genetics and imaging has improved our understanding of the brain 

through studies of aggregate measures obtained from high-resolution structural imaging. 

Voxel-wise analyses have the potential to provide more detailed information of genetic in-

fluences on the brain. Here we report a large-scale study of the heritability of grey matter at 

voxel resolution (1×1×1mm).

Methods

Validated voxel-based morphometry (VBM) protocols were applied to process magnetic re-

sonance imaging data of 3239 unrelated subjects from a population-based study and 491 

subjects from two familybased studies. Genome-wide genetic data was used to estimate 

voxel-wise gray matter heritability of the unrelated subjects and pedigree-structure was used 

to estimate heritability in families. We subsequently associated two genetic variants, known to 

be linked with subcortical brain volume, with most heritable voxels to determine if this would 

enhance their association signals.

Results

Voxels significantly heritable in both estimates mapped to subcortical structures, but also 

voxels in the language areas of the left hemisphere were found significantly heritable. When 

comparing regional patterns of heritability, familybased estimates were higher than popula-

tion-based estimates. However, regional consistency of the heritability measures across study 

designs was high (Pearson’s correlation coefficient=0.73, p=2.6×10-13). We further show 

enhancement of the association signal of two previously discovered genetic loci with subcor-

tical volume by using only the most heritable voxels. 

Conclusion

Grey matter voxel-wise heritability can be reliably estimated with different methods. Com-

bining heritability estimates from multiple studies is feasible to construct reliable heritability 

maps of grey matter voxels. 
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INTRODUCTION

The human brain shows large inter-individual variation, which could be explained by genetic 

and environmental influences. Studying these influences is essential in better understanding 

brain structure and function. The degree to which genetics explains phenotypic variation, in 

other words heritability, depends on many factors: the actual genetic contribution to the trait, 

environmental effects, measurement error, study design and sample characteristics.1-3 Recent-

ly an overview was published of fifty years of worldwide heritability research in twins encom-

passing thousands of traits, showing heritability studies are highly informative on how large 

the genetic contribution to a trait is.4 Heritability studies could aid future genetic research to 

focus on particular regions of interest in the brain. For example, large scale genetic studies of 

brain structures with the highest heritability typically yield the most findings.5 When studying 

the multitude of measures of voxel based magnetic resonance imaging (MRI), limiting genetic 

studies to the most heritable traits could be feasible in light of multiple testing. Recent studies 

have focused on heritability of detailed MRI measures at a voxel level.6-12 Different study 

designs showed comparably high estimates for white matter tract heritability in twin pairs,9,12 

sib-pairs,7 and extended pedigrees (heritability = 50-90%).10 The heritability of grey matter 

was studied by voxel-based morphometry (VBM) previously,13-15 but the studies were relatively 

small and relatively large voxels were studied. Moreover, heritability of grey matter VBM has 

not been estimated in population-based studies.

Here, we perform a large multi-site study to estimate the voxel-wise heritability of grey matter. 

We calculate pedigree-based heritability in two family-based studies and heritability based 

on genome-wide genetic data in a large population-based study of unrelated subjects. Using 

these approaches, we created two grey matter heritability maps and described which regions 

contain significantly heritable voxels in both designs. We furthermore estimated overall regi-

onal consistency of the heritability measures across study designs and explored if usage of 

our heritability maps could potentially enhance association signals of two genetic variations, 

previously discovered by genome-wide association studies.5,16,17 
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METHODS

STUDY SUBJECTS AND IMAGING PROTOCOL

Rotterdam Study – The Rotterdam Study is a population-based cohort study among inhabi-

tants of a district of Rotterdam (Ommoord), The Netherlands, and aims to examine the de-

terminants of disease and health in the elderly with a focus on neurogeriatric, cardiovascular, 

bone, and eye disease.18 In 1990 to 1993, 7983 persons participated and were re-examined 

every 3 to 4 years (RS-I). In 2000 to 2001 the cohort was expanded by 3011 persons who 

had not yet been part of the Rotterdam Study (RS-II). All participants had DNA extracted from 

blood at their first visit. In 2006-2008 a second expansion (RS-III) of 3,932 persons aged 45 

and over was realized. Genotyping was performed at the Human Genotyping Facility, Ge-

netic Laboratory Department of Internal Medicine, Erasmus MC, Rotterdam. Genotypes were 

imputed to the 1000 genomes phase I version 3 reference panel, using standard methods 

and software.19 From 2005 onwards MRI is part of the core protocol of the Rotterdam study.20 

For this study a total of 4071 unique study participants had both MRI and genetic data and 

were available for analysis. The Rotterdam Study has been approved by the Medical Ethics 

Committee of the Erasmus MC and by the Ministry of Health, Welfare and Sport of the Nether-

lands, implementing the Wet Bevolkingsonderzoek: ERGO (Population Studies Act: Rotterdam 

Study). All participants provided written informed consent to participate in the study and to 

obtain information from their treating physicians. 

Erasmus Rucphen Family (ERF) – The ERF study is a family-based cohort study in a genetically 

isolated population from a community in the South-West of the Netherlands (Rucphen muni-

cipality) including 3,000 participants. Participants are all descendants of a limited number of 

founders living in the 19th century, and all of Caucasian European descent. Extensive genea-

logical data is available for this population. The study population is described in detail else-

where.21 In a follow-up analysis, non-demented hypertensive (systolic blood pressure ≥ 160, 

diastolic blood pressure ≥ 100 or use of antihypertensive medication) subjects aged 55-75 

years were included for a new battery of tests, including MRI scanning.22 These 122 partici-

pants from the ERF were related to each other in one large pedigree. This large pedigree was 

split into multiple small pedigrees for heritability calculations (pedcut version 1.19 http://mga.

bionet.nsc.ru/soft/). Participants related to each other in 27 families with in total 880 relatives. 

The average size of the pedigrees was 32.6 relatives (range 20-44) with on average 4.5 par-

ticipants with MRI per family. All participants gave informed consent to participate in the study 

and to obtain information from their treating physicians. The study was approved by the medi-

cal ethics committee at Erasmus MC University Medical Center, Rotterdam, The Netherlands.

MRI scanning for ERF and the Rotterdam Study was done on the same 1.5 T MRI unit (GE 
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Healthcare, Milwaukee, USA, Signa Excite software version 11×) fitted with a dedicated 

8-channel head coil. The T1-weighted, proton density-weighted (PDw) and fluid-attenuated 

inversion recovery (FLAIR) sequences were used.20 For the purpose of segmentation, the T1w 

scan is acquired in 3D at high in-plane resolution and with thin slices (voxel size < 1 mm3).20 

Austrian Stroke Prevention Study (ASPS) – The ASPS study is a single-center, prospective fol-

low-up study on the effects of vascular risk factors on brain structure and function in the 

normal elderly population of the city of Graz, Austria. The procedure of recruitment and di-

agnostic work-up of study participants has been described previously.23,24 Between 2006 and 

2013 the study was extended for the Austrian Stroke Prevention Family Study (ASPS-Fam).25 

Study participants of the ASPS and their first grade relatives were invited to enter ASPS-Fam. 

Inclusion criteria were no history of previous stroke or dementia and a normal neurological 

examination. In total 176 families connecting a total of 719 relatives, among which 369 

were study participants with brain-MRI. The average size of the pedigrees was 4 (range 1-10) 

relatives with on average 2.4 participants with MRI per family. The diagnostic work-up was 

identical to the original study. The study protocol was approved by the ethics committee of the 

Medical University of Graz, Austria, and written and informed consent was obtained from all 

subjects. MRI scanning of the ASPS-Fam was done on a 3.0 T Tim Trio (Siemens, Erlangen). 

T1-MPRAGE 1×1×1mm was used for image processing.25 

IMAGE PROCESSING 

Prior to analysis, a number of pre-processing steps were performed. For multispectral image 

analysis, the different scans were spatially registered using rigid registration 20. Subsequently, 

the brain was extracted from the scan. Hereto a manually segmented brain mask, which 

excludes cerebellum, eyes and skull, was non-rigidly registered to the T1-weighted image 

using Elastix.20 Finally, scans were corrected for intensity non-uniformity using the N3 method; 

non-uniformity correction was carried out within the brain mask.20 All T1-weighted images 

were segmented into supra-tentorial grey matter (GM), white matter (WM) and cerebrospinal 

fluid (CSF). For the Rotterdam Study and ERF, we used a previously described kNearest-Neig-

hbor (kNN) algorithm, which was trained on six manually labeled atlases.26 For the ASPS-Fam 

study a Quantib BV tissue segmentation tool was applied (www.quantib.org). Quantib® soft-

ware implements the same algorithm, which we then used for tissue segmentation in the Rot-

terdam Study and ERF. There are thus no methodological differences between the methods, 

both of them based on kNN-based segmentation training on manually labeled subjects for 

segmenting GM, WM and CSF. 

Voxel-based morphometry (VBM) was performed by the same optimized VBM protocol in all 

three studies27 and previously described.28 FSL software29 was used for VBM data processing. 
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First, all GM density maps were non-linearly registered to the standard GM probability tem-

plate. For this study we chose the MNI152 GM template (Montreal Neurological Institute) 

with a 1×1×1 mm voxel resolution.30 The MNI152 standard-space T1-weighted average 

structural template image is derived from 152 structural images, which have been warped 

and averaged into the common MNI152 coordinate system after high-dimensional nonlinear 

registration. A spatial modulation procedure was used to avoid differences in absolute grey 

matter volume due to the registration. This involved multiplying voxel density values by the 

Jacobian determinants estimated during spatial normalization. To decrease signal to noise 

ratio, all images were smoothed using a 3 mm (FWHM 8 mm) isotropic Gaussian kernel. Thus 

all results are in MNI space. Brain regions were segmented using atlas-based segmentation 

based on the Hammer atlas.31 The modulation step in the VBM pipeline preserves the volume 

of a particular tissue within a voxel. The multiplication of the voxel values in the segmented 

images by the Jacobian determinants derived from the spatial normalization step allows us to 

calculate volumes by aggregating voxels. In total we estimated heritability for 1,405,508 grey 

matter voxels in all three studies.

REPRODUCIBILITY VBM MEASURES

We investigated the test-retest reliability of the VBM measures in a subset of 83 persons who 

were scanned twice within 1-9 weeks. We quantified the reproducibility by calculating the in-

traclass correlation (ICC) of the gray matter density measures for every voxel (Online viewer, 

Supplementary Figure 1).32

HERITABILITY ANALYSIS

Population-based heritability estimates were calculated using Genome-wide Complex Trait 

Analysis (GCTA v1.24)33 (http://cnsgenomics.com/software/gcta/) in the population-based 

Rotterdam Study. GCTA implements REML (restricted maximum likelihood) analysis, this meth-

od compares genotypic similarity between individuals to their phenotypic similarity. Formula’s 

underlying the GCTA method to determine heritability estimates are described elsewhere3 

and thoroughly explained in a commentary by the authors.34 The 1000 Genomes imputed 

genotypes (Imputation quality (Rsq) > 0.5 and minor allele frequency (MAF) > 0.01) were 

used to create a genetic relationship matrix (GRM) in GCTA.35 The power of GCTA analysis is 

determined by pair-wise genetic relationships in the studied population.3,34 Therefore the three 

cohorts of the Rotterdam study were combined and analyzed as one in the voxel-wise herita-

bility analysis. Pairwise genetic relatedness between all individuals (N=4,071) was calculated 

and for pairs with more than 0.02 genotype similarity35 one person was removed (Nremoved = 

832). REML analysis was then performed in the remaining 3,239 unrelated subjects using the 

GRM correcting for age and sex. All grey matter heritability was estimated once. 
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Family-based heritability was estimated using maximum-likelihood variance components me-

thods implemented in the SOLAR (version 6.6.2) software.36 Formulas for the calculation of 

heritability estimates are described in detail elsewhere.36 Briefly, the algorithms in SOLAR 

employ maximum likelihood variance decomposition methods. The covariance matrix Ω for a 

pedigree of individuals is given by: 

where σ2
g is the genetic variance due to the additive genetic factors, Φ is the kinship matrix 

representing the pair-wise kinship coefficients among all individuals, σ2
e is the variance due to 

individual-specific environmental effects, and I is an identity matrix (under the assumption that 

all environmental effects are uncorrelated among family members). Narrow sense heritability 

is defined as the fraction of phenotypic variance σ2
P attributable to additive genetic factors:

The variance parameters are estimated by comparing the observed phenotypic covariance 

matrix with the covariance matrix predicted by kinship (Almasy and Blangero, 1998). Signi-

ficance of heritability is tested by comparing the likelihood of the model in which σ2
g is con-

strained to zero with that of a model in which σ2
g is estimated. Twice the difference between 

the loge likelihoods of these models yields a test statistic, which is asymptotically distributed 

as a ½:½ mixture of a χ2 variable with 1 degree-of-freedom and a point mass at zero. If the 

algorithm converges SOLAR outputs the heritability value, the significance value (p), and the 

standard error for each voxel.8,36

ERF study and ASPS-Fam were not jointly analysed because ERF subjects were scanned on 

a 1.5T MRI and ASPS-Fam subjects on a 3.0T MRI. Instead inverse variance meta-analysis 

using heritability and heritability standard errors was performed in METAL 37 to boost power 

and improve stability of heritability estimates 6. Heritability estimates were calculated in both 

studies with age and sex as covariates. Variance component methods implemented in SOLAR 

are vulnerable for inflation if phenotypes have a leptokurtic to distribution. Therefore we ap-

plied inverse normal transformations in SOLAR to all voxels, but some voxels still violated the 

distribution of too high residual kurtosis (kurtosis >0.9) and were therefore excluded.38 Non 

converging heritability estimates of 0 without standard errors were also excluded from the 

meta-analysis. In the family-based studies some voxels had valid p-values and a heritability 

of 1, but missing standard errors. These voxels were located in the middle of voxel-clusters 

with high heritability (online viewer reference) (close to 1). Therefore standard errors for such 

voxels were imputed to retain these voxels for meta-analysis. This resulted in imputation of 

27

GREY MATTER HERITABILITY  IN FAMILY-BASED AND POPULATION-BASED STUDIES USING VOXEL-BASED MORPHOMETRY



the standard error for 6.4% of voxels in the ERF study and a negligible percentage of voxels 

in ASPS-Fam (<0.001%).

ENHANCEMENT OF ASSOCIATION SIGNAL

We explored whether voxel heritability information could enhance the association of genetic 

variants with brain structures. The genetic variants most significantly associated with hip-

pocampal volume (rs77956314 on 12q24.22, near the gene HRK) and putamen volume 

(rs945270 on 14q22.3, downstream of the gene KTN1) were selected from a recently publis-

hed genome-wide association study on subcortical structures 5. To select the most heritable 

voxels in the hippocampus and putamen, we ordered them using three approaches. First, we 

ranked the voxels from low to high family-based heritability estimates. Second, we ranked 

them from low to high population-based heritability estimates. In the third approach we sum-

med the ranks obtained from both the family- and population-based estimates and used the 

sum of the ranks to prioritize the voxels. Using these three approaches we excluded the voxels 

in a step-wise manner by removing the 5% least heritable voxels. For each step we computed 

the volume by summing the values of the remaining voxels. As a voxel represents grey matter 

density in 1 mm3, the sum of voxels gives the volume of grey matter. We determined the asso-

ciation of the two genetic variants in an additive model with the volumes in linear regression 

analyses (adjusted for age, sex, and the first three principal components) and compared this 

to association of the volume derived from all voxels mapped to the structure (i.e. the total 

VBM-volume of the hippocampus or putamen). The p-value of the association of the genetic 

variants with the subsets of voxels divided by the p-value of the association of the genetic 

variants with the total VBM-volume was calculated to measure change in the strength of 

the association. Genetic effects were calculated in the three cohorts of the Rotterdam study 

separately (RS-I = 844, RS-II = 1003, RS-III = 2190) and were combined using an inverse 

variance weighted meta-analysis in METAL.37 

STATISTICAL ANALYSIS

Descriptive statistics were compared using one-way ANOVA and chi-squared tests. To correct 

for multiple comparisons we applied FDR p-value thresholds39 for both population and family 

heritability separately to declare which voxels are significantly heritable. 
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RESULTS

POPULATION CHARACTERISTICS

Characteristics of the study population are shown in Table 1. The spread of the age of sub-

jects in the ERF study (age range 55-76) was smaller compared to ASPS-Fam (38-86) and 

the Rotterdam Study (46-98) due to the fact that inclusion criteria for scanning was restricted 

to midlife (Table 1). However, the average age at the time of MRI-scanning of the cohorts 

was very similar, ranging from 64.3 (± 4.5) years in the ERF study, 64.9 (± 10.7) years in 

ASPS and 64.9 (± 10.7) in the Rotterdam Study (p = 0.86). The percentage of women was 

52.5% in ERF, 60.4% in ASPS-Fam and 55.3% in the Rotterdam study, these differences were 

non-significant (p = 0.13) (Table 1). 

HERITABILITY ESTIMATES

In total 454,184 (33.3% of all voxels) were FDR-significant in the family-based estimates. 

Mean heritability of significant voxels was 0.44 ± 0.12 SD (all voxels 0.29 ± 0.17 SD), 

with heritability estimates ranging from 0.23 to 1. In total 68,616 (4.9% of all voxels) were 

FDR-significant in the population-based estimates. Mean heritability of the significant voxels 

was 0.34 ± 0.04 SD (all voxels 0.11 ± 0.10), with heritability estimates ranging from 0.25 

to 0.56. We found heritability of 44,349 voxels (3.2% of all voxels) to be FDR significant in 

the family- as well as the population-based heritability estimates. These significantly heritable 

voxels were clustered, mostly within subcortical brain structures (Figure 1). Table 2 shows 

the percentage of voxels that were significantly heritable of the total of voxels in a structu-

re in both estimates, as well as the average regional heritability, considering all voxel-wise 

heritability estimates. Highest percentage of significantly heritable in both estimates voxels 

were located in the caudate nucleus (right 72.4% and left 68.6%) followed by the putamen 

(right 57.5% and left 32.6%). Other subcortical structures with a large percentage of signi-

ficantly heritable voxels were; left pallidum (32.2%), left nucleus accumbens (29.7%), right 

pallidum (28.5%), left amygdala (21.4%), left hippocampus (17.9%), left thalamus (14.4%), 

right amygdala (12.8%) and the right insula (11.4%). Apart from the subcortical structures, 

parts of the right lateral occipitotemporal gyrus (gyrus fusiformis) (10.4%), left straight gyrus 

(gyrus rectus) (10.4%), left subcallosal area (8.0%) and the left lingual gyrus (7.9%) harbored 

a proportion significantly heritable voxels (Figure 1 and Table 2).

29

GREY MATTER HERITABILITY  IN FAMILY-BASED AND POPULATION-BASED STUDIES USING VOXEL-BASED MORPHOMETRY



FIGURE 1: Example of FDR-Significant voxels in both population-based (A) and family-based (B) estimates. Significant 

voxels cluster in subcortical structures, such as the caudate nucleus. All results can be interactive accessed (www.ima-

gene.nl/heritability) and downloaded from the website.

TABLE 1: Descriptive statistics

ERF ASPS-Fam RS p

Country Netherlands Austrian Netherlands

Study type Family-based Family-based Population-based

Field strength 1.5T 3.0T 1.5T

Sequence T1-weighted T1-MPRAGE T1-weighted

TR/TE (ms) 13.8/2.8 1900/2.19 13.8/2.8

TI (ms) 400 900 400

Flip angle (degrees) 20 9 20

Voxel size 1x1x1mm 1x1x1mm 1x1x1mm

Minimum-maximum age 56-76 38-86 46-98

Age (± SD) 64.3 ± 4.5 64.9 ± 10.7 64.7 ± 10.7 0.86‡

Minimum-maximum age 56-76 38-86 46-98

Percentage females 52.5% 60.4% 55.3% 0.13†

N participants with MRI-scan 122 369 3239*

Total relatives in pedigrees 880 718 -

Descriptive statistics of the included studies. ‡ p calculated with one-way ANOVA, † p chi-squared test. *The total number of 

participants with brain magnetic imaging and genetics data in the Rotterdam study was 4071, but for pairs with more than 0.02 

genotype similarity one person was removed (Nremoved = 832). MRI = Magnetic Resonance Imaging, ERF = Erasmus Rucphen 

Family study, ASPS-Fam = Austrian Stroke Prevention Family Study, RS = Rotterdam Study, SD = standard deviation. T1-

MPRAGE = T1 weighted 3D sequences with magnetization preparation, TR = repetition time, TE = echo time, TI inversion time. 
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When comparing regional heritability, estimates calculated in families was always higher 

than the population-based estimates (p<0.001) (Figure 2A) and the difference in herita-

bility between family-based estimates and population-based estimates was relatively stable 

(mean difference of regional heritability = 0.21 ± 0.08) (Table 2). Therefore, the regional 

heritability pattern of the family-based estimates significantly predicted the regional pattern of 

heritability in the population-based study (Pearson’s correlation coefficient = 0.73, p = 2.6 

× 10-13) (Figure 2B). 

FIGURE 2: A Barplot showing regional brain heritability. Structures that are in both the left as well as the right hemi-

sphere were averaged for this figure. It can clearly be seen that the heritability from family-based studies is higher than 

heritability form the unrelated population (P<0.001). B Scatter plot of the average regional heritability of all brain struc-

tures. The correlation of the family-based and population-based estimates was high (Pearson’s correlation coefficient = 

0.73, p = 2.6 × 10-13). Data points per structure correspond to family and population heritability in table 2.
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FIGURE 3: Enhancement of the association signal of variants with the most heritable voxels of the hippocampus and 

putamen. A,B: Average heritability (y-axis) of the voxels in hippocampus (A) and putamen (B) given a percentage of the 

most heritable voxels in that region (x-axis) in steps of 5%. C,D: The -log(p-value) increase comparing the p-value of as-

sociation with subsets of the most heritable voxels and all voxels in the region. The –log(p-value) increase for association 

of hippocampal with rs77956314 (HRK gene) and putamen voxels with rs945270 (KTN1 gene) is shown. Associations 

were corrected for age, sex, and the first three principal components.
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ENHANCEMENT OF ASSOCIATION SIGNAL

We explored if applying our heritability map could enhance the statistical association signal of 

previously discovered genome-wide significant loci. As expected the T-allele of rs77956314 

(HRK) associated with a smaller total volume of the hippocampus (p = 5.1 x 10-7) and the 

C-allele of rs945270 (KTN1) significantly associated with larger total volume of the putamen 

(p = 4.3 x 10-3). When excluding the less heritable voxels the average heritability in the re-

maining voxels increased (Figure 3A and 3B). With rising average heritability we observed a 

gradual decrease in p-values (Figure 3C), and consequently a more significant association of 

HRK with the more heritable part of the hippocampus. The maximum enrichment of associati-

on was reached when the 10% most significantly heritable voxels when combining heritability 

information from family-based and population-based studies was used. This increase corres-

ponds to a 95.9 times more significant association, as the p-value decreased from p=5.1 x 

10-7 to p = 5.4 x 10-9. Using only the family-based estimates the association was 12.9 times 

more significant. A less substantial decrease in p-value was observed for the association of 

KTN1 with the more heritable part of the putamen (Figure 3D). The p-value decreased when 

restricting to voxels that belong to the 25% most heritable voxels from the only the family-ba-

sed study. This corresponds to a 5.5 times more significant association (p-value decrease from 

p = 4.3 x 10-3 to p = 7.9 x 10-4).
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DISCUSSION

In this study we presented grey matter voxel heritability maps at resolution of 1×1×1 mm 

from population- and family-based studies. First we found that clusters of voxels that are 

significantly heritable in family-based heritability estimates as well as in an unrelated popula-

tion-based study are predominantly located in subcortical regions. Second, when comparing 

the overall regional patterns of voxel-wise heritability the family-based estimates were always 

higher compared to population-based estimates and predicted the population-based herita-

bility estimates. Lastly, we showed that the heritability estimates from our studies could be used 

to enhance the association signal of two genetic variants with subcortical volumes.

Voxels with significant heritability formed clusters within mainly the subcortical structures. This 

is in line with the findings of previous studies that the volumes of subcortical structure are 

among the most heritable in the brain.40 There are multiple explanations for this consistent 

finding. First, subcortical structures probably are under tight genetic control as they exert vital 

functions within the brain. The percentage of significantly heritable voxels was relatively low 

in the frontal and parietal lobes. Although intra-individual measurability was high throughout 

the brain (Supplementary Figure 1), intra-individual differences in cortical folding patterns 

could explain the lower heritability in frontal and parietal regions. These might give a reliable 

measurability of the voxels, while it makes comparisons of voxel values between individuals 

less meaningful, thus yielding a lower heritability compared with the subcortical structures. 

Finally, environmental effects could have a larger effect on cortical grey matter compared to 

subcortical structures. As the effects of non-genetic factors (e.g. lifestyle factors) accumulate 

over an individual’s lifetime, the heritability of total brain volume and brain structures volume 

was found to reduce in adulthood up until old age41 in line with the accumulation of environ-

mental influences over age. Their reported maximum age was 70 years. We studied relatively 

old participants (~65 years), therefore study participants might have reduced estimated her-

itability because of their older age.

Apart from the subcortical structures, we found three cortical regions in the left hemisphere, 

the dominant hemisphere in over 95% of individuals, involved in speech production and word 

processing to have more than 5% significant voxels; the subcallosal area (also called Broca 

area), central part of the superior temporal gyrus (contains Wernicke’s area) and the lingual 

gyrus. Moreover, their right counterparts contained less significant voxels compared to the left 

side. Language skills42 and brain networks 43 are thought to be under tight genetic control and 

the left hemisphere language areas have been found more heritable than the right hemisphe-

re before.14 Regions with significant heritability could in theory be connected by white matter 

connections, which in turn then also are under high genetic control, suggesting a common 

37

GREY MATTER HERITABILITY  IN FAMILY-BASED AND POPULATION-BASED STUDIES USING VOXEL-BASED MORPHOMETRY



genetic architecture. In a recent report evidence for this theory was found.44 Cortical thickness 

in some regions with high heritability, were connected by heritable white matter connections. 

These connections and the cortical regions were anatomically distant but showed significant 

genetically correlation.44 

We found a relatively stable difference in the regional patterns of the total additive genetic 

heritability. The heritability calculated from familial relations was always higher than the total 

additive variance explained by all autosomal variants calculated in unrelated subjects. This 

known difference between family and population-based heritability estimates has been exten-

sively described.45,46 The difference can in part be explained by overestimation of heritability 

in families due to sharing of environmental factors within the family. These factors are inter-

preted as genetic effects and cause the overestimation of heritability in twin and nuclear family 

studies.47 Subjects in multi-generational families share less environmental factors. Therefore 

multi-generational families, as ASPS-Fam and especially the ERF study, are more likely to 

yield an unbiased estimate of heritability. However, we assumed that all environmental factors 

affecting brain voxel volume are uncorrelated among family members (unique environmen-

tal effects) therefore some unassessed common environmental effects might be causing the 

higher heritability in our family-based estimates. At the same time an underestimation of the 

heritability calculated from genetic data in unrelated populations could occur because of an 

incomplete coverage of the causal variants and exclusion of rare variants. We used impu-

ted data to increase coverage of the causal variants. Imputed data provide a much denser 

coverage of the genome than only genotyped variants, but we did exclude rare variants 

(MAF<0.01) which may in part be responsible for some missing heritability. 

The overall regional patterns of heritability from families strongly predicted the popula-

tion-based heritability. This suggests that the regional pattern of variance explained by addi-

tive genetic effects is similar across populations, despite different ways to measure heritability, 

study design and scanner types. On the website (http://www.imagene.nl/heritability) both the 

population-based estimates and the family-based estimates can be viewed separately and can 

be downloaded. Combining current maps with results from other studies will further increase 

accuracy of the heritability estimates.	

HERITABILITY IN GENETIC STUDIES

Within the putamen and hippocampus we observed highly heritable clusters of grey matter 

voxels alternating with parts of the subcortical structures that were less heritable. Differences 

in heritability within structures might be due to technical limitations (e.g. voxels that are diffi-

cult to measure) or due to genetic or functional correlations. We hypothesized that studying 

the genetics of only highly heritable voxels could enhance signals in imaging genetics, either 
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through reducing signal to noise ratio or through studying a more genetically homogeneous 

trait. We picked two genetic variants with a proven and strongly replicated biological effect, 

identified through genome-wide association studies, on the subcortical structure volume (hip-

pocampus, putamen) to explore if enhancement was possible 5. We show enhancement of the 

statistical signal of almost hundred-fold for the association of HRK (rs77956314) with hippo-

campal volume and a five-fold increase for the association of KTN1 (rs945270) with putamen 

volume. Based on Figure 3 we can deduct that for future genetic studies in both examples 

a maximum power for association analyses was observed using voxels with a heritability 

over ~0.3 from the population-based heritability estimates and a heritability over ~0.7 from 

family-based heritability estimates. Despite these encouraging results there are limitations 

of our analysis. First, we only tested two genetic variants in two subcortical structures. While 

we expect that the increased signal of genetic variants with more heritable voxels will not be 

limited to the two variants tested in current study, future studies applying this method should 

be performed to determine whether this truly is the case. Second, we calculated heritability 

estimates and genetic association of HRK and KTN1 variants with voxels in the same subjects 

of the Rotterdam Study. As voxels with a large (technical) measurement error have lower heri-

tability and therefore were excluded first in our analysis, the decreased measurement error of 

the more heritable voxels could result in the more significant association of genetic variants. 

In other words, the enhancement of signal is a reflection of a higher signal to noise ratio. Also 

a higher test re-test reliability of the highly heritable voxels, reduce signal to noise ratio. Third, 

we used the same data for the calculation of population-based heritability estimates and ge-

netic testing, resulting in a possible inflation of the increase in signal due to non-independen-

ce.48 However, when only the family-based heritability estimates were used to select the voxels 

for genetic associations (Figure 3C,D) the analyses were independent. In these analyses, we 

still observed an increase in the signal – and the enhancement was actually even stronger for 

the putamen – arguing against inflation due to non-independence. However, for the hippo-

campus the best enhancement was achieved using the combined sample when restricting to 

less than 55% the most significant voxels. While this could be due to non-independence, this 

is contradicted by the fact that the population-only results (i.e., fully dependent) are in fact 

worse at this and lower percentages. An explanation other than non-independence could be 

that the combined sample provides more accurate heritability estimates and therefore results 

in a better enhancement. Last, highly heritable voxels which are in close proximity of each 

other could share their genetic background. However finding a cluster of heritable voxels 

does not directly prove genetic correlation. 

STRENGTHS AND LIMITATIONS 

Major strengths of this study are the large sample size of the population based study and 

unified imaging processing. Subjects from ERF and the Rotterdam Study subjects were scan-
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ned using the same 1.5T scanner, identical MRI protocols and images were processed with 

exactly the same software. The ASPS-Fam was scanned on a 3T scanner, but segmented using 

similar protocols and VBM processing was performed in the same way as ERF and the Rot-

terdam Study. Important to note is that softwares used for tissue segmentation are different, 

but both implement the same kNN algorithm.26 The ERF and the Rotterdam Study both are 

both from the Netherlands, a genetically homogeneous country.49 The ASPS-Fam study is from 

Austria, Austrians likely have slightly different genetic architecture than the Dutch. Maximum 

likelihood iterative optimization was used to estimation heritability. The iterations are prone 

to convergence failures when sample sizes are small. The percentage of voxels that did not 

converge was 9% in ASPS-Fam (Nparticipants = 369) and 36% in ERF (Nparticipants = 122). The 

methods used for population-based estimation of heritability always output an estimate. It 

has been shown that not converging occurs frequently in small datasets in SOLAR producing 

conservative estimates.47,50 We further note that using only VBM to assess heritability of brain 

morphology is a limitation of the current study. Cortical thickness, surface area and other 

MRI measures, including tensor-based (i.e. deformation) morphometry (TBM)51,52 and shape 

analysis are all potentially interesting for future heritability and genetic studies. The differen-

ces between measures have been attributed both to biology53,54 and methodology.55,56 Most 

probably, these measures reflect a different genetic architecture53 and should therefore be 

studied separately. 

FUTURE PERSPECTIVES

Genetic association with several voxels within an anatomical structure is biologically relevant 

as it shows an important genetic contribution to a sub region of the structure. Apart from the 

biological relevance, this sub region of voxels could have clinical significance. For example, 

it was shown previously that subfields of the anatomically defined hippocampus contributed 

differently to schizophrenia57 and β-Amyloid load.58 If only highly heritability brain voxels are 

studied in future voxel-wise genome-wide association studies we do not expect statistical 

signals to be uniformly enhanced. However, for the tested genetic variant that was identified 

for putamen volume, we did find statistical enhancement. High heritability estimates capture 

a variety of sources that can affect power to detect associations, including lower signal to 

noise ratios and higher genetic homogeneity (i.e. genetic correlation). Using these benefits to 

increase statistical signal is desirable, irrespective of the underlying cause. Ideally we envision 

selecting groups of voxels for genetic studies based on high heritability and measured high 

genetic correlation. Genetic correlation can be calculated for any of the commonly used 

MRI-measures, but it would still require genetic testing of sufficiently powered (large) studies. 

A promising future direction would be to enable the calculation of genetic correlations, ge-

netic association (millions of voxels times millions of genetic variants) and meta-analyses of 

these associations. Programs which make the calculation of genetic correlation and genetic 
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association computationally possible in sufficiently powered studies (i.e. meta-analyses) are 

essential to the field. Currently these programs tailored to large scale genetic studies are 

developed and genetic studies started.59 The results of these studies will be able to prove to 

which extend clusters of heritable voxels have a common genetic architecture.

CONCLUSIONS 

Heritability estimates can be reliably estimated using different methods and on different co-

horts and combining heritability estimates from multiple studies leads to the construction of a 

reliable heritability map of grey matter. These maps can be used to prioritize highly heritable 

regions in future genetic imaging studies. 
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SUPPLEMENTARY FILES

SUPPLEMENTARY FIGURE 1: Example of the intraclass correlation (ICC) in 83 individuals scanned twice within 

several weeks. In general voxels have a high ICC. All results can be interactive accessed (www.imagene.nl/heritability) 

and downloaded from the website.
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CHAPTER 2.2
Heritability of the shape 
of subcortical brain 
structures in the general population



ABSTRACT
 

The volumes of subcortical brain structures are highly heritable, but genet-

ic underpinnings of their shape remain relatively obscure. Here we deter-

mine the relative contribution of genetic factors to individual variation in the 

shape of 7 bilateral subcortical structures: the nucleus accumbens, amygda-

la, caudate, hippocampus, pallidum, putamen and thalamus. In 3,686 unre-

lated individuals aged between 45 and 98 years, brain magnetic resonance 

imaging and genotyping was performed. The maximal heritability of shape 

varied from 32.7% to 53.3% across the subcortical structures. Genetic contri-

butions to shape extend beyond influences on intracranial volume and the 

gross volume of the respective structure. The regional variance in herita-

bility was related to the reliability of the measurements, but could not be 

accounted for by technical factors only. These findings could be replicated in 

an independent sample of 1040 twins. Differences in genetic contributions 

within a single region reveal the value of refined brain maps to appreciate 

the genetic complexity of brain structures. 
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Subcortical brain regions are important for a multitude of biological processes, including 

cognitive and motor functions.1,2 There is substantial structural variation in these regions, 

both within the normal range3 and in the context of various neuropsychiatric diseases.4,5 

Factors driving individual variation could provide insight into brain development, healthy 

aging, and pathological states, but these remain largely unknown. Variation in subcortical 

brain structures is affected by environmental factors, such as education, diet and stress, but a 

considerable proportion of the variation is determined by genes.6,7 A recent twin study of gross 

subcortical volumes found heritability estimates ranging between 0.44 and 0.88,8 which were 

especially high for the caudate and thalamus.

Even so, aggregate measures such as volume do not capture the complexity of subcortical 

structures. The hippocampus, for example, is made up of several subfields, each with partially 

independent functional roles. More recently, image processing methods have been developed 

to characterize brain structure beyond purely volumetric measures, and yielding a range of 

shape descriptors.9-13 The high-dimensionality allows the detection of more localized differ-

ences in brain structure, and shape can provide relevant biological information in addition 

to aggregate measures.14-17 Several genetic variants that influence the volume of subcortical 

structures have been identified,18-20 but their effect could be localized to certain sub-regions 

using shape analyses.19,20 However, the extent to which genes contribute to the variability in 

shape of subcortical structures has yet to be determined.

Here, we quantify genetic influences on shape variability of 14 subcortical brain structures 

in 3,686 unrelated individuals from the population-based Rotterdam Study. We compare the 

heritability of vertex-wise shape measures to gross volumes as well as other aggregate mea-

sures of shape obtained through dimension-reduction techniques. We show that the shape 

of subcortical structures is under genetic control, and investigate the relation of the resulting 

profiles with the gross volume and measures of reproducibility.  
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METHODS
  

STUDY POPULATION

This work was performed in the Rotterdam Study,21 a population-based cohort study in the 

Netherlands including a total of 14,926 participants (aged 45 years or over at enrollment). 

The overall aim of the study is to investigate causes and determinants of chronic diseases in 

elderly people, the participants were not selected for the presence of diseases or risk factors. 

Since 2005, all participants underwent brain magnetic resonance imaging (MRI) to examine 

the causes and consequences of age-related brain changes.22 Between 2005 and 2013, a 

total of 5,691 unique persons were scanned. The Rotterdam Study has been approved by 

the Medical Ethics Committee of the Erasmus MC and by the Ministry of Health, Welfare and 

Sport of the Netherlands, implementing the Wet Bevolkingsonderzoek: ERGO (Population 

Studies Act: Rotterdam Study). All participants provided written informed consent to partici-

pate in the study and to obtain information from their treating physicians.

Replication was performed in 1040 healthy young adult twins from the Queensland Twin IM-

aging (QTIM) project [de Zubicaray et al. 2008]. All participants of the imaging sample were 

Caucasian and right-handed for throwing and writing (Annett’s Handedness Questionnaire). 

The genetic analyses were conducted in the 350 complete twin pairs (n = 700): 148 mono-

zygotic (100 male), 120 dizygotic (39 male), and 82 opposite-sex pairs. Self-reported data 

was used to screen participants for contraindications for imaging as well as any significant 

medical, psychiatric or neurological conditions, history of substance abuse and current use of 

psychoactive medication. The study was approved by the Human Research Ethics Committees 

of the Queensland Institute of Medical Research, the University of Queensland, and Uniting 

Health Care, Wesley Hospital. Informed consent was obtained from each participant and 

parent or guardian for participants under 18 years of age. 

GENOTYPING AND IMPUTATION

Genotyping in the Rotterdam Study was performed using the Illumina 550K and 550K duo 

arrays.21 Subsequently, we removed samples with call rate below 97.5%, gender mismatch, 

excess autosomal heterozygosity, duplicates or family relations and ancestry outliers, and 

variants with call rate below 95.0%, failing missingness test, Hardy–Weinberg equilibrium 

p-value < 10-6, and minor allele frequency < 1%. Genotypes were imputed using MACH/

minimac software23 to the 1000 Genomes phase I version 3 reference panel (all population). 

For QTIM, genotyping of nine markers was used to determine the zygosity of same-sex twins, 

which was later confirmed for >92% of the sample with the Illumina 610K SNP array.
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IMAGE ACQUISITION

For the Rotterdam Study, MRI scanning was done on a 1.5-T MRI unit with a dedicated 

eight-channel head coil (GE Healthcare). The MRI protocol consisted of several high-reso-

lution axial sequences, including a T1-weighted sequence (slice thickness 0.8 mm), which 

was used for further image processing. In addition, 85 persons were rescanned within days 

to weeks after the first scan to estimate the reproducibility of imaging-derived measures. A 

detailed description of the MRI protocol was presented by Ikram et al.22

The twin pairs of QTIM were scanned on a 4T Bruker Medspec (Bruker, Germany) whole body 

MRI system paired with a transverse electromagnetic (TEM) head coil. Structural T1-weighted 

3D images were acquired (TR=1500ms, TE=3.35ms, TI=700ms, 240mm FOV, 0.9mm slice 

thickness, 256 or 240 slices depending on acquisition orientation (86% coronal (256 slices), 

14% sagittal (240 slices)).

IMAGE PROCESSING

The T1-weighted MRI scans were processed using FreeSurfer24 (version 5.1) to obtain seg-

mentations and volumetric summaries of the following 7 subcortical structures for each hemi-

sphere: nucleus accumbens, amygdala, caudate, hippocampus, pallidum, putamen, and 

thalamus (Figure 1A). 

Next, segmentations were processed using a previously described shape analysis pipeline.9,10 

Briefly, a mesh model was created for the boundary of each structure. Subcortical shapes 

were registered using the “Medial Demons” framework, which matches shape curvatures and 

medial features to a pre-computed template.25,26 To do this, a medial model of each individ-

ual surface model is fit following Gutman et al.27, and medial as well as intrinsic features of 

the shape drive registration to a template parametrically on the sphere. To minimize metric 

distortion, the registration was performed in the fast spherical demons framework.10 The tem-

plates and mean medial curves were previously constructed and are distributed as part of 

the ENIGMA-Shape package (http://enigma.ini.usc.edu/ongoing/enigma-shape-analysis/).

The resulting meshes for the 14 structures consist of a total of 27,120 vertices (Figure 1A). 

For these vertices, two measures were used to quantify shape: the radial distance and the 

natural logarithm of the Jacobian determinant. The radial distance represents the distance 

of the vertex from the medial curve of the structure (Figure 1B). The Jacobian determinant 

captures the deformation required to map the subject-specific vertex to a template and indi-

cates surface dilation due to sub-regional volume change (Figure 1C). Detailed information 

is provided in the Supplementary Material.

Finally, we performed 28 principal component analyses: for each of the 14 subcortical struc-
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tures and for both types of shape measures (radial distance and Jacobian determinant), we 

computed the full set of components. This yielded the same number of principal components 

as the original number of vertices that were used to describe shape (Figure 1A). The compo-

nents were sorted in descending order of the eigenvalues, which corresponds to the amount 

of explained variance of shape.  

HERITABILITY ESTIMATION

We used Massively Expedited Genome-wide Heritability Analysis (MEGHA)28 to estimate her-

itability in our sample of unrelated individuals. This method allows fast and accurate esti-

mates of heritability across thousands of phenotypes based on genome-wide genotype data 

of common genetic variants from unrelated individuals. As previously described,28 a genetic 

relationship matrix was constructed using the 1000 Genomes imputed genotypes, filtered on 

imputation quality (R2 < 0.5) and allele frequency (MAF < 0.01). We calculated pairwise 

genetic relatedness between all individuals. We removed one person for pairs with more than 

0.025 genotype similarity, resulting in a final study population of 3,686 subjects. 

Twin-based heritability was estimated using maximum-likelihood variance components meth-

ods implemented in the SOLAR software (version 6.6.2). 29 To test the hypothesis that no 

variance can be explained genetically, log likelihoods of models with no genetic components 

were compared to those with genetic and environmental components. As twice the log likeli-

hood is distributed as a mixture of chi-squared distributions, the hypothesis test and p-value 

can be derived parametrically.29

To correct for multiple comparisons across all vertices and all structures, we used the standard 

False Discovery Rate (FDR) threshold at q=0.05 to localize regions of significant heritability 

within each of the subcortical structures.30
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RESULTS
 

STUDY POPULATION

The characteristics of the study population are shown in Table 1. The mean age of the Rotter-

dam study population was 65.9 ± 10.9 years, and 55.0% were women. For the 14 subcorti-

cal structures, the mean volumes were between 0.49 and 6.25 mL. For the QTIM study, mean 

age was 22.9 ± 2.8 years, and 61.6% were women. Mean subcortical volumes were higher 

than in the Rotterdam study across the board, ranging from 0.79 and 7.82 mL.

 

TABLE 1: Characteristics of the study population. 

Characteristic Rotterdam Study (N = 3,686) QTIM (N = 1,040 )

Age, mean (SD), years 65.9 (10.9) 22.9 (2.8)

Female sex, n (%) 2,029 (55.0%) 641 (61.6%)

Intracranial volume, mean (SD), cm3 1478.6 (161.3) 1484 (157.1)

Left hemisphere, mean (SD), cm3

Accumbens 0.56 (0.10) 0.83 (0.15)

Amygdala 1.31 (0.21) 1.84 (0.25)

Caudate 3.40 (0.56) 3.76 (0.50)

Hippocampus 3.84 (0.62) 4.32 (0.46)

Pallidum 1.47 (0.24) 1.61 (0.25)

Putamen 4.62 (0.68) 6.60 (0.72)

Thalamus 6.25 (0.79) 7.82 (0.89)

Right hemisphere, mean (SD), cm3

Accumbens 0.49 (0.09) 0.79 (0.11)

Amygdala 1.39 (0.22) 1.88 (0.25)

Caudate 3.51 (0.58) 3.92 (0.53)

Hippocampus 3.85 (0.59) 4.32 (0.46)

Pallidum 1.41 (0.25) 1.53 (0.18)

Putamen 4.45 (0.65) 6.00 (0.65)

Thalamus 6.25 (0.79) 7.43 (0.88)

Abbreviation: SD = standard deviation.

HERITABILITY OF SUBCORTICAL STRUCTURES: VOLUME AND SHAPE

The structure of subcortical brain regions was quantified by calculating their gross volume as 

well as two measures of their shape. Age- and sex-adjusted heritability estimates for the gross 

volume of each of the subcortical structures were between 1.6% and 43.4% (Table 2). For 

the two vertex-wise shape measures, the maximal heritability estimates per structure ranged 
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from 32.7% to 53.3% (Table 2). Both the radial distance (Figure 2A-C) and the Jacobian 

determinant (Figure 2D-F) showed clusters of high heritability under various models. Further 

adjustment for intracranial volume did not influence results (Figure 2), and estimates were 

highly correlated between both models (Supplementary Figure 1). The addition of the struc-

ture-specific gross volume to the model, however, did affect the heritability distribution across 

the structures (Figure 2), particularly for the shape measures that are highly correlated with 

the gross volume (Supplementary Figure 2).

TABLE 2: Heritability estimates of various structural measures of subcortical brain regions. 

Region Gross volume Radial distance Jacobian 
determinant 

PCA radial 
distance 

PCA Jacobian 
determinant 

h2 p h2* p h2* p h2* p h2* p

Left hemisphere

Amygdala 8.1 0.18 47.7 1.72 x 10-6 35.4 2.85 x 10-4 29.9 4.40 x 10-4 27.9 9.30 x 10-4

Accumbens 11.6 0.099 34.0 4.71 x 10-4 33.7 5.11 x 10-4 28.7 7.04 x 10-4 42.0 1.45 x 10-6

Caudate 33.7 8.6 x 10-5 49.9 6.33 x 10-7 52.9 1.40 x 10-7 42.4 1.20 x 10-6 35.1 4.73 x 10-5

Hippocampus 10.8 0.12 32.7 7.32 x 10-4 29.2 2.23 x 10-3 28.9 6.59 x 10-4 29.6 5.03 x 10-4

Pallidum 32.2 1.7 x 10-4 39.6 5.75 x 10-5 44.1 8.65 x 10-6 30.8 2.96 x 10-4 27.0 1.33 x 10-3

Putamen 43.4 6.8 x 10-7 49.4 7.43 x 10-7 52.7 1.45 x 10-7 34.1 7.16 x 10-5 40.7 2.92 x 10-6

Thalamus 34.1 7.4 x 10-5 53.3 1.05 x 10-7 45.3 5.07 x 10-6 30.2 3.78 x 10-4 29.4 5.26 x 10-4

Right hemisphere

Amygdala 20.4 0.012 33.5 5.45 x 10-4 31.5 1.08 x 10-3 30.5 3.45 x 10-4 27.7 1.03 x 10-3

Accumbens 1.6 0.43 33.1 6.30 x 10-4 35.1 3.13 x 10-4 34.5 5.99 x 10-5 31.7 2.10 x 10-4

Caudate 34.7 5.4 x 10-5 46.7 2.86 x 10-6 47.5 1.95 x 10-6 29.9 4.45 x 10-4 33.8 8.75 x 10-5

Hippocampus 8.0 0.19 33.7 5.26 x 10-4 17.7 4.23 x 10-2 30.8 3.00 x 10-4 28.9 6.44 x 10-4

Pallidum 36.6 2.3 x 10-5 46.4 3.12 x 10-6 44.5 7.22 x 10-6 41.4 1.97 x 10-6 29.2 5.77 x 10-4

Putamen 37.1 1.8 x 10-5 42.6 1.70 x 10-5 37.5 1.32 x 10-4 32.7 1.36 x 10-4 33.4 1.01 x 10-4

Thalamus 30.8 3.0 x 10-4 46.2 3.50 x 10-6 50.4 4.50 x 10-7 37.1 1.78 x 10-5 31.8 2.02 x 10-4

Estimate indicates highest heritability among all vertices or principal components.

Abbreviations: h2 = heritability estimate in %, PCA = principal component analysis. 

REPRODUCIBILITY OF SUBCORTICAL SHAPE

Next, we investigated the relation between our heritability estimates and the reproducibility 

of subcortical shape. In a subset of 83 persons who were scanned twice within 1-9 weeks, 

we quantified the reproducibility by calculating intraclass correlation coefficients for the ver-

tex-wise shape measures (Supplementary Figure 3). There was considerable overlap be-

tween heritability and reproducibility (Figure 3A-B), and both were correlated within hemi-

sphere (Figure 3C-D). Poorly reproducible shape measures were generally not heritable, 

whereas high reproducibility included the full range of heritability estimates (Figure 3C-D).
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FIGURE 3: Concordance between the heritability of subcortical shape and reproducibility of the measures.

Figure showing the concordance between the heritability of the shape (radial distance) ofsubcortical structures and the 

reproducibililty of these measures. Maps illustrate heritability (high is red) and reproducibility (high is blue) and their 

overlap (purple) from the anterior (Panel A) and posterior (Panel B) direction. Scatter plots between heritability and 

reprodcubility of the left (Panel C) and right (Panel D) hemisphere for the 7 subcortical structures. Colors indicate the 

different structures (see figure legends).
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HERITABILITY OF SHAPE MEASURES THROUGH DATA REDUCTION

Finally, we explored whether high-dimensional shape data could be reduced to a smaller set 

of variables with a larger genetic contribution. We performed principal component analyses 

on the two vertex-wise shape measures for each structure and computed the heritability of the 

resulting components. Except for the Jacobian determinant of both hippocampi, the maximal 

heritability was lower than for the vertex-wise measures (Table 2). Similarly, the components 

were in general less heritable than the vertex-wise measures (Figure 4). Furthermore, the 

order of the components based on the eigenvalues did not correlate well with the order based 

on the heritability (ρ ranges from -0.038 to 0.096; Supplementary Table 1).

REPLICATION OF HERITABILITY OF SUBCORTICAL STRUCTURES IN TWINS

The maximum heritability estimates for the two vertex-wise shape measures per structure 

ranged from 48.9% to 78.3%. Both the radial distance (Supplementary Figure 4A-C) and 

the Jacobian determinant (Supplementary Figure 4D-F) showed clusters of high heritability 

under various models. Further adjustment for intracranial volume did not influence the results 

(Supplementary Figure 4C, E). The addition of the structure-specific gross volume to the 

model, however, did affect the heritability distribution across the structures (Supplementary 

Figure 4C, F). Comparing the results of the twin-based and population study, we found a 

considerable overlap and significant correlation (p-value = 3.03x10-306) in estimated herita-

bility (Supplementary Figure 5). 
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DISCUSSION

Here we show that, in a general population of middle-aged and elderly individuals, the 

shapes of subcortical structures are under genetic control. The vertex-wise heritability is higher 

than for aggregate measures such as volume and principal components. Moreover, the her-

itability pattern underlines the importance of reproducibility in deriving shape measures, but 

also reveals that the extent of genetic influences is not uniformly distributed across subcortical 

structures. We confirmed our findings in an independent cohort of twins, suggesting that the 

genetic architecture of subcortical shapes is similar across populations, despite differences in 

the sample, the study design, scanner types, and methods to compute the heritability.

The higher vertex-wise heritability could reflect true biological differences in the degree of 

genetic contribution to the variability in shape. For the cerebral cortex, it has already been 

shown that different genes influence distinct parts of the brain and that the heritability also 

differs between regions.31-33 Subcortical structures are also heterogeneous and consist of 

functionally diverging sub-regions, such as the nuclei of the pallidum or the head and tail 

of the caudate. Our results are in line with a recent study by Whelan et al. showing that hip-

pocampal subfields differ in their heritability.34 However, methodological reasons for this dif-

ference in heritability should also be considered. Particularly, a lower signal-to-noise ratio in 

some of the measures might have influenced the results, leading to low heritability estimates. 

Issues in the segmentation or registration steps will thus obscure true biological differences 

if these systematically affect certain sub-regions of a structure. We investigated whether this 

plays a role by overlapping our heritability maps with maps of the technical reproducibility. 

Indeed, shape measures that could be poorly reproduced were not heritable. However, while 

high reproducibility was required for detecting a substantial genetic component, it did not 

necessarily translate into a high heritability. For example, for the shape measures with a high 

reproducibility (intraclass correlation coefficients > 0.75), a wide range of heritability esti-

mates was observed (0% to 53%). Thus, even when the signal-to-noise ratio was comparable, 

we still observed regional differences in the degree of genetic contribution. The highly herita-

ble measures are interesting targets for more in-depth genetic studies.

Heritability estimates calculated in our analysis represent both upper and low bounds of nar-

row-sense heritability. Our results are consistent with the theory that twin-based heritability 

tends to be higher than population-based estimates. However, we did not find a high correla-

tion between the results, which could be due to several factors. Our population study consist-

ed of relatively older individuals, which may impact the heritability: the effects of non-genetic 

factors on subcortical structures (e.g., lifestyle factors) accumulate over an individual’s life-

time and the overall contribution of genes might be reduced compared to younger individu-
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als. Causal variants not captured on the genotyping array or through subsequent imputation 

also could lead to a different distribution of the heritability. Additionally, apart from array lim-

itations, non-additive genetic factors are not taken into account when computing population 

based heritability. These factors should be taken into account when interpreting our results.

An important question for future research on shape is which variables need to be controlled 

for in a regression analysis. Here, we aimed to provide an answer by studying two controver-

sial adjustment variables: the total intracranial volume and the gross volume of the structure 

under study. For the heritability estimates of shape, adjustment for intracranial volume did not 

affect the results, suggesting that the genes regulating shape are not general brain growth 

genes, but rather more specific for a structure or its sub-regions. The volume adjustments 

did change some of the results, but more so for vertices whose shape measures correlate 

most with the gross volume of the structure. Likely, the genes underlying a structure’s gross 

volume are largely driven by these vertices as they typically represent the widest parts of a 

structure (highest mean radial distance), where radial measures tend to be highly correlated 

with its volume. Our results are in agreement with previous work,35 where the heritability of 

region-specific measures was reduced after adjustments for the total cortical surface area 

and thickness. 

The detailed information provided by shape measures being their most attractive feature, the 

increase in dimensionality is potentially counterproductive, especially in the case of genetic 

homogeneity across a structure. We therefore also performed principal component analyses 

to demonstrate that the amount of variability explained by the components did not seem relat-

ed to the heritability: near-zero correlations were found between the order of the components 

based on the eigenvalues and the heritability estimates. Although the principal component 

analysis captures most of the variation using fewer variables, methods, which are based on 

the genetic correlation, may lead to biologically more meaningful results.

While heritability provides an estimate of how much of the variance is determined by genet-

ics, it does not point to specific genetic loci. The most commonly accepted method for gene 

discovery is to perform an unbiased screen of all genetic variants, i.e. genome-wide associ-

ation study (GWAS) in order to identify specific genetic factors. However, such efforts require 

large-scale collaborations in the order of tens of thousands of individuals in order to iden-

tify a robust association18-20,39. Furthermore, additional multiple testing correction should be 

considered when performing GWAS of 54,000 shape measures. This could lead to a loss of 

power if the effects are homogeneous across a structure. However, if the effects are localized 

and mostly affect specific vertices, then a GWAS of shape measures may actually increase 

power since the effect sized will be larger compared to a GWAS of an aggregate volume.
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Data reduction methods always rely on assumptions and are often aimed at resolving com-

putational issues. However, with the advent of big data collection, methods have been devel-

oped to analyze such large datasets efficiently. Software packages designed for high-dimen-

sional data include MEGHA,36 for heritability analyses, BOLT-LMM,37 for genetic correlation 

analyses, and HASE,38 for genome-wide association studies. These improvements in software, 

and also hardware, now pave the way for full-scale analyses without reliance on data reduc-

tion methods.

In conclusion, our work demonstrates that the shape of subcortical brain structures is a rele-

vant phenotype for genetic studies, complementary to aggregated measures. Fine-scale maps 

of genetic influences on the brain are likely to reveal a complex mosaic of genetic modules, 

with partially divergent sets of genes that drive them. 
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CHAPTER 3.1
Fine-mapping the effects 
of Alzheimer’s disease risk 
loci on brain morphology. 



ABSTRACT

Background

The neural substrate of genetic risk variants for Alzheimer’s disease (AD) remains unknown. 

We studied their effect on healthy brain morphology to provide insight into disease etiology 

in the pre-clinical phase. 

Methods

We included 4071 non-demented, elderly participants of the population-based Rotterdam 

Study who underwent brain MRI and genotyping. We performed voxel-based morphometry 

(VBM) on all gray matter voxels for 19 previously identified, common AD risk variants. Whole-

brain expression data from the Allen Human Brain Atlas was used to examine spatial overlap 

between VBM association results and expression of genes in AD risk loci regions.

Results

Brain regions most significantly associated with AD risk variants were the left postcentral 

gyrus with ABCA7 (rs4147929, p = 4.45 × 10-6), right superior frontal gyrus by ZCWPW1 

(rs1476679, p = 5.12 × 10-6), and right postcentral gyrus by APOE (p = 6.91 × 10-6). 

Though no individual voxel passed multiple testing correction, we found significant spatial 

overlap between the effects of AD risk loci on VBM and the expression of genes (MEF2C, CLU, 

SLC24A4) in the Allen Brain Atlas. Results are available online on www.imagene.nl/ADSNPs/.

Conclusion: In this single largest imaging genetics dataset worldwide, we found that AD risk 

loci affect cortical gray matter in several brain regions known to be involved in AD, as well as 

regions that have not been implicated before. 

Keywords

Alzheimer’s disease; Dementia; genetics; magnetic resonance imaging; brain; voxel-based 

morphometry.
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INTRODUCTION 

Alzheimer’s disease (AD) is a complex neurodegenerative disease and the most common 

cause of dementia. It has a long preclinical phase, during which there are no symptoms but 

structural brain changes can already be detected, such cortical atrophy and localized atrophy 

of the hippocampus (Thompson et al., 2001; Weiner et al., 2012). 

In recent years, common genetic risk factors for AD have been discovered through large me-

ta-analyses of genome-wide association studies (GWAS) (Lambert et al., 2013). However, the 

underlying neurobiological substrate leading to AD for the genes assigned to these risk loci 

remains to be uncovered. Identifying the brain structures affected by these genes can increase 

our understanding of AD and aid future functional studies. Previous studies have investigated 

some of the AD risk loci in relation to neuroimaging measures (Bis et al., 2012; Chauhan 

et al., 2015; Liu et al., 2014; Morgen et al., 2014). However, they were generally focused 

on candidate regions that are known to play a role in AD, such as the hippocampus (Bis et 

al., 2012; Chauhan et al., 2015) or did not investigate all known risk loci (Liu et al., 2014; 

Morgen et al., 2014). Unbiased approaches for analyzing brain images have great potential 

to give novel insights that would not have been considered a priori. Voxel-based morphometry 

(VBM) is a hypothesis-free technique for analyzing brain imaging data that characterizes re-

gional tissue concentration differences across the whole brain, without the need to predefine 

regions of interest (Wright et al., 1995). Using VBM, we studied the association of 19 AD 

genetic risk loci with gray matter morphology at the voxel level in 4071 non-demented elderly 

from the Rotterdam study. This study provides insight into non-diseased brain morphology. 

Such knowledge is complementary and intertwined with better understanding disease etiology 

in the pre-clinical phase. Subsequently, we co-localized our results with publicly available 

genetic expression data. We thus identified genetic associations with known as well as novel 

regions affected in AD.
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METHODS

STUDY POPULATION 

The Rotterdam Study is an ongoing population-based cohort study in the Netherlands inves-

tigating diseases in the elderly and currently consists of 14,926 residents of Rotterdam who 

were aged 45 years or more at baseline (Hofman et al., 2011; Ikram and Lugt, 2011). The 

initial cohort was started in 1990 and expanded in 2000 and 2005. The whole population 

is subject to a set of multidisciplinary examinations every four years. MRI was implemented in 

2005 and 5430 persons scanned until 2011 were eligible for this study. We excluded individ-

uals with incomplete acquisitions, scans with artifacts hampering automated processing, par-

ticipants with MRI-defined cortical infarcts, and subjects with dementia or stroke at the time of 

scanning. This resulted in a final study population of 4071 non-demented persons with infor-

mation available on both genome-wide genotyping and MRI data. The Rotterdam Study has 

been approved by the Medical Ethics Committee of the Erasmus MC and by the Ministry of 

Health, Welfare and Sport of the Netherlands , implementing the Wet Bevolkingsonderzoek: 

ERGO (Population Studies Act: Rotterdam Study). All participants provided written informed 

consent to participate in the study and to obtain information from their treating physicians.

IMPUTATION OF GENOTYPES

The Illumina 550K and 550K duo arrays were used for genotyping. Samples with low call rate 

(<97.5%), with excess autosomal heterozygosity (>0.336) or with sex-mismatch were exclud-

ed, as were outliers identified by the identity-by-state clustering analysis (outliers were defined 

as being >3 standard deviation (SD) from population mean or having identity-by-state prob-

abilities >97%). A set of genotyped input SNPs with call rate >98%, MAF >0.001 and Har-

dy–Weinberg equilibrium (HWE) P-value > 10−6 was used for imputation. The Markov Chain 

Haplotyping (MACH) package version 1.0 software (Imputed to plus strand of NCBI build 37, 

1000 Genomes phase I version 3) and minimac version 2012.8.6 were used for imputation. 

APOE status was genotyped separately, using a polymerase chain reaction, as described in 

(Verhaaren et al., 2013). APOEɛ4 was coded as the number of ApoEɛ4 alleles.

MRI DATA

From August 2005 onwards, a dedicated 1.5 Tesla MRI scanner (GE Healthcare, Milwau-

kee, Wisconsin, USA) is operational in the Rotterdam Study research center in Ommoord. 

This scanner is operated by trained research technicians and all imaging data are collected 

according to standardized image acquisition protocols (Ikram and Lugt, 2011). Brain MRI 

scans included a high-resolution 3D T1-weighted fast RF spoiled gradient recalled acquisition 

in steady state with an inversion recovery pre-pulse (FASTSPGR-IR) sequence with thin slices 

(voxel size<1mm3) (Ikram and Lugt, 2011).
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IMAGE PROCESSING

Voxel based morphometry (VBM) was performed according to an optimized VBM protocol 

(Good et al., 2001). First, all T1-weighted images were segmented into supratentorial gray 

matter (GM), white matter (WM) and cerebrospinal fluid (CSF) using a previously described 

k-nearest neighbor (kNN) algorithm, which was trained on six manually labeled atlases 

(Vrooman et al., 2007)which has been successfully applied to classify brain tissue in MR 

data, requires training on manually labeled subjects. This manual labeling is a laborious and 

time-consuming procedure. In this work, a new fully automated brain tissue classification 

procedure is presented, in which kNN training is automated. This is achieved by non-rigidly 

registering the MR data with a tissue probability atlas to automatically select training samples, 

followed by a post-processing step to keep the most reliable samples. The accuracy of the new 

method was compared to rigid registration-based training and to conventional kNN-based 

segmentation using training on manually labeled subjects for segmenting gray matter (GM. 

FSL software (Smith et al., 2004) was used for VBM data processing. Then, all GM density 

maps were non-linearly registered to the standard GM probability template. For this study we 

chose the ICBM MNI152 GM template (Montreal Neurological Institute) with a 1x1x1 mm3 

voxel resolution. The MNI152 standard-space T1-weighted average structural template is 

derived from 152 structural images, which have been warped and averaged into the common 

MNI152 co-ordinate system after high-dimensional nonlinear registration. 

A spatial modulation procedure was used to avoid differences in absolute GM volume due to 

the registration. This involved multiplying voxel density values by the Jacobian determinants 

estimated during spatial normalization. All images were smoothed using a 3mm (FWHM 

8mm) isotropic Gaussian kernel. 

STATISTICAL ANALYSIS

Linear regression models were fitted with voxel values of GM modulation density as the de-

pendent variable and age, sex, and the number of reference alleles (risk alleles for Alzhei-

mer’s disease, Supplementary Table 5) as independent variables. In total 1,534,602 voxels 

were processed.

To perform a nonparametric permutation test, we randomly shuffled the genotype data be-

tween persons and performed the VBM association analysis with all 1,534,602 voxels in gray 

matter. This was repeated 10,000 times and for every permutation we saved the minimum 

p-value. Subsequently, we took the 5th percentile of this minimum p-value distribution to 

compute FWE p-value threshold, which was 3.0 x 10-7 (Churchill and Doerge, 1994). This 

was then divided by 19 to account for the number of independent SNPs, resulting in the final 
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threshold of 1.66 x 10-8.

GENETIC RISK SCORE

Genetic risk scores (GRS) were constructed by multiplying the number of risk alleles by their 

reported odds ratio (after natural logarithm transformation) for the disease, and summing this 

weighted allele score of each variant up into a disease risk score for AD(Adams et al., 2015). 

We tested a GRS based on all 19 AD SNPs and second GRS excluding APOEɛ4.

APOEƐ4 STRATIFIED ANALYSIS

To investigate whether it is possible to enrich association signal of AD variants on brain mor-

phology we split our sample into groups with increased chance for AD pathology by stratifying 

it for APOEɛ4 status. In total there were 1168 carrier and 2903 non-carrier in our data set. 

THE ALLEN HUMAN BRAIN GENE EXPRESSION ANALYSIS.

The Allen Human Brain Atlas (http://human.brain-map.org) includes RNA microarray data 

collected from the postmortem brains of six donors, with no known neuropsychiatric or neu-

ropathological history. Around 500 samples per subject, per hemisphere were tested for ex-

pression profiles of 29,191 genes represented by 58,692 probes. The expression profiles 

were normalized across samples and across different brains as described previously (“ALLEN 

Human Brain Atlas Normalization, Microarray Data,” 2013).

In our analysis we used the three Caucasian donors. For each of these donors we extracted 

expression profiles of 216 genes, which are located within ± 500kb from AD risk loci and 

used the MNI coordinates to map the location of the samples. For each probe we derived 

z-score statistics, which represent deviation of gene expression in that sample relative to 

background expression. Next, using the VBM association results from all 19 tested AD SNPs, 

we formed clusters at the significance threshold of observed p-value<0.05 and identified all 

tissue samples localized inside these clusters or within 10 voxels from them. 

We have performed 10.000 random VBM analyses to generate p-value maps of null associa-

tions. We formed clusters, based on a p-value threshold of < 0.05, and subsequently linked 

these to probes, exactly as described above. For three donors and all probes in the 216 

genes (in total 667) we calculated the t-test statistic with a null hypothesis that expression of 

the gene within clusters is not significantly different from background expression. We saved 

the minimum p-values for every random VBM map. Subsequently, we took the 5th percentile 

of this minimum p-value distribution to compute the FWE p-value threshold. The obtained 

threshold was 1.7x10-5 . Then we performed the same t-test with the AD VBM maps. Thus, we 

compared expression of genes around AD risk loci in regions identified in the VBM analysis 
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with their background expression in the brain.

REGIONAL ANALYSIS 

We used the Hammer atlas (Hammers et al., 2003)automated anatomical labeling of individ-

ual brain imaging datasets, and the statistical assessment of normal ranges for structure vol-

umes and extents. No such manually constructed atlas is currently available for the frequently 

studied group of young adults. We studied 20 normal subjects (10 women, median age 31 

years to segment the gray matter into 36 regions for both hemispheres and compare effects 

on specific brain regions. We summed all voxels values inside segmented region to estimate 

gray matter volume. For every risk locus and brain region we run the same regression model 

as for the VBM analysis.

VISUALIZATION

To provide easy access to study results for the research community, we developed an online 

freely available interactive visualization tool (www.imagene.nl/ADSNPs/).
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RESULTS

ASSOCIATION OF AD RISK LOCI TO VOXEL-BASED MORPHOMETRY

The study population for VBM analysis consisted of 4071 non-demented persons with informa-

tion available on both genome-wide genotyping and MRI data from the population-based Rot-

terdam Study. The mean age was 64.7 (± 10.7) years and 2251 (55%) subjects were women.

We studied the association of 19 AD risk loci with 1,534,602 voxels of gray matter. None of 

the associations reached the multiple-testing correction threshold 1.66x10-8. Table 1 shows 

all associations between AD risk loci and gray matter voxel density with suggestive evidence 

for association p-values < 1 x 10-5. The strongest associations of gray matter voxel with AD 

risk loci were found in the left postcentral gyrus, right superior frontal gyrus, and right post-

central gyrus. In Figure 1 we show the three-dimensional maps of the nominally significant 

(p-value<0.05) associations for the APOE risk loci. The negative clusters of APOE are locat-

ed close to the medial temporal lobe, in particular around the hippocampus, whereas positive 

clusters are mainly in the occipital lobe. The GRSs association also did not reach the correc-

tion threshold. The strongest signal for risk score with APOE was found in the postcentral gy-

rus right (p-value=8.02x106) and for the risk score without APOE in the lateral remainder of 

the occipital lobe right (pvalue=1.47x10-5). On Supplementary Figure 1 are shown maps 

for all risk loci from Table 1. Supplementary Table 2 provides the full list of the top three 

associated clusters of voxels for each risk locus and more detailed statistical information. All 

study results are available and can interactively be explored on the ImaGene website: www.

imagene.nl/ADSNPs/.

TABLE 1: The most significant voxel-wise association signals with p-values<10-5. Brain region labeling based on the 

Hammer Atlas segmentation. Effect direction indicates beta sign, and demonstrates risk loci associated with increasing gray 

matter tissue (+) or decreasing gray matter tissue (-).  

Risk variant Gene* Minimum p-value Effect direction Brain Region

rs4147929 ABCA7 4.46x10-6 - postcentral gyrus left

rs1476679 ZCWPW1 5.12x10-6 + superior frontal gyrus right

rs429358/rs7412 APOEε4 6.91x10-6 + postcentral gyrus right

rs11771145 EPHA1 8.91x10-6 - precentral gyrus right

rs190982 MEF2C 9.55x10-6 + lateral remainder of occipital lobe right

Genetic Risk Score All 8.02x10-6 + postcentral gyrus right

Genetic Risk Score Without APOE 1.47x10-5** + lateral remainder of occipital lobe right

* Assigned risk gene according to Lambert et al [1]

** P-value is not less than 10-5, shown to compare with GRS without exclusion APOE.
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In APOEɛ4 stratified analysis none of the signals passed the threshold, however variant in 

MEF2C loci showed much more significant association compare to full sample size analysis 

(Supplementary Table 5). Additionally, the association signal for non-carrier was in general 

less significant (Supplementary Table 6).

	   

	   

		          

FIGURE 1: Projection of APOE risk loci association clusters from VBM to cortical surface. Colors reflect regression asso-

ciation: blue for negative (A), red for positive (B). Clusters formed based on nominal significant p-value threshold 0.05. 

SPATIAL OVERLAP BETWEEN ASSOCIATION MAPS AND GENE EXPRESSION

To investigate whether the effect of AD risk loci on VBM overlaps with gene expression in the 

brain, we used the Allen Human Brain Atlas data. We overlapped brain regions identified 

through our VBM analysis with the maps of samples from three Allen Human Brain Atlas 
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donors (Figure 3). We compared expression within the identified voxel clusters with back-

ground expression. In total we tested the expression profiles of 216 protein-coding genes, 

located ± 500kb from the AD variants (Supplementary Table 1). We found that MEF2C, 

CLU, SLC24A4 were significantly expressed (p-value<1.7x10-5) in the identified voxel clusters 

compared to other genes at that particular locus. Interestingly, these were the genes that were 

previously assigned as the risk genes at each respective locus based on a review of the avail-

able literature (Lambert et al., 2013) (Table 2). Additionally, we found genes showing signifi-

cantly different expression, which are located in the risk loci but were previously not proposed 

as the causal gene for AD. These are: NGEF (p-value=7.57x10-16) for the region around 

rs35349669 and GSTK1 (p-value=1.01x10-5) for the region around rs11771145. Supple-

mentary Table 2 provides the full list of genes and more detailed statistical information. 

TABLE 2: Results of spatial overlap between VBM risk loci association and gene expression profiles of 3 Cau-

casian donors from the Allen Human Brain Atlas. The table shows genes in risk loci regions, for which expres-

sion differs significantly (at corrected threshold 1.7x10-5) from background expression in regions associated 

by VBM analysis. 	
Risk variant Putative 

causal genea

Genes showing significant overlap

Locus Significant gene 
expression

Minimum
p-value

Distance from 
risk loci, bp

Significant 
donors/ total 

number of donors

Significant 
probes/total 

number of probes

rs10498633 SLC24A4 SLC24A4 1.50x10-5 138.027 1/3 1/2

rs190982 MEF2C MEF2C 1.41x10-5 44.275 1/3 1/3

rs9331896 CLU CLU 4.43x10-7 13.252 1/3 1/1

rs35349669 INPP5D NGEF 7.57x10-16 325.080 3/3 2/2

rs11771145 EPHA1 GSTK1 1.01x10-5 169.576 2/3 3/4

a Assigned causal gene according to Lambert et al [1];

REGIONAL ANALYSIS 

Figure 2 provides a heat map showing all AD risk loci and their effect on different brain re-

gions sorted by lobe. None of the association signals passed Bonferroni correction, however 

several loci showed nominal significant association (p-value <0.05; cells with stars on Figure 

2), among them variant in EPHA1 with less tissue in caudate and in insula, CELF1 with more 

tissue in accumbens and APOE with very strong positive effect in the occipital lobe. Variants 

in APOE, FERMT2, PTK2B, CASS4 and MS4A6A showed the strongest effect on hippocampus 

and were associated with smaller gray matter volume. Risk variants in EPHA1 and SORL1 had 

the largest negative effect on deep gray matter structures: putamen, thalamus, and pallidum. 
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FIGURE 3: Example of spatial overlap between VBM association map for the MEF2C risk variant and MEF2C gene ex-

pression probes from Allen Human Brain Atlas. (A) –samples (red color) distribution from “donor9861” of Allen Human 

Brain Atlas; (B) – clusters of associated with MEF2C risk loci voxels (blue color) identified through VBM analysis formed 

using p-value threshold 0.05; (C) – Spatial overlap between Allen Brain probes and VBM clusters; (D) – example of 

VBM cluster and assigning sample location to them. 
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DISCUSSION

This study presents the association of 19 genome-wide significant AD risk loci (Lambert et al., 

2013) with VBM of the gray matter, among 4071 middle aged and elderly subjects from the 

population-based Rotterdam Study. The unprecedented sample size has enabled this unbi-

ased whole grey matter investigation of established risk variants and their effect on brain mor-

phology. We found nominally significant associations with the left postcentral gyrus, the right 

superior frontal gyrus and the right postcentral gyrus. Furthermore, through comparing our 

VBM results to the Allen Brain atlases of human gene expression, we found significant spatial 

overlap for genes previously assigned to be the causal gene in these loci (CLU, SLC24A4 and 

MEF2C). Additionally, we identified two genes, not previously suggested to be the causal gene 

in AD (GSTK1 and NGEF), of which the expression in the brain significantly overlaps with our 

VBM results.

There currently exists no consensus for voxel-wise genetics studies regarding the significance 

threshold for avoiding false positive findings while not to being too conservative (Fritsch et al., 

2015; Medland et al., 2014). A number of data processing and statistical analysis methods 

have been proposed in the literature to address this issue for neuroimaging analysis(Bullmore 

et al., 1999; Jenkinson et al., 2002; Smith and Nichols, n.d.). However, all these methods 

rely on a set of assumptions about the statistical structure of the data. Therefore, in our study 

we decided to use unbiased, but more conservative, non-parametric permutation methods to 

define the statistical threshold of significance. Although this is the largest genetic VBM study 

conducted to date, none of the voxels passed this conservative multiple testing correction. 

However, we have previously shown that AD risk loci are associated with cognitive functioning 

in the general population (Adams et al., 2015; Davies et al., 2015; de Bruijn et al., 2015; 

Verhaaren et al., 2013) as well as hippocampal volume in a larger sample (N= 9,232)(Bis 

et al., 2012). This showed that subclinical effects of AD risk loci exist and that effects on gray 

matter could be expected. Additionally, we constructed genetic risk scores, to explore the 

combined effect of all AD SNPs on brain morphology. The association signal of GRSs also did 

not pass correction threshold and the strongest signal for GRS with APOE was driven by APOE 

variant, while for GRS without APOE by MEF2C variant (Supplementary Figure 2). 

Furthermore, it is reasonable to assume that the effects of the risk loci are not restricted to 

a single voxel, but rather to a cluster of voxels spanning a certain brain region. Therefore, 

we further explored the nominally significant associations we found by using the Allen Brain 

Human Atlas to analyze gene expression, and using Hammer brain atlas to estimate average 

effect on specific brain regions. 
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In Hammer regional analysis, we found that risk loci for Alzheimer’s disease affect brain 

morphology in established regions such as the hippocampus (e.g. loci near APOE, FERMT2, 

PTK2B), putamen, thalamus (SORL1, EPHA1), as well as regions not often reported on includ-

ing the insula (EPHA1) and occipital lobe (APOE). The heat map in Figure 2 summarizes the 

association results over the whole brain. 

Alzheimer’s disease is a complex disorder with multiple variants from different pathways in-

volved in its etiology(Jones, 2015; Mattson, 2004). Therefore, as previously shown(Chauhan 

et al., 2015), the effect of these variants on brain morphology could also differ and have 

different directions. Figure 2 provides a detailed map of such heterogeneous effects. For 

example, large brain structures, such as the temporal lobe and central regions, are affected 

differently. Also, some risk loci have a different direction of effects, e.g. FERMT2 is associated 

with less tissue and SORL1 with more tissue in the temporal lobe. Of particular interest is that 

we found the positive association of APOE with the occipical lobe, which could possibly be 

explained by cerebral amyloid angiopathy (CAA). Indeed, CAA is linked to APOEε4 carrier-

ship (Esiri et al., 2015; Ringman et al., 2014)Alzheimer’s disease (AD and has a predilection 

for the occipital neocortex (Nelson, 2013). Moreover, CAA is involved in Alzheimer’s disease 

(Smith and Greenberg, 2009) and is characterized by ß-amyloid deposition in the media and 

adventitia of small and medium sized arteries. In healthy subjects, this may be observed as an 

increase in gray matter tissue density because of the influx of cells to clear the deposits. More 

research on the effects of AD risk loci on brain morphology is needed to further unravel the 

biological substrates involved in disease etiology. 

Previous case-control studies showed ambiguous differential expression of putative causal 

genes for AD in the brain (Holton et al., 2013) or reported that the regional expression of 

each of the risk loci did not match the pattern of brain regional distribution in Alzheimer 

pathology (Karch et al., 2012). Most of AD variants are non-coding and for the follow up 

studies would be very important to explore the potential roles of these intronic and intergenic 

regions in the regulation of gene expression. Confirmed functional variants underlying val-

idated GWAS hits are still sparse in the literature(Myers et al., 2007; Pandey and Manolio, 

2010)when considering all the diseases and traits studied, but each of these is extremely 

valuable to the respective research and clinical environments. In our study, we found signif-

icant spatial overlap between VBM results in the Allen Human Brain atlas with some of the 

previously identified genes (CLU, SLC24A4 and MEF2C). This could mean that genetic vari-

ability in these genes could act on gray matter density through differences in expression. This 

is also in line with the fact that most trait-specific GWAS signals are non-coding and probably 

act through modulation of gene expression(Ramasamy et al., 2014). Our results also suggest 

that VBM analysis combined with expression data could provide evidence for new candidate 
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genes in genetic loci, where the causal gene has not been strongly established by biological 

experiments(Steinberg et al., 2015). In AD loci, examples are NGEF for rs35349669 and 

GSTK1 for rs11771145. Although the index variant rs35349669 is located within INPP5D, 

this gene is expressed at low levels in the brain (Lambert et al., 2013) and the linkage peak 

spans multiple genes with suggestive signals, including NGEF (Lambert et al., 2013). Neu-

ronal Guanine Nucleotide Exchange Factor (NGEF), among its related pathway is signaling 

by G protein–coupled receptors (GPCRs), which are involved at many stages of AD disease 

progression, and this class of receptors is a potential therapeutic target for AD (Thathiah and 

De Strooper, 2011).

Glutathione S-transferase Kappa 1 (GSTK1) is member of the superfamily of enzymes that 

function in cellular detoxification. Interestingly, a significant decrease of glutathione transfer-

ase activity in different brain regions in patients with Alzheimer disease was previously report-

ed (Lovell et al., 1998), suggesting a possible link to Alzheimer through diabetes (Shield et 

al., 2010; Weyer et al., 2001). 

Our study also has several limitations. The 19 AD risk loci do not include all genetics vari-

ants associated with AD and the index variants used may not be the causal variants. Another 

consideration is that the cross-sectional nature of our analyses precludes us from inferring 

causality from the associations. Although reverse causality is unlikely for genetic variants, it 

remains unclear whether our findings represent developmental or degenerative effects. The 

absence of significant association, as we mentioned before, could be due to strict permuta-

tion threshold or lack of power of our study sample size compare to GWAS analysis where 

these risk loci were discovered.

Additionally, in the experiment to determine spatial overlap between gene expression and 

regions identified through the VBM analysis, a number of considerations need to be taken into 

account. First, the threshold to form the clusters is a manual parameter and could be set to a 

different statistical threshold. However, with decreasing p-value threshold the number and size 

of the clusters goes down and, due to quite sparse distribution of Allen Brain samples, there 

are not enough clusters linked to samples to perform such analysis. Second, gene expression 

depends on the time of measurement and could be different over the lifespan and even during 

the day (Jaenisch and Bird, 2003). Second, the association between a risk locus and tissue 

density does not necessarily require the causative gene to be expressed in the same brain 

region, but could also be through a downstream effect of a functional pathway. Third, given 

the difficulties in obtaining brain tissue samples, these analyses are all based on relatively 

small samples.
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CONCLUSION

Using a voxel-based morphometry study in over 4000 non-demented individuals, we provide 

a list of candidate brain regions that are potentially affected by AD risk loci and worthy of 

further study. Although detecting significant genetic effects on individual voxels will require 

even larger sample sizes, we show that data can be exploited by incorporating additional in-

formation in the analysis, such as gene expression data. All results of our study are available 

online on www.imagene.nl/ADSNPs/. 
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SUPPLEMENTARY MATERIAL

Fine-mapping the effects of Alzheimer’s Disease risk loci on brain morphology.

CONTENT:

•	 Supplementary Table 1: Genetic variants with a genome wide significant effect on 

Alzheimer’s disease.

•	 Supplementary Table 2: Top 3 associated clusters of voxels per each risk locus or-

dered by minimum p-value.

•	 Supplementary Table 3: Coded structure list for brain regions.

•	 Supplementary Table 4: Results of spatial overlap between VBM risk loci association 

and gene expression profiles of 3 Caucasian donors from the Allen Human Brain Atlas.

•	 Supplementary Table 5: The most significant voxel-wise association signals in 

APOEɛ4 stratified analysis for carrier.

•	 Supplementary Table 6: The most significant voxel-wise association signals in 

APOEɛ4 stratified analysis for non-carrier.

•	 Supplementary Figure 1: 3D brain VBM association maps.

•	 Supplementary Figure 2: Region brain Manhattan plots.
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SUPPLEMENTARY TABLE 1: Genetic variants with a genome wide significant effect on Alzheimer’s disease.

  RS ID Chr. Gene * Risk allele frequency Risk allele Other allele OR

rs6656401 1 CR1 0.18 A G 1.18

rs6733839 2 BIN1 0.42 T C 1.22

rs35349669 2 INPP5D 0.49 T C 1.08

rs190982 5 MEF2C 0.62 A G 1.08

rs10948363 6 CD2AP 0.27 G A 1.10

rs2718058 7 NME8 0.63 A G 1.06

rs1476679 7 ZCWPW1 0.67 T C 1.09

rs11771145 7 EPHA1 0.66 G A 1.11

rs28834970 8 PTK2B 0.37 A G 1.10

rs9331896 8 CLU 0.60 T C 1.16

rs10838725 11 CELF1 0.31 G C 1.08

rs983392 11 MS4A6A 0.59 A G 1.90

rs10792832 11 PICALM 0.62 G A 1.14

rs11218343 11 SORL1 0.95 C T 1.37

rs17125944 14 FERMT2 0.10 C T 1.14

rs10498633 14 SLC24A4 0.77 G T 1.11

rs4147929 19 ABCA7 0.18 A G 1.15

rs429358/rs7412 19 APOE 0.15 ε4 ε2/3 3.69

rs7274581 20 CASS4 0.91 C T 1.15

* Assigned risk locus, risk allele and odds ratio (OR) according to Lambert et al [1]
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SUPPLEMENTARY TABLE 2: Top 3 associated clusters of voxels per each risk locus ordered by minimum p-value. 

Cluster forming threshold was set to p-value 0.05. Cluster size calculated by summing all voxels in cluster. Effect direc-

tion indicates betas sign, and demonstrates risk loci associated with higher gray matter density (+) or lower gray matter 

density (-).  

RS ID Locus a Brain
Regions b

Minimum p-value Cluster size Effect direction

rs429358/rs7412 APOEε4

Postcentral gyrus right 6.92x10-6 1411 +

Remainder of parietal lobe left 2.14x10-5 1051 +

Posterior temporal lobe right 4.17x10-4 786 -

rs10792832
PICALM

Superior frontal gyrus left 4.47x10-4 1502 +

Middle frontal gyrus left 9.33x10-5 1206 -

Cingulate gyrus, anterior 

part left

2.24x10-4 1871 -

rs10838725
CELF1

Superior frontal gyrus right 4.68x10-5 2228 -

Medial orbital gyrus left 1.41x10-4 1907 +

Superior temporal gyrus left, 

posterior part

1.74x10-4 493 -

rs10948363
CD2AP

Superior parietal gyrus right 2.95x10-4 273 +

Middle frontal gyrus right 3.39x10-4 280 +

Middle frontal gyrus left 4.17x10-4 238 -

rs11218343
SORL1

Inferior frontal gyrus right 1.62x10-5 3150 +

Insula left 6.46x10-5 1822 +

Middle frontal gyrus left 1.07x10-4 2020 -

rs11771145
EPHA1

Precentral gyrus right 8.91x10-6 3185 -

Remainder of parietal lobe 

right

4.27x10-5 385 -

Insula right 3.02x10-4 2295 -

rs1476679
ZCWPW1

Superior frontal gyrus right 5.13x10-6 1255 +

Superior frontal gyrus left 1.66x10-4 578 -

Lateral remainder of occipital 

lobe left

1.86x10-4 3592 +

rs17125944 FERMT2 Lateral remainder of occipital 

lobe right

5.01x10-5 1733 +

Superior parietal gyrus left 1.32x10-4 285 -

Middle frontal gyrus right 1.45x10-4 1260 +

rs190982
MEF2C

Lateral remainder of occipital 

lobe right

9.55x10-6 2322 +

Lateral remainder of occipital 

lobe left

5.88x10-5 461 -

Middle frontal gyrus right 1.46x10-4 865 +

rs2718058
NME8

Postcentral gyrus right  2.88x10-5 528 +

Medial and inferior temporal 

gyri right

6.46x10-5 2055 +

Posterior temporal lobe right 1.46x10-4 786 +

rs28834970
PTK2B

Remainder of parietal lobe 

right

2.95x10-5 2014 +

Lateral remainder of occipital 

lobe left

8.32x10-5 1461 +

Lingual gyrus right 3.47x10-4 751 +
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SUPPLEMENTARY TABLE 2 CONTINUED: Top 3 associated clusters of voxels per each risk locus ordered by 

minimum p-value. Cluster forming threshold was set to p-value 0.05. Cluster size calculated by summing all voxels in 

cluster. Effect direction indicates betas sign, and demonstrates risk loci associated with higher gray matter density (+) 

or lower gray matter density (-).  
RS ID Locus a Brain

Regions b

Minimum p-value Cluster size Effect direction

rs35349669
INPP5D Superior frontal gyrus left 9.33x10-5 820 -

Posterior temporal lobe left 1.46x10-4 798 +

Insula right 1.59x10-4 1252 +

rs4147929
ABCA7

Postcentral gyrus left 4.47x10-6 2335 -

Lateral remainder of occipital 

lobe left

1.35x10-4 2223 +

Middle frontal gyrus right 1.38x10-4 498 -

rs6656401 CR1
Precentral gyrus right 4.17x10-5 2802 -

Superior frontal gyrus left 6.46x10-5 1813 +

Lateral remainder of occipital 

lobe right

1.32x10-4 473 +

rs6733839 BIN1

Anterior orbital gyrus right 3.39x10-5 2463 -

Insula right 1.35x10-4 1100 -

Superior temporal gyrus 

anterior part right

2.24x10-4 255 +

rs7274581
CASS4

Cingulate gyrus anterior 

part right

3.02x10-4 2036 -

Middle frontal gyrus left 3.09x10-4 758 -

Cingulate gyrus, posterior 

part left

4.68x10-4 2382 -

rs9331896
CLU

Posterior temporal lobe right 10-4 3176 -

Middle frontal gyrus left 3.80x10-4 680 -

Cingulate gyrus, posterior 

part left

4.68x10-4 1574 +

rs983392
MS4A6A

Lateral remainder of occipital 

lobe left

1.77x10-5 791 +

Posterior temporal lobe left 4.68x10-5 1126 +

Superior frontal gyrus right 6.03x10-4 557 +

rs10498633

SLC24A4 Precentral gyrus left 2.95x10-5 411 -

Precentral gyrus right 8.51x10-5 1555 -

Remainder of parietal lobe 

right

10-4 2037 +

a Assigned risk locus according to Lambert et al [1] 
b Brain region labeling based on Hammer Atlas segmentation.
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SUPPLEMENTARY TABLE 3: Coded structure list for brain regions according to Hammer Atlas segmentation.

Number on heatmap Name of Structure

1

2

3

4

5

6

7

8

9

10

Temporal Lobe
Hippocampus right, left

Amygdala right, left 

Anterior temporal lobe, medial part right, left

Anterior temporal lobe, lateral part right, left

Parahippocampal and ambient gyri right, left

Superior temporal gyrus, posterior part right, left

Middle and inferior temporal gyrus right, left

Fusiform gyrus right, left

Posterior temporal lobe right, left 

Superior temporal gyrus, anterior part right, left

11

12

13

Insula and Cingulate gyri
Insula left, right

Cingulate gyrus (gyrus cinguli), anterior part left, right

Cingulate gyrus (gyrus cinguli), posterior part left, right

14

15

16

17

18

19

20

21

22

23

24

25

Frontal Lobe
Middle frontal gyrus left, right

Precentral gyrus left, right

Straight gyrus left, right

Anterior orbital gyrus left, right

Inferior frontal gyrus left, right

Superior frontal gyrus left, right

Medial orbital gyrus left, right

Lateral orbital gyrus left, right

Posterior orbital gyrus left, right

Subgenual frontal cortex left, right

Subcallosal area left, right

Pre-subgenual frontal cortexleft, right

26

27

28

Occipital Lobe
Lingual gyrus left, right

Cuneus left, right

Lateral remainder of occipital lobe left, right

29

30

31

Parietal Lobe
Postcentral gyrus left, right

Superior parietal gyrus left, right

Inferio lateral remainder of parietal lobe left, right

32

33

34

35

36

Central Structures
Caudate nucleus left, right

Nucleus accumbens left, right

Putamen left, right

Thalamus left, right

Pallidum left, right

95

FINE-MAPPING THE EFFECTS OF ALZHEIMER’S DISEASE RISK LOCI ON BRAIN MORPHOLOGY



SU
P

P
LE

M
EN

TA
R

Y
 T

A
B

LE
 4

: 
Re

su
lts

 o
f 

sp
at

ia
l 

ov
er

la
p 

be
tw

ee
n 

VB
M

 r
is

k 
lo

ci
 a

ss
oc

ia
tio

n 
an

d 
ge

ne
 e

xp
re

ss
io

n 
pr

ofi
le

s 
of

 3
 C

au
ca

si
an

 d
on

or
s 

fr
om

 t
he

 A
lle

n 

H
um

an
 B

ra
in

 A
tla

s.
 T

he
 ta

bl
e 

sh
ow

s 
ge

ne
s 

in
 r

is
k 

lo
ci

 r
eg

io
ns

, 
fo

r 
w

hi
ch

 e
xp

re
ss

io
n 

di
ffe

rs
 s

ig
ni

fic
an

tly
 (a

t c
or

re
ct

ed
 th

re
sh

ol
d1

.7
x1

0-5
) f

ro
m

 b
ac

kg
ro

un
d 

ex
pr

es
si

on
 

in
 r

eg
io

ns
 a

ss
oc

ia
te

d 
by

 V
BM

 a
na

ly
si

s.

R
is

k
 v

a
ri

a
n

t
P

u
ta

ti
ve

 c
a

u
sa

l 
g

e
n

e
a

G
e
n

e
s 

sh
o
w

in
g

 s
ig

n
ifi

ca
n

t 
o
ve

rl
a

p

Lo
cu

s
M

in
im

u
m

p
-v

a
lu

e

D
is

ta
n

ce
 

fr
o
m

 r
is

k
 

lo
ci

, 
b

p

Si
g

n
ifi

ca
n

t 
g

e
n

e
 

ex
p

re
ss

io
n

M
in

im
u

m
p

-v
a

lu
e

D
is

ta
n

ce
 f

ro
m

 r
is

k
 

a
ll
e
le

, 
b

p

Si
g

n
ifi

ca
n

t 
d

o
n

o
rs

/ 
to

ta
l 

n
u

m
b

e
r 

o
f 

d
o
n

o
rs

Si
g

n
ifi

ca
n

t 
p

ro
b

e
s/

to
ta

l 
n

u
m

b
e
r 

o
f 

p
ro

b
e
s

rs
66

56
40

1
C

R1
5.

58
 x

10
-4

22
.5

57
C

D
55

1.
13

x1
0-5

19
7.

19
6

1/
3

1/
4

rs
67

33
83

9
BI

N
1

0.
11

87
.2

07
IW

S1
8.

07
x1

0-7
-3

00
.9

73
1/

3
1/

2

rs
35

34
96

69
IN

PP
5D

3.
80

 x
10

-4
14

3.
79

9
N

G
EF

7.
57

x1
0-1

6
32

5.
08

0
3/

3
2/

2

D
G

KD
1.

69
x1

0-8
-1

94
.6

77
3/

3
2/

2

rs
19

09
82

M
EF

2C
1.

41
x1

0-5
44

.2
75

M
EF

2C
1.

41
x1

0-5
44

.2
75

1/
3

1/
3

rs
10

94
83

63
C

D
2A

P 
0.

04
 

42
.2

37
-

-
-

-
-

rs
27

18
05

8
N

M
E8

4.
48

 x
10

-2
-4

6.
66

5
EP

D
R1

*
9.

05
x1

0-5
11

8.
08

8
-

-

rs
14

76
67

9
ZC

W
PW

1
7.

21
 x

10
-5

5.
99

7
PC

O
LC

E
8.

39
x1

0-8
-1

95
.3

54
1/

3
1/

2

rs
11

77
11

45
EP

H
A1

1.
81

 x
10

-4
23

.3
80

G
ST

K1
1.

01
x1

0-5
16

9.
57

6
2/

3
3/

4

rs
28

83
49

70
PT

K2
B

2.
61

 x
10

-4
26

.1
22

-
-

-
-

-

rs
93

31
89

6
C

LU
4.

43
x1

0-7
13

.2
52

C
LU

4.
43

x1
0-7

13
.2

52
1/

3
1/

1

SC
AR

A3
3.

18
x1

0-6
-2

96
.2

64
1/

3
3/

3

C
C

D
C

25
7.

95
x1

0-6
-1

23
.1

49
1/

3
1/

3

rs
10

83
87

25
C

EL
F1

 
5.

59
 x

10
-3

70
.3

75
-

-
-

-
-

rs
98

33
92

M
S4

A6
A

1.
61

 x
10

-2
-1

5.
57

3
-

-
-

-
-

rs
10

79
28

32
PI

C
AL

M
1.

35
 x

10
-3

19
9.

14
8

SY
TL

2 
5.

33
x1

0-8
46

2.
60

8
2/

3
3/

4

rs
11

21
83

43
SO

RL
1

1.
99

 x
10

-4
11

2.
67

5
SC

5D
1.

76
x1

0-6
27

2.
42

5
1/

3
2/

3

rs
17

12
59

44
FE

RM
T2

2.
98

 x
10

-2
76

.6
43

-
-

-
-

-

rs
10

49
86

33
SL

C
24

A4
1.

50
x1

0-5
13

8.
02

7
SL

C
24

A4
1.

50
x1

0-5
13

8.
02

7
1/

3
1/

2

rs
41

47
92

9
AB

C
A7

8.
35

x1
0-5

23
.3

41
PA

LM
1.

92
x1

0-9
35

4.
49

0
2/

3
2/

3

rs
42

93
58

/r
s7

41
2

AP
O

E
3.

94
 x

10
-4

-
-

-
-

-
-

rs
72

74
58

1
C

AS
S4

9.
34

 x
10

-4
31

.0
92

C
20

or
f4

3
1.

64
x1

0-5
-2

5.
38

7
1/

3
1/

3

* 
N

ot
 s

ig
ni

fic
an

t a
t B

on
fe

rr
on

i c
or

re
ct

ed
 th

re
sh

ol
d,

 b
ut

 m
or

e 
si

gn
ifi

ca
nt

, 
th

en
 o

rig
in

al
ly

 a
ss

ig
ne

d 
lo

cu
s;

 a  
A

ss
ig

ne
d 

ris
k 

lo
cu

s 
ac

co
rd

in
g 

to
 L

am
be

rt 
et

 a
l [

1]

96

CHAPTER 3.1



SUPPLEMENTARY TABLE 5: The most significant voxel-wise association signals with p-values<10-5 in participants 

carrying the APOEɛ4 allele. Brain region labeling based on the Hammer Atlas segmentation. Effect direction indicates 

beta sign, and demonstrates risk loci associated with increasing gray matter tissue (+) or decreasing gray matter tissue (-). 

Risk variant Gene* Minimum 
p-value

Effect direction Brain Region

rs190982 MEF2C 7.36x10-8 +
Superior temporal gyrus, central part left

rs10948363 CD2AP 8.14x10-7 - Substantia nigra left

rs10838725 CELF1 4.70x10-6 - Posterior temporal lobe right

rs2718058 NME8 8.78x10-6 - Lateral remainder of occipital lobe left

Genetic Risk Score All 1.20x10-6 + Precentral gyrus right

Genetic Risk Score Without APOE 0.0002** - Postcentral gyrus left

* Assigned risk gene according to Lambert et al [1]

** P-value is not less than 10-5, shown to compare with GRS without exclusion APOE.

SUPPLEMENTARY TABLE 6: The most significant voxel-wise association signals in participants not carrying 

the APOEε4 allele. Brain region labeling based on the Hammer Atlas segmentation. Effect direction indicates 

beta sign, and demonstrates risk loci associated with increasing gray matter tissue (+) or decreasing gray 

matter tissue (-).

Risk variant Gene* Minimum 
p-value

Effect direction Brain Region

rs11218343 SORL1 1.57x10-5 + Superior temporal gyrus, central part left

rs10838725 CELF1 1.99x10-5 + Medial orbital gyrus left

rs17125944 FERMT2 2.29x10-5 - Lateral remainder of occipital lobe left

Genetic Risk Score Without APOE 0.0002** - Cingulate gyrus anterior (supragenual) part left

* Assigned risk gene according to Lambert et al [1]
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SUPPLEMENTARY FIGURE 1: Projection of risk loci association clusters from VBM to cortical surface. Colors re-

flect regression association: blue for negative, red for positive. Clusters formed based on nominal significant p-value 

threshold 0.05. 

VBM association maps of ABCA7(A), ZCWPW1(B), EPHA1(C) and MEF2C(D) risk loci.  

A

B
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SUPPLEMENTARY FIGURE 1 CONTINUED: Projection of risk loci association clusters from VBM to cortical surface. 

Colors reflect regression association: blue for negative, red for positive. Clusters formed based on nominal significant 

p-value threshold 0.05. 

VBM association maps of ABCA7(A), ZCWPW1(B), EPHA1(C) and MEF2C(D) risk loci.  

C

D
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SUPPLEMENTARY FIGURE 2: Region brain Manhattan plots. Effect of AD SNPs shown for the same voxels from 

selected brain region. A- Postcentral gyrus right; B - Lateral remainder of occipital lobe right. The detail results are 

available online: www.imagene.nl/ADSNPs/.
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CHAPTER 3.2
High-dimensional mapping of 
cognition to the brain using 
voxel-based morphometry and 
subcortical shape analysis 



ABSTRACT

Background

It is increasingly recognized that the complex functions of human cognition are not accurately 

represented by arbitrarily defined anatomical brain regions. A considerable functional spe-

cialization typically exists within such regions. Studies that examine the association between 

cognition and brain structure at the highest resolution would allow better map such localized 

associations. However, such analysis in a large community-dwelling population is lacking. 

Methods

In 3,813 stroke-free and non-demented persons from the Rotterdam Study (mean age 69.1 

(±8.8) years; 55.8% women) with cognitive assessments and brain MRI, we performed vox-

el-based morphometry and subcortical shape analysis on global cognition and separate tests 

that tapped into memory, information processing speed, fine motor speed, and executive 

function domains.

Results

We found that the different cognitive tests significantly associated with grey matter voxels in 

differential but also overlapping brain regions, primarily in the left hemisphere. Clusters of 

significantly associated voxels with global cognition were located within multiple anatomic 

regions: left amygdala, hippocampus, parietal lobule, superior temporal gyrus, insula and 

posterior temporal lobe. Subcortical shape analysis revealed associations primarily within 

the head and tail of caudate nucleus, putamen, ventral part of the thalamus, and nucleus 

accumbens, more equally distributed among the left and right hemisphere. Within caudate 

nucleus both positive (head) as well as negative (tail) associations were observed with global 

cognition.

Conclusions

In a large population-based sample, we mapped cognitive performance to (sub)cortical grey 

matter using a hypothesis-free approach with high-dimensional neuroimaging. Leveraging 

the power of our large sample size, we confirmed well-known associations as well as identified 

novel brain regions affecting cognition. 
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INTRODUCTION 

Human cognition comprises a variety of important domains including memory, information 

processing speed and executive function. Cognitive ability is associated with important health 

outcomes(Eggermont, et al., 2012; Gale, et al., 2008; Halperin, et al., 2008) and varies be-

tween individuals and throughout life(Halperin, et al., 2008). It is determined by both genetic 

and environmental factors(Deary, et al., 2010; Haworth, et al., 2010), which are reflected in 

the structure of the brain(Davies, et al., 2015; Kramer, et al., 2004).

Many of the initial links between brain structure and cognition arose from clinical observa-

tions of patients with localized brain lesions or following surgical interventions(Newman, et 

al., 2007; Rorden and Karnath, 2004). Subsequent neuroimaging studies have used these 

observations in hypothesis-driven approaches to study the neural substrate of human cogni-

tive ability including its various domains(Elderkin-Thompson, et al., 2008; Newman, et al., 

2007). These studies have primarily focused on aggregate measures over the entire brain re-

gions e.g., volumetric measures of the prefrontal cortex(Salat, et al., 2004; Tisserand, et al., 

2004) , thalamus(Van Der Werf, et al., 2001) or hippocampus(Van Petten, 2004). However, 

it is increasingly recognized that the complex functions of human cognition are not accurately 

represented by anatomical regions that are arbitrarily defined based on macroscopical land-

marks or histological microstructure, e.g. Brodmann areas(Bola and Sabel, 2015; Bressler 

and Menon, 2010; Park and Friston, 2013). Moreover a considerable functional specializa-

tion typically exists within such regions. For example, in Alzheimer’s disease the size of hippo-

campal subfields contains information important for cognition beyond the gross hippocampal 

volume(de Flores, et al., 2015; La Joie, et al., 2013; Lindberg, et al., 2012). The thalamus 

comprises more than 60 cytoarchitectonically and functionally distinct nuclei, all of which 

have a different pattern of anatomical connections to other brain regions (Fama and Sullivan, 

2015; Schmahmann and Pandya, 2008). 

An alternative to hypothesis-driven analyses are hypothesis-free approaches that interrogate 

brain structure at the highest resolution and provide the opportunity to explore the associa-

tion beyond just aggregated measures. For instance, voxel-based morphometry (VBM) studies 

volumetric differences at the level of the voxel, the smallest unit of measure of an MRI scan. In 

recent years, a large body of literature has emerged that employs VBM and related techniques 

to study how brain structures relate to cognition(Burgaleta, et al., 2014; Fleischman, et al., 

2014; Ruscheweyh, et al., 2013; Squarzoni, et al., 2012; Tisserand, et al., 2004). (Frisoni 

GB et al. 2002; Guo X et al. 2010; Minkova L et al. 2017)However, still several knowledge 

gaps remain: First, many hypothesis-free brain imaging studies are performed in relatively 

small studies, thereby running the risk of false-positive findings or not significant results. 
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Larger sample sizes can overcome this restriction and yield more robust findings as well as 

generalize the previous. Second, in addition to VBM analysis, the shape of subcortical struc-

tures allows to study the brain regions beyond just volumetric measures(Roshchupkin, et al., 

2016b) and may represent underlying subfield organization(Wang, et al., 2008). 

Therefore, using hypothesis-free approaches of voxel-based morphometry and shape analysis 

we performed a fine mapping of cognitive ability to (sub)cortical grey matter on magnetic 

resonance imaging (MRI) in a large population-based sample of middle-aged and elderly 

subjects.
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MATERIALS AND METHODS

STUDY POPULATION

This study was embedded within the Rotterdam Study, an ongoing prospective popula-

tion-based cohort designed to investigate chronic diseases in the middle-aged and elderly 

population(Ikram, et al., 2017). The cohort started in 1990 and comprised 7,983 partici-

pants aged ≥55 years. In 2000 and 2006, the study was expanded and at present comprises 

14,926 participants aged ≥45 years. Since 2005, brain MRI was implemented into the study 

protocol(Ikram, et al., 2015). Between 2009 and 2014 4,140 participants underwent brain 

MRI and cognitive testing. Examinations in this time period were conducted as one project. 

We excluded participants due to prevalent dementia (n=42), insufficient cognitive screening 

(n=21), with cortical infarcts (n=103) or clinical stroke (n=161). In total, 3,813 participants 

were available for analysis. The Rotterdam Study has been approved by the medical ethics 

committee according to the Population Study Act Rotterdam Study, executed by the Ministry 

of Health, Welfare and Sports of the Netherlands. A written informed consent was obtained 

from all participants.

MRI ACQUISITION

Brain MRI was performed on a 1.5-T MRI scanner (Signa Excite II, General Electric Healthcare, 

Milwaukee, WI,USA) using an eight-channel head coil. The protocol included T1-weighted 

sequence (T1), proton density-weighted sequence, and a T2-weighted fluid-attenuated inver-

sion recovery (FLAIR) sequence, as described extensively in detail before(Ikram, et al., 2015).

VOXEL BASED MORPHOMETRY

Voxel based morphometry (VBM) was performed according to an optimized VBM protocol(-

Good, et al., 2001) and as previously described(Roshchupkin, et al., 2016a). Briefly, all 

T1-weighted images were segmented into supratentorial grey matter, white matter and cere-

brospinal fluid using a previously described k-nearest neighbor algorithm, which was trained 

on six manually labeled atlases(Vrooman, et al., 2007). All grey matter (GM) density maps 

were non-linearly registered to the standard ICBM MNI152 grey matter template (Montreal 

Neurological Institute) with a 1x1x1 mm3 voxel resolution. A spatial modulation procedure 

was used to avoid differences in absolute grey matter volume due to the registration, follow-

ing by smoothing procedure, using a 3mm (FWHM 8mm) isotropic Gaussian kernel.

SUBCORTICAL SHAPES

The T1-weighted MRI scans were processed using FreeSurfer(Fischl, et al., 2004) (version 5.1) 

to obtain segmentations and volumetric summaries of the following seven subcortical struc-

tures for each hemisphere: nucleus accumbens, amygdala, caudate, hippocampus, pallidum, 
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putamen, and thalamus(Roshchupkin, et al., 2016c). Next, segmentations were processed 

using a previously described shape analysis pipeline(Gutman, 2015; Roshchupkin, et al., 

2016c). Briefly, a mesh model was created for the boundary of each structure. Subcortical 

shapes were registered using the “Medial Demons” framework, which matches shape curva-

tures and medial features to a pre-computed template(Gutman, et al., 2013). The templates 

and mean medial curves were previously constructed and are distributed as part of the ENIG-

MA-Shape package (http://enigma.usc.edu/ongoing/enigma-shape-analysis/). The resulting 

meshes for the 14 structures consist of a total of 27,120 vertices(Roshchupkin, et al., 2016c). 

Two measures were used to quantify shape: the radial distance and the natural logarithm of 

the Jacobian determinant. The radial distance represents the distance of the vertex from the 

medial curve of the structure. The Jacobian determinant captures the deformation required to 

map the subject-specific vertex to a template and indicates shape dilation due to sub-regional 

volume change(Roshchupkin, et al., 2016c). 

ASSESSMENT OF COGNITIVE FUNCTIONING

Cognitive function was assessed with a cognitive test battery comprising Stroop test(Houx, 

et al., 1993) (word reading, color naming and a reading/color naming interference task 

(error-adjusted time in seconds)), which tests information processing speed and executive 

function; 15-Word learning test (15-WLT)(Bleecker, et al., 1988), which taps into immediate 

and delayed recall to investigate memory; Letter-digit substitution task (LDST)(Prins, et al., 

2005) and Word fluency test (WFT, animal categories), both of which test executive function. 

The three Stroop tests were natural log transformed due to a skewed distribution. To allow for 

comparison across cognitive tests, we calculated z scores (subtracting the population mean 

and dividing by the standard deviation) for each cognitive test. The z scores for the Stroop 

Tests were inverted because higher scores on the Stroop test indicate a poorer performance, 

whereas higher scores on the other cognitive tests indicate better cognitive performance. In 

addition, we also investigated global cognition by calculating a compound score (G-factor) 

using a principal component analysis on the delayed recall score of the 15-WLT, Stroop In-

terference Test, LDST, and WFT(Hoogendam, et al., 2014). The G-factor explained 57.2% of 

the variance in cognitive test scores in the population. 

OTHER MEASUREMENTS

Attained level of education was collected and expressed in years. Prevalent clinical stroke and 

dementia were assessed based on a protocol as previously described.(Bos, et al., 2014; de 

Bruijn, et al., 2015)

STATISTICAL ANALYSIS

For VBM and shape analyis, linear regression models were fitted with age, sex, education and 
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cognitive test value as independent variables and voxel or vertex measure as the dependent 

variable. We corrected for level of education as a measure of cognitive reserve. For both 

VBM and shapes analysis we computed the significance threshold based on nonparametric 

statistic test by performing 10,000 random permutations.(Churchill and Doerge, 1994) After 

collecting the minimum p-value from every test, they were sorted and the 5% quantile was 

used (α=0.05) to estimate the p-value significant threshold, while controlling the family wise 

error (FWE). The resulting values were 2.99 x 10-7 for VBM and 9.63x10-6 for shapes, which 

were subsequently divided by the number of cognitive tests (n=8) to account for multiple 

hypothesis tests correction.
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RESULTS

Characteristics of the study population are presented in Table 1. Of the 3,813 participants, 

55.8% were women and mean age was 69.1 years (ranging from 51.9 to 97.9 years). Cor-

relations between all cognitive test scores stratified by sex are shown in Supplementary 

Figure 1.

TABLE 1: Characteristics of the Study Population.

Total population n= 3,813

Age, years 69.1 (8.8)

Female 2129 (55.8)

Education, years 12.7 (3.9)

Left hemisphere, cm3

 Nucleus accumbens 0.55 (0.09)

 Amygdala 1.30 (0.21)

 Caudate nucleus 3.37 (0.55)

 Hippocampus 3.82 (0.63)

 Pallidum 1.46 (0.23)

 Putamen 4.56 (0.63)

 Thalamus 6.15 (0.73)

Right hemisphere, cm3

 Nucleus accumbens 0.48 (0.09)

 Amygdala 1.39 (0.22)

 Caudate nucleus 3.48 (0.56)

 Hippocampus 3.84 (0.59)

 Pallidum 1.39 (0.24)

 Putamen 4.40 (0.61)

 Thalamus 6.16 (0.73)

Data presented as mean (standard deviation) for continuous variables and number (percentages) for categorical vari-

ables. The following variable had missing data: education (n=52). 

VOXEL-BASED MORPHOMETRY ANALYSIS

In total 4,081 of the grey matter voxels were significant in relation to at least one cognitive 

tests and/or global cognition after correction for multiple-testing (Table 2). These significant 

voxels were clustered within different brain structures, and almost exclusively within the left 

hemisphere. The strongest positive associations of better global cognition (G-factor) with grey 

matter voxels were found in the left amygdala (156 voxels, minimum (min) p-value 4.2x10-12), 

hippocampus (173 voxels, min p-value 9.6x10-12), parietal lobule (517 voxels, min p-value 

1.2x10-10), superior temporal gyrus (313 voxels, min p-value 1.5x10-10), insula (142 voxels, 

min p-value 7.4x10-10), posterior temporal lobe left (101 voxels, min p-value 7.7x10-10), 

postcentral gyrus, inferior and middle frontal gyrus, posterior orbital gyrus and right caudate 

nucleus (all <25 voxels, min p-value all<2.9x10-8) (Figure 1). 
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TABLE 2: Association between cognitive tests and grey matter voxels.

Cotgnitive Test Brain Region
Region 

size 
(#voxels)

min 
p-value

# negative 
voxels

# positive 
voxels

G-factor Amygdala left 2192 4.24E-12 0 156

Hippocampus left 3183 9.62E-12 0 173

Parietal lobe left (including supramarginal and 

angular gyrus)

65794 1.19E-10 0 517

Superior temporal gyrus central part left 20954 1.48E-10 0 313

Insula left 21930 7.43E-10 0 142

Posterior temporal lobe left 70660 7.68E-10 0 101

Inferior frontal gyrus left 28631 9.18E-10 0 18

Middle frontal gyrus left 80119 2.17E-09 0 15

Postcentral gyrus left 46092 2.92E-09 0 23

Posterior orbital gyrus left 7439 4.46E-09 0 2

Caudate nucleus right 6170 2.86E-08 0 4

WLT delayed recall Hippocampus left 3183 4.84E-10 0 466

Amygdala left 2192 1.13E-09 0 385

Insula left 21930 1.67E-08 0 10

Gyri parahippocampalis et ambiens left 6823 3.45E-08 0 1

WLT immediate recall Hippocampus left 3183 2.91E-08 0 6

WFT Superior temporal gyrus, central part left 20954 8.75E-09 0 103

Parietal lobe left (including supramarginal and 

angular gyrus)
65794

8.81E-09 0 81

Stroop interference Superior temporal gyrus, central part left 20954 5.29E-11 0 442

Parietal lobe left (including supramarginal and 

angular gyrus) 65794 5.67E-11 0 655

Postcentral gyrus left 46092 1.86E-10 0 80

Posterior temporal lobe left 70660 2.00E-10 0 152

Insula left 21930 2.52E-10 0 137

Amygdala left 2192 9.21E-10 0 46

Hippocampus left 3183 1.37E-09 0 24

Caudate nucleus left 6059 1.62E-08 0 21

LDST Insula left 21930 2.62E-08 0 7

Inferior frontal gyrus left 28631 2.72E-08 0 1

Total # positive voxels 4081

Total # negative voxels 0

Total voxels 4081

All associations are adjusted for age, sex, and education. Abbreviations: G-factor global cognition; WLT Word learning 

test; WFT Word fluency test; LDST Letter-digit substitution task.
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FIGURE 1: Association of grey matter voxel density with global cognition. Lateral view of the left hemisphere. FWE-sig-

nificant voxels, indicated by red-yellow, cluster in the insular cortex (I), Wernicke’s area (II), and the hippocampus (III). All 

associations are adjusted for age, sex, and education. Neurological orientation axial images: left  =  left.

With respect to the separate cognitive tests, a higher score on the delayed recall task of the 

15-WLT was positively associated with grey matter voxels in parts of the left hippocampus 

(466 voxels, min p-value 4.9x10-10), amygdala (385 voxels, min p-value 1.1x10-9), insula (10 

voxels, min p-value 1.7x10-8), and gyri parahippocampalis et ambiens (1 voxel, min p-value 

3.5x10-8). A higher score on immediate recall score of the 15-WLT was positively related 

to a small portion of the left hippocampus (6 voxels, min p-value 2.9x10-8). We observed 

that Word-Fluency test (WFT) was associated with superior temporal gyrus (103 voxels, min 

p-value 8.8x10-9), and parietal lobule (81 voxels, min p-value 8.8x10-9). We did not observe 

any association with the Stroop Reading test or the Stroop Color Naming test that survived 

correction for multiple testing. Stroop interference task harbored significant associations in 

the left hemisphere including superior temporal gyrus (442 voxels, min p-value 5.3x10-11), 

the parietal lobule (655 voxels, min p-value 5.7x10-11), postcentral gyrus (80 voxels, min 

p-value 1.9x10-10), posterior temporal lobe (152 voxels, min p-value 2.0x10-10), insula (137 

voxels, min p-value 2.5x10-10), amygdala (46 voxels, min p-value 9.2x10-10), hippocampus 

and caudate nucleus (both <25 voxels, min p-value 1.6x10-8). LDST was associated with a 
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small cluster of voxels in the left insula (7 voxels, min p-value 2.6x10-8), and inferior frontal 

gyrus (1 voxel, min p-value 2.7x10-8). All of these results are depicted in Figure 2A-E.

FIGURE 2: FWE-significant grey matter voxels in relation to cognitive tests. FWE-significant grey matter voxels, indicat-

ed by red-yellow, in relation to cognitive tests. Neurological orientation: left  =left. All associations are adjusted for age, 

sex, and education. Abbreviations: WLT Word learning test; LDST Letter-digit substitution task.

SHAPE ANALYSIS

Jacobian determinant and radial distance showed clusters of significant FWE-corrected verti-

ces in relation to cognitive tests, distributed among the left and right hemisphere: 2,819 and 

2,298 respectively (Supplementary Table 2). The thalamus, caudate nucleus, and putamen 

harbored most significant associations (Supplementary Table 2). Largest significant clusters 

were found for the Jacobian determinant of the left and right thalamus with Stroop inter-

ference task (369 vertices, min p-value 5.8x10-11 and 324 vertices, min p-value 6.1x10-12 

respectively). Global cognition harbored several significant associations, including the Jaco-

bian determinant of the left and right thalamus (281 vertices, min p-value 4.4x10-12 and 

159 vertices, min p-value 1.9x10-9 respectively), and the radial distance of the left and right 

caudate nucleus (133 vertices, min p-value 2.9x10-16 and 78 vertices, min p-value 2.9x10-

13 respectively) (Figure 3). A few inverse associations were observed, primarily between the 

Jacobian determinant of the caudate nucleus and the WLT (both delayed and immediate 

recall), and G-factor. Small clusters of vertices (ranging from 1 to 22) were found in the hip-

pocampus with global cognition, WFT and Stroop interference task, but not with the memory 

tests. Supplementary Figure 2A-F shows all significant findings of the shape analysis of 

subcortical brain structures in relation to the individual cognitive tests.
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FIGURE 3: Maps of shape measures of subcortical brain regions in relation to global cognition. Maps show the asso-

ciations of seven bilateral subcortical structures for the shape measures of Jacobian determinant (Panel A) and radial 

distance (Panel B), anterior (top row) and posterior (bottom row) view. All associations are adjusted for age, sex, and 

education. Color map represents the t-statistics and shows the direction of association, with red and blue indicating 

negative and positive associations respectively. Highlighted regions represent statistically significant vertices.
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DISCUSSION

In this large study of community-dwelling adults, we presented the neuroanatomical fine-map-

ping of seven cognitive tests and global cognition using voxel-based morphometry and sub-

cortical shape analysis. We found that the different cognitive tests significantly associated with 

grey matter voxels in different brain regions, primarily in the left hemisphere. Moreover, many 

of associated regions overlap between cognitive tests. Subcortical shape analysis revealed 

associations primarily within the head and tail of caudate nucleus, putamen, ventral part of 

the thalamus, and nucleus accumbens, more equally distributed among the left and right 

hemisphere. Within caudate nucleus both positive (head) as well as negative (tail) associa-

tions were observed with global cognition.

Regarding the voxel-based morphometry analysis, we observed three clusters of grey matter 

voxels to be associated with global cognition. These clusters were found in the left amygdala, 

hippocampus, parietal lobule, insula, posterior temporal lobe, inferior and middle frontal 

gyrus, postcentral gyrus and posterior orbital gyrus. Importantly, each of these three clusters 

was located within multiple anatomic regions. This may emphasize the importance of investi-

gating the association with cognition beyond anatomically defined regions. Global cognition 

represents the shared variance of the individual cognitive tests, so it is therefore unsurprising 

that the three significant clusters are also significantly associated with the separate tests. We 

therefore will discuss our findings in more detail per individual cognitive test below.

Memory research has a long history(Squire and Zola-Morgan, 1988). The medial temporal 

lobes, and in particular the hippocampus, have long been implicated in episodic memory, 

with visuospatial memory predominantly associated with the right and verbal memory with the 

left hippocampus(Burgess, et al., 2002; Frisk and Milner, 1990; Smith and Milner, 1981). In 

line with this, we found that the 15-Word Learning test, with delayed recall more pronounced 

than immediate recall, was associated with clusters of grey matter voxels in particular the left 

hippocampus, as well as in the left amygdala. For decades there has been debate over the 

question of whether the amygdala is involved in memory(McGaugh, et al., 1996). Task-based 

resting-state functional MRI studies have shown that the amygdala is considered to play a 

role in emotional-related memory. However, its role in episodic memory is less known(Phelps, 

2004). We did not observe an association between the shape of the hippocampus and tests 

measuring memory function. As was shown in a previous study, shape of subcortical structures 

represents different, a complimentary, phenotype compare to just volumetric measures, with 

its own genetic architecture (Roshchupkin, et al., 2016c). Therefore the absence of signal may 

be caused by the fact that the shape of hippocampus has also different functional specializa-

tion which is less sensitive to associations with cognition.
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The Stroop interference test, Word Fluency test (WFT) and Letter-Digit Substitution Task (LDST) 

are all tapping into executive function. The Stroop interference task has been used extensively 

in studies designed to explore the efficiency of controlled attentional processes(Davidson, et 

al., 2003). The Stroop effect reflects slowing of response time or increase in error rate when 

persons are required to respond with the identity if an incongruent stimulus relative to a con-

gruent stimulus(Bugg, et al., 2008). Interestingly, we observed that the Stroop interference 

task was positively associated with a cluster of grey matter voxels in the left hippocampus. 

Over the past decades, there has been increasing interest in the contribution of the hippo-

campus to processes beyond the memory domain(Rubin, et al., 2017). A study in healthy 

subjects explored the role of the hippocampus for response conflict in the Stroop task by 

combining intracranial electroencephalography with region of interest-based functional MRI. 

Researchers found that the hippocampus is recruited during response conflict. Importantly, it 

remains questionable whether conflict processing can be disentangled from circumstances in 

which there is conflicting valence or perceptual information, even in experimental studies that 

thoroughly control for the effect of memory(Ito and Lee, 2016). Moreover, WFT and Stroop 

interference test showed clusters of significant grey matter voxels in the left hemisphere where 

the posterior frontal lobe, upper segment of temporal lobe, and parietal lobule (including 

supramarginal and angular gyrus) intersect. These brain areas are part of Wernicke’s area, 

a well-known functional language area(Pirmoradi, et al., 2016). The WFT being used in the 

current study tests semantic fluency. Semantic fluency requires searching for semantic asso-

ciations within the lexicon(Shao, et al., 2014). Lower scores on semantic fluency tests may 

therefore also reflect problems with semantic memory, and not only executive function. In line 

with this, we found WFT to be associated with the left hippocampus, although non-significant 

after correction for multiple testing. 

The LDST and Stroop interference test both showed associations with the left insula, more spe-

cifically the dorsal anterior insula. The left insular cortex is involved in consciousness and plays 

a role in diverse cognitive functions(Dupont, et al., 2003) such as higher cognitive processing 

and social-emotional processing(Chang, et al., 2013). Anterior insular cortices are among the 

most commonly activated brain regions across all cognitive tasks(Nelson, et al., 2010). It is 

also considered to be part of the cognitive control network and hypothesized that this network 

might form a pathway by which information in the insula, can affect decision making, and 

therefore influence information processing speed(Cauda, et al., 2011; Deen, et al., 2011). 

In line with literature, our shape analysis results indicate that subcortical structures are het-

erogeneous and consist of functionally diverging sub-regions(de Flores, et al., 2015; Fama 

and Sullivan, 2015; Lin, et al., 2017; Roshchupkin, et al., 2016c). This is illustrated by, e.g., 

the caudate nucleus showing that its head and tail differ in their associations with global cog-
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nition. It is thought that the head of the caudate nucleus interacts with medial, ventral, and 

dorsolateral prefrontal cortex as part of the ‘cognitive’ corticostriatal loop, whereas the tail 

interacts with inferior temporal areas and appears to be involved in visual stimulus process-

ing(Haber, 2016; Lawrence, et al., 1998; Seger, 2013). In addition, our results suggest that 

the shape of other subcortical structures are involved in cognition as well, emphasizing the 

importance of subcortical shape analysis in understanding cognition. 

Strengths of our study include the large sample size, the population-based setting and the 

hypothesis-free approach to be able to fine map cognition to grey matter. Some limitations 

deserve to be acknowledged. First, because of the cross-sectional design, no conclusions can 

be drawn regarding the directionality of causality of the associations. Second, our cognitive 

test battery, limited in time because of the population-based nature, yielded a less extensive 

cognitive assessment compared to other studies in smaller samples. Third, the current study 

mainly consists of Caucasians, therefore the generalizability to other ethnicities is limited. 

Finally, it is well-known that several cognitive processes are lateralized to a functionally dom-

inant hemisphere and therefore it would have been interesting to investigate handedness as 

effect modifier. Unfortunately, in our study we did not have a reliable measure of handedness. 

In conclusion, in this population-based study of nearly 4000 subjects we mapped cognitive 

ability to grey matter by using hypothesis-free approaches of voxel-based morphometry and 

shape analysis. We made the maps of association publicly available (https://neurovault.org/) 

for any researcher to explore the results or to contrast their findings against. Our results 

propose that a more fine-grained analysis of brain structure adds to our understanding of 

cognitive function in normal aging. Future studies are needed to disentangle development 

and degeneration of the human brain. Additionally, longitudinal assessment of cognitive func-

tioning and grey matter atrophy is needed to study causality. 
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SUPPLEMENTARY MATERIAL

High-dimensional mapping of cognition to the brain using voxel-based morphometry and 

subcortical shape analysis.

CONTENT:

•	 Supplementary Figure 1: Correlation between cognitive tests stratified by sex.

•	 Supplementary Figure 2. FWE-significant vertices of subcortical brain structures in 

relation to cognitive tests

•	 Supplementary Table 1: Association between cognitive tests and shape measures in 

the left and right hemisphere.
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SUPPLEMENTARY FIGURE 1: Correlation between cognitive tests stratified by sex.
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SUPPLEMENTARY FIGURE 2A: FWE-significant vertices of subcortical brain structures in relation to Word learning 

test, delayed recall.

  

Maps show the associations of seven bilateral subcortical structures for the shape measures of Jacobian determinant 

(Panel A) and radial distance (Panel B), anterior (top row) and posterior (bottom row) view. All associations are 

adjusted for age, sex, and education. Color map represents the t-statistics and shows the direction of association, with 

red and blue indicating negative and positive associations respectively.
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SUPPLEMENTARY FIGURE 2B: FWE-significant vertices of subcortical brain structures in relation to Word learning 

test, immediate recall.

Maps show the associations of seven bilateral subcortical structures for the shape measures of Jacobian determinant, 

anterior (left) and posterior (right) view. All associations are adjusted for age, sex, and education. Color map represents 

the t-statistics and shows the direction of association, with red and blue indicating negative and positive associations 

respectively.
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SUPPLEMENTARY FIGURE 2C. FWE-significant vertices of subcortical brain structures in relation to Word fluency 

test.

Maps show the associations of seven bilateral subcortical structures for the shape measures of Jacobian determinant 

(Panel A) and radial distance (Panel B), anterior (top row) and posterior (bottom row) view. All associations are ad-

justed for age, sex, and education. Color map represents the t-statistics and shows the direction of association, with red 

and blue indicating negative and positive associations respectively. 
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SUPPLEMENTARY FIGURE 2D: FWE-significant vertices of subcortical brain structures in relation to Stroop 

color reading test.

Maps show the associations of seven bilateral subcortical structures for the shape measures of Jacobian determinant, 

anterior view. All associations are adjusted for age, sex, and education. Color map represents the t-statistics and shows 

the direction of association, with red and blue indicating negative and positive associations respectively.
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SUPPLEMENTARY FIGURE 2E. FWE-significant vertices of subcortical brain structures in relation to Stroop 

color naming test.

Maps show the associations of seven bilateral subcortical structures for the shape measures of Jacobian determinant 

(Panel A) and radial distance (Panel B), anterior (top row) and posterior (bottom row) view. All associations are 

adjusted for age, sex, and education. Color map represents the t-statistics and shows the direction of association, with 

red and blue indicating negative and positive associations respectively.
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SUPPLEMENTARY FIGURE 2F: FWE-significant vertices of subcortical brain structures in relation to Stroop interfer-

ence test.

Maps show the associations of seven bilateral subcortical structures for the shape measures of Jacobian determinant 

(Panel A) and radial distance (Panel B), anterior (top row) and posterior (bottom row) view. All associations are 

adjusted for age, sex, and education. Color map represents the t-statistics and shows the direction of association, with 

red and blue indicating negative and positive associations respectively.

130

CHAPTER 3.2



SUPPLEMENTARY FIGURE 2G: FWE-significant vertices of subcortical brain structures in relation to Letter-digit 

substitution test.

Maps show the associations of seven bilateral subcortical structures for the shape measures of Jacobian determinant 

(Panel A) and radial distance (Panel B), anterior (top row) and posterior (bottom row) view. All associations are 

adjusted for age, sex, and education. Color map represents the t-statistics and shows the direction of association, with 

red and blue indicating negative and positive associations respectively.
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Supplementary Table 1A: Association between cognitive tests and shape measures in the left hemisphere.

Cognitive Test Measure Subcortical Structure min p-value # negative 
vertices

# positive 
vertices

G-factor Jacobian determinant Thalamus 4.36E-12 0 281

Jacobian determinant Caudate nucleus 2.11E-08 68 0

Jacobian determinant Putamen 2.71E-08 0 122

Jacobian determinant Nucleus Accumbens 7.87E-07 0 7

Jacobian determinant Pallidum 1.43E-06 0 4

Jacobian determinant Amygdala 1.84E-06 0 2

radial distance Caudate nucleus 2.89E-16 20 113

radial distance Amygdala 1.09E-10 0 37

radial distance Thalamus 1.17E-10 0 70

radial distance Putamen 1.08E-08 0 41

WLT delayed recall Jacobian determinant Caudate nucleus 1.03E-06 13 0

radial distance Caudate nucleus 6.96E-07 1 0

WLT immediate recall Jacobian determinant Caudate nucleus 7.83E-07 5 0

WFT Jacobian determinant Putamen 3.67E-07 0 12

Stroop color naming Jacobian determinant Putamen 2.22E-08 0 46

Jacobian determinant Nucleus Accumbens 1.26E-07 0 11

Jacobian determinant Pallidum 2.04E-07 0 17

Jacobian determinant Thalamus 1.13E-06 0 3

radial distance Putamen 1.66E-07 0 5

radial distance Caudate nucleus 1.97E-07 0 21

radial distance Amygdala 2.46E-07 0 6

radial distance Thalamus 1.02E-06 0 1

Stroop interference Jacobian determinant Thalamus 5.84E-11 0 396

Jacobian determinant Putamen 2.28E-09 0 298

Jacobian determinant Pallidum 8.64E-09 0 33

Jacobian determinant Nucleus Accumbens 9.26E-08 0 26

Jacobian determinant Caudate nucleus 1.91E-06 0 3

radial distance Caudate nucleus 2.08E-16 0 102

radial distance Thalamus 1.34E-12 0 209

radial distance Amygdala 7.51E-12 0 60

radial distance Putamen 1.26E-09 0 215

radial distance Nucleus Accumbens 1.33E-07 0 7

radial distance Hippocampus 6.79E-07 0 1

radial distance Pallidum 9.47E-07 0 3

LDST Jacobian determinant Thalamus 4.50E-12 0 274

Jacobian determinant Nucleus Accumbens 2.54E-09 0 30

Jacobian determinant Putamen 6.76E-09 0 72

Jacobian determinant Pallidum 6.62E-07 0 12

radial distance Caudate nucleus 9.39E-13 0 70

radial distance Thalamus 7.74E-12 0 90

radial distance Putamen 1.01E-07 0 9

radial distance Nucleus Accumbens 4.60E-07 0 3

Total # vertices 107 2712
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SUPPLEMENTARY TABLE 1B: Association between cognitive tests and shape measures in the right hemisphere.

Cognitive Test Measure Subcortical Structure min p-value # negative 
vertices

# positive 
vertices

G-factor Jacobian determinant Thalamus 1.93E-09 0 159

Jacobian determinant Putamen 2.03E-07 0 41

Jacobian determinant Nucleus accumbens 3.04E-07 0 56

Jacobian determinant Amygdala 1.17E-06 0 6

radial distance Caudate nucleus 9.68E-13 0 78

radial distance Amygdala 3.74E-11 0 68

radial distance Nucleus accumbens 1.03E-09 0 24

radial distance Hippocampus 2.17E-09 0 22

radial distance Thalamus 6.19E-09 0 102

WLT delayed recall Jacobian determinant Caudate nucleus 1.57E-07 37 0

WFT Jacobian determinant Nucleus accumbens 8.97E-07 0 11

Jacobian determinant Hippocampus 1.10E-06 0 5

Jacobian determinant Putamen 1.13E-06 0 8

Jacobian determinant Amygdala 2.26E-06 0 1

radial distance Amygdala 7.61E-09 0 27

radial distance Caudate nucleus 6.66E-08 0 23

radial distance Hippocampus 1.36E-07 0 8

Stroop color reading Jacobian determinant Pallidum 6.49E-08 0 19

Stroop color naming Jacobian determinant Nucleus accumbens 1.05E-07 0 19

Jacobian determinant Thalamus 1.09E-07 0 75

Jacobian determinant Putamen 2.27E-07 0 32

Jacobian determinant Pallidum 1.65E-06 0 2

radial distance Thalamus 1.16E-08 0 17

radial distance Nucleus accumbens 1.35E-08 0 11

radial distance Amygdala 2.24E-08 0 13

radial distance Putamen 4.09E-08 0 45

radial distance Caudate nucleus 2.74E-07 1 4

Stroop interference Jacobian determinant Thalamus 6.11E-12 0 324

Jacobian determinant Putamen 6.07E-09 0 95

Jacobian determinant Nucleus accumbens 5.98E-08 0 71

Jacobian determinant Pallidum 9.13E-08 0 22

Jacobian determinant Amygdala 6.34E-07 0 19

Jacobian determinant Caudate nucleus 8.36E-07 0 3

radial distance Amygdala 2.25E-12 0 75

radial distance Thalamus 2.38E-11 0 221

radial distance Caudate nucleus 9.21E-10 0 96

radial distance Putamen 2.17E-09 0 60

radial distance Nucleus accumbens 8.71E-07 0 1

LDST Jacobian determinant Thalamus 1.56E-11 0 249

Jacobian determinant Putamen 5.45E-08 0 26

Jacobian determinant Nucleus accumbens 1.34E-07 0 18

radial distance Caudate nucleus 3.42E-10 0 27

radial distance Nucleus accumbens 5.01E-09 0 8

radial distance Thalamus 1.08E-08 0 51

radial distance Amygdala 1.96E-08 0 18

Total # vertices 38 2260
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CHAPTER 4.1
HASE: Framework for 
efficient high-dimensional 
association analyses 



ABSTRACT
  

High-throughput technology can now provide rich information on a person’s biological 

makeup and environmental surroundings. Important discoveries have been made by relating 

these data to various health outcomes in fields such as genomics, proteomics, and medical 

imaging. However, cross-investigations between several high-throughput technologies remain 

impractical due to demanding computational requirements (hundreds of years of computing 

resources) and unsuitability for collaborative settings (terabytes of data to share).Here we 

introduce the HASE framework that overcomes both of these issues. Our approach dramati-

cally reduces computational time from years to only hours and also requires several gigabytes 

to be exchanged between collaborators. We implemented a novel meta-analytical method 

that yields identical power as pooled analyses without the need of sharing individual par-

ticipant data. The efficiency of the framework is illustrated by associating 9 million genetic 

variants with 1.5 million brain imaging voxels in three cohorts (total N=4,034) followed by 

meta-analysis, on a standard computational infrastructure. These experiments indicate that 

HASE facilitates high-dimensional association studies enabling large multicenter association 

studies for future discoveries. 
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INTRODUCTION
 

Technological innovations have enabled the large-scale acquisition of biological information 

from human subjects. The emergence of these big datasets has resulted in various ‘omics’ 

fields. Systematic and large-scale investigations of DNA sequence variations (genomics)1, 

gene expression (transcriptomics)2, proteins (proteomics)3including disease risk prediction, 

prevention and targeted medication. One of the major challenges that researchers face 

on the path between the initial identification of an association and precision treatment of 

patients is the comprehension of the biological mechanisms that underlie these associa-

tions. Currently, the focus to solve these questions lies on the integrative analysis of sys-

tem-wide data on global genome variation, gene expression, transcription factor binding, 

epigenetic profiles and chromatin conformation. The generation of this data mainly relies 

on next-generation sequencing. However, due to multiple recent developments, mass spec-

trometry-based proteomics now offers additional, by the GWAS field so far hardly recognized 

possibilities for the identification of functional genome variants and, in particular, for the 

identification and characterization of (differentially, small molecule metabolites (metabolo-

mics)4, and medical images (radiomics)5, among other data, lie at the basis of many recent 

biological insights. These analyses are typically unidimensional, i.e. studying only a single 

disease or trait of interest. 

Although this approach has proven its scientific merit through many discoveries, jointly in-

vestigating multiple big datasets would allow for their full exploitation, as is increasingly 

recognized throughout the ‘omics’ world5–8. However, the high-dimensional nature of these 

analyses makes them challenging and often unfeasible in current research settings. Specif-

ically, the computational requirements for analyzing high-dimensional data are far beyond 

the infrastructural capabilities for single sites. Furthermore, it is incompatible with the typical 

collaborative approach of distributed multi-site analyses followed by meta-analysis, since the 

amount of generated data at every site is too large to transfer.

Some studies have attempted to combine multiple big datasets5,8–10, but these methods gen-

erally rely on reducing the dimensionality or making assumptions to approximate the results, 

which leads to a loss of information.

Here we present the framework for efficient high-dimensional association analyses (HASE), 

which is capable of analyzing high-dimensional data at full resolution, yielding exact associ-

ation statistics (i.e. no approximations), and requiring only standard computational facilities. 

Additionally, the major computational burden in collaborative efforts is shifted from the indi-

vidual sites to the meta-analytical level while at the same time reducing the amount of data 
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needed to be exchanged and preserving participant privacy. HASE thus removes the current 

computational and logistic barriers for single- and multi-center analyses of big data.
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RESULTS
 

OVERVIEW OF THE METHODS

The methods are described in detail in the Methods. Essentially, HASE implements a 

high-throughput multiple linear regression algorithm that is computationally efficient when 

analyzing high-dimensional data of any quantitative trait. Prior to analysis, data are converted 

to an optimized storage format to reduce reading and writing time. Redundant calculations 

are removed and the high-dimensional operations are simplified into a set of matrix opera-

tions that are computationally inexpensive, thereby reducing overall computational overhead. 

While deriving summary statistics (e.g., beta coefficients, p-values) for every combination in 

the high-dimensional analysis would be computationally feasible at individual sites with our 

approach, it would be too large to share the intermediate results (>200GB per thousand 

phenotypes) in a multi-center setting. Therefore, extending from a recently proposed method, 

partial derivatives meta-analysis17, we additionally developed a method that generates two 

relatively small datasets (e.g. 5GB for genetics data of 9 million variants and 20MB of thou-

sand phenotypes for 4000 individuals) that are easily transferred and can subsequently be 

combined to calculate the full set of summary statistics, without making any approximation. 

This meta-analysis method additionally reduces computational overhead at individual sites 

by shifting the most expensive calculation to the central site. The total computational burden 

thus becomes even more efficient relative to conventional methods with additional sites. The 

HASE software is freely available from our website www.imagene.nl/HASE/.

COMPARISON OF COMPLEXITY AND SPEED

We compared the complexity and speed of HASE with a classical workflow, based on linear 

regression analyses with PLINK (version 1.9)11 followed by meta-analysis with METAL12; two of 

the most popular software packages for these tasks. 

Table 1 shows that HASE dramatically reduces the complexity for the single site analysis and 

data transfer stages. For conventional methods, the single site analysis and data transfer 

have a multiplicative complexity (dependent on the number of phenotypes and determinants), 

whereas this is only additive for HASE. Our approach requires 2×106-fold less time on the 

single site stage and 3.500-fold less data to transfer for a high-dimensional association study. 

Additionally, the time for single site analysis does not increase significantly from analyzing a 

single phenotype to a million phenotypes (Table 1). This is due to the fact that speed is de-

termined by the highest number of either the determinants or phenotypes. Therefore, in this 

case with nine million genetic variants, the complexity of is the primary factor influencing the 

speed, whereas plays a secondary role.
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TABLE 1: Comparison of complexity and speed between the HASE framework and a classical workflow. 

Stage

Complexityc
Timea,b

(hours)

=1 =106

Classical workflow HASE
Classical 
workflow

HASE Classical workflow HASE

Single site 
analysis

O( ) max( )
2.46 0.63 2.46×106 0.70

Data transfer O( ) O( ) 0.04  0.07* 4×104 11.6

Meta-Analysis O( ) O( ) 0.06 0.03 6×104 1.7×103

a Based on a model with three covariates and 9 million genetic variants, for a total of 4034 participants from three sites. 

For the classical workflow we used the PLINK software for single site analysis and METAL for the meta-analysis. 
b For single site analysis and meta-analysis the time is given in CPU hours; for the data transfer stage this is in hours 

using an average network speed of 10Mbps.  
c Complexity for CPU hours is given in terms of classical computation time complexity; complexity for data transfer is 

shown in terms of how the size of the to be transferred data depends on the size of the input data.  
* This time is derived from the transfer of partial derivatives only, because for an association analysis with relatively few 

phenotypes it is not necessary to transfer encoded data.  

- number of individuals in the study;  - number of phenotypes of interest;  - number of tests (genetic variants);  - 

number of sites in the meta-analysis. In standard analysis <<  and <<

This drastic increase in performance is made possible through the shift of the computationally 

most expensive regression operation to the meta-analytical stage. For the meta-analytical stage, 

the HASE complexity is therefore slightly higher. However, it outperforms the classical meta-analy-

sis using METAL (total computation time reduced 35 times), owing to the efficient implementation 

of our algorithm. Additionally, if HASE is only used for a high-dimensional association study of 

a single site, i.e. without subsequent meta-analysis with other sites, the computation time would 

be reduced 1400 times due to the removal of redundant calculations (for details see Methods).  

APPLICATION TO REAL DATA

We used HASE to perform a high-dimensional association study in 4,034 individuals from the 

population-based Rotterdam Study. In this proof of principle study, we relate 8,723,231 mil-

lion imputed genetic variants to 1,534,602 million brain magnetic resonance imaging (MRI) 

voxel densities (see Supplementary Note). The analysis was performed on a small cluster of 

100 CPUs and took 17 hours to complete.

To demonstrate the potential of such high-dimensional analyses, we screened all genetic 

association results for both hippocampi (7,030 voxels) and identified the voxel with the lowest 

p-value. The most significant association (rs77956314; p = 3 x 10-9) corresponded to a locus 

on chromosome 12q24 (Figure 1), which was recently discovered in a genome-wide associ-

ation study of hippocampal volume encompassing 30,717 participants13.
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FIGURE 1: Manhattan plot of the hippocampus voxel with the most significant association after screening all 7030 hip-

pocampal voxels. The most significant association (rs77956314; p = 3 x 10-9) corresponded to a previously identified 

locus on chromosome 12q24. Such voxel-wise hippocampus screening would take less than 8 hours on standard laptop.

Additionally, we performed the high-dimensional association studies separately in the three 

subcohorts of the Rotterdam Study and meta-analyzed the results using the HASE data reduc-

tion approach. It took on average 40 minutes for each subcohort to generate intermediate 

data for subsequent meta-analysis on a single CPU for all genetic variants and voxels. The 

meta-analysis was performed on the same cluster and took 17 hours to complete. Next, we 

compared the association results of the pooled analysis with the meta-analysis. Figure 2 

shows that the results are identical as it was predicted by theory (see Methods). 

FIGURE 2: Correlation plot of voxel GWAS t-statistic estimated from pooled together data and voxel GWAS t-statistic 

estimated from meta-analysis of partial derivatives and encoded matrix. It took 40 min for single site to pre-compute 

data instead of 280 years to compute summary statistics.
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DISCUSSION
 

We describe a framework that allows for (i) computationally-efficient high-dimensional as-

sociation studies within individual sites using standard computational infrastructure and (ii) 

facilitates the exchange of compact summary statistics for subsequent meta-analysis for as-

sociation studies in a collaborative setting. Using HASE, we performed a genome-wide and 

brain-wide search for genetic influences on voxel densities (more than 1.5 million GWAS 

analysis in total), and illustrate both its feasibility and potential for driving scientific discov-

eries.

A large improvement in efficiency comes from the reduced computational complexity. High-di-

mensional analyses contain many redundant calculations, which were removed in the HASE. 

Also, we were able to further increase efficiency by simplifying the calculations to a set of 

matrix operations, which are computationally inexpensive, compared to conventional linear 

regression algorithms. Furthermore, the implementation of partial derivatives meta-analysis 

allowed us to greatly reduce the size of the summary statistics that need to be shared for per-

forming a meta-analysis. Another advantage of this approach is that it only needs to calculate 

the partial derivatives for each site instead of the parameter estimates (i.e., beta coefficients 

and standard errors). This enabled us to develop within HASE a reduction approach that 

encodes data prior to exchange between sites, while yielding the exact same results after 

meta-analysis as if the original data were used. The encoding is performed such that tracing 

back to original data is impossible. This guarantees protection of participant privacy and 

circumvents restrictions on data sharing that are unfortunately common in many research 

institutions. 

When using HASE, it is first necessary to convert the multi-dimensional data to a format that is 

optimized for fast reading and writing. This particular format, «hdf5», is not dependent on the 

architecture of the file system and can therefore be implemented on a wide range of hardware 

and software infrastructures. To facilitate this initial conversion step, we have built-in tools 

within the HASE framework for processing common file format of such big data. Furthermore, 

this is easily generalizable to other large data matrices in general and we foresee this initial 

conversion step not to form an obstacle for researchers to implement HASE. 

Alternative methods for solving the issues with high-dimensional data take one of two ap-

proaches. One approach is to reduce the dimensionality of the big datasets by summarizing 

the large amount of data into fewer variables2. Although this increases the speed, it comes 

at the price of losing valuable information, which these big data were primarily intended to 

capture. The second approach is to not perform a full analysis of all combinations of the big 
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datasets, but instead make certain assumptions (e.g., a certain underlying pattern, or a lack 

of dependency on potential confounders) that allow for using statistical models that require 

less computing time. Again, this is a tradeoff between speed and accuracy, which is not neces-

sary in the HASE framework, where computational efficiency is increased without introducing 

any approximations.

Unidimensional analyses of big data, such as genome-wide association studies, have already 

elucidated to some extent the genetic architecture of complex diseases and other traits of 

interest1,14–16, but much remains unknown. Cross-investigations between multiple big datasets 

potentially hold the key to fulfill the promise of big data in understanding of biology7. Using 

the HASE framework to perform high-dimensional association studies, this hypothesis is now 

testable.
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METHODS

HASE

In high-dimensional associations analyses we test the following simple regression model:

					     		  (1)

where Y is a ni× np matrix of phenotypes of interest, ni denotes the number of samples in the 

study, np the number of phenotypes of interest, and ε denotes the residual effect. X is a three 

dimensional matrix ni× nc × nt of independent variables, with nc representing the number of 

covariates, such as the intercept, age, sex and, for example genotype as number of alleles, 

and nt the number of independent determinants. 

In association analyses we are interested in estimating the p-value to test the null hypothesis 

that β=0. The p-values can be directly derived from the t-statistic of our test determinants. 

We will rewrite the classical equation for calculating t-statistics for our multi-dimensional 

matrices, which will lead to a simple matrix form solution for high-dimensional association 

analysis: 

Where T is np× nc × nt matrix of t-statistics and df is degree of freedom of our regression 

model. Let’s define so that we can write our final equation for t-sta-

tistics: 

The result of this derivation is that, rather than computing all combinations of covariates and 

independent determinants, we only need to know three matrices: A, B and C, to calculate 

t-statistics and perform the full analysis. These results will be used in the section about me-

ta-analysis. 
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The most computationally expensive operations here are the two multi-dimensional matrix 

multiplications  and , where  is a three dimensional matrix nc× nc × nt and  

is three dimensional matrix nc× np × nt . Without knowledge of the data structure of these 

matrices, the simplest way to write the results of their multiplication would be to use Einstein’s 

notation for tensor multiplication:

As you can see, the result is two matrices of nc× np × nt and np × nt elements respectively. 

Despite the seemingly complex notation, the first matrix just represents the beta coefficients for 

all combinations of covariates (nc by np × nt combinations) and the second is fitting values of 

the dependent variable for every test (np × nt independent determinants). 

However, insight into the data structure of A and B can dramatically reduce the computation-

al burden and simplify operations. First of all, matrix A depends only on the covariates and 

number of determinants, making it unnecessary to compute it for every phenotype of interest, 

so we just need to calculate it once. Additionally, only the last covariate (i.e., the variable 

of interest) is different between tests, meaning that the (np -1)×(np -1)×nt part of matrix A 

remains constant during high-dimensional analyses. Matrix B consists of the dot product of 

every combination of the covariate and phenotype of interest. However, as we mentioned 

before, there are only (nt + nc 1) different covariates, and thus we can split matrix B in two 

low dimensional matrices: the first includes dot products of non-tested covariates - (nc-1)× 

np elements; the second includes the dot products only of the tested covariates - np × nt ele-

ments. All this allows us to achieve large gain in computation efficiency and memory usage. In 

Figure 3 we show a 2D schematic representation of these two matrices for standard genome 

association study with the covariates being an intercept, age, sex, and genotype. This example 

could be easily extrapolated to any linear regression model. 

Applying the same splitting operation to  it is possible to simplify tensor multiplication equa-

tion (8, 9) to a low-dimensional matrix operation and rewrite the equation for t-statistics:

1

2
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Then, to compute t-statistics for high-dimensional association analyses we just need to per-

form several matrix multiplications. 

FIGURE 3: Explanation of the achieved speed reduction in HASE framework by removing redundant compu-

tations. In HASE multi-dimensional A and B matrices need to be calculated to perform GWAS studies. In the 

figure grey color means elements are parts of the matrix that are not necessary to calculate, as the A matrix 

is symmetric. The green color indicates elements that need to be calculated only once. Blue elements only 

have to be calculated for every SNP and yellow only for every phenotype. The red color indicates the most 

computationally expensive element, which needs to be calculated for every combination of phenotype and 

genotype. N denotes the number subjects in study. 

META-ANALYSIS

In classical meta-analysis, summary statistics such as beta coefficients and p-values are ex-

changed between sites. For 1.5 million phenotypes, this would yield around 400TB of data at 

each site, making data transfer to a centralized site impractical.

In the previous section we showed that, to compute all statistics for an association study, we 

just need to know the A, B and C matrices. As we demonstrated before17, by exchanging 

these matrices between sites, it is possible to gain the same statistical power as with a pooled 
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analysis, without sharing individual participant data, because these matrices consist of ag-

gregate data (Figure 3). However, in high-dimensional association analyses, matrix B grows 

very fast, particularly the part that depends on the number of determinants and phenotypes 

(b4 in Figure 3). 

If Y is a ni× np matrix of phenotypes of interest and G is a ni× nt matrix of determinants which 

we want to test (e.g., a genotype matrix in GWAS), then b4 = YT× G. These two matrices, 

Y and G, separately are not so large, but their product matrix has np× nt elements, which in 

a real application could be 106×107 =1013 elements and thus too large to share between 

sites. We propose to create a random ni× ni nonsingular square matrix F and calculate its 

inverse matrix F-1. Then by definition F× F-1=I, where I is a ni× ni elements identity matrix 

with ones on main diagonal and zeros elsewhere. Using this property, we can rewrite the 

equation for b4:

Therefore, instead of transferring TBs of intermediate statistics (b4), each side just needs to 

compute A, C, YF and GF. 

Sharing just the encoded matrices does not provide information on individual participants 

and without knowing matrix F it is impossible to reconstruct the real data. However, it will be 

possible to calculate b4, perform a high-dimensional meta-analysis, and avoid problems with 

data transfer. Additionally, this method dramatically reduces computation time by shifting all 

complex computations to central site, where the HASE regression algorithm should be used to 

handle the association analysis in time efficient way. 

AVAILABILITY 

Framework for efficient high-dimensional association analyses (HASE), https://github.com/

roshchupkin/HASE/; description of the framework and protocol for meta-analysis, www.ima-

gene.nl/HASE; 
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SUPPLEMENTARY NOTE

HASE: Framework for efficient high-dimensional association analyses	

STUDY POPULATION 

The Rotterdam Study is an ongoing population-based cohort study in the Netherlands inves-

tigating diseases in the elderly and currently consists of 14,926 residents of Rotterdam who 

were aged 45 years or more at baseline [1,2]. The initial cohort was started in 1990 and 

expanded in 2000 and 2005. The whole population is subject to a set of multidisciplinary 

examinations every four years. MRI was implemented in 2005 and 5430 persons scanned 

until 2011 were eligible for this study. We excluded individuals with incomplete acquisitions, 

scans with artifacts hampering automated processing, participants with MRI-defined cortical 

infarcts, and subjects with dementia or stroke at the time of scanning. This resulted in a 

final study population of 4071 non-demented persons with information available on both 

genome-wide genotyping and MRI data. The Medical Ethics Committee of the Erasmus MC, 

University Medical Center Rotterdam and the review board of the Netherlands Ministry of 

Health, Welfare and Sports both approved the study. Informed consent was obtained from all 

subjects.

IMPUTATION OF GENOTYPES

The Illumina 550K and 550K duo arrays were used for genotyping. Samples with low call rate 

(<97.5%), with excess autosomal heterozygosity (>0.336) or with sex-mismatch were exclud-

ed, as were outliers identified by the identity-by-state clustering analysis (outliers were defined 

as being >3 standard deviation (SD) from population mean or having identity-by-state prob-

abilities >97%). A set of genotyped input SNPs with call rate >98%, MAF >0.001 and Har-

dy–Weinberg equilibrium (HWE) P-value > 10−6 was used for imputation. The Markov Chain 

Haplotyping (MACH) package version 1.0 software (Imputed to plus strand of NCBI build 37, 

1000 Genomes phase I version 3) and minimac version 2012.8.6 were used for imputation. 

MRI DATA

From August 2005 onwards, a dedicated 1.5 Tesla MRI scanner (GE Healthcare, Milwau-

kee, Wisconsin, USA) is operational in the Rotterdam Study research center in Ommoord. 

This scanner is operated by trained research technicians and all imaging data are collected 

according to standardized imaging protocols[2]. Brain MRI scans included a high-resolution 

3D T1-weighted fast RF spoiled gradient recalled acquisition in steady state with an inversion 

recovery pre-pulse (FASTSPGR-IR) sequence with thin slices (voxel size<1mm3)[2]Image pro-

cessing
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Voxel based morphometry (VBM) was performed according to an optimized VBM protocol 

[3]. First, all T1-weighted images were segmented into supratentorial gray matter (GM), white 

matter (WM) and cerebrospinal fluid (CSF) using a previously described k-nearest neighbor 

(kNN) algorithm, which was trained on six manually labeled atlases [4]. FSL software [5] 

was used for VBM data processing. First, all GM density maps were non-linearly registered 

to the standard GM probability template. For this study we chose the ICBM MNI152 GM 

template (Montreal Neurological Institute) with a 1x1x1 mm3 voxel resolution. The MNI152 

standard-space T1-weighted average structural template is derived from 152 structural im-

ages, which have been warped and averaged into the common MNI152 co-ordinate system 

after high-dimensional nonlinear registration. 

A spatial modulation procedure was used to avoid differences in absolute GM volume due to 

the registration. This involved multiplying voxel density values by the Jacobian determinants 

estimated during spatial normalization. To gain more statistic power and decrease signal to 

noise ratio, all images were smoothed using a 3mm (FWHM 8mm) isotropic Gaussian kernel.

STATISTICAL ANALYSIS

Linear regression models were fitted with voxel values of GM modulation density as the de-

pendent variable and age, sex, and the number of minor alleles as independent variables. In 

total 1,534,602 voxels were processed.
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ABSTRACT
 

The anterior commissure is a nerve fiber bundle that interconnects the brain’s hemispheres. It 

is important for higher-order cognitive functions and has a presumed role in neurodegener-

ation, but its genetic architecture remains elusive. Uncovering the genes underlying variation 

in the anterior commissure could aid understanding of its development and it potentially 

provides mechanistic insight into diseases that results from its dysfunction. We performed a 

two-stage genome-wide association study (N = 18,828) of the size of the anterior commis-

sure and identified six independent variants at four loci (p-values ranging from 4.1 x 10-8 to 

9.4 x 10-22). Using in silico and in vitro approaches, we mapped the loci to probable causal 

genes involved in axon guidance (EPHA3 and SEMA6A), cognitive disorders (CTNND2), and 

growth factor signaling (RIT2). Also, voxel-based morphometry revealed distinct associations 

of the variants with connected grey matter regions in the brain. Genome-wide analyses re-

vealed an enrichment for H3K4me1 peaks (marking enhancer sites), introns, and conserved 

sequences, as well as cell-type-specific annotations from the central nervous system and car-

diovascular system. Furthermore, we identify pleiotropy between genes known to increase risk 

of neurodegenerative diseases and loci of the anterior commissure, including frontotemporal 

lobar degeneration gene TMEM106B. These analyses shed light on the genetic architecture 

of commissural tracts and establish the size of the anterior commissure as a relevant marker 

of neurodegeneration.
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INTRODUCTION
 

Commissural tracts in the brain facilitate the cross-talk between the cerebral hemispheres. As 

such, they are essential for coordinating bilateral sensory and motor functions,1-4 as well as 

for integrating lateralized cognitive and behavioral functions.1,5-7 Furthermore, abnormalities 

in commissures are present in patients suffering from neurodegenerative diseases.8-11 Our 

knowledge on the function and dysfunction of these tracts may be expanded by identifying 

factors that influence them, with genetics playing an important role.

The white matter of the brain as a whole is highly heritable,12 but the commissural tracts in 

particular are under tight genetic control.13,14 Most of our genetic understanding of brain 

commissures stems from studies of model organisms. These studies, mainly in mice and fruit 

flies, show an important role for several families of axon guidance proteins, including Ephrins, 

Semaphorins, Robos, Slits, and Netrins.15-19 By contrast, genes influencing the commissures 

in humans remain elusive. Some mutations leading to midline crossing defects have been 

identified in axon guidance proteins, hinting at a similarity with animal models.20 Addition-

ally, these proteins are active beyond brain development with roles in neuronal repair and 

regeneration,21 and could therefore also be important for neurological disorders in adults.22 

To advance our understanding of the genes influencing brain commissures in humans, we 

performed genome-wide association studies in 18,828 persons, followed by functional val-

idation through in silico and in vitro experiments. We focused on the anterior commissure, 

the second largest commissure in humans, which connects frontal, temporal, and occipital 

cortical regions as well as the olfactory bulbs and amygdalae.23 The identified genes underly-

ing variation in the cross-sectional area of the anterior commissure highlight axon guidance 

(EPHA3 and SEMA6A) as well as pleiotropy with neurodegenerative diseases (TMEM106B and 

GRN).
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RESULTS

GENOME-WIDE ASSOCIATION STUDIES

After determining that the anterior commissure cross-sectional area was significantly heritable 

(population-based h2 = 36%, p = 3.0 x 10-4; family-based h2 = 32%, p = 6.1 x 10-25; see 

Online Methods), we performed a two-stage meta-analysis of genome-wide association 

studies. The discovery sample consisted of seven cohorts (N = 7,935) and was subsequently 

meta-analyzed with ten replication cohorts (N = 10,893; total N = 18,828), all of European 

ancestry (Supplementary Table S1).

Both the discovery and replication results are shown in a single ‘Manhat-twin’ plot (Figure 

1A). Four loci reached genome-wide significance in the combined sample (in red; 3p11.1, 

5p15.2, 5q23.1, and 18q12.3; Figures 1B-E, respectively), whereas two loci were no longer 

significant after adding the replication sample (in turquoise; 7p21.3 and 8q24.22; Sup-

plementary Figures S1A-B, respectively). To determine whether these associations were 

confounded by disease status, we repeated all analyses after excluding persons with stroke 

and dementia (N = 1,240; remaining N = 17,588), but this did not affect the findings (Sup-

plementary Figure S2). More details on all six loci are provided in Table 1.

TABLE 1: Genetic loci associated with the anterior commissure cross-sectional area.

Discovery  
(N = 7,935)

Combined  
(N = 18,828)

Heterogeneity

(N = 17)

Locus Lead variant Position A1 A2 Freq β P β P I2 P

3p11.1 rs7650184 89530057 A C 0.40 -.149 2.0 x 10-6 -.172 2.5 x 10-19 0 0.75

5p15.2 rs11748929 11370494 C G 0.70 -.095 5.0 x 10-3 -.114 4.1 x 10-8 0 0.48

5q23.1 rs11948331 116673915 T G 0.61 -.226 8.2 x 10-12 -.187 9.4 x 10-22 20.4 0.22

5q23.1 rs148925592 117348902 A T 0.96 -.437 2.8 x 10-6 -.333 5.8 x 10-9 45.8 0.024

18q12.3 rs346205 40013715 A G 0.64 -.110 8.2 x 10-4 -.119 1.1 x 10-9 10.8 0.33

7p21.3 rs3807865 12250402 A G 0.41 .179 1.7 x 10-8 .095 6.2 x 10-7 52.1 0.0079

8q24.22 rs1159153 132617311 T C 0.32 .182 3.4 x 10-8 .058 4.8 x 10-3 46.2 0.022

a Variant missing in some cohorts due to insufficient imputation quality.

Abbreviations: A1 = effect allele, A2 = reference allele, Freq = frequency of the effect allele, N = sample size.
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FUNCTIONAL CHARACTERIZATION

To elucidate potential mechanisms underlying these genetic associations we investigated the 

functional role of variants at the four significant loci. For each locus, we examined all genes 

lying within a 2 Mb window of the lead variant and prioritized genes based on their spatial 

expression patterns in six human brains (Figure 2A, Supplementary Figure S3; see Online 

Methods). Of particular interest were genes expressed in the white matter and in the grey 

matter of frontal, temporal, and central structures (Figure 2B). Next, we investigated whether 

the lead variants and those in linkage disequilibrium (LD) were quantitative trait loci (QTL) or 

predicted to be damaging by searching publicly available databases (Supplementary Table 

S2, see Online Methods). Finally, we screened the putative causal genes for (rare) functional 

variants using exome sequencing (N = 1,479) and a dedicated exome chip (N = 8,087) in 

subsamples of our study populations (Supplementary Table S3, see Online Methods).

3p11.1 and EPHA3

The 3p11.1 signal surrounds the EPHA3 gene and its downstream region (Figure 1B), with no 

other genes in close proximity of the lead variant. EPHA3 belongs to the Eph family of receptor 

tyrosine kinases, which is one of the five canonical families of axon guidance proteins. The 

mouse homolog EphA3 mediates segregation and pathfinding of callosal axons.24 In humans, 

it is expressed in grey matter structures of the brain that are connected by the anterior com-

missure, including the piriform cortex (Figures 2A-B). The lead variant rs7650184 lies in the 

3’-UTR and influences expression of EPHA3 in brain tissue obtained from the temporal cortex 

(p = 3.3 x 10-7). Also, the missense variant rs35124509 is in high linkage disequilibrium (r2 

= 0.93; D’ = 0.99). Exome analyses of the EPHA3 region supported the association of an-

other variant in the 3’-UTR (rs73139148; p = 3.3 x 10-7), but did not reveal any additional 

functional variants (Supplementary Table S3).

5P15.2 AND CTNND2

For 5p15.2, the signal is located in a narrow region inside the CTNND2 gene (Figure 1C). 

The lead variant rs11748929 and those in LD are all intronic and have enhancer histone 

marks (H3K4me1, H3K27ac, and H3K9ac) almost exclusively in brain tissues (Supplemen-

tary Table S2). The CTNND2 gene is also expressed in the brain (Figure 2A-B), but largely 

undetected in other parts of the body.25 CTNND2 encodes a neuron-specific member arma-

dillo protein, also known as δ-Catenin or NPRAP, that is a member of the β-catenin super-

family. It was initially discovered as an interaction partner of Presenilin-1,25,26 mutations of 

which cause familial Alzheimer’s Disease. Subsequently, CTNND2 has been related to various 

cognitive disorders, including Cri-du-Chat syndrome,27 reading problems and mild intellectu-

al disability,28 and a variety of psychiatric disorders.29 Zebrafish knockdowns show migration 

defects of neuron subpopulations,28 and mice mutants reveal that CTNND2 is critical for 
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cognitive function in vivo.30 Exome sequencing of CTNND2 identified a rare, but synonymous 

exonic variant (chr5:10973781; minor allele frequency (MAF) = 0.4%; p = 9.2 x 10-4).

5q23.1 and SEMA6A 

Also on chromosome 5, we find the strongest signal of our genome-wide association study at 

5q23.1 (Figure 1D). The lead variant rs11948331 lies close to LINC00992, a long non-cod-

ing RNA that is not expressed in the brain and on which little is known. Additionally, there was 

an apparent second signal on 5q23.1 from a less common variant (rs148925592; minor 

allele frequency = 4%; r2 = 0.002; D’ = 0.21). Therefore, we performed conditional analy-

ses in a subset of studies, and found this to be an independent signal (Supplementary Table 

S4). This variant has an almost two-fold larger effect and lies within another long non-coding 

RNA, LOC102467224, which remains uncharacterized.

The nearest coding gene to the primary signal is SEMA6A, which is 762 kb further in the prox-

imal direction. SEMA6A is highly expressed in the human brain, particularly in the white matter 

(Figure 2A-B). Interestingly, murine Sema6a is crucial for neurons to cross the midline, and 

misrouted axons of the anterior commissure are still present in adult mice mutants.31 However, 

we found no evidence for QTLs nor any enhancer marks that might implicate the identified 

variants in regulating the expression of SEMA6A or other genes. One rare exonic nonsynony-

mous variant with a predicted damaging effect was nominally significant (rs200578077, MAF 

= 1.0%, p=0.046), but it was not in LD with rs11948331 (r2 = 0.002; D’ = 0.01) and thus 

unlikely to explain its effect. However, given the expression pattern of SEMA6A and the phe-

notype of Sema6a mutants, but lack of a direct link with our association signal, we hypothe-

sized there might exist long-distance interaction between the region harboring the associated 

variants and the SEMA6A promotor. We first searched a curated database of genome-wide 

chromosome interaction and found that two long-distance interactions were described using 

Hi-C for both regions, but these did not include interaction with the promotor (Supplemen-

tary Table S5).32 However, since none of the available cell lines for Hi-C were derived from 

the brain, we performed Targeted Chromatin Capture (T2C)33 in human neural progenitor 

cells to selectively interrogate the 5q23.1 region at a high resolution (see Online Methods). 

We identified three topological associated domains (TADs) in a 5 Mb region surrounding the 

variants of interest (Figure 2D). The larger TAD contains both the SEMA6A promotor and the 

associated variants, indeed showing that, three-dimensionally, these genomic regions are in 

close proximity (Figure 2E).

18q12.3 and RIT2

The final locus spans an intergenic region on chromosome 18 that is flanked by two recom-

bination hotspots (Figure 1E). Conditional analyses revealed that, independent of the lead 
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variant rs346205, there was another association at 18q12.3 with rs144695388 (Supple-

mentary Table S4). The lead variant lies inside the long non-coding RNA LINC00907 and 

between the coding genes PIK3C3 and RIT2. Brain expression data shows PIK3C3 is highly 

expressed in the white matter (Figure 2A-B), whereas RIT2 as well as the more distal gene 

SYT4 have a particularly low expression (Figure 2A). Putative functional variants in LD have 

enhancer marks in the brain and some acting as expression QTLs (Supplementary Table 

S2), including rs346212 that influences RIT2 expression in the anterior cingulate cortex (p 

= 8.6 x 10-7). RIT2 belongs to the Ras superfamily of small guanosine triphosphate binding 

proteins and expressed in neurons, particularly in the substantia nigra.34 A large GWAS of 

Parkinson’s disease (PD) discovered rs12456492,35 which is 660 kb distal of our lead variant, 

but it was not associated with the anterior commissure (p = 0.30). Through exome analyses 

of all nearby genes a rare missense mutation was found in RIT2 (rs142911081; MAF = 1.5%; 

p = 1.0 x 10-3) that was evolutionarily constrained and had an active transcription start site 

chromatin state in all samples taken from the brain, but in none of the other tissues (Supple-

mentary Table S5).

NEURAL SUBSTRATE

Next, we set out to gain insight into the neural effects of the identified loci. The anterior com-

missure contains multiple fiber tracts that connect various cortical and subcortical grey matter 

regions. Therefore, we aimed to determine which grey matter regions are connected by the 

anterior commissure using voxel-based morphometry in the discovery sample (N = 9,934; 

includes individuals without genotyping). A larger anterior commissure cross-sectional area 

was associated with more tissue in the many subcortical and cortical regions, particularly 

the thalamus, insula, and the posterior temporal lobe (Figure 3; Supplementary Table 

S6).Next, we explored the effect of the four loci on grey matter within these regions that are 

presumably connected by the anterior commissure (N = 7,579; Figure 3A-D). Regions that 

were significantly associated with both the anterior commissure and the individual loci (p < 

3.0 x 10-7) included the anterior temporal lobe (3p11.1, 5p15.2, 18q12.3), insula (5q23.1), 

superior frontal gyrus (5p15.2, 5q23.1, 18q12.3), putamen (5p15.2, 5q23.1), and caudate 

(3p11.1, 5p15.2).

ENRICHMENT ANALYSES

Besides studying the top loci, we also investigated whether there is genome-wide enrichment 

for certain groups of genetic variants (Supplementary Figure S4). We found nominally 

significant enrichment for a variety of functional groups, most notably variants in enhancers 

(marked by H3K4me1 peaks), introns, and conserved regions (Supplementary Figure S4A), 

but these did not survive multiple testing correction. Furthermore, there were cell-type-specific 

enrichments for the central nervous system (p = 0.014) and cardiovascular system (0.0048) 
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(Supplementary Figure S4B). The proportion of heritability explained was divided fairly 

homogenously across chromosomes (Supplementary Figure S4C)

PLEIOTROPY WITH NEURODEGENERATIVE DISEASES

Given the relevance of commissural tracts and their connected brain regions for neurodegen-

eration, we determined whether genetic loci for AC show pleiotropy with neurodegenerative 

diseases. Using published genome-wide association studies of AD (ncases / Ncontrols =17,008 

/ 37,154),36 PD (13,708 / 95,282),35 and frontotemporal lobar degeneration (FTLD; 567 / 

3,380)37 we took two approaches to investigate pleiotropy.

First we investigated whether there is genome-wide overlap between these traits (see Online 

Methods). We found no genetic correlation with AD (ρgenetic = 0.116, p = 0.38) and a posi-

tive correlation with PD (ρgenetic = 0.156, p = 0.032), while LD score regression was not suited 

for analyzing FTLD given the little enrichment (mean χ2 < 1.02).

In the second approach we aimed to identify specific pleiotropic loci by ranking all overlap-

ping variants between anterior commissure, AD, PD, and FTLD (N = 5,188,883) by their 

respective p-value order for each of these traits, a recently developed method that is powerful 

for traits that are not on the same scale (see Online Methods). Next, we summed these four 

ranks using seven different combinations of traits: three pairs of the anterior commissure and 

a disease, three triples of the anterior commissure and two diseases, and a single combina-

tion of all four traits. Two loci were significantly pleiotropic for three combinations: 7p21.3 

(p = 3.4 x 10-14 with FTLD), and 17q21.3 (p = 9.8 x 10-10 with FTLD and PD, and p = 3.1 x 

10-9 with AD, FTLD, and PD).

The 7p21.3 locus was genome-wide significant at the discovery stage (Table 1) and previ-

ously reported to be associated with FTLD.37 Interestingly, it also nearly reached genome-wide 

significant for the pleiotropy with AD (p = 4.0 x 10-7), as well as both diseases together (p 

= 8.4 x 10-8). The association signal of all three traits overlaps and spans the TMEM106B 

gene (Figure 4A). Since the 7p21.3 association with the AC was attenuated after addition 

of the replication samples and there was significant heterogeneity across the cohorts (Table 

1), we set out to identify factors underlying these apparent inconsistencies. We previously 

showed that the effect of 7p21.3 increases with age (in a subset of the discovery sample; N = 

4,413),38 and the mean age within the cohorts was indeed related to the magnitude of the ef-

fect in a meta-regression analysis (Figure 4x). Additionally, restricting to the discovery cohorts 

with a mean age > 65 years considerably increased the signal even though the sample size 

was much smaller (N = 3,015; p = 3.8 x 10-11). Furthermore, we formally tested the presence 

of a gene-by-age interaction for the 7p21.3 locus by modelling an interaction term between 
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age and the lead variant, rs3807865. Since exchanging individual participant data was not 

possible due to restrictions in data sharing, we performed a partial derivatives meta-analy-

sis,39 which provides identical results as a pooled analysis while only using summary statistics 

(see Online Methods). Indeed, this showed a significant interaction between rs3807865 and 

age (N = 7,459; p = 7.0 x 10-3).

The second locus was on 17q21.31, near the genes GRN, FAM171A2, and ITGA2B (Figure 

4B). The T allele of the lead pleiotropic variant, rs5848, was associated with a smaller anteri-

or commissure (p = 7.6 x 10-4) and an increased risk of AD (p = 0.01), PD (p = 9.3 x 10-6), 

and FTLD (p = 8.2 x 10-5). The variant rs5848 lies in the 3’-UTR of GRN, and is correlated 

with its expression in multiple tissues.40 This association is independent of the known PD risk 

locus (lead variant rs2867316) near the MAPT gene, approximately 1Mb further. 
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DISCUSSION
 

We elucidated the genetic architecture of the human anterior commissure in this compre-

hensive study, which extended from large-scale population imaging and genetics to in silico 

and in vitro experiments. We identified robust associations of six variants at four distinct loci 

for which we assign the most likely causative genes, and show the remaining genetic com-

ponent can be explained by many additional common variants with small effects. Across the 

whole genome, there is enrichment for variants in regulatory regions, and those in genomic 

sequences with functional marks specific to the central nervous system and cardiovascular cell 

lines. Finally, we found that loci affecting the anterior commissure in the general population 

have clear links to neurodegenerative diseases, highlighting the genetic pleiotropy.

Brain circuitry develops through complex processes that include cell fate specification and 

migration, axon guidance, and synaptogenesis.41 These processes are tightly regulated by 

genetics, especially for the brain’s commissural tracts. We therefore studied the size of the 

anterior commissure in order to uncover how of the variance is due to genetics and which 

specific factors are important. Similar to other brain structures,42 we find that the anterior 

commissure has a polygenic architecture, with most of the variance remaining unexplained by 

the four identified loci. Larger GWAS will likely shed light on the additional loci that involved, 

as has been successfully achieved for other complex traits.

The combined meta-analysis of the discovery and replication cohorts yielded four ge-

nome-wide significant loci. Although GWAS only points to genomic regions associated with a 

trait, we subsequently performed in silico and in vitro analyses aimed at determining the caus-

al genes. First, we prioritized genes that are particularly expressed in the white matter of the 

brain and in cortical and subcortical grey matter regions that are connected by the anterior 

commissure. Although this pointed to certain genes in some instances (EPHA3 and SEMA6A), 

the results were ambiguous for 18q12.3, where multiple genes have plausible expression pat-

tern. As a second step, however, we investigated whether our specific variants (or those in high 

LD) themselves affect gene expression. We found that variants at two loci show direct evidence 

of influencing expression of EPHA3 (3p11.1) and RIT2 (18q12.3) in brain tissue samples. 

No eQTL effects were observed for 5p15.2 or 5q23.1, but indirect evidence indicates these 

might be regulatory regions as well. The 5p15.2 locus contains enhancer marks in neural cell 

lines, whereas the T2C experiment in neural stem cells showed that 5q23.1 and the SEMA6A 

promotor are in close proximity. The third approach to identify causal genes was by studying 

the exomes of the nearby genes, allowing the study of variants not captured by genotyping 

chips nor well imputed using 1000 Genomes reference panel. This could reveal (functional) 

coding variants that drive the primary GWAS signal or, alternatively, independent risk variants 
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that would further implicate putative causal genes. For 3p11.1, exome analyses supported 

the variant discovered through GWAS, suggesting that this locus indeed exerts its affect by 

influencing expression of EPHA3. Screening of the other loci revealed other, rare variants 

with nominally significant effects on the anterior commissure. Most notably was the missense 

mutation in RIT2 that also showed pronounced functional marks exclusively in brain tissue.

 

While gene expression and eQTL analyses provided valuable functional information on the 

identified loci, an important limitation is that white matter tissue is underrepresented in most 

expression and chromatin state databases. The candidate gene of our top locus, SEMA6A, is 

expressed in the white matter but we found no evidence of eQTL effects in any of the brain 

tissue samples, which were mostly obtained from grey matter structures. However, in silico 

evidence indicated that this region might interact with distant genomic regions, and we hy-

pothesized this could be with the SEMA6A promotor. Using T2C, a high-resolution method 

to investigate these interaction, we indeed found that the region harboring the risk variants is 

in close proximity with the SEMA6A promotor. These experiments were done in human neural 

stem cells, which can be cultured to a sufficient scale. Besides the spatial gene expression in 

the brain, it is also important to consider differential temporal expression, which is particularly 

crucial for axon guidance.43,44 Further explorations of SEMA6A and the effect of the common 

variants in this locus should take these factors into account.

The identified loci highlight the concordance between animal models and findings in humans. 

In mice and fruit flies, experimental studies have revealed gene families that are crucial for 

the development of commissural tracts. Interestingly, two of our four loci are likely to regulate 

genes from these families, namely the Semaphorin SEMA6A and the Ephrin EPHA3. However, 

while there are similarities with model systems, each of the families contains many members 

and it is unclear which are relevant for humans. Here we specifically identify genes for the 

human anterior commissure. It is not remarkable that human genes have remained elusive, 

since it is currently not feasible to study this complex organization of brain circuitry in vitro. 

Genetic studies thus rely on in vivo imaging, an approach requiring large sample sizes that 

has only become attainable in the past years with the formation of imaging genetics consortia 

such as CHARGE and ENIGMA. 

Our measure of interest was the cross-sectional area of the anterior commissure, which we 

used as a proxy for the amount of fibers crossing through the anterior commissure. Theoreti-

cally, a larger area could be due to an increase in the total number of fibers or, alternatively, 

due to more space between the fibers. However, the density of callosal fibers has been shown 

not to correlate with the callosal area, thus making the area a good proxy for the total amount 

of fibers.45 Another consideration is that a smaller area might not necessarily translate into 
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less interhemispheric connections, but could also correspond to a different anatomical or-

ganization, e.g. fibers instead passing through the corpus callosum. Furthermore, although 

for example SEMA6A is expressed in the white matter, some of the proposed causative genes 

are expressed in the grey matter (EPHA3 and CTNND2), in regions connected by the anterior 

commissure, as we have shown in our voxel-based morphometry analyses. It is therefore 

possible that not all identified loci are directly affecting the anterior commissure, but some 

might influence it secondarily by their effect on related cortical and/or subcortical grey matter 

regions. 

Regardless of the underlying mechanism through which genes affect the anterior commissure, 

there seems to be pleiotropy with various neurodegenerative diseases. Genetic variants for 

AD, PD, and FTLD have been shown to jointly affect cognitive status,46 and some have been 

reported to be shared risk factors for disease.47 We now find an additional link through the 

anterior commissure. While commissures are formed during development by axon guidance 

molecules,44 these remain important for adults with roles in neuronal repair and regeneration. 

Furthermore, commissural genes seem relevant for adult neurological disorders; as evidenced 

by the presence of misrouted fibers in AD and PD.48 Here, we leveraged this potential link 

by looking at genome-wide overlap and identified two loci affecting the anterior commissure 

and at least one neurodegenerative disease: TMEM106B and GRN. Both of these loci were 

previously implicated in FTLD,37 a disease affecting the anterior commissure as well as frontal 

and temporal brain regions interconnected by it. Furthermore, these loci have been found to 

also associate with other neurodegenerative diseases. 49

While these specific pleiotropic loci exist, we found no evidence for this to be a genome-wide 

trend. This could be a true observation or represent a lack of power to detect this pleiotropy 

using GWAS summary statistics. LD score regression requires a minimal enrichment in asso-

ciation signal (mean χ2 > 1.02) that was for example not met by the FTLD GWAS, making 

genome-wide comparisons futile. However, it is clear that the anterior commissure and FTLD 

share at least several genetic risk factors, and larger studies might therefore reveal additional 

loci. Focusing on older population might be a fruitful approach for neurodegenerative dis-

eases given the gene-by-age interaction of the TMEM106B locus. The pronounced effect at 

older age indicates that variation in the anterior commissure cross-sectional area is more due 

to neurodegeneration rather than developmental differences, allowing us to pick up effects of 

risk loci for FTLD, AD, and PD. Since the (dys)function of the anterior commissure remains un-

derstudied in humans, its relevance could very well extend to other neurological or psychiatric 

disorders, for which different study populations are more informative.

We demonstrated that the combination of imaging and genetics can be powerful to yield in-
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sight into the biological underpinnings of complex human traits that are not easily studied or 

manipulated experimentally. Our results will hopefully lead to additional follow-up laboratory 

work aimed at characterizing the identified candidate genes. As a potential clinical applica-

tion, though the area of the anterior commissure itself is not (yet) a diagnostic or predictive 

tool for a disease, it might serve as a marker of the underlying disease process, e.g. as an 

endophenotype. A quantitative measure could be statistically more powerful to detect genetic 

risk loci compared to a dichotomous diagnosis of disease. Indeed, we were able to identify 

the TMEM106B locus, which was originally discovered in a GWAS of FTLD (567 cases and 

3,380 controls; p = 2.7 x 10-9), at a higher level of significance and a lower total sample 

size when restricting to older cohorts only (N = 3,015; p = 3.8 x 10-11). Particularly for rare 

diseases such as FTLD, where samples are obtained with difficulty, this approach could be 

helpful. Furthermore, the identification of risk genes for multiple disorders makes them attrac-

tive targets for pharmacological intervention.

In conclusion, we show that the anterior commissure has a considerable polygenic basis 

and we identified loci that begin to unravel this complex genetic architecture. The successful 

approach of imaging genetics to understanding developmental biology and disease patho-

physiology paves the way for applications to other brain structures.
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CHAPTER 5.2
Genome-wide association 
study of cortical regions: 
thickness, surface area and volume



ABSTRACT

Background

Cortical thickness, surface area and volume relate to ageing, cognitive function as well as 

neurological and psychiatric diseases. These morphological measures are heritable and ge-

netically heterogeneous. 

Methods

We performed genome-wide association studies of cortical thickness, surface area and vol-

ume in the whole cortex as well as in 34 regions of interest in 22822 individuals from 20 co-

horts within the Cohorts of Heart and Aging Research in Genomic Epidemiology consortium 

and the United Kingdom Biobank. Significant findings were replicated in the Enhancing Neu-

roimaging Genetics through Meta-analysis consortium. Additionally we calculated heritability 

and genetic correlation between traits and regions. 

Results

We identified 161 genome-wide significant associations for cortical thickness in the whole 

cortex and in 26 cortical regions. Genetic correlation was strong between surface area and 

volume, weak between surface area and thickness, and varied per region between thickness 

and volume.

Conclusions

Our findings indicate that the genetic architecture of the cerebral cortex varies by region. 

These data create a basis for targeted functional studies to identify the biological mechanisms 

behind these genetic signals.

Novel genetic discovery in this unpublished manuscript have been anonymized or removed 

following consortium-wide practices. As a result, the text will not go in-depth about gene 

functions and the identified pathways. 
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INTRODUCTION

Cortical thickness (CT), cortical surface area (CSA) and cortical volume (CV) are morpholog-

ical markers of the cortex obtained by magnetic resonance imaging (MRI). These measures 

change with age1-6 and are linked to cognitive functioning5,7-10. Abnormalities in global or 

regional CT, CSA and CV have been observed in neurological and psychiatric disorders 

such as Alzheimer’s disease11-17, Parkinson’s disease18-22, multiple sclerosis23-26, migraine27-29 

, schizophrenia30-34, bipolar disorder35-38, autism39-41 and depression42,43. CT and CSA reflect 

different mechanisms in cortical development44,45. Neurons in the neocortex are organized in 

columns which run perpendicular to the surface of the cerebral cortex46 and, according to the 

radial unit hypothesis, CT is determined by the number of cells within the columns and CSA is 

determined by the number of columns44.

Previous studies indicate that the genetic background of CT and CSA varies by region47-50 

and that they are genetically uncorrelated and influenced by different genetic factors51,52. 

Thus, CV, which is the product of CT and CSA, is likely affected by a combination of these 

distinct genetic determinants. However, Winkler et al.52 reported a strong genetic correlation 

between global CV and global CSA, but a weak genetic correlation between global CV and 

global CT. CT, CSA and CV are heritable traits47,49,51-60. The estimated heritability for global 

measures is high, ranging from 0.69 to 0.81 for global CT, and from 0.42 to 0.90 for global 

CSA49,51,52,57. In cortical regions, there is substantial variability in heritability estimates of CT, 

CSA and CV47,49,51-56,58-60.

As CT, CSA and CV are differentially heritable and as they seem to be genetically heteroge-

neous these measures are promising targets for genome-wide association studies (GWAS).  

We analyzed genetic data of up to 22 822 individuals from 21 cohorts to investigate genetic 

influences on CT, CSA and CV in the whole cortex and in 34 cortical regions. Our data con-

tribute to the understanding of cortical development and related traits and diseases.
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METHODS

STUDY POPULATION

The sample of this study comprises of up to 22822 participants from 20 population-based 

cohort studies collaborating in the Cohorts of Heart and Aging Research in Genomic Epi-

demiology (CHARGE) consortium84 and the UK Biobank (UKBB)85. All the individuals were 

stroke- and dementia free, aged between 20 and 90 years, and of European ancestry, except 

for ARIC AA with African ancestry. Table S1 provides population characteristics of each cohort 

and Supplementary Section 1 provides a short description of each study. Each study secured 

approval from institutional review boards or equivalent organizations, and all participants 

provided written informed consent. Our results were replicated using summary GWAS find-

ings of 22635 individuals from the Enhancing Neuroimaging Genetics through Meta-analysis 

(ENIGMA) consortium86.

GENOTYPING AND IMPUTATION

Genome-wide genotyping was conducted using various commercially available genotyping 

arrays across the study cohorts. Prior to imputation, extensive quality control was performed 

in each cohort. Genotype data were imputed to the 1000 Genomes reference panel87 (mainly 

phase 1, version 3) using validated software. Details on genotyping, quality control and im-

putation can be found in Table S2.

PHENOTYPE DEFINITION

This study investigated CT, CSA and CV globally in the whole cortex and in 34 cortical re-

gions. Global and regional CT was defined as the mean thickness of the left and the right 

hemisphere in mm. Global CSA was defined as the total surface area of the left and the right 

hemisphere in mm2, while regional CSA was defined as the mean surface area of the left and 

the right hemisphere in mm2. Global and regional CV was defined as the mean volume of 

the left and the right hemisphere in mm3. The 34 cortical regions are listed in Table S3. High 

resolution brain magnetic resonance imaging (MRI) data was obtained in each cohort using 

a range of MRI scanners, field strengths and protocols. CT, CSA and CV were generated us-

ing the Freesurfer software package88,89 in all cohorts except for FHSucd, where an in-house 

segmentation method was used. MRI protocols of each cohort can be found in Table S4 and 

descriptive statistics of CT, CSA and CV can be found in Tables S5, S6 and S7. 

Genome-wide associations, meta-analysis, replication and annotation 

Based on a predefined analysis plan, each study fitted linear regression models to determine 

the association between global and regional CT, CSA and CV and allele dosages of single 

nucleotide polymorphisms (SNPs). Additive genetic effects were assumed and the models 
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were adjusted for sex, age, age2, and if needed for study site and for principal components 

to correct for population stratification. Cohorts including related individuals calculated linear 

mixed models to account for family structure. Details on association software and covariates 

for each cohort are shown in Table S2. Models investigating regional CT, CAS and CV were 

additionally adjusted for global CT, global CSA and global CV, respectively. Quality control 

of the summary statistics shared by each cohort was performed using EasyQC90. Genetic 

Variants with a minor allele frequency (MAF) < 0.05, low imputation quality (R2<0.4), and 

which were available in less than 10000 individuals were removed from the analyses. Details 

on quality control are provided in Supplementary Section 2.

We then used METAL91 to perform meta-analyses using the z-scores method, based on p-val-

ues, sample size and direction of effect, with genomic control correction. There was no evi-

dence of inflated test statistics; QQ plots are shown in Supplementary Figure 1.

We performed 10.000 permutation tests based on cortical measurements from Rotterdam 

Study to estimate the number of independent tests. Based on permutation test results, the ge-

nome-wide significance threshold was set a priori at 1.0869×10−9 (= 5×10-8 /46). We used 

the clumping function in plink92 (linkage disequilibrium (LD) threshold: 0.2, distance: 300Kb) 

to identify the most significant SNP in each LD block.

For replication of our genome-wide significant CT and CSA associations, we used GWAS me-

ta-analysis results from the ENIGMA consortium for all SNPs that were associated at a p-value 

< 5×10−8 and performed a pooled meta-analysis. The p-value threshold for replication was 

set to 3.1×10−4 (nominal significance threshold (0.05) divided by total number of lead SNPs 

(161)). CV was not available in the ENIGMA results. 

Annotation of genome-wide significant variants was performed using the ANNOVAR software 

package93 and the FUMA web application94. Regional association plots were generated with 

LocusZoom95. Gene-based analyses, to combine the effects of SNPs assigned to a gene, and 

gene set analyses, to find out if genes assigned to significant SNPs were involved in biolog-

ical pathways, were performed using MAGMA96 as implemented in FUMA. The significance 

threshold was set to 5.87×10-8 for gene-based analyses (nominal threshold (0.05) divided 

by number of genes (18522) and number of independent tests (46)), and to 1.02×10-7 for 

the gene-set analyses (nominal threshold (0.05) divided by the number of gene sets (10651) 

and by the number of independent tests (46)). The NHGRI-EBI Catalog of published GWAS97 

was searched for previous SNP-trait associations at a p-value of 5×10-8 of lead SNPs.  

We investigated cis (<1Mb) and trans (>1 MB or on a different chromosome) expression 

quantitative trait loci (eQTL) for genome-wide significant SNPs in 724 post-mortem brains 
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from the Religious Order Study and the Rush Memory and Aging Project (ROSMAP)98,99 stored 

in the AMP-AD database. The samples were collected from the gray matter of the dorsolateral 

prefrontal cortex. 

HERITABILITY 

Additive genetic heritability (h2) of CT, CSA and CV was estimated in two studies: the Austrian 

Stroke Prevention Family Study (ASPS-Fam; n=365) and the Rotterdam Study (RS, n=4472). 

In the population based family study ASPS-Fam, the ratio of the genotypic variance to the phe-

notypic variance was calculated using variance components models in SOLAR100. In case of 

non-normalty, phenotype data were inverse-normal transformed. In RS, SNP-based heritability 

was computed with GCTA101,102. These heritability analyses were adjusted for age and sex. 

Heritability and partitioned heritability based on GWAS summary statistics was calculated 

from GWAS summary statistics using LD score regression (LDSR) implemented in the ldst tool 

(https://github.com/bulik/ldsc). Partitioned heritability analysis splits genome-wide SNP heri-

tability into 53 functional annotation classes (e.g. coding, 3’ UTR, promoter, transcription fac-

tor binding sites, conserved regions etc.) and additionally to 10 cell-type specific classes (e.g. 

CNS, cardiovascular, liver, skeletal muscle etc.) as defined by Finucane et al.103 to estimate 

their contributions to heritability. The significance threshold was set to 2.05x10-5 (0.05/Nr of 

functional annotation classes (53) / nr of independent tests (46)) for heritability partitioned 

on functional annotation classes and 2.05<10-6 (0.05/Nr of functional annotation classes 

(53) / number of cell types (10) / nr of idependent tests (46)) for heritability partitioned on 

annotation classes and cell types.
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RESULTS 

GENOME-WIDE ASSOCIATION ANALYSIS

The meta-analyses of global CT, CSA and CV included 22163, 18617 and 22822 individuals 

respectively. There were no significant associations (pDiscovery<1.09x10-9) with global CT. As 

displayed in Table 1 and the Supplementary Figures 2 and 3, for global CSA and CV there 

were 6 and 7 independent lead SNPs. All but one for global CSA have been replicated in the 

corresponding ENIGMA analysis.

TABLE 1: Genome-wide significant associations (pDiscovery < 1.09×10-9) of the global cortex

CHR A1 A2 Freq(A1) Annotation N p Discovery p Replication p pooled

CSA

17 C G 0.20 intronic 18617 1.78E-23 4.35E-20 1.09E-41

6 A G 0.77 intergenic 18617 5.21E-22 3.33E-14 6.75E-34

17 A G 0.21 intronic 17425 2.38E-20 3.55E-19 7.02E-38

6 A G 0.83 intergenic 18617 4.86E-13 7.15E-08 5.81E-19

6 A G 0.25 intergenic 18617 1.26E-10 1.47E-06 2.43E-15

6 T C 0.33 intronic 18617 6.84E-10 0.001047 3.78E-11

CV

6 A G 0.77 intergenic 22448 5.86E-19 NA NA

17 A G 0.79 intronic 22822 1.53E-13 NA NA

17 A G 0.18 intronic 22137 6.46E-13 NA NA

17 T C 0.79 intronic 21062 3.64E-11 NA NA

12 T C 0.50 3‘UTR 22822 8.56E-11 NA NA

12 T C 0.78 intergenic 22822 4.83E-10 NA NA

17 A G 0.76 intronic 22822 7.18E-10 NA NA

CSA=cortical surface area, CV= cortical volume, A1: allele 1, A2: allele 2, Freq(A1): frequency of A1, N: number of 

individuals in analyses, pDiscovery: p-value of discovery GWAS meta-analysis in CHARGE, pReplication: p-value of replication 

meta-analysis in ENIGMA, ppooled: p-value of pooled discovery and replication meta-analysis, NA: not availbable, in 

bold: p<3.1×10-4 (=0.05/Nl, Nl=161 (total number of lead SNPs))

GWAS for CT, CSA and CV of cortical regions of interest (ROIs) identified 161 significant 

associations. There were 16 independent hits on 8 chromosomes in 9 cortical regions for 

CT (Table S9), 54 hits on 16 chromosomes in 21 cortical regions for CSA (Table S10), and 

78 associations on 17 chromosomes in 23 cortical regions for CV (Table S11). As can also 

be seen from Tables S9 – S11, 13 ROI-specific lead SNPs were replicated for CT and 49 for 

CSA. Chromosomal ideograms showing genome-wide significant associations of the discov-

ery stage are presented in Figure 1.

In the discovery stage, the lowest p-values for CT and CV were found for loci in chromo-

some15 (pDiscovery, CT=1.17x10-73 and pDiscovery, CV=4.34x10-133) in the postcentral cortex, and for 

CSA loci also on chromosome 15 (pDiscovery, CSA=8.45x10-109) in the precentral cortex.

The postcentral cortex was also the region with the largest number of independent associ-

ations with 5, 4 and 9 index SNPs for CT, CSA and CV. We found 4 and 25 common lead 
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SNPs within the same cortical region for CT and CV, and CSA and CV, respectively , but not 

for CT and CSA.

FIGURE 1: Chromosomal ideogram annotated with genome-wide significant assocations (pDiscovery<1.09×10-9).

Positional mapping based on ANNOVAR showed that the majority of lead SNPs was intergen-

ic (NCT=12, NCSA=38, NCV=57) and intronic (NCT=4, NCSA=18, NCV=18) (Figure2). 

Lead SNPs of global and regional CT, CSA and CV, observed in the current GWAS, were 

previously associated with biometric (height), neurologic (Parkinson’s disease, Corticobasal 

degeneration, Alzheimer’s disease biomarkers), psychiatric (Neuroticism, Schizophrenia) and 

cognitive traits as well as with educational attainment and total intracranial volume (TIV) . 
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FIGURE 2: Proportion of functional annotation categories for global and regional cortical thickness, surface area and 

volume assigned by ANNOVAR.

GENE MAPPING

Additionally to positional annotation we used several strategies to link top SNPs to specific 

genes. First, we used FUMA for eQTL analysis, based on GTEx database, and for chromatin 

interaction mapping. Second, for brain eQTL analysis we used the AMP AD database. Last, 

based on SNP’s p-values within genes we performed MAGMA analysis to compute gene-

based p values. MAGMA gene-based association analyses revealed 2 and 12 genes signifi-

cantly associated (p<5.87e-8) with global and regional CT respectively. 9 and 47 genes as-

sociated with global and regional CSA, and also 9 and 47 genes associated with global and 

regional CV. For global CSA and CV, 7 of the 9 significant genes overlapped, but there was 

no overlap with global CT. For regional CSA and CV we found 28 genes overlapping within 

the same 13 cortical regions. The same genes were significant for CT and CV of the superior 

parietal cortex and the insula but there were no common genes within a cortical region for 

CT and CSA. Figure 3 shows the number of overlapping unique genes between the different 

mapping strategies for CSA, CT and CV. 

PATHWAY ANALYSIS

MAGMA gene set analyses identified 7 pathways for CT, 3 pathways for CSA and 9 pathways 

for CV. Among them are the Gene Ontology (GO) gene sets ‘hindbrain morphogenesis’ 

for CT of middle temporal cortex, ‘forebrain generation of neurons’ for precentral CSA, 

and ‘central nervous system neuron development’ for transverse temporal CV. However, after 

Bonferroni correction only one significant (p<1.02×10-7) pathway remained: ‘regulation of 

catabolic process’ for CT of inferior temporal cortex. 
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FIGURE 3: Number of overlapping genes between FUMA eQTL mapping, FUMA chromatin interaction mapping, 

ANNOVAR chromosome positional mapping and MAGMA gene based analysis for all cortical regions combined for 

cortical surface area (A), thickness (B) and volume (C).

HERITABILITY 

Heritabiliy estimates (h2) of global CT were 0.64 (se=0.12; p=3×10-7) in ASPS-Fam and 0.45 

(se=0.08; p=2.5x10-7) in RS. For CSA, h2 was 0.84 (se=0.12; p=2.63×10-11) in ASPS-Fam 

and 0.33 (se=0.08, p=1×10-4) in RS, and for CV, h2 was 0.80 (se=0.11; p=1.10×10-9) 

in ASPS-Fam and 0.32 (se=0.08; p=1x10-4) in RS. There was a large range in heritability 

estimates of regional CT, CSA and CV (Table S25).

Heritability based on common SNPs as estimated with LDSR was 0.25 (SE=0.03) for global 

CT, 0.29 (SE=0.04) for global CSA and 0.30 (SE=0.03) for global CV. LDSR heritability 

estimates of regional CT, CSA and CV are presented in Table S25 and Figure 4. For region-

al analyses, heritability ranged from 0.05 to 0.18 for CT, from 0.07 to 0.36 for CSA and 

from 0.06 to 0.32 for CV. Superior temporal cortex (h2
CT=0.18, h2

CSA=0.30, h2
CV=0.26), 

precuneus (h2
CT=0.16, h2

CSA=0.29, h2
CV=0.28) and pericalcarine (h2

CT=0.15, h2
CSA=0.36, 

h2
CV=0.32) are among the most genetically determined regions.

The results of partitioned heritability analyses for global and regional CT, CSA and CV 

with functional annotation and additionally with cell-type specific annotation are present-

ed in Tables S26 and S27. For global CT we found enrichment for super-enhancers (en-

richment=2.47, p=3.79x10-6), introns (enrichment=1.71, p=4.13x10-6) and histone marks 

(enrichment=3.09, p=1.50x10-5). Repressors (enrichment=0.41, p=1.06x10-7) and his-

tone marks (enrichment=1.87, p=5.94x10-6) were enriched for global CSA, and introns 

(enrichment=1.72, p=2.77x10-7), super-enhancers (enrichment= 2.50-2.55, p=2.81<10-6 

- 4.33x10-7) and repressors (enrichment=0.49, p=6.87x10-7). For regional CSA and CV the 

highest enrichment scores (>18) were observed for conserved regions.
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FIGURE 4: Regional heritability estimates based on common SNPs

Regional heritability estimates based on common variants, calculated using LD score regression, for (B) cortical surface 

area, (C) cortical thickness and (D) cortical volume. Panel (A) shows the Freesurfer segmentation. 

GENETIC CORRELATION

We found high genetic correlation (rg) between global CSA and global CV (rg=0.81, 

p=1.2×10-186) and between global CT and global CV (rg=0.46, p=1.4×10-14), but not 
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between global CT and global CSA (rg= -0.02, p=0.82). While genetic correlation be-

tween CSA and CV was strong (rg >0.7) in most of the regions (Table S28 and Figure 5), 

it was generally weak between CSA and CT with rg<0.3, and ranged from 0.09 to 0.69 

between CT and CV. The postcentral and lingual cortex were those regions with the highest 

genetic correlations between CT and CV (rg, postcentral= 0.69, p=2.80×10-33; rg, lingual= 0.59, 

p=7.12×10-22) and between CT and CSA (rg, postcentral= 0.43, p=1.60×10-5; rg, lingual= 0.46, 

p=9.82×10-6). 

Genetic correlation was also calculated between all 34 regions for CT. We found more signifi-

cantly correlated regions for CT than for CSA and CV. For CT we observe correlation clusters 

within the lobes and also for cingulate regions, while for both, CSA and CV, only regions of 

the occipital lobe cluster together. There were also a few significant distant genetic correla-

tions beyond the regions within the same lobe.

We computed genetic correlation between CT, CSA and CV, and biometric, neurologi-

cal and psychiatric, and cerebral structural traits. We found significant genetic correlation 

(p<3.74x10-5) between global CT, CSA and CV and TIV (rg, CT=0.32, pCT=4.96x10-6; rg, 

CSA=0.95, pCSA=7.71×10-57; rg, CV=0.95, pCV=4.81×10-70). For global CSA and glob-

al CV we also found correlations with height (rg, CSA=0.22, pCSA=1.10×10-9, rg, CV=0.21, 

pCV=1.06×10-10), educational attainment (rg, CSA=0.21, pCSA=1.66×10-9, rg, CV=0.25, 

pCV=1.39×10-16) and cognitive performance (rg, CSA=0.17, pCSA=6.49×10-6, rg, CV=0.20, 

pCV=4.62×10-10). TIV was also correlated with CT of regions in frontal (parsopercularis, 

precentral), temporal (middle temporal, superior temporal) and parietal lobe (postcentral, 

precuneus). No significant associations were seen for neuropsychiatric traits.
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FIGURE 5: Genetic correlation between CT, CSA and CV within cortical regions

Genetic correlation between cortical thickness and volume (A), cortical volume and surface area (B), and cortical 

thickness and surface area (C) within cortical regions. 
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DISCUSSION

In our genome-wide association study of up to 22822 individuals of CT, CSA and CV we 

identified 161 genome-wide significant associations on 19 chromosomes. These associations 

were found for the whole cortex and for 26 cortical regions. Heritability differed between re-

gions and estimation methods, but was generally higher for CSA and CV than for CT.

Globally and regionally, we found strong genetic correlation between CSA and CV, and weak 

genetic correlation between CSA and CT. The reason for these differential associations is 

unclear. However, clinically silent neurodegenerative processes which lead to cortical thin-

ning rather than to a reduction in CSA might have been present in a substantial portion of 

our study participants which ranged in age from 20 to 90 years and may have distorted the 

correlations between CT and CSA. For CT, we have seen genetic correlation between regions 

within all lobes, while for CSA and CV we found genetic correlation mainly between regions 

of the occipital lobe. 

It is beyond the scope of our study to discuss each of the 161 genome-wide significant associ-

ations revealed by current analyses. However, it is evident that the wealth of information which 

is prepared in 35 tables creates an important resource for future investigations towards de-

velopment, connectivity, function and pathology of the brain. Nonetheless six genetic regions 

are of particular interest. These include several loci associate with multiple brain regions at 

low p-values. 

Among the other genetic regions that were identified in the current investigation, some were 

previously linked to neurological and psychiatric disorders, cognitive functioning, educational 

attainment, cortical development and cerebral structural traits. This indicates biological and 

clinical relevance of our results. 

In general, as expected, we did not find pattern of strong genetic correlation between long distance 

cortical regions, only between that one which are close to each other. Additionally, we found that 

regions in occipital lobe have a stronger genetic correlation of volume, surface area and thickness 

between each other, compare to other lobes, which might be explained by the processes during 

the development of human cortex. Moreover, we showed that volume of cortical regions has a 

complex pattern of genetic correlation with surface area and thickness, depending on region. 

 

In conclusion, our findings indicate that the genetic architecture of the cerebral cortex varies 

by region. These data create a basis for targeted functional studies to identify the biological 

mechanisms behind these genetic signals. 
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CHAPTER 5.3
Voxel-wise genome 
wide-association study 
of gray matter



ABSTRACT
 
Objective

The human brain has an intricate structure that is partly determined by genetics. While neu-

roimaging can discern millions of morphometric features, genome-wide association studies 

have only focused on a limited number of aggregate measures.

Methods

The structure of the cortical and subcortical grey matter was characterized using voxel-based 

morphometry, a technique that generates a volume for each of the 1.5 million voxels. Subse-

quently, genome-wide association studies were performed for all these voxels using a newly 

developed software algorithm in over 18.000 individuals from 12 cohorts within the CHARGE 

consortium and UK Biobank participants. The genome-wide brain-wide significance threshold 

was determined at p = 5 x 10-13.

Results

The association analyses between 9 million genetic variants and 1.5 million brain voxels took 

17 hours to compute, which would require over 2 years using conventional software. We 

found 1.270.907 genome-wide brain-wide significant associations between genetic variants 

and grey matter voxels, distributed between 55 brain regions with minimum p-value=2*10-87. 

These associations came from 930 variants that mapped to 29 independent loci. We found 

62.920 unique voxels significantly associated at least with one variant. 

Conclusions

The genome-wide interrogation of high-resolution neuroimaging data is a powerful approach 

to identify genetic determinants of brain structure, even at sample sizes considerably smaller 

than studies of aggregate measures This is just a first attempt for using high-dimensional 

neuroimaging features for genetic association analysis, which showed that such measures 

are very promising endophenotypes and can reveal us more about complex brain genetic 

architecture.
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INTRODUCTION
 

The structure of the brain is at the foundation of unravelling the neural basis of human be-

havior. Differences in its anatomical configuration can explain how the brain affects various 

functions, including learning ability,1 cognitive performance,2 and even political orientation.3 

Structural abnormalities are also a common feature of neurological and psychiatric diseas-

es,4-6 and provide insight into their pathophysiology.

Among the structural features that are genetically regulated and have implications for cortical 

function is the distribution of gray matter across the cortex. This varies widely across normal 

individuals, with developmental waves of gray matter gain and loss subsiding by adulthood, 

and complex deficit patterns observed in Alzheimer’s disease, schizophrenia, and healthy 

subjects at genetic risk for these disorders. 

Neuroimaging studies, mainly using magnetic resonance imaging (MRI), primarily focused 

on structural measures that were aggregated across the whole brain or particular regions of 

interest. Advances in image acquisition and downstream processing, however, have enabled 

the quantification of brain structure in a way that captures more of its complexity on high-di-

mensional level. One such approach is voxel-based morphometry (VBM)7, which calculates 

the concentration of brain tissue at the most fine-grained level of an image, namely the voxel. 

Studies employing VBM have been able to map structural brain differences that are more 

localized and not necessary follow anatomically defined brain regions. 

Genetics plays an important role in determining brain structure and twin studies have found a 

high degree of heritability across the brain.8 This was shown for volumes of large regions of 

interest, but also for the refined brain maps using VBM.9 Furthermore, the amount of shared 

heritability between different cortical regions decreases with distance indicating that there 

is regional specificity in their genetic makeup. While this is known, gene discovery, which is 

now commonly done using genome-wide association studies (GWAS), has focused on the 

aggregate measures of regions of interest, mostly volumes. Data sharing and computational 

issues made it imposable, until recently, to perform GWAS on high-dimensional neuroimag-

ing phenotypes. 

Here we used a newly developed software tool10 to perform a comprehensive genome-wide 

and brain-wide scan in over 18.000 individuals from 12 cohorts. VBM was used to calculate 

grey matter densities of 1.5 million voxels and subsequently perform GWAS for each of these.
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METHODS
 
IMAGE PROCESSING

In cohorts voxel-based morphometry was performed with an optimized protocol11 using 

the FSL software.12 All grey matter density maps were non-linearly registered to a the ICBM 

MNI152 template (Montreal Neurological Institute). The MNI152 standard-space T1-weight-

ed average structural template has a 1x1x1 mm3 voxel resolution and was derived from 152 

structural images, which have been warped and averaged into the common MNI152 co-ordi-

nate system after high-dimensional nonlinear registration. To avoid effects of the registration 

step on the grey matter we implemented a spatial modulation procedure by multiplying voxel 

densities with the Jacobian determinants estimated during spatial normalization. Finally, im-

ages were smoothed using an isotropic Gaussian kernel of 3mm (FWHM 8mm). 

VOXEL-WISE GENOME-WIDE ASSOCIATION ANALYSIS

We investigated the association between all voxels inside gray matter mask and all SNPs 

which passed the quality control. Regression model included age and sex as covariates. All 

cohorts, first, computed high-dimensional partial derivatives and encoded their phenotypes 

and genotypes according to HASE framework protocol (https://github.com/roshchupkin/

hase/wiki/HD-Meta-analysis-GWAS). After exchanging these data with central side, the final 

step of pooled meta-analysis was performed. Due to enormous amount of results data to 

store, we set the threshold to save only SNP-voxel association with p-value below 5*10**-8. 

The analysis was performed on cluster using 100 cores with 64 RAM each.

PERMUTATIONS 

Based on voxel-based permutations, we identified 100.000 independent tests for VBM analy-

sis13, which yield to 5*10-8/105 = 5*10-13 threshold for voxel-wide genome-wide significance.

ANNOTATION

Annotation of genome-wide significant variants was performed using the ANNOVAR software 

package14. We used the clumping function in plink (0.2 LD threshold, 500Kb distance) to 

identify the most significant SNP in each linkage disequilibrium (LD) block.

Additionally, we searched the NHGRI-EBI Catalog of published GWAS15 for previous SNP-trait 

associations of genome-wide significant variants.
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RESULTS
 
Using the strict genome-wide voxel-wide p-value threshold for significance we found 

1.270.907 genome-wide brain-wide significant associations between genetic variants and 

grey matter voxels, distributed between 55 brain regions with minimum p-value=2*10-87 (Ta-

ble 1). These associations came from 930 variants that mapped to 29 independent loci. We 

found 62.920 unique voxels significantly associated at least with one variant. As you can see 

from Table 1 many loci associated with voxels which below to more than one brain region. 

The association map for the top two variant is shown on Figure 1. From 29 independent loci 

nine are located in intronic regions and one in exome. 

The distribution of significant voxels between different brain regions is in Supplementary 

Table 1. The most of all significant voxels were found in precentral, postcentral gyruses and 

superior parietal gyrus. We found significant associations for all seven subcortical structures. 

However, as you can see from Supplementary Table 1, the signal can vary quite substantial 

between left and right hemisphere. 

FIGURE 1: Brain map of significant voxel-based association. A – association map of rs1080066; B – association map 

of rs76341705;   
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DISCUSSION
 
Using a comprehensive approach to test associations between millions of genetic variants 

and millions of grey matter densities, we identified 29 loci influencing brain structure. Many 

of found loci were previously reported to be associated with other traits and disorders: Par-

kinson, obesity, intelligence, neuroticism, panic, blood pressure, autism, and schizophrenia. 

Our results highlight the feasibility and power of such studies and pave the way for larger 

efforts in the future.

Brain genetic consortia CHARGE and ENIGMA found genome-wide significant associations 

when studying the volume of specific brain regions, such as the hippocampal formation and 

putamen.16,17. However, more fine-grained phenotypes might be better for gene identification, 

since the brain is composed of many structures with a different genetic background. Regions 

of interest, such as the hippocampus, putamen or thalamus, themselves consist of multiple 

sub regions or nucleus that have specialized functions. It can be reasonably argued that func-

tionally distinct components may also have a partly distinct genetic background. Neuroimag-

ing measures that can more accurately depict these might thus represent better phenotypes for 

genetic studies. Our voxel-wide genome-wide study provides further support for this notion.

Stein et al. previously reported a voxel-wise GWAS study.18 There, the authors showed that 

such studies are feasible by performing association analyses between 32,000 voxels and 

450,000 genetic variants. That study was done in a small sample of 740 individuals as a 

proof-of-principle, but found no variants withstanding their multiple testing correction. Here, 

we aimed to do gene discovery in over 18.000 individuals, using more genetic variants and 

voxels, and identified 29 loci at a much stricter significance threshold. 

High-dimensional association approach can also be applied to other neuroimaging mea-

sures: cortical thickness, pial and white matter surface areas, local gyrification patterns, the 

shape of subcortical structures, and white matter microstructure as measured with diffusion 

imaging, are among some of the most prominent. Such studies, however, do not need to be 

restricted to neuroimaging and genetics per se, but are also of particular interest to other 

fields. It can be applied to MRI or other type of images of different organ in combination with 

different type of omics data. Increasing number of studies have linked transcriptomics, me-

tabolomics or methylation data to human diseases. Systematic cross-investigations between 

such large-scale datasets remain to be performed, and could potentially yield a trove of novel 

insights into disease.

In conclusion, we perform a comprehensive genome-wide and brain-wide scan in identified 

the genetic variants associated with different brain structures. Our results demonstrate that 
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such high-dimensional neuroimaging analysis is currently feasible and can localize genetic 

effects to specific sub-regions as opposed to using aggregate measures. Studying the relation 

between genetics and brain anatomy, at the higher resolution, would likely benefit research-

es aimed to advance our understanding of the brain and of the underlying neurobiology of 

complex disorders.
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SUPPLEMENTARY FILES

SUPPLEMENTARY TABLE 1: Number of unique significant voxels per different brain regions in left and right hemisphere. 
Brain Region Number of unique significant voxels Region size (#voxels)

Postcentral gyrus right 10942 42995

Precentral gyrus left 9461 52486

Precentral gyrus right 9081 53659

Postcentral gyrus left 8587 46092

Superior parietal gyrus left 3481 63572

Superior parietal gyrus right 3040 67336

Cingulate gyrus posterior part left 2084 11796

Putamen left 1641 7438

Remainder of parietal lobe right 1618 66178

Cingulate gyrus posterior part right 1608 12439

Putamen right 1399 7064

Cuneus left 1156 14454

Middle frontal gyrus right 726 81880

Caudate nucleus right 725 6170

Lingual gyrus right 668 18495

Remainder of parietal lobe left 668 65794

Lingual gyrus left 635 18132

Insula right 611 22398

Cuneus right 542 13755

Gyri parahippocampalis et ambiens right 489 6944

Lateral remainder of occipital lobe left 449 64895

Gyri parahippocampalis et ambiens left 426 6823

Medial and inferior temporal gyri right 402 28066

Lateral remainder of occipital lobe right 307 66957

Posterior temporal lobe right 305 72577

Insula left 288 21930
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SUPPLEMENTARY TABLE 1 CONTINUED.
Brain Region Number of unique significant voxels Region size (#voxels)

Lateral occipitotemporal gyrus (gyrus fusiformis) right 242 6478

Posterior temporal lobe left 220 70660

Pallidum (globus pallidus) left 195 1895

Pallidum (globus pallidus) right 156 1940

Hippocampus left 119 3183

Superior temporal gyrus, central part right 99 21840

Straight gyrus (gyrus rectus) right 53 6520

Amygdala left 40 2192

Nucleus accumbens left 37 504

Inferior frontal gyrus right 33 27123

Medial and inferior temporal gyri left 31 27036

Thalamus left 25 10524

Medial orbital gyrus left 23 9311

Straight gyrus (gyrus rectus) left 23 5306

Subgenual anterior cingulate gyrus right 20 2192

Lateral occipitotemporal gyrus (gyrus fusiformis) left 19 6430

Anterior orbital gyrus right 12 9787

Middle frontal gyrus left 11 80119

Superior frontal gyrus right 11 84342

Superior temporal gyrus, central part left 11 20954

Caudate nucleus left 4 6059

Lateral orbital gyrus right 4 5895

Medial orbital gyrus right 4 9243

Hippocampus right 3 3504

Subgenual anterior cingulate gyrus left 2 2095

Nucleus accumbens right 1 384
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DISCUSSION

In this thesis, I showed that by combining data and knowledge from genetics and imaging it is 

possible to gain more inside into the complex genetic architecture of our brain. I also solved 

several methodological issues and developed methods for the integrated analysis of imaging 

and genetic data, which opens new ways for exploring the relation between these data. In 

this chapter, I summarize my contributions to the field and discuss them. Given that imaging 

genetics is still a novel area of research, many challenges still lie ahead. Therefore I also 

devoted a large part of this chapter to possible future research directions.

METHODOLOGICAL BARRIERS 

Several chapters of the work presented in this dissertation (4.1, 5.2, and 5.3) became pos-

sible as a result of the original idea of voxel-wise genome-wide analysis. At the beginning of 

my PhD (March 2014), there were no options to perform such analyses due to computational 

requirements of thousand years for individual sites. Additionally, the sheer size of intermediate 

results was not suitable for multicenter settings where summary statistics would need to be 

exchanged for meta-analysis. I therefore developed algorithms and a framework to overcome 

both issues. In chapter 4.1 I showed that the co-called HASE framework allows for reducing 

the computational time to just hours and limiting intermediate summary data from TBs to 

GBs. The framework was developed to be user-friendly for multicenter studies, and to employ 

it as part of GWAS pipelines in different analysis settings. In chapter 5.2 the framework was 

employed in a cortical brain regions GWAS study in combination with classical meta-analysis 

workflow, just to speed up a single side analysis. In chapter 5.3 the full functionality was used 

in a voxel-wise GWAS, and all findings in this chapter could not have been obtained without 

HASE. Having started as a tool to address a quite specific research problem, our HASE 

framework has now became a broadly used instrument for analysis genetics, gene expression 

and methylation data in many ongoing projects. We have published the framework online 

as open source software, and expect that many projects are currently using it and that the 

number of applications for which it will be used will grow significantly. We are planning to 

maintain this framework and add additional functionality to support the large scale explora-

tion of omics data in both single- and multicenter studies.

In chapter 4.2 I adressed another fundamental problem in the genetics field, pleiotropy, 

which relates to the fact that genes may associate with more than one phenotype. Currently, 

around 43% of genes have been reported in GWAS catalogs to associate with more than 

one phenotype1, suggesting that the pleiotropy might be rather a common phenomenon, 

than something rare. There are several approaches to investigate the genetic correlation 

between phenotypes. However, identifying a single pleiotropy variant has always proven to 
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be challenging2. Existing methods to study pleiotropy are lacking or suffer from a bias toward 

the most statistically powered phenotype. In this thesis I developed a solution to address this 

issue, taking a combinatorial approach, based on sum ranks of SNPs statistics. This approach 

directly incorporates information from GWAS summaries and tests the pleiotropy hypothesis. 

Compared to others tests our approach is robust to extreme p-values and only finds significant 

pleiotropy when a signal of association is present for all traits. Moreover, the method is able 

to identify single loci pleiotropy, even when there is no significant genetic correlation. This 

property made it possible to find important genetic variants which affect several traits and 

disorders (chapter 4.2, 5.1, 5.3). An important finding in this thesis, and for the imaging 

genetics field, is that using this method we found significant pleiotropic loci between subcor-

tical structures and schizophrenia (chapter 4.2). In a previous proof-of-concept study3, using 

other techniques, no evidence was found for such a relationship, neither at a high level nor 

for single genetic markers. This raised considerable debate in the research community about 

the importance of imaging GWAS discoveries for understanding disease etiology since no 

genetic overlap was found. Importantly, the latest subcortical GWAS4 with larger sample size 

also identified significant SNPs which associated with schizophrenia. Our method was able 

to obtain this result based on summary statistics on a smaller dataset. Additionally, we found 

variants not yet significant for each trait independently. Finally, when applying this method for 

new GWAS results of the commissure tract (chapter 5.1), we found that regardless of the 

underlying mechanism through which genes affect the anterior commissure, there seems to 

be pleiotropy with various neurodegenerative diseases (Alzheimer ’s, Parkinson, frontotem-

poral dementia). The results reported in this thesis provide only a few examples, but most 

probably pleiotropy between neuroimaging biomarkers and neurodegenerative diseases is 

more common. Taken together this demonstrates the potential of the imaging genetics field 

to significantly contribute to a better understanding of complex disease genetic architecture. 

An additional advantage of our method is that it is not limited to study pleiotropy between 

two phenotypes, but it is also possible to apply it to several traits. We demonstrated this by 

investigating pleiotropy between five psychiatric disorders in chapter 4.2. Clinical observa-

tions show varying degrees of symptoms overlap between these diseases5, suggesting the ex-

istence of a (partially) shared genetic architecture. Additionally, the strong genetic correlation 

between pairs of these disorders has been shown using GWAS summary statistics6. However, 

to discover specific loci remained challenging. Using our method we were able to find pleio-

tropic genes, not only between pairs, like RERE, CACNA1C for bipolar/schizophrenia but also 

between three or four diseases, like ITIH3, SFMBT1 genes. Our findings can help with better 

understanding of complex etiology of psychiatric diseases and provide candidate genes for 

drug development.

  

The existence of a strong genetic correlation between many phenotypes and disorders sug-
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gests that multi-phenotype pleiotropy is a common phenomenon and as a result the method 

we developed has the potential to be applied widely.

HIGH-DIMENSIONAL ENDOPHENOTYPES

Several chapters of this thesis describe the analysis of high-dimensional (HD) imaging phe-

notypes, which can potentially serve as better endophenotypes for genetic discoveries than 

using simple image-derived measures. While big data analytics approaches have facilitated 

scientific discoveries in fields such as genomics and imaging, cross-investigations between 

multiple big datasets has remained impractical. The goal of such analyses would be that 

by increasing data dimensionality it would be possible to more precisely study the complex 

relation between omics and neuroimaging data. Besides the biological relevance of such 

research, in this thesis we aimed to overcome fears of using HD imaging phenotypes in ge-

netic studies. In chapters 2.1, 5.2, even with quite a complex pipeline for data processing 

and in a multicenter settings with different scanners, field strength, and acquisition protocols, 

we demonstrated that it is possible to develop a framework for HD data harmonization, and 

successfully performed imaging genetics analyses with HD imaging phenotypes. Applying 

this methodology in the context of population and family-based studies we showed that local 

gray matter density, represented on voxel level, is significantly heritable and varies widely. 

The clusters of highly heritable voxels are located in subcortical as well in cortical regions, 

which overlap with regions of high reproducibility. However, there are also regions with high 

reproducibility which are not heritable at all. These results implie that the voxels heritability 

follows some pattern due to the complexity of brain genetic architecture, not measurement 

bias or error. To support interpretation and visualization of the results of our work we made 

a special online portal: http://imagene.nl/heritability. Such online portals and tools in omics 

and neuroimaging analysis are becoming increasingly adopted6-8 to provide the way for the 

research community to explore the results and data. 

For subcortical shapes we observed the same complex patterns of genetic effects in chapter 

2.2. Moreover, our analysis revealed that the genetic architecture of subcortical shapes goes 

beyond just volumetric measures and serves as a complimentary endophenotype. In our voxel 

based genetic analyses we showed that using the most heritable voxel can reduce the signal 

to noise ratio and gain more power in association analysis, compare to just gross measure-

ments. For the shapes we demonstrated that exclusion of such HD endophenotype from the 

analysis would lead to missing a substantial part of information about the genetic architecture 

of subcortical structures. 

In chapter 3.1 we demonstrated that although detecting significant genetic effects on the 

individual voxel requires large sample sizes, using such three-dimensional association maps 
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in combination with gene expression information may help to gain additional insight on how 

genes affect brain structure. We found that VBM association patterns overlap with some of 

the previously identified genes (CLU, SLC24A4, and MEF2C). We also showed that VBM 

analysis combined with expression data could provide evidence for new candidate genes in 

genetic loci, where the causal gene has not been strongly established by biological experi-

ments9. In chapter 3.2, I showed that such high-dimensional imaging phenotypes can not 

only be successfully applied to investigate the relation of brain anatomy at the voxel level with 

genetic data, but also with cognitive measures. Several clusters of voxels were found to be 

significantly associated with global cognition. Interestingly, each of these clusters was located 

within multiple anatomic regions, confirming that complex functions of human cognition are 

not accurately represented by arbitrarily defined anatomical brain regions. 

There has been considerable, and very reasonable, criticisms related to the issue of decreas-

ing statistical power by increasing the number of tests when studying HD phenotypes10. There-

fore imaging genetics studies have typically been limited to one or a few phenotypes/regions 

of interest (ROI) based on a prior knowledge11-13. However, in chapter 5.2 we showed that 

such criticism must be taken with care and sufficient understanding of the origin of the HD 

phenotype. For gray matter density at the voxel level, we pointed out two important reasons 

why a HD approach may makes more sense. First, segmentation of biologically defined brain 

structures may aggregate too much functional information; therefore the more localized ge-

netic effect on substructure may vanish when using an ROI, leading to less statistical power. 

Second, the effect may be distributed between several brain regions, and in such a case the 

analysis on preselected structures would provide uncomplete information about genetic in-

fluence. Furthermore, our results showed that, due to HD nature of voxels, the genetic effect 

size on the single voxel is much bigger compared to classical non-HD phenotypes. Thus, the 

increased significance of the association readily overcomes the stricter correction threshold 

that needs to be applied. The top found genetic variant in our study had a p-value of 10-87 

which is far beyond any thresholds and explains about 3% of voxel density variation. 

FUTURE DIRECTIONS 

The methodology and research results described in this thesis only address a small part of 

the questions and challenges which lie ahead for the imaging genetics field. Neuroscience 

and genomics are rapidly developing and an enormous amount of data and knowledge is 

accumulating. This opens unique opportunities for scientists to address questions which have 

challenged human conscience since ancient times. In this section I will discuss possible future 

directions, opportunities, and how I think different problems can be approached.  
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NEW IMAGING MEASURES

In imaging genetics, independent improvement in both these fields is needed to accelerate 

the progress in our understanding of the genetic architecture of the human brain and its rela-

tion to various complex diseases. Neuroimaging can provide a rich variety of phenotypes for 

genetic analysis. However, most of the imaging genetics research which has been done so far 

has focused on structural data such as volume, cortical and shape thickness, surface area or 

voxels. While these are very relevant descriptors of brain anatomy, our brain is a much more 

complex system and a richer set of features will be required. White matter is composed of 

bundles, which connect various gray matter areas of the brain to each other and carry nerve 

impulses between neurons. Changes in white matter has been shown to relate to various 

neurodegenerative14,15 and psychiatric diseases16, stroke17, and cognitive performance18. Ev-

idently, the disruptions or anomalies in connections between brain regions play an important 

role in overall wellbeing. Therefore, genetic influences on these white matter connectivity 

measures are important to identify. Genetic studies of such structural connectivity using dif-

fusion MRI commonly fall into three categories19: diffusion properties of white matter based 

on fractional anisotropy (FA) or mean diffusivity (MD); 3D model of tracts or fibers extracted 

using tractography20; a network of brain connections, shown as connectivity matrix of graphs. 

We have only just started imaging genetics analyses to explore such imaging phenotypes, 

but already quite promising results have been shown19. Moving towards HD endophenotypes 

will be a next logical step, because by aggregating connectivity measurements into some 

global parameters, most probably, we are losing even more biologically relevant information. 

However, connectivity research is still quite far from structural imaging genetics research due 

to several aspects. First of all, the sample sizes are even smaller than in structural analysis, 

where by itself it is far away from the millions of subjects in e.g. GWAS studies for height or 

BMI21. The need for more data in imaging genetics is an acute problem and I will describe it 

later. The more important issues for connectivity analysis are improving a standardization and 

harmonization of data acquisition and processing22. 

Ensuring that image-derived measurements are reliable and homogeneous is essential in 

multi-center imaging genetics studies, and especially challenging if we want to apply methods 

for HD connectivity endophenotypes. While there are many groups worldwide working on 

these issues, and considerable improvements have been obtained during the last years23, still 

a lot of work has to be done in this direction. 

Resting-state functional MRI is another imaging technique that can be used to evaluate re-

gional interactions/connectivity that has shown promising results in imaging genetic stud-

ies24,25. This domain is even less explored than MRI diffusion data and suffers from the same 

challenges in the standardization of image acquisition and processing. The harmonization 
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is particularly challenging for resting state fMRI due to the wide variability of acquisition 

protocols and scanner platforms; this leads to site-to-site variance in quality, resolution and 

temporal signal-to-noise ratio25.

NEW IMAGING METHODS

Improving image data harmonization would allow exploring an HD cross-domain analysis of 

structural, functional, diffusion and omics data. Many methods were already proposed in neu-

roimaging field for such combined analysis, like join independent component analysis (ICA)26, 

canonic correlation analysis (CCA)27 , partial least squares (PLS)27 and deep learning28. Add-

ing omics as an extra domain should help with defining new imaging endophenotypes which 

are more relevant for genetic analyses of brain morphology, function and brain disease. By 

defining new imaging phenotypes I do not only mean selection (for instance the most heritable 

phenotypes), but also in some way to learn a specific low dimensional representation of HD 

measurements. This data reduction step can be performed in several ways, and deep learning 

approaches seem very promising in that respect. A number of possible ways are discussed 

below.

A first option, is to define the most relevant imaging biomarkers for a specific disorder using 

neuroimaging methods and then study the genetics of these specific phenotypes. Given a 

disorder with a strong genetic component, especially when associated with a relatively ho-

mogeneous pathological process, learning a disease-specific representation may be closer to 

the biological function than an expert-defined region of interest29. In the example on Figure 

1A, a convolutional neural network (CNN), trained for classification, learns which parts of the 

brain are important for distinguishing between healthy and patients with Alzheimer disease. 

CNNs may not only be able to learn the complex feature interaction in disease, but can also 

be viewed as a method towards dimensionality reduction30. Feature maps or last fully con-

nected layers might be used as a low dimensional representation of the endophenotypes. An-

other way to achieve the same is using autoencoders30. The neural network can learn the most 

relevant measurements for outcome information and project it into low dimensional latent 

space. Such techniques are much more promising than classical principal component analysis 

(PCA) or ICA, because it extracts phenotypes which are more relevant to a specific problem. In 

the example above, the deep hidden layers can be interpreted as low dimensional representa-

tions of the brain regions affected by Alzheimer Disease and can be used in follow up analysis 

as biomarkers. Such methods were already successfully applied outside the neuro field, for 

example, in studies of facial shape31. A second option, is to directly use images to assess the 

genetic architecture. For example, as shown on Figure 1B, CNN can take complex HD data 

as input without any prior assumptions about the relation between input measurements. Thus, 

we can supply the network with imaging data from several domains (T1, DTI, FLAIR etc). While 
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it is still difficult in deep learning to go back and check which input parameters are the most 

important for a specific task, this issue attracts more and more attention, especially in medical 

image analysis field, and a few quite promising techniques were developed recently32,33. 

FIGURE 1: Deep learning application in imaging genetics

Finally, a third approach would be to define imaging endophenotypes based on genetics. 

Heritability estimates and genetic correlation between neuroimaging measurements are a 

useful instrument for defining more homogeneous endophenotype for genetic analysis. While 

higher heritability does not necessarily imply higher discoverability, it still can be used for 

feature selection or for increasing the genetic signal to noise ratio, as we showed in our vox-

el-based experiments34. Genetic correlation is a more powerful function, which allows com-

bining measurements with similar genetic architecture and thus increasing statistical power. It 

would be interesting to incorporate genetic correlation directly into computational methods, 

for example, into PCA35 or ICA. We would thus define HD imaging features that are the most 

genetically homogeneous or genetically independent. In such scenario it is possible that these 

new endophenotypes will serve as better imaging biomarkers for prediction/classification of 

diseases with strong genetic predisposition. 

OMICS

During the past decade, genome-wide association studies have uncovered thousands of ge-

netic variants that influence risk for complex human traits and diseases. While these findings 
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have dramatically increased our knowledge about human genetics, we are still quite far from 

the complete understanding of genetic architecture and underlying biology of these complex 

phenotypes. First, in contrast to Mendelian diseases, more than 90% of detected in GWAS 

variants are located in non-protein coding regions of the genome, and many even far away 

from the nearest known gene36. Therefore delineating the causal genetic variants and biolog-

ical mechanisms underlying the observed statistical associations with disease risk requires ad-

ditional, post-GWAS analysis. This still remains very challenging and such functional studies 

are currently lacking. Second, the most important loci from GWASs have small effect sizes and 

the significant hits, together, only explain a modest fraction of the predicted trait heritability. In 

the beginning, this was quite unexpected and even led researchers to call such phenomenon 

as “missing heritability”37 . Since the first time it was mentioned, this issue has partly been 

resolved by taking into account large effect size of rare variants or by combining all common 

variants well below the threshold for statistical significance38. However, the mystery of “missing 

heritability” still remains largely unsolved39.

As mentioned above, the vast majority of GWASs hits have been found in noncoding genome 

regions. This raises two main questions: (i) what are the molecular functions of the causal 

variants; (ii) which genes are affected. The noncoding location suggests that these variants 

affect gene expression other than in a changing protein sequence way, for example by the 

effect on transcription, splicing, mRNA stability etc. Thus, studying epigenetics, the gene 

regulatory mechanisms that do not involve changes in underlying DNA, are becoming more 

important. The epigenetic mechanisms are thought to be under both genetic and environmen-

tal influence, and at least partially heritable40. Epigenetic regulation is especially important 

for the human brain, where expression of the genes is extremely dynamic and changes during 

the lifespan41. Any disruption in such complex and precise machinery may have an effect on 

brain and related complex disorders development. One of such regulatory mechanism is 

DNA methylation, when methyl groups are added to the DNA molecule. Methylation can 

change the activity of a DNA segment without changing the sequence. When located in a 

gene promoter, DNA methylation typically acts to repress gene transcription. Several studies 

suggest that changes in DNA methylation may have a role in the onset of Alzheimer’s Dis-

ease42 or in the developmental of schizophrenia43. Another type of epigenetic regulation are 

histone modifications. These are chemical modifications of the DNA-binding histone pro-

teins and influence transcription as well as other DNA processes. For example, trimethylation 

of histone H3 lysine 4 (H3K4me3) is associated with promoter regions, but trimethylation of 

histone H3 lysine 27 (H3K27me3) is associated with inactive promoters of protein-coding 

genes. Recently, owing to the effort of several consortia (such as ENCODE project44, Road 

Epigenome project45, FANTOM46 ) a large amount of data about human epigenetics and 

genome annotation have become available. These databases contain information about epi-
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genetics for dozens of different type of cells and tissues. However, studying them individually 

is inefficient and requires novel algorithms for combining databases for molecular functional 

analysis47,48. Several unsupervised and supervised approaches already exist for integrating 

epigenetics features for inference of genetic variants functions49,50. Developing such analytical 

tools and new methods will become an essential part of the post-GWAS era51. To answer 

the second question, i.e. identifying which gene is affected by the causal variant, gene ex-

pression databases are available for dozens of cell and tissue types52. Thus screening for the 

association between gene expression level and loci, expression quantitative trait loci (eQTL) 

analysis, can be easily performed. However, because gene expression is tissue-specific, there 

are considerable challenges in the analysis of these data. Most studies include only blood cell 

types, as the most available tissue in patient-participants. To collect other tissue types can be 

problematic, especially in an invasive research setting. Tissue-specific databases, such as the 

Allen Human Brain Atlas, provide rich additional information on the spatial location of gene 

expression in the brain. This specific database is quite limited in the number of samples, but 

already allows to perform more advanced analyses53-55. 

All omics domains can be linked to each other (Figure 2) in a similar way as the different neu-

roimaging modalities described above. A next important step would be to develop cross-do-

main methodologies. Combining epigenetics, gene expression, genotype and (GWASs) data 

will have a significant impact on predicting susceptibility genes and discovering loci with 

biological functions56. It is most probable that many potentially important findings have to 

date not been found from omics data simply because the computational methods and algo-

rithms that would highlight them are not developed yet or because of the lack of application 

of machine learning and deep learning techniques in the omics field.    

OMNIGENIC

The GWAS results for complex traits and diseases are generally interpreted in a paradigm in 

which genetic variances are driven by an accumulation of weak effects on the key genes and 

regulatory pathways. This is leading by Fisher’s famous ‘infinitesimal model’, which he pro-

posed in 1918 to explain continuous variations in human phenotypes: if many genes affect a 

trait, then the random sampling of alleles at each gene produces a continuous, normally dis-

tributed phenotype in the population. For example, recent results for height and BMI GWAS57 

demonstrate that there are hundreds or even thousands of genetic variants with very weak 

effects contributing to these phenotypes. Intuitively, we might expect that all these associations 

clustered towards some specific gene functional pathways that drive the trait etiology. How-

ever, it seems that this is not the case. For instance, for schizophrenia, 71%–100% of 1MB 

windows in the genome contribute to the heritability of this disease58. This implies that in every 

1MB of DNA present genetic(s) variants associated with schizophrenia and therefore causal 
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genes are distributed among different (all) pathways. These observations gave rise for the idea 

of omnigenic59, that gene regulatory networks are sufficiently interconnected such that all 

genes expressed in disease-relevant cells are liable to affect the functions of core disease-re-

lated genes and that most heritability can be explained by effects on genes outside core path-

ways. This model summarizes all limitations of current research paradigm for causal variant 

discovery, namely the GWAS strategy with only one single variant test at a time, assuming 

the additive genetic architecture. While it is the most straightforward (and has been quite 

a successful way) to perform genetic association analysis, it has limitations and flaws, which 

in the era of big data became more obvious. The omnigenic paradigm proposes that with 

increasing sample size for GWAS at some point, since all genes somehow are interconnected 

in complex networks inside the cell, all genes will be associated with phenotype or disease. 

It also suggests that attention should be shifted from single variant analysis to more complex 

multivariate, gene interaction (epistasis) modeling. All current methods for heritability analy-

sis assume an only additive model and high estimation of heritability leads many researchers 

to a wrong conclusion that epistasis effect does not significantly contribute to genetic variance. 

In fact, simulations have shown 60 that no matter which underlying genetic architecture is true: 

additive, dominant or epistasis, the inference of heritability assuming an additive model would 

still be high. Therefore, high additive heritability estimates do not say anything about epista-

sis contribution to total genetic variance. In model organisms, such as yeast, the interaction 

between two or three genes is quite a common phenomenon 61. Moreover, the non-additive 

genetic architecture might also partly explain the “missing heritability”62. Actually, gene-gene 

or gene-environmental interaction models were used in the “early phase” of GWAS, but it 

quite fast became obvious that such analysis requires enormous computational resources 

and statistical power. Since that time computational facilities and methodologies improved 

significantly. Machine learning techniques, such as random forest or deep learning can model 

millions connections and interactions between input features, while the algorithms are 

trained within a short period of time. However, the application of deep learning for omics data 

requires the adaptation of convolutional layers from CNN (Figure 1) to the omics domain. 

In the omics field we are dealing with just one dimension, compared to 2D, 3D or even 4D 

structures in imaging field. Therefore it might sound as an easier task. In reality, omics data 

have a much more complex interaction structure alone this single dimension and classical 

convolution would not work. Proposing omics specific convolutional layers (networks) will be a 

quite challenging but promising area of research. It can be done based on an existing model, 

for example, from nature language processing applications, or by developing completely new 

approaches, for instance using linkage disequilibrium for convolution kernels size and epi-

genetic annotations as extra input channels. Graph convolutional neural networks (GCNN)63 

is an additional direction which is worth to explore for testing the omnigenic hypothesis. This 

type of network can be trained on input data represented as a graph, which fits perfectly to 
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model complex gene interactions inside different cell types, as proposed by the omnigenic 

paradigm. To the best of my knowledge, GCNN have not been applied to omics data so far. 

Additionally, using a machine learning techniques for interaction modeling it will be possible 

to redefine the way how heritability and genetic correlation are computed, which should 

definitely reduce the gap in “missing heritability”. 

FIGURE 2: Omics data complexity64

CONCLUSIONS	

In this thesis, I developed method for the integrated analysis of imaging and genetic data, 

and applied these to better understand the relation between genetics and brain structure and 

diseases. Specifically, (i) I investigated the heritability of high-dimensional MRI brain based 

phenotypes such as voxels and subcortical shapes; and (ii) developed a framework for HD 

omics analysis, which we successfully applied and discovered which genetic variants are asso-

ciated with different brain voxels and cortical regions; (iii) I developed a method which allows 

to utilize GWAS summary statistics for pleiotropic loci discovery. 

While we are only at the early stage of development of imaging genetics field itself, at the 

same time we are facing the post-GWAS era with an enormous amount of data available 

through national or world-wide biobanks. In coming years data might not be the main prob-
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lem anymore and analysis, which was previously possible to carry out only on the multi-center 

level and which took a lot of time, will be possible to perform within a day(s). This will not 

only accelerate scientific finding, but will also allow challenging the old dogmas with novel 

ideas, such as described above omnigenic model or cross-domain analysis. On this basis, the 

scientific success will heavily rely on three components: computational facilities, analytical 

tools and ability to generate such novel ideas. Imaging genetics has a huge potential 

for addressing novel research questions to advance our knowledge of the brain and of the 

underlying neurobiology of complex disorders. 

I strongly believe that these expanded efforts in imaging genetics will have a dramatic clinical 

impact in future. The field will improve our understanding of disease development, both lead-

ing to novel targets for therapy, and new tools for early detection and improved prognosis. 

This will, when translated towards clinical practice, have an enormous influence in every day 

healthcare.
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SUMMARY

Imaging genetics is still a quite novel area of research which attempts to discover how 

genetic factors affect brain structures and functions. In this thesis, using a various method-

ological approaches I showed how it can contribute to our understanding of the complex 

genetic architecture of the human brain. 

Chapter 2 deals with two high-dimensional brain endophenotypes: voxels of gray matter 

density (chapter 2.1) and subcortical shapes (chapter 2.2). We found that both these 

endophenotypes are highly heritable and observed complex patterns of mosaic genetic ef-

fects. And in case of subcortical shapes the heritability estimates go beyond just volumetric 

measures. 

In chapter 3, we showed that such high-dimensional phenotype can be successfully used 

not only to spatially localize relation between brain structures and genetic variants (chapter 

3.1), but also with cognitive functions (chapter 3.2). In chapter 3.1 we demonstrated that 

although detecting significant genetic effects on individual voxels requires large sample sizes, 

using three-dimensional association maps in combination with genes expression information 

can help to mine additional insight about how genes affect the brain structure. 

Such cross-investigation approaches between high-dimensional phenotypes and omics data 

on multi-center level can provide deep insight into genetic architecture. In chapter 4.1 we 

presented a framework (HASE) which (i) dramatically reduces computational time and (ii) 

allows performing meta-analysis for millions of phenotypes without exchanging of TBs of 

summary statistics. In chapter 4.2 I presented a new method for pleiotropy analysis, the 

phenomena when one gene affects many outcomes. This method is based just on GWAS 

summary and able to detect pleiotropic genetic variants not only between two phenotypes, 

but also between several traits. We successfully applied it to investigate shared genetic archi-

tecture between subcortical brain structures and schizophrenia as well as between five major 

psychiatric disorders. 

Finally, chapter 5 presents several studies where we applied methods from chapter 4 within 

consortiums. In chapter 5.1 we studied genetics of anterior commissure and found that 

there is a pleiotropy between various neurodegenerative diseases and underlying mechanism 

through which genes affect the anterior commissure. In chapter 5.2 we performed ge-

nome-wide association studies for measures of surface area, cortical thickness and volume of 

34 different cortical regions, in total more than 100 GWASes. Many contributed cohorts, with 

lack of computational facilities, used HASE framework to speed-up the analysis. This allowed 
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us to find 161 new genome-wide significant genetic variants which are associated with human 

brain cortex.  And the last, in chapter 5.3, after processing more than 18.000 subjects 

with voxel-based morphometry pipeline and extracted gray matter voxels,  we applied HASE 

framework for voxel-wise genome-wide association study (vGWAS), association between 1.5 

million voxels and 9 million genetic variants (more than 13.500 billion regressions).  Even 

with a stricter threshold of significance we were able to identify 29 independent loci associat-

ed with gray matter density in various regions of human brain.   
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NEDERLANDSE SAMENVATTING

Beeldvormingsgenetica is een vrij nieuw onderzoeksgebied waarin getracht wordt te 

ontdekken hoe hersenstructuren en -functies beïnvloed worden door genetische factoren. 

In dit proefschrift heb ik middels verschillende methodologieën aangetoond hoe dit onder-

zoeksgebied kan bijdragen aan ons begrip van de complexe genetische architectuur van het 

menselijk brein. 

Hoofdstuk 2 behandelt twee hoog-dimensionale hersen-endofenotypen: voxels van grij-

ze stof densiteit (hoofdstuk 2.1) en subcorticale vormen (hoofdstuk 2.2). We hebben 

gevonden dat beide endofenotypen zeer erfelijk zijn met complexe patronen van variërende 

genetische effecten, waarbij de erfelijkheid van de volumetrische maten wordt overstegen 

door die van de subcorticale vormen. 

In hoofdstuk 3 hebben we aangetoond dat een dergelijk hoog-dimensionaal fenotype niet 

alleen succesvol kan worden gebruikt om de relatie tussen hersenstructuren en genetische 

varianten te lokaliseren (hoofdstuk 3.1), maar ook tussen hersenstructuren en cognitieve 

functies (hoofdstuk 3.2). In hoofdstuk 3.1 hebben we laten zien dat, hoewel er een 

grote steekproefgrootte nodig is voor het detecteren van significante genetische effecten op 

individuele voxels, drie-dimensionele associatiekaarten in combinatie met genexpressie-infor-

matie kunnen helpen meer inzicht te verkrijgen in de manier waarop genen hersenstructuren 

beïnvloeden. 

Zulke integrale onderzoekbenaderingen, waarin hoog-dimensionele fenotypen worden ge-

koppeld aan omics data in meerdere onderzoekscentra, kunnen een diepgaand inzicht geven 

in de genetische architectuur. In hoofdstuk 4.1 hebben we een raamwerk (HASE) gepresen-

teerd, die (i) de rekentijd drastisch reduceert en (ii) ons de kans geeft om een meta-analyse 

te verrichten van miljoenen fenotypen zonder terabytes aan samenvattende statistieken uit te 

hoeven wisselen. In hoofdstuk 4.2 heb ik een nieuwe methode gepresenteerd voor de ana-

lyse van pleiotropie, het fenomeen waarbij een gen meerdere uitkomsten beïnvloedt. Deze 

methode is alleen gebaseerd op de samenvattende statistieken van genoomwijde associatie-

studies (GWAS) en is in staat om pleiotrope genetische varianten te detecteren tussen meer 

dan twee fenotypen. We hebben dit succesvol toegepast door de overlappende genetische 

architectuur te onderzoeken tussen zowel subcorticale hersenstructuren en schizofrenie als 

tussen vijf grote psychiatrische ziektes.

Tot slot worden in hoofdstuk 5 studies besproken waarin we de methoden zoals beschreven 

in hoofdstuk 4 binnen consortia hebben toegepast. In hoofdstuk 5.1 hebben we de gene-

250

CHAPTER 7



tica van de commissura anterior bestudeerd, waarbij we hebben gevonden dat er pleiotropie 

lijkt te zijn waardoor genen zowel de commissura anterior als verschillende neurodegenera-

tieve ziektes beïnvloeden. In hoofdstuk 5.2 hebben we een GWAS uitgevoerd voor maten 

van de oppervlakte, de dikte en het volume van 34 verschillende hersenschors regio’s, het-

geen resulteerde in meer dan 100 GWAS. Veel bijdragende cohorten met beperkte compu-

terfaciliteiten hebben het HASE raamwerk gebruikt om de analyse te versnellen. Dit heeft ons 

in staat gesteld om 161 nieuwe genoomwijde significante varianten te identificeren die zijn 

geassocieerd met de menselijke hersenschors. Tenslotte hebben we in hoofdstuk 5.3 – na-

dat we scans van meer dan 18.000 mensen hebben verwerkt middels voxel-gebaseerde mor-

fometrie (VBM) en grijze stof voxels hebben verkregen – het HASE raamwerk gebruikt om een 

voxelwijde GWAS (vGWAS) te verrichten tussen 1,5 miljoen voxels en 9 miljoen genetische 

varianten, resulterend in meer dan 13.500 miljard regressies. Zelfs met een strengere drem-

pelwaarde voor significantie waren we in staat om 29 onafhankelijke loci te identificeren die 

geassocieerd waren met grijze stof densiteit in verschillende regio’s van het menselijke brein. 
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