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Blood Perfusion of Patellar Bone
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MRI in Patients With Patellofemoral Pain:
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Background: Altered perfusion might play an important role in the pathophysiology of patellofemoral pain (PFP), a
common knee complaint with unclear pathophysiology.
Purpose: To investigate differences in dynamic contrast-enhanced (DCE)-MRI perfusion parameters between patients
with PFP and healthy control subjects.
Population/Subjects/Phantom/Specimen/Animal Model: Thirty-five adult patients with PFP and 44 healthy adult con-
trol subjects.
Field Strength/Sequence: 3T DCE-MRI consisting of a sagittal, anterior-posterior, frequency-encoded, fat-suppressed
3D spoiled gradient-echo sequence with intravenous contrast administration.
Assessment: Patellar bone volumes of interest (VOIs) were delineated by a blinded observer. Quantitative perfusion
parameters (kep and ktrans) were calculated from motion-compensated DCE-MRI data by fitting Tofts’ model. Weighted
mean and unweighted median values of kep and ktrans were computed within the patellar bone VOIs.
Statistical Tests: Differences in patellar bone perfusion parameters were compared between groups by linear regression
analyses, adjusted for confounders.
Results: Mean differences of weighted mean and unweighted median were 0.0039 (95% confidence interval [CI] –
0.0013; 0.0091) and 0.0052 (95% CI –0.0078; 0.018) for ktrans, and 0.046 (95% CI –0.021; 0.11) and 0.069 (95% CI –
0.017; 0.15) for kep, respectively.
All perfusion parameters were not significantly different between groups (P-values: 0.32; 0.47 for ktrans, and 0.24; 0.15)
for kep. However, a significant difference in variance between populations was observed for ktrans (P-value 0.007).
Data Conclusion: Higher patellar bone perfusion parameters were found in patients with PFP when compared to
healthy control subjects, but these differences were not statistically significant. This result, and the observed significant
difference in ktrans variance, warrant further research.
Level of Evidence: 1
Technical Efficacy: Stage 3
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Patellofemoral pain (PFP) is a common knee complaint,

especially in young physically active individuals,1 and is

characterized by retropatellar or peripatellar pain during

kneeling, stair climbing, running, cycling, squatting, and

prolonged sitting with the knees flexed. A substantial per-

centage of patients with PFP experience persistent symp-

toms.2,3 While the pathophysiology of PFP is still unknown

and, consequently, targeted therapy is lacking,4–7 an increas-

ing body of research suggests that altered perfusion might

play a role. Both impaired arterial inflow and impaired

venous outflow of blood have been implicated in the devel-

opment of PFP.8–14

Contemporary imaging enables quantitative measure-

ment of perfusion. For instance, dynamic contrast-enhanced

(DCE) magnetic resonance imaging (MRI) is routinely

applied in clinical practice for tumor and cerebral stroke

imaging.15,16 Although DCE-MRI can also be applied to

bone, there have only been a limited number of published

DCE-MRI studies for bone and even fewer that used a quan-

titative approach on MRI data of the lower extremity in

humans.17–22 This might be due to major challenges for the

implementation of quantitative DCE-MRI in bone, such as

the relatively poor vascularization of bone and the typical low

contrast enhancement compared to surrounding tissues.

In order to adequately measure perfusion parameters,

MRI data have to be extracted and fitted by a pharmacoki-

netic model that suits the MRI data. Poot et al25 recently

published a study comparing multiple pharmacokinetic

models, such as Brix et al,23 Tofts and Kermode,24 and

extended Tofts’ model, applied on DCE-MRI of the patellar

bone, in which the Tofts’ model was identified as the best

model.25 Until now, this quantitative DCE-MRI approach

has not been applied in a clinical setting in a large cohort.

Application of this method in a large cohort of patients

with PFP and control subjects may lead to a better under-

standing of the pathophysiology of PFP.

Therefore, the purpose of this study was to investigate

differences in patellar bone blood perfusion, measured with

quantitative DCE-MRI, between patients with PFP and

control subjects.

Materials and Methods

Study Design and Participants
For the current study purpose, patients aged 18–40 years with PFP

and healthy control subjects were included between January 2013

and September 2014. Patients with PFP for 2 months to 2 years

diagnosed by their general practitioner, physiotherapist, or sports

physician, based on the presence of at least three of the following

symptoms: crepitus or retropatellar or peripatellar pain during stair

climbing, squatting, running, cycling, or sitting for a prolonged

period with flexed knees were included.26 Exclusion criteria were:

previous PFP episodes more than 2 years ago, onset after trauma,

defined pathological condition of the affected knee at present, for

instance patellar tendinopathy or Osgood-Schlatter disease, or pre-

vious surgery or injury of the affected knee. Healthy controls were

recruited from patients’ sports team members, friends, or col-

leagues. We sought to match patient and controls on age, gender,

body mass index (BMI), and activity level. Exclusion criteria for

controls were: present or past PFP, surgery or traumatic injury of

both knees, or first-degree relatedness with patients. Other exclu-

sion criteria were: contraindications for contrast-enhanced MRI

and insufficient knowledge of the Dutch language. Written

informed consent was obtained and this study was approved by

our Institutional Review Board.

Measurements
Participants completed a questionnaire on demographics, sports

participation (yes/no), and knee complaints (duration, bilateral

pain, Anterior Knee Pain Scale [AKP]) 0–10027 and underwent 3T

MRI (Discovery MR750, GE Healthcare, Milwaukee, WI) using a

dedicated 8-channel knee coil (InVivo, Gainesville, FL) at our

institution. The (most) symptomatic knee of PFP patients was

selected, or randomly chosen if both knees were equally painful or

if both were asymptomatic (controls). The MRI protocol consisted

of routine clinical proton density and T2-weighted fat-saturated

sequences in three orthogonal planes, and a 3D spoiled gradient-

echo (SPGR) sequence with in-plane resolution of 0.29 mm. DCE-

MRI was acquired, consisting of a sagittal, anterior-posterior, fre-

quency-encoded, fat-suppressed 3D SPGR sequence, 35 phases of

10 seconds with intravenous contrast administration (0.2 mmol/kg

Magnevist; Bayer, Berlin, Germany) at 2 ml/s starting after the first

phase. Other parameters were: field of view 38 3 38 cm, acquisi-

tion matrix of 256 3 128, zero filled to 256 3 256, in-plane reso-

lution 1.5 mm, slice thickness 5 mm.

Image Analysis
DCE-MRI measures the amount of contrast enhancement, based

on signal intensity, over time in a specific volume of interest (VOI)

as a measure of blood perfusion.22 Our VOI consisted of the entire

patellar bone marrow (Fig. 1), which was manually delineated on

the 3D SPGR nonfat-saturated MR images with MatLab (R2011a,

MathWorks, Natick, MA) by an experienced blinded observer.28,29

Elastix was used to correct for rigid motion of the patella during

MRI acquisition as well as to rigidly map the DCE acquisition to

the SPGR.30 Perfusion was visualized semiquantitatively by means

of a time–intensity curve. Since a groupwise AIF was used, the

delay between the arterial input function and the start of contrast

enhancement incorporated both dispersion/delay of the contrast

between injection and arrival in the patella as well as injection

time differences. Thus, time–intensity curves were synchronized to

facilitate comparison. Per subject, the mean of the synchronized

time–intensity curve was computed over the VOI. Subsequently,

these were normalized to baseline intensity and the group mean

and 95% confidence interval (CI) were computed. Furthermore,

quantitative analyses were performed by fitting a pharmacokinetic

mode.24 Tofts’ model combined with a groupwise arterial input

function (AIF) was applied, since this combination best fits the

patellar bone according to the recent study by Poot et al.31 This

model uses the AIF from the popliteal artery and assumes one tis-

sue compartment and one vascular compartment (Fig. 2).24 Ktrans
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reflects the volume transfer constant into the tissue compartment,

while kep describes the rate constant back to the vascular compo-

nent. Voxelwise fitting was performed using a maximum-likelihood

(ML) estimator,32 which takes into account the differences in time

required for the contrast agent to reach each voxel.24 Goodness of

fit was assessed by comparing the residual over the entire dataset to

the acquisition noise level. To aggregate the voxelwise perfusion

parameters over the VOI, both weighted means and unweighted

medians were computed. For the weighted mean, the reciprocal

Cram�er-Rao-Lower-Bound (indicating fit uncertainty) was used as

weight, in order to assign a lower weight to voxels with high fit

uncertainty and obtain a minimum-variance estimate of the VOI

mean.31 Since this uncertainty-based weight is dependent on the

degree of blood perfusion (better perfused areas have a better fit)

and could therefore be biased, we additionally calculated the

medians of both perfusion parameters, henceforth referred to as

“unweighted” median for the avoidance of doubt. Thus, weighted

mean and unweighted median of ktrans and kep over the VOI in

each participant were computed and these VOI measures of ktrans

and kep were used in the group comparisons.

Statistical Analysis
Independent sample t-tests and chi-square tests, or Mann–Whitney

U-test if distribution was not normal, were applied to investigate

differences in baseline characteristics between groups. Differences

in perfusion parameters (kep and ktrans) were compared between

groups by linear regression analyses, adjusted for age, gender, BMI,

and sports participation. Logarithmic transformations of weighted

mean and median ktrans were performed to acquire normal distri-

butions. Due to the presence of negative values, median kep was

not transformed logarithmically, but tested nonparametrically with

a Mann–Whitney U-test. Differences in variance of perfusion

parameters across subjects were tested with Levene’s test. Additional

adjusted regression analyses were conducted to investigate differ-

ences in perfusion parameters between patients with and without

sitting pain. Item 8 of the AKP score was used to define sitting

pain. Two categories were formed from five possible responses: 1)

no sitting pain (“no difficulty” or “pain after exercise”); and 2) sit-

ting pain (“constant pain,” “pain forces to extend the knees tempo-

rarily,” or “unable”). Furthermore, correlation between perfusion

parameters and AKP score was assessed in patients using Pearson’s

correlation coefficient in case of normal distribution and Spear-

man’s correlation if not. We calculated mean, standard deviation

(SD), and mean differences with 95% CIs. P-values < 0.05 were

considered statistically significant. All analyses were performed with

SPSS v. 20.0 (Chicago, IL).

Results

Participants
Thirty-five adult PFP patients and 44 adult control subjects

were included in this analysis, since DCE-MRI data were

only acquired in adult participants. Mean age was 26.1

(range 18–40, SD 5.0) years, mean BMI was 24.1 (SD 3.4)

kg/m2 and 49% were female. The BMI was significantly

higher in the patient group (Table 1). Patients reported a

mean duration of complaints of 11.2 months and 45.7%

reported bilateral pain. Mean AKP score of patients was 68.

77.1% of the patients reported the presence of sitting pain.

DCE-MRI
The pharmacokinetic model captured the dynamic signal

over the entire dataset and the residual was close to the

acquisition noise level.

Figure 3 shows the normalized mean time–intensity

curves for patients and controls. The curve of the patient

group appeared to have a slightly larger amplitude compared

to controls. The rest of the shape of the curve was not

noticeably different between groups. 95% CIs of the curves

showed an overlap over the entire trajectory.

Quantitative analysis demonstrated a group mean of

weighted mean ktrans of 0.017 (SD 0.014)min21 for patients

and 0.013 (SD 0.008)min21 for control subjects. The

group mean of the weighted mean kep was 0.19 (SD

0.16)min21 for patients and 0.14 (SD 0.14)min21 for con-

trol subjects. The group mean of unweighted median ktrans

was 0.029 (SD 0.028)min21 for patients and 0.023 (SD

0.030)min21 for control subjects. The group mean of the

unweighted median kep was 0.19 (SD 0.23)min21 for

patients and 0.11 (SD 0.16)min21 for control subjects

FIGURE 1: Single slice of the VOI of the patellar bone marrow.

FIGURE 2: Schematic representation of Tofts’ pharmacokinetic
model.
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(Table 2, Fig. 4). The means of both quantitative perfusion

parameters were not statistically significantly different

between patients and control subjects and the same applied

to the median (Table 2). The spread of unweighted median

values across subjects was larger than the spread in weighted

mean values (Table 2, Fig. 4). A significant difference in

variance across subjects of weighted mean ktrans was

observed between populations (P 5 0.007).

Additional analyses with respect to AKP score showed

no significant correlation between perfusion parameters and

AKP score (Table 3). Furthermore, no significant differences

in perfusion parameters between patients with and without

pain during sitting were demonstrated (data not shown).

Discussion

This case–control study showed higher values of quantitative

DCE-MRI-derived perfusion parameters in patellar bone in

PFP patients compared to healthy control subjects, but these

differences were not statistically significant. This suggests that

patients with PFP do not seem to have a reduced arterial blood

inflow or reduced venous outflow, as previously suggested,8–14

since this would have been reflected by lower perfusion values.

The larger variance of weighted mean ktrans in patients

compared to controls, comprising higher ktrans values in par-

ticular, suggests that a subgroup with higher ktrans values

might exist within the patient population. Higher ktrans val-

ues correspond with hyperperfusion; more blood flowing

into the patellar bone marrow. This might lead to an

increased intraosseous pressure in patients with higher arte-

rial inflow and normal venous outflow, which is supposed

to cause pain by stimulation of baroreceptors. Therefore,

the cause of hyperperfusion needs to be studied further.

Hypervascularization could be a possible explanation for

hyperperfusion. It has been hypothesized by Sanchis-Alfonso

et al that episodes of ischemia, possibly due to vascular tor-

sion during sitting, could trigger hypervascularization of the

patellar retinaculum in maltracking patients with PFP as a

result of increased vascular endothelial growth factor

release.33 This might also be applicable for the patellar

bone. Another explanation for hyperperfusion could be the

presence of bone marrow lesions (BMLs). Lee et al demon-

strated increased blood inflow and impaired “washout,”

which can be interpreted as stasis or outflow obstruction, in

BMLs compared to normal bone in adult patients with oste-

oarthritis or avascular necrosis with painful bone marrow

edema.19 Additional analysis concerning possible patient

subgroups, ie, sitting pain or low AKP score, did not show

significant differences. However, with respect to sitting pain,

only eight patients of 35 had no sitting pain, and thus there

was a lack of power. Future research might focus on the

TABLE 1. Characteristics of Study Participants

Patients
(N 5 35)

Controls
(N 5 44)

P-value

Female gender n (%) 18 (51.4) 21 (47.7) 0.74

Age (years) Mean (SD) 26.4 (5.6) 25.9 (4.6) 0.53

BMI (kg/m2) Mean (SD) 25.1 (3.8) 23.3 (2.8) 0.01

Sports participants 0.39

during inclusion n (%) 24 (68.6) 34 (77.3)

before onset of pain n (%) 32 (91.4) n.a.

Duration of complaints Mean (SD) 11.2 (6.3) n.a. n.a.

Bilateral pain n (%) 16 (45.7) n.a. n.a.

AKP score Mean (SD) 68.6 (11.0) n.a. n.a.

Sitting pain n (%) 27 (77.1) 0 (0) n.a.

n.a.: not applicable.

FIGURE 3: Normalized mean synchronized time–intensity curves
and corresponding 95% CIs for patients and controls.
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correlation between (combinations of ) morphologic parame-

ters and specific perfusion patterns and/or on perfusion of

other patellofemoral joint tissues.

The aforementioned study of Poot et al optimized the

DCE-MRI method for patellar bone in a small subset, but

did not apply this method in a large cohort in a clinical set-

ting.31 One previous study has evaluated blood perfusion of

bone of the knee joint in humans using a quantitative DCE-

MRI approach in a clinical setting.17 Seah et al applied quan-

titative DCE-MRI in knee osteoarthritis patients and found

no association between perfusion of tibial BMLs and pain.17

Their results, however, cannot be directly compared to ours.

This is mainly due to the use of a different pharmacokinetic

model, Brix instead of Tofts, a different region of interest, tib-

ial BMLs instead of patellar bone, and the fact that they stud-

ied bone marrow lesions and not normal bone. Two other

studies used Tofts’ model in the femur, showing quite differ-

ent values compared to ours, likely explained by a different

blood perfusion between femur and patella.20,21

A major strength and novelty of this study is the

application of a tailored quantitative DCE-MRI approach in

a large number of relatively young individuals with and

without PFP. Furthermore, in contrast to previous studies,

an optimized method for patellar DCE-MRI data was used

as proposed by Poot et al.31

There are also some limitations that need to be addressed.

It is important to place these into perspective, however, since

TABLE 2. Group Mean and Standard Deviation of Weighted Mean Over VOI for kep and ktrans (min21) and Group
Mean and Standard Deviation of Unweighted Median Over VOI kep and ktrans of Patellar Bone in Patients and
Controls

Patients
(N 5 35)

Controls
(N 5 44)

Mean difference
(95% CI)

Adjusted
P-value

Ktrans (min21)

Weighted mean 0.017 (0.014) 0.013 (0.008) 0.0039 (–0.0013 ; 0.0091) 0.32

Unweighted median 0.029 (0.028) 0.023 (0.030) 0.0052 (–0.0078 ; 0.018) 0.47

Kep (min21)

Weighted mean 0.19 (0.16) 0.14 (0.14) 0.046 (–0.021 ; 0.11) 0.24

Unweighted median 0.19 (0.23) 0.11 (0.16) 0.069 (–0.017 ; 0.15) 0.15a

All were adjusted for age, gender, BMI and sports participation. CI: confidence interval.
aNonparametric testing.

FIGURE 4: Boxplots of weighted mean and unweighted median
ktrans and kep (min21) subdivided in patients and controls.

TABLE 3. Correlation Between the AKP Score and
Weighted Mean of kep and ktrans (min21) and
Unweighted Median of kep and ktrans of Patellar Bone
in Patients

Correlation
coefficient

P-value

Ktrans (min21)

Weighted mean 0.20 0.25a

Unweighted median 0.14 0.42a

Kep (min21)

Weighted mean 0.02 0.93

Unweighted median 0.02 0.92a

aNonparametric testing.
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DCE-MRI of bone is novel and is still an emerging field of

research posing significant challenges. First, although we aimed

to match patients and controls on age, gender, BMI, and sports

participation, differences were observed in BMI. Therefore, all

analyses, besides median kep, were adjusted for these confound-

ers. Adjustment for confounders was not possible for median

kep, due to nonparametric testing. However, as all confounders

in the regression analysis of median kep were not statistically

significant and had low regression coefficients, we believe that

the Mann–Whitney U-test was used appropriately. Second,

histograms showed a high spatial heterogeneity of patellar

blood perfusion, which could potentially lead to a biased

weighted mean due to underweighting of less-perfused areas.

Therefore, we decided to additionally calculate the unweighted

medians of both perfusion parameters. The results showed

indeed a small difference between the group mean of the

weighted mean and the unweighted median. Weighting was

implemented in order to obtain a minimum-variance estimate

of the VOI mean,31 although, and as expected, the weighted

mean had a lower variance compared to the unweighted

median. Consequently, since no ground truth is available, anal-

yses took place on both values. It was expected that if large areas

of altered perfusion were present, this would have emerged in

one of these values. Additionally, based on the high spatial het-

erogeneity, segmenting the patella into subregions would have

been of interest; however, this was not possible due to spatial

resolution restrictions. Finally, a large intersubject variability,

possibly caused by measurement variability or normal tissue

heterogeneity, makes detecting small but significant differences

more difficult. We were not able to disentangle measurement

variability and normal tissue heterogeneity due to the fact that

studying reproducibility of DCE-MRI is not feasible in a

human population because of the burden of repeated contrast

administration. However, Poot et al previously showed that

with this DCE-MRI method, reproducibility is sufficient to

allow identification of group differences in perfusion of 10%

in ktrans or kep at a significance level of P< 0.05 with 75%

power with our sample size.31 Given the new insight of high

intersubject variability, however, and the fact that the minimal

clinical relevant difference is unknown, a larger sample size

could be needed to make sure small, yet significant differences

are not missed.

In conclusion, higher values of patellar bone perfusion

parameters, measured with quantitative DCE-MRI, were

found in PFP patients compared to healthy control subjects,

but these differences were not statistically significant. This

result, and the observed significant difference in ktrans vari-

ance, warrant further research.
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