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Chapter 1

Introduction

1.1 What is Logical Consequence?

Good advice was never Mephistopheles’s forte, but every dog has its day. To the

student:

Mein teurer Freund, ich rat’ Euch drum

Zuerst Collegium Logicum.

Da wird der Geist Euch wohl dressiert,

In spanische Stiefeln eingeschnürt,

Daß er bedächtiger so fortan

Hinschleiche die Gedenkenbahn,

Und nich etwa, die Kreuz und Quer,

Irrlechteliere hin und her.

Even if the disguised trickster eventually reneges, and suggests that the student

choose medicine over logic (for more worldly reasons), better advice is hard to come

by. Thus, unabashed by its origin, we embrace the suggestion. True, logic is trivial,

but only in the sense that it belonged to the academic trivium, the introductory

3



Chapter 1 Introduction 4

study of grammar, rhetoric, and logic. In fact, logic is at the heart of philosophy,

and so more foundational than trivial. The choice of topic for the thesis reflects a

belief in the traditional notion that logic, as a formal discipline, holds a privileged

position in philosophy because of its apriori nature. To understand not only why

logic is apriori, but how it can be both apriori and informative, philosophers of

the past century have turned to a study of the concept of logical consequence, both

in its mathematical guise and in its epistemological guise.

What is logical consequence? Roughly, it is the relation that holds between the

premises and conclusion of a valid argument. Sometimes we say that an argument

is valid just in case whenever the premises are true, the conclusion must be true.

Alternatively, that it is impossible for the premises to be true and the conclusion

false simultaneously.1 Logic text books, both formal and informal, are riddled with

formulations along such truth-preservational lines, all with the common element

that the gloss on validity contains a modal element. It appears inevitable that such

a modal element must be included, since, surely, logical consequence cannot be a

matter of truth-preservation simpliciter. Just think of arguments which happen

to have true premises and a true conclusion. Something more robust is required

for the conclusion to follow from the premises. Logicians are in the market for a

relation that guarantees the truth of the conclusion when the premises are true.

That is, the conclusion necessarily follows from the premises.

But, modal talk is cheap. A conceptual analysis of logical consequence should at-

tempt to explain the concept in terms of—not to say reduce to—more transparent

concepts. In many logicians’ view, a recourse to bare modal notions fails on this

account. It is on the backdrop of such considerations that Alfred Tarski’s ground-

breaking work on logical consequence became part of the philosopher’s logical kit.

The achievement of Tarski (2003) was to combine a neat and economical analysis
1We stay clear of questions about what precisely the relata of logical consequence are, e.g.,

propositions, sentences, utterances, etc.
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of logical consequence with a powerful mathematical structure which is void of

modal elements. Or so goes the tabloid version of the story.

1.2 The Bolzano-Tarski Tradition

In 1990, John Etchemendy wrote the following evaluation of the Tarski’s seminal

paper ‘On the Concept of Following Logically’:

The highest compliment that can be paid the author of a piece of

conceptual analysis comes not when his suggested definition survives

whatever criticism may be leveled against it, or when the analysis is

acclaimed unassailable. The highest compliment comes when the sug-

gested definition is no longer seen as the result of conceptual analysis—

when the need for analysis is forgotten, and the definition is treated as

common knowledge. Tarski’s account of the concepts of logical truth

and logical consequence has earned him this compliment. (Etchemendy

1990, p. 1)

Was Etchemendy right in warning us against the hegemony of Tarski’s work?

Perhaps, although there were certainly critics from the very beginning. Relevant

logicians had already argued that logical consequence took something more than

mere truth-preservation: There must be a relation of relevance between premises

and conclusion (formally, say, variable-sharing).2 Intuitionistic logic had promul-

gated the alternative Brouwer-Heyting-Kolmogorov (BHK) interpretation.3 Nev-

ertheless, one thing that seems absolutely sure is that the two decades following

Etchemendy’s book have seen a widespread return to questions about the foun-

dations of logical consequence. It is important to appreciate that the influence of

Tarski’s analysis of logical consequence has been enormous, and when compared
2For the basics, see Priest (2008, ch. 10).
3See ibid., ch. 6. Also, footnote 26.
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with the criticism produced by his closely related analysis of truth (Tarski 1933),

the number of pre-Etchemendy dissidents appear embarrassingly low.4

What changed with Etchemendy? To understand we need to revisit the basics of

Tarski’s concept of logical consequence. Tarski deflated modal talk in the explana-

tion of logical consequence by describing the relation in a set-theoretic framework.

Formulae are interpreted by set-theoretic models, which tentatively represent a

word-world relation, and truth-condititions are understood as truth-in-a-model-

conditions.5 Necessary truth-preservation is characterised as truth-preservation

across interpretations. More precisely, an argument is valid just in case for every

modelM, whenever the premises are true inM, the conclusion is true inM. The

modal element is thus replaced with a quantification over set-theoretic structures.

Of course, precisely how to detail the ontological significance of the set-theory, and

therefore also the alleged word-world connection, is a matter of some contention.

Nevertheless, the variety of applications and extensions Tarski’s work has found,

speaks for itself. It has grown to become not only part of mathematical canon

with the development of model-theory, but also the engine behind much of formal

semantics for natural language.6

Regardless of its succeess, however, philosophical scrutiny was called for when

Etchemendy in his The Concept of Logical Consequence launched a two-pronged

attack on the model-theoretic account. The first is an extensional objection, claim-

ing that model-theoretic consequence is in danger of over-generating, i.e., holding

arguments to be valid which we pre-theoretically take to be invalid. In a nutshell,

Etchemendy argued that the size of the domain of quantification, i.e., the set of ob-

jects the quantifers range over, had an unintentional effect on the model-theoretic
4It is noteworthy for what follows that Prawitz (1985) to an extent anticipated Etchemendy’s

criticism. For criticism of Tarski’s theory of truth, see for instance Field (1972) and Putnam
(1985).

5From which the famous slogan in Hodes (1984): “Truth in a model is a model of truth.”
6The title Bolzano-Tarski hints at the fact that Tarski’s work was anticipated in Bolzano

(1837), albeit in an intensional framework. An even earlier, and less acknowledged, author who
foreshadowed the tradition is the fourteenth century philosopher John Buridan (see especially
his Tractatus de consequentiis, translated in Buridan 1985).
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consequence relation. Since both quantifiers and—normally—identity are consid-

ered part of the logical vocabulary, i.e., the set of logical constants in the formal

language, one can construct ‘cardinality sentences’ where there are no expressions

whose interpretation is provided by the models. Logical constants are, in the ter-

minology of Tarski (1986), invariant under interpretation. As a consequence, the

only thing that can falsify a cardinality sentence, say, p¬∃x∃y x 6= yq, is the size of

the quantification domain (in this case, when there more than one member of the

domain). If, however, every model has a domain with some finite cardinality, there

will be a first-order formula ϕ such that ϕ is a logical truth, i.e., is true in every

model. Since logical truth is simply a limit case of logical consequence (with the

empty set as the set of premises), it follows that the extension of model-theoretic

consequences is afflicted as well.

Of course, in standard model-theory this problem is avoided by insisting that the

universe U over which the quantification domains range is infinite. Hence, a model

can have any non-empty quantification domain. But, Etchemendy continues, this

is besides the point: Even if the universe happened to be finite, the cardinality

sentences should still not count as logical truths. That they do is merely a symptom

of the ontological inflexibility of the model-theoretic framework.7 In particular, the

finitist might want to subscribe to a background set-theory without an axiom of

infinity, and thus without the resources to invalidate any finite cardinality sentence.

It appears awkward to force someone of such a metaphysical leaning to accept that

some cardinality sentences are logically true.

Even worse, Etchemendy observes that model-theoretic consequence is hostage to

set-theory in a much wider sense. With second-order expressive power, we can

for instance formulate the Continuum Hypothesis (CH) and other set-theoretic

claims in pure logical syntax.8 This is problematic. CH is famously independent
7This consideration bridges into the debate about unrestricted quantification in model-theory,

see especially Rayo & Uzquiano (1999).
8See Shapiro (1991, p. 105) for details. In fact, one can now express that the domain is finite,

or even of some given transfinite cardinality.
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of the axioms of Zermelo-Frankel set-theory, but if Etchemendy is right, whether

or not the hypothesis is true will make a difference for the concept of logical

consequence. Maybe second-order logic is ‘set-theory in sheep’s clothing’, but

nonetheless it turns out that model-theoretic consequence is surprisingly sensitive

to sophisticated set-theoretic considerations.

For Etchemendy, the extensional problem of over-generation is merely a symptom

of a more general, conceptual problem. The problem, he suggests, is with the

reductive character of model-theoretic consequence: The move from modal notions

to truth-in-a-model and interpretations. At the heart of Etchemendy’s criticism

is the problem that model-theoretic consequence is ‘epistemically impotent’. In

Etchemendy’s own words:

The property of being logically valid cannot simply consist in member-

ship in a class of truth preserving arguments, however that class may

be specifed. For if membership in such a class were all there were to

logical consequence, valid arguments would have none of the [modal]

characteristics described above. They would, for example, be epistem-

ically impotent when it comes to justifying a conclusion. Any uncer-

tainty about the conclusion of an argument whose premises we know

to be true would translate directly into uncertainty about whether the

argument is valid. All we could ever conclude upon encountering an ar-

gument with true premises would be that either the conclusion is true

or the argument is invalid. For if its conclusion turned out to be false,

the associated class would have a non-truth-preserving instance, and

so the argument would not be logically valid. Logical validity cannot

guarantee the truth of a conclusion if validity itself depends on that

self-same truth. (Etchemendy 2008, p. 266)

If Etchemendy is correct, model-theoretic consequence cannot carry the episte-

mological burden traditionally ascribed to logical consequence. Yes, it provides a
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mathematical framework for necessary truth-preservation (over-generation issues

notwithstanding), but it offers no insight into the role of logic as an avenue to

apriori knowledge in philosophy.9

Tarski would surely have been puzzled about such an objection. It was never

his intention to provide an analysis of the epistemological ramifications of logical

consequence. In particular, one might imagine Tarski saying, appropriately, that

such questions are best left to another part of mathematical logic: proof-theory.

For, proof, unlike truth-preservation, is an inherently epistemic notion, one in

which we might invest hopes of understanding the subtle connections between

valid argument and apriori knowledge.

The question, though, is whether proof-theory, as a formal discipline, can offer

anything in the way of a conceptual analysis of logical consequence. The answer,

we maintain, is yes.

1.3 Proof-Theoretic Semantics

1.3.1 PTS

Proof-theoretic semantics (PTS) is a formal semantics for logic. Like its most

prominent counterpart—model-theoretic semantics (MTS)—it aspires to give an

account of logical constants, and, ultimately, of logical consequence. PTS can be

roughly characterised by a short list of slogan-like features:

• inferential ;

• proof-conditional ;
9We will not go into any detail on the many responses to Etchemendy. The literature is

massive, with both replies in the defense of model-theoretic consequence, and work extending
Etchemendy’s criticism. We here only mention some of the important contributions to the debate:
McGee (1992), Read (1994), Priest (1995), Gómez-Torrente (1996), Sher (1996), Shapiro (1998b),
and Blanchette (2000).
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• structural ;

• procedural.

Let us give some details to these properties. PTS is a formal semantics associated

with logical inferentialism and inferential role semantics for logical constants. In

short, the idea is that the meaning of a logical constant is fixed by the constant’s

behaviour in the inferential rules which govern its use.10 Let us call this thesis

INF. PTS is at heart an attempt at embedding INF in a precise proof-theoretic

framework, along the lines of what model-theory does for truth-conditional seman-

tics.11

Put contrastingly, we can say that PTS is inferential rather than denotational.

Unlike MTS, where logical constants are associated with interpretations in set-

theoretical structures (models), PTS associates logical constants with the role

they play in proof-theoretic frameworks. Such frameworks are different types of

axiomatisation of inference rules, standardly natural deduction or sequent calculus,

but not exhausted by these.12

As opposed to the truth-conditional approach of MTS, the proof-theoretic frame-

works of PTS are employed to formalise the proof-conditions of formulae con-

taining the logical constants in question, i.e., the conditions under which a for-

mula with a principal occurrence of a certain logical connective is provable. Just

as MTS formalises truth-conditions in terms of truth-in-a-model -conditions (or

even designated-value-in-a-model -conditions), PTS formalises proof-conditions dif-

ferently depending on the specific proof-theoretic framework, e.g., as intro-rules
10The problem of how we ought to understand ‘fixing meaning’ is discussed in some detail in

Chapter 6. For some initial remarks on the relation to logical consequence, see Section 1.3.2.
11Standard references on proof-theoretic semantics include Sundholm (1986) (although a bit

dated) and Kahle & Schroeder-Heister (2006). The latter is the introduction to a Synthese vol-
ume containing several informative pieces on the topic. In addition, an non-exhaustive bibliog-
raphy can be found online on the Arché TWiki: http://arche-wiki.st-and.ac.uk/~ahwiki/
bin/view/Arche/ProofTheoreticSemantics

12We will return to the importance of proof-theoretic generalisations of sequent calculus in
later chapters (see especially Chapter 6).

http://arche-wiki.st-and.ac.uk/~ahwiki/bin/view/Arche/ProofTheoreticSemantics
http://arche-wiki.st-and.ac.uk/~ahwiki/bin/view/Arche/ProofTheoreticSemantics
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or right-side sequent-rules, etc.. The motivating idea is still that the formalisms

approximate the semantics of natural language expressions. Thus, giving an ap-

propriate semantics for logical constants is a major part of PTS. Most of the recent

literature deals with different formal issues in the proof-theoretic rendering of INF,

and the present work will reflect this priority.

Although it should not be ruled out that PTS might offer resources to deal with

non-logical expressions, for the purposes of what follows PTS is understood as

a semantics for logical constants only. As a consequence, the inferential aspect

of PTS should not be confused with more ambitious programmes, for example

Brandom (1994, 2000, 2008).13

1.3.2 Provability and Derivability

The proof-theoretic framework is further supposed to equip PTS with the re-

sources to analyse logical consequence as a procedural concept, not merely offer

an extensional characterisation like MTS. In PTS, logical consequence is under-

stood as something more epistemologically robust than mere truth-preservation

(designated-value-preservation) over a class of models. It is rooted in a tradition

of logic where the chief object of study is the stepwise reasoning from premises

to conclusion. Such an approach involves taking seriously the idea of looking at

structural properties of proofs as an integral part of the concept of logical conse-

quence. It is a step towards giving consequence an inferential, and thus, hopefully,

epistemic, content.
13Similarly, a connection to the Wittgensteinean use-theoretic tradition is often cited:

We can conceive the rules of inference [. . . ] as giving the signs their meaning,
because they are rules for the use of these signs. So that the rules of inference are
involved in the determination of the meaning of the signs. In this sense rules of
inference cannot be right or wrong. (Wittgenstein 1978, VII, 30)

The importance of this heritage, however, should not be exaggerated. No further exegetical
connection will be provided in what follows.
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One might object that this is confusing the question of what validity is (or what

logical consequence is) with how we come to know that an argument is valid (or

when a conclusion is a logical consequence of a set of premises). Perhaps this is a

quibble over labels, but the proof-theoretic semanticist thinks that any rewarding

conceptual analysis of logical consequence must adhere to the insight that at the

heart of logic is the act of inferring, not the property of truth-preservation. Reply-

ing to this that logical consequence just is model-theoretic consequence (or nec-

essary truth-preservation for that matter) reveals an impoverished understanding

of the history of logic prior to the influential Bolzano-Tarski tradition. Similarly,

the idea is not to conflate provability and consequence. Provability understood as

derivability-in-S (`S) is a syntactic relation. Consider the following passage from

Etchemendy (1990):

It has long been acknowledged that the purely syntactic approach does

not yield a general analysis of the ordinary notion of consequence, and

in principle cannot. The reason for this is simple. It is obvious, for

starters, that the intuitive notion of consequence cannot be captured

by any single deductive system. For one thing, such a system will be

tied to a specific set of rules and a specific language, while the ordinary

notion is not so restricted. Thus, by “consequence” we clearly do not

mean derivability in this or that deductive system. But neither do we

mean derivability in some deductive system or other, for any sentence

is derivable from any other in some such system. So at best we might

mean by “consequence” derivability in some sound deductive system.

But the notion of soundness brings us straight back to the intuitive

notion of consequence [...] (ibid., pp. 2-3).

The right response for the proof-theoretic semanticist is to take onboard the first

claim, but resist the idea that any proof-theoretic approach to consequence must
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be sound with respect a model-theoretic consequence relation. Just like the model-

theoretic consequence relations are somehow “sound” by internal standards (not

with respect to some other formal relation), PTS ought to give an account of con-

sequence whose success is not measured by comparison to some other formalism,

but by general desiderata of the conceptual analysis. Furthermore, as opposed to

what Etchemendy suggests, there is no reason to suspect that proof-theoretic con-

ception of logical consequence must be language dependent. Just like MTS does

not offer an account of consequence in terms of specific truth-conditions, PTS does

not offer an account of consequence in terms of specific proof-conditions (i.e., a

specific set of logical constants or a specific set of rules). Indeed, a prominent

example of this is Dag Prawitz’s work on PTS.14 Ultimately, the aim is to think of

PTS as providing semantics for a variety of logics, in the same spirit as MTS. For

this reason it is imperative that PTS can shake off the revisionist association and

become a formal semantics without an agenda of identifying the One True Logic.

The theme of revision and PTS will be revisited both in Chapter 3 and Chapter

5.

1.3.3 Understanding and Analyticity

PTS in and of itself does not promise any epistemological story about logical

consequence—it is merely a formal semantics. Nevertheless, some of the appeal of

PTS is that it explicates a connection between the semantics of logical constants,

our understanding of them (the knowledge of their meaning), and, finally, why we

are entitled to draw certain inferences. Such a connection is, admittedly, based on

the elusive notion of analyticity : In analogue to the idea that a proposition can

be true in virtue of its meaning, there is the idea that an argument can be valid

in terms of the meaning of premises and conclusion. ‘Analytic validity’, in Arthur

Prior’s phrase, might be associated with MTS as well as PTS, but it is in the

latter that concept-aquisition—and thus understanding—is linked to inferential
14See especially Prawitz (1985).
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competence. In this sense, PTS serves as a framework for the justification of

deduction, a project initiated in Dummett (1975).

The epistemological notion of analyticity, and a corresponding understanding of

justification of deductive inference, has recently been espoused by Boghossian

(1997, 2000, 2003). The view has received some favourable attention in Wright

(2001, 2003), connecting it with acquisition of warrant. Less favourable is the now

household criticism offered by Williamson (2003, 2006).15 Williamson argues per-

suasively for the failure of upholding a so-called assent-understanding connection

(where assent is a belief-like, but non-propositional, attitude towards an argu-

ment).

There can, in general, be no doubt that the jury on epistemological analyticity

is still out. Unfortunately, there will be little in what follows to reassure the

sceptic, be she of Quinean or Williamsonean persuasion. Instead, the main focus

in the present work is on preconditions for successful implicit definitions of logical

constants. More specifically, it is an investigation of the circumstances under

which inference rules—serving as ‘definiens’—can be said to fix the meaning of an

involved logical constant. Any epistemological gain to be had from PTS must be

preceded by a convincing story of how the meaning of logical constants, and thus

concept-acquisition, is determined by an inferential practice. It is to this end that

the debate about proof-theoretic harmony takes center stage.

Before we proceed to introduce this debate, we need to situate the ideas in its

formal framework. Since it is less familiar to philosophers than model-theory, it

is worth starting with a brief historical introduction to proof-theory as a formal

discipline, uncorrupted by its semantic aspirations.
15Both papers occur, in slightly revised form, as parts of Williamson (2007, chs. 4-5).
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1.4 Proof-Theory: A Brief History

1.4.1 The Structural Era

At the same time as Tarski wrote his seminal papers (1933, 1936) initiating the

model-theoretic tradition in contemporary logic, Gerhard Gentzen—a student of

Hilbert’s—started what was only later realised to be a revolution of proof-theory.

Gentzen (1934) and, independently, Stanisław Jaśkowski (1934), were the origina-

tors of so-called structural proof-theory.16 These were early signs of proof-theory

breaking free from the Frege-Hilbert style axiomatizations. Sometimes just called

Hilbert style axiomatizations, these systems came into prominence with Hilbert

(1926) and Hilbert & Bernays (1934), but were anticipated much earlier in Frege’s

Begriffsschrift (1879).17 These systems are typically not schematic—the set of

rules includes (at least tacitly) a substitution rule that you use to derive the ver-

sions of the axioms needed. According to Church (1956, p. 158) the first schematic

Hilbert system is in von Neumann (1927).18

As opposed to the pre-structural proof-theory, Gentzen and Jaśkowski’s natural

deduction provides a framework which goes some way towards capturing reasoning

in natural languages. Indeed, this was Gentzen’s explicit concern:

We wish to set up a formalism that reflects as accurately as possible

the actual logical reasoning involved in mathematical proofs. [...] The

calculus NJ [natural deduction for intuitionistic logic] lacks a certain

formal elegance. This has to be put against the following advantages:

A close affinity to actual reasoning, which had been our fundamental

aim in setting up the calculus. The calculus lends itself in particular to
16Jaśkowski’s published his formalism first, but this was a linear style natural deduction, and

only for classical logic. The key insights from Gentzen’s work was not yet present in Jaśkowski.
17See also Łukasiewicz & Tarski (1930) for a simplification of Frege’s system.
18For a detailed history of Frege-Hilbert axiomatizations, see Church (1956, pp. 155-66).
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the formalization of mathematical proofs. In most cases the derivations

for true formulae are shorter in our calculus than their counterparts in

the logistic calculi. This is so primarily because in logistic derivations

[i.e., Frege-Hilbert] one and the same formula usually occurs a number

of times (as part of other formulae), whereas this happens only very

rarely in the case of NJ -derivations. (Gentzen 1934, pp. 76-80)19,20

Natural deduction does not operate on formulae alone, but allows (schematic) rea-

soning under assumption. Just like Tarski (2003) brings semantics from logical

truths to logical consequence, the structural proof-theory is rule-based rather than

axiom-based. This allows for more comprehensible derivations of simple conse-

quences (e.g., in Hilbert’s system proving pA → Aq requires five lines). More, in

mimicking our inferential practice, natural deduction underwrites the epistemic

import of proof-theory. Formally, the move underwrites the later development

of automated proof-search (especially in sequent calculus), that is algorithmically

producing proofs for arguments. In contrast, the Hilbert-systems are particularly

susceptible to proof-checking, the process of deciding for a derivation-tree whether

or not it is in fact a proof.

Early developments of natural deduction can be found in Curry (1950, 1977).

Smullyan gave a linear (as opposed to tree-like) natural deduction along the lines

of Jaśkowski. Popular variants can be found in Fitch (1952) (linear but with

graphical device for subderivations) and Lemmon (1965) (linear and numerical).

Through the later work of Dag Prawitz (especially 1965 and 1971), natural de-

duction became the locus of most developments in PTS. Intro- and elim-rules

were plausible ways of spelling out proof-conditions for logical connectives, and
19Compare Jaśkowski (1934): “The chief means employed in their [mathematicians] method is

that of an arbitrary supposition. The problem raised by Mr. Łukasiewicz was to put those meth-
ods under the form of structural rules and to analyse their relation to the theory of deduction.
The present paper contains the solution of that problem.” (ibid., p. 232)

20On the background of the above, Troelstra & Schwichtenberg (2000) wonder if Gentzen had
a normalization result for NJ, and thus the subformula property, even though he did not present
it.
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Prawitz’s normalisation theorem (1965) offered a powerful analysis of the inferen-

tial interaction of the intro- and elim-rules.21 In what follows, we will follow the

Prawitz-style tree-like natural deduction.22

But Gentzen did not stop with natural deduction. Even though natural deduction

was the primus motor for PTS, it was sequent calculus that proved the most

valuable contribution to structural proof-theory. In Gentzen, sequent calculus was

conceived as a metacalculus for natural-deduction, deriving sequents rather than

formulae, i.e., structures of the form pΓ ⇒ ∆q where Γ (the antecedent), ∆ (the

succedent) are finite subsets of well-formed formulae,WFF . In fact, Gentzen took

Γ, ∆ to be lists of formulae, and so a structural rule of exchange had to be added

to the system to ensure commutativity of the comma. Today, sequent calculi are

standardly presented with either sets or multisets instead, for which exchange is

taken to be an absorbed or implicit rule.23

Gentzen himself proposed sequent calculus as natural deduction in a ‘formalistic’

style, meaning that is was—like its Hilbertian ancestors—a local calculus for which

no assumptions (or assumption-discharges) apply globally (i.e., are not restricted to

a single rule-application). Yet, it “takes over from [natural deduction] the division

of the forms of inference into introductions and eliminations of the various logical

symbols” (Gentzen 1934, p. 82). In other words, Gentzen wanted to provide a

formalism that was local like Frege-Hilbert axiomatizations, but which was still

based on formation-rules for logical constants.

Gentzen also volunteers a reading of a sequent pA1,..., An ⇒ B1,..., Bmq as the

formulae p(A1 ∧,..., ∧ An) → (B1 ∨,..., ∨ Bm)q.24 Although such a reading

emphasizes the connection with Frege-Hilbert axiomatizations, it is unhelpful in
21The normalisation result was anticipated in an unpublished proof by A. M. Turing. In partic-

ular, Turing proved normalisation for simply typed λ-calculus. See Troelstra & Schwichtenberg
(2000, p. 224).

22The PTS interest in both cut elimination and normalization will be become evident later on.
23Multisets of formula are simply sets for which the number of occurrences of a formula matter,

e.g., {A, B} 6= {A, A, B}.
24Recall that antecedent and succedents of sequents are assumed to be finite.
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so far as one should not assume that the operators of the structural language (e.g.,

left- and right-side commas, sequent arrow) correspond to connectives in the object

language. For one, such a correspondence massively depends on structural rules.

Yet, to the extent that we want what Paoli (2002) calls a truth-based reading of

sequents, where Γ⇒ ∆ is valid iff either at least one A ∈ Γ is false or at least one

B ∈ ∆ is true, Gentzen’s paraphrase might be desirable with ‘→’ taken as material

implication.25 But this is by no means the only available reading. For non-classical

purposes, e.g. intuitionistic logic, we might prefer a proof-based reading where

sequents are read according to a BHK -interpretation of logical connectives.26 The

advantage is that sequents are read inferentially, according to the idea that the

calculus is a metacalculus, and thus does not operate over the same type of objects

as a Frege-Hilbert system. Following this thought, we can think of sequents as

first-order rules and sequent-rules as second-order rules.27

The raison d’être of Gentzen’s sequent calculus is the Hauptsatz, or what is more

commonly known as cut elimination. Gentzen proved for sequent systems for clas-

sical and intuitionistic logic (LK and LJ respectively) that any derivation can

be transformed into a derivation with the same endsequent and with no applica-

tions of Cut.28 (Note that there is a difference between mere admissibility of Cut

(closure under Cut)—i.e., just the existence of a Cut-free derivation for any deriva-

tion in the system—and a proof involving an algorithm for constructing Cut-free

derivations from any derivation.) As a corollary, we get the Subformula Property,
25See Paoli (2002) for details. He also suggests an informational reading and a Hobbesian

reading.
26

• p proves A ∧ B iff p is a pair (p0, p1) and p0 A, p1 proves B;

• p proves A ∨ B iff p is either of the form (0, p1), and p1 proves A, or of the form (1, p1)
and p1 proves B;

• p proves A → B iff p is a construction transforming any proof c of A into a proof p(c) of
B;

• ⊥ is a proposition without proof.

27In Section 6.5 we return to the issue of interpretation of sequents.
28See Appendix A for different Cut rules. A more general Cut rule is mentioned earlier in

Hertz (1929).
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saying that in any LK - or LJ -derivation without Cut, all formulae occurring in

the derivation are subformulae of the endesequent formulae.29

Among important pre-substructural developments of Gentzen’s work on sequent

calculus is Ketonen (1944) and its review by Bernays (1945) that helped make

Ketonen’s work known. He modified (∧L), (∨R), and (→L) in order to prove an

inversion result for the LK system—roughly that if a conclusion-sequent of the

rule is provable, then the premise-sequents are provable.30 These are the rules now

common in the G3c system (where structural rules are absorbed).31 The inversion

lemma was developed in Schütte (1950), where we also find a formulation of one-

sided systems for classical logic (Appendix A.16). Further, see Kleene (1952b) for

the systems that now correspond to the G1-systems, and Dragalin (1979) for the

G3-systems.32

Cut elimination is considered the main result for sequent systems today, and the

literature is enormous. For up to date presentations of the proofs for standard

systems, see Troelstra & Schwichtenberg (2000) and Negri & von Plato (2001).

1.4.2 The Substructural Era

It has been said that sequent calculus is 90% of proof theory-today, and this is

perhaps no exaggeration. The reason is the substructural revolution in proof-

theory in the last couple of decades. Arguably, Gentzen was not the first to

formulate inference rules which were structural in the sense that they do not involve

any logical constants. Weakening33 and Cut34 can already be found in Hertz
29This property of course depends on the assumption that the involved sequent rules behave

as formation rules. See also Section 2.3.3.
30See Troelstra & Schwichtenberg (2000) for the inversion lemma.
31See Appendix A.14.
32The systems are listed in full in Appendix A.
33This is a translation of Gentzen’s ‘Verdünnung’ due to Curry (1950). Kleene (1952a) gives

the name ‘Thinning’. Note also that there is an affinity with Tarski’s monotonicity condition on
consequence operators. See Tarski (1930). Finally, Hertz calls it ‘unmittelbarer Schluss’.

34Cut is sometimes (perhaps a bit misleadingly) called transitivity. Again, this is reminiscent
of Tarski (1930).
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(1929). Further, Gentzen introduces Contraction and Exchange35. (As historical

curiosa we note the abbreviations of Weakening, Contaction, and Exchange as,

respectively, K,W, and C via the Curry-Howard formulae-as-types interpretation.

In other words, take care not to represent weakening as W!)

With the explicit formulation of structural rules comes the possibility of studying

so-called substructural logics, i.e., systems where one or more structural rule is

given up (or modified). Such logics have a rich and strong tradition dating back

to before Gentzen, but only with his systems could they be studied as substructural

systems (rather than, say, Frege-Hilbert systems of particular sorts). In particular,

intuitionistic logic, whose substructural representation involves a restriction of

right-side Weakening, was formalised (in part) by Kolmogorov (1925), and later

by Glivenko (1929), and Heyting (1930). Similarly, a fragment of the relevant logic

R was anticipated by Orlov (1928). In a contemporary setting a family of relevant

logics can be described by adding and subtracting structural properties (see Read

1988, p. 60 for an overview), but most standardly relevant logics are described

substructurally as systems without Weakening.36

By giving up not only Weakening but Contraction we get to a type of system

known as Linear logic. The name originates from Girard (1987), but similar sys-

tems had been considered earlier (a famous example is Kripke 1959). The par-

ticular contribution made by Girard’s work was to introduce S4-like modalities

(the exponentials !, ?) to recapture some of the lost structural rules in a controlled

environment. Specifically, with the exponentials, both intuitionistic and classical

logic can be embedded in (translated into) linear logic. More generally, applica-

tions to computer science, and the ensuing booming literature, have made Girard’s

contribution a milestone of the substructural revolution.
35Curry has ‘permutation’.
36Needless to say, the standard volume for relevant logic is Anderson & Belnap (1975). Note

that the relevant logic R does not have a standard sequent calculus system, but there is a
formalisation in Display logic (see Belnap 1982).
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The definitive volumes on substructural logics are Restall (2000) and Paoli (2002).

A comprehensive history of substructural logics can be found in Došen & Schroeder-

Heister (1993).

1.5 Thesis Outline

The thesis is divided into two Parts: Proof-Theoretic Harmony and The Semantic

Role of Proof-Conditions. The first part introduces the traditional approach to

PTS, and part of the philosophical motivation for pursuing the programme (espe-

cially Dummett’s philosophy, Section 2.3.1). Chapter 2 discusses the outbreak of

PTS, the initial reactions to Prior’s tonk, and the relationship between harmony

as an informal concept on one side, and the related proof-theoretic notions like

conservativeness (Section 2.3.2) and normalisation (Section 2.3.3) on the other.

We debate and discard a number of early diagnoses of tonk.

Chapter 3 is a criticism of the long-standing connection between PTS and revi-

sionism, specifically the thought that PTS motivates abandoning classical logic in

favour of intuitionistic logic. We evaluate different approaches to PTS for classi-

cal logic—for example multiple-conclusion (Section 4.5) and bilateralism (Section

3.2.3)—with respect to different measures identified by the traditional PTS (as

discussed in Chapter 2). Section 3.3, in anticipation of later chapters, defends a

multiple-conclusion approach to PTS for classical logic against a number of objec-

tions in the literature.

Chapter 4 introduces a recent promising analysis of proof-theoretic harmony: Gen-

eralised Elimination Harmony (GE-harmony). After looking at how the investi-

gation so far motivates a local approach to harmony (Section 4.2), we assess the

progress made by some early versions of GE-harmony (Section 4.3). A modified

account of GE-harmony is proposed in Section 4.4, with special emphasis on the
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connection between the GE-template and normalisation (Section 4.4.4). Revisit-

ing classical negation and revision, we end Chapter 4 by situating GE-harmony in

a multiple-conclusion framework (Section 4.5.1), and discuss the consequences of

moving proof-theoretic harmony into the substructural era. In particular, we dis-

cuss the relationship between additive and multiplicative rules and GE-harmony

in Section 4.5.2.

In Chapter 5 we take a wider perspective on the connection between meaning-

constitutive rules and revision of logic. In Section 5.2.1 we outline a Quinean

meaning-change argument about the revision of logic, and its impact on INF. We

proceed in Section 5.3 to present a theory of revision which weds INF with non-

verbal dispute in about logic: minimalism about logical constants. Section 5.3.3

to 5.3.6 we detail the proof-theoretic impact on PTS. We conclude with a criticism

which vindicates the Quinean charge in Section 5.4.

We take into account the difficulties identified with traditional INF, when we in

Chapter 6 offer a new theory of meaning-determination. We outline a connection

between MTS (truth-conditions) and PTS (proof-conditions) in Section 6.2. The

proposed framework is extended to cover a range of matrix logics in Section 6.3,

and in Section 6.4 we follow up by discussing how the proof-theoretic framework

of PTS can be generalised to include the extended theory. In conclusion, Section

6.5 offers an interpretation of the interplay between MTS and PTS in terms of the

semantics-pragmatics interface. Finally, Chapter 7 gives a summary of the new

theory’s impact on PTS. We also provide some thoughts on future research topics

extending the present work.



Chapter 2

Harmony, Conservativeness, and

Normalisation

2.1 Historical Preamble

2.1.1 Gentzen’s Remark

PTS as a programme was initiated by a frivolous but brilliant remark in Gentzen

(1934). Introducing his natural deduction, Gentzen says:

To every logical symbol &, ∨, ∀, ∃, ⊃, ¬, belongs precisely one infer-

ence figure which ‘introduces’ the symbol—as the terminal symbol of

a formula—and one which ‘eliminates’ it. The fact that the inference

figures &-E and ∨-I each have two forms constitutes a trivial, purely

external deviation and is of no interest. The introductions represent,

as it were, the ‘definitions’ of the symbols concerned, and the elimi-

nations are no more, in the final analysis, than the consequences of

these definitions. This fact may be expressed as follows: In eliminat-

ing a symbol, we may use the formula with whose terminal symbol we

23
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are dealing only ‘in the sense afforded it by the introduction of that

symbol’. (ibid., p. 80, emphasis added)

In Gentzen (1936):

Yet we must still keep in mind the following: the structure of a math-

ematical proof does not in general consist merely of a passing from

valid proposition to other valid propositions via inference. It hap-

pens, rather, that a proposition is often assumed as valid and further

propositions are deduced from it whose validity therefore depends on

the validity of this assumption. [...] In order to describe completely

the meaning of any proposition occurring in a proof we must therefore

state, in each case, upon which of the assumptions that may have been

made, the proposition in question depends. (ibid., p. 150)

Gentzen offers no further details about the semantic observation. However, one

might say that his formalisms speak for themselves. The insistence on having sepa-

rate rules for different logical constants, and giving a calculus with the Subformula

Property (see Def. 2.8), were the first steps towards a proper proof-theoretic anal-

ysis of meaning.

2.1.2 Early Work

If Gentzen’s work was the birth of structural proof-theory, his semantic remarks

marked the inception of PTS. His insight is carried forward by a multitude of

authors, but, interestingly, they are not as proof-theoretically sophisticated as

Gentzen’s original work. For example, Carnap—who had at least read Gentzen

(1936)—endorses something like INF in his Logische Syntax der Sprache (1934),

but the idea is not proof-theoretic in Gentzen’s sense. From the Foreword :
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Up to now, in constructing a language, the procedure has usually been,

first to assign a meaning to the fundamental mathematico-logical sym-

bols, and then to consider what sentences and inferences are seen to

be logically correct in accordance with this meaning. Since the assign-

ment of the meaning is expressed in words, and is, in consequence,

inexact, no conclusion arrived at in this way can very well be other-

wise than inexact and ambiguous. The connection will only become

clear when approached from the opposite direction: let any postulates

and any rules of inference be chosen arbitrarily; then this choice, what-

ever it may be, will determine what meaning is to be assigned to the

fundamental logical symbols. (ibid., p. XV, emphasis added)

The crucial difference from Gentzen is that Carnap applies his so-called Principle

of Tolerance, that “we have in every respect complete liberty with regard to the

forms of language; that both the forms of construction for sentences and the rules of

transformation [...] may be chosen quite arbitrarily”. There is nothing in Gentzen

that indicates that he believes that arbitrary inference rules can serve a definitional

purpose. On the contrary, Gentzen’s writing on the topic strongly indicates that

he wanted the paring of intro- and elim-rules to be disciplined by some functional

constraint. We return to this in Section 4.2.2.

Similarly, other authors in the inferentialist tradition spend little or no time dis-

cussing what sorts of adequacy conditions must be put on inference rules for them

to be taken as meaning-conferring. The most famous, perhaps, is a series of pro-

grammatic papers by Popper (1946, 1947, 1948, 1949). Popper aims to reconceive

the foundations of logic by offering ‘inferential definitions’ which lead to a new

justification of deduction. He suggests that the class of ‘formative signs’—logical

constants—can be demarcated by inferential definitions. Validity, in turn, is de-

fined by reference to these formative signs.
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Popper’s theory met with massive criticism in contemporary reviews, e.g., by

Curry, Beth, and Kleene.1 Popper later abandons the project and declares that

drawing a sharp line between logical and non-logical expressions is most likely

impossible.2 Nevertheless, Popper’s time was perhaps not spent in vain. Together

with Kneale’s ‘The Province of Logic’ (1956), his work was the main inspiration

for A. N. Prior’s famous polemic about tonk (see below). Kneale, who proposes a

multiple-conclusion version of Gentzen’s natural deduction, says that “rules which

we can treat as definitions [...] determine the sense of the signs completely by

fixing their roles in argument” (ibid. p. 257). Kneale and Popper have in common

that they explicitly draw on Gentzen’s proof-theory, but the tendency is the same

as that of Carnap’s work: There is no systematic discussion of whether or not some

conditions must be satisfied by the rules in order for them to determine meaning.

2.2 Two Traditions After Tonk

2.2.1 The Year Tonk Broke

For Prior, this is carelessness that spells disaster. Referring to the above work

by Popper and Kneale, he offers the ironic gem ‘The runabout inference-ticket’,

which Nuel Belnap (1962) rightly compared to another rhetoric masterpiece, Lewis

Carroll’s ‘What the tortoise said to Achilles’ (1895). Surely, Prior’s paper, even if

written half a century after Carroll’s, has had a similar astonishing effect on the

philosophy of logic. Not bad for two pages.

Prior’s concern is with what he calls analytic validity :

It is sometimes alleged that there are inferences whose validity arises

solely from the meanings of certain expressions occurring in them. The
1An extensive list of reviews and comments can be found in Schroeder-Heister (1984b).
2Schroeder-Heister (1984b, p. 80) reports that Popper’s main reason for giving up his work

on logic was Tarski’s disinterest in the project. Schroeder-Heister’s paper is actually a systematic
reworking of Popper’s project, albeit without some of the philosophical pretensions.



Chapter 2 Harmony, Conservativeness, and Normalisation 27

precise technicalities employed are not important, but let us say that

such inferences, if any such there be, are analytically valid. (ibid., p.

38)

As an example he takes ∧-I and ∧-E, two rules which are remarkably transparent.

He continues by mimicking Popper and Kneale:

Anyone who has learnt to perform these inferences knows the meaning

of ‘and’, for there is simply nothing more to knowing the meaning of

‘and’ than being able to perform these inferences. (ibid.)3

But if this is the case, Prior suggests, then why is it not equally legitimate to

enrich our language with a new logical constant—tonk—whose meaning is given

by the following inference rules?

Example 2.1. Tonk, natural deduction:

A
AtonkB

(tonk− I) AtonkB
B

(tonk− E)

Alternatively, in sequent calculus, where Rtonk corresponds to I tonk, Ltonk to

Etonk:

Example 2.2. Tonk, sequent calculus:

Γ, B ⇒ ∆
Γ, AtonkB ⇒ ∆

Ltonk
Γ⇒ A,∆

Γ⇒ AtonkB,∆ Rtonk

Prior’s ‘answer’: There is no difference between the cases. In a language with

tonk one can legitimately infer B from A, for any A, B, since both tonk-rules

are ‘analytically valid’. Accordingly, doubting the validity of tonk-rules would be
3Note the epistemological vein of the quote.
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as nonsensical as doubting ∧-I and ∧-E. If the rules are somehow definitional,

doubting their validity is only a failure of nerve. Prior does nothing to dispel the

apparently paradoxical upshot. He simply ends with sarcastic praise of the newly

discovered connective, “which promises to banish falsche Spitzfindigkeit from Logic

for ever” (ibid., p. 39). The reader is left to appreciate the irony.

The connective tonk deserves a closer look in anticipation of what is to follow. In

Prior’s original formulation, tonk is a hybrid between disjunction and conjunction,

with one ∨-I rule and one ∧-E rule. Of course, adding the other ∨-I and ∧-E

will still yield an undesirable outcome, but, importantly, it is not the very same

connective (even if it gives the same consequence relation in certain contexts).

For one, tonk enhanced with the addition rules—call it tonk+—behaves differ-

ently with respect to proof-theoretic harmony and categoricity (see Chapter 4 and

Chapter 6). It remains the case, however, that in a system with tonk-rules, any

formula is derivable from any non-empty set of premises, given that the system is

transitive, i.e., for every A, B, C in the language, if A ` B and B ` C, then A `

C. The result is a trivial consequence relation: For every pair <Γ, A> where Γ is

a non-empty set of formulae and A is a formula, Γ ` A.4

It is sometimes said that tonk leads to inconsistency, but this is a claim that

needs qualification. In a system consisting only of the tonk-rules there will be

no theorems, since none of the rules discharge assumptions, and there are no

axioms. Thus, in particular, the system is not Post inconsistent (or absolutely

inconsistent), i.e., there is a formula φ such that 0 φ. In fact, any formula satisfies

this condition.

Of course, Prior’s moral is not diminished by this observation. It is bad enough

that the consequence relation is trivial in the above sense. And anyway, in the

environment of most negations we get Post-inconsistency as well. For example,
4Shoesmith & Smiley (1978, pp. 248-249) calls this type of calculus—where A ` B for every

A, B—a singular calculus. Calling the tonk-induced ` trivial might be a bit misleading since it
does require a non-empty premise set.
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adding an intuitionistic negation governed by EFQ and RAA, the following deriva-

tion suffices to prove any formula:

[A]1

Atonk⊥
⊥
¬A

(RAA)1

[¬A]2

¬Atonk⊥
⊥
¬¬A

(RAA)2

⊥
(¬E)

A
(EFQ)

Classical negation will make the derivation even more immediate with CRA (or

DNE ). Similarly, we cannot prove p ⇒ Aq for any A in a sequent calculus with

only tonk rules. (It is quite easy to see that we cannot derive any sequent with an

empty antecedent side.) Adding L⊥ and R/L¬, however, yields:

⊥ ⇒
⇒ ¬⊥

⇒ ¬⊥tonk⊥
⊥ ⇒

¬⊥tonk⊥ ⇒
⇒ (Cut)

Note that this is again an intuitionistically valid derivation; there is never more

than one member on the succedent side of the sequents. Alternatively, here is a

classical derviation which uses both negation rules plus contraction, but not L⊥.

Note that this derivation uses the tonk+ rules.

A⇒ A
⇒ ¬A,A

⇒ ¬A,Atonk¬A
⇒ Atonk¬A,Atonk¬A

⇒ Atonk¬A

A⇒ A
¬A,A⇒

¬A,Atonk¬A⇒
Atonk¬A,Atonk¬A⇒

Atonk¬A⇒
⇒ (Cut)

⇒ A

Needless to say, given Post-inconsistency the systems will always be simply incon-

sistent, i.e., there is a φ in the language such that ` φ and ` ¬φ.
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2.2.2 Diagnosis of Tonk: Part I

Why should the proof-theoretic semanticist fret about tonk? No one would con-

template introducing tonk in an evironment that trivializes the consequence re-

lation. Everyone agrees that tonk is defective in standard systems. Adding a

tonkish connective is, in Belnap’s words “like adding to cricket a player whose

role was so specified as to make it impossible to distinguish winning from losing”

(Belnap 1962).

We need to investigate what the moral of Prior’s tonk is. Prior himself offers

little in the way of a closing statement on the issue, but, fortunately, a series of

authors have taken up the challenge left by tonk. One early diagnosis is offered

by Stevenson (1961). Stevenson is not averse to Popper and Kneale’s claim that

the meaning of logical constants is given by their inferential role (i.e. INF), but

he thinks that they have too hastily concluded that “we can completely justify

an inference by appealing to the meaning of a logical connective as stated in

permissive rules” (ibid., p 125). Rather, justification of an inference involves two

steps: validation and vindication. The former is given by the inference rules

for the connective in question—thus tonk is valid—but the latter, vindication,

requires a soundness proof, i.e., a demonstration that the meaning-conferring rules

preserve truth-in-a-model. Tonk-I and tonk-E clearly do not, hence there is no

vindication.5

Wagner (1981) has a proposal along similar lines, but with a different conclusion.

According to Wagner, Prior’s worry was not merely that tonk fails on account

of truth-preservation, but more fundamentally, that it is semantically defective.6

Against this, Wagner suggests that tonk is not meaningless. The thesis INF is

correct in so far as the inferential role of the logical connectives determines their

sense, but determining sense might come short of determining a denotation.
5Actually, the ‘clearly not’ here is a bit hasty: tonk might be sound given a non-Boolean

semantics. We return to this in Chapter 6.
6Precisely what Prior thought about this, however, is a vexed issue.
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Once we distinguish between sense and denotation for connectives,

just as we do for names and predicates, Prior’s argument breaks down.

Although it is unclear what, in general, senses are, let us suppose that

specifying the logical role we take a connective to have might (at least

partway) specify its sense. [...] Turning to denotation, we can now

say that a connective c denotes a truth function f if and only if f

conforms in the obvious way to the sense of c. [...] If, on the other

hand, no truth function reflects our use of c, c lacks a denotation.

We are unaccustomed to speaking of denotationless connectives, which

may not exist in natural language, but there is nothing paradoxical

about them (ibid., p. 293).

There is a sense in which both Stevenson and Wagner break with the spirit of INF

(not that they were concerned with upholding it). On their view the legitimacy

of a connective is inevitably tied up with its truth-conditional semantics, and a

motivation for going with inferential roles in the first place is typically that the

truth-conditional approach is unhelpful.7 With Stevenson in particular, it becomes

unclear what sort of work INF is doing. Why not take it that the ‘validation’ is a

complete justification of inference rules?

There is some more mileage in Wagner’s approach. After all, Wagner thinks that

the rules (even the tonk-rules) are sense-determining, and so the inferential role is

still wearing the trousers. Further, the denotation of a connective λ must conform

to the sense of λ. So, it is ultimately the inferential role that determines the

denotation of a logical connective. In fact, the Fregean notion of sense is precisely

the ingredient of an expression’s meaning that determines its semantic value, and

also what one grasps when one understands the expression. This may not be

palatable for the inferentialist who worries about truth-conditional reification of

meaning, but it still appears perfectly consistent with INF as formulated above.
7Although the exact complaints against truth-conditional semantics vary from author to au-

thor. See for example Dummett (1991, ch. 3, ch. 14), Prawitz (1977), and Read (1988, ch.
9).
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Nonetheless, one might think that even if Wagner’s approach is consistent with

INF, it fails on independent grounds. First, to the extent that the theory involves a

sense vs denotation distinction, it introduces some familiar worries with a Fregean

framework. Wagner is quick to dismiss this by saying that “its essence should

survive whatever revisions of Frege might be necessary”, but no discussion of this

is provided.8 Second, it is all too evident that by ‘denotation’, Wagner has in

mind Boolean truth-functions. But in line with the consideration that PTS ought

to be independent of any particular logical system, the notion of denotation ought

to be as general as the corresponding notion of sense given by proof-theoretic

rules. The obvious amendment is to consider appropriate denotations for (first-

order) quantifiers and (normal) modalities; but any full-blooded theory also ought

to include non-Boolean truth-functions. Third, even if we can get the scope of

possible denotations right, we are still in the dark about what it is for a denotation

to conform to the sense. Or, in other words, how do sense-determining inference

rules in turn determine denotations?

For now we leave these problems behind, but we return to them in detail in

Chapter 6. There we will argue for a resurrection of Wagner’s line, albeit with

a more precise understanding of the relationship between proof-conditions and

truth-conditions. In what follows, however, we will mostly focus on the strictly

proof-theoretic approach to tonk. Is there any hope of applying proof-conditional

constraints to rule out tonk and other rogue connectives?

2.2.3 Diagnosis of Tonk: Part II

Arguably, the most influential reply to Prior’s challenge is due to Belnap (1962).

Like Wagner, Belnap takes Prior’s main conclusion to be that “there is no meaning-

ful proposition expressed by A-tonk -B” (ibid., p. 131), and, like Wagner, he does
8Another Fregean take on PTS can be found in Hodes (1984).
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not agree. Belnap thinks the moral drawn from tonk must be modified: The prob-

lem is not with INF per se, but with the notion that any set of inference rules can

consistently be introduced in to a logic, and thus serve as a meaning-determining

practice. Such a naïve inferentialism severely underestimates structural assump-

tions that are already in place when the rules for a connective are introduced.

It seems to me that the key to a solution lies in observing that even

on the synthetic view, we are not defining our connectives ab initio,

but rather in terms of an an antecedently given context of deducibility,

concerning which we have some definite notions. By that I mean that

before arriving at the problem of characterizing connectives, we have

already made some assumptions about the nature of deducibility.

For tonk, one obvious structural assumption about the antecedent context of de-

ducibility is transitivity, without which the problem does not arise.9 Upon ac-

cepting that such assumptions are in place prior to the introduction of a logical

connective, it also becomes evident that careless use of ‘defining’ inference rules

will lead to inconsistency. In a word, intro- and elim-rules must be tempered by

the antecedent context of deducibility. The trick is to identify the precise condi-

tions under which a logical connective can be introduced into the language (and

its rules into the logic), without upsetting the antecedent structural assumptions

about deducibility.10

Put differently, and closer to Belnap’s own terminology, the idea is to find the

existence conditions for a logical constant. If a connective λ fails on this account,

no proposition is expressed by pA λ Bq.11

What is Belnap’s proposal? Any logical constant is introduced on the backdrop

of an antecedent context of deducibility, i.e., in the framework of a consequence
9This is explicitly recognisable in the sequent calculus derivation as application of the cut

rule.
10This is similar to the approach favoured in Hacking (1979).
11Alternatively, one might think that such rules would still determine meaning, but that the

connective in question would not be a logical connective.
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relation with certain properties. For now, let us say that a consequence relation is

simply a relation between a set of well-formed formulae and a well-formed-formula.

Clearly, most such relations will not be interesting consequence relations since so

far, any relation is allowed. When Belnap talks about an antecedent context

of deducibility he has in mind ordinary consequence relations, i.e., consequence

relations for which reflexivity, weakening, contraction, and transitivity hold.12

With that assumption, Belnap introduces the following definitions. Let WFFL,

WFFL+ be the set of well-formed formulae of languages L and L+ respectively. L

= <`, WWFL> and L+ = <`+, WFFL+> are logical systems where `, `+ are

consequence relations.

Definition 2.1. The logical system L+ is an extension of L iff

1. L ⊆ L+;

2. WFFL ⊆ WFFL+ , and;

3. ` ⊆ `+.

Definition 2.2 (Conservative extension). The logical system L+ is a conservative

extension of L iff

1. L+ is an extension of L, and;

2. if Γ ⊆ WFFL and A ∈ WFFL, then whenever Γ `L+ A, Γ `L A.13

Note that it follows from this that any conservative extension of a Post-consistent

logical system will itself be Post-consistent. Of course, if the original logical system

is Post-inconsistent, then any extension is a conservative extension. An example:

As the above proof shows, in natural deduction, intuitionistic negation is non-

conservative over the system with tonk as its only connective. It is important to
12The terminology is from Avron (1994). Belnap includes exchange, but we leave this out as

it is mostly uninteresting for present purposes.
13According to Belnap, the notion of conservative extensions first appears in work by Emil

Post.
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appreciate that conservativeness is a property that is highly framework-relative:

E.g., natural deduction and sequent calculus does not always yield the same result.

(One example—Peirce’s Law—will be discussed shortly.) Further, as the example

of tonk has taught us, the presence of structural rules—e.g., transitivity—is also

relevant for the result.

Example 2.3 (Tonk). Let ` be a (standard) natural deduction deducibility rela-

tion such that there is a pair <A,B> for which A 0 B. Then adding tonk to the

language and tonk-I, tonk-E to the logic, produces a non-conservative extension

of `.

This, Belnap thinks, explains why INF works for conjunction (with ∧-I, and ∧-E )

but not for tonk. Non-conservativeness tells us that tonk-rules cannot be taken to

determine the meaning of a connective in the context of an ordinary consequence

relation. However, there is a certain ambiguity in Belnap’s original proposal. It

appears that he takes the conservativeness test to be limited to adding logical

constants to a logical system with no logical constants already in the language. In

other words, the test is one of conservativeness with respect to structural properties

of the deducibility relation (i.e., an ordinary consequence relation), not with respect

to the antecedent language. As non-conservativeness might arise from the proof-

theoretic interplay between two connectives (where both are conservative over

the antecedent deducibility relation), these two formulations of the test are non-

equivalent. In fact, as it turns out, it is the latter formulation that has prevalence

in the PTS literature.

Further, Belnap suggests that even if we are in a position to demonstrate the exis-

tence of a connective (via conservativeness), it does not follow that the connective

is unique.14 That is, we want to make sure that
14Conservativeness and uniqueness are treated in some detail in Dos̆en & Schroeder-Heister

(1985) (see also Smiley 1962). But the definite account is in Humberstone (2008). Greg Restall
(2007) is a discussion of Belnap’s two criteria and the context of deducibility.
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[...] there cannot be two connectives [plonk, plink] which share the

characterization given to plonk but which otherwise sometimes play

different roles. Formally put, uniqueness means that if exactly the

same properties are ascribed to some other connective, say plink, then

A-plink -B will play exactly the same role in inference as A-plonk -B

both as premiss and as conclusion. (Belnap 1962, p. 133)

Let λ and λ′ be two logical connectives governed by identical inference rules, except

with λ and λ′ respectively. We can then ask whether or not F (λ) is interderivable

with F (λ′), where F (λ′) is the result of of substituting an occurrence of λ′ for

every occurrence of λ in F (λ).

The criterion of uniqueness will not feature prominently in what follows, however.

It is conservativeness that has achieved the most attention in the literature on PTS,

and, consequently, conservativeness will serve as a starting point for an analysis

of proof-theoretic harmony. More than Belnap himself, it is Dummett who has

brought conservativeness to philosophical prominence in the inferentialist camp.

Before we explore more sophisticated approaches to tonk, we pause to understand

some of the broader motivation for adopting constraints such as conservativeness.

2.3 Dummett on Harmony

2.3.1 Philosophical Backdrop

Belnap does little towards motivating conservativeness as the constraint on le-

gitimate meaning-conferring rule-sets. True, the conservativeness test does rule

out tonk, and a range of tonkish connectives, but even if we grant that conser-

vativeness is necessary—which it might not be—why think that it is sufficient?

In other words, are there illegitimate connectives that are not weeded out by the

conservativeness test.
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Before we assess the formal prowess of the conservativeness test, let us intro-

duce a more detailed account of the relationship between conservativeness and

meaning provided by Dummett. His The Logical Basis of Metaphysics (1991) is

indisputably the most systematic attempt at deploying proof-theoretic resources

to give a theory of meaning for logical constants. In fact, Dummett casts his net

much wider. His aim is to characterise conditions for successful linguistic prac-

tice in natural language tout court. It just happens that on Dummett’s view,

the logical constants lend themselves to a rigid analysis because of their system-

atic nature.15 In particular, through their participation in deductive argument,

logical constants are “connected at start and finish with the ordinary assertoric

use of language” (ibid., p. 193). With the hope that the semantically significant

part of our linguistic practice for logical constants is exhausted by the inferential

practice, Dummett proposes to study the constraints on successful practice in a

proof-theoretic setting.

Why think that properties of inference rules are a good guide to the semantics of

logical constants? Dummett offers the following meaning-theoretic backdrop: In

general, linguistic practice is conditioned by two broad classes of principles:

• Verificational principles ;

• Pragmatic principles.

The first class of principles control when we are entitled to make an assertion,

and under what conditions we are required to acknowledge it. The second class

of principles govern what sort of commitments an assertion engenders through its

consequences.16 Earlier, in Dummett (1973a), he says:
15That is not to say that there is no inferential noise in natural language connectives like

‘and’, ‘or’, ‘not’, etc. Any attempt to formalise inferential behaviour must accept some major
concessions in comprehensiveness. For a discussion of the pragmatics of logical connectives, see
Edgington (2006).

16Brandom (1994, 2000) has developed the idea of entitlement and commitment as core seman-
tic notions, set in the framework of a Sellarsian game of giving and asking for reasons. Brandom
suggests that we ought to understand the notion of assertion derivatively from such a game. See
also Brandom (1983).
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Learning to use a statement of a given form involves, then, learning

two things: the conditions under which one is justified in making the

statement; and what constitutes acceptance of it, i.e. the consequences

of accepting it. (ibid., p. 453)

Dummett rightly observes that, in general, identifying such principles in our lin-

guistic practice is a tall order. However, he adds that, fortunately, logical constants

are governed by principles that may plausibly be spelled out in a natural deduc-

tion framework. More precisely, verificational principles for a logical constant λ

are given by the set of λ-intro rules; the pragmatic principles by the set of λ-elim

rules (see in particular Dummett 1991, p. 216). If this is correct, the natural ex-

tension of the thought is to mimic the constraints on verificational and pragmatic

principles with proof-theoretic constraints on natural deduction rules. For this

purpose Dummett adopts conservativeness.

It is in the context of verificational and pragmatic principles that the term ‘har-

mony’ is first coined by Dummett.17 He stresses the possibility of a malfunctioning

linguistic practice, that is, a practice where these principles are somehow at odds

with each other. Inconsistency, Dummett suggests, is the ‘grossest’ type of such

malfunction, but there are a number of ways in which the practice might seman-

tically misfire. In other words, a linguistic practice might subtly fail to deliver a

semantic content to an expression. It is in the presence of such malfunction that it

is legitimate to criticise and, potentially, revise an established linguistic practice

(and, thus, an inferential practice).18 This can happen for instance in cases where

a discourse turns out to be paradoxical (e.g., for a naïve truth predicate), but also
17As far as we know, the term makes its first appearance in Dummett (1973a, p. 454): “Such

change [in the linguistic practice] is motivated by the desire to attain or preserve a harmony
between the two aspects of an expression’s meaning.”

18The issue of revision of logic will be treated in some detail in Chapter 5.
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less visibly if there is failure of harmony at the level of the principles governing

the practice.19

The possibility of failure arises primarily because of the multiplicity

of principles governing our linguistic practice. For the language to

function as intended, these principles must be in harmony with one

another; but the mere fact that certain principles are observed in no

way guarantees that the necessary harmony will obtain. (ibid., p. 210)

Thus, harmony is a relation between verificational and pragmatic principles. For

logical constants, in particular, it is a relation between a set of intro-rules and a set

of elim-rules. Interestingly, even if harmony is a hopelessly many-faceted relation

for semantic principles in general, Dummett thinks it can be given an elucidating

formal characterisation when we restrict our attention to deductive arguments and

the accompanying inferential practice.20

[A]lthough we have no right to assume it a priori, we may at least

hope that, in their case [logical constants], the matter can be treated

entirely in terms of logical laws. (ibid., p. 215)

An informal idea of harmony is now taking shape. Dummett is suggesting that

intro-rules and elim-rules must somehow be balanced off against each other. It

is undesirable—and, according to Dummett, semantically undermining—to have

rules for a logical constant λ such that the consequences that can be drawn with the

elim-rules outstrip the grounds for introducing the formulae with the intro-rules;

or, vice versa, elim-rules that will not allow you to wholly recapture those grounds.
19Dummett contrasts his view—which is comparable to Belnap’s view about tonk—with the

late Wittgensteinean approach where a linguistic practice is immune to revision, even in the face
of inconsistency (see ibid. p. 209).

20One of the few non-logical cases Dummett discusses is the slur ‘Boche’, a pejorative term
for Germans. See Dummett (1973a, p. 454). This case also receives some interesting treatment
in Williamson (2003).
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In the first case, the intro-rules are too weak (or alternatively, the elim-rules too

strong); in the second, the intro-rules too strong (alternatively, the elim-rule too

weak). Either way, the equilibrium is upset—the verificational and pragmatic

principles are in tension.

Obviously, tonk is a good candidate for a connective that is disharmonious in

this informal sense. Indeed, tonk appears to allow consequences “not warranted

by our methods of arriving at the premises” (ibid., p. 217). More, given the

assumptions discussed above, tonk is the limit case where the disharmony is so

overwhelming as to trivialise the practice. Yet, it should also be clear from the

discussion that it is perfectly possible to have a disharmonious logical constant

that does not trivialise. First, the elim-rule might be just slightly stronger than

what is licensed by premises in the intro-rules.21 Second, the elim-rules might

be too weak, and thus obviously not trivialising. Although Dummett says that

this latter disharmony “will not produce so deleterious an effect” (ibid.), the two

ways in which the equilibrium can be upset will be taken equally seriously in what

follows. It is not evident why one would think that rules which ‘undergenerate’

conclusions are any less harmful than rules that ‘overgenerate’.

2.3.2 Harmony-As-Conservativeness

As we have seen, Dummett proposes to interpret intro- and elim-rules as verifi-

cational and pragmatic principles respectively, and, furthermore, conservativeness

as harmony for logical constants.

The best hope for a more precise characterisation of the notion of

harmony lies in an adaption of the logicians’ concept of a conservative

extension. (ibid., p. 218)
21The talk of deductive strength applied here should be taken in a loose sense. To say, sim-

pliciter, that a rule is (deductively) stronger than another can be made precise, but any grading
of the strength will vary radically with the comparison class. In a word, ‘slightly stronger’ must
be taken cum grano salis.
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But why is it that conservativeness is an appropriate formal rendering of the

informal harmony requirement? Dummett offers an argument:22 Let L be a lan-

gauge that contains the logical connective λ (possibly with other connectives),

and the corresponding logical system L contains its inference rules. Assume that

the grounds for asserting λ statements are disharmonious with respect to its con-

sequences, i.e., the Eλ rules outstrip the grounds given by the Iλ rules. In the

presence of λ, there will be (given some minimal assumptions abouts its rules) ar-

guments that are valid which were not valid in the λ-free language. The question

is if all of these are arguments involving λ. Dummett reasons as follows: Since the

λ-rules are disharmonious, there must be some consequence of a λ-statement that

is not a consequence of the grounds for asserting the λ-statement. Such a con-

sequence cannot itself be a λ-statement, Dummett concludes, “for the drawing of

such conclusions must count as part of our conventions governing the justification

of assertions involving [λ]” (ibid.).

In a word, this is the idea we will call harmony-as-conservativeness : “there is

harmony between the two aspects of the use of any given expression if the language

as a whole is, in this adapted sense, a conservative extension of what remains of

the language when that expression is subtracted from it” (ibid., p. 219).

Dummett goes on to label conservativeness-as-harmony total harmony (or har-

mony in context) indicating that this global notion of harmony is “in a high de-

gree relative to the context, that is, the base theory to which the addition is being

made” (ibid., p. 251). This is not unproblematic: Assume that the context of

deducibility already allows Γ ` A for each Γ, A. Introducing tonk-rules in this

context is perfectly conservative. Worse, non-conservativeness is elusive even in

more interesting cases. A famous example is Peirce’s Law p((A→ B)→ A)→ A)q

which is a classical tautology but intuitionistically invalid.23 For Dummett it is
22For details, see ibid., p. 218.
23Alternatively, Peirce’s Rule:

(A→ B)→ A

A
(PL)
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of meaning-theoretic significance that classical negation cannot be conservatively

added to a standard natural deduction proof-system without negation. In fact, in

the standard setting the positive fragment of full classical logic is not the classical

fragment but the intuitionistic fragment.

The addition of negation [to the positive fragment], subject to the

classical rules, does not produce a conservative extension; rather, it

enables us to derive the whole wide range of classical laws that do not

involve negation but are intuitionistically invalid. (ibid., p. 291)

However, this is a presentation-dependent fact: There are sequent calculus proof-

systems where the extension is perfectly conservative. Consider G1c, the sequent

calculus for classical logic with explicit structural rules. In the positive fragment

of this system we can construct the following derivation of Peirce’s Law:

A⇒ A
A⇒ B,A

(K)

⇒ A→ B,A
(R→)

A⇒ A

(A→ B)→ A⇒ A,A
(L→)

(A→ B)→ A⇒ A
(W )

⇒ ((A→ B)→ A)→ A
(R→)

One might ask why it is that this derivation is possible when G1c shares its op-

erational rules and structural rules with the intuitionistic counterpart G1i. The

short answer is that it makes a difference whether these rules are embedded in a

multiple-succedent calculus or a single-succedent calculus.24 The classical deriva-

tion hinges on the application of right-side contraction and weakening, steps which

would not be allowed in the intuitionistic system. There, the succedent multiset

must be either a singleton or the emptyset. (See Appendix A.11)

Similarly, if classical negation is added to the {→, ∨}-fragment, we can prove p(((A→ (B ∨ C))
→ ((A → B) ∨ (A → C))q as a theorem.

24It is important to realise, however, that also intuitionstic logic has a multiple succedent
sequent calculus, m-G3ip. The trick is to restrict the operational rules for → in the classical
calculus G3cp. See Troelstra & Schwichtenberg (2000, p. 82-3) for details.
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Once this observation has been made, Read (2000) offers us the ‘translation’ back

into natural deduction. For why not think that multiple-conclusion can do the

same job in a natural deduction framework as it does in a sequent calculus frame-

work? In fact, such a system was formulated in Boričić (1985).25 NC is a normal-

isable natural deduction system for classical logic. As requested, Peirce’s Law is

provable in the positive fragment of NC (see Appendix A.9 for the details on the

system):

[A](1)

A,B
(K)

A,A→ B
(I→)1

[(A→ B)→ A](2)

A,A
(E→)

A
(W )

((A→ B)→ A)→ A
(I→)2

Indeed, inNC there is no argument in the negation-free fragment that can only be

proved with the help of the negation-rules. Read correctly concludes that Dum-

mett’s argument from non-conservativeness is in a certain respect an artifact of

the formal presentation. Of course, the revisionist intuitionist might alter strat-

egy and claim that multiple-conclusion systems are bad for some reason or other.

In fact, Dummett independently argues that this is the case. We return to the

question of the legitimacy of multiple-conclusion in Section 3.3.

Another couple of well-known observations also tell against harmony-as-conservativeness.

First, Dummett himself admits that conservativeness is a lopsided test: It only

identifies one type of disharmony, namely where the elim-rules are too strong (or

the intro-rules too weak). The reverse case, where the intro-rule is too strong,

does not necessarily lead to non-conservativeness. To see this, consider tonk’s

near relative tunk:26

A B
AtunkB

(Itunk) AtunkB

[A]u....
C

[B]u....
C

C
(Etunk)(u)

25Boričić’s system is based on earlier work in von Kutschera (1962).
26I first became aware of the connective tunk in conversations with Crispin Wright.
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The pair of rule-sets is disharmonious (it is the dual case of tonk), but do not

yield non-conservative extensions. (The formal reason for this will become clear

below in the discussion about conversion steps.) Again, conservativeness is not a

sufficient test for harmony in our informal sense.27

Second, Read (2000) observes that Dummett’s argument for conservativeness only

shows that it is sufficient for harmony, not that it is necessary. What we would

really like is a formal analysis of harmony that is both necessary and sufficient. In

other words, we need the additional question of whether harmony entails conser-

vativeness: Dag Prawitz (1994) has suggested that the answer is ‘no’ by providing

a counterexample involving incompleteness and a truth predicate. Here are the

rules for the naïve truth predicate (where A itself may involve occurrences of the

truth-predicate):

A
Tr(pAq)

(ITr)
Tr(pAq)

A
(ETr)

Adding these rules to Peano arithmetic (PA), and allowing instances of it in

the induction axiom schema, yields a non-conservative extension since the Gödel

sentence becomes provable.28 Since it appears unworkable to deny the harmony of

the inference rules for the naïve truth predicate, Prawitz concludes that harmony

does not entail conservativeness.29

Between the above considerations it appears unlikely that harmony-as-conservativeness

is an adequate analysis of the constraint we want. Nevertheless, we will see in what

follows that traces of this first analysis can be found in improved formalisations of

harmony. To see this connection we need to look at the second notion of harmony

proposed by Dummett.
27Dummett is aware of this and turns to this issue under the heading ‘stability’ later in the

The Logical Basis of Metaphysics (see ch. 13). Dummett never gives a formal criterion for
stability, but most of the later writings on harmony can be seen as an attempt to spell out this
requirement in precise proof-theoretic terms.

28For details, see Shapiro (1998a) and Ketland (1999).
29However, this much cited ‘counterexample’ has come under recent criticism in Steinberger

(2009, ch. 2.7). He argues that the culprit is not the truth-predicate alone, but the truth-
predicate together with the term-forming operator for quotation, pq.
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2.3.3 Harmony-As-Normalisation

Dummett constrasts total harmony with intrinsic harmony, a harmony constraint

which, supposedly, more directly deals with the relationship between intro- and

elim-rules. The requirement is inspired by Prawitz’s normalisation theorem, or

what Dummett calls the ‘levelling of local peaks’:

The analogue, within the restricted domain of logic, for an arbitrary

logical constant c, is that it should not be possible, by first applying

one of the introduction rules for c and then immediately drawing a

consequence from the conclusion of that introduction rule by means

of an elimination rule of which it is the major premiss, to derive from

the premisses of the introduction rule a consequence that we could not

otherwise have drawn. Let us call any part of a deductive inference

where, for some logical constant c, a c-introduction rule is followed

immediately by a c-elimination rule a ‘local peak for c’. Then it is a

requirement, for harmony to obtain between the introduction rules and

elimination rules for c, that any local peak for c be capable of being

levelled, that is, that there be a deductive path from the premisses of

the introduction rule to the conclusion of the elimination rule without

invoking the rules governing the constant c. (Dummett 1991, p. 247-

48)30

In order to get a sufficient grasp of what Dummett is after we need to chase down

the origin of the idea of intrinsic harmony. Dummett himself explicitly refers to

Prawitz (1965), and the formulation of the normal form of proofs.31 Prawitz’s

brilliant doctoral thesis contained a key result in the development of structural
30An aside: It appears that Dummett strictly speaking requires the existence of normal form

which is a weaker property than normalisation, i.e., a procedure for producing a normal form of
any derivation.

31More in particular, Dummett seems to work on the backdrop of Prawitz (1973, 1974).
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proof-theory. The so-called normalisation proof was an analogue to Gentzen’s

Hauptsatz, the proof of cut-elimination for sequent calculus.

Prawitz’s idea was to formalise an inversion principle for natural deduction sys-

tems, and apply the local principle for rules to prove a global result: Normalisation.

In his wording:

Observe that an elimination rule is, in a sense, the inverse of the cor-

responding introduction rule: by an application of an elimination rule

one essentially only restores what had already been established if the

major premiss of the application was inferred by an application of an

introduction rule. This relationship between the introduction rules and

the elimination rules is roughly expressed by the following principle,

which I shall call the inversion principle:

Let α be an application of an elimination rule that has B as conse-

quence. Then, deductions that satisfy the sufficient condition [...] for

deriving the major premiss of α, when combined with deductions of the

minor premisses of α (if any), already “contain” a deduction of B; the

deduction of B is thus obtainable directly from the given deductions

without the addition of α. (Prawitz (1965, p. 33)

The term ‘inversion principle’ (Inversionprinzip) was coined in Lorenzen (1950,

1955). Lorenzen was presumably the first to formulate the idea that a natural

constraint on inference rules for a logical constant λ is that whenever some for-

mula C follows from the grounds for introducing a λ-formula, then C ought to

follow from the λ-formula directly.32 This idea anticipates two different later de-

velopments: First, there is a sense in which it indicates that we can avoid pointless

detours produced by first introducing a λ-formula only to immediately eliminate
32For details on Lorenzen’s inversion principle and his Konsequenzlogik, see Moriconi & Tesconi

(2008).
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it. Second, it hints at a method for inducing elim-rules from intro-rules. We turn

to the former idea first, and Prawitz’s explications of it. Later on we will spend

some time on formulating the latter idea (see Chapter 4).

What is normalisation and how is it related to the inversion principle? We see

now a connection with Dummett’s ‘levelling of local peaks’. When a λ intro-

rule is followed immediately by a λ elim-rule for which the intro-conclusion is

the major premise of the elim-rule, this formula constitutes a local maximum of

complexity. Sometimes we say that the formula is a detour formula: If the rules are

harmonious we should be able to go directly from the grounds of the intro-rule to

the conclusion of the elim-rule without bothering with the intermediate intro/elim

applications. This suggests that there is a related derivation which is a proof of

the same argument by moving directly from the grounds to the (intermediate)

conclusion. We will see, however, that it is a highly non-trivial issue how to apply

these reductions in a manner that guarantees that no new maxima is generated.

Definition 2.3 (Maximum formula). A formula occurring in a derivation Π that

is both the consequence of an application of a λ intro-rule and the major premise

of an application of a λ elim-rule is said to be a maximum formula in Π.

Built into this definition is typically an assumption that intro-rules for a logical

constant λ will have a λ-formula as conclusion, and, correspondingly, the major

premise of a λ elim rule is also a λ-formula. This is why we think of the meeting

point between the two rule-applications as an increase in formula complexity.33

In preparation for later discussions of normalisation, we need to add a further

complication. In the presence of rules like E∨ and E∃, where the form of the

conclusion might be completely independent of the major premise, consecutive

applications of an elim-rule might yield a segment of the same formula in the

derivation.
33The complexity of a formula A is defined as the number of logical connectives in A (except
⊥).
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Example 2.4. The following derivation involves a segment of the formula (A ∨

B) ∨ C:

A ∨ (B ∨ C)

[A]1

A ∨B
(A ∨B) ∨ C

[B ∨ C]2

[B]3

A ∨B
(A ∨B) ∨ C

[C]4

(A ∨B) ∨ C
(A ∨B) ∨ C

(3,4)

(A ∨B) ∨ C
(1,2)

We will call rules of this type del-rules (disjunction-elimination like rules). They

are worth noticing not only because they complicate the standard treatment of

normalisation in intuitionistic logic, but because this type of rule will come to

prominence in what is to follow (see Chapter 4). We then give a definition of

a segment and maximum segment, for which the above maximum formula is the

special case where the length of the segment is 1.

Definition 2.4 (Segment). A segment is a sequence A1, ..., An of consecutive

occurrences of a formula A in a derivation Π such that:

(i) A1 is not the consequence of application of a del-rule;

(ii) For each i < n, Ai is a minor premise of an application of a del-rule; and

(iii) An is not the minor premise of an application of a del-rule.

Definition 2.5 (Maximum Segment). A segmentA1, ..., An is amaximum segment

if A1 is a consequence of an intro-rule application (or EFQ) and An is the major

premise of an elim-rule application.34

Clearly, if A1 = An, then A1 is a maximum formula. Whatever the length of a

maximum segment, it must start and end with an intro- and elim-rule for the same

connective (with the exception of EFQ and possibly other special rules). Below
34Note that we can talk about the complexity of a segment by taking the degree of the segment’s

formula.
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we will see that Prawitz’s normalisation proof uses a subinduction on the length

of segments in a derivation.

We are then in a position to systematically evaluate standard natural deduction

rules with respect to the deletion of maximum segments. First, Prawitz identi-

fies conversions (or reductions) for logical constants in Ni (natural deduction for

propositional intuitionistic logic, see Appendix A.1):

Definition 2.6 (Detour Conversions). Conversions for intro- and elim-rules in

Nip. Let i ∈ {1,2}:35

Conjunction ∧:

Π1

A1

Π2

A2

A1 ∧ A2

Ai
 

Πi

Ai

Disjunction ∨:

Π
Ai

A1 ∨ A2

[A1]u

Π1

C

[A2]v

Π2

C
C

(u,v)
 

Π
[Ai]
Πi

C

Implication →:

[A]u

Π
B

A→ B
(u) Π1

A
B  

Π1

[A]
Π
B

35Gentzen (1934, pp. 80-81) gave an example of a conversioin step (for implication), but did
not give any systematic account nor connect it with his Hauptsatz :

An example may clarify what is meant [by introduction rules as ‘definitions’]: We
were able to introduce the formula U ⊃B when there existed a derivation ofB from
the assumption formula U. If we then wished to use that formula by eliminating
the ⊃-symbol (we could, of course, also use it to form longer formulae, e.g., (U ⊃
B) ∨ C, ∨-I ), we could do this precisely by inferring B directly, once U has been
proved, for what U ⊃ B attests is just the existence of a derivation of B from U.
Note that in saying this we need not go into the ‘informal sense’ of the ⊃-symbol.
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Negation ¬:

Π1

A

[A]u

Π2

⊥
¬A

(u)

⊥  

Π1

[A]
Π2

⊥

In Prawitz’s formulation of Nip there are no primitive rules for negation (nor in

Ncp). Rather, negation is defined as is standard with ⊥ and →. Consequently,

there is no use for the last conversion step. Instead, Prawitz’s proof proceeds by

the trivial observation that whenever a maximum segment is formed by starting

with EFQ and applying an elim-rule on the consequence, we can use EFQ to go

directly to the end-formula of the derivation. E.g.,

⊥
A ∧B
A  

⊥
A

Interestingly, since there is no I⊥ rule, the corresponding E⊥ rule is a limit case

where the grounds for introducing the formula is something like the emptyset. Put

differently, Prawitz’s I⊥ is a kind of null-rule.36 We return to the status of the

somewhat special connective ⊥ in Section 3.2.3. In Section 4.5 we discuss ⊥ and

harmony more generally.

With the above conversion steps, we can say with Dummett’s terminology that the

rules in question all satisfy intrinsic harmony, i.e., any local peak can be leveled.37

With respect to proof-theoretic harmony, we can observe that the conversions

display the fact that anything derivable with the elim-rules can be reached directly

from the grounds of the intro-rules. The result is derivations in what is known as

normal form:
36See Prawitz (1978, p. 35) for details.
37There is an interesting exegetical issue here. Steinberger (2009) has argued, pace Read

(1994), that Dummett never intended intrinsic harmony to be about normalisation, but only
about local reductions. Other transformations, which might be needed for normalisation, were
not considered part of the harmony notion.
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Definition 2.7 (Normal Form). We say that a derivation Π is in normal form if

it contains no maximum segments.

In other words, what Dummett would need is a general result indicating the ex-

istence of normal form derivations for every derivation in the system in question

(or at least appropriate conversion steps for the inference rules, see footnote 37).

Incidentally, there is such a result for intuitionistic logic; even better, there is a

result giving a procedure for transforming any derivation into normal form. This

is Prawitz’s normalisation theorem for intuitionistic logic.

Notice, however, that the result requires that we deal with some further compli-

cations. First, note that there might be redundant applications of del-rules, i.e.,

where one of the minor premises involve no discharge. Such cases can trivially be

removed by simplifying to a derivation where we merely use the subderivation to

the intermediate conclusion.

Second, with del-rules around, we also need to treat segments of length > 1. This

is done by permutation conversions which shift the elim-rule application on An of

the maximum segment (see Def. 2.5 again) upwards over minor premises of the

del-rule. For example, in the case of ∨ we get:

Π
A ∨B

Π1

C
Π2

C
C Π

′

D  

Π
A ∨B

Π1

C Π
′

D

Π2

C Π
′

D
D

With this modification out of the way, we get the main result. For Dummett’s

purposes this means that intuitionistic logic satisfies the conditions of both total

and intrinsic harmony.

Theorem 2.1 (Nip Normalisation (Prawitz)). An Nip derivation Π from Γ to

A reduces in some number of conversion steps to a derivation Π
′ in normal form

from Γ to A.
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The proof proceeds by main induction on the complexity of a segment (i.e., the

segment formula), which Prawitz calls the degree d of a segment (i.e., the number

of connectives except ⊥ in the occurring formula), and a subinduction on the

length l of all segments (sometimes called the rank). Let the induction value of

a derivation Π in Nip from Γ to A be v = <d, l>, where d is the highest degree

of a maximum segment in the derivation. Then, Prawitz shows by transformation

that there is a derivation Π
′ with induction value less than v. The basic idea is

that the induction metrics (together with right order of dealing with maximum

segments) ensure that even if the length of the derivation is growing as a result of

the conversions, the process will terminate since either the degree or the length is

reduced.

Importantly, normalisation is a result that provides us with a range of neat insights.

First, there is the potential for a refutation method based on showing the non-

existence of a normal proof. If an Nip argument <Γ, A> cannot have a derivation

in normal form, then by Thm. (2.1) it is not derivable in the system. Second, by

the form of normal form derivations we aquire a valuable corollary, the so-called

Subformula Property. Let us first give a definition:

Definition 2.8 (Subformula). Subformulae of a formula A are defined inductively

as follows:

1. A is subformula of A;

2. if B ∧ C, B ∨ C, B → C is a subformula of A, the so are B, C;

Thm. (2.1) lets us prove as a corollary that this property applies to the system

Nip.

Corollary 2.2 (Subformula Property). Every formula occurring in a normal form

Nip derivation of A from Γ is a subformula of A or of some B ∈ Γ.

Moreover, from Cor. (2.2) we get a result that might have some importance for

PTS more generally: the Separation Property:
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Corollary 2.3 (Separation Property). If Π is a normal form Nip derivation, then

if Iλ or Eλ is applied in Π, then λ occurs in A or some B ∈ Γ.

Why is this result of interest for the inferentialist? First, note that Separation

Property entails total harmony, i.e. conservativeness. Assume for proof-system S

that it has the Separation Property, and let S−λ be the result of restricting this

system to the subsystem where the language is the λ-free fragment and the rules

for λ are omitted. S is a conservative extension over S−λ, for assume that there

was an argument <Γ, A> in the λ-free fragment such that Γ 0S−λ A but Γ `S A.

Then the non-λ-rules are not sufficient to prove a non-λ-argument <Γ, A>. Thus,

in Γ `S A, the λ-rules must contribute, contradicting the assumption that S has

the Separation Property.

There is, in other words, an immediate sense in which Dummett can link intrinsic

harmony (conversion steps) with total harmony (conservativeness). Nonetheless,

the result does not generalise: There are, as we shall see in Chapter 3, logics which

normalise but for which the Separation Property does not hold. Second, even if

we ignore its relation to other formal properties, there might be an argument to

the effect that the inferentialist ought to require the Separation Property. An

example of someone who endorses this view is Neil Tennant (1997). He claims

that the property ought to constrain any proper logical constant.38

The basic rules that determine logical competence must specify the

unique contribution that each operator can make to the meanings of

complex sentences in which it occurs, and, derivatively, to the valid-

ity of arguments in which such sentences occur. [...] It follows from

separability that one would be able to master various fragments of the

language in isolation, or one at a time. It should not matter in what

order one learns (aquire the grasp of) the logical operators.39

38See Tennant (1997, pp. 313-22).
39Note that Tennant thinks the Separability Property is conceptually prior to harmony, con-

trary to the manner in which it is introduced here.
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It is unclear whether this motivation needs to be accepted by inferentialists in

general. Just holding (INF) does not appear to commit one to the idea that

“it should not matter in what order one learns the logical operators”. Rather,

there is an underlying thought here, advocated by both Dummett and Tennant.

It is the idea that only molecularism—the overarching claim that sentences have

determinate content independent of the language as a whole—can account for

compositionality ; in particular, semantic holism cannot.40 If the inferentialist is

so inclined (or so convinced), then there might be a more robust motivation for

Separability.41 Yet, the connection between the formal properties and the meaning-

theoretic desiderata is an intangible one. For compositionality, and its connection

to molecularism, is a many-faceted affair. We leave this issue behind with a simple

warning that unless a position like molecularism is defensible, an inferentialism

that takes finite sets of inference rules for a logical connective to determine its

meaning isolated from the context of the proof-system, remains chimerical.

40See e.g. Tennant (1997, p. 46-7).
41See Dummett (1991, ch. 10) and Tennant (1987, chs. 5-7).



Chapter 3

Harmony in Classical Logic

3.1 Classical Negation and Revisionism

So far we have outlined the Dummett-Prawitz approach to an inferentialist crite-

rion for inference rules. Their investigation is clearly geared towards intuitionstic

logic and the thought that with proof-theoretic constraints informed by meaning-

theoretic considerations, a problem with classical logic will become apparent. We

will call that attitude revisionism. It needs to be made absolutely clear that

revisionist tendencies, be it against classical logic or anything else, are an issue

separate from PTS and logical inferentialism. Yet, given the prominence of revi-

sionists in the PTS tradition, it is worth going through the arguments to convince

ourselves that even if the revisionism must be abandoned, there is something to

be said for PTS in general. Let us now turn to the details of their argument. How

does classical logic fail to pass the inferentialists’ bar?

First of all, it is crucial that there is a certain fluidity involved in what precisely

classical logic is. There is no deep problem here, it is simply that the expression

‘classical logic’ picks out a number of things, e.g., a class of theorems, a model-

theoretic relation, a provability relation, classical semantics. No danger is involved

except when properties you are interested in might apply to, say, one classical

55
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proof-system but not another. The revisionist’s burden is to convince us that

whatever formal reasons there are for thinking that classical logic is bad, are not

just presentation-dependent properties, but something that gets at—so to say—

the heart of classical logic. Alternatively, their strategy could be to defend one

presentation as the correct one. Different proof-systems are good for different

purposes, and different formalisms have their advocates and detractors. Typically,

such debates are coloured by claims about which formalism best captures ordinary

reasoning, a line of argument that I find both obscure and obscuring.1 To the best

of my knowledge, no serious data has been put forward to support one framework

or another. However, we will revisit this debate briefly in Section 4.5, then with

reference to the issue of multiple-conclusion. We focus on natural deduction in

this chapter because of the trends in the inferentialist literature.

We saw above in Section 2.3.2 that standard natural deduction for classical logic

lacks total harmony. Ncp fails on this account because classical negation (or

rather E⊥C , with classical negation as defined) is non-conservative over the system

restricted to the implicational rules, I→ and E→, i.e., Ncp is a non-conservative

extension over the positive intuitionistic fragment, Nip+. On the other hand,

intuitionistic negation (in the shape of E⊥I) yields a conservative extension for

the same system.

Similarly, Gentzen’s negation rules I¬ and E¬, together with E⊥I also produce

a conservative extension over minimal logic Nmp.2 These negation rules, how-

ever, only give intuionistic logic. In order to get classical logic, Gentzen suggests

adding LEM (law of excluded middle) or DNE (double negation elimination),

both of which will results in non-conservativeness. Prawitz’s system takes Nip

and replaces E⊥I with E⊥C (often just called classical reductio and contrasted

with the intuitionistically valid reductio ad absurdum rule), which also yields non-

conservativeness.3

1Revisit, for example, Gentzen’s original motivation for developing natural deduction.
2See Appendix A.3.
3Both of these facts can be proved with fairly straightforward derivations.
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All these results are connected with the fact that introducing classical negation in

some guise or other typically impacts provability for the implicational fragment

of the calculus. Some remarks on this are in order. First, note that when we

investigate Gentzen’s negation rules, I¬ and E¬, it becomes apparent that if

p¬Aq is defined as pA → ⊥q these rules are instances of the →-rules already in

the system:

[A]....
⊥

A→ ⊥
A→ ⊥ A

⊥

Now contrast the classical reductio rule, E⊥C . When we read negation as defined

we get:

[A→ ⊥]....
⊥
A

The resulting inference is clearly not an instance of a valid implicational inference

in the sense that ⊥ could be substituted for any formula. In other words, adding

E⊥C to Nip is tantamount to helping oneself to another inference rule for ‘→’.4

Second, the above observation can be further entrenched by noticing that the →-

fragment of Nip can be extended to the →-fragment of Ncp by adding another

implicational rule, Peirce’s Rule, corresponding to Peirce’s Law above (see Section

2.2.3):

[A→ B]u....
A
A

(PR)(u)

4Whether or not this is an elim-rule is an interesting issue. We return to the question below
in Section 3.2.1.
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This rule is suggested in Curry (1950). Of course, this is trivially a conservative

extension since the language remains the same. It does not vindicate classical

negation for Dummett and Prawitz, but it does give us a natural deduction system

characterising the classical implicational fragment.5

What we have seen so far is that there is a range of standard natural deduction

presentations of classical logic that all fail with respect to Dummett’s total har-

mony. Further, since the Separation Property entails conservativeness (see Section

2.3.3), all of these systems have ‘inseparable’ connectives (in particular, ‘¬’ and

‘→’). This analysis, however, includes no mention of intrinsic harmony. For many

revisionist inferentialists, the deeper analysis of the problem with classical negation

involves the details of conversion steps for classical negation.6

We saw in Def. (2.6) that the I¬-E¬ formulation of intuitionistic negation can be

given a conversion step as follows:

Π1

A

[A]u

Π2

⊥
¬A

(u)

⊥  

Π1

[A]
Π2

⊥

Consequently, both Prawitz’s system Nip (without negation rules) and Gentzen’s

Nip¬ normalise. But, importantly, this result does not carry over to classical logic

in any straightforward way.

Take for instance the classical system Ncp¬ with DNE in addition to I¬ and E¬:

[¬A]u....
⊥
¬¬A

(u)

A

5Note that classical reductio in axiom form, p((p → ⊥) → p) → pq, is an instance of Peirce’s
Law.

6E.g., Prawitz (1977).
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The derivation cannot be converted into a derivation without the maximum for-

mula like its intuitionistic counterpart. Dummett, in his discussion of negation,

considers the similar system NcpD with I¬D, E¬D, and DNE (where no nullary

connective ⊥ is needed):

[A]u....
¬A
¬A

(I¬)(u) A ¬A
B

(E¬) ¬¬A
A

(DNE)

Dummett is quick to point out that there can be no leveling of local peaks for the

same reasons as in Ncp¬:

[¬A]u....
¬¬A
¬¬A
A

(u)

Correspondingly, NcpLEM yields the same problem, but parred with E∨:

Π
A ∨ ¬A

[A]u

Π1

C

[¬A]v

Π2

C
C

(u,v)

Prawitz observes that for the systemNcp (andNip for that matter) the E⊥C-rule

does not fit the intro- or elim-rule mold of the other connectives. He entertains

the thought of replacing the rule with:

[A]u....
B

[A]v....
¬B

¬A
(Dil) ¬¬A

A
(DNE)

and thus allowing negation as primitive. Prawitz quickly concludes that this will

not remedy the situation. First, he dislikes the fact that the intro-rule is improper,

that is, it has the principal connective occurring in one of the subderivations.7

7In Dummett’s terminology this is called non-sheereness (1991, p. 257).



Chapter 3 Harmony in Classical Logic 60

Second, it does not satisfy Prawitz’s inversion principle since there are derivations

where an occurrence of a maximum formula cannot be reduced. His example is

LEM :8

[A]1

A ∨ ¬A [¬(A ∨ ¬A)]2

¬A
(1)

A ∨ ¬A [¬(A ∨ ¬A)]2

¬¬(A ∨ ¬A)
(2)

A ∨ ¬A

Here the formula ¬¬(A∨¬A) occurs as both the major premise of an elim-rule and

as the conclusion of an intro-rule, and there is no way in which we can preserve

the provability of LEM while removing the maximum formula.

Does this mean that normalisation fails for classical logic? No, Prawitz (1965)

proved the result for the ∨,∃-free fragment of Nc (or, more generally, del-rule

free classical logic). Since these logical constants are definable in the remaining

language (¬, ∧, →, ∀), the result can still be said to hold of classical logic. The

trick is to deal with classical negation as a special case. Prawitz first showed that

anything provable the ∨,∃-free fragment of Nc is provable using only atomic for-

mulae as consequences in E⊥C . The proof works by transforming arbitrary proofs

using E⊥C into proofs where the application of the same rule involves a formula

of lower complexity.9 Actually, given the absence of ∨ and ∃, the normalisation

result for classical logic is more straightforward than the intuitionistic result: Nor-

mal form can be defined over maximum formula without bothering with segments

and permutation conversions.

Theorem 3.1 (Ncp Normalisation). An Ncp derivation (in the ∨,∃-free lan-

guage) Π from Γ to A reduces in some number of conversion steps to a derivation

Π
′ in normal form from Γ to A.10

8See Prawitz (1965, p. 35)
9See ibid., p. 39-40.

10Actually, there is an improved normalisation result due to Stålmarck (1991). By adding
extra reduction rules covering the cases of ∨ and ∃, normalisation is proved for the full language.
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Unsurprisingly, however, the corollaries are not the same as for Thm. (2.1).11

E⊥C must be taken as an exception, as its negated discharge formula might not

be a subformula of any premise, nor of the conclusion. This happens for example

in a derivation of LEM, where the formula ¬¬(A ∨ ¬A) is not a subformula of the

conclusion.

Corollary 3.2 (Subformula Property Ncp). Every formula occurring in a normal

form Ncp derivation (in the ∨,∃-free language) of A from Γ is a subformula of A

or some B ∈ Γ, except for assumptions discharged by applications of E⊥C and

occurrences of ⊥ immediately below such assumptions.12

Furthermore, as we already had reason to anticipate, adding E⊥C also affects

the Separation Property. In particular, since the extension of the intuitionistic

implicational fragment is non-conservative, there are normal derivations of A from

Γ where we need to apply rules for connectives not occurring in either A or Γ.

Peirce’s Law is an example:13

[A→ ⊥]2
[(A→ B)→ A]3

[A→ ⊥]2 [A]1

⊥
(E→)

B
(E⊥C)

A→ B
(I→)(1)

A
(E→)

⊥
(E→)

A
(E⊥C)(2)

((A→ B)→ A)→ A
(I→)(3)

This is a normal derivation of Peirce’s Law. There are applications of intro-rules

immediately followed by applications of the corresponding elim-rule, but not where

the conclusion of the former features as the major premise of the latter. The con-

clusion is in the→-fragment, and yet there is no way to do without the applications

of E⊥C .14 Consequently, the Separation Property fails (exactly as expected given
11One corollary of Thm. (3.1) that we do get is the consistency of classical logic. See Prawitz

(1965, p. 44). Of course, this extends to intuitionistic logic since it is deductively weaker. The
consistency corollary is inspired by Gentzen’s consistency proof using cut elimination.

12From this it follows that the qualification will be restricted to negations of subformula.
13Recall that in Prawitz’s system negation is defined, ¬A = A → ⊥. We treat the rules here

accordingly.
14The derivation also involves vacuous and multiple discharge.
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the non-conservativeness). The upshot is important: The normalisation theorem

is a global property of a proof system that is to some extent independent of conver-

sion steps for the logical connectives. It is these conversion steps that guarantee

the Separation Property in the intuitionistic case, so the move from normalisa-

tion to Separation does not hold in general. One might then suspect that like

conservativeness, normalisation is not the ideal test for the inferentialist.15

As it becomes apparent that several of the PTS desiderata that have been asso-

ciated with harmony (or with meaning-determining inference rules in general) are

independent of each other, the inferentialist must pronounce on precisely which

of the aforementioned properties must feature in her semantic theory. This is

crucial if the inferentialist revisionist is to have a convincing case against any

logic, say, classical logic, as falling short of proof-theoretic demands. We return

in Chapter 4 to the analysis of proof-theoretic harmony. In what follows we will

evaluate different classicist responses with respect to the proof-theoretic demands

explored so far. Two main insights are reached: First, PTS is not intrinsically

revisionistic; in particular, classical logic is perfectly compatible with any reason-

able proof-theoretic demand. Second, negotiating the proof-theoretic framework

required for different logics to fulfill the demands will inform the development of

an exact harmony criterion.
15Peter Milne (1994) raises an interesting point regarding the conversion steps for intuition-

istic logic. What guarantee do we have that there are no further rules that can be added to
intuitionstic logic which displays the same sort of conversion, but which still does not yield clas-
sical logic? In other words, is there an intermediate logic which is harmonious in the sense of
harmony-as-normalisation?

In order to prove that no extension was possible, one would, I suppose, have to go
through every possible rule-extension of intuitionist logic that yields either classical
logic or one of the uncountable infinity of intermediate propositional logics. The
suggestion that completeness has been proved proof-theoretically may therefore be
premature. (ibid., p. 56)
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3.2 Classical Logic Revamped

We saw in Section 2.3.2 that conservativeness is a highly framework-sensitive prop-

erty. What about normalisation—is it equally variant under different presentation

of classical logic? There has been a whole battery of replies to the arguments

that Dummett and Prawitz advances against classical logic in the last couple of

decades. So far the emphasis has been on the proof-theoretic differences between

intuitionistic and classical logic, a difference that Dummett finds pregnant with

revisionist significance. Concluding his investigation, he says:

This more detailed look at classical negation confirms [...] that it is not

amenable to any proof-theoretic justification procedure based on laws

that may reasonably be regarded as self-justifying. (Dummett 1991,

p. 299)16

Classical logic fares poorly with respect to his various constraints, while “intuition-

istic logic”, on the other hand,

appears capable of being justified proof-theoretically by any of the

procedures we have discussed; and this means that the meanings of

the intuitionistic logical constants can be explained in a very direct

way, without any apparatus of semantic theory, in terms of the use

made of them in [inferential] practice. Dummett (1991, p. 299)17

We now turn to different classicist replies, and attempts at defusing the objections

raised by Dummett and Prawitz. The question is whether the proof-theoretic

observations these objections are based on are deep facts about the difference

between intuitionistic and classical logic, or just artifacts of the presentations.
16Prawitz (1977, p. 34) reaches the same conclusion.
17“That is not, of course, to say that the classical negation-operator cannot be intelligibly

explained; it is only to say that it cannot be explained by simply enunciating the laws of classical
logic.” (ibid.)
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3.2.1 E⊥C Revisisted

Peter Milne’s discussion of harmony and inference rules (Milne 1994) contains sev-

eral interesting suggestions about how PTS can be extended to classical logic. On

the issue of conversions for classical negation he suggests an unorthodox perspec-

tive on E⊥C in the system NcpT (see Appendix A.5). Instead of considering it as

an elimination rule, think of it as an introduction rule for classical negation.18 This

is surprising, of course, since the other standard intro-rules have in common that

they literally introduce their respective connectives as the principal connective in

the conclusion. Certainly, this appears to be part of the motivation for Dummett’s

analogy between assertion-conditions and intro-rules. Of course, Milne is the first

to admit that this is counterintuitive, but nonetheless it merits a closer look.

With the reconception of E⊥C we get the following conversion:

[¬A]u

Π0

⊥
A

(i)
Π1

¬A
⊥  

Π1

¬A
Π0

⊥

Clearly the conversion behaves a bit differently from the ones displayed in Def. 2.6.

Importantly, the formula which is the conclusion of the intro-rule and the major

premise of the elim-rule is not a maximum of complexity in the standard sense

defined by the formula degree.19 In fact, this formula does not necessarily have a

principal occurrence of a negation (A might have any form). Rather, the negated

formula, the formula of the highest complexity, is discharged in the subderivation.

The question, then, is whether we have any reason for being suspicious of conver-

sions of this type. More precisely, what is the significance of allowing conversions
18Slater (2008) makes the same claim but with a broader motivation about the three-fold

nature of classical connectives. In essence, however, his view has the same limitations as Milne’s
(e.g., failure of the Subformula Property).

19Note that on Milne’s view A is actually the major premise of the elim-rule.
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like this for the normalisation theorem? In fact, there are some noteworthy dif-

ferences from the treatment of normal form in Section 2.3.3. First, because of the

re-labelling of rules, the extension of ‘maximum formula’ is different, and, con-

sequently, what we count as a normal form derivation will be different. As an

example, the following derivation of LEM has no maxima:

[¬(A ∨ ¬A)]3

[¬(A ∨ ¬A)]3

[¬¬A]2 [¬A]1

⊥
A

(1)

A ∨ ¬A
⊥
¬A

(2)

A ∨ ¬A
⊥

A ∨ ¬A
(3)

We get a ‘normal form’ which is non-standard: Conversions delete successive ap-

plications of intro-rules and elim-rules (of the same connective), but what is being

deleted is not necessarily the formula of the highest degree. Perhaps the purist

would not want to call this sort of procedure normalisation at all, but we leave

that issue aside. The property undeniably has a strong affinity to normalisation.

The important question, rather, is whether or not the above negation conversion

will reduce the appropriate induction values for any given non-normal derivation.

Of course, as opposed to Prawitz’s original proof strategy we cannot simply rely

on the degree of the maximum formula A, since in the converted derivation ¬A

might itself be a maximum formula. This is the case depending on the structure

of the subderivations Π0 and Π1 which are transfered from the original derivation

to the converted one. Specifically, when Π1 ends with an application of classical

reductio (E⊥C as the intro-rule) and Π0 starts with an application of E¬ (where

¬A is the major premise, and so ¬¬A the minor premise).

We might immediately suspect that the whole proof itself will be reduced in length

after a conversion, but this need not be the case. In proof-systems that are linear

or affine, i.e., that do not allow multiple discharge of assumptions, we know that
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the length of the converted derivation will be reduced.20 As the derivation is

always finite, the process will terminate at some point. However, neither Nip nor

Ncp have this property. They both include multiple discharge, a policy that might

engender explosion of derivation length. Schematically, we can have a conversion

of the following type:

[¬A]11 . . . [¬A]1n
Π0

⊥
A

(1) Π1

¬A
⊥  

Π1

¬A1 . . .
Π1

¬An
Π0

⊥

The subscripts on ¬A simply indicate the number of formula occurrences. De-

pending on the length of Π1, the converted derivation might be longer than the

original. Since we have no guarantee that there are no new maximum formulae in

the converted derivation (and the degree of the maximum formula is higher than

the one deleted in the conversion, i.e., A), it is difficult to see what headway we

have made.

It is clear, at least, that the suggested reduction procedure does give some strange

results. For instance, take the following, rather perverse, derivation:

¬A→ A [¬A]1

A [¬A]1

⊥
A

(1)

[¬¬A]2 ¬A
⊥
¬A

(2)

⊥

The derivation is obviously a detour: The three topmost lines in the left-most

branch would have sufficed. More, it is a non-normal derivation, by Milne’s light,

since in the left-most branch the bottom A is the major premise of an E¬ appli-

cation and the conclusion of an I¬ application.21 Applying the ¬ conversion, we

get:
20See Restall (2009a, p. 29-31) for some discussion.
21Note that the intro-application discharges doubly.
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¬A→ A

[¬¬A]1 ¬A
⊥
¬A

(1)

A

[¬¬A]2 ¬A
⊥
¬A

(2)

⊥

This is not yet the derivation we would expect for the argument, but, in fact, there

are no maximum formula to convert. The bottom ¬A in the right-most branch

is a conclusion of an I¬ application, but, importantly, it is the minor premise of

the E¬ application.22 However, puzzling results prove nothing. It still remains

to be seen if any derivation can indeed be put in normal form, and, furthermore,

what sort of motivation one could have for the normal form resulting from these

derivations.

Milne (1994) certainly does not suggest that the above conversion will lead to

normalisation, and one might think that the issue is of little consequence to the

inferentialist. The real question is whether the conversion is still in the spirit

of Prawitz’s inversion principle (see Section 2.3.3): Whatever we can conclude

with the elim-rule is already ‘contained’ in the grounds for introducing the major

premise. Given the conversion step, this does seem to be the case independent of

considerations about normalisation. Nevertheless, from the inferentialist’s view-

point one might be more alarmed by the failure of the Subformula Property. That

the property does fail is evident from the above derivation of LEM. Without the

Subformula Property, and thus the Separation Property, the result might be of

less interest for the inferentialist: It is not clear whether the classical logician can

avoid the charges from the revisionist intuitionist.

Normalisation aside, the more interesting discussion comes with Milne’s responses

to meaning-theoretic worries he anticipates with the suggested introduction rule.

One of the objections he considers was originally stated by Prawitz. Let us as-

sume that E⊥C is an intro-rule, and, furthermore, that like Prawitz we consider

intro-rules to be meaning-conferring. One might then worry that we have now
22A similar thing can happen in Nip, but in that case A and ¬¬A are not equivalent, so the

result appears less surprising.
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introduced a meaning-conferring rule for introducing A which rests on the as-

sumption of a more complex formula, ¬A. But, presumably, the meaning of ¬A

will involve reference to A. In particular, if A = p where p is atomic, Prawitz

warns us that the assertion conditions for the atomic fragment of the language

will be affected by negation.23 Even if no further detail is offered, it is clear that

Prawitz’s objection is that this situation flies in the face of the compositionality

of language.

Milne offers a series of replies to Prawitz. First, there is the option of denying

that intro-rules have some sort of semantic primacy in PTS. One might instead,

pace Prawitz, take elim-rules to be meaning-conferring, and thus let intro-rules

be justified via their corresponding elim-rules. Of course, this will require an

appropriate formulation of harmony, but that is an open issue as far as Milne is

concerned.

Second, Milne entertains the idea that syntactic complexity does not correspond

to meaning-theoretic complexity. How could this be made precise? The suggestion

is that it is a mistake to lopsidedly focus on truth-conditions—falsity-conditions

are equally important to the classical semanticist. Inspired by Read (1988) (who

in turn is inspired by Wittgenstein’s Tractatus), Milne presents a system where

atomic formulae can be signed by an operator in the structural language (i.e.,

not in the object language), c. We read cA as ‘the contrary of A’, where it is

ambiguous whether or not A is negated.24 More precisely, if A = ¬B, then cA

stands for B (or, equivalently, ¬¬B); if A = B, then cA stands for ¬B. We can

then formulate the two-fold rules:
23“But this explanation of the meaning of atomic sentences seems incredible. Firstly, it breaks

with the molecular and inductive character of intuitionistic (and platonistic) theories of meaning
since the canonical proofs of an atomic sentence A now depend on the canonical proofs of ¬A,
which again depend on the canonical proof of A. Secondly, the break appears at a point where
the intuitionistic theory seems especially solid: even holistically inclined theories tend to make
an exception for atomic sentences [...] since it is usually felt that their meaning is independent
of the meaning of logical compound formulas.” Prawitz (1977, p. 36)

24Compare Rumfitt’s view of harmony in classical logic in Section 3.2.3.
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[A]u....
⊥
cA

(u) A cA
⊥

The crucial difference is that the c-reductio rule is ambiguous between intuition-

istic reductio, I¬, and classical reductio, E⊥C . It simply tells you that you can

toggle from negated to unnegated or from unnegated to negated as long as you

can derive a contradiction from the assumption. Milne’s observation is that the

c-rules are fine with respect to Prawitz’s complexity objection. Here we withhold

any further discussion of this until we reach systems with assertion and denial as

primitives below (see Section 3.2.3). The main issue, we will see, is how to un-

derstand rules which operate on structural operators rather than object language

connectives. Milne himself moots the worry that the operator c is ‘parasitic’ on

negation, but deems it unproblematic.

Finally, Milne argues that even if there are considerations against treating E⊥C

as an intro-rule, there is a more general problem with the approach favoured

by Prawitz. In fact, there is reason to think that we cannot have an intro-rule

which gives the assertion conditions for negation without recourse to negation (or

something related) in the premises or assumptions. If this is the case, Prawitz

objection against E⊥C as an intro-rule is perhaps undermotivated.

Milne’s point rests on a result about when a formula can be essentially negative:

Definition 3.1 (Essentially Negative Formulae). We define inductively when a

formula is essentially negative as follows:

• ⊥ is essentially negative;

• no atomic formula is essentially negative;

• A ∧B is essentially negative iff A or B is;

• A ∨B is essentially negative iff A and B are;
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• A→ B is essentially negative iff B is.

Under the above definition, Milne can then prove the following result:

Theorem 3.3. If Π is a derivation in Ncp from Γ to A, whenever all premises

B ∈ Γ and all discharged assumptions of Π are not essentially negative (except at

most one disjunct of the major premise in each application of E∨), then A is not

essentially negative.25

As a corollary, we get the result forNip as well. The theorem also works for all the

other standard natural deduction systems for classical logic that we consider here.

But whatever the details of the system, the fact stands that E⊥C , as an intro-rule,

is not alone in being a negation rule that appears to work by allowing essentially

negative formulae in the subderivations. Indeed, all negation intro-rules we have

seen so far share this property! Of course, in the case of I¬, this manifests itself

in the fact that the subderivation is a proof of ⊥ from A. It is thus unclear what

the power of Prawitz’s objection is. That it somehow rests on the account of ⊥

appears to be inevitable. In Prawitz’s systems Nip, Ncp, the nullary connective

⊥ is primitive, and negation is defined in terms of it. But so far we lack any

plausible account of how we understand ⊥ in the absence of negation.26

Summed up, though, one might question what the advantage of Milne’s view is.

Even if there is a conversion step for classical negation, it is unclear what the

importance for the inferentialist is if the conversion does not deliver any inter-

esting results about the behaviour of the logical connectives. It might look like

we are merely covering up the old defects: The classical system still yields non-

conservativeness with respect to negation; it gives a qualified Subformula Property

(as in Cor. 3.2); and the Separation Property fails. If this is the best the classicist

can do, there might still be scope for the revisionist to stand her ground.
25The proof is by induction on the length of proof. Details can be found in ibid., p. 61-2.
26See Section 3.2.3 for more discussion of the nature of ⊥.
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3.2.2 Multiple-Conclusion Natural Deduction

We return to the system NC, and another proposal for how to circumvent Dum-

mett and Prawitz’s attack on classical logic. We saw in Section 2.3.2 that Read

argues that classical logic could regain total harmony (conservativeness) by going

multiple-conclusion in natural deduction. In a sense, this is adapting the sequent

calculus profile of classical logic to a natural deduction environment.27 Since the

positive fragment is sufficient to prove Peirce’s Law in sequent calculus, the hope

was that it would be the case in multiple-conclusion natural deduction as well.

And, indeed, Peirce’s Law can be proved in the positive fragment of NC.

We might continue by asking about intrinsic harmony in the context of NC. In

particular, we might return to the question of the legitimacy of classical negation

in a setting where multiple-conclusion is allowed. It turns out that we can get

much more out of this analogy than total harmony. Recall that we were able

to prove Peirce’s Law in the positive fragment of NC because of the following

multiple-conclusion rules (together with structural rules):

Example 3.1. Multiple conclusion implication:

[A]....
Γ, B

Γ, A→ B
I →

Γ, A ∆, A→ B
Γ,∆, B

E →

Applying a similar modification of the negation-rules I¬ and E¬ we get the fol-

lowing result:28

Example 3.2. Multiple conclusion negation

[A]u....
∆,⊥

∆,¬A
(I¬NC)(u)

Γ, A ∆,¬A
Γ,∆

(E¬NC)

27Compare natural deduction in sequent calculus style. See Dummett (1977).
28Similar modifications apply to the other rules. See Appendix A.9.
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What about normalisation? Even though Boričić (1985) reports that normalisa-

tion holds for the system NC, we are not given a direct proof of the theorem.

Neither he nor Read provides information about how conversion steps are sup-

posed to work with multiple-conclusion rules; rather, they rely on an indirect

demonstration through a translation between NC and sequent calculus, and an

accompanying preservation result between normalisation and cut elimination due

to Zucker (1974).

The main challenge with multiple-conclusion rules is that there are, strictly speak-

ing, two sorts of commas around: Conjunctive commas—corresponding to sequent-

style left-side commas—and disjunctive commas—corresponding to right-side com-

mas. In a sequent, such commas have a location (right or left of the sequent ar-

row) to distinguish between them, whereas in natural deduction, this is no longer

the case. Of course, in Nip, the problem never arises since the the calculus is

single-conclusion (and commas are always unambiguously conjunctive).29 But, by

acknowledging that PTS for classical logic is best dealt with in NC, the equivo-

cation is introduced.

So far we have mostly surpressed conjunctive commas (and open assumptions in

the rules), but the issue will resurface in Section 4.5.1.30 Until then, we ignore

the complication and give rules where commas are always disjunctive. We then

get a conversion step for negation which is reminiscent of the one for intuitionistic

negation, albeit it involves the added complexity of multiple-conclusions:

Π2

Γ, A

[A]u

Π1

∆,⊥
∆,¬A

(u)

Γ,∆,⊥  

Π2

Γ, A
Π1

Γ,∆,⊥

Note that in the converted derivation Π2 ends in a disjunctive pΓ, Aq, so Π1 in

turn will preserve Γ as a disjunctive context. This is a way of saying that either
29That is, unless the system is in sequent style (see footnote 27).
30See also Section 4.2.2 where we discuss an example of connectives that are distinguished by

the presence of conjunctive contexts in the inference rules (specifically, in quantum logic).
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some member of Γ obtains, or A obtains. If the latter, either ⊥ or some member

of ∆ obtains (according to Π1). The result is the same end-line as in the original

non-normal derivation.31

What is more, we can use the new rules to prove LEM without the use of any of

the old characteristically classical rules:

[A]1

A ∨ ¬A
A ∨ ¬A,⊥
A ∨ ¬A,¬A

(1)

A ∨ ¬A,A ∨ ¬A
A ∨ ¬A

Alternatively, we can have ⊥ as primitive and prove LEM without rules for nega-

tion:

[A]1

A,⊥
(K)

A→ ⊥, A
(I→)(1)

A ∨ (A→ ⊥), A
(I∨)

A ∨ (A→ ⊥), A ∨ (A→ ⊥)
(I∨)

A ∨ (A→ ⊥)
W

Read makes the pertinent remark that under these circumstances, i.e., with nega-

tion defined, it is the →-rules that are doing the work (together with weakening).

As a consequence, both intuitionistic and classical negation can be defined with

⊥, →, but the → rules will distinguish between the systems. In fact, the above

derivation does not even apply the ⊥-rule! Nevertheless, the rule is required for

the derivation of DNE.32

It is worth mentioning that NC upstages other normalisable natural deduction

systems for classical logic because it also gives neater corollaries. In particular, we

get a Subformula Property unnegotiated by E⊥C , and thus also the Separation
31Multiple conclusion in natural deduction will receive more detailed attention later in Section

4.5.1.
32See Read (2000, p. 149)
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Property. This is not unexpected given the close relation between NC and the

sequent calculus G1c, where both properties also hold as corollaries of the cut

elimination theorem.33 Furthermore, unlike Prawitz’s result, the normalisation

theorem for NC is not restricted to the ∨, ∃-free fragment of the language.

Again, these modifications of classical logic render it unclear at best whether

Dummett and Prawitz’s objections still have any bite. In NC, classical logic has

both total and intrinsic harmony. Even more, with full Subformula and Separation

Properties, the situation is indistinguishable from that of intuitionistic logic. If

the revisionist still wants to maintain that there is a reason to reject classical

logic, there appear to be only two strategies available. Either new proof-theoretic

constraints must be forthcoming that will reinstate the relevant difference between

the logics, or—and this is the option preferred by Dummett—some argument must

be given why multiple-conclusion systems are not in good standing. We will have

ample opportunity to explore the debate about the second approach below (Section

3.3).

3.2.3 Assertion and Denial: Bilateralism

A closely related—and equally interesting—strategy for the classicist is what we

will refer to as bilateralism (as opposed to unilateralism). We have already seen it

anticipated in Milne (1994) above where it was suggested that falsity-conditions

be treated on par with truth-conditions. But rather than consider such a seman-

tic division of labour, we will consider a pragmatic division of labour, between

assertion-conditions and denial-conditions. Bilateralism is the idea that a proper

account of (classical) logical constants, and negation in particular, requires that

denial is not analysed as assertion of a negation, but as a primitive alongside as-

sertion. Obviously, this bifurcation will affect inference rules to the extent that
33See Troelstra & Schwichtenberg (2000, ch. 4.2).
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the rules not only characterise conditions for asserting a λ-sentence, but also con-

ditions for denying a λ-sentence.

A number of important papers on the logic of denial were written in the 1990s

(around the time Bill Clinton was president), all roughly with the same starting

point: Questioning Frege’s argument that we ought to equate denial with the

assertion of negation (Price 1990, Smiley 1996, Rumfitt 1997).34 Frege’s argument

has found proponents in Geach (1965, pp. 454-55) and Dummett (1973a, pp. 316-

17). Frege worried that introducing denial as a primitive type of judgement along

side assertion would lead to unnecessary proliferation of inference rules. In Geach’s

phrase, why bother with a ‘futile complication’ if these patterns can already be

covered by assertion of negation?

We will not pause here to go through Frege’s argument or the many replies in detail.

It suffices to say that there are a number of interesting systems that require denial

and the assertion of negation to be distinct, e.g., supervaluationism, dialetheism

(see Restall 2005 for details). Moreover, as we will see later in Chapter 6, denial

as a non-embeddable illocutionary sign in the structural language can make a

significant difference for results about the relationship between truth-conditional

semantics and proof-theory.

We leave this issue for now, and concentrate on another virtue of denial more

pertinent for the present topic: It allows for a presentation of classical logic with

interesting proof-theoretic properties. Rumfitt (2000) has argued at length that

bilateralism will help the classicist to deflect the revisionist arguments. More

precisely, the suggestion is to enrich the structural language of the proof-system

(not the object language—importantly, denial is not treated as a logical constant)

with signs, + −, indicating whether or not the formula is asserted or denied. For

some language L, we let WFF+ be the set of well-formed signed formulae over
34See also Price (1983). Tracing the pedigree of the logic of denial even further back, two

seminal contributions are axiomatic rejection in Carnap (1942) and inference rules for rejection
in Łukasiewicz (1963). Łukasiewicz introduced a rejection stroke, a, corresponding to Frege’s
assertion stroke, `.
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a set of well-formed formulae WFF . As suggested by Rumfitt, we can read the

signed formulae +A, −A informally as ‘A? Yes‘ and ‘A? No’ respectively. Of

course, unlike ¬, the denial sign, −, is not embeddable (nor is the assertion sign).

With WFF+ in mind we can provide inference rules involving denial explicitly.

And, as it happens, we can give an interesting presentation of classical logic. For

instance, the ∨-rules can now be formulated directly as the duals of the ∧-rules:

−(A ∨B)

−A
(−E∨i)

−(A ∨B)

−B
(−E∨ii)

−A −B
−(A ∨B)

(−I∨)

Similarly, we can give rules governing the interplay between negation and denial:

−A
+(¬A)

(+I¬)
+(¬A)

−A
(+E¬)

These rules belong to the systemNcp+− (see Appendix A.8 for the full system). It

is worth noting that this formulation is obviously not yet sufficient for the deriva-

tion of LEM since there is no discharge of assumptions (the ∧-rules are standard,

simply adding assertion signs).35 In order to capture classical negation, Rumfitt

introduces a couple of non-operational rules, which he calls co-ordination princi-

ples. These principles co-ordinate assertion and denial, and so do not explicitly

introduce or eliminate any logical constants. In this respect, it is appropriate to

compare the co-ordination principles with structural rules (e.g., weakening).

[α]u....
⊥
α∗

(RED∗)(u) α α∗

⊥
(LNC∗)

In these rules α ∈ WFF+, and α∗ is the signed formula that results from α by

reversing its sign (e.g., if α = +A, then α∗ = −A). Note that these rules are the

same as the ones we saw for falsity-conditions in Milne’s system above. On the face
35Gibbard (2002, p. 297) remarks that the resulting system is a non-classical constructive logic

with strong negation.
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of it, the rules remind us of the intuitionistic negation-rules I¬ and E¬, but, as was

already pointed out, the co-ordination rules are two-faced. Crucially, the RED∗-

rule stands proxy for both ‘intuitionistic’ and ‘classical reductio’.36 For, even if

the rules are not strictly speaking negation-rules, they do mimic their negation

counterparts when in presence of the above negation rules +I¬ and +E¬. What

is more, given these rules, LEM is derivable, and so are DNE, E⊥C , and the two

natural but superfluous negation rules:

+A
−(¬A)

(−I¬)
−(¬A)

+A
(−E¬)

Rumfitt’s system Ncp+− is adapted from Smiley (1996), but in the latter system

there is only one co-ordination principle:37

[α]u....
β

[α]v....
β∗

α∗
(Dil∗)(u,v)

However, Rumfitt’s co-ordination principles give Smiley’s rule as a derived rule.

Unsurprising really, taking into account that this is the denial-rule corresponding

to intuitionistic and classical dilemma.

Another important remark about Rumfitt’s system is that ⊥ is not taken to be a

nullary propositional constant, in fact it does not have a determinate propositional

content. Rather, following Tennant (1999), ⊥ marks a ‘logical dead end’, it is

a punctuation mark in a derivation. Consequently, ⊥ can be said to belong to

the structural language like + and −. Accordingly, ⊥ is not embeddable (thus,

Rumfitt points out, defining ¬A as A → ⊥ is ruled out). This squares both with

the observation that Rumfitt’s co-ordination principles do not trade in logical

constants, and, more importantly, it underwrites the categoricity result for the

logic Ncp+− (we return to this issue in Chapter 6).38

36In fact, Rumfitt himself say that this rule is “the hallmark of classicism, not of bilateralism”
(Rumfitt 2008a, p. 1062).

37Rumfitt calls this Smileian Reductio.
38See Wansing (1999) for a reply to Tennant.
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Finally, it is clear that the understanding of the validity of signed inference rules

requires a machinery over and above truth-in-a-model-preservation. Informally,

the idea is to assign correctness and incorrectness to signed formulae (in the sense

that a judgement is correct or incorrect), where +A is correct iff v(A) = 1, −A

is correct iff v(A) = 0. Hence, the task is to show that the inference rules of

Ncp+− are correctness-preserving. Even if Smiley and Rumfitt only gives an in-

formal gloss on correctness, following Humberstone (2000), we can formalise the

notions as correctness-valuations which are induced by truth-valuations, and pro-

ceed by defining a corresponding consequence relation in terms of the correctness-

valuations.39

Returning to the question at hand, let us see why the bilateral approach im-

proves on the issue of giving PTS for classical logic. Rumfitt thinks that his

system displays “a kind of harmony” (Rumfitt (2000, p. 806), but it is unclear

precisely which notion of harmony he has in mind.40 Note in particular that Rum-

fitt spends no time discussing the complications that arise for the informal gloss

on harmony: When we talk of grounds under which we can assert a λ-statement

and consequences that can be drawn from a λ-statement, there is the issue of

which judgement mode the λ-statement has, and, correspondingly, which judge-

ment mode grounds and consequences have.41 For instance, the →-rules favoured

by Rumfitt involve an interplay between assertion and denial, a difficulty that is

absent from Dummett’s original characterisation of harmony. Obviously, if such

rules are allowed to be meaning-determining, then harmony needs rethinking.
39Needless to say, the details here work on the assumption that the underlying truth-functional

semantics is boolean. We return to the issue of generalisations in Chapter 6.
40Puzzlingly, Dummett concedes that the system is in harmony without discussing the details.

See Dummett (2002, p. 290).
41Incidentally, this puts some pressure on the idea, most explicitly propounded in Brandom

(2000, pp. 62-63), that “[w]hat corresponds to an introduction rule for a propositional content
is the set of sufficient conditions for asserting it, and what corresponds to an elimination rule
is the set of necessary consequences of asserting it, that is, what follows from doing so”. In
the bilateralist framework, an introduction rule might be sufficient conditions for denying the
propositional content. A quasi-contrapositive reading of this tells us that an introduction rule can
provide the necessary conditions for asserting a propositional content (e.g., Rumfitt’s denial rules
for disjunction). Regardless, see the criticism of Brandom’s characterisation in Read (2008b).
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More concretely, the new complication translates into a challenge for conversion

steps and normalisation. In Rumfitt’s Ncp+− the primitive ∨-rules can be given

a simple reduction step mirroring the ∧-rules. The reason is that the intro- and

elim-rules for disjunction are denial-rules, while the conjunction-rules are the usual

assertion rules. This gives us a reduction of the following form where the maximum

formula can be removed:

Π1

−A1

Π2

−A2

−(A1 ∨ A2)

−Ai  
Πi

−Ai

The +-rules for ∨ and the −-rules for ∧ work as we should expect. What about

negation? The negation rules are now both immediate, i.e., they involve no dis-

charge of assumptions. In fact, they are merely flip-flop rules, tantamount to the

negation rules in classical sequent calculus (e.g., G1c). Here is a conversion:

Π
−A

+(¬A)

−A  
Π
−A

Yet, the particular choices of rules leave → in a peculiar situation. In Ncp+− the

primitive rules are the following:

+(A→ B) +A

+B
(+E→)

−(A→ B)

+A
(−E→i)

−(A→ B)

−B
(−E→ii)

Immediately we see that all of the primitive rules are elim-rules, one +-rule and

two −-rules. In order to have a conversion step for → we need the derived intro-

rules (these follow together with co-ordination principles). True, the problem is

not a deep one—there is a normalisable system to be had for classical bilateralism.

But, the particular rules of the system as they are formulated here is not ideal.

Rumfitt does not discuss harmony as normalisation for his system, but it seems

clear that this is one of the desirable properties he has in mind.
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Regardless of normalisation, Rumfitt does have more concrete things to say in

favour of the system which connects with Dummett’s harmony notions. The first,

and most straightforward, claim is that the calculus has the Separation Property.42

One can, for example, prove Peirce’s Law without recourse to negation-rules. Yet,

the celebration of this result is tempered by the observation that such derivations

are of course only possible as a result of the co-ordination principles. Given their

close affinity to standard classical negation rules, it’s no surprise that derivations

with non-conservatively applied negation-rules (e.g., E⊥C) can now be exchanged

into denial-currency instead.43

Rumfitt also argues that in the bilateralist system it is intuitionistic logic, not

classical logic, that receives an awkward formalisation. Humberstone (2000) points

out that by restricting RED∗ to the co-ordination principle

[+A]u....
⊥
−A

we get a bilateralist intuitionistic logic.44 The idea is pretty transparent: The

restricted principle only allows inferring from assertion to denial, reminiscent of

how intuitionstic reductio only let us go from unnegated to negated. Thus, LEM

is not derivable, nor is the derived rule −E¬. Rumfitt suggests that the latter fact

renders the system ‘anomalous’ since the intuitionist, unlike the classicist, fails to

provide the consequences that can be drawn from denying a negated formula.

Nevertheless, no argument is provided to convince us that there are not alternative

formulations on which the intuitionist can remedy this problem. Granted, such a

negation will not have the flip-flop property of its classical counterpart, but then
42The proof is outlined by Rumfitt, but the details can be found in Bendall (1978). Bendall’s

system is different from Rumfitt’s, but from the fact that the former system has the Separation
Property it follows without much work that the latter system also has it.

43For a criticism of this exchange, see Murzi & Hjortland (2009).
44Note that we do not have all the negation rules as primitive. If they are, DNE is provable

without co-ordination principles.
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this is an asymmetry the intuitionist has learned to live with. Rather than surren-

dering the bilateral environment completely to the classicist, the intuitionist will

charge the classicist with loading the dice by introducing co-ordination principles

that obfuscate the non-constructive bias. In fact, Dummett (2002) offers a reply to

Rumfitt’s criticism of the intuitionist unilateralist which is at heart questioning the

bilateralist’s assumption about the interplay between assertion and denial. “Rum-

fitt fails, however, to explain his own conception of the correctness of a denial, and

hence his own interpretation of negation” (ibid., p. 293). If the co-ordination prin-

ciples are illegitimate (by the intuitionist’s lights), it is little help that the negation

rules are symmetric. Irrespective of negation-rules, the intuitionist might want to

part ways with the classicist already at the level of correctness of assertion and

denial.45

Ferreira (2008) reports a problem with Rumfitt’s RED∗-rule which is grist for

Dummett’s (and the intuitionist’s) mill. Rumfitt takes care to show that LNC∗

can be restricted to atomic formulae, and the full rule is then admissible given

the operational and structural rules (this can be shown by an easy induction).46

The importance of this, according to Rumfitt, is that LNC∗ is a “precondition

for the connectives to possess coherent bilateral sense” (Rumfitt 2008a, p. 1060).

Without it we have no guarantee that the two judgements, assertion and denial, are

contradictory. Put differently, the principle is a key component in understanding

the speech act engine behind Rumfitt’s bilateralism.

Yet, interestingly, Ferreira shows that a corresponding proof of the atomic ver-

sion of RED∗ is not forthcoming. In fact, with RED∗ restricted to atomic signed

formulae, −(A ∧ ¬A) is not derivable in Rumfitt’s system (even if A itself is

atomic). Rumfitt replies that since RED∗ is not intrinsic to the bilateral sense

of connectives—but rather the principle essentially separating classical from intu-

itionistic logic (see footnote 36)—the case is not symmetric to that of LNC∗. He
45See Rumfitt (2002) for a reply to Dummett.
46See Rumfitt (2000, p. 815-16).
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does not dispute Ferreira’s claim, but simply adds that there is no need for the

result in question.47

There is scope here for the opponent to gain some foothold. What license do we

have to think that whereas LNC∗ is a component of the bilateral sense of the

connectives, RED∗ is not? Both are equally structural (i.e., include no logical

connectives explicitly) and both correspond to the usual negation rules. Just like

LNC∗, RED∗ has an impact on the derivability of certain principles in the calcu-

lus. True, it makes sense to say that LNC∗ governs the conditions under which

our speech acts are in conflict, but, similarly, RED∗ governs how we rationally

treat situations which involve contradictory speech acts. The difference between

the classicist and the intuitionist resides in the disagreement about this issue as

well as that of negation. Why think that denial is common ground between the

parties any more than negation is? In fact, given what we know about intuitionist

discussion of the appropriate attitude to LEM, we do have reason to expect that

also pragmatic attitudes ought to take on distinct logical behaviour across the two

logics.

For all this, it is plausible that Rumfitt has managed to provide further reason

to think that classical logic is in no worse standing than intutionistic logic with

regard to proof-theory and PTS in particular.48 After all, it is possible to construct

a bilateral framework where classical logic has both total and intrinsic harmony.49

On the further matter of saddling the intuitionist with a problem of her own, the

proposal appears less successful. Bilateralism might simply be an environment

where both logics can flourish—all the better for PTS.
47Gibbard (2002) expresses doubts about Rumfitt’s attempt to justify DNE through the

negation-rules and the fact that LNC∗ can be restricted to atomic formulae. In particular,
he offers alternative rules for negation that allows LNC∗ to be restricted, but which do not lead
to DNE. See also Rumfitt (2002).

48For a less favourable account of Rumfitt’s project, see Gabbay (n.d.). Gabbay cleverly devises
a rule inspired by Stephen Read’s ‘bullet’ (see Section 4.3.3) in order to show that bilateralism
has problems with normalisation.

49With the small caveat about normalisation mentioned above.
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3.2.4 Other Approaches to Classical Logic

Another interesting axiomatisation of classical logic is due to Gabbay (n.d.). Gab-

bay’s aim is a normalisable natural deduction system for classical logic. He is of

course aware of the above mentioned result in Stålmarck (1991), but he thinks

there is an improvement to be made by not having the controversial rule E⊥C

in the system. Recall that this rule is, in effect, a troublesome exception in the

normalisation proofs for classical logic: Its classification as either a negation intro-

rule or elim-rule appears spurious. Instead, Gabbay suggests the following rules

for classical negation:

[A]u....
⊥
¬A

(I¬)(u) ¬A

[¬B]u....
A

B
(CE¬)(u)

The proof of normalisation is indirect in the sense that Gabbay gives the result

for a related system with Sheffer Stroke, |.50 The rules for Sheffer Stroke, inspired

by Read (1999), are as follows:

[A]u, [B]u....
⊥
A|B

(ESS)(u)
A|B A B

C
(ISSI)

A|B

[C|C]u....
A

[C|C]u....
B

C
(ISSC)(u)

For intuitionistic logic, we take ESS and ISSI together with EFQ ; for classical

logic we simply replace ISSI with ISSC . Notice that Gabbay’s preferred negation

rules are special cases of the Sheffer Stroke rules where A = B. Consequently, a

proof of normalisation for the system with Sheffer Stroke yields normalisation for

the negation rules as well.

Gabbay is concerned with normalisation and not the Subformula Property (or

Separation for that matter), so the fact that the issue of non-conservativeness
50The connective is most known for being an adequate connective for classical logic, i.e., with

it as the only truth-functinonal connective, all others can be defined.
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still remains does not detract from the system in his view. However, given this

fact, it is unclear what the net gain from the original normalisation proofs is.

Especially considering that Gabbay’s result only holds for the ¬, ∧, ∀-fragment of

the language.

Yet another modification of the natural deduction rules can be found in Milne

(2002). As with the multiple conclusion approach discussed in Section 3.2.2, Milne

is inspired by the, relatively speaking, well-behaved classical sequent rules. By

reading off natural deduction rules from G1c he comes up with a set of non-

standard natural deduction rules. The key idea is that the multiple-conclusion

succedents in classical sequent calculus instruct us that classical natural deduc-

tion ought to have intro-rules where connectives are ‘introduced’ embedded in a

disjunction. The disjunctions are simply a manner in which multiple-conclusion

can be mimicked in a genuinely single-conclusion environment. As an aside, note

that this speaks to the issue of including two different structural commas (left- and

right-) in natural deduction, since one comma—the disjunctive one—is handled in

the object language.

Milne is trading on the fact that there is a natural correspondence between intro-

and elim-rules in the intuitionistic natural deduction system Nip¬ and the right-

and left-rules in intuitionistic sequent calculus G1i. However, for G1c where

the succedents are not restricted to singletons or the emptyset, it is less clear

what the corresponding natural deduction rules are. (Needless to say, if we accept

multiple-conclusion in natural deduction—à la Read—the problem does not arise.)

By treating multiple-conclusion cases as disjunctive, Milne makes available some

essentially classical intro-rules for ¬ and →. It turns out that the other rules can

be treated in the same manner as for intuitionistic logic, giving the usual suspects

from Nip¬. The classical culprits that the intuitionist cannot have in multiple

succedent version are R¬ and R→. Rewriting these ideas in natural deduction

under the disjunctive reading, Milne gets the following rules:
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[A]u....
D

¬A ∨D
(I¬∨)(u)

[A]u....
B{∨D}

(A→ B){∨D}
(I→∨)(u)

The brackets in I→∨ indicate that a special case of this rule is where there are

no disjuncts; the result is simply the standard → intro-rule. With the first rule

we get an obvious derivation of LEM ; with the second we get the classical law (A

→ B) ∨ A. Thus, both of these rules are inherently classical. Adding them to the

fragment of Nip¬ with I∧, E∧, I∨, E→, and EFQ gives us classical logic. Let

us call this system Ncp∨.

What is the advantage according to Milne? Again it is an issue about how to give

a harmonious account of classical logic. Milne proceeds to show that there are

conversion steps for his new rules, although in a somewhat surprising form. For

negation, the challenge is to show that there is a reduction for I¬∨ together with

EFQ.51

[A]1....
Π1

B
¬A ∨B

(1)

A [¬A]2

C1

A [¬A]2

Cn....
Π2

D

[B]2....
Π3

D
D

(E∨)(2)
 

A
Π1

B
Π3

D

It goes without saying that the reduced derivation is non-standard in the sense that

it involves not only the intro- and elim-rules in question, but an application of E∨.

This is needed since the connective under investigation—the negation—is not the

principal operator in the formula introduced by its intro-rule, I¬∨. The leveling

of a local peak is then applied not to a negation-formula, but to a disjunction.

Regardless, the result is a procedure for removing joint occurrences of I¬∨ and

EFQ.52 Unsurprisingly, this fact feeds into the further corollaries. In particular,

the Separation Property does not hold in general, but only in a modified version:
51See ibid., p. 518-519 for the related conversion step for →. The case similarly involves E∨.
52Because of the necessary presence of a del-rule, simplification conversions are of course

required as well.
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Corollary 3.4 (Separation Property∗). If Π is a normal formNcp∨ derivation, then

if Iλ or Eλ is applied in Π, then λ occurs in A or some B ∈ Γ, or, λ is a connective

with a principal occurrence in the rules of some λ∗ such that λ∗ occurs in A or

some B ∈ Γ.

In general, the problem with the system is that the conversion step, as the system

in general, is hostage to the presence of disjunction in the (object) language. Other

conversions work exclusively on a vocabulary involving the connective the rules are

associated with. In contrast, this reduction involves rules for all the connectives

being ‘introduced’ by the intro-rule. It just happens that there are two of them.

Given the strong affinity to multiple-conclusion natural deduction, it is highly

unclear what the advantage of Ncp∨ is. After all, as opposed to NC, it does not

yield the Subformula Property or the Separation Property, and one would be hard

pressed to argue that much is gained in terms of how natural the derivations are.53

Finally, there is a more peripheral look at harmony in classical logic offered by Weir

(1986). Rather than dancing to the intuitionist’s flute, Weir wants the classicist

to provide alternative proof-theoretic constraints that can be motivated indepen-

dently from the intuitionist’s constraints. If this can be done, and it can be shown
53More recently, Milne has presented unpublished work at the 1st Foundations of Logical

Consequence Workshop, Arché, University of St Andrews. He offers a classical natural deduction
system with the three non-standard rules:

[A]u....
C

[¬A]v....
C

C

[A]u....
C

[A→ B]v....
C

C
B

A→ B

The right-most rule is just a special case of conditional proof. The other two rules are motivated
by the tautologies LEM and A ∨ (A→ B) respectively. Together with modus ponens, EFQ, and
standard conjunction and disjunction rules we get a classical system with both the Subformula
and Separation Property. Here is a derivation of Peirce’s Law:

[(A→ B)→ A]1 [A→ B]3

A [A]4

A
(3,4)

((A→ B)→ A)→ A [((A→ B)→ A)→ A]2

((A→ B)→ A)→ A
(1,2)
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that the classicist performs better on the alternative account, the score is appar-

ently equalised.

If we can find principles in terms of which classical logic comes out on

top, and which are at least as natural as those under which it fares

badly, then the proof-theoretic arguments balance out. (ibid., p. 462)

Weir takes his cue from Prawitz’s inversion principle (see Section 2.3.3), but points

out that Prawitz’s formal formulation of the principle is not a proper functional

inverse. Taking the idea more literally, Weir wants intro- and elim-rules for λ such

that an application of Iλ followed by an application of Eλ leaves us with the very

situation we started with. Although this does work for Prawitz’s ∧-conversions,

it only holds for the special case of ∨-conversion where C = Ai. Similarly, ∧ also

works in the other direction: Starting with an application of E∧ followed by I∧

brings us back to the starting point:54

Π....
A ∧B
A

Π....
A ∧B
B

A ∧B

Weir continues by introducing a graphical recipe for a generalised Inversion prin-

ciple, i.e., where both directions (intro-elim and elim-intro) loops back to the

starting point.55 It is more or less unproblematic to show that this idea can be

extended to→ and ¬ (in the guise of I¬ and E¬), but so far that only gives Weir

intuitionistic logic without ∨.

The key step is dealing with disjunction in an exclusively classical manner for

which the new Inversion principle holds. This is achieved by giving the following

rules:
54On the assumption that we can help ourselves to two occurrences of A ∧ B.
55See ibid., p. 466-67 for details.
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[¬B]u....
A

A ∨B
(I∨W1 )(u)

[¬A]u....
B

A ∨B
(I∨W2 )(u)

A ∨B ¬A
B

(E∨W1 )) A ∨B ¬B
A

(E∨W2 ))

Weir can then provide the sought-after inversion:

[A]1....
B

A ∨B
(1)
¬B

A

A ∨B [¬A]1

B
A ∨B

(1)

Finally, Weir argues that, as opposed to the Dummett-Prawitz argumentation,

the new Inversion principle fails for intuitiontionistic logic, regardless of presen-

tational details. (Interestingly, in this case it is the disjunction rules that cause

the trouble.) Weir’s conclusion is that his constraint demonstrates that, contrary

to what Dummett and Prawitz argued, it is not classical logic that is too strong,

but intuitionistic logic that is too weak. Too weak, that is, to allow for proper

inversion.

One recurring bullet that Weir offers to bite is that his presentation of classical logic

does not yield a Subformula Property. As with Prawitz’s Ncp the classicist has a

partial result, but this might still provide the intuitionist with some ammunition.

Nonetheless, Weir’s Inversion principle does go some way towards leveling the

playing field. An arising stalemate must probably be solved in a background

discussion of how to meaning-theoretically motivate the different principles.

3.3 Multiple-Conclusion Defended

Let us take stock and evaluate the dialectical situation between the intuitionist

revisionist and the classicist. Is there any revisionary mileage in PTS and the dif-

ferent proof-theoretic constraints inspired by harmony? We have seen a number



Chapter 3 Harmony in Classical Logic 89

of axiomatisations of classical logic which bypass different difficulties presented by

the Dummett-Prawitz camp. Obviously, harmony-as-normalisation does not con-

stitute any real challenge to the classicist: There is a number of classical systems

that are normalisable. More contentious is the issue of legitimate conversion steps

and the relation to the Subformula and Separation properties. It is also possi-

ble that normalisation—where the notion of maximum formula is altered—can be

had without these properties, so an option for the revisionist is to require this

higher standard from the classical opponent. However, even with the bar raised

accordingly, the classicist has the resources to persist with a PTS account of her

logic.

With respect to well-behaved conversion steps and the Separation Property the

above discussion indicates that the approaches that fare the best are (a) multiple-

conclusion natural deduction, NC, and (b) classical bilateralism, Ncp+−. This

is no coincidence, for as we shall see, there is an intimate relationship between

these two frameworks. Put more succinctly, the structural resources of multiple-

conclusion and bilateralism leave the two frameworks with the same expressive

power.56 In fact, for the above systems, it is straightforward to define a faithful

translation between the multiple-conclusion framework, call it SET-SET, and the

signed single-conclusion framework, call it SET-FRML+. For example, if A1, ...,

An `NC B1, ..., Bm, then +A1, ..., +An, −B1, ..., −Bm−1 `Nc+ +Bm. Conversely,

if +A1, ..., +An, −B1, ..., −Bm `Nc+ ±C, then

Γ `NC ∆ =


A1, ..., An `NC B1, ..., Bm, C, if + C;

A1, ..., An, C `NC B1, ..., Bm, if − C.

The real question is whether there are significant philosophical arguments that can

distinguish between the two approaches. There are two separate issues here: First,

the burden is on the intuitionist revisionist to convince us that they are in fact
56The formal details of this ‘expressive power’ will be made more precise in Chapter 6, see

especially 6.2.5.
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both defective as vindications of classical logic. Second, the classical inferentialist

could embrace both, or argue that one approach is superior. Rumfitt, himself a

classicist of the bilateralist leaning, appears to go for the second alternative:

The close formal relationship between bilateral calculi and their multiple-

conclusion cousins, however, should not blind us to what is, for present

purposes, a crucial philosophical difference. (Rumfitt 2000, p. 810)

What is this difference? In order to make headway we need to look at the argu-

ments against multiple-conclusion in the literature. Incidentally, the classically-

minded Rumfitt shares his dislike for multiple-conclusion with revisionists such as

Dummett and Tennant. Let us have a look at the different objections against the

SET-SET framework raised in the literature. First out, Dummett:

Sequents with two or more sentences in the succedent, by contrast,

have no straightforwardly intelligble meaning, explicable without re-

course to any logical constant. Asserting A and asserting B is tan-

tamount to asserting pA and Bq; so, although the sentences in the

antecedent of a sequent are in a sense conjunctively connected, we can

understand the significance of a sequent with more than one sentence

in the antecedent without having to know the meaning of ‘and’. But,

in a succedent comprising more than one sentence, the sentences are

connected disjunctively; and it is not possible to grasp the sense of such

a connection otherwise than by learning the meaning of the constant

‘or’. (Dummett 1991, p. 187)

This is where Dummett’s reliance on an analysis of denial as an assertion of nega-

tion takes center stage. Of course, Dummett is correct in claiming that con-

junction and disjunction are asymmetric with respect to assertion. However, this

does not show that conjunctive commas are conceptually kosher prior to their



Chapter 3 Harmony in Classical Logic 91

object language counterparts, whereas disjunctive commas are not. Unlike the

antecedent-side commas, the disjunctive (right-hand) commas ought not to be

treated assertorically. Rather, we think of the rational (normative) constrain im-

posed by a multiple-conclusion consequence relation as saying that one cannot

assert all premises and deny all conclusions simultaneously. With such a reading

there is not necessarily a genuine disjunctive element: 〈Γ, ∆〉 is invalid iff we as-

sert A1, and we assert A2, etc. for each Ai ∈ Γ, and we deny B1, and deny B2,

etc. for each Bi ∈ ∆. Interestingly, we can dualise and say, equivalently, that the

argument 〈Γ, ∆〉 is valid iff we deny A1, or we deny A2, etc., OR, we assert B1

or assert B2, etc. Thus, Dummett’s insight is turned up side down: We now have

a reading of multiple-conclusion sequents that does not presuppose conjunction

but disjunction. Summed up, to the extent that it is a worry at all that there

are meta-level conceptions of connectives, Dummett seems to have put too much

emphasis on the role played by the interaction between assertion and conjunction.

This counter to Dummett can be made more precise using a framwork offered in

a series of papers by Restall (2005, 2008a, 2008b, 2009b). Restall says:

We can think of the rules for the connectives as giving instructions on

how to treat assertions and denials—at least with regard to whether

or not these assertions and denials are out of bounds or not. (Restall

2009b, p. 5)

On Restall’s approach we consider structures deceivingly similar to arguments,

pairs of collections of statements, written [X : Y]. Call such a structure a state.

We say further that for a state [X : Y], X is the set of asserted statements and

Y is the set of denied statements. A state [X : Y] such that X ∩ Y 6= ∅ is an

incoherent state (i.e., states where the very same statement is both asserted and

denied). For an incoherent state [X : Y], we write X ` Y, indicating precisely the

pragmatic reading of logical consequence above.
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One can then contemplate adding natural constraints on coherence. Restall sug-

gests, for example, that any state [A : A] is incoherent (reflexivity); if [X : Y] is

coherent, and X′ ⊆ X and Y′ ⊆ Y, then [X” : Y”] is also coherent (weakening);

and, if [X : Y] is coherent, then so is either [X, A : Y] or [X : Y, A] (transitivity).

Of course, one might have conceptions of assertion and denial (and associated

conceptions of coherence) which drops any or all of these constraints. The differ-

ence, as Restall remarks, amounts roughly to the difference between substructural

and non-substructural sequent calculus.57 That observation is further bolstered

by the option of introducing pragmatic constraints on logical connectives. One

might for instance say that if [X : Y, A ∧ B] is coherent, then either [X : Y, A] is

coherent or [X : Y, B] is coherent, and so on. As with the structural constraints

above, we recognise sequent rules by taking the contraposition of the pragmatic

constraints.58

Importantly, such a reading of sequent calculus in terms of assertion and denial is

different in some respects from the Smiley-Rumfitt style signed calculus discussed

in Section 3.2.3. Although signs and the state-interpretation can be translated into

each other, the former is intended as a superstructure on traditional semantics,

while the latter is an analysis of multiple-conclusion consequence. The deep point

here is one of foundational semantics: Restall’s strategy offers a way in which

inferentialism can be combined with truth-conditional semantics by way of prag-

matic roles. Smiley and Rumfitt, on the other hand, have no such objective. For

them, the traditional truth-conditional semantics is still the protagonist. Later,

in Chapter 6, we will return to the connection between proof-theory and truth-

conditions in a systematic fashion. In that connection, Section 6.5 will discuss the

potential of Restall’s strategy in more detail. Before that, however, we need to

attend to some more general worries about multiple-conclusion, typically raised

by those whole-heartedly opposed to the classical line.
57Analogously, Restall points out that the framework builds in contraction by working with

sets rather than subsets. Again, this, as in sequent calculus, affects the logic of the structural
commas of the states.

58In Restall (2008b) the framework is applied for an analysis of paradoxes.
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For a sample of what the single-conclusion aficionado has to say against multiple-

conclusion more generally, we turn to an argument of Tennant’s:

[T]he classical logician has to treat of sequents of the form X : Y where

the succedent Y may in general contain more than one sentence. In

general, this smuggles in non-constructivity through the back door.

For provable sequents are supposed to represent acceptable arguments.

In normal practice, arguments take one from premisses to a single

conclusion. There is no acceptable interpretation of the ‘validity’ of a

sequent X : Q1, ..., Qn in terms of preservation of warrant to assert

when X contains only sentences involving no disjunctions. If one is

told that X : Q1, ..., Qn is ‘valid’ in the extended sense for a multiple-

conclusion arguments just in case X : Q1 ∨ ... ∨ Qn is valid in the usual

sense for single-conclusion arguments, the intuitionist can demand to

know precisely which disjunct Qi, then, proves to be derivable from X.

(Tennant 1997, p. 320)

The latter point—that multiple-conclusion is unacceptable for the intuitionist—

has been dealt with in a convincing manner in Steinberger (2008). First, multiple

conclusion is in no way intrinsically classical: There are well-known intuitionistic

multiple-succedent calculi. Two systems, m-G1ip and m-G3ip, are obtained by

the standard classical sequent calculi, G1cp and G3cp respectively, by restricting

the rules for →. E.g., in the former case (with explicit structural rules) we give

the following rule:

Γ, A⇒ B
Γ⇒ A→ B,∆

(R→)

Contrast the original rule which preserves the right-side context (see Appendix

A.10).59 All other rules remain multiple-succedent in the ordinary sense.
59See Troelstra & Schwichtenberg (2000, p. 67, pp. 82-3) for details on the systems.
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But, as Steinberger goes on to point out, even if there were no multiple-conclusion

alternative open for the intuitionist, the argument is faulty for more fundamental

reasons. The intuitionist revisionist and the classicist were at a stalemate: Both

alleged that theirs was the One True Logic, but neither had the resources to

convince the interlocutor. The genius of Dummett and Prawitz’s novel take on the

debate was to relocate the debate: PTS is the correct meaning-theoretic approach,

and since intuitionistic logic, but not classical logic, abides by its constraints, the

latter contains unwarranted principles. If the argument had been correct—which

it is not—the intuitionist could have helped herself to the Disjunction Property

with a clean conscience. But, Tennant’s argument is premature: In a discussion

of whether or not classical logic does in fact abide by the PTS constraints, it is

a blatantly illicit move to argue from one of the properties which the revisionary

argument was precisely supposed to establish.

There is another charge against multiple-conclusion in the quotation by Tennant,

one which is potentially harder to adjudicate.“In normal practice”, he says, “ar-

guments take one from premisses to a single conclusion”. A first remark, albeit

perhaps a bit ad hominem: It is strange to have an advocate of intuitionist re-

visionism recourse to an argument from ‘normal practice’. After all, their case

is founded on the tenet that such a practice might be dysfunctional (see Sec-

tion 2.3.1), and, thus, susceptible for revision. Why then should the classicist be

hostage to the arbitrary nature of ‘normal practice’?

Nevertheless, the argument from our ordinary inferential practice is dubious even

notwithstanding the above point.60 Making good sense the claim is not easy, but

presumably the objection is based on an observation to the effect that arguments in

normal practice may contain lists of premises (without conjunction), but not lists of

conclusions (without disjunctions). Normally, when we reach a conclusion which is

disjunctive we express this by using disjunction explicitly. The thought, I take it, is
60Restall (2005, p. 11-12) makes the case that there are indeed multiple-conclusion arguments

in ordinary reasoning.
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that for premises and conjunction the same is not the case. Without any empirical

data, however, such an argument appears spurious. In fact, it seems perfectly

legitimate to list conclusions disjunctively without explicit use of disjunction. As

with premises, the context might determine how we should interpret the list. The

fact that we do not normally proceed argumentatively in such a manner is of no

consequence.

Surely, upon investigating normal inferential practice we will find, for instance,

that most arguments are also single-premise, either because the premises are as-

serted as one statement, or because some premises are tacit (in enthymematic

form). Whatever the usual form of arguments might be, it does not standardly

constrain the mathematics of the logician. In fact, along these line, a neat sugges-

tion by Kosta Došen (1989, p. 365) is helpful: Just as true premises sometimes

are enthymematic, perhaps false conclusions are also enthymematic.61 Only upon

failing to provide a single, conclusive conclusion is there any need for multiple-

conclusion.

Finally, against multiple-conclusion, Rumfitt (2000, pp. 795-96) has raised an

alternative objection. Citing Kneale as one of the culprits, Rumfitt says that

“not only is it doubtful whether people actually give such arguments, it is also

doubtful whether we can attain any intelligible conception of them”. For Rumfitt

a SET-SET framework gives a collection of arguments whose constituent state-

ments are not used but mentioned. However, since our inferences are structures

where statements—both premises and conclusions—are used, the formalism should

mirror this fact.

But why think that multiple-conclusion arguments merely mention the involved

statements? Rumfitt takes multiple-conclusion to be the confused result of a met-

alogical remark about logical consequence, namely, that “if certain propositions
61Došen is another of the PTS proponents of sequent calculus. Two other interesting sources

for multiple-conclusion systems are Kneale (1956)—see Section 2.1.2—and, of course, Shoesmith
& Smiley (1978).
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are true, then certain other propositions cannot all be false” (ibid.). He insists,

however, that proper inferences must be expressible in the form A1, ... An `

B. However, it is unclear why single-conclusion structures are not also just ‘met-

alogical remarks’, and, regardless, the assertion/denial interpretation discussed

above shows that we are by no means forced to read SET-SET arguments truth-

conditionally.62

3.4 Conclusion

We have argued that classical logic has a place in PTS. However, offering this

place comes with a price. The traditional boundaries of inferentialist proof-theory

is shifted towards unfamiliar grounds. If one accepts that the Separation Property

is an important tenet of PTS, the onus is on the classicist to provide formalism in

which it can be combined with classical negation. Both Read and Rumfitt succeed

in doing this, but not without introducing proof-theoretic complications. Alter-

natively, the classical logician sympathetic to PTS might simply resist the claim

that Separation plays a crucial role in successful meaning-fixing. The danger is,

however, that such a classicist is waxing holistic: One cannot isolate the meaning

of logical constants in PTS; only the system in full provides the meaning.

Multiple-conclusion is the better option. It leaves classical logic without a remain-

der, and even if reproached by most intuitionist revisionist, there is no knock-down

argument against including multiple-conclusion in PTS. In fact, in anticipation of

Chapter 4 and Chapter 6, multiple-conclusion greatly enhances the chances of de-

veloping PTS into a proper formal semantics, ridden of an unnecessary revisionist

bias.

62Rumfitt is himself a proponent of bilateralism, but fails to appreciate the connection with
multiple-conclusion. See also Rumfitt (2008b).



Chapter 4

Generalised Elimination Harmony

4.1 Introduction

Independently of the revisionist debate between the intuitionist and the classicist,

there are other aspects of harmony that remain. Recall that the original moti-

vation for harmony and its formal counterparts was Prior’s tonk argument, and

the consensus that PTS cannot allow for unconstrained introduction of inference

rules. If we are to allow for defect rules, and, in extension of that, revision of

defect rules, there has to be some restrictions on which inference rules are deemed

acceptable.

Dummett, Prawitz and others argued that when the demarcation between per-

missible and impermissible rules has been drawn, the classical logicians will find

themselves outside the scope of PTS. Against this, we saw in Chapter 2 that PTS

as a revisionary strategy for the intuitionist is hampered by some flexibility in the

classicist’s axiomatisations. By enhancing the expressive power of the structural

language in the proof-theory (by multiple-conclusion and primitive denial, respec-

tively), the proof-theoretic gap between classical and intuitionistic logic is closed.

That is not to say that there are not other resources the classicists employ, but at

least these two are both live options.

97
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But, even if the intuitionist project is at an impasse, it is a separate issue whether

PTS constraints have a broader semantic and revisionary significance. In the

beginning of Chapter 2 we learned how proof-theoretic constraints were aimed at

ruling out tonk and related connectives. The general problem of an embarrassment

of riches for PTS—of which tonk is a symptom—does not stand or fall with the

more specific revisionary ideology promoted by the intuitionist camp. In fact, one

might argue, irrespective of which logical flag one is sailing under, tonk and its ilk

are a problem.

Thus, even if the foregoing proof-theoretic constraints cannot motivate a divide

between intuitionistic and classical logic, they might still hold the key to divorcing

PTS from Prior’s objection. We know from Belnap that conservativeness is suf-

ficient (given some background assumptions about the context of deducibility) to

avert disaster. Yet, it was equally clear that harmony-as-conservativeness comes

short of what we expect from our formalisation of harmony. Specifically, conser-

vativeness does nothing to prevent elim-rules that are too weak. In the larger

picture, then, conservativeness is a lopsided constraint—it only ensures that the

consequences drawn from a λ statement do not outstrip the grounds for asserting

it. More, since conservativeness is not necessary for harmony, one might suspect

that a better proof-theoretic analysis of the concept is still forthcoming.

Is there any improvement to be had in turning to intrinsic harmony, i.e., ‘the lev-

elling of local peaks’? We have already seen a host of (primarily classical) natural

deduction systems which are normalisable although they do not in general support

conservativeness for every order of introducing their connectives (e.g., Peirce’s Law

again). As discussed above, the central issue is that the normalisation theorem

is a global property of a proof system. There might be permutational or simpli-

ficational moves available to institute normalisation even if there are intro- and

elim-rules that do not display the sort of neat conversions that Prawitz identified.

Classical logic is a case in point.
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Another example is that of the modal logic S4. Prawitz (1965, ch. VI) shows that

S4 is normalisable with the following rules adopted from Curry (1950):

Γ....
A
�A

(I�S4) �A
A

(E�S4)

where for I�S4 each B ∈ Γ is modal (i.e., B = �C or B = ⊥). Read (2008b)

made the point that whereas normalisation does hold for these systems, one is

hard pressed to say that the modal rules are in harmony. Actually, the details of

Prawitz’s proof reveals that adopting an alternative—and restricted—definition of

an S4-derivation (i.e., what is to count as a derivation in the proof-system—the

rules remain the same) is critical for the success of the result. The rules themselves,

on the other hand, appear to be disharmonious in so far as I�S4 is restricted by the

side-condition. In fact, S5 shares the same elim-rule as S4 but the corresponding

intro-rule I�S5 only requires that the members of Γ be modal or co-modal (i.e.,

¬⊥ or ¬�).1

The pertinent question is whether normalisation has any direct impact on the

legitimacy of tonk. In general, the answer is unfortunately no. Even if tonk in

standard environments (say, if added to classical logic) wreaks havoc in the form

of irremovable maximum formulae, there is nothing preventing us from having

surprising definitions of derivation that block the unholy coupling of tonk-intro

and -elim. In particular, non-transitive systems where some derivations cannot be

chained together might provide a normalisable habitat for tonk. In Section 6.4.4

we return to the details of this observation.

However, in the presence of an ordinary consequence relation, we might still profit

from Dummett’s idea of intrinsic harmony and Prawitz’s inversion principle. The

challenge is to give a local formulation of the harmony that encapsulates the spirit

of the earlier proposals. In the process, we might find that there are systematic
1See the discussion of functionality of harmony in Section 4.2.2.
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connections with normalisation, but that normalisation entails that such a new

harmony constraint will not be one of them.

4.2 Harmony Localised

4.2.1 Harmony-as-Reduction

In the diagnosis of where harmony-as-conservativeness and -normalisation go wrong,

we have already hinted at a more appropriate take on harmony. The common

problem with the two approaches explored so far—total and intrinsic harmony—is

that they only constrain inference rules to the extent that they contribute to global

properties of the proof-system, i.e., conservativeness and normalisation. But, in-

ference rules which appear blatantly to disregard our pre-formal conception of

harmony might facilitate normalisation and other global properties as long as

they are introduced into an appropriate proof-theoretic framework. This is one of

the lessons learned by the above exploration of PTS for classical logic.

In order to keep the inference rules behind a normalisable system in check, we

must impose a local constraint which tracks the relation between grounds for

and consequences of its logical constant. Read suggests that “[w]hat is needed

is a rethink of the notion of intrinsic harmony, to discern the true relationship

between the introduction- and elimination-rules” (Read 2000, p. 129). Rather

than concerning ourselves with normalisation directly, we should revisit Prawitz’s

inversion principle and conversion steps. Motivated by the fact that these were

constraints that operated locally on the inference rules, the hope is that a formal

notion of harmony can be teased out. To separate it from its predecessors we call

the new approach harmony-as-reduction.
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4.2.2 Harmony and Functionality

To set the scene for harmony-as-reduction, let us revist Gentzen’s brief remarks on

PTS. Following the famous passage on introductions represening the ‘definitions’

of logical connectives (Gentzen 1934, p. 80), he continues by saying:

By making these ideas more precise it should be possible to display the

E -inferences as unique functions of their corresponding I -inferences, on

the basis of certain requirements. (ibid., emphasis added)

There is an important idea here. Proof-theoretic harmony, in whatever formal

guise we prefer, ought to be a function yielding elim-rules as output for intro-

rules. In other words, harmony is not simply a matter of a test telling us whether

a pair of rule sets <I, E> obeys some formal constraint, there ought to be a set

of elim-rules as functional value set of intro-rules as functional argument. Even

more, it ought to give us a unique set of elim-rules for each well-formed input.

This is non-trivial. There are examples of normalisable natural deduction systems

where different intro-rules yield the same elim-rule. More formally, we have a non-

injective function f : There might be two inputs x, y such that x 6= y but f(x) =

f(y).

Recall, for example, the rules I�S4 and I�S5 above (Section 4.1), and the fact

that they are both paired with the same elim-rule. Similarly, the modal system K

can be given by requiring that if A depends on Γ, then the conclusion �A of I�K

depends on �Γ, i.e., {�B | B ∈ Γ}:2

Γ⇒ A
�Γ⇒ �A

(I�K)

Worse, if the system has ♦ as primitive the ensuing inference rules are not even

functional. The two standard S4 rules are due to Fitch (1952):
2The rule is in sequent style in order to explicate the difference. See Read (2008b) for further

details.
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A
♦A

(I♦)
♦A

[A]u....
C

C
(E♦)(u)

where for E♦, every assumption on which the minor premise C depends on (except

A itself) is modal, and C is co-modal. Again, as with the �-rules, by loosening

the restriction, this time on the elim-rule, we get an S5 system. This time, how-

ever, the result is even more puzzling: For someone (like Gentzen or Read) who

takes intro-rules to be conferring meaning on connectives, and the elim-rules to be

mere ‘corollaries’, it is presumably unacceptable that the same set of intro-rules

could harmoniously be paired with two distinct sets of elim-rules. Of course, if

your preference is for elim-rules as semantically prior, the problems have been

dualised—the � rules fail on account of functionality, the ♦-rules on account of

injectivity. Regardless, the situation is uncomfortable.3

Dummett (1991, pp. 285-87) discusses another example. If we compare the stan-

dard disjunction elimination rule with its counterpart in the quantum logic Nqp,

EY, we see that they are only separated by the presence of contexts (Θ, ∆) in the

subderivations:4

Example 4.1. Quantum logic, Nqp:

Γ....
A YB

[A]u....
C

[B]v....
C

C
(EY)

Γ....
A ∨B

Θ, [A]u....
C

∆, [B]v....
C

C
(E∨)

The difference, although merely structural, underpins the nonderivability of the

law of distributivity (for ∧ over Y) in Nqp. Again, it is a situation where the

elim-rules are different, but the intro-rules for ∨ and Y are the same. This is

the case despite the fact that EY equally well supports the conversion step with
3Read suggests a solution for modal operators that we revisit in Section 5.3.6.
4Proof-theory for quantum logic is dealt with in, e.g., Nishimura (1980), Cutland & Gibbins

(1982), and Faggian & Sambin (1998).



Chapter 4 Generalised Elimination Harmony 103

I∨. Dummett suggests that the pairing of EY with I∨ is unstable since a system

with the connectives {∨, Y ∧} will collapse as we can derive A ∨ B from A Y B.

Consequently, {∨, Y ∧} is a non-conservative extension of {∨, Y} since the law of

distributivity, for Y, becomes provable.

Finally, an interesting example that is not usually mentioned is ⊥ in Prawitz’sNip

and Ncp. Recall that classical and intuitionistic logic here have different elim-

rules (EFQ and E⊥C respectively), yet the same ‘introduction rule’. Granted, this

is a truth with modification since ⊥ apparently does not have an intro-rule, but

Prawitz prefers saying that the nullary connective has a limit intro-rule, namely the

null-rule. Prawitz’s response is a bit hard to grasp. Unlike for example Tennant,

he insists that ⊥ does have determinate propositional content, so, as with other

connectives, he needs a semantic story. Since Prawitz has all the meaning-theoretic

eggs in the intro-rule basket, he prefers the somewhat artificial reply that there is a

default null-rule which is harmony with the respective elim-rules for ⊥. However,

unless there are two structurally distinct null-rules, it appears that both elim-rules

(the classical and the intuitionistic) are harmonious with respect to the same rule.5

In general, then, expecting the elim-rule output to be a unique function appears to

put pressure on a number of rule-sets. We might identify two different strategies

handling the issue of functionality in light of this: First, the hard-liners might

propose that we simply decree that non-functional operators are non-logical. Thus,

modal operators, and perhaps a series of more or less exotic connectives will not

meet the criterion of logical constanthood. I have little sympathy for this approach.

The overarching principle for formulating PTS should—as earlier stated—be to

include a wide variety of logics. The fact that modal operators are tricky to treat

proof-theoretically (while usually easy to treat model-theoretically) is hardly an

excuse.
5See also Section 2.3.3.
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Second, one might simply feel obliged to drop functionality as a property of har-

mony, irrespective of what the other details of the relation turn out to be. This

comes with a cost, however. Harmony, in the informal sense described by Dum-

mett, appears to presuppose functionality. Assuming that two distinct elim-rules

yield different classes of consequences, it appears inevitable that at least one of

them will either be too weak or too strong. For, if harmony is a matter of the

elim-rule providing exactly the consequences which are already warranted by the

grounds for the intro-rule, one of the rules must be under- or overshooting. Simi-

larly, if one prefers a semantics where the elim-rules are privileged, the same moral

ought to apply to intro-rules.

Either way, we are left with the awkward situation that the harmony constraint

does not determine which inference is the correct one. A initial thought might be

to suppose that whenever harmony provides more than one rule set as output, we

always go with the deductively stronger set. But this is a strategy that should

give us considerable pause: Increased deductive strength often (but not always)

comes with a corresponding weakening of discriminatory strength, i.e., the ability

to to make logical distinctions.6 Think, for example, of the difference between

modal logics, where stronger systems tend to collapse strings of modalities that

are deductively distinct in weaker systems. Model-theoretically, we observe that

the weaker systems have more models, and thus more potential counter-models.

Who is to say that the practice of refuting, as opposed to that of proving, is not

to be preferred when we adopt one inferential practice over another?

Evidently, none of the harmony constraints investigated so far involves a func-

tionality constraint in this sense considered here. Yet, there is the feeling that

since it is directly inspired by Prawitz’s inversion principle, harmony-as-reduction

is anticipating precisely this idea. Even if Prawitz simply displays the pairs and

observes that they share a feature, namely loyalty to the inversion principle, the
6For details for and complications with the notion of discriminatory power, see the excellent

paper Humberstone (2005).
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suggestion is to investigate the principle further to uncover the method by which

we can produce the correct elim-rules on the basis of intro-rules.

4.3 GE-Harmony

4.3.1 General Elimination Rules

In a series of articles, Read has developed a harmony-as-reduction approach which

promises to deliver a series of improvements on the traditional accounts:7

• injective (one-to-one) functionality;

• induction of elim-rules from intro-rules;

• a more accurate analysis of harmony vs normalisation;

• a novel diagnosis of tonkitis.

The resulting notion, called generalised elimination harmony (GE-harmony) by

Francez & Dyckhoff (2009), is based on some observations about natural deduc-

tion rules first made by Schroeder-Heister (1984a).8 The paper provides schemata

for intro- and elim-rules for any n-ary operator which functions as standard tem-

plates. Its novelty lies in the power to let sets of intro-rules induce corresponding

sets of elim-rules.9 GE-harmony is not only a better analysis of Gentzen’s orig-

inal remarks, it is probably the most sophisticated means of understanding the

challenge posed by tonk.
7Read (2000, 2008b, 2008a).
8The extension is originally from Schroeder-Heister (1981). See also Avron (1990) for a

connection to sequent calculus.
9Schroeder-Heister also introduces the idea of assuming and discharging rules (or subderiva-

tions) as hypotheses. I am indebted to Allen Hazen for pointing out that this generalisation is
anticipated in Fitch (1966). We return to this issue below.
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Before we look at the approach more schematically, it is worth revisiting the

inversion principle from Section 2.3.3. We are told that if an application of an

elim-rule Eλ has a consequence C, then the intro-rules, Iλ, combined with the

subderivations of minor premises in Eλ (if any), already yield a derivation of C

without the application of Eλ. Inspecting the laundry list of connectives, we see

that the moral expressed by Prawitz’s inversion principle is obscured by the fact

that elim-rules come in different forms. Whereas conjunction offers the genuine

inversion that Weir requested (see Section 3.2.4), disjunction has an elim-rule that

not only involves subderivations but which ultimately derives an arbitrary formula

(which, of course, need not be a subformula of the major premise). If we take the

difference seriously, we will notice that what E∨ says is that anything which can

be derived from A ∨ B can be derived directly from the grounds for introducing

A ∨ B, i.e., from A and B independently.

Thinking of this as a recipe we can give a corresponding rule for ∧:10

Example 4.2. GE∧:

A ∧B

[A,B]u....
C

C
(GE∧)(u)

We then get a corresponding conversion step reminiscent of the ∨ case—the gen-

eralised elimination rule for ∧:

Π1

A1

Π2

A2

A1 ∧ A2

[A1, A2]1

Π3

C
C

(1)
 

Π1

A1

Π2

A2

Π3

C

In the GE form, the ∧-rules follow the style of the standard ∨-rules. The re-

duction is simply an explication of the point that anything which can be derived
10This generalisation also owes to the development of linear logic where we distinguish between

multiplicative and additive conjunction (see Girard 1987). We leave the details of this discussion
to Section 4.5.2 below.
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from the introduced formula can be derived from its grounds directly. In Read’s

favoured terminology, we can say that the intro-rules not only expound the suffi-

cient grounds for asserting a statement, they also implicitly characterise the neces-

sary consequences of asserting the very same statement. If not, there would be no

sense in which the elim-rules—which patently concern the necessary conditions—

could be induced from the corresponding intro-rules (but see also footnote 41,

Chapter 3).

What is the relationship between the GE-rule and the standard ∧ rules? If we let

C = A we see that the subderivation in GE∧ becomes a trivial derivation from

pA, Bq to A. Assuming something like reflexivity and weakening, i.e., that for

any A, B:11

A,B....
A

we can disregard the subderivation, and the resulting rule is a standard E∧ rule

for A; similarly for B. Conversely, we can derive the generalised rule from the

standard rules by observing the following:

A ∧B
A

A ∧B
B︸︷︷︸....

C

Here we need two applications of the standard E∧, followed by the subderivation

of C from (A, B).12 The result is simply a permutation of the GE-rule.

We might then venture to give a general schema inspired by these examples.

First, let us look at some schemata occurring in Francez & Dyckhoff (2009). The
11Compare the axiom pΓ, A ⇒ A, ∆q in the G3-style sequent calculus. In natural deduction,

however, the structural rules are absorbed as discharge policies. This is a topic that will loom
large in what follows (see especially Section 5.3.5).

12Again, the derivation tacitly assumes that something like contraction is possible (more pre-
cisely, vacuous discharge).
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schemata are slightly modified from their originals: We ignore complications aris-

ing from quantifiers, and we use notation which is different in inessential ways.

Keep in mind, however, that in Section 4.4 we will discuss some grievances with

the particular formulation. We will then proceed to develop an improved version

of the GE-template which differs from both Francez & Dyckhoff (2009) and Read

(2008a).

The schematic intro-rule for a logical constant λ occuring as principal connective

in a formula ϕ is as follows:

[Σi]
j1,...,jmi

Π̂i

∆i
ϕ (δIj1,...,jm )i

Let us explain the notation: The subscript i (on Σ) indicates that that this is

the ith intro-rule for the operator λ in ϕ, where i ∈ {1, ..., n}. [Σi]j1,...,jmi are

(possibly empty) sets of assumptions discharged by δI, and ∆i are sets of formulae

(possibly empty).

As an example, take I∧ (Example 4.2): There is only one intro-rule (so i = 1),

and Σ is empty as the rule infers A ∧ B as ϕ immediately from ∆ = {A, B}.

More interestingly, I→ has Σ = {A}, and discharges the formula after deriving

∆ = B and concluding ϕ = A → B. (A brief warning: As we will see when we

later develop GE-harmony for multiple conclusion, the current notation adopted

from Francez & Dyckhoff (2009), where ∆ as the premises of the intro-rule, is not

convenient.)

The suggestion, then, is to (harmoniously) induce the following GE-rule:

Π
ϕ

Π1

Σ1 ...
Πn

Σn

[∆1]1

Π
′
1

ψ ...

[∆n]n

Π
′
n

ψ

ψ
(δGE)(1,...,n)
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Call this the GE-induced rule. Notation: ψ is an arbitrary formula. ϕ is the

major premise, Σi are (sets of) minor premises corresponding to the assumptions

of intro-rules, ∆i are (sets of) assumptions for subderivations corresponding to

the grounds in intro-rules. Each of the assumption sets ∆ are discharged upon

concluding ψ.13 Examples: For our GE-rule for ∧ it is evident that there is only

one set of grounds, ∆1 = {A, B} (but no minor premises Σ). Upon deriving C

from the set, one discharges the assumption set and concludes C from the major

premise ϕ = A ∧ B.

What about GE→? Given the description of I→ above we can plot out the

induced GE-rule by transferring the content of the intro-rule to the GE-schema.

The resulting rule is as follows:

Example 4.3. GE→:

A→ B A

[B]u....
C

C
(GE→)(u)

This rule appears to have been first formulated for natural deduction in Dyckhoff

(1987). It is later used for developing an intuitionistic relevant logic in Tennant

(1992, 2002), and also for translations between natural deduction and sequent

calculus in von Plato (2001).14 As before, the GE-rule is equivalent to the standard

E→, i.e., modus ponendo ponens, given some structural assumptions. To see that

it is a special case of the GE-rule, simply let C = B. For the other direction we

have the permutation:

A→ B A
B....
C

13Note that the subscripts tracking the intro-rules and the superscripts tracking the discharges
are identical. There is no confusion: We are simply using the same ordering on the subderivations
corresponding to intro-rules (left-to-right) as we are on the different discharges.

14A similar typed rule also appeared earlier in Martin-Löf (1984, p. 44). Note that Tennant
2002 calls GE-rules for parallelised rules (as opposed to serial rules).
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However, this is not the rule suggested by Schroeder-Heister, nor is it the rule

adopted by Read in his account of GE-harmony (which differ from Francez & Dy-

ckhoff 2009). Rather, in the case of the GE→ rule—and presumably all intro-rules

involving subderivations—they employ the idea of the higher-order rule, i.e., an

inference rule where subderivations themselves can be assumed and discharged.

With higher-order rules, one can schematise GE-rules in a more straightforward

manner, albeit with the cost of having variables that range over both formulae

and subderivations. Read offers the following template where intro-rules are un-

derstood as giving grounds Σi which are ambiguous between direct grounds (as in

I∧) and subderivations involving discharge (as in I→):

ϕ

[Σ1]....
ψ ...

[Σn]....
ψ

ψ

The critical difference that leads to an output which deviates from the former

template is that Σi might stand proxy for a subderivation, written χ ⇒ ξ. As a

consequence, the schema returns the following GE-rule for →:15

Example 4.4. Higher-order rule for →:

A→ B

[A⇒ B]u....
C

C
(GE→′ )(u)

We call this type of rules Schroeder-Heister-style rules to distinguish them from

the Dyckhoff-style rules. Strictly speaking, the rule is different from the first rule

we gave for →. GE→ says that whenever we can derive C from the assumption

B, we can derive the conclusion C from the major premise A → B together with

a minor premise A, and subsequently discharge the assumption B. In contrast, its
15Although the idea of assuming and discharging rules might be philosophically problematic,

it has some advantages. Apart from the role it plays in the harmony debate, there is also some
evidence that certain connectives can only be axiomatised with such a device. See Hazen (1996)
for the example of ((A → B) → B) in intuitionistic logic.
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higher-order counterpart says that whenever we can derive C on the assumption

that B can be derived from the assumption of A, we can derive the conclusion C

from the major premise A → B, and subsequently discharge the assumption A

⇒ B. Yet, even if the rules are not the same—there certainly may be structural

environments in which they come apart—they are closely related. Especially, note

that GE→′ does not discharge A, it discharges the derivation from A to B. Of

course, if it did, the rule would result in a simplified rule much stronger than

modus ponendo ponens.

It hardly needs mentioning that giving all-encompassing schemata for intro- and

-elim rules is a tall order. Nonetheless, there is a lot to be said for trying. First, it

might assist not only our understanding of harmony, but also the understanding of

reduction and normalisation (more on this to follow in Section 4.3.3). Second, it is

a critical part of giving adequacy (or completeness) results for intuitionistic logic in

PTS. Early work was done by both by Prawitz (1978), Zucker & Tragesser (1978),

and Schroeder-Heister (1984a). They all rely on developing templates for intro-

and elim-rules, and consequently face, either explicitly or implicitly, the difficult

question of what is to count as an intro- and elim-rule respectively. Typically, rules

like those presented by Milne (see footnote 53) do no fit the mold if interpreted as

intro-rules. This should not be taken as an argument against such deviant rules,

however, but rather as an incentive to improve on the templates. Although, we do

not consider rules of Milne’s specific form, we will attempt to achieve some level

of generality in what follows. But first we turn to one of the advantages with the

first formulation of GE-harmony.

4.3.2 Tonk GE-harmonised

What happens with tonk in the context of GE-harmony? Clearly, if it is to be

any help for the development of PTS, tonk cannot pass the GE-harmony test.

Fortunately, seeing that tonk-intro rules GE-induce elim-rules quite different from
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its standard elim-rules is an easy exercise. As before, we input the rule in the

intro-schema and proceed to transfer it to the GE-template. The result is the

following rule pair:

Example 4.5. Tonk:

A
AtonkB

AtonkB

[A]u....
C

C
(u)

Not only is this not the standard tonk-elim rule, it does not generate a singular

calculus (i.e., it is not the case that A ` B for each A, B). We can readily see that

the simplified form of the rule, where C = A, gives a rule that obviously allows for

an harmless conversion step with the intro-rule. Moreover, the disjunctive nature

of tonk-intro is revealed by adding the corresponding rule with B as only premise

(i.e., tonk+). As expected GE-harmony then induces the standard rule disjunction

rule E∨.

Dually, GE-harmony also deals with disharmony caused by weak elim-rules (strong

intro-rules) where the grounds for asserting the statement cannot be recaptured

by the consequences that we can draw from it. Recall the dysfunctional connective

tunk from Section 2.3.2:

A B
AtunkB

(Itunk) AtunkB

[A]v....
C

[B]u....
C

C
(Etunk)(u,v)

Given the injective functionality of GE-harmony, and the fact that tunk-intro is

simply the standard I∧, we know that the output will be GE∧. Thus, both of

these examples are excluded by GE-harmony. A promising start, but even if tonk

is the litmus test for harmony, it is not conclusive evidence that GE-harmony is the

right constraint. We want to know how GE-harmony relates to other interesting

properties, what happens with more controversial connectives (e.g., negation), and
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how it handles exotic rules. Before we move on this in later sections, however, let us

first revisit normalisation and take a first look at the connection with GE-harmony.

4.3.3 Normalisation and GE-Harmony

Given that GE-harmony is explicitly informed by Prawitz’s inversion principle,

we should expect there to be a connection with normalisation. After all, we have

seen that well-behaved conversion steps (together with auxiliary simplifications

and permutations) lead to the normalisation theorem in a range of cases. Is GE-

harmony a guide to normalisation?

Let us first observe how the two schema for intro- and elim-rules interact. Letting

ϕ be the maximum formula in an application of the intro-rule followed by an

application of the elim-rule, the Francez & Dyckhoff template gives the following

reduction:16

[Σi]
j1,...,jmi

Π̂i

∆i
ϕ (δIj1,...,jm )i

Π1

Σ1 ...
Πn

Σn

[∆1]1

Π
′
1

ψ ...

[∆n]n

Π
′
n

ψ

ψ
(δGE)(1,...,n)

which can be reduced to

Πi

Σi

Π̂i

∆i

Π
′
i

ψ

However, the schematic reduction glosses over crucial details. Given an instantia-

tion of the schema, there is no guarantee that the resulting reduction will enable
16Importantly, Francez & Dyckhoff (2009) are not trying to establish a connection with nor-

malisation. Rather, they are interested in the connection with what they call Local Intrinsic
Harmony (see ibid., p. 7-8). Local Intrinsic Harmony consists of local soundeness and local com-
pleteness, two notions adopted from Pfennig & Davies (2001). The upshot of their investigation
is that GE-harmony entails Local Intrinsic Harmony.
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an inductive step in a proof of normalisation. Whether or not this is the case de-

pends, inter alia, on the distribution of connectives over the schema’s paramaters.

Recall, for example, the discussion of E⊥C in Section 3.2.1. We return to the

question about harmonious rules for classical negation in Section 4.5.1, but for

now we will look at another instructive example.

Read (2000) gives an illuminating example that shows that normalisation is not

entailed by GE-harmony. In fact, the example shows more!

Example 4.6. Bullet:

[•]u....
⊥
• (I•)(u)

• •

[⊥]u....
C

C
(E•)(u)

It is straightforward to check that the connective •, called bullet, is GE-harmonious.17

Yet, it displays a behaviour that led Read to call it a ‘proof-theoretic Liar’. It

turns out that, in some respect, bullet is worse than tonk:18 In the presence of

EFQ (and contraction) it proves Γ ` A, for any <Γ, A> (including Γ = ∅). First,

we see that by letting C = ⊥ we get the simplified derived rule (where ⊥ ⇒ ⊥ is

considered trivial by reflexivity):19

• •
⊥

(SE•)

Assuming further that contraction allows us to simplify this to a rule with one

instance of •, we can give the following derivation:20

17The connective was originally called ‘blob’ but I prefer ‘bullet’ following the LaTeX code for
the symbol. In retrospect, perhaps it ought to have been called ‘the Scottish Constant’.

18Compare super-tonk in Section 4.4.3.
19By the standard move we can permute the subderivation of C from ⊥ to show that we can

retrieve the initial rule from the simplified one.
20This involves some cheating. For the more detailed look at the bullet-derivation of inconsis-

tency, see Section 4.4.4.
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[•]1
⊥

(SE•)

• (I•)(1)

⊥
(SE•)

C
(EFQ)

Allowing for negation in the language, and the rules I¬ and E¬, we can also derive

both A and ¬A for any formula A.

This is alarming. GE-harmony does not entail consistency, and, as a consequence,

since normalisation entails that ⊥ is nonderivable (see Prawitz 1965, p. 44), GE-

harmony cannot entail normalisation either.21 Obviously, neither the Subformula

nor the Separation Property will hold, and • yields a non-conservative extension of

any consistent system. In fact, Read reaches the same conclusion by observing that

the conversion step for • cannot contribute to the inductive proof of normalisation:

[•]1
Π1

⊥
• (1)

Π2
•

[⊥]2

Π3

C
C

(2)
 

Π2
•

Π1

⊥
Π3

C

Roughly put, the problem is that a copy of • is transfered from the original deriva-

tion to the converted derivation, and there is no guarantee that it does not form a

maximum formula (again, this will depend on the structure of Π1 and Π1).22 We

return to the details of this conversion in a more general setting later (see Section

4.4.4 for details). For now, we are content to notice that there is noticeable gap

between GE-harmony and other conceptions of harmony discussed in Chapter 2.

Since revision due to failure of GE-harmony is separate from conservativeness,

normalisation, and the Separation Property, it is worthwhile to return the revision

of classical negation discussed in Chapter 3.
21Given some plausible assumptions about the logic for ⊥.
22Compare the case of E⊥C as intro-rule where ¬A appears in the converted derivation, but

where the ‘maximum formula’ is A. See Section 3.2.1.
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Yet, the most puzzling result is that if GE-harmony is the correct formalisation of

harmony, then harmony does not even entail consistency. Remember that Dum-

mett called inconsistency ‘the grossest form of malfunction’ an inferential practice

could have. Harmony, then, appears to fail as an all-purpose protection against

semantic dysfunctionality. On closer inspection, however, the result might be

less surprising. Belnap’s and Dummett’s original discussion of harmony and con-

servativeness ran two thoughts together: First, that the inferentialist ought not

to allow rules that lead to inconsistent (alternatively, that trivialise); second, that

the intro- and elim-rules must somehow have corresponding deductive strength (or,

specifically, must obey the inversion principle). The confusion has led Dummett

astray—the right notion of proof-theoretic harmony is neither total nor intrinsic

harmony.

Nevertheless, that does not mean that Dummett was not right in claiming that

inconsistency is a gross malfunction, and that it should be ruled out. It just

turns out that the task of ruling out inconsistency is independent from the task of

‘balancing’ intro- and elim-rules. Read’s achievement is to have separated the two

issues clearly with a precise formalisation of proof-theoretic harmony. Our task

is to elaborate on this observation by investigating the conditions under which

GE-harmony also entails consistency.

4.4 Modification of GE-harmony

4.4.1 Double discharge

With the exception of bullet, we have so far only looked at GE-harmony with

respect to familiar, so-called ‘laundry list’ connectives. However, we need to see

whether the GE-template can also handle more intricate inference-rules, and, ulti-

mately, more exotic proof-theoretic frameworks. In the present section we look at

some inference rules that will require us to revisit the GE-template introduce in
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Section 4.3. Later, in Section 4.5, we look at whether GE-harmony will also make

sense in a multiple-conclusion setting.

In discussion, Roy Dyckhoff has pointed out that there are in fact fairly innocuous

looking rules that present a challenge for GE-harmony. The upshot is that we

must give up the idea of having a single elim-rule induced from a set of intro-

rules. Let us consider two rules which are not particularly exotic, but which are

more complicated than the intro-rules we have looked at so far. The two following

rules, one negation intro-rule and one biconditional intro-rule, are different in that

they involve two premises which are both subderivations.

Example 4.7. Double discharge rules:

[A]....
B

[B]....
A

A↔ B
(I↔)

[A]....
B

[A]....
¬B
¬A

(Dil)

There is prima facie nothing suspect about rules of this form. We have seen how

rules like Dil can contribute to ⊥-free presentations of intuitionistic and (in the

case of CDil or CRA¬) classical logic. Of course, one might object that there are

other rules which can do the same job, say, using ∧ and → to define ↔. But that

is beside the point. In case we want primitive rules for a connective, PTS better

be able to handle them, and, specifically, the question of harmony still applies.

Following the procedure we applied in Section 4.3, we try to apply the GE-template

to I↔. However, the instantiation is no longer straightforward. For example, if

we take our cue from the GE-rule for → we end up with a rule that appears

misguided:

A↔ B A B

[A,B]....
C

C
?
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Letting C = B or A now makes little sense as the premises involve both A and B

themselves. The rule is a puzzling result for ↔. It merely states that if you have

a derivation of A and a derivation of B, then anything that follows from A and B,

follows from A and B (together with A ↔ B). The major premise plays no part

in the inference. Thus, it is difficult to imagine that the suggested rule can play a

role in capturing the standard meaning of ↔.23

Dyckhoff suggests that the solution is to accept that GE-harmony must allow for

more than one GE-rule. Rather than inducing the GE-rule from a set of intro-rules,

the schema ought to induce a set of GE-rules. A re-structuring of the GE-template

is required: We want the above rules to deliver a set of GE-counterparts. As an

example, the GE-schema should output the following rule pairs for the ↔ rule:

Example 4.8. Bifurcated GE-rules for ↔:

A↔ B A

[B]....
C

C
A↔ B B

[A]....
C

C

Showing that these rules are equivalent with the standard elim-rules is routine.

The single GE-rule for ↔ has now been replaced by two rules which display the

expected, bidirectional, behaviour of the connective.

A further example might help to shed light on the ambiguity in the original GE-

template. Instead of providing a single intro-rule with double discharge, we now

compare a connective with two intro-rules which both discharge an assumption.

We do not have such a connective in the ordinary laundry list, but we can easily

define a tertiary connective which takes the appropriate rules. Let us introduce

a new tertiary connective �ABC with the following rules. It can be shown that

�ABC is equivalent to (A → C) ∨ (B → C).
23The rules are not equivalent to the the pair of standard elim-rules:

A↔ B A
B

(E↔i)
A↔ B B

A
(E↔ii)
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Example 4.9. Two elim-rules with discharge:

[A]u....
C

� ABC
(u)

[B]u....
C

� ABC
(u)

We can now imagine a pattern of distinct structures for intro-rules, depending on

the number of rules and the number of premises in each of them. Furthermore, it

will make a difference whether a premise is a subderivation or not. The task at

hand is to redevelop the GE-template to deal not only with the specific examples

used here, but any set of intro-rules that follow this general pattern. We postpone

any detailed treatment of Example 4.9 until we have introduced a modification of

the GE-template.

4.4.2 Revised GE-template

In order to accommodate rules of this form, Read (2008a) has offered an amend-

ment of his GE template. The key difference is that the GE-template is a way to

harmoniously induce a collection of GE-rules. We here elaborate on the formal

upshot by, first, re-configuring Read’s template to Dyckhoff-style; and, second,

testing a range of non-standard cases in order to conclude with some general

facts about the output. We will then move on to discuss two unexplored top-

ics: Conversion steps and normalisation for the new GE-templates, and, finally, a

generalisation to multiple-conclusion natural deduction.

Like before, let δ be the formula with a principal occurrence of the connective in

question. Let Πi be grounds for introducing δ, where 0 ≤ i ≤ m. Then for each

Πi we write the intro-rules as follows:

πi1 ... πini
δ
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Correspondingly, there is a collection of GE-rules for δ, written:

δ

[π1j1
]u

....
γ ...

[πmjm ]v....
γ

γ

Informally, every GE-rule is such that for each intro-rule i there is a derivation of

an arbitrary formula, γ, from πij for some j. As an example, take the standard I∨

rules where m = 2, n1 = 1, n2 = 1 (indicating that there are two intro-rules, with

one premise each). There is then only one GE-induced rule: The standard E∨.

Observe that for each intro-rule i, it requires a derivation of an arbitrary formula

from one of the subderivations πij . As there is only one to chose in each intro-rule,

the output is a single GE-rule.

On the other hand, as opposed to the GE-rule in Example 4.2, ∧ now bifurcates

into two separate GE-rules:

Example 4.10. Bifurcated GE-rules for ∧:

A ∧B

[A]u....
C

C
A ∧B

[B]u....
C

C

Naturally, the two new GE-rules are equivalent to the simplified E∧ rules. How-

ever, there is a key difference between these rules and Example 4.2: Whereas the

latter required both weakening and reflexivity for the equivalence, the former sim-

ply needs reflexivity. Weakening is still required, though, in order to show that

the different GE-rules are equivalent.

The fact that the new Read-style GE-template does not differentiate between

subderivations π that are discharging and those that are simply premises (e.g., π

in I∨ and I→) gives us Schroeder-Heister style GE-rules where subderivations are

themselves discharged. (See Example 4.4.) Returning to Example 4.7, this gives

us the rules of the following sort:
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Example 4.11. Higher-order GE-rules for ↔:

A↔ B

[A⇒ B]u....
C

C
(u) A↔ B

[B ⇒ A]u....
C

C
(u)

We can subsequently re-write these rules in the equivalent Dyckhoff-style, giving

us the GE-rules seen above in Example 4.8.

So we see that m = 1, n1 = 2 yields 2 GE-rules (as is the case for ∧ and ↔).

What if m = 2, n1 = 2 and n2 = 2? To produce rule-sets with the required form is

routine: Take a 4-ary connective tABCD with the following rules (it is equivalent

to (A ∧ B) ∨ (C ∧ D)):

Example 4.12. Two intro-rules (no discharge):

A B
tABCD

C D
tABCD

According to the GE schema, we get:

tABCD

[A]u....
E

[C]v....
E

E
tABCD

[B]u....
E

[D]v....
E

E

The two rules both satisfy the criterion of including a subderivation from each of

the intro-rules, but they do not exhaust the permutations. In fact, the rules are

incomplete as witnessed by the non-derivability of B ∨ C (or A ∨ D). This is

fixed by supplying the complementary rules:

tABCD

[B]u....
E

[C]v....
E

E
tABCD

[A]u....
E

[D]v....
E

E
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In other words, when m = 2, n1 = 2 and n2 = 2, we get an output of 4 distinct

GE rules.

Let us return to Example 4.7 again, but this time the negation rule Dil. Applying

the modified GE template, we get a bifurcation into an odd-looking rule-pair:

Example 4.13. Bifurcated GE-rules for ¬:

¬A A

[B]u....
C

C
(u) ¬A A

[¬B]u....
C

C
(u)

For the left-most rule: Since both B and C here are arbitrary (in particular, B

does not occur in the major premise), a special case is the instance where B = C,

giving us back a standard EFQ-like rule. Conversely, the subderivation of C from

B can be permuted down by letting the conclusion of the standard EFQ be B.

Strangely, then, we find that the leftmost rule is alone equivalent to the simplified

rule. No more natural is the GE-rule induced by the Dyckhoff-Francez template:

¬A A

[B,¬B]u....
C

C
(u)

Crudely put, the rule says that any formula follows from a formula and its nega-

tion, if it follows from some (possibly the same) formula and its negation. The

puzzling structure of the rule is due to the fact that the negation occurs both in

the conclusion of the intro-rule, and in one of the subderivations.24

24Another slightly puzzling case is a version of reductio used by Dummett. By the GE-template
we do not get the the standard EFQ rule:

[A]u....
¬A
¬A

(u) ¬A A

[¬A]u....
C

C
(u)

There is no simplification that gives the fully general EFQ since in the trivial reflexive derivation
C will have to be a negated formula.
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Next let us return to the connective � in Example 4.9 where there are two intro-

rules, both of which discharge assumptions. We get the following, somewhat in-

tricate, GE-rule:

� ABC A

[C]u....
D B

[C]v....
D

D
(u,v)

For each intro-rule I�, the GE-rule divides a subderivation (the only one) into

two minor premises: The assumptions, A and B, and the conclusions, C in both

cases, where the latter is itself the assumption of a new subderivation. We have

here put the rule in Dyckhoff style without higher-order derivations. The rule is

equivalent to the obvious simplified rule:

� ABC A B
C

We can show that the GE-rule can be recaptured with the simplified rule by

permuting the subderivation:

� ABC A B
C....
D

For the other direction, let D = C:

� ABC A

[C]u....
C B

[C]v....
C

C
(u,v)

Further, recall Weir’s non-standard ∨-intro rules from Section 3.2.4. Let us inves-

tigate what the ramifications of GE-harmony are.

Example 4.14. Weir’s disjunction rules:
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[¬B]u....
A

A ∨B
(I∨W1 )(u)

[¬A]u....
B

A ∨B
(I∨W2 )(u)

The result are two GE-rules of a form which turns out to be equivalent to simplified

rules which are just the standard disjunctive syllogisms:

A ∨B ¬A

[B]u....
C

C
(GE∨W1 )(u) A ∨B ¬B

[A]u....
C

C
(GE∨W2 )(u)

We can now begin to see the contour of the systematic GE-output. In particular,

assuming that for any logical connective λ its intro-rules Iλ1, ..., Iλn have the

same number of premises, n i, we have that the number of GE-rules is #GE =

n im.

m \ ni 1 2 3 4 5

1 1 2 3 4 . . .

2 1 4 9 12

3 1 8 27 64

4
...

The information we can gather from this is limited, however. Intro-rules like

those for ∧ and those of Example 4.7 (where there is discharge involved) are not

distinguished: They both have a single intro-rule (m = 1) with two premises (n1

= 2), and so give two GE-rules as output. Yet they are obviously of different form.

In the Schroeder-Heister style, only the intro-rules with discharge leads to higher-

order rules; in Dyckhoff-style this means a splitting into two minor premises—the

assumption from the intro-rule is the first minor premise, and the second is a

subderivation from the formula derived form the assumption in the intro-rule to

an arbitrary formula.
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Needless to say, the GE-induced rules quickly become aritifical—but then keeping

them natural is not the aim either. Rather, it is a systematic way of producing

elim-rules that accord with the spirit of Prawitz’s inversion principle (see Section

2.3.3). The GE template is meant to make precise the inversion idea that anything

that follows from a λ-formula, must follow directly from its grounds.

As we have seen in many of the above examples, there are frequently simplified

rule-sets that are equivalent with the GE-induced rule sets. Yet, there is a crucial

difference which will be highlighted in what follows: The equivalence results stan-

dardly operates on some structural background assumptions. It is only with these

in place, e.g., weakening, contraction, that the GE output can be equated with the

simplified rules. So far we have been fairly relaxed in the structural bookkeeping,

but we will shortly, in Section 4.5, become more fastidious about this dimension

of the inference rules.

4.4.3 Super-Tonk

Before that, however, let us make a brief digression to look at an interesting con-

tribution to the tonk-literature made by Wansing (2006). Wansing’s paper is a

response to a logic called tonk-logic, introduced by Cook (2005). Put concisely,

Cook shows that there is a non-transitive, finitely many-valued semantics that

validates the tonk-rules without trivialising the logic.25 In other words, as Belnap

anticipated, even tonk has its home. Wansing, however, wants to capitalise on

Cook’s insight by developing a framework for evaluation which frameworks a con-

nective is trivialising with respect to. In particular, are there connectives which

are trivialising with respect to all non-trivial frameworks? Even if this is not the

case for tonk, it is the case for super-tonk.

Following Wansing we ignore the truth-functional aspect of tonk-logic for the time

being, and concentrate on a logic L a as pair 〈L, `〉, L is a formal language and
25For the details about tonk-logic, see Section 6.4.4.
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` a provability relation.26 We say that a connective λ is trivialising with respect

to a class of logics Λ iff λ can be added to any logic in Λ, and for every such L ∈

Λ the resulting logic is trivial, i.e., either ` = ∅ or ∀A∀B A ` B.

Wansing defines a number of non-trivial classes of logics with different restrictions.

For each one he considers a connective that trivialises. Here we will only look at

the case of super-tonk:

Definition 4.1. Non-trivial logics:

G := {L | ` 6= ∅ and ∃A∃B A 0 B};

Definition 4.2. A connective is non-trivially trivialising iff it is trivialising with

respect to G.

Wansing then defines a nullary connective, super-tonk, which out-performs its

ancestor tonk in precisely this respect:

Example 4.15. Super-tonk is non-trivially trivialising:27

[C]u....
D A

super-tonk
(Isuper-tonk)(u)

A....
super-tonk

B
(Esuper-tonk)

Wansing concludes, whereas there is “a cure for tonkitis, no non-trivial notion of

consequence is a cure for super-tonkitis.” (ibid., p. 659)

Clearly, if tonk was bad for reasons having to do with PTS, it is hard not to

say the same about super-tonk. So, even if the latter is a sort of limit case, i.e.,

non-trivially trivalising, we want its diagnosis to involve disharmony. Let us check,

then, what happens when we apply the GE-template to I super-tonk. The rules

has two premises, and so produces two GE-rules:

super-tonk C

[D]u....
E

E
(GEsuper-tonk1)(u)

super-tonk

[A]u....
E

E
(GEsuper-tonk2)(u)

26The provability relation ` might be SET-FRML or SET-SET.
27Note that in Wansing’s Esuper-tonk rule A is not discharged.
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Notice that because of the asymmetry of the premises in the intro-rule, the two GE-

induced elim-rules are also asymmetric. If we replace the original Esuper-tonk

rule with the GE-rules we end up with a set of rules which is not non-trivially

trivialising. So even if super-tonk is worse than tonk—with respect to some

measures—its malfunction can still be identified as disharmony.

4.4.4 Normalisation, GE, and mitigability

What about normalisation for the improved GE-template? Is there a systematic

sense in which maximum formulae can be removed in conversion steps? For the list

of conversions in Def. 2.6 we had examples where the conversions are schematic,

i.e., in the cases where there is more than one intro-rule (elim-rule) the reduction

might involve one or the other intro-rule (elim-rule) paired with an elim-rule (intro-

rule). More generally, then, what is our guarantee that such a procedure will be

applicable in general with GE-harmony?

Although we have already seen that GE-harmony does not entail normalisation

(e.g., because of bullet), there is still a method for producing conversion steps for

such proofs. It is just that sometimes they fail to remove the maximum formula,

or that they produce a formula of higher degree in the converted derivation. For

the ith intro-rule for a connective δ, any of the corresponding δ GE-rules will

allow a derivation path that provides a conversion. Compare the standard case

I∨ and E∨ where, depending on which intro-rule is being applied, there is always

a conversion available using one or the other of the subderivation from the one

elim-rule:

Π0

A
A ∨B

[A]u

Π1

C

[B]v

Π2

C
C

Π0

B
A ∨B

[A]u

Π1

C

[B]v

Π2

C
C

In the presence of multiple GE-rules, however, one might worry that there are

derivations where a δ intro-rule comes immediately before a δ elim-rule without
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there being the right subderivation present in the GE-rule to provide a path appro-

priate for a conversion step. Fortunately, the worry is unfounded. By developing

the details of Read’s GE-template we see that whichever pair of intro- and elim-

rules one picks, there is a reduction readily available. Take Example 4.12: The

principle is just a generalisation of the ∨-conversion. An application of any It

followed by an application of any Et will always yield a conversion since there

is exactly one intro-rule premise that corresponds to the assumption of one or

the other elim-rule subderivation. E.g., with the second intro-rule and the first

elim-rule:

Π0

C
Π1

D
tABCD

[A]u

Π2

E

[C]v

Π3

E
E  

Π0

C
Π3

E

Put more abstractly, we get fusions of the following sort (see Read 2008a):

....
πi1 . . .

....
πini

δ

[π1j1
]

....
γ . . .

[πmjm ]....
γ

γ

To elaborate more on the structure we move beyond Read’s formalisation by

Dyckhoff-ifying the template, i.e., directly avoid the higher-order element by set-

ting the assumptions as separate minor premises. We propose the following tem-

plate, which is clearly different from the original Francez-Dyckhoff template (see

Section 4.3.1) in implementing the idea of multiple GE-rules. Yet it incorporates

the Dyckhoff-style rules, and, as such, yields a different result from Read’s GE-

template.

[Σi1 ]
u1

....
σi1 . . .

[Σini
]uni
....
σini

δ
(u1,...,uni )

δ

[σ1j ]
u1

....
γ . . .

[σmjm ]ujm....
γ Σ1j . . . Σmjm
γ

(u1,...,ujm )



Chapter 4 Generalised Elimination Harmony 129

As before, δ is the introduced formula with the principle occurrence of the con-

nective λ in question. σij are formulae, and Σiji
are sets of formulae (any such Σ

might of course be empty if the premise in the intro-rule is not a subderivation).

The first subscript indicates the position in the ordering of intro-rules, the second

the position in the ordering of premises of the intro-rule.

We can then indicate the general method for conversion grafting the two foregoing

templates:

[Σi1 ]
Πi1
σi1 . . .

[Σini
]

Πini
σini

δ

[σ1j ]
u

Π∗1j
γ . . .

[σmjm ]v

Π∗mjm
γ

Π
′
1j

Σ1j . . .

Π
′
mjm

Σmjm
γ  

Π
′
ij

Σij

Πij
σij
Π∗ij
γ

This calls for some explanation. For any δ intro-rule i, there will be exactly one sub-

derivation in any δ elim-rule whose assumption is the same as one of the premises

in the intro-rule, namely σij (where the j th premise from each intro-rule is the

assumption in a subderivation of the arbitrary formula γ). By finding the corre-

sponding subderivations (indexed in the same way, with additional superscripts to

differentiate types of subderivations in the template), we locate the normal form

derivation which removes the detour through the maximum formula δ. Notice that

due to the construction of GE-rules, there is always a unique conversion step for

each intro- and elim-pair.

One more example (4.9). We omit the cases where the GE-elim rules have been

simplified in the obvious ways.

[A]u

Π0

C
� ABC

Π1

A
Π2

B

[C]v

Π3

D

[C]w

Π3

D
D  

Π1

A
Π0

C
Π3

D

An interesting observation about the connection between GE-harmony and the

global property of normalisation is that with GE-ification every elim-rule is a
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del-rule (see Section 2.3.3). Consequently, normalisation for GE-harmonious sys-

tems require massive permutations of derivation-segments, but, importantly, adds

nothing that Prawitz’s framework cannot accommodate.

One caveat: Recall that Prawitz’s proof of normalisation also involves so-called

permutation conversions for ∨ and ∃, the del-rules of Ni. Here is the permutation

for ∨:

Π
A ∨B

Π1

C
Π2

C
C Π

′

D  

Π
A ∨B

Π1

C Π
′

D

Π2

C Π
′

D
D

In the original derivation, the final occurrence of C in the segment is the conclusion

of the E∨ applications, whereas in the converted derivation this is replaced by two

segments where the final occurrence of C still depends on the open assumptions

of A or B in the minor premises of the E∨ application. Prawitz remarks that

this is of no consequence for Ni since there are no restrictions on dependencies

for major premises of elim-rules (there are only restrictions on I∀ and the minor

premise of E∃).28 Unfortunately, without discussing particular inference rules,

and a particular system, one has to account for the possibility that some elim-

rules do have such restrictions on the major premise. That might involve a further

complication for a proof of normalisation.

One task remains. We need to investigate in some more detail why the entailment

from GE-harmony to normalisation fails. This is important not only because

normalisation in and of itself is a desirable property (and sometimes associated

with harmony), but because the theorem tends to deliver consistency as a corollary.

Prawitz (1965, pp. 41-4) used normalisation to prove consistency for classical

logic (in the ∨-free fragment), and the result extends with some tweaking to full

intuitionistic logic, Nip, and full classical logic, Ncp.29 In general, these results
28See Prawitz (1965, p. 51)
29Although, of course, these results followed indirectly from Prawitz’s original corollary. See

Troelstra & Schwichtenberg (2000, pp.184-89) for details.
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rely on a structural observation about normal derivations: Glossing over some

details, the point is that normal form divide derivations into an E -part (of elim-

rules) and an I -part (of intro-rules) such that every branch has aminimum formula

dividing the two parts. Let us try to make this precise by introducing a further

result due to Prawitz. First some definitions:

Definition 4.3 (Thread). A sequence A1, ..., An of formula occurrences in a

derivation Π is a thread in Π if:

(i) A1 is a top-formula in Π;

(ii) Ai is immediately above Ai+1 for each i ≤ n in Π;

(iii) An is the end-formula of Π.

Definition 4.4 (Path). A sequence A1, ..., An of formula occurrences in a deriva-

tion Π is a path in Π if:

(i) A1 is a top-formula in Π that is not discharged by a del-rule;

(ii) For each i ≤ n, Ai is not the minor premise of an elim-rule, and either (1)

Ai is not the major premise of a del-rule, and Ai+1 is the formula occurrence

immediately below Ai, or (2) Ai is the major premise of a del-rule, Ai+1 is

an assumption discharged by that very del-rule;

(iii) An is either a minor premise of an elim-rule, or the end-formula of Π, or a

major premise of a del-rule such that that rule-application does not discharge

any assumptions.

If a path in Π is also a thread, we say that it is a main path in Π.

Theorem 4.1 (Prawitz (1965)). Let Π be a normal form derivation, let β be a

path in Π, and let σ1,...,σn be the sequence of segments in β (recall that a segment

might just be a formula). There is a minimum segment σi which separates two

parts of β, the I-part and the E-part, such that:
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(i) For each j < i (i.e. in the E-part), σj is a major premise of an elim-rule

and the formula in σj+1 is a subformula of the formula in σj;

(ii) If i 6= n, σi is a premise of an intro-rule;

(iii) For each i < j < n, σj is a premise of an intro-rule, and the formula in σj

is a subformula of the formula in σj+1.

With this result we can give a general theorem which basically follows Prawitz’s

observation about the connection between normalisation and consistency. How-

ever, what we want is not a result for any particular system, but rather a general

proof for a range of systems. In particular, we will assume that any system S

under consideration consists of intro- and elim-rules which follow the templates

in this section. Of course, as we have seen natural deduction systems might have

rules which do not fit these standards, but we set that aside. In particular, we will

ignore ⊥ and, contrary to Prawitz, give a proof of Post-consistency.

Theorem 4.2 (Consistency). If a system S is normalisable, then S is Post-

consistent.

Proof. For reductio, assume that an atomic formula p is provable in S. Let Π be a

normal form proof of p, and let β be a main path in Π. By condition (iii) in Thm.

4.1 there cannot be any segment σj such that i < j < n. For, if there were, and

each intro-rule introduces a formula of higher formula complexity than 0, then,

contrary to our assumption, p could not be the end-formula of β. Thus, p must be

the formula of the minimum segment. But, by condition (i), for each σj, where j

< i, the formula of σj is the major premise of an elim-rule. Hence, β starts with

an undischarged assumption, and so Π has an undischarged assumption.

Nonetheless, such a result is of little help to PTS if GE-harmony is the right

account of harmony. Since GE-harmony does not entail normalisation, a system

can be inconsistent event though all the rules are harmonious (which is indeed
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the case with a system with only the •-rules and EFQ). The challenge is to

understand the gap between harmony and normalisation. More precisely, under

which conditions can we have GE-harmony without conversions that will facilitate

normalisation?

Let us return to the key Example 4.6—bullet. Read observed that bullet is GE-

harmonious but fails on several other accounts: conservativeness, normalisation,

consistency. The reason, in Read’s analysis, is that bullet already at the intro-

rule level is dysfunctional. Thus, ultimately, even a well-matched elim-rule cannot

save the day. This is not to say, of course, that I • is inconsistent on its own. It

is merely that the intro-rule is strong enough to somehow implicitly carry with it

inconsistency, a latent property that is triggered by the presence of a harmonious

elim-counterpart.30 Not surprising, perhaps, since I • has a paradoxical ring to it:

If one can derive absurdity from an assumption of bullet, one can conclude bullet.

Granted, some assumption about the nature of ⊥ is required for the two rules to

be jointly inconsistent (see Section 4.3.3), but that is hardly helpful.31

More than just being non-sheer, the bullet-conversion produces an occurrence of

the very same connective. It is worth looking at the details of what goes wrong

when we attempt to apply the conversion to a derivation of C from •. First, here

is the conversion step again:

[•]1
Π1

⊥
• (1)

Π2
•

[⊥]2

Π3

C
C

(2)
 

Π2
•

Π1

⊥
Π3

C

30Read’s contention is that intro-rules give both necessary and sufficient conditions for as-
serting a λ-statement, so, crucially, adding another intro-rule to • would be game-changing. In
particular, GE-harmony will then reformat the elimination output.

31In discussion, Graham Priest has taken this as a small victory for the paraconsistent ap-
proach. After all, without an explosive ⊥ (EFQ), bullet will not trivialise the system. However,
the victory only stands if GE-harmony is the only constraint the inferentialist ought to apply
to inference rules. I take it that an important moral of Read’s bullet is that we need a further
constraint.
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Spelling out the derivation of triviality using the two rule (and EFQ) we get the

following derivation:

Example 4.16. Inconsistency from bullet:

[•]1 [•]1
[⊥]4

⊥
(EFQ)

⊥
(E•)(4)

• (I•)(1)

[•]2 [•]2
[⊥]5

⊥
(EFQ)

⊥
(E•)(5)

• (I•)(2)
[⊥]3

C
(EFQ)

C
(E•)(3)

A reduction of this derivation ‘levels the local peak’—the rightmost • in the last

E• application—but it re-produces two copies of bullet, and the conversion gives

them the same derivation as the original maximum formula. We have only moved

the bump in the carpet. In particular, let Π2 (from the above conversion) be the

leftmost derivation of ⊥; Π3 be the EFQ step giving C from ⊥; and, finally, Π1 be

the rightmost derivation of ⊥ from •. The resulting derivation requires two copies

of Π1 (one for each •), but as the subsequent step is an E• application, there are

yet again two maximum formulae in the derivation.

One might then consider bullet to be an example where the mere stipulation of a

new connective (i.e., through the intro-rule as implicit definition) has semantically

misfired.32 The suggested assertoric practice for bullet, together with the infer-

ential practice suggested by a harmony constraint, leads to inconsistency. Any

attempt at holding on to harmony (and, in particular GE-harmony) as a guiding

principle for revising our inferential practice, has the onus of locating the problem

with bullet elsewhere. Why is it that bullet, but not the usual run of the mill

connective, cannot be disciplined by a harmony constraint alone?

An immediate response is the observation that bullet’s intro-rule deviates from

the norm by allowing a copy of itself in a premise. In the terminology of Dummett

(1991, p. 257), we say that an λ intro-rule is sheer whenever λ does not occur

in any premise or assumption. Thus, bullet is non-sheer.33 Recall that it is due
32A further discussion of what is required for successful stipulation is outside of the scope of

the present work. Although see Hale & Wright (2000) for an interesting discussion.
33Nor is bullet pure since ⊥ occurs in the rules as well.
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to the non-sheerness that removal of the maximum formula fails in the attempted

conversion step for bullet. One might then be tempted to add a constraint of

sheerness to GE-harmony in order to rule out bullet and its relatives. Such a

strategy might also be a route to consistency by putting a more exigent constraint

on inference rules: GE-harmony plus sheerness.

Unfortunately, however, there is a battery of apparently innocuous rules that are

non-sheer. One of them is the Dilemma rule we looked at in Example 4.7. Applying

the first of the GE-rules we get a conversion of the form:

[A]u

Π0

B

[A]v

Π1

¬B
¬A

Π2

A

[B]w

Π3

C
C  

Π2

A
Π0

B
Π3

C

With the second:34

[A]u

Π0

B

[A]v

Π1

¬B
¬A

Π2

A

[¬B]w

Π3

C
C  

Π2

A
Π1

¬B
Π3

C

In both of these conversions we delete the maximum formula ¬A, which, impor-

tantly does not occur in any of the converted derivations. The intro-rule is non-

sheer as negation occurs in ¬B in the second premise. But, importantly, it is not

the non-sheerness that upsets the two suggested derivations. For, as it happens,

the first derivation is as bad the second even though it does not produce a negation

in the output derivation. Rather, it is the fact that in both cases, B might be

of higher degree than A that causes the problem. Depending on the structure of

Π0 (Π1) and Π3, B (¬B) might itself be a maximum formula, and, worse, since

Π3 in the original derivation might have discharged multiple occurrences of B, the

resulting derivation might have more rule-applications than the first.
34Recall that we have already observed that the first GE-rule is sufficient on its own. Indirectly,

then, normalisation could always rewrite to use this rule rather than the second.
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Such an observation does not amount to a refutation of normalisation, but it does

mean that the standard Prawitz procedure for proving the result is blocked. Some

induction value other than the degree of the maximum formula (and length of

segment) is needed as a metric for normalisation. Two conclusions can be drawn

from this: First, it tells us that a number of familiar intro-rules (e.g., Dilemma

rule) will resist normalisation if when paired with their GE-harmonious set of elim-

rules. Second, sheerness plus GE-harmony is not sufficient for normalisation, and,

thus, not sufficient for consistency.

Instead, what marks the difference between, on the one hand, the ‘problem’ intro-

rules, and, on the other hand, standard intro-rules as seen in Def. 2.6, is that the

latter rules only include strict subformulae of the conclusion in their premises, i.e.,

any formula is a subformula of the conclusion (see Def. 2.8) but not identical to

the conclusion. In particular, this also holds for the negation rules for intuitionistic

logic, I¬ and E¬. In contrast, both I • and Dil fail on this account. And, more

interestingly, so does classical reductio, where ¬A occurs as an assumption for a

rule with A as conclusion.35 In other words, the problems encountered by using

E⊥C as an intro-rule is a special case of the more general phenomenon: The

problem is not that a negation, specifically, occurs in the premises, but that a

formula that is not a strict subformula of the conclusion occurs in the premises.

Let us call intro-rules where all formulae in the premises are strict subformula of

the conclusion mitigable. The contention is that if all intro-rules for a connective

λ are mitigable, and all elim-rules for λ are GE-induced, then there is a conversion
35Compare also the conversions for super-tonk:

[C]1

Π0

D
Π1

A
super-tonk

(1) Π2

C

[D]2

Π3

E

E
(2)

 

Π2

C
Π0

D
Π3

E

[C]1

Π0

D
Π1

A
super-tonk

(1)

[A]2

Π2

E

E
(2)

 

Π1

A
Π2

E
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step of the right form. Why is this a plausible conjecture? At least we know by

the structure of the GE-template, that every GE-rule will have the conclusion of

the intro-rule as major premise, and any minor premise will only contain strict

subformulae of the conclusion (except the arbitrary conclusion of subderivations).

Thus, any new maximum formula produced in the conversion will be of lower

degree than the deleted maximum formula. Together with permutation conversions

this suggests that there will be a reduction in the induction value, i.e., either in

the highest degree of a maximum formula or in the sum of lengths of segments.

Albeit only a gesture, the above takes on some distance towards appreciating a

connection between GE-harmony and normalisation. But even if such a connection

can be made more rigid, the problem still remains that all we can hope for is a proof

that GE-harmony and mitigability is sufficient for normalisation (and, in turn,

for consistency). A moral for Prawitz’s result for classical logic is precisely that

treatment of special cases (e.g., classical reductio E⊥C) might give normalisation

even for systems where these properties do not hold. In conclusion, we can only

opine that GE-harmony ought to be accompanied by a constraint informed by

the precise conditions under which GE-harmony yields normalisation results. The

merit of such a proposal is that it promises to close the gap between GE-harmony

and consistency. Whether such a condition can be formulated accurately, however,

is an open problem.

4.5 Multiple-Conclusion and GE

4.5.1 Classicality and Multiple-Conclusion

Let us pause and take stock: We have seen so far that GE-harmony can deal

with a range of cases in a convincing fashion. Of course, nothing in what is said

so far provides any form of guarantee that there are not rule-sets for which the

GE-harmony analysis breaks down. Even if the account gives functionality and



Chapter 4 Generalised Elimination Harmony 138

normalisation in standard cases, one might worry that the applicability is lim-

ited. The problem is that given the open-endedness of the notion of an inference

rule, there is radical flexibility in what sort of formalism might come under con-

sideration.36 The GE inferentialist cannot be held accountable to any arbitrary

development or generalisation of proof-theoretic formalism.

However, from the fact that an absolute generalisation of GE-harmony is out of

the picture, it does not follow that the range of cases cannot be criticised. In what

follows, we will focus on one particular dimension of proof-theory which has been

under-appreciated in the harmony debate: This is the substructural dimension.

We will investigate the lacuna left by traditional PTS (including GE-harmony),

and discuss the problems which arises from bringing proof-theoretic harmony, and

GE-harmony in particular, in to the substructural era.

Rather than starting immediately from a substructural perspective, we will first

return to GE-harmony, and one particular application of some importance: Clas-

sical negation. The idea is that the application to classical logic will display an

important lesson about the limits of the GE-approach. More precisely, it will un-

derline the difficulty involved in identifying logical connectives isolated from their

structural context.37 So let us return to GE-harmony and see how it affects the

revisionary debate about classical negation. In particular, is classical negation

GE-harmonious? In fact, Read’s explicit aim with GE-harmony is, among other

things, to provide a harmonious natural deduction for classical logic. We quote at

length:

What I intend to do is to explain how the sense of the connectives of

classical logic can be captured by inference rules in such a way that

harmony and autonomy are guaranteed; and in particular, to exhibit a

reformulation of NK in which all the negation-free theses of classical
36An example is natural deduction systems for many-valued logics. See Baaz et al. (1993).
37Recall Belnap’s insistence on the importance of the ‘antecedently given context of deducibil-

ity’ in Section 2.2.3.
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logic are provable without the use of the rules for negation. The rules

will be in harmony, in that all proofs in ¬, &, ∨, →, ∀ and ∃, com-

plete for the theses of classical logic, will be normalizable. Every proof

can be put in normal form by eliminating maximal formulae, formulae

introduced by introduction-rules and acting as major premise of the

corresponding elimination-rules. The result is a natural deduction sys-

tem for full classical logic satisfying the criteria we have noted above

for a logic to be autonomous. (Read 2000, p. 144)38

The passage is a bit confused. Read states that “[t]he rules will be in harmony,

in that all proofs [...] will be normalizable”. It is certainly true that NC is

normalisable (which we reported in Section 3.2.2), but Read’s preferred notion

of harmony is GE-harmony, and, as we have seen in Section 4.3.3, GE-harmony

does not entail normalisability. The real issue for our purposes, then, is whether

the NC rules are GE-harmonious. It is a puzzling omission in Read’s original

discussion that his preferred GE-template was not turned on classical negation,

the critical case.

Why think that GE-harmony must be revisited for classical negation in particu-

lar? Recall that Read’s NC negation rules are multiple-conclusion (see Example

3.2). As it stands, neither Read’s GE-template, nor the Dyckhoff-style template

developed here, incorporates this aspect. Although Read does not provide a mod-

ified version of his preferred schema, we might hope to modify it according to

the multiple-conclusion framework. This, however, is a non-trivial extension. It

introduces some unexpected problems which need to be addressed. But before

we can shed light on the difficulties that arise, let us modify the Dyckhoff-style

GE-template proposed above. The critical change is situating the formulae in

disjunctive contexts.

Consider the following templates:
38See Section 3.2.2 for more on Read’s take on classical logic and harmony.
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[Γi1 ]....
Σi1 , σi1 . . .

[Γini ]....
Σini

, σini
δ,Σi1 , ...,Σini

δ,∆

[σ1j ]....
Θ . . .

[σmjm ]....
Θ Γ1j ,∆1j . . . Γmjm ,∆mjm

Θ,∆,∆1j , ...,∆mjm

where, as before, 1 ≥ i ≥ m, of m δ intro-rules; for each intro-rule i, there is a

subderivation of Θ from σij for some j ; and, for each intro-rule i, there is a minor

premise Γij for the j corresponding to the σij (with a multiple-conclusion context

∆ij).

Compare the rules of the system NC in Appendix A.9. The intro-rules follow the

structure indicated by our intro-template, whereas the elim-rules are not gener-

alised. In fact, even E∨ is not a GE-rule in NC. However, we will see that, as

with the single-conclusion frameworks, the standard rules are equivalent with their

corresponding GE -rules. Let us take ∨ as an example. From the following two

intro-rules we get a single GE-rule (rightmost):

Example 4.17. Disjunction:

∆, A
∆, A ∨B

∆, B
∆, A ∨B

∆, A ∨B

[A]....
Θ

[B]....
Θ

∆,Θ

We can show that the GE-rule is equivalent to the standard NC elim-rule. First,

from the GE-rule, we recapture the simplified rule by the usual instantiation:

∆, A ∨B

[A]....
A,B

[B]....
A,B

∆, A,B

As opposed to earlier proofs of equivalence, the subderivations now rely on an

explicit application of weakening inNC. Conversely, we permute the subderivation

as before, to get the more standard looking multiple-conclusion rule for disjunction:
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∆, A ∨B
∆, A,B....

∆,Θ

What about classical negation? The GE-rule follows the same pattern:

Example 4.18. GE for classical negation:

∆,¬A ∆
′
, A

[⊥]u....
Θ

∆,∆
′
,Θ

(u)

By similar considerations as above, this rule is equivalent to the simplified NC

rule. Thus, apparently, the GE-template provides the result that we would want

for classical negation. In terms of the revisionist agenda, this means that at least

harmony, understood as GE-harmony, provides no motivation for giving up on

classical logic. So much the worse for the intuitionist revisionist. For PTS, how-

ever, this is unmitigated victory as the semantics can widen its field of application.

So where does the complication enter the picture? The answer is that we are now

being irresponsible with contexts, as foreshadowed in Section 3.2.2. The multiple-

conclusion GE-template glosses over some crucial distinctions: The added contexts

Σij , ∆ij and Θ are, of course, disjunctive, while the Γij are conjunctive contexts.

Hence, writing pΓij , ∆ijq is misleading as it obfuscates the fact that we are dealing

with different commas. The structural comma in pΓij , ∆ijq says that Γij or ∆ij ,

but whereas latter has its members arranged disjunctively, the former is arranged

conjunctively. This reveals that the template now involves a much more delicate

structure. As an example, let Γij = {A, B} and ∆ij = {C, D}. Obviously, writing

{A, B, C, D} will be extremely poor bookkeeping. In informal paraphrase, what

this ought to say is: either (A and B) or (C or D).

Only because of the happenstance that Boričić and Read presented NC without

conjunctive contexts did we fail to appreciate this distinction. Explicating the
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conjunctive contexts as well, we see that the problem occurs independently of the

GE-template. In Ncp, the difference is as follows:

[A]u....
B

A→ B
(u)

Γ, [A]u....
B

A→ B
(u)

Thus, in NC, the corresponding difference gives the following rule-variations:

[A]u....
∆, B

∆, A→ B
(u)

Γ, [A]u....
∆, B

∆, A→ B
(u)

Just like the two first rules might yield different calculi (compare quantum disjunc-

tion from Example 4.1), the two multiple-conclusion rules might also give different

results. The difference is that in the notation of the lower right-most rule, the

structural comma is ambiguous. Looking back the related sequent calculus G1cp,

it is really no surprise that NC lands us with this problem. For, the classical

sequents disambiguate commas by their location in the sequent, i.e., right-handed

vs left-handed.39 Transferring intuitionistic logic to natural deduction is another

matter, however, as its standard sequent system is single- (or empty-) succedent.

Thus, modulo some considerations about the empty succedent and ⊥, there is no

second comma to disambiguate in the natural deduction framework.

Not so for classical logic. A quick fix is to offer different syntax for the two struc-

tural operators. For instance, using ‘,’ and ‘;’ to differentiate between conjunctive

and disjunctive contexts. We do not intend to indulge in any details here—it suf-

fices to say that syntactically enhancing the structural language will in this case

involve complications for the notion of derivation, and, in turn, for the correspond-

ing notion of normal form and normalisation. The point we are after, rather, is of

a more general nature: Upon realising that harmony in general, and GE-harmony
39See Chapter 6 and especially Section 6.4.5 for more on the notion of a location.
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in particular, is insensitive to the presence of structural distinctions, it is natural

to ask whether this might impact the inferentialist promise of a functional har-

mony constraint. After all, the structural language—which will depend on the

proof-theoretic framework—is part of the input in the GE-template.

4.5.2 Additive and Multiplicative Connectives

Up until now, we have not considered in any detail the possibility that pres-

ence/absence of contexts might distinguish logical constants. In Section 4.2.2,

Example 4.1, we saw that disjunction in the quantum logic Nqp behaves like clas-

sical disjunction in all aspects except the conjunctive contexts. Developing natural

deduction in a multiple-conclusion framework naturally leads to the related ques-

tion of whether disjunctive contexts might yield a proliferation of connectives,

and, furthermore, if such a proliferation will have an influence on GE-harmony.

By an analogy to sequent calculus, we will see that this is in fact the case, and,

furthermore, that it emphasises a problem with GE-harmony as it stands.

To demonstrate how the contexts become important, let us return to the NC-

rules again. Recall, for example, the rules for → that allowed us to formalise a

multiple-conclusion version of the→-fragment of classical logic (e.g., Peirce’s Law

is provable):

Example 4.19. Implication in NC:

[A]u....
Γ, B

Γ, A→ B
(I→NC)(u)

∆, A→ B Γ, A
Γ,∆, B

(E→NC)

By introducing multiple-conclusion rules for → we must take heed of the differ-

ence between additive (context-sharing) and multiplicative (non-context-sharing)

rules.40 This difference is already present in sequent calculus, and has come into
40Sometimes also called extensional and intensional rules (especially in connection with rele-

vant logics). Hitherto this issue has been hidden by the fact that (conjunctive) contexts in the
premises have been supressed.
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prominence with the development of Linear logic.41 Corresponding to the same

R→ rule in G1cp (and similarly for G1ip) there are two L→-rules, the multi-

plicative and additive, respectively:

Example 4.20. Implication in G1cp:

Γ⇒ A,∆ Γ
′
, B ⇒ ∆

′

Γ,Γ
′
, A→ B ⇒ ∆,∆

′
Γ⇒ A,∆ Γ, B ⇒ ∆

Γ, A→ B ⇒ ∆

The two rules are equivalent in the presence of weakening and contraction (thus,

in particular, in G1cp), but characterise distinct logical constants in linear logic

where neither of these rules hold. Interestingly, although Read follows Boričić

(1985) in giving only the multiplicative rules for→, we will see that, as in sequent

calculus, NC has a corresponding additive rule which is equivalent (since, again,

weakening and contraction hold in NC). In a sense, this simply reinforces the

assumption that for classical logic there is a correspondence between sequent cal-

culus and multiple-conclusion natural deduction. The following additive E→NC

rule is equivalent to its multiplicative counterpart:

A→ B,∆ A,∆
B,∆

(E→NC
a )

Obviously, the additive rule is an instance of the multiplicative rule where Γ =

∆, and where contraction is applied after the conclusion. For the other direction,

we assume the premises of the multiplicative rule and derive its conclusion using

weakening and the additive rule:

A→ B,Γ
A→ B,Γ,∆

(K)
A,∆
A,Γ,∆

(K)

B,Γ,∆

Given that there are two standard elim-rules—the additive and the multiplicative—

we ought to expect two generalised rules as well.
41See Girard (1987).
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A→ B,∆ A,∆
′

[B]u....
∆
′′

∆,∆
′
,∆

′′ (GE→NC
m )(u)

A→ B,∆ A,∆

[B]u....
∆
′

∆,∆
′ (GE→NC

a )(u)

We use subscripts a and m to indicate additivity and multiplicativity, respec-

tively. By a similar argument as above, we can show that GE→NC
m and GE→NC

a

are equivalent in the presence of weakening and contraction. For the direction mul-

tiplicative to additive we simply note that it is an instance where ∆ = ∆
′ = ∆

′′

followed by contraction. For the other direction we need the following derivation:

A→ B,∆

A→ B,∆,∆
′

(K)
A,∆

′

A,∆,∆
′

(K)

[B]1....
∆
′′

∆,∆
′
,∆

′′ (GE→NC
a )(1)

The double lines indicate that there might be multiple applications of weakening.

We can then see that the two rules are equivalent, and we can turn to the special

case of the standard rule, E→NC . It is sufficient to show that E→NC
a is equivalent

to GE→NC
a . From GE to E, we have:

A→ B,∆ A,∆

[B]1....
B

∆
(1)

B,∆

In the other direction, we permute the subderivation down as before:

A→ B,∆ A,∆
B,∆....
∆,∆

′

Crucially, we here need to make sure that the context ∆ is carried on in the

subderivation from B to ∆
′ (from the GE-rule). We can think of it in the following

disjunctive way: If B holds, then we get ∆
′ by assumption, and the conclusion by
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weakening; alternatively, if ∆ holds, we get ∆ trivially, and the conclusion, again,

by weakening. Either way, we have a proof of the conclusion.

Analogously, negation is subject to a similar bifurcation.42 Recall the multiple-

conclusion rules offered by Boričić and Read:

[A]u....
∆

∆,¬A
(I¬NC)(u)

Γ, A ∆,¬A
Γ,∆

(E¬NCm )

Again, the elim-rules can be exchanged for an equivalent additive rule given weak-

ening and contraction. The proofs of LEM and DNE remain unaltered by the

switch.

∆, A ∆,¬A
∆

(E¬NCa )

Generalising, we aquire two different GE-rules:

¬A,∆ A,∆
′

[⊥]u....
∆
′′

∆,∆
′
,∆

′′ (GE¬NCm )
¬A,∆ A,∆

[⊥]u....
∆
′

∆,∆
′ (GE¬NCa )

The proof of their equivalence, and their equivalence with the standard rules

E¬NCm/a, is similar to the implicational case.

Now contrast the → and ¬ cases with ∧ in NC:

Example 4.21. Conjunction in NC:
42The case of E⊥NC is a bit puzzling:

⊥,∆
A,∆

(E⊥NC)

This is simply a multiple-conclusion version of EFQ. Presumably, like its single-conclusion coun-
terpart, the rule has the null-rule as its corresponding intro-rule. But which rule is then GE-
harmoniously induced by the null-rule?
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Γ, A ∆, B
Γ,∆, A ∧B

(I∧NCm )

The I∧NCm rule has an additive brother, while the elim-side, on the other hand,

is neutral in the standard form, i.e., neither rule has two premises so there is no

question of sharing vs non-sharing.

A ∧B,∆
A,∆

(E∧NC1 )
A ∧B,∆
B,∆

(E∧NC2 )

In other words, ∧ opposite of the cases we have seen so far where the intro-rule

is neutral whereas the elim-rules are bifurcated into additive and multiplicative

(which again are equivalent given weakening and contraction).43 Here are the two

multiple-conclusion GE-rules for conjunction:

A ∧B,∆

[A]u....
∆
′

∆,∆
′

(E∧NC1,a )
A ∧B,∆

[B]u....
∆
′

∆,∆
′

(E∧NC2,a )

For the disjunction in Example 4.17, the situation is dual. The two intro-rules

have only one version, while the elim-rule—in its GE version—has an additive

and a multiplicative version.

4.5.3 The Substructural Challenge

How do we expect GE-harmony to operate on the additive/multiplicative dis-

tinction? If, as predicted by the logical behaviour (and claimed by substructural

enthusiasts), additive and multiplicative rules do in fact underwrite two distinct

logical constants, then it is critical that harmony does not run them together. A

preliminary suggestion is that GE-harmony ought to induce additive elim-rules

from additive intro-rules, and correspondingly for multiplicative rules.
43Compare the sequent calculus G1cp again.
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Why think that this is the case? After all, in a situation where both intro- and

elim-rules have additive and multiplicative versions, another option is to cross-

match them. This might not be desirable since versions of structural rules (in

absorbed form) might become derivable (see Troelstra & Schwichtenberg 2000,

pp. 292-93), but that does nothing towards ruling the ensuing connectives out as

semantically ill-formed. The real issue here is with the one-to-one functionality of

GE-harmony. If stipulations of intro-rules can be either additive or multiplicative,

and this decision impacts the semantics of the logical constant (according to PTS),

then preserving the content stipulated from the set of intro-rules to the GE-induced

elim-rules must involve preserving this structural aspect.

Return to the above examples: In the case of ∧ one might consider introducing a

constraint on the contexts that forces I∧NC to be the two I∧NCa rules (and sim-

ilarly for multiplicative input). Yet, GE-harmony does not distinguish between

the output of the two additive intro-rules and the two multiplicative intro-rules.

No matter which rule one picks, the set of GE-rules is the same. In other words,

uniqueness fails if one concerns oneself with the substructural dimension.44 Corre-

spondingly, for→ and ¬ we get a situation which is more dramatic: Functionality

fails since one and the same set of intro-rule has two GE-rule sets, neither of which
44Interestingly, sometimes an additive/multiplicative divide is applied to the L∧ rule as well:

Γ, Ai ⇒ ∆

Γ, A0 ∧A1 ⇒ ∆

Γ, A0, A1 ⇒ ∆

Γ, A0 ∧A1 ⇒ ∆

The key difference is that the leftmost L∧ rule introduces a measure of weakening by only
preserving one of the conjuncts in the bottom-up procedure. In the rightmost rule, however,
there is no getting rid of a superfluous conjunct except in the presence of an explicit weakening
rule, or where weakening is built into the axioms. (See Troelstra & Schwichtenberg (2000, p.
77) for details on sequent calculus with absorbed structural rules). Surprisingly, the analogous
difference is captured by the distinction between the two GE-templates we have seen. In the
early version there is only one GE∧-rule whereas the improved template has two (ignoring
multiple-conclusion for the time being):

A ∧B

[A,B]....
C

C

A0 ∧A1

[Ai]....
C

C
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is uniquely induced by the template. There is, in other words, no telling from the

set of intro-rules whether the GE-rule ought to be additive or multiplicative.45

Why is this a problem for PTS? Here is one possible answer: If, as discussed above,

harmony requires functionality, then GE-harmony, in its current form, does not

suffice for harmony. Two distinct rule-sets can be GE-harmonious with the same

set of intro-rules. Of course, giving up on functionality is an option, but it aban-

dons at least part of the motivation for and advantage with GE-harmony as a

proof-theoretic account of the informal concept of harmony. As we discussed in

Section 4.2.2, Dummett’s idea of harmony does seem to presuppose the function-

ality of the constraint. Consider again the inversion principle: Although it does

not explicitly say anything about the contexts of conclusions or premises, one can

conceive of a closely related principle that adds the provisos about the contexts.

In fact, Dummett already tacitly admits that much in his diagnosis of the quantum

logic rule in Example 4.1.

Γ....
A YB

[A]u....
C

[B]v....
C

C
(EY)

Γ....
A ∨B

Θ, [A]u....
C

∆, [B]v....
C

C
(E∨)

The rule requires that the assumptions in the subderivation be without contexts,

but the grounds on which the introduction of the disjunction expression rests

(i.e., the standard I∨ rules) do not themselves include such a restriction. This is

important not only because it shows how the structural consideration creeps into

the traditional notions of harmony advocated by Dummett and Prawitz, but, also,

because it shows that the structural ambiguity discussed above is not a problem

only in a multiple-conclusion framework—it cuts across the single- and multiple-

conclusion divide since it concerns both conjunctive and disjunctive contexts.
45It is worth noting from the general structure of GE-rules, that all rules with discharge in the

intro-rules will yield GE-rules for which the additive/multiplicative divide apply.



Chapter 4 Generalised Elimination Harmony 150

4.6 Conclusion

For the inferentialist there are a number of strategies for handling the challenge

posed by substructural considerations. The traditional inferentialist might be

unimpressed by the argument simply because they fail to take seriously the possi-

bility of a framework in which the additive and multiplicative rules are not equiv-

alent, i.e., where the structural rules of weakening and contraction do not hold.

Someone unmoved by the potential in substructural logics might contemplate the

option of simply excluding frameworks of this sort (they are certainly not part

of the traditional inferentialists’ repertoire), and accept that the output may be

distinct, but equivalent, rules. As with most philosophical strategies based on

logical inertia, however, this is unlikely to succeed. With the growing number of

substructural logics applied in philosophical debates (see also Section 5.4), ques-

tion of their semantics and justification will inevitably be part of the philosophy

of logic. Instead, such an approach will severely limit the applicability of PTS:

Proof-theoretically well-defined logical constants, which are distinct for structural

reasons alone, will not be allowed a proof-theoretic semantics.

A second approach is to take the bull by the horns. The GE-template must be

reworked to be sensitive to the structural distinctions in so far as they are part

of the logic of logical constants. This is an invitation that will not be taken up

in the present work. Rather, our concern in the next chapter is a third reply, a

kind of strategy with some following in the literature. In a word, structural rules

are without semantic import. An example is Read (2008a): Classical and relevant

implication are distinguished logically by the structural rule weakening, but have

shared content since the operational rules are the same.

Variations and extensions of such a view will be dealt with in Chapter 5. Finally,

in Chapter 6, we revisit the semantic role played by structural rules and struc-

tural properties in the context of a more robust story about how inference rules

determine semantic content.
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Chapter 5

Revision and Inferentialism

5.1 Introduction

Are there unrevisable beliefs? Are there beliefs that we, rationally speaking, ought

never to revise, or even beliefs we cannot revise? Quine made himself famous by

answering both ‘yes’ and ‘no’, albeit not at the same time. In a word, the reason

was his changing view on the role of logical beliefs in our doxastic make-up.1 The

Quine of Two Dogmas (1951), the radical revisionist, says:

[N]o statement is immune to revision. Revision even of the logical law

of the excluded middle has been proposed as a means of simplifying

quantum mechanics; and what difference is there in principle between

such a shift and the shift whereby Kepler superseded Ptolemy, or Ein-

stein Newton, or Darwin Aristotle? (ibid., p. 43)

And furthermore:

Truth values have to be redistributed over some of our statements.

Reëvaluation of some statements entails reëvaluation of others, because
1What is a logical belief? For the purposes of what follows we take a logical belief to a belief

about validity-attribution, i.e., a belief about the validity/invalidity of an argument.

153
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of their logical interconnections—the logical laws being in turn simply

certain further statements of the system, certain further elements of

the field. (ibid.)2

But with Quine (1960) the position appears to be redeveloped, and his view on

logic takes on an anti-revisionist slant. Logic is allowed a privileged position

in the web of belief through its pivotal role in radical translation. Here Quine

considers what he takes to be a ‘popular extravaganza’, the view that there are

true contradictions together with failure of explosion:

My view of the dialogue is that neither party knows what he is talking

about. They think that they are talking about negation, ‘∼’, ‘not’; but

surely the notion ceased to be recognisable as negation when they took

to regarding some conjunctions of the form ‘p.∼p’ as true, and stopped

regarding such sentences as implying all others. Here, evidently, is the

deviant logician’s predicament: when he tries to deny the doctrine he

only changes the subject. (Quine 1986, p. 81)

The above tension in Quine’s philosophy has been pointed out by several com-

mentators, e.g., Haack (1974) and Dummett (1978a). However, this received view

is criticised in Priest (2006a). Even if Quine is frequently portrayed as giving an

argument against revisionism for logical beliefs, he himself did not intend a shift

in position. In fact, Quine proceeds to remind the reader that despite the ‘change

of subject’

I am concerned to urge the empirical nature of logic and mathematics

no more than the unempirical character of theoretical physics; it is

rather their kinship that I am urging, and a doctrine of gradualism. [...]
2Not everyone found Quine’s attempt at wedding belief holism with the revisability of logic

convincing. See for instance Wright (1986, p.191-94) for a criticism.
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Logic is in principle no less open to revision than quantum mechanics

or the theory of relativity. (Quine 1986, p. 100)3

Although perhaps not taken as Quine originally intended, his famous ‘change of

logic, change of subject’ quip has had a lasting influence in the philosophy of logic.

Unlike its originator, however, other philosophers have not only adopted the point

without the framework of radical translation and stimulus-meaning, they consider

the argument a polemic against the mere possibility of revising logical beliefs.4 The

real issue, we suggest, is the paraphrase ‘change of logic, change of meaning ’, even

if, as one ought to expect, Quine carefully avoids this wording (see e.g., Putnam

1976). With a gross oversimplification, let us say that the line of argument is

roughly as follows: If revision of a logical belief involves changing the meaning of

logical expressions—say, ‘not’—then we are not, in Quine’s sense, reëvaluating our

belief system by merely redistributing truth values over a set of propositions. Upon

changing the logic, we are considering different propositions, and thus entertaining

different beliefs. This, it is suggested, makes a mockery out of revision of logical

beliefs.5

Yet, debates in which the class of logical beliefs is in question are by no means

unfamiliar to philosophers. The difference between sharp and vague discourses,

and between decidable and undecidable discourses are examples where philoso-

phers have routinely offered theories that involve a change of the accompanying

logic. The same is true about moving from a mathematical framework for classical

mechanics to one for quantum mechanics. Even more, in the theory of semantic

paradoxes many of the most persistent solutions involve a theoretic framework

based on non-classical logics. Contemporary diagnostics of the Liar and its many

brethren is a breeding pit for non-classical approaches to logic.
3Gradualism is a view also defended later in Shapiro (1991, p. 97).
4In Quine (1960), logical constants are analysed in terms of stimulus-meaning: “The semantic

criterion of negation is that it turns any short sentence to which one will assent into a sentence
from which one will dissent, and vice versa".

5Haack (1974, p. 8) gave an early statement of such an argument.
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Two influential approaches to semantic paradoxes are represented by Priest (2006b)

and Field (2008); both endorsing non-classical logics, paraconsistent and paracom-

plete, respectively. Both address the ‘change of logic, change of meaning’ argument;

and both want to dispel it in order to promote their solution. Before we go on

to look in more detail at the argument from meaning-change, it is worthwhile to

include some instructive observations from the aforementioned. First Field:

The question [of meaning change] is clear only to the extent that we

know how to divide up such firmly held principles into those that are

“meaning constitutive" or “analytic" and those which aren’t, and this

is notoriously difficult. (Field 2008, p. 17)6

Field takes his cue from Quine and Putnam when he doubts that such a distinc-

tion can be maintained. In what follows we will investigate a recent strategy to

delineate the meaning-constitutive from the non-meaning-constitutive, a strategy

that has been employed to make sense of revision of logical beliefs. We conclude

that the strategy is unsuccessful. Fortunately, the revisionist has other resources.

We take a second moral from Priest, who joins Field in the choir of skeptics. Un-

willing to accept that a paraconsistent approach is merely a change of meaning,

he says:

Someone who rejects classical logic, say a paraconsistent logician, need

not deny that the (classical) meaning of ‘∼’ is sufficient to guarantee

the validity of inference p.∼p ` q in classical logic (the pure abstract

logic); what they will certainly deny is that this is the meaning of

negation, as it occurs in vernacular reasoning [...] According to them,

the semantics of their pure logic is the correct semantics for vernacular

negation. Seen in this way, a dispute between rival logics is, then,

exactly a dispute over meaning. (Priest 2006a, p. 171)
6This, presumably, is why the paraphrase with ‘meaning’ is anathema to Quine. Compare

also Putnam (1976): “we simply do not possess a notion of ‘change of meaning’ refined enough
to handle this issue" (p. 190).



Chapter 5 Revision and Inferentialism 157

True, there are debates about logical revision which are motivated by the desire

to accurately model ordinary reasoning, say, the many uses of ‘not’ in natural

language. Nevertheless, it is equally clear that this cannot be a general guide to

understanding revisionary debates in the philosophy of logic. As was accentuated

by our discussion of Dummett in Section 2.3.1, revision of logic can be moti-

vated by non-empirical considerations having to do with, say, meaning-theoretical

principles. And Dummett is certainly not alone in this tradition: For semantic

paradoxes, logicians are not ordinarily in the game of taking their cue from ordi-

nary speakers—the problem is exactly that they get it wrong. Although some are

willing to accept inconsistent practices, and a theory of truth embedded in such

a practice, most would prefer to be less Wittgensteinean about logical theorising.

The upshot is that we are in need of a plausible story about when we are entitled

to revise our logical principles, and, subsequently, how it affects the semantics of

logical constants.

5.2 Revisionism and Semantics

5.2.1 PTS Again

Before we can return to the issue of revisionism, let us first try to sharpen some

of the semantic underpinnings of the meaning-change argument. In order to give

some content to Field’s remark above, let us revisit some of the fundamental

ideas from foregoing chapters: What is the connection between INF, i.e., that the

meaning of a logical constant is fixed by the constant’s behaviour in the inferential

rules which govern its use, and revision of logic? Even more specifically, what is

the connection between revision and INF as captured by PTS?

In order to shed light on the significance of proof-theoretic harmony, and, ulti-

mately, the limitations of proof-theoretic harmony, we will investigate the inter-

play between meaning-constitutive rules and revision of logical beliefs in a PTS
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setting. As before, we will understand talk of inference rules as talk of formal

rules in a proof system. The result is that we carry out the discussion of logical

beliefs—and revision of them—in the context of formal systems. Some authors,

noticeably Resnik (2004), have made much out of the distinction between revision

of formal systems and revision of logical beliefs (about reasoning in our vernacu-

lar).7 Without hesitation we admit that there is a significant gap, but, firstly, the

present debate is not merely about “revising" our formalism—whatever that might

mean—it is about studying ordinary reasoning through a mathematical idealisa-

tion, i.e., it is formalism together with an application; and, secondly, many of the

fields for which revision of logical belief is most pertinent deal to a large extent

with formal logic as a model of ordinary reasoning, e.g., the semantic paradoxes,

vagueness.

Of course, discussing revision in a formal setting means that outcome is to some

extent hostage to the limits of the formalism—even if we stay neutral about choice

of logic. Because of this the choice of formal framework is far from innocuous.8

For the most part, we stay neutral about whether natural deduction or sequent

calculus (or another form of axiomatization) is preferable. Yet, as we shall see,

which choice is made has affected the debate about what meaning-constitutive

rules are.

5.2.2 Gentzenianism and Hilbertianism

With PTS we can now revisit Field’s remarks about the distinction between

meaning-constitutive and non-meaning-constitutive principles. There are at least

two important issues that need to be elaborated before the connection to revi-

sionism becomes clear. The first is a question about the structure of meaning-

constitution: Which inferential rules ought we consider meaning-constitutive? The
7In general, another prominent critic of formal methods applied to ordinary reasoning is

Harman (1986).
8Recall, for example, the difference in non-conservativeness between natural deduction and

sequent calculus (Section 2.3.2).
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second is about the nature of meaning-constitution: In what sense can a set of

inferential rules fix the meaning of an expression, and—given the fuzziness of the

label ‘meaning’—what exactly is being fixed in the process? We start by addressing

the former question. In Chapter 6 we return to the second question.

In the chapters so far we have investigated the Gentzenian tradition in some de-

tails, focusing especially on the notion of proof-theoretic harmony. As we have

seen, a key feature of what we call Gentzenian PTS is that specific subsets of

the primitive inference rules of a system are considered meaning-constitutive. If

we assume a standard natural deduction framework, for example, Gentzen’s orig-

inal proposal was to think of the intro-rules as an (implicit) ‘definition’. There

is, however, no immediate reason why one ought not think of the elim-rules as

meaning-constitutive instead (e.g., Schroeder-Heister 1985), or even a mixed ap-

proach (e.g., Milne 1994 and Rumfitt 2000). If you think, as has been proposed

for instance by Peacocke (1987), that the obviousness of a basic inferential rule is

a symptom of its meaning-constitutive power, you might conclude that modus po-

nens is meaning-constitutive for ‘→’ whilst for ‘∨’ it is the intro-rules.9 But, a rule

appearing to be obvious seems to be too much of an unstable phenomenological

criterion to have real semantic import.

Alternatively, one might suggest, with Dummett, that a choice of which subset of

rules is semantically primitive has to do with assertion-conditions, commitments,

and entitlements (see Section 2.3.1). If one subscribes to such a thought, and, ad-

ditionally, that intro-rules encode the semantically central aspect of such notions,

then there is a pro tanto reason for ascribing priority to them. Irrespective, we

have seen, in Section 3.2.3, that such a division of inference rules is tendentious:

There is no reason for assertion to dominate the theory, rather than, say, denial.

In fact, in Chapter 6, we will take this thought further and explore the idea of

introducing other speech acts as well.
9Formally, this might be because hypothetical rules, i.e., using discharge of assumptions, are

considered more involved than categorical rules.
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Whatever choice one makes with respect to subsets of inference rules, however,

the key aspect of Gentzenianism might be considered independent. The idea,

following Dummett, is that an inferential practice might be dysfunctional—and so

susceptible for revision—because of internal conflict between basic principles. At

the core of Gentzenianism is the idea that implementing proof-theoretic harmony

as a functional constraint is a systematic fashion in which logic can (and should)

be revised. GE-harmony, as explored in Section 4.3, focuses on intro-rules, but this

perspective is contingent: There is no reason why one should not devise functional

constraints which operate in the opposite direction.

In contrast to the Gentzenian tradition there is a less discerning approach which

refuses to divide the inferential rules into meaning-constitutive and non-meaning-

constitutive. Such a tradition—clearly part of the Quinean heritage to which

Field’s above remark tacitly subscribes—is typically labelled holism. But to avoid

confusion with other positions also termed ‘holism’ we prefer calling this Hilber-

tianism (as opposed to Gentzenianism). The main claim, that the system of rules

contributes tout court towards the meaning of the involved logical expressions,

is reminiscent of the pre-Programmatic Hilbert’s Foundations of Geometry where

the axioms of the system are both foundational principles and (implicit) defini-

tions.10 Some further content is lent to the label by the fact that Gentzen wrote

his proof-theoretic work as a student of Hilbert and the formalistic school.11

The obvious advantage of the Hilbertian approach is that the problem of motivat-

ing a distinction between meaning- and non-meaning-constituting disappears—and

with it the technical problems posed by harmony and other Gentzenian tricks. The

Hilbertian is happy to admit that the entire axiomatic system (and think now of

axioms as degenerate cases of inferential rules) fixes the content of the involved

logical constants. A bit anachronistically, then, we can include under the label
10For Hilbert’s own outline of the idea, see his famous correspondence with Frege in Frege

(1980).
11There is an analogy here to the philosophy of mathematics debate about neo-Fregeanism.

In Ebert & Shapiro (Forthcoming) the term ‘neo-Hilbertian’ was coined.
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‘Hilbertianism’ content-fixing by other formalisms like natural deduction and se-

quent calculus. The idea, however, remains the same: No proper part of the

axiomatisation is semantically responsible. Dummett remarks critically:

The meanings of all the expressions of the language are, on this view,

determined by our linguistic practice as a whole. If we change any part

of the practice, we may change the meanings of indefinitely many—in

the limiting case, of all—the expressions in the language. (Dummett

1991, p. 228)

For example, the Hilbertian might take a more lenient view on non-conservative

extensions of the system: True, introducing a new operator, λ, might lead to new

consequences in the original λ-free language, but this just reflects the plasticity

of the semantic content when the system at large is updated. This could be the

attitude towards, say, the non-conservativeness of classical negation with respect

to the implicational fragment of intuitionstic logic. Of course, such a concession is

impossible for Dummett and his followers as it blunts their chief argument against

the classicist. Treating the semantics of logical constants in isolation (or at least

not en masse) is considered pivotal by the Gentzenian.

Why the insistence on segregation? Because with Hilbertianism comes the threat

of a re-conjuration of the anti-revisionism that the Gentzenian sought to dis-

pel. Dummett made the case that the holist comes in a broadly Wittgensteinian

shape.12 There is no sense in which the practice can semantically malfunction;

it bestows meaning on the expressions blindly. In other words, the Hilbertian is

willing to admit that an inconsistent practice is bad for independent reasons, but

that it is does not impinge on the semantics.

That is not to say that the Hilbertian cannot combine semantic holism with con-

sistency as a requirement on proper meaning-forming. What the Hilbertian balks
12Recall the mention of inconsistency and disharmony in Section 2.3.1. See Dummett (1991,

pp. 209-10).
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at is the possibility of local constraints on fragments of the language (such as GE-

harmony). One manner in which to phrase the situation, then, is to say that the

Hilbertian, in virtue of only accepting semantic malfunction in the whole system,

has less possibility of locating—and compartmentalising—the semantic effects of

revision. Perhaps the Hilbertian is willing to live with that since since the upshot

of the position seems to be that revision of logic cannot be motivated by semantic

malfunction.

5.3 Minimalism for Logical Constants

5.3.1 The Semantic Core

Let us return to the old impasse. The desideratum was to provide some sensible

framework for revision of logic, one in which the discovery of paradoxes, say, could

legitimately lead us to give up one logic for another. The Gentzenian and the

Hilbertian, as outlined above, offer two approaches where revisionism is combined

with INF. Common between them, however, is the acknowledgement that revision

of logic involves meaning-change.

For the revisionist who set out to defuse the meaning-change argument this solu-

tion is not altogether happy. Short of full surrender to the Quinean point, they

wanted change of logic with stable semantic content across the revision. To achieve

this, one ought to expect that the challenge of characterising meaning-constitutive

rules must be faced head-on. What are the prospects for this more ambitious

revisionism?

One approach which has received attention lately finds inspiration in some oblique

remarks made by Putnam (1957):
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It will be argued that the words ‘true’ and ‘false’ have a certain ‘core’

meaning which is independent of tertium non datur, and which is ca-

pable of precise delineation. (ibid., p. 166)

Putnam wanted to safeguard the truth predicate used in quantum logic discourse

from a meaning-change argument launched by classicist skeptics. These critics

had proposed that the alleged logical revision involved in the quantum framework

was a ‘mere change of meaning’, in particular, the proponents of quantum logic

meant something different by ‘truth’ than their classical ex-comrades.13 His re-

sponse was that we need not accept that something like the principle of bivalence

is meaning-constitutive for ‘truth’. Rather, Putnam focused on the many com-

monalities between the classical and the many-valued predicate, and suggested

that these might be sufficient for sameness of meaning.

Later, in Putnam (1976), the meaning-change argument for logical constants is

raised. “[I]t might be suggested”, he says, “that we identify the logical connectives

by the logical principles they satisfy” (ibid., p. 188). Equally unimpressed with

this as a ‘meaning-change’ argument against quantum logic, Putnam counters by

proposing that there is nothing forcing us to include distributivity (i.e. p(p ∧ (q

∨ r)) ↔ ((p ∧ q) ∨ (p ∧ r))q) as a meaning-constitutive principle.

Only if it can be made out that [distributivity] is ‘part of the meaning’

of ‘or’ and/or ‘and’ (which? and how does one decide?) can it be

maintained that quantum mechanics involves a ‘change in the meaning’

of one or both of these connectives. (ibid., p. 190)

Perhaps feeling the weight of Quinean anti-analytic considerations, Putnam ends

on a cautionary note, rejecting the idea that our notion of ‘change of meaning’ is
13It goes without saying that this debate about logic was the natural counterpart of similar

debates in the philosophy of science. Consider, for example, the Kuhnean line in which cer-
tain terms (e.g., mass) takes on a different meaning after a shift paradigm (say, Newtonian to
Einsteinean), and the inter-paradigmatic communication is riddled with incommensurability.



Chapter 5 Revision and Inferentialism 164

refined enough to draw such a distinction. Yet, others, less inhibited by Quine’s

warning, have taken Putnam’s suggestion at face value, and propose to tackle the

problem of refining our notion of ‘change of meaning’. Here from Restall (2002):

If any set of rules is sufficient to pick out a single meaning for the

connective, take that set of rules and accept those as meaning deter-

mining. The other rules are important when it comes to giving an

account of a kind of logical consequence, but they are not used to

determine meaning. (ibid., p. 11)

Entertaining this thought for the time being, we see that the problem is the same

as for the Gentzenian. How do we draw a line between meaning-constitutive and

non-meaning-constitutive principles in a non-arbitrary way? We call the claim that

there is a ‘semantic core’, consisting in a privileged set of principles governing a

logical constant, minimalism for logical constants.

5.3.2 Revision and the Context of Deducibility

Let us stick with Putnam’s example for a second. Distributivity is a trademark

difference between classical logic and quantum logic. The quantum logician sub-

scribing to minimalism for the logical constants wants to abandon the principle,

yet does not admit that it affects the meaning of logical constants. Axiomatic

systems notwithstanding, the principle is standardly a theorem derived from a set

of primitive rules. The question, then, becomes which rules are modified, and how,

from classical logic to quantum logic.

As we have seen previously in Example 4.1, the difference in primitive rules in

Nqp comes with the rules for disjunction. A minor modification of the ∨-elim

rule blocks the derivation of distributivity:
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Γ....
A YB

[A]u....
C

[B]v....
C

C
(EY)

Γ....
A ∨B

Θ, [A]u....
C

∆, [B]v....
C

C
(E∨)

or represented in sequent-style:

Γ ` A ∨B ∆, A ` C Θ, B ` C
Γ,∆,Θ ` C

(∨E∗) Γ ` A ∨B A ` C B ` C
Γ,` C

(∨E∗Q)

The above rules differ only with respect to the contexts, ∆, Θ, allowed in the sub-

derivations, and we saw in Section 4.2.2 how both rules have the same intro-rules,

the standard I∨ rules. In other words, the quantum logic disjunction is a special

case of the classical counterpart (i.e., where the contexts are empty). Inspired

by such an example, and with Putnam’s minimalism in mind, one might suggest

that only change of contextual parameters in a rule does not engender a change

of meaning.

Another example—due to Greg Restall—will perhaps further entrench the idea.

In the dispute between the classicist and the intuitionist it is notoriously difficult

to pinpoint precisely where the difference ought to be located. As witnessed by

the numerous different axiomatisations of the logics, it is alarmingly presentation-

dependent which logical constant produces the difference (or, rather, which rules

produce the difference). For instance, in Prawitz style natural deduction, Ncp,

the only difference is ⊥E I and ⊥EC , where the former is a special case of the

latter. Alternatively, one might think to blame disjunction, in the classical system

NcpLEM , or locate the difference in implication and include Peirce’s law in rule

form (see Appendix A).

The minimalist might say: Despair not. Fortunately, there is a type of formalism

that avoids the problem and puts the difference in line with the quantum case.

For, as we saw in Section 2.3.2, sequent calculi for classical and intuitionistic logic
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(in the G1 type system with explicit structural rules) differ only with respect to

succedent contexts. In particular, this is the only difference in the ¬-rules:

Example 5.1. Negation:

Γ⇒ A,∆
Γ,¬A⇒ ∆

L¬CL
Γ, A⇒ ∆

Γ⇒ ¬A,∆ R¬CL

Γ⇒ A
Γ,¬A⇒ L¬IL

Γ, A⇒
Γ⇒ ¬A R¬IL

This observation is also made in Haack (1974, p. 10). She continues in a minimalist

vein: “Since this restriction involves no essential reference to any connectives, it

is hard to see how it could be explicable as arising from divergence of meaning of

connectives”. Again we have a situation where the only difference is in auxiliary

parts of the rules. However, the weakening of the rules is sufficient to block any

classical derivation which is not intuitionistically valid. In particular, the law of

exluded middle (LEM) and double negation elimination (DNE) fail. Incidentally,

by restricting the antecedent contexts instead, we get dual intuitionistic logic,

G1dip, a paraconsistent system where explosion and double negation introduction

fail:14

Example 5.2. Dual-intuitionistic negation:

⇒ A,∆
¬A⇒ ∆

L¬CL A⇒ ∆
⇒ ¬A,∆ R¬CL

Restall (2002) makes a similar observation about the difference between classical

and relevant negation. Here L¬CL and R¬CL suffice for both logics, but whereas

classical logic allows the structural rule K, weakening, relevant logics typically do

not:

Γ⇒ ∆
Γ, A⇒ ∆

KL
Γ⇒ ∆

Γ⇒ A,∆
KR

14See e.g. Goodman (1981) and Urbas (1996).
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The minimalist for logical constants has the following conjecture: The negation

rules involve the same concept of negation, but allow different contextual con-

straints, that is, different environments of derivability, or, in the terminology we

have preferred above, different proof-theoretic frameworks. Clearly, this is in line

with Belnap’s observation that logical constants must be tested for conservative-

ness and uniqueness on the backdrop of an antecedent context of deducibility (see

Section 2.2.3).15 The result is systems where the logic of negation differs, although

the meaning-constitutive rules are shared between them. As a consequence, nega-

tion has shared semantic content across the logics, although the theories of nega-

tion are different.

In general, we want a situation where one parameter, namely facts about the

proof-theoretic framework (e.g., multiple- vs single-succedent), does not influence

the content of the logical constants. Let us say that these facts about the proof-

theoretic framework are structural properties. As anticipated by Belnap’s remark,

this open-ended category includes properties such as transitivity, monotonicity,

reflexivity, multiple- vs single-conclusion, etc.

5.3.3 Operational Meaning vs Global Meaning

With the above observations comes the promise of a principled way to separate

the meaning-constitutive from the non-meaning-constitutive. In fact, some authors

have already attempted to articulate more precisely what the distinction hinted

at consists in. The most developed minimalist position is due to Paoli (2003,

2005). Paoli follows Wansing (2000) in giving a sequent calculus framework for

PTS.16 The motivating idea is to profit from the divide between operational and

structural rules in sequent calculus, e.g. G1cp, a distinction that—as we shall
15See also Restall (2007).
16Although Wansing’s view of what counts as meaning-constitutive appears to differ from

Paoli’s: “The basic idea of proof-theoretic semantics is that under certain conditions the
schematic rules for introducing an n-ary connective f into premises and conclusions, together
with a set of structural assumptions, specify the meaning of f .” (ibid., p. 9, emphasis added)
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see in Section 5.3.5—is mostly tacit in natural deduction. Roughly speaking,

the difference is between rules that govern derivation steps involving principal

occurrences of a particular logical constant, and rules that govern derivations in

general. Put syntactically, operational rules look inside formulae while structural

rules only discern the structure of a sequent.17 Examples we have already seen

are weakening (K), contraction (W), cut, exchange, but others are possible too,

depending on the type of sequent we are working with.

A first shot at the thesis: Structural rules—in virtue of their generality—are not

meaning-constitutive for any logical constant. Paoli first applies the distinction to

tease out two notions of meaning in PTS. For a logical constant λ, and a sequent

calculus S:

Definition 5.1. Two types of meaning in S:

• Operational meaning of λ: Fully specified by the operational rules for λ in

S (Lλ and Rλ);

• Global meaning of λ: Specified by the class of S-provable sequents containing

λ.

Let us look at a concrete example. Recall the distinction between additive and

multiplicative connectives from Section 4.5.2. Here are the additive rules for ∧

and ∨:

Γ, Ai ⇒ ∆
Γ, A0 ∧ A1 ⇒ ∆

(L∧)
Γ⇒ A0,∆ Γ⇒ A1,∆

Γ⇒ A0 ∧ A1,∆
(R∧)

Γ, A⇒ ∆ Γ, B ⇒ ∆
Γ, A ∨B ⇒ ∆

(L∨)
Γ⇒ Ai,∆

Γ⇒ A0 ∨ A1,∆
(R∨)

17Compare Gentzen (1934, p. 82): “[B]ut we have the advantage of being able to reserve them
[structural rules] special places within our system, since they no longer refer to logical symbols,
but merely to the structure of the sequents”.
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In addition to the classical negation rules already presented in Example 5.1, the se-

quent calculus G1cp for classical logic shares the above operational rules with the

subexponential linear logic LL (without multiplicative connectives).18 However,

unlike G1cp, the linear logic LL does not have the structural rules weakening or

contraction. In terms of operational meaning in Def. 5.1, that entails that there is

shared semantic content for the logical constants, e.g., ¬, even though the G1cp-

class and the LL-class of derivable sequents are distinct, i.e., the global meaning

differs.

Thus, obviously, operational and global meaning often come apart: There are

endless substructural systems which display the same relationship as that between

G1cp and LL. The adherent of PTS is left with a choice: Should the semantic

content of λ be specified globally or operationally? Paoli, who is himself concerned

with Quine’s meaning-change argument, suggests that the minimalist ought to

adopt operational meaning. What is the advantage?

This allows to counter Quine’s meaning variance charge: since the

operational meaning of negation remains unaltered, there is no such

“change of subject” as Quine adumbrates. Genuine disagreement arises

whenever L and L′ ascribe different properties to what we can plausibly

identify as the same constant, given the invariance of its operational

meanings across logics. (Paoli 2005, p. 557)

The minimalist for logical constants denies that there is a shift of meaning in cases

where the operational meaning remains invariable. Granted, there are logics, and

debates about logical revision, that outstrip change of the global meaning alone,

but at least the minimalist can salvage a number of important revisionary debates.

With shared content guaranteed, the minimalist avoids the threat of rendering, say,

the dispute between the classicist and the intuitionist a ‘mere verbal disagreement’.
18For details, see Paoli (2002, ch. 2).
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On the other hand, the Hilbertian (or the holist) is free to adopt global meaning

as the correct notion of semantic content—with the result that any change in the

class of derivable sequents (theorems) might yield a change in meaning. However,

there is a lot of flexibility in the global notion of meaning: Is the class of sequents

containing the logical constant λ the class containing only λ; or, perhaps, con-

taining only λ, and, further, only one occurrence of λ? Constraints such as, e.g.,

purity and sheerness, have counterparts in sequent calculus, and the Hilbertian

must take care to develop a precise formulation of global meaning.19

5.3.4 Structural Properties

For now we leave global meaning behind and focus on operational meaning. It

is crucial to observe that minimalism in its current ‘operational’ form does not

do all that we set out to do. For instance, the difference between the classical

and quantum disjunction in Section 5.3.2 seems to amount to a bifurcation of

operational rules, and thus of operational meaning. But, the objective was for

these two logics to have the same disjunction. Similarly, classical, intuitionist and

dual-intuitionist negation do not differ with respect to derivable sequents because

of structural rules; it is the contexts in the operational rules that do the trick.

Thus, in the framework of Def 5.1 there is still meaning-variance galore. Just as

we suggested strategies for how the Hilbertian can make precise the notion of global

meaning, the minimalist must find a more fine-grained formulation of operational

meaning. In practice, this amounts to dissecting the notion of operational rule, to

find the constituents that must remain invariant.20

19Paoli (2003, p. 537) mentions two different policies for the Hilbertian: Molecularist, which
disallows the presence of other logical constants; and, contextual, which makes no such further
demand.

20In fact, Paoli does seem to think that restrictions on contexts belong to the global meaning:
“We disregard for the moment the problem of the possible restrictions on contexts, which however
pertains to the structural aspect of the logic, rather than to the operational one.” (Paoli 2003,
p. 539).
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Thus, evidently, we must refine the definition so that global meaning not only

incorporates structural rules (like in the example of G1cp vs LL) but also, more

generally, structural properties (like restrictions on contexts). Borrowing a notion

from Sambin et al. (2000), what we are after is something like visibility for oper-

ational rules. They make the following observation about their system, basic logic

B:

One of the main discoveries of basic logic is that the meaning of a

connective is determined also by contexts in its rules, which can bring

in latent information on the behaviour of the connective, possibly in

combination with other connectives.21

In order to get a handle on the semantic contribution made by contexts, they

propose the following restriction: Neither the active formula(e) in the sequent-

premises nor the principal formula in the conclusion are flanked by contexts (i.e.,

they are visible), and all passive contexts—on the opposite side from active and

principal formulae—are free. Compare rules from G1cp and B respectively:22

Example 5.3. Visibility in L→:

Γ⇒ A,∆ Γ, B ⇒ ∆
Γ, A→ B ⇒ ∆

(L→) ⇒ A B ⇒ ∆
A→ B ⇒ ∆

(L→)B

Now consider something more radical: Ignore contexts on the passive side of the se-

quents. The result is not supposed to be an actual sequent calculus rule, but rather

a fragment of the rule with no information about contexts. Thus, the minimalist

might hold that operational meaning is unaltered by any difference in contexts, be

they on the active or passive side of premise-sequents or conclusion-sequent. In this

way, also differences such as those in Examples 5.1 and 5.2 (context-restrictions in

negation rules) can be considered semantically insignificant.
21The last remark is interesting. Note, for example, that even in a logic without explicit

weakening rules, the structural rule can be partially or fully recaptured by the contexts in
operational rules. See Troelstra & Schwichtenberg (2000, ch. 3.5). See also footnote 44, Chapter
4.

22For details on the system B, see Sambin et al. (2000, p. 993).
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5.3.5 Natural Deduction

Re-conceptualising Paoli’s framework more broadly, in terms of structural assump-

tions, also provides the means to revisit natural deduction rules. Although there

are exceptions, like sequent-style natural deduction and NC (see Section 3.2.2),

standard natural deduction does not have explicit structural rules. Rather, like the

G3 type sequent calculi, natural deduction systems have absorbed structural rules.

That is, structural properties are implicitly included in the operational rules; in

this case, the intro- and elim-rules.

We can then envisage a parallel notion of operational meaning for natural de-

duction. The question is how we can locate the structural contribution which

corresponds to structural rules in sequent calculus. There is some hope for doing

this. Translations between sequent calculus and natural deductions trade on the

similarities between the structural rules weakening and contraction and so-called

discharge policies.23 Consider again conditional proof, →I :

[A]u....
B

A→ B
(→I)(u)

In the execution of this rule there is a global property impinging on the derivation.

Since the rule is hypothetical it involves the discharge of an assumption. It is

global because the discharge can occur at any point higher up in the derivation

tree. Compare sequent calculus where discharge is integrated locally in sequent-

rules. It is this global character of natural deduction that Girard referred to as

“quite a serious defect” (Girard 1995, p. 15).
23See Zucker (1974), Pottinger (1977), Negri & von Plato (2001, ch. 8), and von Plato (2001).

Incidentally, the translation by von Plato depends on developing natural deduction with general
elimination rules.
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That aside, it is interesting for our purposes that the policies governing the dis-

charge of assumptions is a multi-faceted thing. Classical logic, Ncp, for example,

allows both multiple discharge and vacuous discharge. Let us give some examples:

Example 5.4. Discharge policies:

[A]1

B → A
A→ (B → A)

(1)

[A→ (A→ B)]2 [A]1

A→ B [A]1

B
A→ B

(1)

(A→ (A→ B))→ (A→ B)
(2)

When we appreciate that discharge policies are not tied to any particular intro-

or elim-rules—they are global restrictions on handling assumptions—we can see

that the policies intuitively correspond to structural rules: Multiple discharge to

contraction; vacuous discharge to weakening. And, as expected, in the case of

→, disallowing vacuous discharge yields a relevant implication; disallowing both

vacuous and multiple discharge yields a linear implication.

Can we talk about a distinction between global and operational meaning in natural

deduction? Yes, it appears pertinent to categorise discharge policies as structural

properties. Also, non-conservativeness appears to leave precisely the type of gap

that can motivate a distinction between global and operational meaning: For in-

stance, as we saw in Section 2.2.3, the presence of classical negation alters the

class of provable →-formulae. The minimalist is free to deny that classical nega-

tion impinges on the meaning of implication. Rather, the operational meaning is

invariant even though the class of theorems is not.

An interesting case of non-conservativeness comes from adding the rules for classi-

cal negation to the rules of intuitionistic negation. As was shown by Harris (1982)

intuitionistic negation collapses into classical negation in standard proof-systems,

i.e., ¬CA a` ¬IA. Some authors (e.g., Hand 1993) have used this as an objection

against the the intuitionist’s negation: There is asymmetry since the meaning of

the intuitionistic negation is obliterated by the presence of its classical colleague,



Chapter 5 Revision and Inferentialism 174

but not vice versa. For the minimalist, such an argument appears too hasty. The

meaning of intuitionistic negation does not collapse in to the meaning of classical

negation, even if the class of theorems become the same.

5.3.6 Other Formalisms

Read, another inferentialist with minimalist leanings, has argued for shared con-

tent for a range of normal modalities. As a response to the fact that the standard

natural deduction rules for normal modal operators are disharmonious (i.e., dishar-

monious by GE-harmony lights), Read (2008b) prefers labelled rules, for which

harmonious formulations can be found.24 In particular, labelled natural deduction

allows us to formulate intro- and elim-rules for ‘�’ that stay the same across a

range of normal modal logics (K, T, S4, S5). Instead, the deductive difference

between the system is due to structural rules for a relation, <, governing the in-

dices (labels) of the system. Here are the intro- and elim-rules for �.25 Read also

observes that these rules are GE-harmonious.26

Example 5.5. Modal rules in labelled natural deduction:

[i < j]u....
Aj
�Ai

(I�)(u)
�Ai i < j

Aj
(E�)

Put informally, on the assumption that a world i can see a world j (possibly i =

j), if it follows that A holds in j, we can infer that �A holds in i and discharge

the assumption. For the elim-rule, if it is case that �A holds in i and i can see j,

then A holds in j.
24See Section 4.1 and 4.2.2 for a prequel about natural deduction rules for modal operators.
25Read also gives analogous rules for ♦.
26To see this, notice that E� is a simplification of:

�Ai i < j

[Aj ]
u

....
Bk

Bk

(GE�)(u)
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We can then impose structural rules on the relation < to differentiate between

different modal logics. For example, S4 takes reflexivity and transitivity:

[i < j]u....
Aj
Aj

(T )(u)
i < j j < k

[i < k]u....
Al

Al
(4)(u)

Of course, in order for such rules to be structural in the intended sense, < must be-

long to the structural language of the proof-theory, and not to the object language.

Read, calling them auxiliary symbols, volunteers the following opinion:

The rules by which the logics differ are generic rules, rules governing

the auxiliary symbols—the labels and the relation ‘<’—while the op-

erational rules, the specific rules for the operations, remain constant.

What this means is that there is throughout these logics, these theo-

ries of modality, the same sense of necessity and possibility. What is

different is the logic that they satisfy, not the meaning of ‘�’ and ‘♦’.

In fact, he goes on to compare the situation to that of the relevantist and the

classicist, thus tacitly subscribing to the broader minimalist thesis discussed above:

We do not want the intuitionist, classicist and relevantist to disagree

about the meaning of ‘→’—that way lies Carnapian tolerance, with a

different logic appropriate for each different meaning. Rather, we want

them to agree on what they disagree about, that is, to disagree about

the same thing, to attribute different logics to the one connective ‘→’,

with a univocal meaning.

What about more exotic proof theoretic frameworks? Is there any hope of sorting

them under a minimalist divide too? Once we have agreed that what goes on in

the contexts stays in the contexts (semantically speaking), further generalizations
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can be treated as structural assumptions. One prominent example that has led

to proof-theoretic advances is hypersequents.27 Hypersequents are finite multisets

of ordinary sequents: Γ1 ⇒ ∆1 | ... | Γn ⇒ ∆n. We read the bar, ‘|’, as a

metadisjunction over sequents. Let G be a metavariable for a sequent. Then the

following are examples of negation rules:

Example 5.6. Hypersequent rules for negation:

G|Γ⇒ A,∆

G|¬A,Γ⇒ ∆
(¬L)

G|A,Γ⇒ ∆

G|Γ⇒ ¬A,∆ (¬R)

For our purposes we observe that the core part of the rule remains unchanged.

In other words, the minimalist can insist that even in the presence of sequents as

contexts, the operational meaning is stable.28 Good news for the minimalist since

hypersequents can be used to formalise a variety of systems for which we have no

ordinary sequent calculus.

5.4 Consequence and Meaning-Change

What did the minimalist accomplish? The notion of operational meaning is intro-

duced to give a stable ‘core’ meaning for logical constants over a range of systems.

If successful, the minimalist can circumvent the meaning-change argument and

reestablish notions of shared content and genuine (non-verbal) disagreement in

logic. Of course, the minimalist need not deny that sometimes revision of logic

involves change of meaning, but she has the resources to keep stable meaning for

many prominent debates about revision.

Nonetheless, the minimalist about logical constants still faces some unpleasant

difficulties. First, it is difficult to motivate any sharp demarcation between what
27Hypersequents were introduced by Pottinger (1983) and Avron (1987). See Paoli (2002, ch.

4.1.2) for a brief introduction.
28A similar conclusion can be reached for another generalisation of sequent calculus: n-sided

sequents. We wait with the introduction of these to a more opportune moment in Chapter 6.
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count as structural properties and what count as operational properties. Just

like the development of proof-theory itself, the identification and separation of

structural properties is an open-ended process. It is fundamentally hostage to what

sort of proof-system one is considering: Sometimes what we believe to be a core

feature of a logical constant is extracted and formulated as a structural property

encompassing the entire system. Think, for example, of Gentzen’s structural rule

exchange. If the minimalist were willing to genuinely regard this rule as structural,

and thus as semantically insignificant, the so-called core of the logical constants

will become very insubstantial indeed.

Even if one can find a formally non-arbitrary distinction between the structural

and the operational, it remains to be shown that such a divide is also philosophi-

cally well-motivated. Inferentialism takes the meaning of a logical constant to be

fixed by the inference rules that govern its use. Undeniably, structural rules (and

structural properties) also govern the inferential use of our logical constants, so

there is a meaning-theoretical pressure to explain why there should be a semantic

division of labour. Of course, such a charge rests on the assumption that PTS

ought to be largely informed by ordinary reasoning practice, an assumption that I

find doubtful. Nevertheless, it is worth flagging that there is no consensus on the

semantic importance of structural rules. In fact, some people, like Došen (1989),

Girard (1995) and Sambin et al. (2000), have taken the opposite view, maintain-

ing that the meaning of logical constants is largely due to the contribution of the

structural rules:

In fact, a close inspection shows that the actual meaning of the words

“and”, “imply”, “or”, is wholly in the structural group and it is not

too excessive to say that a logic is essentially a set of structural rules!

(Girard 1995)
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Such an attitude is underscored by the fact that structural properties have a

growing role in the philosophical debates about logic and revision of logic. Cer-

tain properties of consequence, like reflexivity and transitivity, have sometimes

been taken for granted, if not even constitutive of consequence relations.29 Nowa-

days, however, philosophers are becoming less hesitant about revising structural

properties in order to solve puzzle cases. A well-known example is the relationship

between Curry’s paradox and contraction. But other examples exist: Transitivity

has been rejected both for purposes of relevance (Tennant 1997) and for the logic

of vagueness (Zardini 2008).

There is a natural follow-up question: If we accept the minimalist thesis, and

consider, say, the structural rule weakening as having no semantic significance

for logical constants, what exactly is the debate between the proponent and the

opponent of K about? There is shared content for logical constants, so the dis-

agreement is not, for example, about the meaning of ‘and’. One possible line is to

consider there to be a fact of the matter, and ontologically grounding such a debate

on logical facts. But for the metaphysically squeamish this is simply opening the

floodgates: The non-factualists about logic (e.g., Resnik 1996, 1999, 2004) can-

not accept that the content of a revisionary debate involves realist commitments.

What is more, for the Dummettian anti-realist, the project of reducing ontological

questions about realism and anti-realism comes to a grinding halt.

Is there an alternative? The most convincing strategy, I suggest, is to concede that

structural properties do have semantic import, but with the important reservation

that they do no have semantic import for logical constants. Instead, we take our

cue from the close relationship between structural properties in proof-theory, and

properties of consequence relations (or consequence operators). We have men-

tioned that there is, for example, a suggestive connection between monotonicity

and weakening, between transitivity and cut. If we take such properties to be

properties of logical consequence, it seems plausible that the properties are tied
29See e.g. Hacking (1979).
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up with the content of a validity predicate, Val, ranging over arguments. The

proposition expressed by ‘Val(p〈Γ, A〉q)’ is, in other words, sensitive to which

properties one ascribes to logical consequence.

That would help us understand what an argument about structural properties is

about, but it would reidentify the dispute as merely verbal. That is, two parties

disagreeing over structural properties amounts to subscribing to different validity

predicates. A problem becomes immediately apparent: If the original task was

to circumvent Quine’s meaning-change argument, we have now reintroduced the

worry. Presumably, beliefs about validity or consequence or what follows from

what is as part of our web of belief as beliefs involving only logical constants.

5.5 Conclusion

Field is certainly right in saying that the argument from meaning-change depends

on an account of what it is for a set of inference rules to be meaning-constitutive.

Nonetheless, that is not an invitation to give up on the very idea of inference

rules being meaning-constitutive, any more than it is an invitation to give up on

the distinction between a mere verbal dispute and a genuine dispute in logic. We

have concluded that extracting structural properties and considering them without

semantic significance is a poor strategy. We have nothing more than a promissory

note to the effect that a stable and non-ad hoc line between the structural and

the operational can be drawn. And either way, the idea that structural properties

underwrites a sort of logical fact that is independent of the semantics of logical

constants is obscure. In the end, structural properties contribute to the semantics,

be it at the level of logical constants or at a metalevel for notions such as validity.

The challenge for PTS is to investigate the semantic role played by proof-conditions,

even if these proof-conditions are given by structural properties. In the next chap-

ter we turn to a new theory for how inference rules determine meaning. It will lead
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us to reconsider the way in which the meaning of logical constants is framework-

sensitive.



Chapter 6

PTS and Determining Meaning

6.1 Introduction

In Section 1.3.1 we introduced the informal idea of logical inferentialism (INF)

as the claim that logical constants have their meaning fixed by the inferential

rules that govern their use. Hitherto we have focused on how to make this claim

precise in PTS: First, what sorts of constraints ought to be put on meaning-

determining inference rules (in particular, proof-theoretic harmony); second, what

is the relationship between INF and revision of logic.

However, we have spent little time dwelling on precisely what is meant by ‘fixing

meaning’ or ‘determining meaning’ in INF. Traditionally, little detail has been

provided in the literature, although it is frequently claimed that inference rules

are meaning-conferring (e.g., Dummett 1991, p. 289 and Milne 1994, p. 50),

meaning-constitutive (e.g., Tennant 1997, p. 234), sense-conferring (ibid., p. 229),

that the meaning of the connectives can be read off of the rules (Dummett 1991,

p. 205) or even that the rules should be equated with the meaning. Presumably,

these different glosses on what determining meaning comes to are not equivalent.

181
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Philosophers like Dummett, Prawitz, and Tennant typically have a dislike for

reification of meaning. Sanctioning entities—meaning-makers if you want—which

underwrite the semantic value of an expression is held to be metaphysically dubi-

ous. The result is a hesitation in taking seriously the question: What is meaning?

The hardliners might want to answer with a shrug: Meaning is the use.1 Or, more

radically, reject the question as confused. Either way, many philosophers—myself

included—will be left mystified. Most will agree that meaning supervenes on use,

but they still want an answer to the question. What is it, if anything, that is being

determined by the use?

Anyone subscribing to INF, who is sympathetic to the thought that meaning

cannot simply be equated with use, ought to have a story of how meaning is de-

termined by inference rules (or by use in general for that matter), and what, pre-

cisely, is being determined. We need to give content to notions such as ‘meaning-

conferring’ or ‘meaning-constitutive’. In what follows we will investigate one av-

enue for treating these issues, broadly speaking an account of the semantic role of

proof-conditions.

Failing to uphold tradition, we will couple PTS with a blatant reification of mean-

ing in the form of truth-conditions. The guiding idea is that inference rules carve

out the semantic content of logical constants. Inferentially speaking, it is a mat-

ter of reading off truth-conditions from an inferential practice. But this is not

much better than a metaphor. To make the idea precise in terms of PTS, we

will investigate the relationship between truth-values and valuations on one side

and proof-theoretic inference rules on the other. It will become apparent that

there is a sense in which the rules induce sets of valuations, which in turn specify

truth-conditions for logical constants.2

1The old slogan is riddled with problems. Which use qualifies? Both past and present use,
possible use, unsystematic use?

2A complication here is that in the formal exercise, truth-condition is, as we discussed earlier,
more precisely put as truth-in-a-model-condition or even designated-value-in-a-model-condition.
We will not discuss here to what extent such generalised truth-conditional formalism can be
ascribed semantic significance. (See Section 6.4.3 for more on designated values and many-valued
logics.)



Chapter 6 PTS and Determining Meaning 183

But if meanings are truth-conditions (or perhaps truth-conditions plus something

else), then what is the role of proof-conditions, and why is it that we are still abid-

ing the spirit of the inferentialist programme? Even if we concede that meanings

are truth-conditions, and inference rules merely determine this meaning, the role

played by the inferential practice might be significant. For, although we may not

want to call the rules meaning-constitutive, in the sense of determining seman-

tic value, we can follow Hodes (2004) in calling the rules sense-constitutive. If

the inference rules not only determine semantic value, but also allow us to grasp

the sense of a logical constant, their role is intrinsic for concept-aquisition and

-possession.3

Exploring this line of thought is an attempt at partly answering Dummett’s wor-

ries about manifestation and aquisition while not setting semantics adrift from

truth-conditions.4 It locates questions about the epistemology of meaning (under-

standing) in the realm of PTS, without downplaying the role of a truth-conditional

semantics. We are then required to take on a question of another sort of semantic

shortcoming, one not covered by the notion of proof-theoretic harmony.

Recall Section 2.2.2 where we introduced some early attempts at diagnosing the

problem with Prior’s connective tonk. Philosophers like Stevenson and Wagner

suggested that the problem was best looked upon as a truth-conditional failure on

the part of tonk. Since there is no truth-function underpinning the connective, it

is semantically dysfunctional. Yet, neither of them managed to make this claim

sufficiently precise or sufficiently general. A diagnosis of tonk, as we discussed in

the chapters on proof-theoretic harmony, ought to tell us something general about

when inference rules fail to confer meaning. We will return to this analysis of tonk

later in the chapter, and investigate under what circumstances the connective fails

for reasons having to do with truth-functionality.
3Recall the epistemological pretensions of PTS mentioned in Chapter 1. Note, however, that

Dummett (1978b, ch. 1, see especially Postscript) is not hostile to the notion of truth-conditions,
but that it is understood intuitionistically.

4See especially Dummett (1973b).
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There is, however, a more principal task that must be undertaken. We will see

that whether or not inference rules succeed in determining truth-conditions re-

lies heavily on both the proof-theoretic framework and the model-theoretic details

of the semantic values. In fact, under standard circumstances there is a threat

of underdetermination: The inference rules only partially carve out the semantic

content of the logical constant in question. In general, when do proof-conditions

yield (appropriate) truth-conditions? The challenge, which derives from a techni-

cal observation in Carnap (1943), has been called the categoricity problem.5

6.2 Logics, Valuations, and Absoluteness

6.2.1 Preliminaries

To outline the technical problem we will follow the terminology of Dunn & Hard-

egree (2001) and Hardegree (2005). Let us first introduce the basic formal frame-

work of valuations, valuation spaces, arguments and logics. We will then go on to

discuss the determination relation between these two levels.

Definition 6.1 (Valuations). Let WFF be the well-formed formulae over a lan-

guage L, and let B = {1, 0} be the Boolean truth-values. A valuation is a map

v : WFF → B. Call the set of all valuations the universe of valuations U . Then a

valuation space is a V ⊆ U .

One valuation space is normally taken to be privileged for classical logic (CPL),

the set of admissible valuations, V CPL. The valuation space V CPL is constructed

by taking a set of assignments from the atomic WFF s to truth-values, v 0: WFF 0

→ B, and inducing the valuations v ∈ V CPL by the truth-conditional clauses for

the connectives. E.g.,
5That this problem was connected with (INF) was first suggested by Rumfitt (1997) and later

by Raatikainen (2008).
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(¬) v(¬A) = 1 iff v(A) = 0

There is nothing in Def. 6.1, however, that precludes valuations that are inadmis-

sible—i.e., that yield a truth value distribution that contradicts the clauses—from

being a member of a valuation space. For example, since the truth-conditional

clause for conjunction in CPL is v(A ∧ B) = 1 iff v(A) = 1 and v(B) = 1, any

valuation such that v(A ∧ B) = 1 but, say, v(A) = 0, is inadmissible. Neverthe-

less, this is a valuation; it is just the sort of valuation that rules out the standard

truth-conditional clause for conjunction. Put differently, it is a valuation that the

(classical) inferentialist wants to rule out by proof-theoretic means.

Correspondingly, we introduce a general notion of a logic over a formal language.

Definition 6.2 (SET-FRML Logics). Given a language L and a set of WFF s over

L, an argument is a pair 〈Γ, A〉 such that Γ ⊆WFF and A ∈WFF. A SET-FRML

logic is any collection L of arguments (on WFF). If 〈Γ, A〉 ∈ L we say that 〈Γ, A〉

is L-valid, and we write Γ 
L A.6

Throughout we use the notation SET-FRML for single conclusion (but multiple-

premise) logics and SET-SET for multiple conclusion logics. Notice in particular

that the latter allows an empty conclusion-set, whereas the former requires any

argument to have a conclusion (and only one conclusion). Of course, both frame-

works might have empty premise-set. Similarly, FRML-SET is single-premise but

multiple-conclusion. Other generalisations follow a similar pattern. It is also

crucial that even if these frameworks anticipate proof-theoretic formalisms like

sequent calculus, there is so far no constraint saying that the sets must be finite.7

Further, the notion of a logic used here is minimal in the sense that no further

requirements are put on the properties of the 
-relation, e.g., reflexivity, tran-

sitivity, or substitution (all of which have been proposed as essential features of
6Note that this definition corresponds to the weak notion of a consequence relation introduced

in Section 2.2.3.
7We return to this issue below in Section 6.4.1.
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a consequence relation, see e.g. Avron 1994.) We here distinguish (i) L-validity

(
L) from (ii) the model-theoretic consequence relation (�), and (iii) provability

relations relative to a system S (`S). In other words, a logic in the sense of Def.

6.2 is not a proof-theoretic entity. The connection between 
 and different ` is a

further question we will explore below.

We then need a couple of standard definitions about the relations between a val-

uation and a formula (or an argument).

Definition 6.3. For a valuation v, Γ ⊆ WFF, A ∈ WFF :

• v verifies A iff v(A) = 1 (Γ iff v(B) = 1 for each B ∈ Γ);

• v falsifies A iff v(A) = 0;

• v refutes an argument 〈Γ, A〉 iff v verifies Γ but falsifies A;

• v confirms 〈Γ, A〉 iff v does not refute 〈Γ, A〉.

6.2.2 The Go-Between

With the basics in place we can focus on the central issue: Inducing a logic

from a valution and inducing a valuation from a logic. Obviously, by taking a

valuation-space we can induce a logic (in the above sense) by taking all the model-

theoretically valid arguments as L-valid. Put differently, if there is a valuation v

that refutes an argument 〈Γ, A〉, then the argument is not L-valid.

Definition 6.4 (V-validity). For a valuation space V ⊆ U :

• an argument is V-valid iff there is no v ∈ V that refutes it;

• L(V ) =df {〈Γ,A〉 : 〈Γ,A〉 is V-valid}

Similarly, we take a logic L and we induce a valuation-space by excluding valuations

that refute any of the arguments in L.
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Definition 6.5 (L-consistency). Let L be a logic, v a valuation:

• v is L-consistent iff v confirms every argument in L;

• V(L) =df {v : v is L-consistent}.

The two new functions V and L allow us to study the so-called categoricity problem

in an abstract way. Specifically, there is now a precise way in which arguments

(and thus, as we shall see, inference rules) carve out semantic content by informing

us of which valuations are permissible.8 For CPL, for example, the desideratum

is a class of arguments that makes it the case that for any valuation v in the

valuation space, v(¬A) = 1 iff v(A) = 0. If the logic fails to rule out any valuation

that does not deliver this result, the upshot is that inferences fail to determine the

expected meaning for the negation.

More generally, the idea is to investigate the interplay between the two functions

L and V, given different valuation spaces and different logics. As opposed to

the framework investigated in Hardegree (2005), however, we need look beyond

classical logic and Boolean valuations, and, similarly, beyond SET-FRML and

SET-SET frameworks for logics. But, before we start looking at variations it

is worth pointing out some general facts about the functions. An abstract look

reveals some useful properties.

6.2.3 Galois connections

A core idea in Hardegree (2005) is the idea of using Galois connections to study

the relationship between valution spaces and logics. We will briefly look at the

definition and show why it is that it fits our two functions.

Definition 6.6 (Galois connection). Let 〈S, ≤〉, 〈T, ≤〉 be posets (i.e., reflexive,

transitive, anti-symmetric). Then, we say that a pair of functions 〈f 1, f 2〉 such
8We avoid the term ‘admissible’ since it has a standard use as explained above.
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that f 1: S → T and f 2: T → S is a Galois connection if it satisfies the following

conditions:

(1) if x ≤ y then f 1(x ) ≥ f 1(y)

if x ≤ y then f 2(x ) ≥ f 2(y)

(2) x ≤ f 1(f 2(x ))

x ≤ f 2(f 1(x ))

Note that if 〈f 1, f 2〉 is a Galois connection, then the maps S → f 2(f 1(S )) and T

→ f 1(f 2(T )) are closure operators.9

Lemma 6.1. The pair 〈V → L(V ), L → V(L)〉 is a Galois connection:

(1) If L1 ⊆ L2, then V(L2) ⊆ V(L1)

If V1 ⊆ V2, then L(V2) ⊆ L(V1)

(2) L ⊆ L(V(L))

V ⊆ V(L(V ))

Proof. We only show selected cases. (1a) Assume L1 ⊆ L2 and that v0 ∈ V(L2).

Since v0 is L2-consistent, it confirms every argument in L2. But, then v0 confirms

all arguments in L1 as well, so v0 is L1-consistent.

(2b) Assume that v0 ∈ V. For reductio, let v0 /∈ V(L(V )). Then v0 is not L(V )-

consistent. Thus, there is an argument 〈Γ, A〉 ∈ L(V )) that v0 refutes. But, all

L(V ) are V -valid, i.e., there is no valuation v ∈ V that refutes it. Contradiction.

9A function cl is a closure operator on a set S if for all X, Y ⊆ S:

• X ⊆ cl(X);

• X ⊆ Y implies cl(X) ⊆ cl(Y );

• cl(cl(X)) implies cl(X).

The conditions are related to structural properties of provability relations and consequence op-
erators.
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6.2.4 Absoluteness

By Lem. (6.1) we already know that for any valuation space, if we first induce

a logic, and subsequently a valuation space from the resulting logic, then the

induced valuation space will contain all the valuations of the original valuation

space. Correspondingly, the same result holds for arguments and logics. However,

there is no guarantee that the induced set will be identical with the original, i.e.,

that the converse result V ⊇ V(L(V )) holds. For Galois connections in general

this property is known as (Galois) completeness. For logics and valuations we will

follow Hardegree (2005) and call it absoluteness.

Definition 6.7 (Absoluteness). Let L be a logic, V a valuation space:

• If L = L(V(L)), say that L is absolute;

• If V = V(L(V )), say that V is absolute.

Why care about absoluteness? Roughly put, without absoluteness there is no

guarantee that a logic which is sound and complete with respect to a particu-

lar valuation space V1 is not also sound and complete with respect to some dis-

tinct but undesirable valuation space V2. In particular, this might be a valuation

space including valuations not in V1, and which potentially ruin the target truth-

conditions. Presumably, it is because this is reminiscent of non-standard models

for arithmetic that Shoesmith & Smiley (1978) later chose to talk about categoric-

ity, and made the connection more rigid by defining categoricity with respect to

different semantic matrices. More about this below in Section 6.4.3.

For the case of L-absoluteness we only state a general result of Hardegree’s:

Theorem 6.2 (L-absoluteness, Hardegree (2005)). A logic L is absolute iff 
L is

reflexive and transitive, i.e.

• If B ∈ Γ then Γ 
L B;
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• If Γ 
L ∀∆ and ∆ 
L B, then Γ 
L B, where Γ 
L ∀∆ =df ∀C ∈ ∆, Γ 
L

C.

With this we leave behind the notion of L-absoluteness. In what follows we will

primarily be concerned with V -absoluteness. The question of V -absoluteness is

closely related to the question of categoricity originally raised in Carnap (1943)

and developed in Shoesmith & Smiley (1978), Smiley (1996), and Rumfitt (1997).

Informally, we can say that some logics give rise to non-standard valuations. Of

course, for there to be a non-standard valuation, there has to be some background

expectation as to what the valuations ought to look like. We might consider the

admissible valuations for CPL as the target valuation space. For the inferentialist,

the task is to provide a logic (and, in turn, a proof system) to which the target

valuation space is absolute. What is surprising is that even in a mundane case like

classical logic, this is a non-trivial result. In fact, Carnap’s observation was pre-

cisely that in a standard SET-FRML framework classical logic is non-categorical.

More precisely, the target valuation space is not absolute.

Interestingly, we can compare this to Belnap’s notions of existence and uniqueness

(see Section 2.2.3). On the present framework some inference rules might simply

fail to induce a valuation space which specifies a truth-function for the connective

in question—indeed, this is precisely the problem with tonk in a Boolean setting.

In contrast, the question of absoluteness is about the uniqueness of the target

valuation space. We can then put our worry with CPL as one of uniqueness for

the semantics.

To see this, we need only turn to a concrete counter-example. We introduce a

further definition for brevity.

Definition 6.8 (V-consistency). Let V be a valuation space, and v a valuation.

v is V-consistent iff v confirms every V -valid argument.

Lemma 6.3. A valuation v is V -consistent iff v ∈ V(L(V )).
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Proof. By Def. 6.4, 6.5, L(V ) consists of all V -valid arguments; V(L) consists of

all valuations that confirm every argument in L. Thus, V(L(V )) consists of all

valuations that confirm every V -valid argument.

Lemma 6.4. V is absolute iff whenever v is V -consistent, v ∈ V .

Proof. By the fact that the maps form a Galois connection and Lem. 6.3.

We can then give a simple counter-example showing that the admissible valuations

for CPL form a non-absolute valuation space.

Example 6.1 (CPL SET-FRML). Let VCPL be the admissible valuations of

CPL. V CPL is not absolute.

Proof. Set a valuation v∗ such that for every A ∈ WFF, v∗(A) = 1. Obviously,

v∗ /∈ VCPL. Yet, v∗ is VCPL-consistent since it confirms every CPL-argument

(indeed, every argument). Thus, by Lem. 6.4, VCPL is not absolute with respect

to SET-FRML.

More intuitively, we can put it as follows: We know that CPL is sound and

complete with respect to VCPL. But, adding v∗ will not change this fact. For, v∗

cannot provide any new counter-models, so anything that was valid before is still

valid; and, v∗ leaves all other counter-models intact, so anything previously invalid

is still invalid.

In other words, v∗ is an example of what Carnap (1943) called a non-standard inter-

pretation. Note that it clearly violates the standard truth-conditions for classical

connectives, e.g., since there is now a valuation where a formula and its negation

are both true, neither contradictoriness nor contrariness can be expressed with the

negation.10 Again, since CPL-arguments are sound and complete with respect to

both VCPL and VCPL ∪ {v∗}, the logic fails to uniquely pick out a semantics for

the logical constants.
10This was the primary concern of Smiley (1978).
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What about v@ such that v@(A) = 0, for every A ∈WFF? Granted that there are

tautologies around (as there are in classical logic), we can rule out the valuation

that takes everything to false. Clearly, if the logic L contains an argument of the

form <∅, A>, v@ will not be L-consistent. Hence, as was pointed out to me by

Elia Zardini, there is a related valuation v> such that v@(A) = 0, for every A ∈

WFF , except if 
 A. Such a valuation, although more involved, would do the

same trick as v∗.

As a result of Carnap’s observation about non-standard valuations, it has been

concluded—by Raatikainen (2008) amongst others—that there is an underdeter-

mination problem: The logic does not suffice to determine the semantic content of

the involved logical connectives. The presence of non-standard valuations spells

trouble for the inferentialist who takes meaning-determination to involve carving

out truth-conditions. Nevertheless, the moral is not necessarily that the infer-

entialist must give up on meaning-fixing as truth-condition-fixing. Rather, the

inferentialist should explore the structural resources in the logics employed in the

proof-theoretic semantics. In the end, by increasing the expressive power of the

structural language, absoluteness can be achieved. To do this, we must revise the

proof-theoretic framework.

6.2.5 Multiple-Conclusion and Absoluteness

In fact, it turns out that the above lack of absoluteness can be remedied in several

ways. It is well-known that when we move from single-conclusion to multiple-

conclusion (SET-FRML to SET-SET) the result is an absolute logic (for the

Boolean valuations). Thus, not only can we save classical logic from the un-

fortunate fate bestowed upon it by single-conclusion, we can prove that for any

Boolean valuation space, we can find a logic that yields absoluteness.11

11Shoesmith & Smiley (1996, p. 4): “Indeed one would have to conclude that classical logicans,
like so many Monsieur Jourdanis, have been speaking multiple conclusion all their lives without
knowing it.”
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In order to provide this result let us briefly reset some of the definitions in an

appropriate way.

Definition 6.9 (SET-SET Logics). Given a language L and a set of WFF s over

L, a multiple-conclusion argument is a pair 〈Γ, ∆〉 such that Γ, ∆ ⊆ WFF. A

SET-SET logic is any collection Lm of arguments (on WFF). If 〈Γ, ∆〉 ∈ Lm we

say that 〈Γ, ∆〉 is Lm-valid, Γ 
 ∆.

Definition 6.10. For a valuation v and Γ, ∆ ⊆ WFF :

• v refutes an argument 〈Γ, ∆〉 iff v verifies Γ but falsifies B for each B ∈ ∆;

• v confirms 〈Γ, ∆〉 iff v does not refute 〈Γ, ∆〉.

Definition 6.11. Lm(V ) =df {〈Γ, ∆〉 : 〈Γ, ∆〉 is V-valid}

With these definitions in mind, we can now give a general proof of absoluteness

for any valuation space in the universe of valuations. Note also that Lem. (6.3)

and Lem. (6.4) both carry over to SET-SET (with Lm).

Theorem 6.5 (SET-SET, Dunn & Hardegree (2001)). For any valuation space

V ⊆ U , V = V(Lm(V )).

Proof. We only need to prove one direction; the other direction follows from the

fact that the we are dealing with a Galois connection. The proof proceeds by

contraposition. Suppose that v0 /∈ V . We show that v0 /∈ V(Lm(V )). Define two

sets T, F as follows:

• T = {A ∈ WFF : v0(A) = 1}

• F = {A ∈ WFF : v0(A) = 0}

For each v 6= v0, either v(B) = 0 for some B ∈ T or v(B) = 1 for some B ∈ F (from

the definition of a valuation). Thus, v confirms the argument T 
 F. It follows
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that the argument is V -valid (since it is confirmed by every valuation except v0).

Since v0 does not confirm the argument, however, v0 is not V -consistent. So, by

Lem. 6.4, v0 /∈ V(Lm(V )).

As an immediate corollary the SET-SET framework yields an absoluteness result

for the set of CPL admissible valuations, VCPL. Note that the proof will not go

through on SET-FRML as the argument in question must include cases where the

cardinality of the conclusion set (the succedent) is 0 or strictly greater than 1. For

instance, the argument <{A, ¬A}, ∅> rules out the non-standard valuation v∗:

The argument is refuted by v∗ since the premises are verified (by the definition of

the valuation) and every conclusion is falsified (there is no conclusion). Thus, v∗

cannot be Lm-consistent for the relevant SET-SET logic Lm for classical logic.

For similar reasons the less common framework FRML-SET is not absolute, i.e.,

multiple-conclusion but single-premise. Observe a valuation v∗ such that for every

A ∈ WFF, v∗(A) = 0. This is simply the dual of the original problem with SET-

FRML. (There is also a dual of v>, call it v⊥, that takes everything to true, except

contradictions.) Even more obvious, frameworks of the type ∅-SET, e.g., Gentzen-

Schütte sequent calculus, where all the action is on the right-hand (succedent)

side. Obvious that is, because Gentzen-Schütte systems work by mimicking the

left-hand side by negated formulae on the right-hand side. Importantly, ∅-SET

frameworks function with an Identity axiom ` Γ, P, ¬P. Specifically, such logics

can only rule out limit valuations which take everything to false, i.e., v@.

What we have seen, then, is that the inferentialist who accepts multiple-conclusion

has more leverage than the single-conclusion counterpart. Perhaps this is a wel-

come result for some sequent-calculus aficionados, but for those who have expressed

concerns about the interpretation of multiple conclusion (see Section 3.3), such a

move is not available. Rather, they must look elsewhere for a generalisation of

the single-conclusion framework that yields absoluteness. As it happens, this is
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precisely one of the advantages of the bilateral framework where assertion and

denial are primitive signs in the structural language (see Section 3.2.3).

6.2.6 Bilateralism

This way of proving absoluteness for CPL was explored in Smiley (1996).12 To re-

hearse, the idea is, broadly speaking, to introduce assertion and denial as primitive

signs in the logical framework. With + and − we indicate that a formula is as-

serted and denied respectively. As pointed out in Section 3.3, multiple-conclusion

can then be interpreted along the lines of an argument being valid if one cannot

(rationally) assert all the premises and deny all the conclusions.

Again, we reset the preliminary definitions in order to prove a general result of

absoluteness.

Definition 6.12 (SET-FRML+ Logics). Given a language L and a set of WFF s

over L, an argument is a pair 〈Γ, A〉+ such that Γ ⊆ WFF+ and A ∈ WFF+,

where WFF+ is the set of well-formed formulae signed with an assertion or denial

sign (e.g., +B, −B). A SET-FRML+ logic is any collection L+ of arguments. If

〈Γ,A〉+ ∈ L+ we say that 〈Γ,A〉+ is L+-valid, Γ 
+ A.

By introducing signed formulae we also need to reinterpret other properties of the

logic. First, assertion and denial as pragmatic roles (speech acts) are thought of

as either correct or incorrect. Without invoking too fine-grained considerations

about the norms of assertion, we will here simply assume a naïve relationship

between truth-values and correctness.13 Of course, the point is not that the below

clauses somehow exhaust the concepts of assertion and denial. Rather, these

connections are all we need for the present purposes of defining a logical framework
12Rumfitt (1997) is an attempt at expanding Smiley’s work to (strong) Kleene logic. Even

if Rumfitt’s aim is orthogonal to the more general project outlined here, his discussion of the
possibility of introducing several notions of denial has heavily influenced the present work.

13It is a complicating factor that norms of speech acts are also often argued to be tied up with
doxastic or epistemic states.
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that provides absoluteness. Later we will investigate further how more fine-grained

notions can be implemented for similar purposes (see Section 6.4).14

Hence, we give the following connection between correctness and verfication:

Definition 6.13 (Correctness). For A ∈ WFF :

• +A is correct with respect to v iff v(A) = 1;

• −A is correct with respect to v iff v(A) = 0.

Furthermore, there is now a superstructure on the arguments: over and above

truth-preservation (over valuations) there is correctness-preservation (over valu-

ations together with Def. 6.13). We make this idea precise by calibrating the

definition of refutation and confirmation.15

Definition 6.14. A valuation v refutes an argument 〈Γ, A〉+ iff B is correct for

each B ∈ Γ and A is incorrect. Otherwise v confirms the argument.

Definition 6.15. L+(V ) =df {〈Γ, A〉+ : 〈Γ, A〉+ is V-valid}

We now have the means to prove a result analogous to the SET-SET Thm. (6.5)

above. The result was originally proved in Smiley (1996); we merely modify the

proof strategy to fit that used by Dunn & Hardegree. For reasons of uniformity,

we use a slightly different terminology.

Theorem 6.6 (SET-FRML+, Smiley (1996)). For any valuation space V ⊆ U , V

= V(L+(V )).

Proof. Again, let v0 /∈ V . Define the sets T, F as before:

• T = {A ∈ WFF : v0(A) = 1}
14See also Rumfitt (1997) for a further discussion of the logical nature assertion and denial.
15One consideration that will be left undiscussed here is whether there are revenge issues at

the level of correctness-valuations. For an argument to this effect, see Murzi & Hjortland (2009).
For an insightful criticism, see Incurvati & Smith (2009).
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• F = {A ∈ WFF : v0(A) = 0}

There are three cases: (i) F = ∅; (ii) F is a singleton; and (iii) F is non-empty,

non-singleton. We show the first case and indicate the structure of the other three.

For (i), take the argument 〈+(T/Q), −Q〉, where +(T/Q) is the set of +-signed

formulae in T except Q. For each v 6= v0, there will be some B ∈ WFF such that

v(B) = 0. Thus, either v verifies Q or it falsifies some B ∈ T/Q. That is, either

some B+ ∈ +(T/Q) is incorrect or −Q is correct. Either way, v confirms +(T/

Q) 
+ −Q. So, the argument is V -valid, and thus in L+(V ). Yet, as is evident,

v0 does not confirm 〈+(T/Q), −Q〉, hence v0 is not L+(V )-consistent. In other

words, v0 /∈ V(L+(V )).

Case (ii). Take the argument 〈+T, +Q〉 where F = {Q}. For each, v 6= v0, v

confirms the argument, but v0 refutes it.

Case (iii). Take the argument 〈+T ∪ {−A0, −A1, ...}, +Q〉, where F = {Q, A0,

A1, ...}.

We can now see that the details in the proof simply implements the insight about

how the SET-FRML+ framework corresponds to the SET-SET framework that we

outlined in Section 3.3. By applying signs to the formulae in T and F we force

the succedent to have a cardinality of 1. Yet, rejecting on the antecedent side is

merely a circumlocution for multiple-conclusion (or the other way around, as the

case may be).

Let us try the example of v∗ again. We cannot take the conclusion side as the

empty-set as in SET-SET, but we can shift one of the premises over to the conclu-

sion side by reversing the sign. So, instead of A, ¬A 
 ∅, we have +A 
 −¬A or

+¬A 
 −A. Since both these sequents are classically provable, our non-standard

valuation is ruled out.
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The insight this affords is that the issue of absoluteness comes down to having

sufficient “locations" in the structural language of the logic: Right- and left-hand

side in SET-SET, or right- and left-hand side with signs in SET-FRML+. What

is required of the structural language is for there to be sufficient distinctions in

the sequents (or rules) to yield the full sentential output of the semantics, i.e.,

a partition of valuations as appropriate or inappropriate. The aim is for this

partition to fit admissible valuations, i.e., to yield the target output valuation

space. Analogously, we can infer from this that the one-sided systems (Gentzen-

Schütte) cannot be sufficient for the absoluteness of CPL. There is, in a word, no

location for the undesignated value 0, i.e., left-hand side. For now, it is not the

intention to give any formal characterization of what a location in a logic is, but

it might enhance the intuitive understanding of the situation. Soon we will try to

make the idea more precise by looking at generalisations of the valuation-spaces

and corresponding n-sided frameworks (see Section 6.4).

6.3 Many-valued logics

6.3.1 Non-Boolean Valuation Spaces

So far we have only varied the framework of the arguments and logic. But what

happens when we modify the framework of the valuation spaces, e.g., we introduce

non-Boolean values and, perhaps, more than one designated value? Needless to

say, it would be a disappointment if the inferentialist could do no better than

provide absoluteness for the Boolean universe of valuations. The literature on the

topic has been more or less exclusively focusing on the Boolean universe (perhaps

with the exception of Rumfitt 1997), and as far as I know, no one has considered

cases with more than one designated value. As it turns out, such a generalisa-

tion forces on us more sophisticated frameworks for logics in order to preserve

absoluteness.
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In the spirit of the above remarks, it is natural to expect that an increase in the

so-called locations will be an increase in the expressive power of the structural

language. With further distinctions in the logics, we ought to be able to make

finer discriminations between values and designation in the sentential output.

Definition 6.16 (Valuations Generalised). Let WFF be the well-formed formulae

over a language L, and let V be the set of truth-values. A valuation is a map v :

WFF → V. Let D ⊆ V be the set of designated values.

Along these lines we must generalise the concepts of falsification/verification and

refutation/confirmation so as to take into account that there might be multiple

designated values. In general, we get the following definitions:

Definition 6.17. For a valuation v, and A ∈ WFF , Γ ⊆ WFF :

• v verifies A iff v(A) ∈ D (Γ iff v(B) ∈ D for each B ∈ Γ);

• v falsifies A iff v(A) /∈ D;

• v refutes an argument 〈Γ, A〉 iff v verifies Γ but falsifies A;

• v confirms 〈Γ, A〉 iff v does not refute 〈Γ, A〉.

Similarly, the generalisation extends to the SET-SET framework:

Definition 6.18. For Γ, ∆ ⊆ WFF :

• v refutes an argument 〈Γ, ∆〉 iff v verifies Γ but falsifies B for each B ∈ ∆;

• v confirms 〈Γ, ∆〉 iff v does not refute 〈Γ, ∆〉.

Of course, the above is merely a framework for a range of many-valued logics. In

order to study the particular problem arising from absoluteness of many-valued

logic we need to first look at a particular case.16

16For comprehensive material on many-valued logics, see Rescher (1969) and Priest (2008)
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6.3.2 FDE and Absoluteness

As a case study, let us pick a generalisation of classical logic, namely First-Degree

Entailment, FDE.17 FDE takes the powerset of values from CPL, for brevity we

call them 1, 0, b (both), n (neither). Following a typical interpretation, we can

say that the logic is both gappy and glutty (or paracomplete and paraconsistent).18

The set of designated values is now any member of the powerset with the original

designated value 1, so b is a designated value (b = {1, 0}).

We quickly introduce the truth-functions from which admissible FDE valuations

are normally produced. Notice that if we ignore the columns and rows for b and n,

we regain classicality. Consequently, we can already see that the task of proving

absoluteness will have a finer fabric than in the Boolean universe.

Definition 6.19 (FDE). Let V = {1, 0, {1,0}, ∅} (for short we write b, n for the

latter two), D = {1, b}. Let the following induce the admissible valuations, V FDE

from assignments of values to atomics:

f∧ 1 b n 0

1 1 b n 0

b b b 0 0

n n 0 n 0

0 0 0 0 0

f∨ 1 b n 0

1 1 1 1 1

b 1 b 1 b

n 1 1 n n

0 1 b n 0

f¬

1 0

b b

n n

0 1

Our question then becomes whether or not we can give an absoluteness result for

valuation spaces over the FDE (powerset) universe of valuations. In other words,
17For details, see Priest (2008, ch. 8.4).
18There is a subtlety here we overlook. Some people talk about gaps as propositions that

are neither true nor false, without thinking of them as having a third value, neither. This is a
tricky difference, especially since the question of whether or not there is semantic value at all
has ramifications for central semantic considerations about truth-bearers, or rather, semantic-
value-bearers (e.g., what a proposition is). Similarly, one might wonder whether the glutty case
has two distinct semantic values, or some third fusion of these.
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how does the inferentialist expand the methods of Thms. 6.5 and 6.6 to carve

out truth-conditions in an FDE landscape? Clearly, SET-FRML will not give

absoluteness for FDE. This follows straightforwardly from the fact that it fails for

CPL, and the CPL-admissible valuations live within the new universe of FDE

valuations. But what about SET-SET? And what about SET-FRML+?

Consider the valuation v∗∗ such that v∗∗(A) = b for each A ∈ WFF. Obviously,

this is just a variation of the non-standard valuation v∗ from Example (6.1) above.

The problem is that in SET-SET the ‘characteristic’ partition of formulae, 〈Γ, ∅〉,

is the same as for v∗. More precisely, an argument rules out v∗∗ iff it rules out v∗.

But that is not good enough. For absoluteness, we might want to allow a valuation

where everything is both without allowing the valuation where everything is (just)

true. The SET-SET framework runs the two designated values together: Even if

v∗∗ refutes an argument based on the above partition, it is not the case that any

valuation u such that v∗∗ 6= u confirms it. Just let u be such that u(A) = 1 for each

A ∈ WFF. Nor, as one ought to expect, will SET-FRML+ provide absoluteness.

As we will see below, both frameworks fail to provide locations that distinguish

between the two designated values.

Where do we go from here? Let us propose the obvious fusion of the SET-SET

and SET-FRML+ frameworks. The idea is simply to gain new locations by adding

both multiple-conclusion and signed formulae (assertion and denial). Granted, this

moves excludes the possibility of interpreting multiple-conclusion as assertion and

denial in disguise (or vice versa).19 Later we will explore whether an alternative

interpretation of the joint framework can be found. At least the advocate of

multiple-conclusion sui generis still has the option of reading signed formulae as

assertion and denial independent of the SET-SET structure.

To proceed, we yet again tweak the basic definitions to include further structure:
19I am indebted to Aaron Cotnoir for pressing this point on me in discussion. See also Section

3.3 again.
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Definition 6.20 (SET-SET+ Logics). Given a language L and a set of WFF s

over L, an argument is a pair 〈Γ, ∆〉+ such that Γ, ∆ ⊆ WFF+, where WFF+

is the set of well-formed formulae signed with an assertion or rejection sign (e.g.,

+B, −B). A SET-SET+ logic is any collection L+
m of arguments. If 〈Γ, ∆〉+ ∈ L+

m

we say that 〈Γ, A〉+ is L+
m-valid, Γ 
+

m ∆.

A vexed issue arises when we consider the interpretation of the signs with re-

spect to correctness and incorrectness. Understood as pragmatic roles, it is not

straightforward to give an intuitive reading of the interaction between + and −

and the FDE values. Even if one thinks that the connection between norms of

assertion/denial and truth/falsity is clear-cut (which it presumably is not), there

is no getting around the fact that one is faced with difficult logical choices when

detailing such a connection for gaps and gluts. For now, we merely stipulate the

connection in a way that is dictated not by an analysis of the pragmatic roles in

the contexts of gaps and gluts, but rather by the demands of the logics to guar-

antee absoluteness. The details of the connection are reminiscent of—but not the

same as—the external/internal distincion for denial found in Rumfitt (1997).

One particular comment on the following definition is warranted. Note that it

is at odds with the way that denial is understood by the dialetheists (cf. Priest

2006a, ch. 6). For Priest, it is vital for the solution to semantic paradoxes that

one is correct in asserting everything that is true (including true things which

are also false), but that, asymmetrically, one only denies things that are strictly

false. In other words, the dialetheist resists an interpretation where denial can be

interchanged with assertion of a negation.20 In contrast, our definition will treat

assertion and denial symmetrically, for no other reason than that it is what works

with the proof strategy.

Definition 6.21 (Correctness). For A ∈ WFF :

• +A is correct with respect to v iff v(A) ∈ D;
20See also Humberstone (2000) for a further elaboration on rejection and negation.
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• −A is correct with respect to v iff v(A) = 0 or v(A) = b.

It is then a trivial matter to extend these choices into a definition for refutation

and confirmation of arguments:

Definition 6.22. A valuation v refutes an argument 〈Γ, ∆〉+ iff A is correct for

each A ∈ Γ and B is incorrect for each B ∈ ∆. Otherwise v confirms the argument.

Definition 6.23. L+
m(V ) =df {〈Γ, ∆〉+ : 〈Γ, ∆〉+ is V-valid}

All that remains is to follow the proof strategy from the earlier theorems, now

incorporating the added structure. Although a bit more involved, the recipe is still

essentially the same: Working by contraposition, we take an arbitrary valuation

not in the valuation space, and produce sets corresponding to the values assigned

to formulae. The trick is to construct a SET-SET+ argument that is refuted by

the valuation but confirmed by any other.

Theorem 6.7 (SET-SET+). For any valuation space V ⊆ U , V = V(L+
m(V )).

Proof. Let v0 /∈ V . Define the sets T, F, B, N :

• T = {A ∈ WFF : v0(A) = 1}

• F = {A ∈ WFF : v0(A) = 0}

• B = {A ∈ WFF : v0(A) = b}

• N = {A ∈ WFF : v0(A) = n}

Take the argument 〈{+T, +B, −B, −F}, {+F, +N, −N, −T}〉. v0 refutes the

argument since the premises are all correct and the conclusions are all incorrect.

However, for each v 6= v0, v confirms the argument. To see this note that if v 6= v0,

there must be a formula A in at least one of T, F, B, N such that v(A) 6= v0(A).
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(i) If A ∈ T, then v(A) 6= 1. If v(A) = b, then A would be correctly rejected

in the succedent, so the argument is confirmed. If v(A) = n it is incorrectly

asserted in the antecedent. If v(A) = 0 it is again incorrectly asserted in the

antecedent.

(ii) If A ∈ F, then v(A) 6= 0. If v(A) = b, then A is correctly asserted in the

succedent. If v(A) = n, it is incorrectly rejected in the antecedent. If v(A)

= 1, it is incorrectly rejected in the antecedent.

(iii) If A ∈ B, then v(A) 6= b. If v(A) = 1, A is incorrectly rejected in the

antecedent. If v(A) = 0, then it is incorrectly asserted in the antecedent. If

v(A) = n, then A is both incorrectly asserted and incorrectly rejected in the

antecedent.

(iv) If A ∈ N, then v(A) 6= n. If v(A) = 1, then A is correctly asserted in the

succedent. If v(A) = 0, then A is correctly rejected in the succedent. If v(A)

= b, then A is correctly rejected and correctly asserted in the succedent.

So, the argument 〈{+T, +B, −B, −F}, {+F, +N, −N, −T}〉 is V -valid, and thus

in L+
m(V ). Yet, as is evident, v0 does not confirm the argument, hence v0 is not

L+
m(V )-consistent. In other words, v0 /∈ V(L+

m(V )).

What we have is a general argument for any four-valued logic with two designated

values. Under such a universe of valuations, any valuation-space can be proved

absolute. As a corollary of Theorem (6.7), we know that the valuation space

corresponding to the admissible valuations of FDE is absolute.

Furthermore, it is straightforward that the framework is also powerful enough

to yield absoluteness for some related 3-valued logics (with either one or two

designated values). Take for instance the admissible valuations of the logics LP

(the Logic of Paradox) and K3 (strong Kleene logic).21 These logics are obtained
21See Example 6.3 and 6.4 in Section 6.4.3 for details.
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from FDE by adding one of two constraints: no gluts (i.e., ignore the value b)

gives K3; no gaps (i.e., ignore the value n) gives LP. In other words, all other

values remain the same as in the truth-tables from Def. 6.19. The proofs for these

cases will proceed in a similar fashion, but ignoring the value which does not figure

in the respective semantics.

6.4 Proof-Theoretic Generalisations

6.4.1 Infinitary Arguments

Undoubtedly, we could extend the strategy to deal with n-valued logics with

higher number of designated values as well. But for the inferentialist, these result

are of limited interest. Hitherto, arguments with possibly infinite premise- and

conclusion-sets have been applied in order to prove that, for any valuation in a

universe, there is an argument in the framework that would rule it out. However,

that is the wrong currency for PTS: What we need are genuine proof-systems

whose inference rules yield the correct valuation space. For, even if proof-systems

induce a class of arguments, and the class of arguments might yield absoluteness

with respect to the target valuation space, we have no reason so far to believe

that for any class of arguments, there is an appropriate proof-system. After all,

proof-systems—and their inference rules—are normally finite entities, whereas the

arguments discussed above are infinitary.22 More, the very proof strategy that the

Theorems have in common relies on an infinitary argument being available. The

reason is simply that the argument is defined over the class of well-formed formula,

which is itself infinite.

The challenge, then, is to identify proof-theoretic systems that determine valu-

ation spaces in the required sense. Not a lot of ingenuity is involved in seeing
22We set aside issues about infinitary rules. Although there might be something to be said

about the connection with absoluteness, it is not clear that it is relevant for proof-theoretic
semantics.
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the relationship between SET-SET and sequent calculi for classical logic, or SET-

FRML+ and a Smiley-Rumfitt-style signed natural deduction system. But, when

we move into the realm of many-valued logics and absoluteness, the growing num-

ber of locations put pressure on standard proof-theoretic frameworks. Incidentally,

many-valued logics often do not have proof-systems, and to the extent that they

do, there is no systematic way of telling whether they are absolute with respect

to the particular logic’s admissible valuations.

6.4.2 Compactness

A natural thought is to investigate not only SET-SET frameworks and absolute-

ness, but FSET-FSET frameworks, where FSET indicates that the succedent and

antecedent sets are finite (alternatively, FSET-FRML frameworks). In fact, one

might suspect that there is a connection between absoluteness with respect to

FSET-FSET logics and compactness of the valuation space in question. Such a

connection has already been investigated by Peregrin (2008), but restricted to

Boolean valuation spaces. His findings might serve as a guide to further generali-

sations.

Definition 6.24 (Compactness). Let WFF be the well-formed formulae, Γ ⊆

WFF , and V a valuation space. Say that V is compact if whenever for every

finite subset Γ
′ ⊆ Γ there is valuation v ∈ V that is a model of Γ

′ , then there is a

valuation v′ ∈ V that is a model of Γ.

Definition 6.25 (Finiteness). Say that V has the finiteness property when Γ �

∆ iff there are finite subsets Γ
′ ⊆ Γ, ∆

′ ⊆ ∆ such that Γ
′
� ∆

′ .

It is well-known that the valuation space consisting of CPL admissible valua-

tions is compact and has the finiteness property. In general, however, there is

no guarantee that a Boolean valuation space has these properties. But, Peregrin

has shown that there is a significant connection between the finiteness property
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and absoluteness. Note that we do not stick to Peregrin’s notation nor his proof

strategy in what follows.23 (For details on his approach, see ibid., p. 152-56.)

Theorem 6.8. If a Boolean valuation space V has the finiteness property, then V

is absolute with respect to an FSET-FSET logic.

Proof. Assume that V has the finiteness property. We prove by contraposition

that V(L(V )) ⊆ V . Assume that v0 /∈ V . Again, we define two sets T, F in the

following way:

• T = {A ∈ WFF | v(A) = 1}

• F = {A ∈ WFF | v(A) = 0}

By definition, v0 refutes the argument 〈T, F〉. Any v 6= v0 confirms 〈T, F〉. So,

in particular every v ∈ V confirms 〈T, F〉, i.e., T � F. By Def. 6.25, there are

finite subsets Γ ⊆ T, ∆ ⊆ F such that Γ � ∆. Obviously, every v ∈ V confirms

〈Γ, ∆〉, so 〈Γ, ∆〉 ∈ L(V ). But, v0 refutes 〈Γ, ∆〉 since it refutes 〈T, F〉. Thus, v0

/∈ V(L(V )).

Summed up, Thm. 6.8 is little more than an extension of Thm. 6.5. No surprise,

of course, given that it is all on the backdrop of the Boolean universe.

Peregrin continues by studying the connection between other frameworks and se-

mantic properties. The result is a hierarchy of logical frameworks for the Boolean

universe. We will not stop to do justice to the details here. It suffices to say that

he makes related observations about the FSET-FRML and SET-SET frameworks.

One caveat about the above type of result is worth mentioning. Peregrin is also in

the business of ensuring that absoluteness results can be transferred to genuinely

proof-theoretic systems (rather than just logical frameworks of arguments). This
23In particular, Peregrin has a different way of classifying logical frameworks. FSET-FSET is

what he calls a PQI-system.
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is why he wants a measure on precisely what can be done with finite arguments

in a Boolean universe. However, he makes a pertinent remark: In addition to the

question of what a framework of finite arguments like FSET-FSET can do with

respect to absoluteness, there is a question of whether or not a finite set of such

arguments is sufficient. Even if the valuation space has the finiteness property,

the above result (6.8) does not ensure that there is a finite axiomatisation of the

logic in question. For that we must dig deeper. (See the discussion in ibid., pp.

157-58.)

6.4.3 Matrix logics

Given what we have seen in Section 6.3 we have reason to suspect that Peregrin’s

observations about absoluteness for the Boolean universe have counterparts in the

land of many-valued logics. Of course, we know that the frameworks like SET-

SET and SET-FRML+ are not sufficient for absoluteness, so their finite versions

will not do either. Nonetheless, the question of finitary arguments and, ultimately,

finite axiomatisations, still applies.

Fortunately, there are results that might point us in the right direction. Shoesmith

& Smiley (1996) have discussed many-valued logics and compactness in some detail

(see especially ch. 13). We start with some helpful definitions:

Definition 6.26 (Matrix). A matrix M is defined by a structure 〈V , D, F〉 where

V is the (non-empty) set of truth-values, D ⊆ V is the set of designated truth-

values, and F is the set of truth-functions denoted by the logical connectives in

the language.

Definitions of valuations, verification, refutation, etc., works as in Section 6.3.1

(see Def. 6.17, 6.18). An example of a matrix is FDE as defined in Section 6.19;

another is the CPL with its obvious truth-tables.24 Some further examples:
24Standardly, classical logic is counted as a matrix-logic, albeit not a many-valued one in the

strict sense.
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Example 6.2. Kleene matrix K3: V = {0, 1
2
, 1}, D = {1}, and the truth-functions

are given by the following truth-tables:25

f∧ 1 1
2

0

1 1 1
2

0
1
2

1
2

1
2

0

0 0 0 0

f∨ 1 1
2

0

1 1 1 1
1
2

1 1
2

1
2

0 1 1
2

0

f→ 1 1
2

0

1 1 1
2

0
1
2

1 1
2

1
2

0 1 1 1

f¬

1 0
1
2

1
2

0 1

Example 6.3. 3-valued Łukasiewicz matrix Ł3: V = {0, 1
2
, 1}, D = {1}, and the

truth-functions are given by the same truth-tables as in Example 6.2 except that:26

f→ 1 1
2

0

1 1 1
2

0
1
2

1 1 1
2

0 1 1 1

Example 6.4. Logic of Paradox LP: V = {1, 1
2
, 0}, D = {1, 1

2
}. Same basic

truth-functions as in Example 6.2.

Example 6.5. n-valued Łukasiewicz matrices Łn: V = {0, 1
n−1

, 2
n−1

, ..., 1}, D =

1, and the basic truth-functions can be given for any n as x ∧ y = min(x,y), x ∨

y = max(x,y), x → y = min(1, 1 − x + y), and ¬x = 1 − x.27

Example 6.6. Infinite Łukasiewicz matrices : Countably infinite Łukasiewicz logic

has the set of rationals as truth-values; continuum valued Łukasiewicz logic has the

set of reals as truth-values. The basic truth-function are the same as in Example

6.5.
25See Kleene (1952a). The system is called strong Kleene logic. By letting every function be

such that if there is an input 1
2 , the output is 1

2 , we get weak Kleene logic.
26See Łukasiewicz (1920, 1930).
27Note that Example 6.3 is a special case.
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Definition 6.27. If a matrix M has a finite number of truth-values, we say that

M is finitely many valued.

Shoesmith & Smiley prove an important result about this latter class of matrix

logics:

Theorem 6.9 (Shoesmith & Smiley (1996)). Every finitely many-valued matrix

logic has the finiteness property.28

6.4.4 Interlude: Broken Words Never Meant to Be Spoken

A closer look at matrix logics also reveals that they offer a route back to tonk.

We return to the tradition in Section 2.2.2, in which Stevenson and Wagner of-

fered reasons to think that tonk was truth-functionally suspect, rather than proof-

theoretically suspect. We will see that, as with the traditional proof-theoretic di-

agnosis (Section 2.2.3), the misgivings must be sensitive to the type of matrices

in question.29 Less prosaically, there is more between heaven and earth than the

Boolean universe.

Let us first see how tonk behaves with respect to a Boolean matrix. With the

natural deduction rules we saw above in Section 2.2.2, what can we say about its

Boolean truth-tables?

A
AtonkB

(tonk− I) AtonkB
B

(tonk− E)

As we should expect, there are no such tables. If we take V(L) of the collection of

arguments formed by the above rules, we see that for any Boolean valuation, first,

that if A is true then so is A tonk B, and, second, if B is false, A tonk B is false.

Thus, if both A and B are true, there is no functional output for A tonk B. The
28We do not include the proof. See ibid., pp. 251-52 for details.
29Of course, being truth-functionally suspect cannot be a general objection against logical con-

stanthood. Quantifiers, modalities, and other uncontroversial cases are all non-truth-functional.
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problem appears to be that tonk both over- and undergenerate with respect to

Boolean valuations: No truth-functional content is carved out by Prior’s suggested

rules. If anything, it looks like a prima facie case for questioning the semantics of

the expression.

ftonk 1 0

1 1 1/0

0 ? 0

But the death of truth-functional tonk is greatly exaggerated. Roy Cook (2005)

suggested a many-valued matrix in which tonk can function non-trivially. The

idea is to FDE from Def. 6.19 to produce a 4-valued matrix which induces a

non-transitive consequence relation. Both tonk-rules can be made valid in the

semantics, but without allowing the transitive step from the first to the second

rule.

How can this be done? Keeping the matrix identical to FDE, we can still inves-

tigate other options for altering the logic by varying the corresponding notions of

validity. Such variation can take advantage of the fact that in n-valued matrices

we can define new preservation properties. Cook suggests introducing a second

notion of model-theoretic consequence, non-falsity preservation:

Definition 6.28. Γ �NF ∆ iff for every valuation v, whenever v(A) ∈ {0, b}, for

every A ∈ ∆, v(B) ∈ {0, b} for some B ∈ Γ.

In contrast to standard truth-preserving validity, we can think of non-falsity preser-

vation as preservation of falsity upwards, that is, from conclusions to premises.30

The critical point is that in the FDE matrix the two notions of validity do not

come to the same thing.

We define Tonk Logic as follows:
30By taking K3 together with non-falsity preservation we get a logic equivalent to Analethic

Logic in Beall & Ripley (2004).
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Definition 6.29. The matrix is as in Def. 6.19 but with validity defined disjunc-

tively as follows:

Γ � ∆ iff either

• Γ �T ∆ (truth-preserving), or;

• Γ �NF ∆ (non-falsity preserving).

It is now clear why, in principle, transitivity might fail for Tonk Logic: Even if

both Γ � ∆ and ∆ � Θ, it might be that Γ � Θ fails on both accounts. Say, a

valuation in which v(A) = 1 for every A ∈ Γ, v(B) = b for every B ∈ ∆, and v(C)

= 0 for every C in Θ.

However, the failure of transitivity is a language-dependent fact, in particular, it

only comes about with the right type of connective. What Cook shows is that this

feature of the new notion of model-theoretic validity is triggered by tonk.31 To

see this we need a four-valued truth-table for tonk which validates the tonk-rules.

Definition 6.30. Truth table for tonk:

ft 1 b n 0

1 1 b 1 b

b 1 b 1 b

n n 0 n 0

0 n 0 n 0

In a Tonk Logic with tonk as its only connective, and the truth-table of Def. 6.30,

the two rules are both valid (by Def. 6.29). We have A �T A tonk B (not �NF )

and A tonk B �NF B (not �T ), but it is not the case that A � B, for any A, B.
31Incidentally, Cook observes that the ∧, ∨, ¬-fragment of the language (i.e., without tonk)

is still transitive. See ibid., p. 222.
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Cook’s Tonk Logic has thus already provided us with a matrix for which tonk

does not trivialise. Yet, it is evident that tonk is no more harmonious (in the GE

sense) than before. We have simply observed that non-harmonious rules may find

suitable non-Boolean habitats.

Where does this leave the diagnosis offered by Stevenson and Wagner? Their way

of understanding what it is for inference rules to confer meaning on a logical con-

nective does converge with ours, but the details are different. Without a hegemony

for Boolean valuations, there is no argument from meaning-determination that sin-

gles out tonk as ill-formed. This is no vindication of tonk, of course. First, its

inference rules might yet be bad for non-semantic reasons; but, more importantly,

even if there is a matrix that validates the tonk-rules, these rules might not induce

the target truth-table. In other words, there might be a failure of absoluteness.

From what we have seen above about FDE and absoluteness in Section 6.3.2, it

should already be obvious that the tonk-rules, cast in a SET-FRML framework,

will not uniquely induce the truth-table in Def. 6.30. In fact, Cook remarks that

there are 216 distinct FDE truth-tables that validate the two tonk-rules. Hence,

again, we have an example of a logic that is sound and complete with respect to

distinct semantics. The only charge left against tonk in Cook’s logic is that it

underdetermines, precisely in the sense which we have explored above (e.g., for

classical logic in SET-FRML).

6.4.5 n-Sided Sequent Calculus

There are, evidently, a great number of logics that can be semantically investigated

by n-valued matrices. The fact that Thm. 6.9 holds for such logics suggests that

we ought to be able to find frameworks with finite arguments that can provide

absoluteness for these finitely many-valued matrix logics. How then can we pro-

duce proof systems that implement the idea of locations discussed for frameworks
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above? It turns out that the inferentialist can help herself to some ready-made

proof-theoretic structures that precisely capture the idea of locations.

In the spirit of Gentzen’s original systems, Schröter (1955), Rousseau (1967, 1970)

and others have generalised sequent calculus to a range of many-valued logics. The

insight they employ is simple but brilliant: If we return to the sequent system for

classical logic, we can observe a straightforward but often ignored connection with

the truth-tables of the CPL-matrix. Take, for instance, the ∧-rules:

Γ, A,B ⇒ ∆
Γ, A ∧B ⇒ ∆

(L∧)
Γ⇒ A,∆ Γ⇒ B,∆

Γ⇒ A ∧B,∆
(R∧)

For simplicity we will treat the antecedent and succedent as sets rather than

multisets, so there is no use for contraction in the system. As we have seen above,

in an FSET-FSET framework like this, we standardly define validity as follows: A

sequent Γ ⇒ ∆ is valid (� Γ ⇒ ∆) iff for every valuation v ∈ V , v confirms 〈Γ,

∆〉, i.e., whenever v(A) ∈ D, for every A ∈ Γ, then there is some B ∈ ∆ such that

v(B) ∈ D. As the conditional here is material implication, we can paraphrase the

definition disjunctively: � Γ ⇒ ∆ iff for every valuation v ∈ V , either some v(A)

/∈ D for some A ∈ Γ or v(B) ∈ D for some B ∈ ∆.32 More informally, we can

think of the traditional sequents as Janus-like: Two-faced with the antecedent side

being the false-location, and the succedent side the true-location.

What about the sequent rules? Since the rules operate on sequents we will not

say that they preserve truth. Rather, the rules preserve confirmation: For every

valuation v ∈ V , if v confirms every premise, then v confirms the conclusion. From

this we can see an immediate connection between sequent rules and truth-tables.

What R∧ tells us is that every valuation v must be such that if v(A) = v(B) = 1

(from the two premises), then v(A ∧ B) = 1 (from the conclusion). Similarly, L∧

tells us that if either v(A) = 0 or v(B) = 0 (the formulae are now at the antecedent

(false) location), then v(A ∧ B) = 0. An exact rendering of the truth-table.
32This is in line with Gentzen’s informal reading of sequents as A1 ∧ ... ∧ An → B1 ∨ ... ∨

Bm.
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Of course, one might interject that in fact the (single-conclusion) natural deduc-

tion rules for ∧ do the trick as well: One can read the rules downwards as truth-

preserving and upwards as falsity preserving (to at least one premise), and conse-

quently read off the truth-table. Yet, the failure of absoluteness for SET-FRML

(and, needless to say, FSET-FRML) for Boolean valuation spaces already informs

us that this cannot generally be the case. Indeed, the standard negation rules are

an obvious example. In the sequent calculus, however, the negation flip-flop rules

(see Appendix A.10) induce the truth-table.

Again, the same holds for the implication-rules:

Γ⇒ A,∆ Γ, B ⇒ ∆
Γ, A→ B ⇒ ∆

(L→)
Γ, A⇒ B,∆

Γ⇒ A→ B,∆
(R→)

For R→, if v(A) = 0 or v(B) = 1 (sequent read disjunctively), then v(A → B) =

1. With L→ we the final line of the truth-table: If v(A) = 1 and v(B) = 0, then

v(A → B) = 0, as expected.

Let us then prepare to generalise this relationship between sequent rules and ma-

trices. First, take the identity Axiom from G1cp, and rewrite it to indicate the

two-sidedness clearly:

(IdAxiom)

A|A

The axiom simply says that A is either false (left-located) or true (right-located):

It underwrites the bivalence principle in classical semantics. We can write rules in

a similar way:

Γ|A,∆
Γ,¬A|∆

Γ, A|∆
Γ|¬A,∆

We can now introduce a three-sided sequent where the locations are as follows:

false | intermediate | true
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Correspondingly, we write the new 3-sided sequents as:

Γ1 | Γ2 | Γ3

This is the novelty offered by Schröter (1955) and Rousseau (1967, 1970) which

allows us to formalise 3-valued matrix logics. In the sequel, we will follow the

notation from Baaz et al. (1993) and Zach (1993). Let us give some definitions

and an example:

Definition 6.31. An n-valued sequent is an n-tuple of finite sets Γi where Γ ⊆

WFF :

Γ1|Γ2|...|Γn

We say that A ∈ WFF has location i if it is a member of the ith set Γi. The ith

location corresponds to the the truth-value υi ∈ V .

Definition 6.32. A valuation v confirms a sequent Γ1 | Γ2 | ... | Γn if there is an

1 ≤ i ≤ n and a formula A ∈ Γi such that v(A) = υi.

Definition 6.33. An n-sided sequent rule for a connective λ is a schema of the

form:

〈Γj1,∆
j
1|...|Γjm,∆j

m〉j∈I
Γ1|...|Γi, λ(A1, ..., An)|...|Γm

(λ:i)

where the arity of λ is n, I is a finite set, Γl =
⋃
j∈IΓ

j
l , ∆j

l ⊆ {A1,..., An}, and the

following condition holds: Let v be a valuation. Then

(i) λ(A1,..., An) takes the truth value υi under v, and;

(ii) For j ∈ I, v confirms the sequent ∆j
1 | ... | ∆j

m

are equivalent.
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Let us add a brief explanatory remark to Def. 6.33. The template gives us one

sequent rule per truth-value for each connective. Thus, for a 3-valued matrix, the

corresponding proof-system will have three sequent-rules for each connective λ.

Obviously, each rule λi will conclude with λ in the ith location, the only real task

is plotting out the correct premises. Baaz et al. (1993) points out that there is

not in general a unique set of sequent rules satisfying the condition of Def. 6.33.

Any conjunctive normal form
∧
j∈I

∨m
l=1

∨
A∈∆j

l
Aυl , where Aυl is short for ‘A takes

the truth-value υl’, will yield a possible set of sequent-rules.

The sequent-rules are situated in a general framework, described by the following

definition:

Definition 6.34. An n-sided sequent calculus contains the following elements:

(i) Axioms of the form A | ... | A;

(ii) For every connective λ and every truth-value υi an introduction rule λi (Def.

6.33);

(iii) Weakening rules Ki for every location i:

Γ1|...|Γi|...|Γn
Γ1|...|Γi, A|...|Γn

(Ki)

(iv) Cut rules Ci for every two truth-values υi 6= υj:

Γ1|...|Γi, A|...|Γn ∆1|...|∆j, A|...|∆n

Γ1,∆1|...|Γn,∆n

(Ci,j)

A couple of remarks. First, weakening is motivated by the fact that since elements

at a location are disjunctive, adding new ones will not turn a confirming valuation

into a refuting valuation. Second, since the valuations are functional, i.e., any

formula can only have one truth-value, a result which has v(A) = υi = υj where i

6= j is eliminated: Cut simply removes the formula in question.33 (Note also that

the Cut rules, in contrast to the operational rules, are context-sharing.)
33There is an interesting question about relation semantics, i.e., where a valuation can assign

two different values to the same formula. For instance, FDE has such a semantics (see Priest
2008, p. 142-43). We leave it as an open issue how to deal with such semantics in a similar
fashion.
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For a concrete n-sided sequent calculus, we turn to Example 6.3 above: 3-valued

Łukasiewicz logic. We only include sequent rules for ¬ and → as the procedure

for producing the other rules should be transparent. Note that the locations 1, 2,

3 correspond to the truth-values 0, 1
2
, 1 respectively.

Definition 6.35. Sequent system for 3-valued Łukasiewicz logic:

Axioms :

A|A|A

Structural Rules :

Γ1|Γ2|Γ3

Γ1, A|Γ2|Γ3

(K1)
Γ1|Γ2|Γ3

Γ1|Γ2, A|Γ3

(K2)
Γ1|Γ2|Γ3

Γ1|Γ2|Γ3, A
(K3)

Γ1, A|Γ2|Γ3 Γ1|Γ2, A|Γ3

Γ1|Γ2|Γ3

(Cut1,2)
Γ1|Γ2, A|Γ3 Γ1|Γ2|Γ3, A

Γ1|Γ2|Γ3

(Cut2,3)

Γ1, A|Γ2|Γ3 Γ1|Γ2|Γ3, A

Γ1|Γ2|Γ3

(Cut1,3)

Operational rules:

→:

Γ1|Γ2|Γ3, A Γ1, B|Γ2|Γ3

Γ1, A→ B|Γ2|Γ3

(→1)
Γ1|Γ2, A,B|Γ3 Γ1, B|Γ2|Γ3, A

Γ1|Γ2, A→ B|Γ3

(→2)

Γ1, A|Γ2, A|Γ3, B Γ1, A|Γ2, B|Γ3, B

Γ1|Γ2|Γ3, A→ B
(→3)

¬:

Γ1|Γ2|Γ3, A

Γ1,¬A|Γ2|Γ3

(¬1)
Γ1|Γ2, A|Γ3

Γ1|Γ2,¬A|Γ3

(¬2)
Γ1, A|Γ2|Γ3

Γ1|Γ2|Γ3,¬A
(¬3)
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In essence, what Baaz et al. (1993) and Zach (1993) have shown us is that we

can produce a sound and complete n-sided sequent system for any given finitely-

valued matrix logic. In effect, this is not only the V to L(V ) induction step, it

is giving a full-blown proof-theory rather than collection of arguments. What we

now observe is that since the induced logic is location-based, it also underwrites the

absoluteness result, V = V(L(V )), by ensuring that the proof-theoretic framework

preserves enough of the semantic structure to induce a valuation space which is

precisely the target valuation space. Infinite riches in a little room.

Put differently, whereas before we only had an existence proof of a FSET-FSET

framework that would provide absoluteness for finitely many-valued matrix logics,

with n-sided sequents we have a procedure for generating proper proof-systems.

That is a major expansion of PTS territory.

Yet, the n-sided sequent systems are not yet fully sufficient for what we promised

above. The literature focuses on matrix logics with only one designated value,

whereas we started out by investigating FDE which has two designated values,

1 and b. Worse, comparing Example 6.2 and 6.4, we see that there are distinct

logics K3 and LP, i.e., �K3 6= �LP , which share the same truth-tables. Of course,

the matrices are different, but only because LP has another designated truth-

value. Hence, we can infer that these matrices will produce the very same sequent-

systems.

The result might be initially puzzling, but there is a perfectly sensible way in

which the resulting logics are different. True, the mechanics of the induced sequent

systems are the same; operational and structural rules have the same form, etc.

However, the ensuing sequent rules are not embedded in the same metalogical

framework. Take an example: The sequent 〈∅ | ∅ | A ∨ ¬A〉 is not provable in

either K3 or LP. As expected in the former case, since K3 has no theorems. The

latter case is worth noting, however. In fact, A ∨ ¬A is a logical truth in LP,

i.e., for every valuation v ∈ VLP , v(A ∨ ¬A) ∈ D. However, this is witnessed by
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the provability of a different (nsided) sequent, namely 〈∅ | A ∨ ¬A | A ∨ ¬A〉.

This sequent is provable in both systems, but, importantly, the result takes on

completely different meanings when we see them on the backdrop of the matrices.

For, whereas in K3 the proved sequent merely states that, for every K3-valuation,

A ∨ ¬A is either true or intermediate, in LP it tells us that it is always designated

(i.e., either 1 or b).34

The example indicates that we need to reinterpret the relationship between model-

theoretic validity and provability in n-sided sequent systems. By generalising we

gave up on the sequent-arrow and thus the intuitive sense in which the mechanics

operated on a ‘follows from’ relation. However, the disjunctive form may still be

reformulated to a material implication which will help us understand the above

difference. Let M be an n-valued matrix where V = {υ1, ..., υn}, and D = {υi,

..., υn} where 1 ≤ i ≤ n. The we rewrite an n-sided sequent Γ1 | ... | Γi | ... | Γn

in two-sided form as:

Γ1 ∪ ... ∪ Γi−1 ⇒ Γi ∪ ... ∪ Γn

and say that the sequent is valid iff for every v ∈ V , whenever v(A) ∈ D, for

every A ∈ Γ1 ∪ ... ∪ Γi−1, then v(B) ∈ D, for some B ∈ Γi ∪ ... ∪ Γn.35 Of
34Since the model-theoretic consequence relation is disjunctive and non-transitive, the rela-

tionship between derivability and consequence becomes more complicated when we consider Tonk
logic. Correspondingly, the n-sided sequent rules for tonk (or at least a smattering of tonk)

Γ1|Γ2|Γ3, A|Γ4, A Γ1|Γ2, B|Γ3|Γ4, B

Γ1|Γ2|Γ3|Γ4, AtonkB
(tonk1)

Γ1|Γ2|Γ3, A|Γ4, A Γ1, B|Γ2|Γ3, B|Γ4

Γ1|Γ2|Γ3, AtonkB|Γ4

(tonkb)

Γ1, A|Γ2, A|Γ3|Γ4 Γ1|Γ2, B|Γ3|Γ4, B

Γ1|Γ2, AtonkB|Γ3|Γ4

(tonkn)

Γ1, A|Γ2, A|Γ3|Γ4 Γ1, B|Γ2|Γ3, B|Γ4

Γ1, AtonkB|Γ2|Γ3|Γ4

(tonk0)

must be situated in a different framework of derivation than the one looked at so far.
35Recall that Γs are sets not multisets.
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course, moving back to a two-sided sequent involves loss of structure: For a given

valid two-sided sequent, there is no procedure for finding the valid n-sided sequent

since we are now working with a less fine-grained distinction, namely designated

vs undesignated.

6.5 Objections and Conclusions

6.5.1 Scope

An obvious misgiving about inducing truth-conditions as an avenue to PTS are

the apparently limited applications. Even if finite truth-functional matrices can be

dealt with in a systematic fashion with n-sided sequents, there is a range of logical

constants that falls outside the scope. The most obvious request is that there be a

treatment for quantifiers. An approach to PTS that is without an adequate story

about quantifiers might be considered too narrow. This is a complaint that must

be taken seriously. In the above discussion of many-valued logics we have only

considered the propositional fragments, but all systems have natural first-order

extensions for which the question of absoluteness arises again.

It is worth taking a brief look at the prospects for finding a similar link between

truth-conditions and inference rules for quantifiers. Looking at the V to L(V )

direction investigated in Baaz et al. (1993), we see that quantifiers in first-order

many-valued logics can be dealt with in a truth-functional manner: A quantifier Q

denotes a truth-function Q̂: ℘(V ) \ {∅} → V (for details, see e.g., Zach 1993, pp.

32-5). In such a form, we can get a truth-functional handle on quantifiers that will

hopefully help to extend the current project. However, this remains essentially an

open problem. For, even if the inference rules can distinguish between different

sorts of many-valued quantifiers, the fact still remains that there is nothing at the

PTS level which obviously corresponds to the quantifier domain element at the
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MTS level. Carving out first-order content requires more finesse than carving out

propositional (0th-level) content.36

6.5.2 Semantics and Pragmatics

A more foundational concern with the present PTS approach is that it is premised

on a heavy reliance on model-theoretic parameters, e.g., what the appropriate

truth-values are, which universe of valuations one is concerned with, etc. It is a

well-known fact that some logics have more than one semantics (sometimes both

perfectly natural). An instructive example for our purposes is classical logic, which

has both a two-valued and a many-valued semantics. Obviously, the inferentialist

cannot insist that the proof-theory alone picks the appropriate semantics for us.

The classical inferences are equally compatible with, say, a probabilistic interpreta-

tion.37 There is simply nothing at the proof-theoretic level (in the axiomatisation)

which tells us what sort of interpretation a logical connective takes, even if we,

given such an interpretational framework, would be able to induce the correct

semantic content. In particular, the inferentialist might be worried that the iden-

tification of truth-values now plays a prevalent role in carving out the content of a

logical connective. After all, sidestepping the centrality of truth in semantics was

a motivating factor in traditional PTS.

Here we want to propose a compromise position. First, the theory of meaning

should not shy away from delivering truth-conditional semantics as an explication

of content. Second, the theory of meaning must implement traditional inferential-

ist scrouples about truth-conditions. Specifically, the content cannot ultimately be

grounded on truth-conditional semantics on pain of reintroducing worries about

concept-acquisition.38 The strategy has at least two advantages: Inferentialists,
36Interestingly, Smiley (1996, p. 9) reports that he had categoricity results for both classical

first-order logic and normal modal logics. However, no details are provided.
37I am indebted to Hannes Leitgeb for making me realise the importance of this point.
38I have in mind Dummett’s well-known arguments from manifestability and learnability (see

Dummett 1973b, p. 216-17).
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although sensitive to questions about understanding and learning langauge (and,

thus, knowledge of meaning), are typically elusive about the nature of meaning.

We need to ask the question ‘What is semantic content?’, not only ‘How does an

expression get its semantic content?’. In that sense, our aim differs from that of

Dummett, which is nicely summed up in the mantra that “[a] model of meaning is

a model of understanding” (Dummett 1973b, p. 217), i.e., an individual’s knowl-

edge of meaning. To this we say, a model of meaning is more than a model of

understanding. The inferentialist can address epistemic issues independently of

concerns about the ontology of meaning.39

So far we have oscillated between truth-condition talk and proof-condition talk.

We now need to find an interpretation of the interaction between the two levels that

does justice to the above compromise. On the one hand we cannot let valuation

spaces be the semantic foundation, and, on the other, we cannot expect the proof-

theory to carry the burden of interpretation on its own. The proposal we want

to sketch here, even if only with a broad brush, picks up the idea of interpreting

sequents in terms of pragmatic roles (discussed in Section 3.3). We saw that there

is an analysis of sequents and multiple-conclusion sequent-calculus in terms of the

interaction between the speech acts assertion and denial. Restall (2005) defines

states, [X : Y], and incoherence of states, to produce a corresponding interpretation

of sequent rules as rational constraints imposed by the norms of the speech acts.

In Restall (2009b), the analysis is put to use in a way pertinent to our project. Re-

stall envisages a connection between coherent states and valuations which is remi-

niscent of the connection between logics and valuation spaces discussed throughout

this chapter. We can think of constraints on states, e.g., if [X, ¬A : Y] is coherent,

then [X : Y, A] is coherent, as preceding and producing a valuational constraint

set by the L vs V(L) link from the foregoing sections. In particular, the principle

for states has a corresponding sequent rules, namely the familiar L¬ rule, which

instructs us that for any valuation, if A is in the truth-location, then ¬A is in
39Hence, for exactly that reason, we avoid the misleading terminology anti-realist semantics.
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the false-location. This in turn is simply the familiar truth-functional clause for

Boolean negation in a different guise.

Once we follow Restall in drawing up such a pragmatics-semantics interface, we

can help ourselves to generalisations which correspond to the proof-theoretic gen-

eralisations in Section 6.4.5. For, one might think to object that the connection

between states and valuations still work on the backdrop of facts about matri-

ces. However, the improvement is supposed to reside in the fact that it is now

the norms of speech acts which ground truth-conditional assumptions.40 On the

simple picture, Boolean valuations are associated with the assertion and denial in

a straightforward manner. However, no one suggests, I take it, that such a picture

forms an exhaustive or even accurate picture of the involved speech acts. Rather,

just like the semantics of logical connectives, the pragmatics of logical connectives

are nuanced and varied. In that spirit, we can enhance the notion of a state to

carry a heavier workload.

As an example, let us revisit 3-valued Łukasiewicz logic, Ł3. The described notion

of a state, being two-sided, is not a sufficient match for the 3-sided sequents

associated with Ł3. Nevertheless, there is a corresponding notion that might help.

Let a tri-state be a triple [X : Y : Z] where we think of X as a collection of

asserted statements, Z, as a set of denied statements, and, finally, Y as a set of

doubted statements. Alternative interpretations are available: Y might be a set

of ignored statements, or statements one demurs from, etc. The point here is not

to sell any particular interpretation, but to indicate the direction in which to take

the analysis. Of course, n-sided matrices and n-sided sequents, for an arbitrary n,

outstrips any pragmatic interpretation, but that is besides the point. In interesting

cases, there is hope for finding connections between the norms governing speech

acts and the inference rules governing logical constants.
40Compare the connection between signs and valuations in the Smiley-Rumfitt framework,

Section 3.2.3.
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In particular, the analysis offers an interpretation of the structural language, and

the logic that governs structural connectives (e.g., commas), which is not itself

merely another level of semantics. Instead, we consider the structural language

a representation of a pragmatic level. A suitable, but controversial, metaphor

would be ‘making it explicit’. Pragmatic roles are made explicit by the semantic

content of logical constants. In other words, it is the metasemantic role of proof-

conditions. Here is the spirit of inferentialism: The use-theoretic tradition reenters

the picture as a pragmatic contribution to the theory of meaning. With the risk

of resurrecting an inferentialist cliché, Im Anfang war die Tat—the speech act.





Chapter 7

Conclusion

In PTS, the concept of formal logical consequence is grounded on the meaning

of logical constants through the meaning-determining function of inference rules.

We have offered a discussion of proof-theoretic harmony, the main success criterion

for a set of inference rules to fix the meaning of a connective. It has been argued

extensively that PTS and harmony should not be restricted to a revisionary de-

bate about classical and intuitionistic logic. Rather, it has the capacity to be a

more encompassing semantic project, complementing, but not supplanting, tradi-

tional model-theoretic semantics. However, expanding PTS beyond its traditional

borders involves generalising the proof-theoretic framework of the semantics.

We have argued that the best account of PTS for classical logic involves a multiple-

conclusion framework. With such a generalisation, however, comes the difficulties

caused by bringing PTS into the substructural era of proof-theory. The presence

and absence of structural properties reveals a semantic lacuna in the notion of

harmony; for, the minimalist idea that structural properties can be isolated and

treated as extra-semantic in PTS appears unconvincing. Rather, what is needed

is a theory that integrates structural properties in PTS. In other words, unless the

formal accounts of harmony can be developed to incorporate the growing corpus

227
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of substructural logics, the semantic importance of harmony as a concept is under-

mined. There is prospect for rethinking harmony with more structural flexibility,

for example to incorporate multiple-conclusion and a distinction between additive

and multiplicative rules. However, this requires that the inferentialist looks be-

yond the confines of natural deduction to sequent calculus and other formalisms

that guide the study of such structural extensions.

In order to properly understand what it is for inference-rules to determine the

meaning of logical constants, we have developed a new and more specific theory of

PTS. The idea is to give content to the gloss that the meaning of a connective is

‘read off’ the inference rules, by looking at how rules can induce valuation in model-

theoretic semantics. By ensuring that a logic uniquely specifies a valuation space,

we have a precise sense in which the truth-conditional content of logical constants

are determined by rules. The critical formal counterpart is that absoluteness holds

for the valuation space in question. As it turns out, we can then extend PTS to

a range of logics through the formal relationship between matrices for finitely

many-valued logics on one side, and n-sided sequent calculi on the other.

Even though the notion of truth-conditions are reintroduced as a core constituent

of the formal semantics, we argue that this does not jeopardise the inferentialist

spirit. One can still think of the inference rules as our portal to grasping the sense

of logical constants, and thus as the connection between validity and entitlement to

inference. We offer an interpretation of the proof-theoretic frameworks in terms of

speech acts, instituting a metasemantic role for structural properties in the proof

systems. The pragmatic character of the interpretation grounds semantic content

of logical constants in the inferential practice.

Picking up where we began, we ask with Marlowe’s Faust :

Is, to dispute well, logic’s chiefest end?

Affords this art no greater miracle?
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It does. But, for logic to offer philosophy ‘more matter with less art’, it must

provide insights into the epistemological significance of deduction. How we acquire

knowledge by reasoning alone, remains one of philosophy’s greatest mysteries. If

logic is left powerless to contribute to this question, it is of little consequence to

philosophy. PTS, we argue, has more to offer as part of this bigger picture.





Appendix A

Proof-Systems

A.1 Nip (Nmp)

This is Prawitz’s intuitionistic system (see Prawitz (1965, pp. 20-1). Minimal logic,

Nmp, (Johansson 1936) results from omitting E⊥I (or, as it is more commonly

called, EFQ).

A B
A ∧B

(I∧) A ∧B
A

(E∧1) A ∧B
B

(E∧2)

A
A ∨B

(I∨1) B
A ∨B

(I∨2) A ∨B

[A]u....
C

[B]v....
C

C
(E∨(u,v))

[A]u....
B

A→ B
(I→)(u)

A→ B A
B

(E→)

⊥
A

(E⊥I)

Another way of extending Nmp toNip is by adding Disjunctive Syllogism instead

of E⊥:

231
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A ∨B ¬A
B

(DS)

A.2 Ncp

Prawtiz’s classical system replaces E⊥I with E⊥C (sometimes called Classical

Reductio ad Absurdum, CRA):

[¬A]u....
⊥
A

(E⊥C)(u)

There is a related rule which is also referred to as Classical Reductio ad absurdum,

but which does not use ⊥.

[¬A]u....
B

[¬A]u....
¬B

A
(CRA¬)(u)

When we talk about Ncp we refer to a system with the former rule. Recall that

in Prawitz’s formulation, negation is always defined in terms of ⊥ and →.

A.3 Nip¬

As Nip above, but with the following negation rules (in addition to E⊥I):

[A]u....
⊥
¬A

(I¬)(u)
A ¬A
⊥

(E¬)
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A.4 Ncp¬

As Nip¬ above but without E⊥I , and with Double Negation Elimination:

¬¬A
A

(DNE)

A.5 NcpT

As Ncp¬ but with E⊥C instead of DNE.

A.6 NcpLEM

Gentzen’s NJ was just Nip¬ above, but with the addition of the Law of Excluded

Midde Rule. Although this is strictly speaking an axiom, we think of it as a

degenerate type of rule (i.e., with empty premise set).

A ∨ ¬A
(LEM)

A.7 NcpCDil

A way of getting classical logic with ¬ but not ⊥ is by adding Classical Dilemma

and a ⊥-free version of EFQ:

[A]u....
B

[¬A]v....
B

B
(CDil)(u,v))

A ¬A
B

(EFQ)

Note that LEM follows straightforwardly from this rule by letting B = A ∨ ¬A.
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A.8 Ncp+−

Operational rules:

+A +B
+(A ∧B)

(+I∧)
+(A ∧B)

+A
(+E∧i)

+(A ∧B)

+B
(+E∧ii)

−(A ∨B)

−A
(−E∨i)

−(A ∨B)

−B
(−E∨ii)

−A −B
−(A ∨B)

(−I∨)

+(A→ B) +A

+B
(+E→)

−(A→ B)

+A
(−E→i)

−(A→ B)

−B
(−E→ii)

−A
+(¬A)

(+I¬)
+(¬A)

−A
(+E¬)

Co-ordination principles:

[α]u....
⊥
α∗

(RED∗)(u) α α∗

⊥
(LNC∗)

A.9 NC

Structural Rules:

Γ
Γ, A

(K)
Γ, A,A

Γ, A
(C)

Γ, A,B,∆
Γ, B,A,∆

(Ex)

Operational Rules:

[A]u....
Γ, B

Γ, A→ B
(I→NC)(u)

Γ, A ∆, A→ B
Γ,∆, B

(E→NC)
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[A]u....
∆,⊥

∆,¬A
(I¬NC)(u)

Γ, A ∆,¬A
Γ,∆

(E¬NC)

Γ, A ∆, B
Γ,∆, A ∧B

(I∧)
Γ, A ∧B

Γ, A
(E∧1)

Γ, A ∧B
Γ, B

(E∧2)

Γ, A
Γ, A ∨B

(I∨1) B
Γ, A ∨B

(I∨2)
Γ, A ∨B
Γ, A,B

(E∨)

A.10 G1cp

Axioms:

(Id)

A⇒ A
(L⊥)

⊥ ⇒

Structural rules:

Γ⇒ ∆
Γ, A⇒ ∆

(LK) Γ⇒ ∆
Γ⇒ A,∆

(RK)

Γ, A,A⇒ ∆
Γ, A⇒ ∆

(LW )
Γ⇒ A,A,∆

Γ⇒ A,∆
(RW )

Operational rules:

Γ, Ai ⇒ ∆
Γ, A0 ∧ A1 ⇒ ∆

(L∧)
Γ⇒ A,∆ Γ⇒ B,∆

Γ⇒ A ∧B,∆
(R∧)

Γ, A⇒ ∆ Γ, B ⇒ ∆
Γ, A ∨B ⇒ ∆

(L∨)
Γ⇒ Ai,∆

Γ⇒ A0 ∨ A1,∆
(R∨)

Γ⇒ A,∆ Γ, B ⇒ ∆
Γ, A→ B ⇒ ∆

(L→)
Γ, A⇒ B,∆

Γ⇒ A→ B,∆
(R→)
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A.11 G1ip

As G1cp but with succedent restricted to the emptyset or a singleton.

A.12 G1cp¬

We can replace the L⊥ axiom with rules for negation:

Γ⇒ A,∆
Γ,¬A⇒ ∆

(L¬)
Γ, A⇒ ∆

Γ⇒ ¬A,∆
(R¬)

A.13 Cut rules

Multiplicative cut for G1[ic]:

Γ⇒ A,∆ Γ
′
, A⇒ ∆

′

Γ,Γ
′ ⇒ ∆,∆

′
(Cutm)

Additive Cut for G1cp:

Γ⇒ A,∆ Γ, A⇒ ∆
Γ⇒ ∆

(Cuta)

The version for G1ip takes single-succedent.

A.14 G3cp

Axioms:

(Id)

Γ, p⇒ p,∆
(L⊥)

Γ,⊥ ⇒ ∆
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Operational rules:

Γ, A,B ⇒ ∆
Γ, A ∧B ⇒ ∆

(L∧)
Γ⇒ A,∆ Γ⇒ B,∆

Γ⇒ A ∧B,∆
(R∧)

Γ, A⇒ ∆ Γ, B ⇒ ∆
Γ, A ∨B ⇒ ∆

(L∨)
Γ⇒ A,B,∆

Γ⇒ A ∨B,∆
(R∨)

Γ⇒ A,∆ Γ, B ⇒ ∆
ΓA→ B ⇒ ∆

(L→)
Γ, A⇒ B,∆

Γ⇒ A→ B,∆
(R→)

A.15 G3ip

Axioms:

(Id)

Γ, P ⇒ P
(L⊥)

Γ,⊥ ⇒ A

Operational rules:

Γ, A,B ⇒ C
Γ, A ∧B ⇒

(L∧) Γ⇒ A Γ⇒ B
Γ⇒ A ∧B

(R∧)

Γ, A⇒ C Γ, B ⇒ C
Γ, A ∨B ⇒ C

(L∨)
Γ⇒ Ai

Γ⇒ A0 ∨ A1

(R∨)

Γ, A→ B ⇒ A Γ, B ⇒ C
Γ, A→ B ⇒ C

(L→)
Γ, A⇒ B

Γ⇒ A→ B
(R→)

A.16 Gentzen-Schütte system, GS1p

This is the one-sided system corresponding to G1cp (other connectives are de-

fined):

Axioms:
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(Id)

P,¬P

Structural rules:

Γ
Γ, A

(RK)
Γ, A,A

Γ, A
(RW )

Γ, A ∆,¬A
Γ,∆

(Cut)

Operational rules:

Γ, A
Γ, A ∨B

(R∨L)
Γ, B

Γ, A ∨B
(R∨R)

Γ, A Γ, B
Γ, A ∧B

(R∧)
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