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ABSTRACT
Wild migratory birds are associated with global avian influenza virus (AIV) spread. Although
direct contact with wild birds and contaminated fomites is unlikely in modern non-free range
poultry farms applying biosecurity measures, AIV outbreaks still occur. This suggests
involvement of other intermediate factors for virus transmission between wild birds and
poultry. This review describes current evidence of the potential role of rodents in AIV
transmission from wild birds to poultry and between poultry houses. Rodents can be abundant
around poultry houses, share their habitat with waterfowl and can readily enter poultry houses.
Survival of AIV from waterfowl in poultry house surroundings and on the coat of rodents
suggests that rodents are likely to act as mechanical vector. AIVs can replicate in rodents
without adaptation, resulting in high viral titres in lungs and nasal turbinates, virus presence in
nasal washes and saliva, and transmission to na€ıve contact animals. Therefore, active AIV
shedding by infected rodents may play a role in transmission to poultry. Further field and
experimental studies are needed to provide evidence for a role of rodents in AIV epidemiology.
Making poultry houses rodent-proof and the immediate surroundings unattractive for rodents
are recommended as preventive measures against possible AIV introduction.
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1. Introduction

Influenza A viruses (IAV) have been isolated from many
marine and terrestrial mammals, including humans,
and a wide range of birds. Wild birds of the orders
Anseriformes (ducks, geese, swans) and Charadrii-
formes (gulls, terns, waders) are considered the natural
reservoir for low pathogenic avian influenza (LPAI)
viruses (Webster et al. 1992; Olsen et al. 2006; Verhagen
et al. 2015a). LPAI viruses (LPAIVs) of the H5 or H7 sub-
type can become highly pathogenic avian influenza
(HPAI) viruses after introduction in domestic poultry,
causing severe disease and high mortality. Subse-
quently, the HPAI viruses (HPAIVs) may be transmitted
from domestic poultry to other avian and mammalian
species, including humans. Therefore, avian influenza
viruses (AIVs) are considered to be a major concern for
public health (Shortridge et al. 1998; Bos et al. 2010;
Reperant et al. 2012; Short et al. 2015). LPAIV have
adapted to mammals and there is concern that HPAIV
(such as H5N1) may also adapt to humans, which
would make a human pandemic more likely (Kuiken
et al. 2006; Reperant et al. 2009). The large global
impact of AIV outbreaks on human and animal health
and welfare, and the large economic burden associ-
ated with it, warrants further investigation of factors
that can contribute to more efficient control of AIV
infections.

AIV can be introduced into domestic poultry
through direct or indirect contact with infected birds
(Alexander 2007). Several routes for indirect transmis-
sion have been implicated, including windborne
spread (Ssematimba et al. 2012a), contaminated food
and water, and movement of people and virus-con-
taminated fomites (Alexander 2007; Pepin et al. 2014).
An open outdoor area in free-range poultry systems is
therefore a considerable risk factor for transmission of
AIV from wild birds to commercial poultry as this facili-
tates both direct and indirect contact (Koch & Elbers
2006). However, in modern industrial poultry farms
without a free-range system, close contact with wild
birds is unlikely and strict biosecurity measures are in
place to reduce most indirect transmission routes. It
was therefore remarkable that outbreaks of HPAIV
H5N8 in Germany, the Netherlands and the United
Kingdom in 2014–2015 occurred on modern farms
with indoor poultry housing and that no outdoor pro-
duction sites were affected (European Food Safety
Authority 2014). This suggests that intermediate fac-
tors may be involved in the transmission of AIV from
wild birds to commercial poultry. Potential vectors con-
tributing to introduction of AIV may be synanthropic
animals (i.e. ecologically associated with humans) in
the surroundings of poultry farms, such as rodents or
wild terrestrial birds (Fujimoto et al. 2015; Hiono et al.
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2016; Shriner et al. 2016) as depicted in Figure 1.
Insects, such as houseflies and blowflies, may also be
possible vectors in the transmission of HPAIV to chick-
ens (Sawabe et al. 2006; Wanaratana et al. 2013).

This review will focus on the potential role of
rodents in the transmission of AIV to commercial poul-
try. Evidence from current literature will be evaluated
to determine whether rodents are likely to play a role
in AIV transmission as mechanical vectors or as active
shedders of AIV, as a result of either a transient or
endemic infection.

2. AIV virus reservoirs for introduction to
poultry

Previously, distant spread of HPAIV by migratory birds
was deemed less relevant, as severe induced disease
would likely hinder flight and migration. Poultry trade
and mechanical movement of people and fomites
were deemed the most important modes of spread
(Alexander 2007). These assumptions changed when
rapid spread of HPAIV H5N1 and H5N8 in wild birds
and poultry was observed on different continents
(Keawcharoen et al. 2008; Verhagen et al. 2015a) and
HPAIV H5N8 virus was isolated from apparently healthy
migratory wild birds (Jeong et al. 2014). Based on anal-
yses of phylogenetic data of viral sequences and on
ornithological, epidemiological and poultry trade data,
it is currently assumed that long-distance migratory

birds have played a major role in the global spread of
HPAIV during previous outbreaks in Europe and North
America (Global Consortium for H5N8 & Related Influ-
enza Viruses 2016; Ren et al. 2016). Serological and
virological data from different species from the family
Anatidae (such as teal, mallard and wigeon) in South
Korea in 2014 suggested that continued circulation of
HPAIV H5N8 may have occurred in ducks that survived
infection (Jeong et al. 2014; Verhagen et al. 2015b).
However, independent maintenance and circulation of
HPAIV H5N8 virus could not be demonstrated for
Dutch wild bird populations following the 2014–2015
outbreak (Poen et al. 2016).

Wild bird populations should be considered as a
considerable potential source of AIV when they are in
the vicinity of poultry farms. Poultry can become
infected with AIV from wild birds and this could be fol-
lowed by within- and between-flock spread (Pepin
et al. 2014). Important factors for primary introduction
of AIV from wild birds are contaminated water (Stall-
knecht & Brown 2009), contact with waterfowl and ter-
restrial birds (Pantin-Jackwood & Swayne 2009; Slusher
et al. 2014; Shriner et al. 2016) and wild mammals
(Reperant et al. 2009; Root et al. 2015). Intermediate
links such as farm workers’ footwear may also be
involved in virus transmission (Pepin et al. 2014). Con-
taminated food and water, animal/insect vectors and
air can play a role in the secondary spread of AIV within
and between poultry flocks, but movement of man and
fomites is considered most relevant for spread
between farms (Alexander 2007).

For sustained transmissibility of virus between hosts
a host-adapted virus is required, exposure to the virus
through contact with infected animals or fomites, and
a susceptible host. Transmission efficiency is deter-
mined by virus shedding in the environment, environ-
mental stability and the infective dose of the virus
(Pantin-Jackwood & Swayne 2009; Pepin et al. 2014).
These concepts will be addressed with regard to the
potential role of rodents in transmission of AIV to
poultry.

3. Association of rodents with AIV outbreaks

A number of published reports are available on AIV
outbreaks where rodents were caught and examined
for AIV infection. An attempt to isolate H5N2 virus from
4466 wild birds and small rodents caught in the quar-
antine area after the 1983–1984 outbreak in the east-
ern United States of America (USA) was unsuccessful.
Rodents and wild birds were therefore deemed not
responsible for disseminating the virus between flocks
in that particular outbreak (Nettles et al. 1985). Intes-
tine and lung tissue samples from 141 house mice
(Mus musculus) and two starlings (Sturnus vulgaris) col-
lected from 10 infected farms during LPAIV H7N2 out-
breaks in Pennsylvania between 1996 and 1998 were

Figure 1. Potential introduction routes for AIV into a commer-
cial poultry farm. To avoid introduction of the virus, biosecurity
measures are aimed towards reducing (in)direct contact
between wild birds and commercial poultry. Airborne virus
may enter the farm through the ventilation openings and con-
taminated equipment, clothing and shoes are other potential
sources of virus. Rodents in water, on land or on the roof of a
farm can come into contact with faeces of wild birds, poten-
tially containing AIV. Rodents may enter the poultry house
through unsealed roofs, doors and other openings (needed for
manure or egg belts), and may play a role in the spread of virus
from wild birds to commercial poultry and between infected
poultry farms. Effective rodent control should therefore be an
integral part of biosecurity measures for poultry farms.
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examined, but AIV was not isolated (Henzler et al.
2003). During the initial outbreak of HPAIV H5N1 in
Hong Kong in 1997, dogs, cats, rats and mice living
around poultry markets were screened for infection.
Virus was not isolated from these animals, but haemag-
glutination inhibiting activity was detected in some rat
sera (Shortridge et al. 2000). Virus was also undetect-
able by PCR in oral swabs of rodents captured around
a game bird farm infected with LPAIV H5N8, H4N7 and
H11N7 in Idaho in 2008 (Shriner et al. 2012). However,
in all of the examined (n = 6) house mice an indirect
ELISA showed IAV antibodies. No antibodies were
found in the other captured rodents, i.e. six brown rats
(Rattus norvegicus), one harvest mouse (Reithrodonto-
mys megalotis) and one deer mouse (Peromyscus mani-
culatus). In a study on poultry farms several weeks after
HPAIV H5N8 outbreaks in Canada, no evidence of
infection in blood samples and respiratory tract tissue
of trapped mice was found (Shriner et al. 2016). During
the HPAIV H5N8 outbreak in the Netherlands in 2014–
2015 H5 virus was detected by PCR from the nose of a
house mouse that was found dead in a depopulated
poultry house, but further typing of the virus failed
(Velkers et al. 2015).

Antigen or antibody detection has provided evi-
dence of exposure to AIV for many different wild, feral
and domestic avian and mammalian species (Kuiken
et al. 2006; Reperant et al. 2009; VanDalen et al. 2009;
Runstadler et al. 2013; Short et al. 2015; Veldhuis
Kroeze & Kuiken 2016). This emphasizes the need for
surveillance studies in a variety of avian and mamma-
lian species to understand their possible role in dissem-
ination of AIV. However, care must be taken when
applying serological tests, as these are often not specif-
ically validated for the species examined (VanDalen
et al. 2009; Shriner et al. 2012) and may not provide
consistent results between assays and laboratories
(Poen et al. 2016).

In addition to capturing and testing rodents in sur-
veillance studies, epidemiological studies or question-
naires focused on determining risk factors for AIV
introduction and transmission may also help to eluci-
date the role of rodents. A cross-sectional study
amongst backyard poultry in Maryland, USA, showed
that flocks without pest control were 2.5 times more
likely to be IAV seropositive than flocks with imple-
mented pest control (Madsen et al. 2013). In a study in
French breeder duck flocks in 2008–2009, the ‘pres-
ence of rodents in the farm’ was a risk factor for sero-
conversion and the ‘presence of wild birds/animals
around the farm’ was associated with the time of sero-
conversion in the ducks (Duvauchelle et al. 2013). In
natural mating duck flocks, the ‘use of outside pest-
control firms’ was associated with an increased risk of
positive flocks. This may have been a result of introduc-
tion of virus by the pest control workers. Alternatively,
the use of an external pest control company may

suggest that there was a significant rodent problem on
farms (Duvauchelle et al. 2013). After the 2014 out-
break of HPAIV H5N2, a case–control study of 59 layer
farms in the mid-western part of the USA showed that
‘low to moderate rodent severity’ was significantly
associated with case farms. In this study fly control was
‘protective’ against infection (Garber et al. 2016). In a
questionnaire administered to farms involved in the
2014–2015 outbreak of HPAIV H5N2 in the USA, one of
the questions asked was whether rat and mouse bait
stations were checked every six weeks. An affirmative
answer was given by 92.3% of the HPAIV positive farm
owners, although this fact was not objectively vali-
dated (Dargatz et al. 2016). In contrast, a study
amongst poultry farms during the 2006–2007 epidemic
of HPAIV H5N1 in Nigeria showed that ‘problems with
rodent pest control’ was not a significant contributor
to seropositive flocks. In that study, 55% of case farms
and 66% of control farms had rodent problems and a
major contributory factor for positive flocks was move-
ment of people (Fasina et al. 2011).

Although rodents are sometimes associated with
AIV outbreaks their exact role needs further elucida-
tion. In the next paragraphs we will discuss important
prerequisites for AIV transmission from rodents to
poultry, i.e. exposure of rodents to AIV from wild birds,
the fate of AIV on and within rodents, the presence of
rodents in and around farms and (in)direct contact of
rodents with poultry.

4. Exposure of rodents to AIV

4.1. Contamination of the environment by wild
birds

AIV replicates in the alimentary tract of wild fowl and is
excreted in the faeces in high concentrations (Stall-
knecht & Brown 2009). A meta-analysis of published
laboratory challenge studies with ducks and geese to
evaluate length, quantity and route of AIV shed by wild
waterfowl has been provided previously (Henaux &
Samuel 2011). AIV are stable for a long time in watery
environments and in faeces. Exposure to UV light has
little influence on its survival (Chumpolbanchorn et al.
2006), but low temperatures enable the virus to be
more persistent (Stallknecht & Brown 2009). AIV can be
isolated from earth and mud, which may explain how
infections recur at the same location after a period of
2–4 years (Breban et al. 2009). Stability of AIV in water
decreases as temperature and salinity rise and can
show extensive variation between strains (Brown et al.
2014). Several experimental studies have shown that
AIV shed by ducks can easily be detected in surface
waters and survive for months at low temperatures
(Breban et al. 2009; Rohani et al. 2009; Stallknecht &
Brown 2009; VanDalen et al. 2010). Because waterfowl
shed virus through their faeces in the water, surface
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water may be an important transmission route (Web-
ster et al. 1992; VanDalen et al. 2010).

4.2. Rodent contact with sources of AIV

For rodents to function as a vector for AIV they would
need to come into direct or indirect contact with wild
birds, their faeces, or AIV contaminated environment.
Most rodent species live in sheltered terrain with close
access to a food source. House mice are adapted to
require very little water, particularly if the food source
is moist (Rowe 1981). In contrast, brown rats live in bur-
rows near drains and water courses and swim well
(Keeling & Gilligan 2000). Brown rats can swim from
several minutes to several hours and can survive up to
2 days in water, depending on the temperature (Russell
et al. 2008). They have been recorded swimming
between islands in the sea up to more than 1000 m
from the nearest source (Broome 2007; Tabak et al.
2015). Black rats also swim well, but are generally con-
sidered to be more averse to swimming than the
brown rat (Battersby et al. 2008). Consequently, rats
and waterfowl share their watery habitat. The mallard
(Anas platyrhynchos) is the most common wild water-
fowl species in Europe, and is found worldwide except
in polar countries (BirdLife International 2017a).
Another abundantly present migratory waterfowl spe-
cies in Europe is the Eurasian wigeon (Anas penelope or
Mareca penelope) (BirdLife International 2017b). These
species are examples of migratory waterfowl in which
HPAIV H5N8 was detected in multiple countries (Verha-
gen et al. 2015b).

The scavenging habits of brown rats are conducive
to them coming into contact with wild birds, their
nests, feathers and faeces even when the birds are no
longer present. Rodents generally increase activity in
and around poultry sheds as food becomes scarcer in
the cooler months of the year, coinciding with the
arrival of migratory waterfowl species to wetland areas
(G�omez Villafa~ne et al. 2001; Elphick 2007). Since AIV
can survive for months at 4 �C in watery environments
(Stallknecht & Brown 2009), rats swimming in lakes and
rivers may pick up AIV in their coat, even after wild
fowl that shed the virus have departed in the seasonal
migration.

Another source of environmental contamination
involves infected bird carcasses. Rodents may scav-
enge on dead wild birds (Zarzoso-Lacoste et al. 2011;
Global Invasive Species Database 2017). As reviewed
by Reperant et al. (2009), feeding on infected carcasses
is known to cause AIV infection in different carnivorous
mammals, such as tigers and leopards (Keawcharoen
et al. 2004), stone martens (Klopfleisch et al. 2007), cats
and dogs (Harder & Vahlenkamp 2010), raccoons
(Yamaguchi et al. 2014) and birds of prey (Van den
Brand et al. 2015). However, in contrast with experi-
mental studies in cats (Rimmelzwaan et al. 2006), there

appear to be no published reports proving that
rodents can become infected after feeding on AIV
infected carcasses.

4.3. Survival of AIV virus on rodents

It is likely that the fur or paws of rodents can become
contaminated during swimming or walking through
AIV contaminated environment. There is no published
data on how long the virus can survive on rodents.
However, it has been demonstrated that H5N1 in duck
feathers is still infective after 15–160 days, when stored
at 20 �C and 4 �C, respectively (Yamamoto et al. 2010).
Apparently, the virus easily survives in the plumage of
birds, which suggests that it may also survive for some
time in the fur of mammals.

Although it can be assumed that many wild mam-
mals, including rodents, may temporarily carry AIV
with the potential for transmission to poultry as vec-
tors, only pikas (Ochotona curzoniae), of the order
Lagomorpha, are considered a natural host and may
act as a healthy reservoir for AIV (Zhou et al. 2009; Run-
stadler et al. 2013). Pikas are known to be susceptible
to HPAIV H5N1, LPAIV H9N2 but also to human H1N1
and H3N2. Like pigs, pikas possess both avian and
mammalian receptors and could potentially serve as
‘mixing vessels’ for the generation of novel AIVs (Su
et al. 2016).

5. Experimental AIV virus infection in rodents

To evaluate the potential effects of AIV infections of
rodents on AIV epidemiology, data from experimental
studies on the probability of infection, symptoms, pres-
ence and duration of virus excretion and transmission
to other animals and birds is valuable and will be dis-
cussed in the following paragraphs.

5.1. Animal models with laboratory rodents

Mammalian animal models have been reviewed in sev-
eral papers (Bodewes et al. 2010; Bouvier & Lowen
2010; Thangavel & Bouvier 2014) and have proven
valuable to studying virulence and pathogenesis of
AIV, evaluating the potential of AIV in the emergence
of pandemic influenza and to studying candidate influ-
enza vaccines. Rodent species for these models include
mice, guinea pigs, cotton rats and hamsters; other
often used species are ferrets and macaques (Bouvier
& Lowen 2010). The ferret (Mustela putorius furo)model
is considered most suitable for studying both the path-
ogenicity and transmissibility of human and avian
influenza viruses (Belser et al. 2011). The ferret model
closely mimicked high pathogenicity for humans for
LPAIV H7N9, which emerged in Asia in 2013 (Kreijtz
et al. 2013) and has been used to study transmission of
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several AIVs, including HPAIV H5N8 (Richard et al. 2013)
and HPAIV H5N1 (Herfst et al. 2012).

AIV in rodents have mainly been studied with BALB/
c mice, whereas the cotton rat (Sigmodon hispidus)
(reviewed by Eichelberger 2007) and laboratory guinea
pigs and hamsters are especially suitable for human
virus isolates (Bouvier & Lowen 2010). Infections with
AIV from avian origin usually replicate in BALB/c mice
without prior adaptation, resulting in different levels of
mortality, morbidity and kinetics of replication (Isoda
et al. 2006; Bouvier & Lowen 2010; Driskell et al. 2010;
Mok et al. 2013). After experimental infections in BALB/
c mice, AIV can be detected in the lower and upper
respiratory tract, e.g. in nasal turbinates (Joseph et al.
2007), nasal cavities (Kim et al. 2014) and nasal washes
(Rigoni et al. 2010). Laboratory rats and mice can
respond very differently to the same virus; HPAIV H5N1
showed high pathogenicity in BALB/c mice whereas
Sprague-Dawley rats did not show disease signs and
showed limited virus replication in the lungs (Short-
ridge et al. 1998). Data on virus excretion in rodent fae-
ces or urine, also relevant for the scope of this review,
is limited, but likely to differ between AIVs. Viral titres
in colon were found in BALB/c mice infected with
HPAIV H5N1 but not for H5N8 in the same study (Kim
et al. 2014).

In a number of studies na€ıve contact animals were
exposed to inoculated animals to assess transmission
potential. Despite high titres of HPAIV H5N1 in lungs,
BALB/c mice did not infect contact mice in the same
cage (Shortridge et al. 1998). In several other studies
transmission between inoculated and contact mice
was observed, e.g. for HPAIV H7N1 and H5N1 (Rigoni
et al. 2010) and H3N2, but not for H1N1 (Edenborough
et al. 2012). The latter study also showed that transmis-
sion involved direct contact between the BALB/c mice,
rather than aerosols or indirect contact via contami-
nated fomites. A threshold virus titre in saliva was
found, above which the likelihood of transmission
greatly increased, but there was no correlation with
viral loads in lung or nose (Edenborough et al. 2012).

Extrapolation of these experimental data to wild
rodents is severely hampered by the fact that wild
rodents and laboratory rodents are genetically very dif-
ferent. BALB/c mice lack the Mx1 gene that codes for
an important antiviral protein that controls AIV infec-
tions (Jin et al. 1998; Tumpey et al. 2007), which may
greatly impact both pathogenesis and transmissibility
of AIV. This has been underlined by a combined field
and laboratory study, where virus could not be isolated
from wild-caught house mice from farms with LPAIV
H7N2. In the same study, the virus replicated in BALB/c
mice (without Mx1 gene) but not in CAST/Ei mice (with
Mx1 gene) (Henzler et al. 2003). Consequently, the
studies discussed here are of limited value for assump-
tions about the fate of AIV in wild rodents. It is there-
fore more appropriate to use Mx1 carriers or wild

caught rodents in studies that are used as a model for
the field situation (Tumpey et al. 2007; Reperant et al.
2009).

5.2. Experiments mimicking field infections

In an infection study using wild-caught house mice,
na€ıve mice were inoculated with LPAIV H3N8, H3N6,
H4N6, H4N8 and H6N2 and showed efficient replica-
tion of wild bird-derived viruses and more moderate
replication for chicken-derived isolates (Shriner et al.
2012). Most viruses replicated more efficiently in lungs
than in nasal turbinates. Nasal washes were positive for
all viruses but oral swabs were only positive for H3N8
and H4N6 in a small number of animals. Faecal samples
remained negative. As these viruses replicated so effi-
ciently (and more so in females than in males) without
adaptation resulting in high viral titres, it is likely that
wild house mice can play a role in virus dissemination
as mechanical vectors, by contaminating water sources
and to other animals as a result of scavenging or pre-
dation (Shriner et al. 2012).

In bank voles (Myodes glareolus), inoculation with
HPAIV H5N1 and H7N1 from avian origin caused
asymptotic infection, which resulted in shedding of
high amounts of virus and transmission to contact ani-
mals. Viable virus was isolated from lungs and nasal
washes in both inoculated and contact voles. Although
oro-faecal transmission could not be ruled out, since
intestines were negative, the respiratory route was
considered the most prominent route for transmission
(Romero Tejeda et al. 2015). These results emphasise
differences between wild and laboratory animals as
the same viruses resulted in high mortality in BALB/c
mice (Rigoni et al. 2010).

Cross-species transmission of AIV was evaluated in
an experiment with an artificial barnyard, where mal-
lards inoculated with LPAIV H5N2 or H7N3 were
housed with small numbers of laboratory rats
(Sprague-Dawley), pigeons, blackbirds and chickens in
an enclosed room containing a small pool (Achenbach
& Bowen 2011). High viral titres were found in the
pool. H5N2 virus was transmitted to other ducks and
chickens, but not to blackbirds and rats, whereas H7N3
spread to all species, including the rats. However, nei-
ther in this barnyard setting, nor in a direct inoculation
experiment, did seroconverted rats show viral shed-
ding in oro-pharyngeal swabs (Achenbach & Bowen
2011).

6. Rodents in and around poultry farms

6.1. Rodent species associated with poultry farms

Three rodent species are found on many farms around
the world and are universally considered to be pests:
the house mouse (Mus musculus), the brown rat (Rattus
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norvegicus) and the black rat (Rattus rattus) (G�omez
Villafa~ne & Busch 2007; Battersby et al. 2008; Moran
2012; Hinkle & Corrigan 2013; Rao & Sakthivel 2015).
Bank voles (Myodes glareolus) and wood mice (Apode-
mus sylvaticus) populations may also benefit from liv-
ing near farms (Romero Tejeda et al. 2015). The black
and brown rats originate from China and India, respec-
tively, but are now found throughout most of the
developed world (Global Invasive Species Database
2017). The house mouse is said to be the most widely
distributed mammal apart from Man (Global Invasive
Species Database 2017).

6.2. Factors affecting rodent populations on farms

The brown rat belongs to the natural fauna in many
countries and lives in underground holes and tunnels.
The black rat prefers to live higher up in attics, beams
and silos. Rodents will eat a wide variety of foods
including grains, seeds, nuts, fruits, berries, snails, slugs,
insects, eggs and dead birds. In contrast to the house
mouse, which can survive several days without drink-
ing provided the diet contains enough moisture
(Global Invasive Species Database 2017), brown and
black rats are dependent on the presence of water
(Rowe 1981). Both mice and rats form territories and
are present in the environment of farms all year round
(Hinkle & Corrigan 2013).

Poultry farms are attractive for rodents because they
offer optimal living conditions: food, water, shelter and
nesting places (Battersby et al. 2008). Under such good
circumstances rodents can reproduce very quickly. At
2–3 months of age rats and mice are sexually mature
and females can produce 60–70 offspring each year
(Tabler et al. 2014). Energy needs increase in winter
encouraging rodents to seek nearby feed sources. Also,
in colder seasons the surrounding vegetation is thinner
and provides less shelter for rodents (G�omez Villafa~ne
et al. 2001). Consequently, in periods of cold and wet
weather, rodents often seek shelter in or around farm
buildings.

The number of rodents present in and around poul-
try farms is also influenced by the standard of mainte-
nance of the farm buildings. Numbers of rodents are
higher on farms that have unsealed roof eaves, broken
roofs and ceilings, broken wire mesh, poorly fitting
doors, etc. (G�omez Villafa~ne et al. 2001). The size of the
poultry flock may also influence numbers of rodents
present. In one study, farms with a high density of
chickens in their barns were found to be likely to have
fewer rodents. In general such farms are better man-
aged, have more automated systems, less vegetation
around the buildings, and also have better rodent con-
trol (G�omez Villafa~ne et al. 2001).

Prevention of rodent infestation by means of
hygiene measures and habitat management (i.e.
removal of vegetative cover and other places of

shelter) is preferable to having to reduce an estab-
lished population. For brown rats on a farm the proba-
bility of dying has been estimated to be 90–95% per
year (Davis 1953). The number of rats in a population is
said to be directly proportional to the amount of food
available (Davis 1951). Therefore, effective hygiene
measures such as reducing the availability of food
sources and good habitat management can have a rel-
atively large effect on a rodent problem. The density of
a population of brown and black rats can be surpris-
ingly heterogeneous when compared to the structure
of the environment and availability of food sources
(Himsworth et al. 2014b). In a trapping study of brown
and black rats in an inner city environment, the catch
frequency over 43 contiguous city blocks was analysed
compared to the urban functions of the trap locations.
Rats were most often trapped around vacant lots,
green areas and places where waste (a source of food)
had collected. Remarkably, rats were never caught
next to waste bins or compost heaps (Himsworth et al.
2014c), but this may be due to the trapping bait being
insufficiently attractive to compete with the adjacent
food source. Habitat management and removal of
food sources are relatively more successful in reducing
a rat population than trapping or killing only (Davis
1951; Lambert et al. 2008). The use of rodenticides is
limited by genetic resistance in brown rats and carries
the risk of secondary poisoning in non-target species
(Buckle 2013; Meerburg et al. 2014).

Rodent agility and the fact that they are not fussy
feeders leads to them being so successful on farms.
Apart from the risk of disease transmission, a sizeable
rodent population will bring economic costs to the
farm through consumption of feed (an adult brown rat
can consume 30 g grain per day) and contamination of
feed and eggs. Due to their compulsion for gnawing,
which may result in short-circuited exposed power
cables, rodents are also suspected to be the cause of
25–50% of all barn fires in the United Kingdom (Bat-
tersby et al. 2008).

6.3. Potential for contact between rodents and
poultry

Rodents have been firmly associated with the introduc-
tion and/or perpetuation of certain pathogens in the
past. Mice had a pivotal role in the origins of Salmo-
nella Enteritidis in poultry (Henzler & Opitz 1992;
Davies & Wray 1995) and inadequate rodent control
has been classed as a high risk factor for S. enteritidis in
layer flocks (Snow et al. 2010) and Campylobacter spp.
in broiler flocks (Sommer et al. 2013). As resident
rodents show intermittent faecal shedding of Salmo-
nella spp., this may be associated with persistent Sal-
monella spp. infections on layer farms between flocks
(Umali et al. 2012). Rodents have also been implicated
in transmission of Pasteurella multocida (Curtis et al.
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1980; Curtis 1983), Erysipelas, Bordetella, Leptospirosis
and Fowl pox virus (Hinkle & Corrigan 2013). Identical
isolates of Brachyspira spp. found in rats, mice, pigs
and laying hens from the same farms indicate cross-
species transmission or colonisation from a common
environmental source (Backhans et al. 2011). Rats are
known to harbour methicillin-resistant Staphylococcus
aureus (Himsworth et al. 2014a) and antibiotic resistant
E. coli strains (Himsworth et al. 2016), acquired from
their environment. As several strains of pathogens can
occur in rats simultaneously, this may foster develop-
ment of more pathogenic micro-organisms due to
exchange of mobile genetic elements that confer path-
ogenicity or antibiotic resistance (Himsworth et al.
2016). However, direct evidence for rodents function-
ing as a mechanical vector for AIV has not yet been
found (Swayne 2008). Nevertheless, good biosecurity
to prevent a non-avian ‘bridge’ like mice and rats from
introducing AIV to poultry is recommended (European
Food Safety Authority 2014; Root et al. 2015; Global
Consortium for H5N8 & Related Influenza Viruses 2016).

An important potential route of between-farm
transmission is considered to be non-adherence to bio-
security protocols during an AIV outbreak by farm
workers or veterinarians (Ssematimba et al. 2012b). It
can be assumed that anything that can enter or be car-
ried onto a farm may act as a mechanical vector,
including small mammals. Rats are well-known bird
predators and scavengers; they may be attracted by
feed and shelter or scavenge cadavers and eggs (Zar-
zoso-Lacoste et al. 2011). Rats are capable of stealing
and eating hens eggs. Although black rats have diffi-
culty manoeuvring whole hens eggs, they can predate
smaller eggs, like quail (Zarzoso-Lacoste et al. 2011).
Peak foraging activity for the brown rat is around
dawn and again 4–5 h after dusk (Taylor 1978; Nieder
1985). Evidence suggests that once a rat population
has made a particular shed its domain, other rats may
be deterred from entering. Two reports state that rural
rats living in hedges, seldom enter nearby farm build-
ings, even during periods of food shortage, most prob-
ably because the rat population in the farm buildings
deter this (Taylor 1978; Hartley & Bishop 1979).

Rodents that have entered the poultry house and
have been exposed to AIV may carry or shed AIV. Evi-
dence for significant virus shedding with faeces or
urine is lacking, but AIV has been detected in nasal
excreta, saliva and in respiratory and other organs (see
paragraph 5). Consequently, they may contaminate
feed, water and litter and, as shown in the study by
Root et al. (2015), environmental contamination by
infected mammals can result in transmission of AIV to
waterfowl.

Also, as Shriner et al. (2012) suggested, it is likely
that scavenging of rodent carcasses by poultry may
result in infection, due to high viral titres in rodents
after AIV infection. Therefore, if rodents die in the

poultry house, chickens may become infected when
feeding on the carcasses. Several viral and bacterial
infections can be transmitted to humans and animals
through a rodent bite (Meerburg et al. 2009). For poul-
try, only a small scale study is available, which showed
that broilers and turkeys acquired P. multocida after
being bitten by an infected rat (Curtis 1983). Further
evidence to estimate the relevance of this potential
transmission route between rodents and poultry for
other pathogens and AIV is lacking.

Particularly characteristic of rodent populations in
buildings are the grease marks left by oils in the
rodents’ coat as they brush against walls and surfaces
along frequently used routes (Figure 2). If AIV is car-
ried in the coat after contact with contaminated sur-
face water, this is likely to be a mechanism by which
virus could be transferred to the interior of poultry
houses.

6.4. Potential role of rodents in transmission
between farms and locations

One factor of importance to the spread of AIV between
flocks is the capacity for rats to travel between neigh-
bouring farms at some distance to each other. Brown
rats disperse from their natal burrows during adoles-
cence, males travelling larger distances than females
(Lynn & Brown 2009). They regularly cover distances of
up to 500 m over open ground to food sources, and
the greatest recorded distance during the known life
of rats in a capture-release study over two years was
just under 1 km (Hartley & Bishop 1979). Brown rats
also move their home sites about once every 7–
14 days, enabling a population to spread gradually
over a larger distance (Taylor 1978). In contrast with
these data from rural rat populations, genetic analysis
of brown rats in an inner city area showed that some
rats had travelled up to 12 km from their place of origin
(Gardner-Santana et al. 2009). In addition to travelling

Figure 2. Grease from the coat of rodents is transferred to sur-
faces inside buildings that they brush against in passing.
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over ground, brown rats are likely to travel between
farms by water and can cover distances up to more
than 1000 m (Broome 2007; Tabak et al. 2015).

7. Discussion

In this paper, we have assessed the evidence for
rodents playing a role in transmission of AIV to poultry.
The limited available data does not allow for quantify-
ing the contribution of rodents to introduction of AIV
or further dissemination of AIV between farms. How-
ever, the outline of evidence supporting different
potential transmission mechanisms, and its relation to
common rodent ecology in and around farms, reveals
useful avenues for optimization of control measures
against AIV introduction and spread by rodents and
provides directions for further research.

It is likely that rodents can act as a mechanical vec-
tor of AIV. Although there are differences between
countries with regard to production systems, climate
and environment, we can generally assume that
rodents are abundant in and around most poultry
farms and share their habitat with waterfowl, where
they can have (in)direct contact with AIVs excreted by
waterfowl. The circumstances that allow for AIV intro-
duction by rodents seem to be most ideal during the
winter. At this time of year migrated and indigenous
waterfowl, and consequently AIV, is abundantly pres-
ent around farms. AIV is very stable in the environment
and, particularly, in cold water. Since brown rats’ natu-
ral habitat is close to and in water sources, water may
be an important source of contamination for rats. In
the winter rodents will be more than usually inclined
to enter poultry houses searching for food and shelter.
A comprehensive review of population dynamics,
behaviour, movement and environmental influences
on rat populations in urban areas was provided by
Feng and Himsworth (2014). Similar work on rodent
ecology around farms may be helpful to facilitate
development of more targeted control measures.

Rodents carrying the virus can contaminate feed,
water or litter and leave grease marks from their coat
along walls, supplies or equipment inside farm build-
ings (Figure 2). Subsequently, poultry can have direct
contact with this rodent induced contamination, or
indirectly via movement of poultry workers, equipment
or supplies (Shriner et al. 2016). However, there is insuf-
ficient data to determine the virus load that can be
established by this mechanical transmission route, and
whether this is likely to result in infection in poultry.

Also, solid evidence directly linking rodents to out-
breaks is still lacking. The number of studies in which
rodents were caught in and around AIV infected poul-
try farms is limited (Nettles et al. 1985; Henzler et al.
2003; Shriner et al. 2012, 2016). In one study, wild
house mice tested positive for IAV antibodies (Shriner
et al. 2012). In another study, sera from rats caught

around poultry markets during H5N1 outbreaks in
Hong Kong in 1997, may have indicated exposure to
AIV (Shortridge et al. 2000). Therefore, we propose that
during future outbreaks of AIV, synanthropic birds and
animals, especially rodents in and around poultry
farms, are caught and virologically and serologically
tested for AIV as has been done by Shriner et al. (2012,
2016). Also, testing of rodents that live in close contact
with waterfowl can be useful to monitor whether trans-
mission between wild birds and rodents occurs. Com-
paring sequences of AIV found in waterfowl, the
environment, rodents and poultry would be valuable
to elucidate transmission mechanisms. However, this
type of field research does have serious limitations.
Serological tools, both for mammals and birds, should
be optimized and harmonized for avian influenza sur-
veillance (VanDalen et al. 2009; Poen et al. 2016). Also,
the presence of AIV positive rodents around poultry
farms does not directly indicate a role for rodents in
AIV introduction since it cannot be excluded that the
rodents were exposed to the virus after AIV infection
was established in poultry. However, the presence of
positive rodents would indicate that they are a poten-
tial source of transmission if they travel to neighbour-
ing farms. Rats cover long distances when foraging
and may visit more than one farm to find food, making
transmission of AIV by rodents more likely in areas of
high farm density. Effective rodent control is therefore
important to prevent between-farm spread.

If rodents were able to actively shed virus, this
would increase their potential involvement in transmis-
sion of AIV to poultry. However, published data on this
are scarce. The majority of AIV studies with rodents are
carried out with female BALB/c mice, which are much
more susceptible to AIV than are wild mice, bank voles
and rats (Jin et al. 1998; Henzler et al. 2003; Tumpey
et al. 2007; Romero Tejeda et al. 2015). Also, differential
virus replication between females and males was dem-
onstrated in wild house mice; females showing higher
levels of viral replication titres than males (Shriner et al.
2012). These differences will impact AIV pathogenesis
and transmissibility, making data from these animal
models unsuitable for extrapolation to the field situa-
tion with wild rodents (Jin et al. 1998; Tumpey et al.
2007). Only a few studies describe AIV infections of
wild-type rodents. In house mice and bank voles inocu-
lated with LPAIV and HPAIV strains, efficient replication
occurred and AIV was detected in lungs, trachea, nasal
washes, oral swabs and extra-respiratory organs such
as the spleen, kidney and brain (Shriner et al. 2012;
Romero Tejeda et al. 2015). More studies investigating
the fate of AIV in wild rodents may provide more
insights into their potential role in AIV epidemiology.
The available published studies with wild rodents
show that they can be readily infected with several
AIVs of avian origin and that replication is possible
without prior adaptation of the virus to rodents
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(Reperant et al. 2009, 2012; Shriner et al. 2012, Runsta-
dler et al. 2013; Romero Tejeda et al. 2015). Thus, con-
tact between na€ıve waterfowl and contaminated or
infected rodents could potentially lead to infection of
the birds. Infected rodents may contaminate the envi-
ronment with their excreta, which may contain suffi-
cient amounts of virus to facilitate transmission,
depending on the AIV and poultry type (Swayne & Sle-
mons 2008; Aldous et al. 2010). This transmission route
has not yet been confirmed for rodents, but for skunks
and rabbits it was shown that environmental contami-
nation by these infected mammals did result in trans-
mission of AIV to waterfowl (Root et al. 2015).
Shedding of virus has been detected in nasal excreta
and saliva but whether significant virus shedding
occurs with faeces or urine for direct or indirect infec-
tion through the environment remains uncertain.
Therefore, an important recommendation for future
research is to investigate whether replication of AIV in
the gastrointestinal tract of rodents is possible and
whether faecal shedding of the AIV occurs. This could
provide more information on whether faecal contami-
nation of the environment with AIV and oro-faecal
transmission between rodents can occur (Romero
Tejeda et al. 2015). Furthermore, research settings
where different types of animals are kept in the same
environment (Achenbach & Bowen 2011; Root et al.
2015), mimicking the actual situation in the field where
direct and indirect transmission via the environment
can occur, is especially valuable to provide more
insight into AIV epidemiology.

When infected mice or rats are too sick to enter
poultry houses or die outside the poultry house, con-
tact with poultry is prevented. However, if rodents die
in the poultry house, chickens may become infected
when feeding on the carcasses, as the viral load in
lungs and other organs that have succumbed to infec-
tion is likely to be high (Shriner et al. 2012). Another
unconfirmed transmission route is a rodent bite (Curtis
1983). AIV may be present in rodent saliva, but whether
sufficient amount of AIV can be transmitted with a bite
to establish an infection and how often bite incidents
occur on poultry farms is unknown.

Another relevant question is whether AIV infections
can become endemic in rodent populations. More
opportunities for transmission of virus from rodents to
poultry are possible if AIV virus can be transmitted
between rodents and maintained in their population.
The only study of transmission between inoculated
and na€ıve wild-type rodents was done with bank voles
with HPAIV H5N1 and H7N1. In this study viable virus
was isolated from lungs and nasal washes in both inoc-
ulated and contact voles (Romero Tejeda et al. 2015),
which indicates that in these rodents transmission
between animals in a population can occur. Further
research to determine whether AIV can become
endemic in rodent populations is warranted, but

results may be highly dependent on AIV strain and
rodent species used.

The relevance of rodent control to reducing the risks
of infection with pathogens such as Salmonella, Cam-
pylobacter and Pasteurella are well known and have
been called for in the past (Curtis et al. 1980; Meerburg
& Kijlstra 2007). However, the implication that AIV may
possibly be transmitted by rodents could be an addi-
tional motivation for poultry farmers to implement pre-
ventive measures, such as effective rodent-proofing of
poultry houses. To reduce the probability of AIV intro-
duction on poultry farms, it is advisable to apply con-
trol measures that reduce the total numbers of rodents
around the farm and close off potential entry routes
into the poultry house (Velkers et al. 2015). Since habi-
tat management and removal of food sources are rela-
tively more successful in reducing a rat population
than trapping or killing only, it is advised to make the
immediate surroundings of the farm as unattractive as
possible to rodents.

8. Conclusions

For introduction of AIV in a poultry flock and transmis-
sion of AIV between farms it is plausible that rodents
can act as a mechanical vector. However, active shed-
ding of AIV by infected rodents cannot be ruled out.
Further field and experimental studies, with wild-type
rodents rather than laboratory strains, are necessary to
determine the exact role of rodents in AIV
epidemiology.
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