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Abstract

The Bayesian approach has become increasingly popular because it allows to model
quite complex models via Markov chain Monte Carlo (MCMC) sampling. However, it is
also recognized nowadays that MCMC sampling can become computationally prohibitive
when a complex model needs to be fit to a large data set. To overcome this problem,
we applied and extended a recently proposed two-stage approach to model a complex
hierarchical data structure of glaucoma patients who participate in an ongoing Dutch
study. Glaucoma is one of the leading causes of blindness in the world. In order to detect
deterioration at an early stage, a model for predicting visual fields (VF) in time is needed.
Hence, the true underlying VF progression can be determined, and treatment strategies
can then be optimized to prevent further VF loss. Since we were unable to fit these data
with the classical one-stage approach upon which the current popular Bayesian software
is based, we made use of the two-stage Bayesian approach. The considered hierarchical
longitudinal model involves estimating a large number of random effects and deals with
censoring and high measurement variability. In addition, we extended the approach with
tools for model evaluation

KEY WORDS: Bayesian modeling, Hierarchical structure, Longitudinal data analysis,
Two-stage approach.
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1 Introduction

Since the introduction of MCMC sampling by Gelfand and Smith [8] and the development

of the BUGS software [19] the Bayesian approach has become tremendously popular in

various application areas, but especially to fit models to complex data structures. But

with the years it also became clear that MCMC sampling can be computationally quite

cumbersome, and even prohibitive, for fitting complex models to relatively large data sets.

Several attempts have been made to look for alternative computational procedures and

software, with notable examples such as INLA [24] and STAN [11]. While this newly

software can sometimes speed up the computations considerably, the computational gain

is not always obvious upfront and for some advanced models the new developments may

not be suitable yet. In addition, the majority of the practical Bayesians still use BUGS-

related software. In this context, Lunn et al. [18] proposed to fit a hierarchical model in

two stages. The authors claim more model flexibility in this way, but advocate the use

of their procedure especially for its computational properties. In this paper we further

illustrate the use of the two-stage approach on a far more complex hierarchical data

structure of glaucoma patients. In addition, we extended the approach with an additional

sampling step to allow for the calculation of model selection and model evaluation criteria.

Our modeling approach is motivated by data from the Glaucoma Study conducted

by the Rotterdam Eye Hospital in the Netherlands. According to the World Health

Organization (WHO), glaucoma is one of the leading causes of irreversible blindness in

the world [14]. Adequate treatment may slow down the disease, possibly even halting

its progression. Evaluation of a longitudinal series of visual fields (VF), as measured by

standard automated perimetry (SAP), provides a way to detect early evidence of glaucoma

and to determine functional deterioration. However, due to the subjective nature of this

technique, SAP is prone to large variability. In order to measure the true progression of

the disease, this variability needs to be taken into account. The Glaucoma Study provides

a unique database with a long follow up time. Although methods may have existed to

model this type of data, the difficulties in extracting it from the device has made this type

of data rare and hence has prevented much research on the topic.

The response variable of interest are the sensitivity estimates which describe the level

of differential light sensitivity at different locations within each eye. The sensitivity esti-

mates are left-censored due to the limitation of the device. Models which take into account
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this type of censoring, such as the Tobit model, have been described in the literature [28].

Our interest lies in modeling the latent, true values rather than the observed sensitivity

estimates for two reasons. Firstly, clinical interest lies in predicting the disease progression

rather than the observed sensitivity estimates. Secondly, using the latent scale allows us

to use a simpler model than when directly modeling the observed data. The hierarchical

structure of the data consists of 4 levels, namely, (1) the individual, (2) the eye (3) the

hemifield and (4) the location. There is a vast amount of literature that addresses hier-

archical mixed effects models, for both frequentist [29] and Bayesian [17, 21] approaches.

We model this complex data structure using a Bayesian hierarchical mixed effects model

with cross-classified random effects. Hence, we combine both spatial and time effects.

One of the difficulties in modeling VF data is the amount and type of measurement error

or variability in the sensitivity estimates. This may be due to measurable factors, such as

season, time of day and reliability indices, or unknown transient factors, such as fatigue,

lack of concentration, or delayed reaction time. Although their magnitudes may vary,

these factors affect all locations belonging to the same VF. We propose to model them

as Global Visit Effects (GVEs). Furthermore, there is an inverse relationship between

sensitivity and variability. For example, measurement error in the VFs increases with

damage, and hence low sensitivity estimates have high variability. Therefore, it is naive

to assume a constant variance over the wide range of sensitivity estimates. In this paper,

we relax this assumption in order to incorporate this relationship. A problem with high

dimensional data and complex data structures, is that it is sometimes difficult or even

impossible to model them with standard MCMC algorithms. Lunn et al. [18] proposed a

two-stage approach, which allowed us to simplify the problem while still benefiting from

the advantages of a full Bayesian model. However, one of the disadvantages of this ap-

proach, is that it is not possible to directly obtain the random effects estimates needed

for most model evaluations. We address this issue by extending the two-stage approach

to be able to determine these estimates.

Our aim is to model this complex data structure in order to obtain better estimates

of the true evolution of the sensitivity over time, so that treatment strategies can be

optimized to prevent further progression of VF loss. The structure of the paper is as

follows. In Section 2 we give further details on the motivating data set and introduce the

research questions that triggered our modeling approach(es). In Section 3 we describe the
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models used in the analysis. In the subsequent section we briefly review computational

aspects of the analysis. Model comparison is dealt with in Section 5. In Section 6 we

apply our models to the Glaucoma Study data. Section 7 contains a concluding discussion.

Further details regarding the modeling approach are provided in an appendix.

2 Motivating data set: the Glaucoma Study

2.1 Description of the project

The Glaucoma Study is a prospective cohort study conducted by the Rotterdam Eye

Hospital in the Netherlands. This is an ongoing study which began in 1998. Inclusion

criteria included glaucoma diagnosis and an age range of 18 to 85 years. In total, 139

patients, consisting of 80 (57.6%) men and 59 (42.4%) women, were recruited with a

mean follow-up of 10.5 years. Follow-up data were collected at approximately 6-monthly

intervals. All patients gave their written informed consent for participation. All research

procedures followed the tenets set forth in the Declaration of Helsinki. Furthermore, all

of the data that was used in this analysis has been made available online at http://rod-

rep.com.

Sensitivity estimates were measured at 52 test locations within each eye, or 26 test

locations within each hemifield (excluding two locations corresponding to the blind spot)

as shown in Figure 1. The VFs were tested using the Humphrey Field Analyzer with the

24-2, white-on-white test strategy using the Full Threshold algorithm. The light source

can be attenuated in the range from 1 to 10,000 times. On the decibel (dB) scale an

attenuation x is defined as s = 10 log10(x), or x = 10s/10. The lowest sensitivity that

can be detected by this perimeter is 0 dB, although negative values could in fact occur if

it were not for the limitations of this device. The highest sensitivity that can be detected

is 50 dB, however few humans are capable of seeing a stimulus less than 40 dB, which

is 1/10,000 of the maximum intensity of the instrument (or 1 asb). Thus, for practical

purposes, the useful intensity range for white light testing is from 0 to 40 dB with a

background illumination of 31.5 asb. [1].
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Figure 1: Fundus photo of a left human eye with the 54 test locations for the VF test represented
by white dots.

2.2 Previous research

Parameters such as the mean deviation (MD) and visual field index (VFI) summarize

the 52 sensitivity estimates into single values which can be used by the clinicians when

optimizing treatment strategies. Longitudinal modeling of these VF summary parameters

has been done before [2, 4, 13, 15]. Modeling of individual test locations is potentially of

greater interest, because it provides additional information such as the spatial nature of

the fields which is otherwise lost in global parameters. In previous research, each location

was analyzed as an independent sample [5, 6, 20]. However, separate location-specific

regression models are not able to use any information from the data set as a whole.

Multilevel mixed-effects models provide a better fit to the data than separate regression

models by accounting for group effects and/or within-group correlation [29]. This was

shown in the context of global VF measurements by Pathak et al. [22].

In glaucoma, variability is presumably related to fatigue effects and response errors,

whereby sensitivity estimates decrease over time [3, 12]. Differences in fatigue effects,

between the inferior and superior hemifields within an eye have been demonstrated [12].

Furthermore, this effect may differ between the first and second eye at the same visit. The

number of false-negative answers have been shown to be higher in eyes with field loss. This

may be explained by an increased variability in sensitivity estimates typically found in such

eyes [3, 25]. A common approach to reduce measurement variability is to average multiple
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measurements. For example, random uncorrelated measurement errors that are present

in the point-wise sensitivity estimates are reduced when calculating summary parameters

such as the mean deviation (MD). Other errors, however, are spatially correlated and

affect the whole VF. One group of such errors are measurable factors, including season,

time of day and reliability indices, which have been evaluated before [13]. Although these

factors are statistically significant, they are rather small and hence only explain a small

part of the observed global variation in VFs.

The inverse relationship between variability and sensitivity has been described in the

literature. Henson et al. (2000) [10] found that this relationship is well represented by the

function log(SD) = A+B×sensitivity(dB), where A and B are 2.81 dB and -0.066 dB

respectively for normal eyes and 3.62 dB and -0.098 dB for glaucomatous eyes. Russell

et al. (2012) [25] showed that the distribution of residuals is relatively concentrated at

high VF sensitivities (26 to 36 dB) but stretches substantially as the sensitivity estimates

decrease to a level of 10 dB. Sensitivity estimates near 10 dB are associated with residuals

spanning almost the entire dynamic range of the instrument. This could be caused by a

loss of ganglion cells (due to glaucomatous damage), or relocation of the stimulus to the

peripheral visual field where there are fewer ganglion cells [27]. Zhu et al. (2014) [30] de-

scribe a method to detect change using an inferential statistical model which incorporates

the non-stationary variability using a mixture of Weibull distributions.

Although there is a wide range of literature which discusses these aspects, the majority

of previous work deals with the global indices or treats each point-wise estimate as an

independent sample. Furthermore, these aspects have been addressed separately. Hence,

it is clear that an approach which takes into account the complex structure of the data

and considers all of the aforementioned problems, is needed. We will address censoring,

the hierarchical structure, the global variation as well as the relationship between the

variability and sensitivity.

3 Statistical Models

Modeling the sensitivity estimates is beneficial for the evaluation of the progression of VF

loss. By incorporating biological effects into the model, we aimed to improve the model

fit and hence provide a better method for modeling this progression. This was done by

building the model up sequentially.
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3.1 Censoring

It is important to note that unseen sensitivity estimates are indicated on the VF print out

as < 0. They are smaller than zero because the instrument is unable to determine such

sensitivities. Thus a model which defines the relationship between time and the latent,

true sensitivity value is needed. The relationship between the observed y∗ and the latent,

true sensitivity value y is given by,

y∗ = y × I(y ≥ 0) + 0× I(y < 0).

3.2 Hierarchical Model

We propose using a Bayesian hierarchical mixed effects model [17, 21] to analyze the

glaucoma data. This model is able to take into account both the within subject and

between subject variability. Furthermore, we capitalized on the common features within

each eye by taking into account the correlation between measurements belonging to the

same eye. In addition, correlation of VF measurements within the inferior and superior

hemifields, separated by the horizontal raphe, was assumed to be higher than between

hemifields. Hence, the hierarchical structure of the data consists of 4 levels, namely, (1)

the individual, (2) the eye (3) the hemifield and (4) the location. Let β correspond to the

regression parameters and yearsit represent the time between measurement t and the first

measurement for each individual i, ranging from 0 to 10.5 years. The individual-specific

intercept and slope are represented by α, the eye-specific intercept and slope by γ, the

hemifield-specific intercept and slope by η, and the location-specific intercept and slope

by λ. We then have, for individual i = 1, . . . , N ; eye e = 1, 2; hemifield h = 1, 2; location

l = 1, . . . , 26 and timepoint t = 1, . . . , Ti,

Model 1:

yiehlt = β0 + β1yearsit + α0i + α1iyearsit + γ0ie + γ1ieyearsit + η0ieh + η1iehyearsit +

λ0iehl + λ1iehlyearsit + εiehlt (1)

= µ
(1)
iehlt + εiehlt,
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where

αi = ( α0i
α1i ) ∼ N(( 0

0 ) ,Σα =
(

Σα11 Σα12
Σα21 Σα22

)
);

γie = ( γ0ieγ1ie ) ∼ N(( 0
0 ) ,Σγ = (

Σγ11 Σγ12
Σγ21 Σγ22

));

ηieh = ( η0iehη1ieh ) ∼ N(( 0
0 ),Ση = (

Ση11 Ση12
Ση21 Ση22

));

λiehl =
(
λ0iehl
λ1iehl

)
∼ N(( 0

0 ) ,Σλ = ( Σλ11 Σλ12
Σλ21 Σλ22

)) and

εiehlt ∼ N(0, σ2).

3.3 Visit Effect

Junoy Montolio et al. (2012) [13] explicitly modeled the global variations with known

factors such as season, time of day and reliability indices. However, we speculated that

other transient factors, such as fatigue, lack of concentration, or delayed reaction time

may play a more important role. Since all these (as well as possibly other) factors, affect

all locations belonging to the same VF, we propose to take them together and to call them,

as well as model them as the Global Visit Effects (GVEs). In this way, we can account

for both the known and the unknown factors. Hence, the GVE accounts for all factors

that affect all measurements of the same eye at each visit. To illustrate the importance

of these factors, we show in Figure 2 the VFs over time of one eye, where all locations

have a drastic decrease in sensitivity at around 1 year. From the longitudinal profiles, it

is evident that this decrease is caused by something that affected all VF measurements

of that visit, rather than by actual damage. To account for the visit-dependent offset at

all locations, or GVE, we included a parameter, φiet, in the model to capture the offset

at every visit j for each eye k within each individual i. This gives,

Model 2:

yiehlt = µ
(1)
iehlt + φiet + εiehlt

= µ
(2)
iehlt + εiehlt. (2)

From an initial exploratory analysis, we observed a number of spikes in the distribution

of the visit effects. To accommodate these spikes, we assumed a t-distribution for φiet.

The t-distribution allows greater flexibility in the distribution of random effects compared
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Figure 2: Retinal sensitivity estimates over time for each location of the visual field in the left
eye of a single glaucoma patient. A decrease in the sensitivity estimates can be seen in all
locations at around 1 year. The longitudinal profile of the MD values over time are shown on
the right. The visit-dependent decrease is also clear at around 1 year for the MD.

to the normal distribution, and can handle heavy tails in random effects distributions [16].

Hence, we let,

φiet ∼ t(0, σ2
φ, 3),

where t(µ, σ2, df) denotes the generalized t-distribution with mean µ, scale parameter σ,

and df degrees of freedom.

3.4 Relationship between Variability and Sensitivity

There is an association between a decline in VF sensitivity and an increase in response

variability. However, values lower than 0 dB cannot be measured. This inherent censoring

process introduces a positive bias at low sensitivity estimates, which is made worse by

the increased variability for low sensitivity estimates. We assumed a linear relationship

between the expected values of the sensitivity estimates and the logarithm of the standard

deviation. However, since we were interested in modeling the latent sensitivity estimates,

we extrapolated this linear relationship for predicted sensitivity estimates below 10 dB.

This can be seen in Figure 3. In this exploratory analysis, we found that the relationship

was well represented by the function log(SD) = A + B × sensitivity(dB), where A
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and B are 2.60 dB and -0.06 dB respectively. We extended Model 2 to incorporate this

relationship such that,

Model 3:

yiehlt = µ
(2)
iehlt + εiehlt,

and

log(σiehlt) = f{E(yiehlt)}

= β∗0 + β∗1µ
(2)
iehlt, (3)

where f is a linear function. A summary of all the parameters and their definitions

for all the models is shown in Table 1.
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Figure 3: Bubbleplot representing the mean logarithm of the standard deviation for different
predicted sensitivity estimates determined using linear regression for each location. The pre-
dicted values were subdivided into groups with width 5 dB. The empty bubbles correspond to
the hypothetical values, corresponding to the censored measurements, for the mean logarithm of
the standard deviation for the predicted sensitivity estimates after extrapolation. The bubbles
are scaled to the logarithm of the number of observations.
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Table 1: Summary of parameters included cumulatively in each of the models

Model Parameter Definition

Model 1 yiehlt Latent sensitivity estimate
β0 Population-averaged intercept
β1 Population-averaged slope
α0i Individual-specific intercept
α1i Individual-specific slope
γ0i Eye-specific intercept
γ1i Eye-specific slope
η0i Hemifield-specific intercept
η1i Hemifield-specific slope
λ0i Location-specific intercept
λ1i Location-specific slope
σ2 Variance

Model 2 φiet Global visit effect
σ2
φ Global Visit Effect variance

Model 3 β∗0 Intercept in logarithm of the standard deviation
β∗1 Slope in logarithm of the standard deviation

4 Estimation Approach

4.1 One-stage approach

The Bayesian approach takes into account the uncertainty in all model parameters and

allows for prior information to be incorporated. Furthermore, MCMC algorithms allow

greater flexibility by relaxing the strong parametric assumptions commonly used in most

frequentist hierarchical models [17, 18]. The classical Bayesian approach is one-stage hi-

erarchical modeling, which has the advantage that subject-specific and overall parameters

are estimated simultaneously. However, for a (relatively) large data set, this approach can

be difficult or even impossible to implement for complex models with standard MCMC

software. In our case, we had a total of 45,005 parameters which needed to be esti-

mated. As a consequence, we were unable to achieve convergence in a realistic time frame

and experienced computer memory limitations when using WinBUGS or JAGS. For such

situations, a computationally more efficient method is needed.

4.2 Two-stage approach

Lunn et al. [18] proposed two-stage Bayesian hierarchical modeling. The glaucoma data

also exhibit an hierarchical structure, but of a more complex nature. Figure 4 illustrates

the hierarchical structure of the glaucoma data, as well as the cross-classified random
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effects, divided into two stages. The two-stage approach allowed us to simplify the problem

by splitting hierarchical models with M levels at level m*. Independent parameters of

interest at level m* are obtained in stage 1 and used as proposal distributions for those

parameters in stage 2. Lunn et al. illustrated this method using models with two and

three levels. We applied this to a more complex model with four levels. In our case, we

split the levels at the individual level, treating each individual as their own sample. These

individuals were then analyzed independently before combining them to obtain population

level estimates.

Figure 4: Illustration of the hierarchical structure of the data divided into the first and second
stages as done in the two-stage approach.

4.2.1 First stage

In the first stage, we analyzed each individual separately. Without loss of generality, we

only show this for Model 3. This becomes:

yiehlt = α0i + α1iyearsit + γ0ie + γ1ieyearsit + η0ieh + η1iehyearsit +

λ0iehl + λ1iehlyearsit + φiet + εiehlt, (4)
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where

γie = ( γ0ieγ1ie ) ∼ N(( 0
0 ) ,Σγi = (

Σγ11i Σγ12i
Σγ21i Σγ22i

));

ηieh = ( η0iehη1ieh ) ∼ N(( 0
0 ),Σηi = (

Ση11i Ση12i
Ση21i Ση22i

));

λiehl =
(
λ0iehl
λ1iehl

)
∼ N(( 0

0 ) ,Σλi = ( Σλ11i Σλ12i
Σλ21i Σλ22i

));

φiet ∼ t(0, σ2
φi, 3) and

εiehlt ∼ N(0, σ2
iehlt),

and

log(σiehlt) = β∗0i + β∗1iµ
(2)
iehlt.

One important detail about the two-stage approach is that it allows the individual

variances to differ, i.e. Σγi, Σηi, Σλi and σ2
φi, but also σiehlt since the regression coefficients

are now allowed to depend on the subject. This is in contrast to the one-stage model

which requires the variances to be the same, i.e. Σγ , Ση, Σλ and σ2
φ. Hence, the two-

stage approach is more flexible, as it can account for these differences if they are present

in the data. In the Bayesian procedure prior distributions need to be assumed for all

parameters. Explicit expressions for the priors are given in the Appendix. In order to

prevent the second-stage sampler from becoming stuck near local posterior modes, large

independent samples are needed from this first stage [18]. To achieve this, we ran 200,000

iterations with a burn-in of 150,000 and thinning of 10, resulting in 138 samples of 5,000

iterations each for each parameter.

4.2.2 Second stage

In the first stage, αi and β∗i were treated as fixed effects. These parameters need to

be combined in the second stage to obtain the population-averaged effects, β and β∗.

We denote them as θi. In the case of a meta analysis, the random effects in the first

stage, which we denote as Li, may not be of direct interest. Hence, these terms can

be treated as nuisance parameters as done by Lunn et al. [18]. However, for clinical

applications such as ours, these may be important. In order to avoid further computational

problems, we took only the covariance matrices of the random effects in the first stage
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to the second stage, which allowed us to re-estimate the random effects in an additional

step. Since each of the elements in the matrices were treated as separate parameters

in the second stage, Cholesky decomposition of the covariance matrices of the random

effects, Σγi , Σηi and Σλi respectively, was used. More specifically, for each of the above

covariance matrices a full rank lower triangular matrix U with real and positive diagonal

entries was generated, ensuring that UUT is positive definite. We denote the Cholesky

decomposition factors for all of the covariance matrices by Ci. Hence, we let {θi, Ci}

represent parameters of interest from the first-stage. The samples of these parameters

were then used as proposal distributions within a Metropolis-Hastings step in the second-

stage to obtain {θ, C} = {θi, Ci, i = 1, . . . , N}. Three chains were initialized with different

starting values for all models determined from the first-stage samples. This was done

using the minimum value, the mean value and the maximum value for each parameter for

every individual. Upon convergence, we computed the posterior mean, median, standard

deviation with the equal tail 95% credible interval (CI) for all parameters of interest.

5 Model Evaluation

Standard approaches are applicable to the results from the first stage since this stage

represents a standard analysis. Hence, we evaluated the models at this stage for each

individual separately using posterior predictive checks (PPC), such as the χ2-test statistic.

A further comparison of the models was done after the second stage using the Deviance

Information Criterion (DIC) to determine the overall best model.

5.1 Posterior predictive check

We denote all parameters for individual i from the first stage, i.e. {θi, Ci, Li}, as ψi. Let

ψ1
i , . . . , ψ

K
i be the converged Markov chain from p(ψi | yi). Furthermore the vector of

all responses for the ith individual is denoted by yi. The posterior predictive P-value

(PPP) for a discrepancy measure, D(yi | ψki ) is then calculated and replicated data ỹki is

sampled fromp(yi | ψki ). D(ỹki , ψ
k
i ) can then be computed for k in {1, . . . ,K}, and pD can

be estimated by,
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p̄D =
1

K

K∑
k=1

I[D(ỹki , ψ
k
i ) ≤ D(yi, ψ

k
i )], (5)

Here, the Gelman χ2-test statistic [9] was used as the discrepancy measure to calculate

the PPC for each individual. This is defined as:

D(yi, ψ
k
i ) =

E∑
e=1

H∑
h=1

L∑
l=1

Ti∑
t=1

[yiehlt − E(yiehlt | ψki )]2

var(yiehlt | ψki )
, (6)

where E(yiehlt) is defined as µ
(2)
iehlt. A small value indicates a bad model fit. The above

predictive P-values can then be contrasted against a uniform distribution to evaluate

globally model fit for each individual. In general, if p̄D is smaller than 0.05 or larger than

0.95, then this is an indication that the model might not fit the data well. Note that this

procedure is, however, conservative because the data is used twice: one for model fit and

one for model evaluation, see e.g. [17].

5.2 Deviance Information Criterion

In a Bayesian framework, a common tool for model evaluation is the Deviance Information

Criterion (DIC) proposed by Spiegelhalter et al. (2002) [26]. The DIC is defined as:

DIC = D({θ̄, C̄}, L̄) + 2pD = D({θ, C}, L) + pD, (7)

where

pD = D({θ, C}L)−D({θ̄, C̄}, L̄).

In the definition of the DIC, we have the fixed effects parameters as well as the random

effects which are treated as nuisance parameters in the two-stage approach. One of the

disadvantages of the two-stage approach is not being able to directly obtain the random

effects estimates. Since most model evaluation methods, such as the Deviance Information

Criteria (DIC), require the random effect estimates for the computation, it is not clear
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how to evaluate models using this approach. To overcome this limitation, we propose

an extension of the two-stage approach, by including an additional step based on the

Method of Composition in combination with a Metropolis-within-Gibbs technique. More

specifically, for the calculation of the DIC we are required to obtain a sample of the

random effects from their posterior distribution p(Li | yi), which is written as:

p(Li | yi) =

∫
p(Li | yi,Ωi)p(Ωi | yi)dΩi, (8)

where Ωi = (β0, β1, β
∗
0 , β

∗
1 , α0i, α1i,Σγ ,Ση,Σλ, σ

2
φ) is the vector of all parameters of

main interest; Ω̃i represents the sampled values from the second stage. Identity (8) sug-

gests that we can use the following simulation scheme. This is a sampling algorithm based

on the Method of Composition in combination with a Metropolis-within-Gibbs technique,

which is applied to each individual. For the ith individual the computations are done as

follows:

Step 1: For iteration k, let the parameters estimated in the second stage of the two-

stage approach be denoted by Ω̃
(k)
i .

Step 2: Given Ω̃
(k)
i , we sample:

γ0ie, γ1ie, η0ieh, η1ieh, λ0iehl, λ1iehl and φiet,

which we denote as L
(k)
i . This is done using the Metropolis-within-Gibbs technique.

Thus, for each sequence of generated parameters from the second stage, we apply MCMC

sampling to obtain these estimates:

Step 2A: Initial values are determined using an optimization routine.

Step 2B: A random walk Metropolis Hastings algorithm is used for each of the levels.

This is done iteratively, to take into account the correlation between the levels.

Step 3: After an inital burn-in, we save the last estimate for each parameter in L
(k)
i .

Step 4: This is repeated for K iterations, resulting in:

L
(1)
i , L

(2)
i , . . . , L

(K)
i

Hence, in combination with the results from the second stage, we have now obtained
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all the parameter estimates which are needed to compute the DIC.

6 Application to the Glaucoma study

For this analysis we included both eyes from the 139 individuals belonging to the Glaucoma

study. After excluding VFs with unknown reliability as indicated by the instrument, 138

individuals and 276 eyes remained. This included 4,758 VFs, resulting in a data set

consisting of 14,352 VFs and 247,520 location-specific sensitivity estimates. All analyses

were done taking into account censoring, and hence using the latent sensitivity values,

yiehlt.

6.1 Results

The two-stage approach is advantageous, as it allows us to do exploratory analyses at the

individual level in order to simplify the model before combining the samples in the second

stage. In order to compare the models, we can evaluate the outcome of the PPC using

graphical output. The PPP-values denoted by p̄D were computed for every individual.

Figure 5 shows the ordered PPP-values for each of the models. Model 1 has a mean

p̄D = 0.30, Model 2 a mean p̄D = 0.30 and Model 3 a mean p̄D = 0.50. From this, it

appears that Model 3 has the best fit. This approach gives a good indication of whether

the models fit the data, specifically for each individual.
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Figure 5: Posterior predictive check for each of the models across all individuals

An example of the model fits for 1 location is shown in Figure 6. The posterior

summary statistics from the second stage are listed in Table 2 for each of the models. A

difference in DIC of more than 10 indicates that the model with the lowest DIC has a
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better fit. Using the DIC to compare the models, Model 2 (DIC=−9.045e+07) performed

better than Model 1 (DIC = −8.827e+07), with Model 3 (DIC = −1.792e+26) performing

the best overall. Using the results from Model 3, the population intercept (β0) was 19.82

dB with an average slope (β1) of -0.31 dB per year. The intercept (β∗0) and slope (β∗1)

for the logarithm of the standard deviation was 2.82 dB and -0.08 dB respectively. This

corresponds to the 2.60 dB and -0.06 dB which was found in the exploratory analysis

shown in Figure 3.

Figure 6: Scatter plot representing the retinal sensitivity estimates over time for 1 location of
the VF. The lines represent the model fits for each of the 3 models

Table 2: Posterior summary statistics for the three models using the two-stage approach

Model 1 2 3

Parameter mean sd 95% CI mean sd 95% CI mean sd 95% CI

β0 18.95 0.72 (17.53 ; 20.36) 20.42 0.73 (18.95 ; 21.84) 19.89 0.77 (18.36 ; 21.37)
β1 -0.22 0.0 (-0.33 ; -0.13) -0.21 0.05 (-0.31 ; -0.11) -0.31 0.05 (-0.41 ; 0.20)
β∗0 2.82 0.06 (2.70 ; 2.95)
β∗1 -0.08 0.08 (-0.08 ; -0.07)
σ2 13.42 0.66 (12.17 ; 14.75) 11.51 0.56 (10.45 ; 12.68)
σ2
φ 0.62 0.05 (0.52 ; 0.73) 1.87 0.04 (1.81 ; 1.96)

DIC −8.827e+07 −9.045e+07 −1.792e+26
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6.2 Clinical Implications

With the GVE, we account for those factors, as well as those which can not be measured

such as fatigue and delayed reaction time. Including the GVE showed a significant im-

provement in the model fit. Hence, by taking into account the GVE we were able to take

into account a large part of the variability and obtain better estimates of the true rate

of progression. By including the relationship between variability and sensitivity shows a

further improvement in the model fit. The function which describes this relationship was

consistent to that found by Henson et al [10], however it was not shown previously how

to include this relationship in a model, or whether including it would improve the model

fit. By including both of these aspects, we were able to improve the estimation of the

true underlying progression and determine the real evolution of the sensitivity over time.

Hence, these improved estimates could aid clinicians in optimizing treatment strategies.

7 Discussion

In this paper, we proposed a method to model point-wise VFs taking into account the

complexity of psychophysical testing of visual function in glaucoma. The model is advan-

tageous in dealing with the high measurement variability, and could be extended for the

prediction of future VFs. Although it was possible to use the one-stage approach with

simplied versions of the model or with smaller datasets, it was not possible to perform

these analysis on the full data with a complex model as it was with the two-stage ap-

proach. The two-stage approach can be implemented in standard MCMC software. The

relevant computations for the first-stage can be carried out in JAGS [23], WinBUGS or

OpenBUGS [19] software and the second-stage using OpenBUGS software [18]. However,

for the second stage an add-on program is needed. For more details on setting up Open-

BUGS for performing the two-stage analyses, we refer to [18]. More information regarding

the computations done in this paper can be obtained by emailing the first author. These

computations can be easily tuned to adapt to other data sets by any practitioner.

The two-stage method is advantageous as it allows us to do exploratory analysis at an

individual level. Hence, we are able to simplify and improve the model before combining it

at a population level. Limited simulations showed that the one- and two-stage approaches

gave similar results if the variances were the same for all individuals. The two-stage
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approach assumes a more flexible method. However, there is the additional difficulty in

constraining the parameters across individuals. One disadvantage of this approach is that

it does not provide the required components to evaluate the fit and predictive ability of

the model using the Deviance Information Criterion (DIC). In order to calculate the DIC

and compare different competing models for our data fitted using the two-stage approach,

we suggested a Monte Carlo scheme based on a Metropolis-within-Gibbs algorithm.

Other issues, which we see as future research directions, is to look at the optimal choice

of the level where the data should be split. Extensions include exploiting the spatial nature

of the data and capitalizing on the specific spatial organization of the nerve fibres in the

eye [7].
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A Appendix

A.1 One Stage Approach

A.1.1 Full Model

yiehlt = β0 + β1yearsit + α0i + α1iyearsit + γ0ie + γ1ieyearsit +

η0ieh + η1iehyearsit + λ0iehl + λ1iehlyearsij + φiet + εiehlt (A.1)

where εiehlt ∼ N(0, σ2
iehlt) and log(σiehlt) = β∗0 + β∗1µ

∗
iehlt.

A.1.2 Priors

In the Bayesian procedure prior distributions need to be stipulated for all parameters.

When no prior information is available then the prior distribution should reflect this. In

this case a vague prior is a natural choice.

βb ∼ N(0, 108) for b = 0, 1;

β∗q ∼ N(0, 108) for q = 0, 1

αi = ( α0i
α1i ) ∼ N(( 0

0 ) ,Σα =
(

Σα11 Σα12
Σα21 Σα22

)
);

γie = ( γ0ieγ1ie ) ∼ N(( 0
0 ) ,Σγ = (

Σγ11 Σγ12
Σγ21 Σγ22

));

ηieh = ( η0iehη1ieh ) ∼ N(( 0
0 ),Ση = (

Ση11 Ση12
Ση21 Ση22

));

λiehl =
(
λ0iehl
λ1iehl

)
∼ N(( 0

0 ) ,Σλ = ( Σλ11 Σλ12
Σλ21 Σλ22

));

φiet ∼ t(0, σ2
φ, 3) and

εiehlt ∼ N(0, σ2).

The variance was given a vague inverse gamma prior. The covariance matrices of the

random effects, i.e. Σγ , Ση and Σλ, were given a vague inverse Wishart distribution with

degrees of freedom equal to the number of dimensions and small diagonal values for the

scale matrix.
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A.2 Two Stage Approach

A.2.1 Full Model

yiehlt = β0 + β1yearsit + α0i + α1iyearsit + γ0ie + γ1ieyearsit +

η0ieh + η1iehyearsit + λ0iehl + λ1iehlyearsit + φiet + εiehlt (A.2)

where εiehlt ∼ N(0, σ2
iehlt) and log(σiehlt) = β∗0 + β∗1µ

∗
iehlt.

A.2.2 Priors

φiet ∼ t(0, σ2
φi, 3);σ2

φi
∼ N(σ2

φ,Σφ)

αgi ∼ N(0, 108) for g = 0, 1;

γie = ( γ0ieγ1ie ) ∼ N(( 0
0 ) ,Σγi = (

Σγ11i Σγ12i
Σγ21i Σγ22i

));

ηieh = ( η0iehη1ieh ) ∼ N(( 0
0 ),Σηi = (

Ση11i Ση12i
Ση21i Ση22i

));

λiehl =
(
λ0iehl
λ1iehl

)
∼ N(( 0

0 ) ,Σλi = ( Σλ11i Σλ12i
Σλ21i Σλ22i

)) and

εiehlt ∼ N(0, σ2
iehlt).

Using Cholesky decompostion, Σγi , Σηi and Σλi become,

Crγi ∼ N(Crγ , 108) for r = 1, 2, 3

Crηi ∼ N(Crη, 108) for r = 1, 2, 3

Crλi ∼ N(Crλ, 108) for r = 1, 2, 3

A.2.3 First Stage Model

yiehlt = α0i + α1iyearsit + γ0ie + γ1ieyearsit + η0ieh + η1iehyearsit +

λ0iehl + λ1iehlyearsit + φiet + εiehlt (A.3)

where εiehlt ∼ N(0, σ2
iehlt) and log(σiehlt) = β∗0i + β∗1iµ

∗
iehlt.
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A.2.4 First Stage Priors

β∗qi ∼ N(0, 108) for q = 0, 1

αgi ∼ N(0, 108) for g = 0, 1

φiet ∼ t(0, σ2
φi
, 3)

γie = (γ0ie, γ1ie)
T ∼ N2((0, 0)T ,Σγi)

ηieh = (η0ieh, η1ieh)T ∼ N2((0, 0)T ,Σηi)

λiehl = (λ0iehl, λ1iehl)
T ∼ N2((0, 0)T ,Σλi).

The variance was given a vague inverse gamma prior. The covariance matrices of the

random effects, i.e. Σγi , Σηi and Σλi , were given a vague inverse Wishart distribution

with degrees of freedom equal to the number of dimensions and small diagonal values for

the scale matrix.

A.2.5 Second Stage Priors

β∗qi ∼ N(β∗q , 108) for q = 0, 1

αi = (α0i, α1i)
T ∼ N2((β0, β1)T ,Σα)

σ2
φi
∼ N(σ2

φ,Σφ)

Crγi ∼ N(Crγ , 108) for r = 1, 2, 3

Crηi ∼ N(Crη, 108) for r = 1, 2, 3

Crλi ∼ N(Crλ, 108) for r = 1, 2, 3
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B Methods

Let,

β∗ = {(β∗0i, β∗1i), for i = 1, . . . , N}

α = {(α0i, α1i), for i = 1, . . . , N}

Cγ = {(C1γi , C2γi , C3γi), for i = 1, . . . , N}

Cη = {(C1ηi , C2ηi , ..., C3ηi), for i = 1, . . . , N}

Cλ = {(C1λi , C2λi , ..., C3λi), for i = 1, . . . , N}

Then, from Lunn et al. (2013), θ = parameters of interest: α, β∗, Cγ , Cη, Cλ

λ = nuisance parameters: φ, γ, η, λ

µ = mean of θ: β(1), β(2), C̄γ , C̄η, C̄λ

Σ = covariance matrix of θ: Σβ(1),Σβ(2),ΣCγ ,ΣCη ,ΣCλ

B.1 Full Model

The joint posterior distribution is given by,

p(β(1), β(2), C̄γ , C̄η, C̄λ,Σβ(1),Σβ(2),ΣCγ ,ΣCη ,ΣCλ , α, β
∗, Cγ , Cη, Cλ, φ, γ, η, λ|y)

∝ p(β(1))p(β(2))p(Cγ)p(Cη)p(Cλ)p(C̄γ)p(C̄η)p(C̄λ)p(Σβ(1))p(Σβ(2))p(ΣCγ )p(ΣCη)p(ΣCλ)×
N∏
i=1

{
p(yi|αi, β∗i , Cγi , Cηi , Cλi , φi, γi, ηi, λi)p(αi|β

(1),Σβ(1)) p(β
∗
i |β(2),Σβ(2)) ×

p(Cγi |C̄γ ,ΣCγ )p(Cηi |C̄η,ΣCη)p(Cλi |C̄λ,ΣCλ)p(φ, γ, η, λ)
}

(B.1)

B.2 First Stage

We analyse all individuals independently from the joint posterior distribution of each

αi, β
∗
i , Cγi , Cηi , Cλi conditional on yi alone,

p(αi, β
∗
i , Cγi , Cηi , Cλi , φi, γi, ηi, λi|yi) ∝ p(yi|αi, β∗i , Cγi , Cηi , Cλi , φi, γi, ηi, λi)×

p(αi, β
∗
i , Cγi , Cηi , Cλi)p(φi, γi, ηi, λi) (B.2)
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B.3 Second Stage

From the distributions in (2.1) these are given by,

p(β(1), β(2), C̄γ , C̄η, C̄λ|Σβ(1),Σβ(2),ΣCγ ,ΣCη ,ΣCλ , α, β
∗, Cγ , Cη, Cλ, φ, γ, η, λ, y)

∝ p(β(1), β(2), C̄γ , C̄η, C̄λ)
N∏
i=1

p(αi, β
∗
i , Cγi , Cηi , Cλi |β

(1), β(2), C̄γ , C̄η, C̄λ,

Σβ(1),Σβ(2),ΣCγ ,ΣCη ,ΣCλ) (B.3)

p(Σβ(1),Σβ(2),ΣCγ ,ΣCη ,ΣCλ |β
(1), β(2), C̄γ , C̄η, C̄λ, α, β

∗
, Cγ , Cη, Cλ, φ, γ, η, λ, y)

∝ p(Σβ(1),Σβ(2),ΣCγ ,ΣCη ,ΣCλ)
N∏
i=1

p(αi, β
∗
i , Cγi , Cηi , Cλi |β

(1), β(2), C̄γ , C̄η, C̄λ,

Σβ(1),Σβ(2),ΣCγ ,ΣCη ,ΣCλ) (B.4)

p(αi, β
∗
i , Cγi , Cηi , Cλi , φi, γi, ηi, λi|β

(1), β(2), C̄γ , C̄η, C̄λ,Σβ(1),Σβ(2),ΣCγ ,ΣCη ,ΣCλ , y)

∝ p(yi|αi, β∗i , Cγi , Cηi , Cλi , φi, γi, ηi, λi, φi, γi, ηi, λi)p(αi, β
∗
i , Cγi , Cηi , Cλi |β

(1), β(2),

C̄γ , C̄η, C̄λ,Σβ(1),Σβ(2),ΣCγ ,ΣCη ,ΣCλ)p(φi, γi, ηi, λi)

i = 1, ..., N. (B.5)

The distributions from (B.3) and (B.4) are available in closed form and can hence we can

sample from them directly by using standard algorithms. For the distributions (B.5) we

use the distributions in (B.2) as the proposal distributions within a Metropolis-Hastings

step. For this, the target-to-proposal ratio can be simplified to,
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C(αi, β
∗
i , Cγi , Cηi , Cλi , φi, γi, ηi, λi)

=
p(yi|αi, β∗i , Cγi , Cηi , Cλi , φi, γi, ηi, λi)
p(yi|αi, β∗i , Cγi , Cηi , Cλi , φi, γi, ηi, λi

)×

p(αi, β
∗
i , Cγi , Cηi , Cλi |β(1), β(2), C̄γ , C̄η, C̄λ,Σβ(1),Σβ(2),ΣCγ ,ΣCη ,ΣCλ)p(φi, γi, ηi, λi)

p(αi, β∗i , Cγi , Cηi , Cλi)p(φi, γi, ηi, λi)

=
p(αi, β

∗
i , Cγi , Cηi , Cλi |β(1), β(2), C̄γ , C̄η, C̄λ,Σβ(1),Σβ(2),ΣCγ ,ΣCη ,ΣCλ)

p(αi, β∗i , Cγi , Cηi , Cλi)
(B.6)
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