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AIMS
Midazolam is the drug of choice for palliative sedation and is titrated to achieve the desired level of sedation. Because of large
inter-individual variability (IIV), however, the time it takes to achieve adequate sedation varies widely. It would therefore greatly
improve clinical care if an individualized dose could be determined beforehand. To find clinically relevant parameters for dose
individualization, we performed a pharmacokinetic study on midazolam, 1OH-midazolam (1-OH-M) and 1OH-midazolam-
glucuronide (1-OH-MG) in terminally ill patients.

METHODS
Using nonlinear mixed effects modelling (NONMEM 7.2), a population pharmacokinetic analysis was conducted with 192
samples from 45 terminally ill patients who received midazolam either orally or subcutaneously. The covariates analysed were
patient characteristics, co-medication and blood chemistry levels.

RESULTS
The data were accurately described by a one compartment model for midazolam, 1-OH-M and 1-OH-MG. The population mean
estimates for midazolam, 1-OH-M and 1-OH-MG clearance were 8.4 l h�1 (RSE 9%, IIV 49%), 45.4 l h�1 (RSE 12%, IIV 60.5%) and
5.1 l h�1 (RSE 11%, IIV 49.9%), respectively. 1-OH-MG clearance was correlated with the estimated glomular filtration rate (eGFR)
explaining 28.4% of the IIV in 1-OH-MG clearance. In addition, low albumin levels were associated with decreased midazolam
clearance, explaining 18.2% of the IIV.

CONCLUSION
Our study indicates albumin levels and eGFR as relevant clinical parameters to optimize midazolam dosing in terminally ill
patients. The correlation between low albumin levels and decreased midazolam clearance is probably a result of inflammatory
response as high CRP levels were correlated in a similar way.
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WHAT IS ALREADY KNOWN ABOUT THIS SUBJECT
• While a lot of physiological changes occur at the end of life, very little is known about how these changes can affect the
pharmacokinetics of drugs given in this phase.

• A recent study in critically ill children showed that inflammation and organ failure can result in decreased midazolam
clearance.

• Animal studies and some preliminary studies in patients with cancer have shown that cancer and inflammation are
associated with reduced hepatic metabolism of CYP enzymes.

WHAT THIS STUDY ADDS
• Using a population approach with sparse sampling, we were able to accurately describe the pharmacokinetics of
midazolam in terminally ill patients. As this method minimizes the patient’s burden, it is a useful approach in future PK
studies in this vulnerable population.

• Midazolam clearance was decreased in patients with low albumin levels. This is possibly due to inflammatory response or
a catabolic state.

Tables of Links

TARGETS

Enzymes [2]

CYP3A

LIGANDS

Midazolam

These Tables list key protein targets and ligands in this article that are hyperlinked to corresponding entries in http://www.guidetopharmacology.org,
the common portal for data from the IUPHAR/BPS Guide to PHARMACOLOGY [1], and are permanently archived in the Concise Guide to
PHARMACOLOGY 2015/16 [2].

Introduction
Midazolam is often used in terminally ill patients and is the
drug of choice for palliative sedation [3–6]. It is metabolized
in a two-phase process. The first step is hydroxylation via
CYP3A, mainly into α-hydroxy-midazolam (1-OH-M) and for
a very small amount into 4-hydroxy-midazolam (4-OH-M).
The 1-OH-M metabolite is active with an approximate
potencyof 80–100%ofmidazolam [7–9]. After hydroxylation,
midazolam is further metabolized through UDP-glucurono-
syltransferases (UGT) 1A4, 2B4 and 2B7 with α-hydroxy-
midazolam glucuronide (1-OH-MG) as its major metabolite
[10]. 1-OH-MG ismuch less active (around 10% of the activity
of midazolam) but in high concentrations, as in the case of
accumulation due to renal failure, it can contribute substan-
tially to the overall effect [7].

When midazolam is prescribed for palliative sedation, its
dose is titrated to achieve the desired level of sedation [3, 5].
Unfortunately the time it takes to reach adequate sedation
varies widely between patients and awaking from a sedative
state often occurs [11]. A possible explanation for this might
be large inter-individual variability (IIV) in midazolam
pharmacokinetics, which has already been shown in other
populations [12–16]. Large variability is also expected in
terminally ill patients due to the heterogeneity of the popula-
tion, including severe co-morbidities (e.g. renal failure) and
physiological changes that occur over time (e.g. cachexia,
inflammation and concomitant medication use) [17–20].
Failure to respond (rapidly) to midazolam treatment is of
clinical concern, especially when sedation is required to treat
refractory symptoms. Patients could therefore potentially
benefit if an individualized dose is determined beforehand.

A first step in developing such an individualized dosing
algorithm is to gain more insight into the pharmacokinetics
in this population. To this end, and to find clinically relevant
parameters for dose individualization, we performed a
population pharmacokinetic study of midazolam and its
twomajor metabolites (1-OH-M and 1-OH-MG) in terminally
ill patients.

Methods

Study design
The study (NL32520.078.10) was approved by the Medical
Ethics Committee of the Erasmus University Medical Centre
Rotterdam and was performed in accordance with the
principles of the Declaration of Helsinki and its later amend-
ments. The study was conducted in the palliative care centre,
Laurens Cadenza Zuid in Rotterdam, the Netherlands, over a
two-year period. Patients were eligible if they had a terminal
illness, survival prognosis of more than 2 days and less than
3 months and administration of midazolam. Informed con-
sent was asked shortly after admittance to the palliative care
centre and included patients were followed until the time of
death. Midazolam was given to treat insomnia or as palliative
sedation in accordance with the national guidelines [6].
Midazolam was given orally or administered subcutaneously
as bolus injection or infusion. The exact times of administra-
tion were recorded in the patient record. Any concomitant
medication was also registered in the patient’s record.
Demographic characteristics (age, gender, weight, race, pri-
mary diagnosis and time of death) were extracted from the
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electronic medical records. Primary diagnosis of the patient’s
terminal illness was classified using the International Statisti-
cal Classification of Diseases and Related Health Problems –
10th Revision (ICD-10).

Blood sampling and assay
Sparse sampling was performed randomly and blood samples
were collected during both the pre-terminal and terminal
stages. The terminal stage for a patient was defined as the last
hours to days before death in which a patient becomes
bedbound, semi-comatose, is not able to take more than sips
of fluid and is no longer able to take oral medication [21].
Samples were collected either via venapuncture or indwelling
venous catheter, and were centrifuged after which the plasma
was collected and stored at �80°C until analysis. Blood
sampling was preferably performed at the same time as
sampling for clinical chemistry (standard of care) for which
serum levels of albumin, creatinine, urea, bilirubin, gamma-
glytamyl transpeptidase (GGT), alkaline phosphatase (ALP),
alanine transaminase (ALT), aspartate transaminase (AST),
and C-reactive protein (CRP) were determined.

Midazolam, 1-OH-M, 4-OH-M and 1-OH-MG were analy-
sed in the plasma samples using liquid chromatography–
tandem mass spectroscopy (LC–MS/MS) with electrospray
ionization in the positive ionization mode on a Shimadzu
LC-30 (Nishinokyo-Kuwabaracho, Japan) system coupled to
an ABSciex (Framingham, MA, USA) API5500Q MS. To
precipitate proteins 75 μl acetonitrile/methanol 84:16 (v/v%)
containing the internal standards midazolam-d5, 1-OH-mid-
azolam-d5, and 4-OH-midazolam-d5 was added to 10 μl of
patients’ plasma. Samples were vortexed, stored at �20°C for
30 min to optimize protein precipitation, vortexed again and
centrifuged. Three μl was injected onto a Thermo Scientific
Hypersil Gold (50 × 2.1 mm, 1.9 μm) column. A stepwise
chromatographic gradient was applied using 0.05%
ammonium formate /0.10% formic acid in water as mobile
phase A and acetonitrile as mobile phase B. The flow rate was
0.4mlmin�1 and the columnwas kept at 40°C.Usingmultiple
reaction monitoring (MRM) with positive ionization mode,
midazolam, 1-OH-M, 4-OH-M and 1-OH-MG were measured
as [M+H]+ using the mass transitions 326.1/291.1, 342.1/
168.1, 342.1/234.1 and 518.1/324.1, respectively. The lower
limit of quantification was 4 μg l�1 for midazolam, 2 μg l�1

for 1-OH-M and 4-OH-M, and 8 μg l�1 for 1-OH-MG. The
method was validated over a range of 4–1000 μg l�1 for
midazolam and 2–500 μg l�1 for 1-OH-M and 4-OH-M, and
8–2000 μg l�1 for 1-OH-MG. The accuracies ranged from
94.3% to 104.7%. Intra-day precision was below 8.2% and
inter-day precisions below 12.9%.

Population pharmacokinetic method
Pharmacokinetic analysis was conducted using nonlinear
mixed effectsmodelling using NONMEM® version 7.2 (ICON
Development Solutions, Ellicott City, MD), PsN® (version
4.4.8) and Pirana (version 2.9.2).

Base model development
The datawere log-transformed and concentrations of 1-OH-M
and 1-OH-MG were adjusted to their midazolam
equivalents using the molecular weight. Bioavailability of

subcutaneous midazolam was assumed to be 100% [22].
One-, two- and three-compartment models were tested
for midazolam and its metabolites using the first-order
conditional estimation method with interaction (FOCE+I)
and the ADVAN7 subroutine. First a structural model for
midazolam was developed. These parameters were then
fixed to test the different structural models for 1-OH-M
and 1-OH-MG. The volume of distribution (V) of 1-OH-M
was assumed to be equal to the volume of distribution
of midazolam. IIV was assessed on each parameter using
an exponential model. Residual variability was tested as
additive, proportional and combined error models. Since
the parent and metabolite concentrations were measured
in the same samples using a single assay, a correlation
between the residual errors was incorporated in the
model. Model selection was based on minimum objective
function value (OFV) parameter precision, error estimates,
shrinkage values and visual inspection of the goodness of
fit plots.

Covariate model development
Demographic and disease characteristics including age,
gender, race, primary diagnosis, renal function (estimated
glomerular filtration rate (eGFR), plasma creatinine, and
plasma urea), hepatic function (plasma levels of bilirubin,
GGT, ALP, ALT, and AST), C-reactive protein (CRP), albumin
and the concomitant use of CYP3A inductor and inhibitors
were evaluated as potential model covariates. Time to death
(TTD) was also evaluated as a covariate. This parameter
cannot be used as a covariate parameter for a priori prediction
of individual pharmacokinetic changes but it may give
insight in quantitative changes at the end of life that are
not predicted by standard blood chemistry tests. The relation-
ship between covariates and individual estimates was first
investigated graphically and was further tested in a univariate
analysis. Covariates that significantly (P ≤ 0.05) improved the
model were added to the full model. A backward elimination
process was then performed with statistical significance
indicated by P ≤ 0.001.

Continuous covariates were normalized to the population
median values and incorporated as power model functions
(eq. 1). Categorical covariates were transformed to binary
covariates and incorporated as shown in eq. (2).

θi ¼ θpop � covi
covm

� � θcov

(1)

θi ¼ θpop � θcovcovi (2)

where θi is the individual model predicted pharmacokinetic
parameter (e.g. clearance) for an individual with covariate
value covi, θpop is the population estimate for that parameter,
covm represents the median covariate value and θcov the
covariate effect. In the equation for categorical covariates covi
is either 1 or 0.

To evaluate the time to death (TTD) as a covariate, the
time dependency of the parameters was modelled as a first-
order process given by:

PK of midazolam in terminally ill patients

Br J Clin Pharmacol (2017) 83 1701–1712 1703



θi ¼ θpop � θΔ� exp �θrate � TTDð Þ (3)

where θΔ is the change in parameter value from its initial value
and θrate is a first-order rate constant determining the rate at
which the parameter value changes over time. θrate was not
constrained to be positive or negative so, although physiolog-
ically unlikely, an increase in time was also possible.

Model evaluation
A bootstrap with 200 runs was performed on the final model
to evaluate the validity of the parameter estimates and their
corresponding 95% confidence intervals (CIs). Due to the
study design, i.e. sparse sampling, different dosing regimens
and both oral and subcutaneous administrations, a visual
predictive check could not be performed to evaluate the
model. We therefore evaluated the predictive performance
of the final model using a normalized prediction distribution
errors (NPDE) analysis. This simulation-based analysis can be
used to evaluate models developed on datasets with variable
dosing regimens. The analytical value of this method has
been described previously by Comets et al. [23].

Simulations
To illustrate the effect of the significant covariates found in
the covariate analysis, deterministic simulations were
performed. The plasma concentrations of midazolam, 1-OH-M
and 1-OH-MG were simulated over a time course of 72 h
after the administration of a 10 mg midazolam loading dose
followed by 5mgmidazolam six times daily via subcutaneous
bolus injection. To simulate the plasma concentration in the
typical patient, the IIV and residual error were set to zero.

Results
A total of 45 terminally ill patients were included in the study.
Their median age was 71 years (range 43–93), 51.1% were
female and the median duration of admittance (from
moment of admittance until time of death) was 29 days
(range 7–457). All but one patient (97.8%) had advanced
malignancy as primary diagnosis. Patient characteristics are
given in Table 1. Oral midazolam was administered as a
7.5 mg dose up to four times daily. The subcutaneous doses
used were between 2.5 and 180 mg a day. A total of 139 blood
samples were collected which were analysed for midazolam,
1-OH-M, 4-OH-M and 1-OH-MG concentrations. Figure 1
gives the plasma concentration–time profiles of a representa-
tive patient in the last week before death.

Structural model
The percentage of concentrations below the quantification
limit (BQL) were 14%, 16% and 10% for midazolam, 1-OH-M
and 1-OH-MG, respectively. More than half of these BQL
concentrations where measured in samples taken more than
3 days after the last midazolam dose and 92% of these BQL
concentrations were measured in samples taken more than
12 h after the last dose. As a result midazolam, 1-OH-M and
in most cases also 1-OH-MG were no longer detectable. The
BQL data were therefore discarded using the M1 method

discussed previously by Ahn et al. [24]. The amount of BQL
data of 4-OH-M was 75% and as data on 4-hydroxy-midazo-
lam-glucuronide were lacking, this metabolite was not
incorporated in the pharmacokinetic model.

The data were best described by a one-compartment
model for midazolam and two one-compartment models for
both its metabolites (1-OH-M and 1-OH-MG) (Figure 2,
Table 2) with an additive residual error on logarithmic trans-
formed concentrations. As there was limited data available in
the absorption phase, the absorption constants (Ka) could not
be estimated. They were therefore derived from literature

Table 1
Patient characteristics over the time course of the study

Characteristics n = 45

Age, years (median, range) 71 (43–93)

Male, n (%) 22 (48.9)

Female, n (%) 23 (51.1)

Ethnic origin, n (%)

Caucasian 41 (91.1)

Afro-Caribbean 3 (6.7)

Unknown 1 (2.2)

Primary diagnosis, n (%)

Neoplasm 44 (97.8)

Disease of the respiratory system 1 (2.1)

Blood chemistry, serum levels at admission (median, range)

Albumin, g l�1 25 (13–39)

Urea, mmol l�1 7.6 (1.5–66.9)

Bilirubin, μmol l�1 9 (2–256)

Gamma-glytamyl transpeptidase, U l�1 62 (7–3859)

Alkaline phosphatase, U l�1 118 (20–2371)

Alanine transaminase, U l�1 14 (7–632)

Aspartate transaminase, U l�1 30 (13–2710)

C-reactive protein, U l�1 92 (1–625)

Creatinine, μmol l�1 67 (20–806)

eGFR by standard MDRDa, ml min�1/1.73 m�2 104 (6–328)

eGFR by original MDRDb, ml min�1/1.73 m�2 85 (4–228)

Patients using dexamethasonec, n (%) 17 (37.8)

Patients using phenytoinc, n (%) 1 (2.2)

Duration of stay, days (median, range) 29 (7–457)

Blood samples collected, n (median, range) 2 (1–10)

eGFR: estimated glomerular filtration rate, MDRD: modification of
diet in renal disease.
aThe abbreviated MDRD equation consists of four variables (age,
gender, race and serum creatinine) as shown in eq. (4).
bThe original MDRD formula consist of six variables (age, gender,
race, serum creatinine, serum albumin and serum urea) as shown in
eq. (5).
cDuring any time while receiving midazolam treatment.
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(5.5 h�1 for oral administration, 10 h�1 for subcutaneous
injection) [16, 22, 25]. IIV was included on midazolam
clearance, F of oral midazolam, V of midazolam, 1-OH-M
clearance and 1-OH-MG clearance as all of these significantly
improved the model. The correlation between IIV of midazo-
lam clearance and F of oral midazolam was high (0.93) and
therefore fixed to unity. In all cases an exponential model
for IIV proved superior to an additive model.

Covariate analysis
In the covariate analysis all possible covariates, as mentioned
in the methods section, were tested on all parameters
including IIV (F, V of midazolam and clearance of midazo-
lam, 1-OH-M and 1-OH-MG). This univariate analysis with a
significance threshold of 0.05 resulted in 16 significant
covariates. After backward elimination with a lower
threshold of 0.001, only two covariates remained in the final
model. The first covariate was estimated glomular filtration

rate (eGFR) on 1-OH-MG clearance (eq. 4), and the second
covariate was the correlation of albumin on midazolam
clearance (eq. 5). CRP levels were also correlated withmidazo-
lam clearance, and depending on the order of the backwards
elimination, either albumin or CRP remained in the final
model. As the difference in these OFV between albumin and
CRP was minimal, the decision to include albumin instead
of CRP was based on the fact that albumin is a more specific
marker for overall condition than CRP. The results of the
univariate analysis, in terms of decrease in OFV and covariate
effect are shown in Table 3. The addition of albumin on
midazolam clearance reduced the IIV from 59.9% to 49.0%,
thus explaining 18.2% of the IIV on midazolam clearance.
Incorporation of eGFR as a covariate on 1-OH-MG clearance
reduced the IIV from 69.7% to 49.9%, thereby explaining
28.4% of the IIV on 1-OH-MG clearance.

Cl1�OH�MG ¼ 5:1� eGFRml=min=104:1
� �0:53 (4)

Clmidazolam ¼ 8:42� serum albuming=L25
� �1:08 (5)

In the final model the population mean estimates for
clearance were 8.42 l h�1 (RSE 9%) for midazolam;
45.4 l h�1 (RSE 12%) for 1-OH-M and 5.1 l h�1 (RSE 11%) for
1-OH-MG. The population mean estimates for volume of
distribution were 113 l (RSE 13%) for midazolam and 1-OH-
M compartments (which were assumed to be equal) and
2.98 l (RSE 71%) for the 1-OH-MG compartment. The
bioavailability (F) of oral midazolam was 27.9%. An overview
of all parameter estimates is given in Table 2.

Model evaluation
Figure 3A–F shows that both the population predictions and
individual predictions were evenly distributed around the

Figure 1
Dose and concentration data of a patient representative for the study
population in the last week before death. Top: Time profile of the
estimated glomerular filtration rate (eGFR) (green) and albumin
levels (blue) and the 5 mg subcutaneous midazolam doses (orange)
over time in the last week before death. Bottom: Post-hoc
predictions of concentration of midazolam (green), 1-OH-M (blue)
and 1-OH-MG (orange) and their corresponding measured midazo-
lam concentrations (open circles) in the last week before death. The
concentrations of both metabolites are shown as the therapeutic
equivalents of midazolam, so 1-OH-M concentrations are multiplied
by 0.8 and 1-OH-MG by 0.1

Figure 2
Schematic representation of the structural model for midazolam and
its two main metabolites. F: bioavailability of oral midazolam; Cl1:
midazolam clearance and formation of 1-OH-M; Cl2: 1-OH-M
clearance and formation of 1-OH-MG; Cl3: 1-OH-MG clearance

PK of midazolam in terminally ill patients
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line of unity when plotted against the observations. A
bootstrap analysis of the final model was performed to obtain
95%CIs for all parameters. Results of the bootstrap are shown
in Table 3. Evaluation of the predictive performance by NPDE
analysis showed accurate predictive ability, with the distribu-
tion of the NPDEs not deviating significantly from a normal
distribution (with global adjusted P-values of 0.75, 0.20 and
0.41 for midazolam, 1-OH-M and 1OH-MG, respectively),
and the majority of the NPDEs having values between �2
and 2 (Figure 3G–I).

Simulations
Based on the final model, the midazolam clearance is reduced
by 30% (from 12.1 l h�1 to 8.4 l h�1) when albumin decreases
from 35 g l�1 to 25 g l�1. A further decrease in albumin to
15 g l�1 decreases midazolam clearance by another 42% to a

value of 4.8 l h�1. The effect of this drop in midazolam clear-
ance on midazolam and metabolite concentrations is shown
in Figure 4. The effect of eGFR on 1-OH-MG clearance in our
final model results in a reduction in clearance of 27% (from
4.7 l h�1 to 3.5 l h�1) when eGFR decreases from 90 to
50 ml min�1. A further decline in eGFR to 30 ml min�1

reduces the 1-OH-MG clearance by another 24% to
2.7 l h�1. The effect of this decrease in clearance on the
plasma concentrations is shown in Figure 5.

Discussion
To our knowledge, this is the first population pharmacoki-
netic study of midazolam and its metabolites in terminally
ill adult patients. With sparse sampling we were able to

Table 2
Parameter estimates of the base model, final model and bootstrap analysis

Parameter
Structural
model

Final
model

RSE
%

Shrinkage
%

Bootstrap of the final model

Average 95% CI (lower) 95% CI (upper)

OFV �109.113 �146.519

Midazolam

F 0.204 0.279 12.6 — 0.288 0.227 0.857

Cl (l h�1) 7.76 8.42 9.0 — 8.52 7.18 10.4

V (l) 117 113 13.1 — 111 84.0 137

1-OH-Midazolam (1-OH-M)a

Cl (l h�1) 43.8 45.4 11.5 — 46.0 36.8 60.4

1-OH-Midazolam glucuronide (1-OH-MG)

Cl (l h�1) 3.82 5.10 11.0 — 5.18 4.08 6.50

V (l) 3.47 2.98 71.5 — 2.97 0.85 13.7

Covariate effect midazolam clearance

Albumin — 1.08 21.2 — 1.02 0.38 1.47

Covariate effect on 1OH-midazolam glucuronide clearance

eGFRb — 0.53 20.7 — 0.52 0.31 0.82

IIV (%)

F 48.7% 50.6% 17.4 12.8 48.4% 32.0% 61.3%

Midazolam Cl 59.9% 49.0% 14.0 12.8 47.5% 31.4% 60.2%

Midazolam V 72.6% 70.9% 15.1 16.6 70.2% 46.9% 93.2%

1-OH-M Cl 55.4% 60.5% 18.0 12.2 58.0% 32.8% 79.6%

1-OH-MG Cl 69.4% 49.9% 23.1 23.0 49.0% 26.7% 73.4%

Residual variability

Midazolam 26.7% 26.8% 13.3 20.4 26.8% 21.3% 34.2%

1-OH-M 42.7% 42.3% 21.6 18.5 41.3% 21.7% 56.7%

1-OH-MG 48.4% 46.4% 13.1 18.6 44.4% 30.1% 55.2%

OFV: objective function value, F: bioavailability, CL: clearance, V: volume of distribution, eGFR: estimated glomerular filtration rate, MDRD:
modification of diet in renal disease, 1-OH-M: 1OH-midazolam, 1-OH-MG: 1OH-midazolam-glucuronide.
aThe volume of distribution of 1-OH-M was set equal to that of midazolam itself.
bGFR was estimated using the standard four-variable MDRD equation.
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accurately describe the pharmacokinetics of midazolam,
1-OH-M and 1-OH-MG. The large IIV in pharmacokinetics
may contribute to the large inter-patient difference in
sedation in clinical practice. About one-third of the IIV in
1-OH-MG clearance could be explained by incorporating
eGFR as a covariate in the model, confirming that 1-OH-MG
clearance declined as a result of renal insufficiency. We also
observed a positive correlation between albumin levels and
midazolam clearance, explaining 18.2% of the IIV on
midazolam clearance. These are important findings as these
patient characteristics may be used to develop an individual-
ized dosing regimen.

A positive correlation between albumin levels and
midazolam clearance (with low albumin levels relating to a
decrease in clearance) has been described before in the
1980s by Vree et al. [26]. It was suggested that this reduced
clearance was a result of decreased protein binding. Although
midazolam is indeed highly protein bound (95–98%)
primarily to albumin [27, 28], it seems unlikely that protein

binding is the cause of the decreased clearance shown in our
study when we take into account the following equation for
clearance:

Q Fu�Clintð Þ
Q þ Fu�ClintÞð (6)

Based on this equation, a decrease in albumin, which
would increase the unbound drug concentration (Fu), would
result in either an unchanged or increased clearance,
depending on the extraction ratio of the drug [29, 30]. With
an increase in Fu, an increase in volume of distribution would
also be expected. This was, however, not the case as albumin
was not found to be a significant covariate on volume of
distribution in our study (ΔOFV = 0.014), further contradic-
ting an effect via protein binding.

We therefore propose that the mechanism behind the
reduced clearance may be due to an underlying inflam-
matory response or catabolic state. In cancer patients,

Table 3
Covariate effects in univariate analysis compared to the structural model

ΔOFV Covariate effect
Included after
backward elimination

Covariates on midazolam clearance

Serum albumin �7.54 0.84 Yes

CRP �7.51 �0.12 No

AST �4.73 �0.16 No

Time to deatha �4.69 2.29 and 0.05 No

Covariates on midazolam volume of distribution

ALT �6.29 0.22

AST �9.06 0.22 No

Weight �4.73 1.52 No

Dexamethasone useb �4.56 1.67 No

Time to deatha �6.50 �71.6 and 0.05 No

Covariates on 1-OH-M clearance

-bc �3.86 �0.21 No

CRP �10.18 0.19 No

Covariates on 1-OH-MG clearance

Serum creatinine �17.20 �0.50 No

eGFR-ac �20.92 0.47 Yes

eGFR-bc �22.49 0.49 No

Serum urea �19.74 �0.53 No

Time to deatha �15.25 4.21 and 0.11 No

CRP: C-reactive protein, AST: aspartate transaminase, ALT: alanine transaminase, eGFR: estimated glomerular filtration rate
aTime to death was incorporated as a covariate as a first-order process, therefore the first mentioned value describes the total change in the parameter
value (ΔTTD) and the second value the rate in days (see eq. 3).
bDexamethasone use was defined as the use of dexamethasone for at least 2 days, no longer than 7 days ago.
cThe glomular filtration rate was calculated using both the standard four-variable MDRD equation (eGFR-a) and the original six-variable MDRD
(eGFR-b).
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hypoalbuminaemia can be an expression of inflammation
and it has already been shown that inflammation can result
in reduced CYP3A activity [19, 20, 31–33]. Furthermore,
albumin levels showed some correlation (r = �0.69) with
CRP levels (Figure S1 supplementary material), and in the

univariate covariate analysis CRP also showed a correlation
with midazolam clearance, supporting our theory of an
underlying common process. Albumin and not CRP was
incorporated in the model, because in terminally ill pa-
tients albumin is a more pronounced marker of overall

Figure 3
Goodness of fit plots of the final model. Population predictions vs. observations of midazolam (A), 1-OH-M (B) and 1-OH-MG (C) and individual
predictions vs. observations of midazolam (D), 1-OH-M (E) and 1-OH-MG (F) with the solid line displaying the line of unity. Normalized prediction
distribution error (NPDE) plots for midazolam (G), 1-OH-M (H) and 1-OH-MG (I) showing NPDE quantiles (grey bars) vs. a normal distribution
(solid line)
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condition and more commonly used in clinical practice
[34, 35]. In addition, albumin does not fluctuate as much
as CRP, which makes it a better candidate for a future dos-
ing regimen. Whether albumin is also a better marker for
CYP3A clearance in other populations remains unclear. It
might be that albumin has a better correlation with CYP3A
activity in this population as it is sign of a prolonged
inflammatory/catabolic state, whereas CRP is more an
expression of an acute process. To determine whether
albumin, CRP or possibly another inflammatory marker is
the best indicator for CYP3A activity, more research is
needed. The correlation between midazolam clearance and
inflammation is clinically important as inflammation plays
a crucial role in cancer and the CYP3A enzyme metabolizes
not only midazolam but more than 50% of all therapeutic
drugs [36, 37].

Our study also showed that eGFR was correlated with
1-OH-MG clearance. This correlation is a result of the fact
that 1-OH-MG is excreted renally. It is relevant in the termi-
nally ill population as renal insufficiency is common and,

although 1-OH-MG is only 10% as potent as midazolam
itself, high concentrations can lead to increased sedation
[7]. As shown in Figure 5, an eGFR of 50 ml min�1 can
already contribute significantly to the sedative effect of
midazolam. Midazolam is believed to be sedative from
concentrations of 100 μg l�1 and upwards and as 1-OH-
MG has a potency of around 10%, 1-OH-MG concentra-
tions of 500 μg l�1, which were also seen in our study,
already contribute to half of the sedative effect. However,
it is important to note that the method to estimate the
globular filtration rate probably overestimates the renal
function in terminally ill patients as it is dependent on
the creatinine production from muscle tissue. Our study
tested eGFR calculated by the four-variable modification
of diet in renal disease (MDRD) (eq. 7) as well as eGFR
calculated by the original six-variable equation (eq. 8) as
a covariate [38]. As the difference between the two was
minimal, we incorporated the simpler four-variable equa-
tion in our final model as this is the most commonly
used equation.

Figure 4
Simulated plasma profiles of midazolam and the total effective concentration (calculated as the sum of parent and both metabolites with 1-OH-M
accounting for 80% and 1-OH-MG for 10% of the midazolam potency) for patients with plasma albumin levels of 15 g l�1 (green), 25 g l�1 (blue),
and 35 g l�1 (orange) and stable eGFR of 90ml min�1. After a 10mgmidazolam loading dose followed by 5mg six times daily all via subcutaneous
bolus injection

Figure 5
Simulated plasma profiles of midazolam and the total effective concentration (calculated as the sum of parent and both metabolites with 1-OH-M
accounting for 80% and 1-OH-MG for 10% of the midazolam potency) for patients with an estimated glomerular filtration rate (eGFR) of
10 ml min�1 (green), 30 ml min�1 (blue), 60 ml min�1 (orange) and 90 ml min�1 (light green) and stable plasma albumin levels of 25 g l�1. After
a 10 mg midazolam loading dose followed by 5 mg six times daily all via subcutaneous bolus injection
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eGFR ¼ 186� serum creatinine mg=dl�1
� ��1:154

� age �0:203

� 1:210 if blackð Þ � 0:742 if femaleð Þ

(7)

eGFR ¼ 170� serum creatinine
mg
dl

� �-0:999
� age -0:176

� 1:180 if blackð Þ � 0:762 if femaleð Þ

� serum urea nitrogen mg=dl-1
� �-0:170

�albumin g=dl-1
� �0:318

(8)

Our finding for midazolam clearance (population mean:
8.42 l h�1) is in agreement with previous studies in
critically ill patients [39, 40]. It is also comparable to the
estimated clearance found in a recent study in critically ill
children where they also found an effect of inflammation
(to compare these values, the results of Vet et al. were
adapted to values for a 70 kg individual) [32]. In our
model, a patient with a healthy albumin level of 45 g l�1

would have a midazolam clearance of 15.3 l h�1, which is
also in line with the results of other studies in healthy
volunteers and obese patients [16, 25, 41], although
some studies in obese patients and patients who had
undergone bariatric surgery have even higher clearance
values [25, 42]. The estimated value for volume of distribu-
tion is also similar to that of the studies in critically ill
patients and that of the most recent study in obese
patients [32, 39, 42]. However, unlike some of the other
studies, we were not able to accurately quantify a periph-
eral compartment for midazolam. This is due to the sparse
sampling in this study which has presumably resulted in
insufficient data to quantify a two-compartment model.
Another contrast with previous studies is the lower esti-
mate for the volume of distribution of 1-OH-MG, of
2.98 l. As 1-OH-MG is a hydrophilic metabolite, a low
volume of distribution was expected. In terminally ill
patients this could be even more reduced as these patients
are older (median age of 71), have a diminished intake of
oral fluids and become dehydrated. The high RSE of 71%
for this parameter, however, indicates that it was difficult
to obtain and accurate estimate of the V of 1-OH-MG. This
is probably because patients without renal insufficiency
eliminate 1-OH-MG more rapidly.

Finally, a notable difference with previous studies is
the large IIV in volume of distribution of midazolam in
the final model. Other studies also found large IIV in their
base models but were able to correct for this using weight
as a covariate [16, 42]. Unfortunately, in our study, data
on weight was available for only 53% of the patients,
and the weights that were available were only collected
at time of admission. As a result, the plots showing the
available data on weight vs. volume of distribution or
the IIV on volume of distribution did seem to show a
correlation (supplementary material). However, this effect
was not significant in the covariate analysis. This lack of
data on weight is a limitation in our study. We therefore
highly recommend that in future pharmacokinetic studies

in the terminally ill population, weight is monitored
regularly.

A possible limitation of our study is that it did not include
intravenously administered midazolam, as this route of
administration is seldom used in palliative care. As a result,
the bioavailability of subcutaneous midazolam could not be
estimated and was assumed to be 100%. This seems reason-
able and is in line with the study of Pecking et al. [22].
However, in that study F was reported as 0.96 ± 0.14 so there
is some uncertainty in this number, which could have had a
small effect on the estimates for clearance and volume of
midazolam.

Another possible limitation of our study was that we did
not include the 4-OH-M metabolite in our model. We did
measure 4-OH-M in our samples, but as only a low percentage
of midazolam is converted into 4-OH-M, 75% of these
concentrations were below the lower limit of detection. This
lack of data meant that we were only able to estimate the
fraction of midazolam that is metabolized into 4-OH-M
(which was around 10%) but we were unable to accurately
estimate a volume of distribution or clearance for 4-OH-M.
As only a low percentage is converted into 4-OH-M and this
metabolite has a lower affinity to the receptor compared to
the 1-OH-M metabolite, this is probably of low clinical
interest [43]. As the 4-OH-M metabolite was not included in
the model and the true fraction metabolized is unknown,
the clearance and distribution volumes of the other metabo-
lites are apparent values.

Overall this study shows that it is possible to accurately
describe a drug’s pharmacokinetics and find clinically
relevant parameters for dose individualization using popu-
lation pharmacokinetics in terminally ill patients. This is
very important as large inter-patient variability in these
patients is of clinical concern and therefore more research
is needed in this population. Using a population approach
with sparse sampling minimizes the patient’s burden,
which is crucial in this vulnerable population. Concerning
midazolam, we have shown that low albumin levels may
indicate a decreased capacity to metabolize midazolam,
possibly as a result of inflammatory response. This is of
clinical importance as hypoalbuminaemia is common in
both cancer patients and cachectic patients. Therefore the
dose of midazolam (and possibly also other drugs that are
metabolized via CYP3A) may have to be decreased in these
patients. Another possible reason to adjust the midazolam
dose might be a decrease in renal function, as in these
patients the 1-OH-MG metabolite can accumulate. These
important insights into the pharmacokinetics of midazo-
lam and its metabolites in terminally ill patients may be a
first step in explaining the different response to midazolam
treatment. However, it is also known that there is a large
variability in response to plasma levels [12, 13]. Therefore,
further studies on the pharmacodynamics in this popula-
tion are needed before any firm conclusions can be drawn
on dose adjustments.
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Figure S1 Correlation of albumin (g l�1) and CRP (mg l�1)
with the corresponding linear regression line
Figure S2 Correlation of weight (the known weights at time
of admission) vs. volume of distribution (V) of midazolam
and the interindividual variability (IIV) on volume of distri-
bution (V) of midazolam with the corresponding linear re-
gression lines
Figure S3 Simulated plasma profiles of midazolam and the
total effective concentration (calculated as the sum of parent
and both metabolites with 1-OH-M accounting for 80% and
1-OH-MG for 10% of the midazolam potency) for patients
with an C-reactive protein (CRP) concentration of 1 mg l�1

(green), 50 mg l�1 (blue), 100 mg l�1 (orange) and 200 mg l�1

(light green) and stable eGFR of 90 ml min�1, after a 10 mg
midazolam loading dose followed by 5 mg six times daily all
via subcutaneous bolus injection
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