
Received: 6 November 2016 Revised: 1 March 2017 Accepted: 27 March 2017

DOI: 10.1002/nbm.3734

R E S E A R C H A R T I C L E

Diffusion MRI microstructure models with in vivo human brain
Connectome data: results from a multi-group comparison

Uran Ferizi1,2,3 Benoit Scherrer4 Torben Schneider3,5 Mohammad Alipoor6

Odin Eufracio7 Rutger H.J. Fick8 Rachid Deriche8 Markus Nilsson9

Ana K. Loya-Olivas7 Mariano Rivera7 Dirk H.J. Poot10

Alonso Ramirez-Manzanares7 Jose L. Marroquin7 Ariel Rokem11,12

Christian Pötter12 Robert F. Dougherty12 Ken Sakaie13

Claudia Wheeler-Kingshott3 Simon K. Warfield4 Thomas Witzel14

Lawrence L. Wald14 José G. Raya2 Daniel C. Alexander1

1Centre for Medical Image Computing, Department of Computer Science, University College London, UK
2Department of Radiology, New York University School of Medicine, USA
3Department of Neuroinflammation, Institute of Neurology, University College London, UK
4Computational Radiology Laboratory, Boston Children’s Hosp., Harvard University, USA
5Philips Healthcare, Guildford, Surrey, UK
6Chalmers University of Technology, Gothenburg, Sweden
7Centro de Investigacion en Matematicas AC, Guanajuato, Mexico
8Athena Project-Team, INRIA Sophia Antipolis - Méditerranée, France
9Lund University Bioimaging Center, Lund University, Sweden
10Erasmus Medical Center and Delft University of Technology, the Netherlands
11eScience Institute, University of Washington, USA
12Center for Cognitive and Neurobiological Imaging, Stanford University, USA
13Imaging Institute, The Cleveland Clinic, Cleveland, USA
14A.A. Martinos Center for Biomedical Imaging, MGH, Harvard University, USA

Correspondence

Uran Ferizi, PhD, Center for Biomedical Imaging, Department of Radiology, New York University Langone Medical Center, 660 First Avenue, 4th floor, New York, NY

10016, USA.

Email: uran.ferizi@med.nyu.edu

Funding information

The (UK) Engineering and Physical Sciences Research Council (EPSRC), Grant/Award Number: EP/G007748, EP/L022680/1, EP/I027084/01, EP/M020533/1 and

EP/N018702/1; The (US) National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS) of the National Institute of Health (NIH), Grant/Award

Number: R21AR066897 and R01AR067789; NIH, Grant/Award Number: R01 NS079788, R01 EB019483, R01 EB018988 and BCH TRP Pilot and BCH CTREC K-to-R

Merit Award; Swedish Strategic Research (SSF), Grant/Award Number: AM13- 0090

A large number of mathematical models have been proposed to describe the measured signal in diffusion-weighted (DW) magnetic resonance

imaging (MRI). However, model comparison to date focuses only on specific subclasses, e.g. compartment models or signal models, and little

or no information is available in the literature on how performance varies among the different types of models. To address this deficiency, we

organized the ‘White Matter Modeling Challenge’ during the International Symposium on Biomedical Imaging (ISBI) 2015 conference. This com-

petition aimed to compare a range of different kinds of models in their ability to explain a large range of measurable in vivo DW human brain

data. Specifically, we assessed the ability of models to predict the DW signal accurately for new diffusion gradients and b values. We did not

evaluate the accuracy of estimated model parameters, as a ground truth is hard to obtain. We used the Connectome scanner at the Mas-

sachusetts General Hospital, using gradient strengths of up to 300 mT/m and a broad set of diffusion times. We focused on assessing the DW

signal prediction in two regions: the genu in the corpus callosum, where the fibres are relatively straight and parallel, and the fornix, where the
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configuration of fibres is more complex. The challenge participants had access to three-quarters of the dataset and their models were ranked

on their ability to predict the remaining unseen quarter of the data. The challenge provided a unique opportunity for a quantitative comparison

of diverse methods from multiple groups worldwide. The comparison of the challenge entries reveals interesting trends that could potentially

influence the next generation of diffusion-based quantitative MRI techniques. The first is that signal models do not necessarily outperform tis-

sue models; in fact, of those tested, tissue models rank highest on average. The second is that assuming a non-Gaussian (rather than purely

Gaussian) noise model provides little improvement in prediction of unseen data, although it is possible that this may still have a beneficial effect

on estimated parameter values. The third is that preprocessing the training data, here by omitting signal outliers, and using signal-predicting

strategies, such as bootstrapping or cross-validation, could benefit the model fitting. The analysis in this study provides a benchmark for other

models and the data remain available to build up a more complete comparison in the future.
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1 INTRODUCTION

Diffusion-weighted (DW) magnetic resonance imaging (MRI) can provide unique insights into the microstructure of living tissue and is increasingly

used to study the microanatomy and development of normal functioning tissue as well as its pathology. Mathematical models for analysis and inter-

pretation have been crucial for the development and translation of DW-MRI. Even though diffusion tensor imaging (DTI),1 which is based on a simple

Gaussian model of the DW-MRI signal, has shown promise in clinical applications,2 e.g. Alzheimer’s disease,3 multiple sclerosis4 or brain tumors,5

a much wider variety of DW-MRI models has been proposed to extract more information from the DW signal.

Models generally fall between two extremes: ‘models of the tissue’ and ‘models of the signal’. Models of the tissue6–17 describe the underlying

tissue microstructure in each voxel explicitly with a multi-compartment approach.18,19,20 Models of the signal focus on describing the DW signal

attenuation without describing the underlying tissue composition that gives rise to the signal explicitly.21–29 Other approaches fall between these

two classes and include some features of the tissue, such as the distribution of fibre orientations, but often describe the signal from individual fibres

without modelling the fibre composition explicitly.30–40

Despite this explosion of DW-MRI models, a broad comparison on a common dataset and within a common evaluation framework is lacking, so

little is understood about which models are more plausible representations or explanations of the signal. Panagiotaki et al.18 established a taxonomy

of diffusion compartment models and compared 47 of them using data from the fixed corpus callosum of a rat acquired on a pre-clinical system.

Later, Ferizi et al.39 performed a similar experiment using data from a live human subject, while Ferizi et al.41,42 explored a different class of models,

which aim to capture fibre dispersion. Rokem et al.43 compared two classes of models using cross-validation and test–retest accuracy. All these

studies18,43,44 aim to evaluate variations with specific classes of models with all other variables of the parameter estimation pipeline (i.e. noise

model, fitting routine, etc.) fixed. While this provides fundamental insight into which compartments are important in compartment models, questions

remain about the broader landscape of models; in particular, which classes of models explain the signal best and how strongly performance depends

on the choice of parameter-estimation procedure.

Publicly organized challenges provide a unique opportunity to bring a research community together to gain a quantitative and unbiased compari-

son of a diverse set of methods applicable to a particular data-processing task. Such publicly organized challenges have helped to establish a common

ground for the evaluation of competing methods in a variety of imaging-related tasks, e.g. in brain MR image registration45 and segmentation.46 In

DW-MRI, public challenges have focused on recovering synthetic intra-voxel fibre configurations47 or evaluating tractography techniques48,50 and

have been very successful at driving research and translation forward. Another interesting comparison of reconstruction methods using DW-MRI

data was based on the signal acquired from a physical phantom.49 Here we report on such a community-wide challenge to model the variation of

DW-MRI signals at the voxel level in the in vivo human brain.

Modelling the diffusion signal is a key step in realizing practical and reliable quantitative imaging techniques based on diffusion MRI. The challenge

in the area is to extract the salient features from the diffusion signal and relate them to the principal features of the underlying tissue (e.g. in the

case of brain white matter (WM) the fibre orientation, axonal packing and axonal size). Three distinct questions arise.

i. Given the richest possible dataset that samples the space of achievable measurements as widely as possible, which mathematical model can

capture best the intrinsic variation of the acquired signal?

*Uran Ferizi, Benoit Scherrer and Torben Schneider joint first co-authors.

Abbreviations used: CT, computerized tomography; CV, cross-validation; DBF, diffusion basis function; DF, diffusion function; DT, diffusion tensor; DTI, diffusion tensor imaging; DW,
diffusion-weighted; EN, elastic net; ISBI, International Symposium on Biomedical Imaging; LASADD, Linear Acceleration of Sparse and Adaptive Diffusion Dictionary; LS, least-squares; MRI,
magnetic resonance imaging; PDD, principal diffusion directions; RSI, restriction spectrum imaging; ROI, region of interest; SFM, sparse fascicle model; SNR, signal-to-noise ratio; SSE, sum of
squared errors; TE, echo time; WM, white matter.
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ii. Which tissue features can be derived from the model?

iii. What subset of those features can we estimate from limited acquisition time on a standard clinical scanner and what dataset best supports

such estimates?

The intuition gained from (i) is generalizable over a wide range of applications, while (ii) and (iii) are highly dependent on the MRI study design

and the available hardware. Therefore, our challenge focuses on question (i), as an understanding of (i) is necessary to inform (ii) and (iii). To that

end, we acquire the richest possible dataset using the most powerful hardware available and the most motivated subject available (UF). Specifi-

cally, we use the Connectome scanner,51 which is unique among human scanners in having 300 mT/m gradients, rather than 40 mT/m as is typical of

state-of-the-art human scanners. Preclinical work by Dyrby et al.13 highlights the benefits of such strong gradients and the first results from the

Connectome scanner42,52–54 are now starting to verify those findings.

This kind of model comparison, based on prediction error, is a common and crucial part of the development of any statistical model-based esti-

mation applications. Burnham and Anderson55 explain how and why such comparisons should be performed to reject models that are theoretically

plausible but not supported by the data. To that end, we used a uniquely rich dataset acquired on the Connectome system42 composed of around

5000 points in q space with, for each shell, a unique combination of gradient strength, diffusion time, pulse width and echo time. This offers the

opportunity for the comparison of the many different types of models within a common framework, over a very wide range of measurement space.

Using this rich dataset, we organized the White Matter Modeling challenge, held during the 2015 International Symposium on Biomedical Imaging

(ISBI) in New York. The goal of the challenge was to evaluate and compare the models in two different tissue configurations that are common in the

brain: (1) a WM region of interest where fibres are relatively straight and parallel, specifically the genu of the corpus callosum; and (2) a region in

which the fibre configuration is more complex, specifically the fornix. Challenge participants had access to three-quarters of each whole dataset;

the participating models were evaluated on how well they predicted the remaining ‘unseen’ part of the data. As announced before the challenge,

the final ranking was based exclusively on the performance on the genu data. In this article, however, we include results from both the genu and the

fornix.

The article is organized as follows. We first describe in section 2 the experimental protocol, data post-processing and preparation of the training

and testing data for the challenge. We then present the methods for ranking the models and tabulate the various models involved in the competition

succinctly. We report the challenge results in section 3 and discuss these results in section 4; a more detailed description of the models follows in

the Appendix.

2 MATERIAL AND METHODS

2.1 The complete experiment protocol

One healthy volunteer was scanned over two non-stop 4 h sessions. The imaged volume comprised twenty 4 mm thick whole-brain sagittal slices

covering the corpus callosum left–right. The image size was 110 × 110 and the in-plane resolution 2 × 2 mm2. 45 unique and evenly distributed dif-

fusion directions (taken from http://www.camino.org.uk) were acquired for each shell, with both positive and negative polarities; these directions

were the same in each shell. We also included 10 interleaved b = 0 measurements, leading to a total of 100 measurements per shell. Each shell

had a unique combination of Δ = {22,40,60,80,100,120}ms, 𝛿 = {3,8}ms and |G| = {60,100,200,300}mT/m (see Table 1). The measure-

ments were randomized within each shell, whereas the gradient strengths were interleaved. We inspected the images visually and did not observe

any obvious shifts from gradient heating. The minimum possible echo time (TE) for each gradient duration and diffusion time combination was cho-

sen to enhance signal-to-noise ratio (SNR) and potential estimation of compartment-specific relaxation constants. The SNR of b = 0 images was

35 at TE = 49 ms and 6 at TE = 152 ms. The SNR was computed by assessing the signal mean and noise variance across the selected WM voxels

on multiple b = 0 images. In both cases these estimates matched reasonably well. More details about the acquisition protocol can be found in

Ferizi et al.42

2.2 Post-processing

All post-processing was performed using Software Library (FSL).56 The DW images were corrected for eddy current distortions separately for each

combination of 𝛿 and Δ using FSL’s Eddy module (www.fmrib.ox.ac.uk/fsl/eddy) with its default settings. The images were then co-registered using

FSL’s Fnirt package. As the 48 shells were acquired across a wide range of TEs, over two days, we chose to proceed in two steps. First, within each

quarter of the dataset (different day, different 𝛿) we registered all the b = 0 images together. We then applied these transformations to their inter-

mediary DW images, using a trilinear resampling interpolation. The second stage involved co-registering the four different quarters. To help the

co-registration, especially between the two days images that required some through-plane adjustment as well, we omitted areas of considerable

eddy-current distortions by reducing the number of slices from 20 to 5 (i.e. leaving two images either side of the mid-sagittal plane) and reducing

the in-plane image size to 75 × 80.

http://www.camino.org.uk
www.fmrib.ox.ac.uk/fsl/eddy
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TABLE 1 The scanning protocol used, acquired in ∼8 hours over two non-stop sessions. The protocol has 48
shells, each with 45 unique gradient directions (‘blip-up-blip-down’)

Acquisition Protocol

𝜹 = 3ms 𝜹 = 8ms

Δ TE |G| b Δ TE |G| b

Nr (ms) (ms) (mT/m) (s/mm2) Nr (ms) (ms) (mT/m) (s/mm2)

1 22 49 61 50 25 22 58 58 300

2 22 49 86 100 26 22 58 95 800

3 22 49 192 500 27 22 58 190 3,200

4 22 49 285 1,100 28 22 58 275 6,700

5 40 67 63 100 29 40 72 59 600

6 40 67 100 250 30 40 72 100 1,700

7 40 67 200 1,000 31 40 72 200 6,850

8 40 67 289 2,100 32 40 72 292 14,550

9 60 87 63 150 33 60 92 34 300

10 60 87 103 400 34 60 92 100 2,650

11 60 87 199 1,500 35 60 92 200 10,500

12 60 87 290 3,200 36 60 92 292 22,350

13 80 107 63 200 37 80 112 61 1,300

14 80 107 99 500 38 80 112 100 3,550

15 80 107 201 2,050 39 80 112 200 14,150

16 80 107 291 4,300 40 80 112 292 30,200

17 100 127 63 250 41 100 132 60 1,600

18 100 127 101 650 42 100 132 100 4,450

19 100 127 200 2,550 43 100 132 200 17,850

20 100 127 291 5,400 44 100 132 292 38,050

21 120 147 63 300 45 120 152 60 1,950

22 120 147 99 750 46 120 152 100 5,350

23 120 147 199 3,050 47 120 152 200 21,500

24 120 147 291 6,500 48 120 152 292 45,900

Note. We provide signal for the parts of protocol marked in black. In red is the protocol for which the signal needs to
be predicted.

FIGURE 1 We only consider two ROIs, each containing six voxels from the genu in the corpus callosum, where the fibres are approximately
straight and parallel, and from the fornix, where the configuration of fibres is more complex

2.3 Training and testing data

The data for this work originated from two regions of interest (ROIs), each containing 6 voxels (see Figure 1). The first ROI was selected in the middle

of the genu in the corpus callosum, where the fibres are mostly straight and coherent. The second ROI’s fibre configuration is more complex: it lies

in the body of fornix, where two bundles of fibres bend and bifurcate.
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The dataset was split into two parts: the training dataset and the testing dataset. The training dataset was fully available for the challenge partic-

ipants. The testing dataset was retained by one of the organizers (UF). The DW signal of the training dataset (36 shells, with acquisition parameters

shown in black in Table 1) was provided together with the gradient scheme on the challenge website (http://cmic.cs.ucl.ac.uk/wmmchallenge/). This

data was used by the participants to estimate their DW-MRI model parameters. The signal attenuation in the testing dataset (12 shells, with acqui-

sition parameters shown in red in Table 1) was kept unseen. It contained one shell, chosen at random, from each TE-specific set of four shells (i.e of

the same combination of 𝛿 and Δ). The challenge participants were then asked to predict the signal for the corresponding gradient scheme. They

were free to use as much or as little of the training data provided as they wished to predict the signal of the test dataset for the six voxels in each ROI.

Figure 2 shows the DW signal attenuation for each shell in the genu dataset, with stars in the legend indicating which shells were left out for test-

ing. In this plot, a small number of data appear as ‘outliers’ (two such data are shown with arrows in the bottom-left subplot of Figure 2). Specifically,

we counted about 10 of them among more than 4812 measurements, most of them being in the b = 300 s/mm2 shell. Since these outliers appear

to be specific to the b = 300 s/mm2 shell and are not in other shells with similar b value, we attribute them to a momentary twitching of the subject

rather than more systematic effects, such as perfusion.

Similarly, Figure 3 shows the signal for the fornix region, with the signal over the six voxels averaged out.

2.4 Model ranking

Models were evaluated and ranked based on their ability to predict the unseen DW signal accurately. Specifically, the metric used was the sum of

square differences between the hidden signal and the predicted signal, corrected for Rician noise:57

SSE = 1
N

N∑
i=1

(
S̃i −

√
S2

i
+ 𝜎2

)2

𝜎2
(1)

where N is the number of measurements, S̃i is the ith measured signal, Si its prediction from the model and 𝜎 the noise standard deviation.

2.5 Competing models

Here we give a short summary of the competing models. Additionally, Table 2 provides a summary of their key characteristics. More details are

included in the Appendix.

• Ramirez-Manzanares: a dictionary-based technique that accounts for multiple fibre bundles and models the distribution of tissue properties (axon

radius, parallel diffusivity) and the orientation dispersion of fibres.

• Nilsson: a multi-compartment model that models isotropic, hindered and restricted diffusion and accounts for varying (T1, T2) relaxation times

for each compartment.58

• Scherrer a multi-compartment model in which each compartment is modelled by a statistical distribution of 3-D tensors.16

• Ferizi1 and Ferizi2: two three-compartment models that account for varying T2 relaxation times for each compartment. As regards the intracel-

lular compartment, Ferizi1 models the orientation dispersion by using dispersed sticks as one compartment; Ferizi2 uses a single radius cylinder

instead.42

• Poot: a three-compartment model comprising an isotropic diffusion compartment, a tensor compartment and a model-free compartment in

which an Apparent Diffusion Coefficient (ADC) is estimated for each direction independently. T2 relaxation times are also estimated for each

compartment.59

• Rokem: a combination of the sparse fascicle model43 with restriction spectrum imaging60 that describes the signal arising from a

multi-compartment model in a densely sampled spherical grid, using L1 regularization to enforce sparsity.

• Eufracio: an extension of the Diffusion Basis Function (DBF) model that accounts for multiple b-value shells.

• Loya-Olivas1 and Loya-Olivas2: two models based on the Linear Acceleration of Sparse and Adaptive Diffusion Dictionary (LASADD) technique.

Loya-Olivas1 uses the DBF signal model, while Loya-Olivas2 uses a three-compartment tissue model. The optimization uses linearized signal

models to speed up computation and sparseness constraints to regularize.

• Alipoor: a model of fourth-order tensors, corrected for T2-relaxation across different shells. A robust LS fitting was applied to mitigate influence

of outliers.

• Sakaie: a two-compartment model of restricted and hindered diffusion with angular variation. A simple exclusion scheme based on the b = 0

signal intensity was applied to remove outliers.

• Fick: a spatio-temporal signal model to represent 3-D diffusion signal simultaneously over varying diffusion time. Laplacian regularization was

applied during the fitting.61

• Rivera: a regularized linear regression model of diffusion encoding variables. This is intentionally built as a simplistic model to be used as a baseline

for model comparison.

While the challenge organizers also had competing models (Ferizi1, Ferizi2 and Scherrer), only Ferizi had access to the hidden data. The hidden

data were never used to tune the results of his models.

http://cmic.cs.ucl.ac.uk/wmmchallenge/
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FIGURE 2 Diffusion-weighted signal from the genu ROI, averaged over the six voxels. Across each column and row, the signal pertains to one of
the gradient strengths or pulse times 𝛿 used; in each subplot, the six shells shown in different colours are Δ-specific, increasing in value (22, 40, 60,
80, 100, 120 ms) from top to bottom. Inside the legend, the b value is in s/mm2 units; here, the HARDI shells kept for testing are those marked with
a star; the remaining shells comprise the training data. On the x-axis is the cosine of the angle between the applied diffusion gradient vector G and
the fibre direction n. Some models in this study omit data outliers; two such data points are shown in the bottom-left subplot with vertical arrows
— obviously each model has its own criteria for determining the outliers
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FIGURE 3 Diffusion-weighted signal from the fornix ROI, averaged over the six voxels. The legend’s b value is in s/mm2 units. Testing shells are
marked with a star. On the x-axis is the cosine of the angle between the applied diffusion gradient vector G and the fibre direction n

3 RESULTS

Figure 4 shows the averaged prediction error in each ROI (top subplot is for the genu, bottom subplot is for the fornix) and the corresponding overall

ranking of the participating models in the challenge. The first six models in the genu ranking performed similarly, each higher ranked model marginally

improving on the prediction error. The prediction error clearly increased at a higher rate for the subsequent models. In the fornix dataset, the pre-

diction error was higher than in the genu. For both datasets, the first six models were the same, albeit permuted. Most of the models performed
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TABLE 2 Summary of the various diffusion models evaluated. Tissue models are models that include an explicit description of the underlying
tissue microstructure with a multi-compartment approach. In contrast, signal models focus on describing the DW signal attenuation without
explicitly describing the underlying tissue and instead correspond to a ‘signal processing’ approach

Type of Nb of free param. Models effect Noise Optimization Outliers Special signal

model (genu/fornix) of 𝛿 and Δ assumption algorithm strategy prediction strategy

R–Manzanares Tissue N/A Yes Gaussian weighted-LS Yes CV

bootstrapping

Nilsson Tissue < 12/12 Yes Gaussian LM Yes CV

Scherrer Tissue 10/16 No Gaussian Bobyqa Yes No

Ferizi_1 Tissue < 12/12 Yes approx.-Rician LM No No

Ferizi_2 Tissue < 10/10 Yes approx.-Rician LM No No

Alipoor Signal 17/17 No Gaussian weighted-LS Yes No

Sakaie Signal N/A No Gaussian nonlinear-LS Yes No

Rokem Tissue ∼20 No Gaussian Elastic net No CV

+ Noise floor

Eufracio Tissue 7/7 No Gaussian bounded-LS No No

Lasso, Ridge

Loya-Olivas_1 Tissue 11 No Gaussian bounded-LS No No

& Lasso

Loya-Olivas_2 Tissue 11 No Gaussian bounded-LS No No

Poot Signal 103 No Rician LM-like No No

Fick Signal 475 Yes Gaussian Laplacian- reg-LS No partial-CV

Rivera Signal 23 Yes Gaussian Weighted Lasso Yes CV

Abbreviations: LS=least-squares, LM=Levenberg–Marquardt, CV=cross-validation, reg=regularized

similarly in terms of ranking in both genu and fornix cases, i.e. Nilsson (second in genu/first in fornix), Scherrer (third/second) and Ferizi_2

(fourth/fourth). Others performed significantly better in one of the cases, with Ramirez-Manzanares (first/sixth) being the most notable.

Figure 4 also details the prediction error for different ranges of b values in the unseen dataset. Models inevitably vary in their prediction capa-

bilities; some models perform better within a given b-value range but are penalized more in another. Across the models, as the figure shows, the

ranking between models was dominated by the signal prediction accuracy for b values between 750 and 1400s/mm2; specifically, the shell that has

the largest weight on this error is the b = 1100 s/mm2 one. The top-ranking models, nevertheless, were better at predicting the signal for higher

b-value images as well. The prediction performance of lower b-value images (<750s/mm2) in the genu was less consistent across ranks. For example,

the models of Rokem and Sakaie outperformed most of the higher ranking models in this low b-value range. The fornix is a more complex region

than the genu, hence the performance across the shells is less consistent. In the fornix, the prediction errors were generally larger than in the genu

across all b values for all models, except Rivera’s, which showed the opposite effect. The prediction errors of the b = 0 images were also larger than

in the genu, especially for the highly ranked models of Poot and Ferizi. The prediction errors in other b-value shells followed the overall ranking of

the models more closely.

Figure 5 shows the prediction error for each voxel independently. In the genu plot, the best performing models had high consistency of low pre-

diction errors across all individual voxels. These were followed by the models with consistent larger prediction error in all voxels. Most of the lowest

ranking models not only had largest prediction errors, they also showed large variations in prediction performance. For example, while the model of

Loya-Olivas2 was competitive in voxel 5, it ranked low due to large prediction errors in voxels 4 and 6. The results in the fornix show a lower consis-

tency of prediction errors between the voxels than in the genu. Specifically, two voxels (3 and 4) showed substantially larger prediction errors and

were likely responsible for much of the overall ranking.

Finally, we report in Figures 6 –8 and 9 an illustration of the quality of fit of each model to four representative shells, including the b=1100s/mm2

shell mentioned above; Figures 6 and 7 concern the genu data and Figures 8 and 9 are for fornix data.

4 DISCUSSION

The challenge set out to compare the ability of various kinds of models to predict the diffusion MR signal from WM over a very wide range of mea-

surement parameters – exploring the boundaries of possible future quantitative diffusion MR techniques. The 14 challenge entries were a good

representation of the many available models that are proposed in the literature. The acquired data aimed to cover the broadest spectrum of exper-

imental parameters possible. The participating models use a variety of fitting routines and modelling assumptions, providing additional insight into

the effects of algorithmic and modelling choices during parameter estimation. Although the set of methods tested is not sufficient to make a full
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FIGURE 4 Overall ranking of models by sum-of-squared-errors (SSE) metric over all voxels in genu (top) and fornix (bottom) ROIs. The colors
represent different ranges of b-value shells

comparison of each independent feature (diffusion model, noise model, fitting routine, etc.) and the number of combinations prohibits an exhaustive

comparison, the results of the challenge do reveal some important trends.

In contrast with earlier model comparisons,18,43,44 the results provide new insight into which broad classes of model explain the signal

best and what features of the estimation procedure are important. This information is very timely, as recent model-based diffusion MRI tech-

niques, such as NODDI,15 SMT,17,40 DIAMOND,16 DKI62 and LEMONADE,63 are starting to become widely adopted in clinical studies and trials.

Despite their success, intense debate continues in the field about applicability of different models and fitting routines.64,65 The insights from this

challenge provide key pointers to the important features of the next-generation of front-line imaging techniques of this type. Moreover, the data

and evaluation routines remain available to form the basis of an expanding ranking of models and fitting routines and a benchmark for future model

development.

4.1 Main conclusions

The first insight is on the type of model used. Signal models do not necessarily outrank tissue models; indeed, using our dataset, models of the signal

(Alipoor, Sakaie, Fick, Rivera) ranked on average lower than models of the tissues, despite their theoretical ability to offer more flexibility in describing

the raw signal. This is quite surprising, as the current perception within the field is that, generally, we can capture the signal variation much better

through a functional description of the signal (signal models) rather than via a biophysical model of the tissue (tissue models). The former generally

consist of bases of arbitrary complexity, whereas the latter are generally very parsimonious models that rely on extremely crude descriptions of

tissue (e.g. white matter as parallel impermeable cylinders). The results suggest that the flexibility of signal models can rapidly lead to overfitting.
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FIGURE 5 Sum-of-squared-errors (SSE) per voxel for each model in genu and fornix. The size of rectangles represent the SSE value per voxel

However, the tissue models can explain the signal relatively well even with just a few parameters (compare the quality-of-fit plots of the Rivera

model in Figure 7 with the signal prediction of the top models in Figure 6: the higher the b value, the worse the prediction of the linear signal model).

Certain underlying assumptions may cause the signal models to perform less well than expected. For example, they are often designed to work with

data with a single diffusion time and do not generalize naturally to incorporate the additional dimension (although see Fick et al.61 for some steps

towards generalization). Many of the tissue models, on the other hand, naturally account for finite 𝛿, varying diffusion times and gradient strength

(e.g. the Ramirez-Manzanares, Nilsson and Ferizi models in our collection). We cannot draw any conclusion about the benefits of an adjustable

number of parameters in a model, because of the limited number of models in our study that do this and because the models differ in a range of

other aspects.

The second insight concerns the choice of noise modelling. Despite the fact that SNR at b = 0 and TE = 152 ms falls to about 6, use of the Rician

noise model does not appear to be a significant benefit in predicting unseen signal; here, however, we do not investigate the effect on estimated
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FIGURE 6 Genu signal for the group consisting of the best seven from 14 models. We show only four (of twelve) representative shells; these are
shown by blue stars, while red circles denote the model-predicted data. The best models are listed first. The x-axis is the cosine of the angle
between G and n

model parameters, which may still benefit from the more accurate noise model. In this challenge, most participants used non-linear least-squares or

maximum-likelihood optimization. Additional regularization of the objective function (Eufracio & Rivera/Lasso, Rokem/Elastic Net, Fick/Laplacian)

appeared to have little benefit over non-regularized optimization.

The third observation is about removing signal outliers. Five of the eleven models preprocessed the training data by clearing out outliers, including

the top two models. We tried this procedure with two good models that did not use such a procedure, Ferizi1 and Ferizi2, and observed that it

did not affect the ranking, though it did improve the prediction error marginally. This is understandable, considering the relatively little weight
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FIGURE 7 Genu signal for the second group of 14 models. Raw testing data are shown by blue stars, while red circles denote the model-predicted
data. The x-axis is the cosine of the angle between G and n

these apparent outliers have on the total number of measurements (10 points from a 4812-strong dataset). Additionally, specific strategies for

predicting the signal, e.g. bootstrapping or cross-validation, as used by the top two models of Ramirez-Manzanares and Nilsson, may also help the

model ranking.

4.2 Limitations and future directions

Although this challenge provides several new insights into the choice of model and fitting procedure for diffusion-based quantitative imaging tools,

it has a number of limitations that future challenges might be designed to address. One limitation of the study is that we use a very rich acquisition



FERIZI ET AL. 13 of 23

FIGURE 8 Fornix signal for the group consisting of the best 7 from 14 models. We show only four (of twelve) representative shells; these are shown
by blue stars, while red circles denote model-predicted data. The best models are listed first. The x-axis is the cosine of the angle between G and n

protocol that is not representative of common or clinical acquisition protocols. In particular, we cover a very wide range of b values and the data

acquisition (protocol) we use consists of many TEs, unlike many other multi-shell diffusion datasets that use a fixed TE. As stated in the Introduction,

our intention is to sample the measurement space as widely as possible to support the most informative models possible. Varying the TE makes it

possible to probe compartment-specific T2 (the decay of which Ferizi et al.42 finds to be monoexponential at the voxel level), an investigation that

would be impossible with a single TE. However, the good performance of DIAMOND also shows that a model with fixed 𝛿 and Δ can still capture

the signal variation in multi-TE datasets and that, while the majority of the full data was ignored in each of the reconstructions, its prediction error

compared favourably with other techniques.
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FIGURE 9 Fornix signal for the second group of 14 models. Raw testing data are shown by blue stars, while red circles denote the model-predicted
data. The x-axis is the cosine of the angle between G and n

We use the unique human Connectome scanner51 to acquire a dataset with gradients of up to 300mT/m, which is not readily available in most

current MR machines. However, previous preclinical work by Dyrby et al.13 suggests that high diffusion gradients enrich the signal, which helps

model fitting and comparison. Future challenges might be designed that focus on explaining the signal and estimating parameters from data more

typical of clinical acquisitions.

Assessing the prediction performance on unseen data as in this challenge is different from assessing the fitting error: it implicitly penalizes mod-

els that overfit the data. However, since most of the missing shells lie in between other shells (in terms of b values, TEs, etc.), the quality of signal

extrapolation was not assessed. We get a glimpse of this from Figure 4, where the SSE is unevenly distributed between the b values. Here, the shell
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that bore the largest error is the b = 1100 s/mm2 one; see also Figures 6 and 7. Of all ‘unseen’ shells, this shell combines the lowest Δ and highest|G|, placing it on the edge of the range of the measurement space sampled. Such a b-value shell combines high signal magnitude with high sensitivity,

i.e. the gradient of signal against b-value is highest in this range, which makes it hard to predict. (We stress that this observation is in the context of

the wider multi-shell acquisition, and is not to be seen in isolation for its potential impact on single-shell acquisition methods.) On the other hand,

the variability of prediction errors in the b < 750 s/mm2 range could arise from the varying sensitivity of different models to the free water compo-

nent, which is challenging to estimate as it can easily be confounded with hindered water, or physiological effects, which are mostly observable in

this low b-value range. Future work can take this further, by selecting unseen shells outside the min–max range of experimental parameters. This is

likely to penalize more complex models that overfit the data even more strongly.

We did not take into account the computational demand of each model, and this might limit the generalization of the results. Models that use

bootstrapping generally have a higher computational burden and may not be feasible for large datasets, e.g. whole brain coverage.

The dataset used in this challenge is specific to one subject who underwent a long-duration acquisition, which adds to the question of generaliz-

ability. The subsequent preprocessing of the data is also a factor to bear in mind: the registration of two 4h datasets, across such a broad range of

echo times, poses its own challenges for certain non-homogenous regions in the brain, such as the fornix (compared with, for example, the relatively

large genu). Thus the results may be somewhat subject-specific and may be affected by residual alignment errors.

Another limitation is that we only look at isolated voxels inside the corpus callosum and the fornix. Questions still remain about which models

are viable even in the most coherent areas of the brain with the simplest geometry, so we believe our focused challenge on well-defined areas is an

informative first step necessary before extending the idea to the whole of the white matter, which would make for an extremely complex challenge.

We note, however, recent work by Ghosh et al.66 that illustrates such an approach with Human Connectome Project (HCP) data.

We focused here on comparing models based on their ability to predict unseen data. Although models that reflect true underlying tissue structure

should explain the data well, we cannot infer in general that models that predict unseen data better are mechanistically closer to the tissue than

those that do not. As we discuss in the Introduction, the main power of evaluating models in terms of prediction error is to reject models that

cannot explain the data. Thus, while the identification of parsimonious models that explain the data certainly has great benefit, further validation

is necessary through comparison of the parameters that they estimate with independent measurements, e.g. obtained through microscopy (our

challenge makes no attempt to assess the integrity of parameter estimates themselves, but future challenges might use such performance criteria).

Models can be evaluated to some extent by sanity checking the realism of their fitted parameter values, as in for example Jelescu et al.64 or Burcaw

et al.67 However, obtaining accurate ground-truth values for quantitative evaluation remains a hard and yet unsolved problem for diffusion MRI in

general. In particular, histology can only roughly approximate the in vivo ground truth and introduces its own set of challenges in sample preparation,

acquisition and biophysical interpretation.12,13,65,68–71 This challenge highlights the need for improved model comparison and validation methods.

5 CONCLUSION

Challenges such as this have great value in bringing the community together and provide an unbiased comparison of wide-ranging solutions to key

data-processing problems. They raise new insights and ideas, motivating more directed future studies. The data are publicly available for others

to use, with more details of the dataset given on the Challenge website at http://cmic.cs.ucl.ac.uk/wmmchallenge/. On this website, an up-to-date

ranking of the models will be available, where additional models can be added after the publication of the article and where the community will be

able to evaluate further the impact of noise correction, compartment-specific T2 estimation, inter-class model assumptions, e.g. tissue versus signal

models, or indeed intra-class model assumptions, e.g. whether cylinders or sticks are optimal models for the given dataset.42 This will provide an

important benchmark for future models and parameter estimation routines.
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APPENDIX : COMPETING MODELS

A.1 Tissue models

A.1.1 Ramirez-Manzanares (CIMAT, Mexico): Empirical Diffusion-and-Direction Distributions (ED3)

This work builds on the statistical modelling of the apparent diffusion coefficient72 and tackles the modelling of axon fibre dispersion in single15,73

and multiple fibre bundle cases. The method estimates empirically (rather than imposes) the distribution of tissue properties (axon radius, parallel

diffusion, etc.), as well as the orientational distribution of the bundles. The general framework is as follows:

• estimation of mean principal diffusion directions (PDD) per axon bundle;

• selection of a dense set of orientationally focused basis directions that capture the discrete non-parametric fibre dispersion;

• design of a dictionary of intra/extracellular synthetic DW signals, which are precomputed along the basis directions (see the DBF method in

Ramirez-Manzanares et al.74);

• computation of the size compartments per diffusion atom of the dictionary (model fitting).

https://doi.org/10.1063/1.1695690
https://doi.org/10.1002/nbm.3734
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The PDDs are estimated from the Diffusion Tensor (DT) (single bundle case) and DBF74 (complex structure cases). The 120 orientations closest

to the PDDs are selected from a set of 1000 evenly distributed orientations. The intra-axonal signals Si are precomputed from the model in Van

Gelderen et al.75 for restricted diffusion within a cylinder with radius R = 1,2, … ,10𝜇m and parallel diffusion d|| = 1,1.1, … ,2.1𝜇m2/ms. The

extra-axonal signals are generated as follows: Se from zeppelins with combinations of parallel and radial diffusion, d|| = 1,1.1, … ,2.5𝜇m2/ms and

d⟂ = 2,3, … ,8𝜇m2/ms; isotropic diffusion compartment signals Siso
i

= exp−q𝜏diso for diso = 2,2.1,2.2, … ,4𝜇m2/ms; and the dot signal, which

takes into account static proton density. The values of the dictionary atoms above were tuned by cross-validation.76 The size compartments 𝛽 ⩾ 0

computed in the weighted non–negative LS formulation,

||||||
||||||W

[
S − STE

0

( Ni∑
i=1

𝛽 i
i Si

i −
Ne∑
j=1

𝛽e
j Se

j −
Niso∑
k=1

𝛽 iso
k Siso

k + 𝛽dot

)]||||||
||||||

2

2

(A1)

indicate the atoms that explain the signal; the W weights are proportional to SNR. Overfitting is reduced by a bootstrap77 procedure.

The cross-validation experiments indicate that the reconstructions given by the robust fitting of this rich multi-compartment diffusion dictionary

allow us to predict accurately non-acquired MR signals for different machine protocols. This is of most interest in the development of methods able

to detect the complex microstructure heterogeneity associated with the different compartments within the voxels. The atoms with coefficients

𝛽 > 0 depict the empirical distributions and their orientations indicate non-parametrical bundle–dispersion configurations (such as fanning or

radially symmetrical). The recovered distributions reveal, for instance, an axon radius of between 1 and 4𝜇m. One should take into account, however,

that, since the heterogeneous intra/extra-axonal T2 relaxation feature is not modelled explicitly, the method may compensate for T2 variations by

using, for instance, large isotropic diso coefficients to fit the signal accurately. For this reason, a direct interpretation of the fitted parameters may be

misleading. The use of more specific models is a part of ongoing work.

A.1.2 Nilsson (Lund, Sweden): multi-compartment model outlier rejection and separate fitting of b0data

This multiple compartment model was developed specifically for the ISBI WM challenge and built up by relaxation-weighted and time-dependent

diffusion tensors according to

S = S0

∑
i

wi e−B∶Di e−TE/T2i

(
1 − e−(TR−TE/2)/T1i

)
(A2)

where B = bn⃗⊗2 and b = (𝛾𝛿g)2td. The diffusion time td was corrected for rise times (𝜉) according to td = Δ−𝛿∕3+𝜉3∕30𝛿2 −𝜉2∕6𝛿. Each component

was also described by a weight (wi) and relaxation times (T1i and T2i). The model featured three types of component, with either isotropic, hindered

or restricted diffusion. Diffusion in the isotropic component was modelled by a single diffusion coefficient. The hindered and restricted components

were modelled by cylinder-symmetric tensors described by axial and radial diffusivities together with the polar and azimuth angles. In the restricted

component, the apparent diffusion coefficient of the radial component depended on 𝛿 and Δ, as well as on the cylinder radius, according to van

Gelderen et al.78

Three modifications were performed to this very general model. First, to accommodate for potential bias in the b0 images (which was the case

for fornix data, where deviations of up to 20𝜎 was observed), the prediction for b0 data was obtained from the median of all signals acquired with

identical TE instead of from Equation A2. Second, opposite direction acquisitions were rescaled by a free model parameter, in order to allow for

potential gradient instabilities inducing differences between the directions and their opposite directions. Third, models were generated dynamically

during fitting by randomly selecting up to four hindered components and up to three restricted components. One isotropic component was always

included.

The model was first fitted to half of the diffusion-weighted data (randomly selected), after which outliers were rejected (> 2.5𝜎). Thereafter a

second fit was performed. Both fit steps assumed Gaussian noise and utilized the ‘lsqcurvefit’ function in Matlab. The procedure was repeated 100

times for different randomly generated models.

To prepare for submission of the results, only the models that best predicted the hidden half of the data were selected, after which the median of

the selected predictions was used for the final prediction.

A.1.3 Scherrer (Harvard, USA): distribution of anisotropic microstructural environments in diffusion compartment imaging
(DIAMOND)

DIAMOND models the set of tissue compartments in each voxel by a finite sum of unimodal continuous distributions of diffusion tensors. This

corresponds to a hybrid tissue model that combines biophysical and statistical modelling. As described by Scherrer et al.,16 the DW signal Sk for a

gradient vector gk and b value bk is modelled by

Sk = S0

[
N∑

j=0

fj

(
1 +

bkgT
k

D0
j

gk

𝜅j

)−𝜅j]

where S0 is the non-attenuated signal, N is the number of compartments, fj the relative fraction of occupancy of the jth compartment and𝜅 j and D0
j

are

respectively the concentration and expectation of the jth continuous tensor distribution. DIAMOND enables assessment of compartment-specific
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diffusion characteristics such as the compartment FA (cFA), compartment RD (cRD) and compartment MD (cMD). It also provides a novel measure

of microstructural heterogeneity for each compartment.

The estimation of a continuous distribution of diffusion tensors requires DW data acquired with the same timing parameters 𝛿 and Δ.16 To com-

pare DIAMOND with other models in this dataset, we fitted one DIAMOND model separately for each {𝛿, Δ} group (i.e. for each TE group), leading

to 12 DIAMOND models. One shell was missing in each TE group; we predicted its signal using the corresponding DIAMOND model. The model

estimation was achieved as follows. We first computed the mean and standard deviation of S0 (𝜇S0
and 𝜎S0

) within each TE group and discarded

DW signals with intensity larger than 𝜇S0
+ 3𝜎S0

(simple artefact correction). We then estimated DIAMOND parameters as described in Scherrer

et al.,16 considering Gaussian noise and cylindrical anisotropic compartments. For the genu, we considered a model with one freely diffusing and

one anisotropic compartment; for the fornix, we considered a model with one freely diffusing compartment and two anisotropic compartments.

A.1.4 Ferizi_1 and Ferizi_2 (UCL, England)

This submission uses two three-compartment models, as described in previous studies.39,41 These models consist of (1) either a Bingham distribution

of sticks or a cylinder for the intracellular compartment; (2) a diffusion tensor for the extracellular compartment; (3) an isotropic cerebrospinal fluid

(CSF) compartment. The T2 relaxation element is fitted beforehand to the (variable echo time) b = 0 measurements. The signal model is as follows:

S = S̃0

[
fi exp

(
− TE

Ti
2

)
Si + fe exp

(
− TE

Te
2

)
Se + fc exp

(
− TE

Tc
2

)
Sc

]
(A3)

where fi , fe and fc are the weights of the intracellular, extracellular and third normalized compartment signals Si , Se and Sc, respectively; the values of

compartmental T2 are indexed similarly; S̃0 is the proton density signal (which is TE-independent and obtained from fitting to the b = 0 signal). These

models emerged from previous studies.41,44 Here, however, a single white matter T2 and separate compartmental diffusivities are additionally fitted.

There is a two-stage model fitting procedure. The first step estimates the T2 decay rate of tissue separately in each voxel, by fitting a bi-exponential

model to the b = 0 intensity as a function of TE, in which one component is from tissue and the other from CSF. A preliminary analysis of voxels

fully inside WM regions shows no significant departure from mono-exponential decay; equal T2 values are then assumed within the intra and extra-

cellular compartments. When fitting the bi-exponential model, the value of T2 in CSF is fixed to 1000 ms (a more precise value of CSF is unlikely

to be estimated with this protocol). Thus, for each voxel, the volume fraction of CSF, S̃0 and T2 of the tissue are estimated. These three estimates

are then fixed for all the subsequent model fits. Then, each model is fitted using the Levenberg–Marquardt algorithm with an offset Gaussian

noise model. The model parameters obtained were similar to earlier estimates obtained using the full dataset,42 differing by between 5–10% from

the original.

A.1.5 Poot (Erasmus, the Netherlands)

This submission uses a three-compartment model, with for each compartment a different complexity of the diffusion model and an individual T2

value. This model was developed specifically for the ISBI WM challenge and is the result of iteratively visualizing different projections of the residuals

and trying to infer the maximum complexity that the rich data supports.

The first compartment models isotropic diffusion and, through the initialization procedure, it captures the fast diffusion components. The second

compartment is modelled by a second-order (diffusion) tensor and models intermediate diffusion strengths. The third compartment is model-free,

as the ADC is estimated for each direction independently. Each compartment additionally has an individual T2 value and signal intensity at b = 0,

TE = 0 (which could easily be translated into volume fractions). Hence, the complete model of a voxel in image j is given by

Sj(𝜽) =
3∑

i=1

Aie
−TEj R2,i e−bj ADCj,i =

3∑
i=1

eMi,j𝜽 (A4)

where Sj is the predicted signal intensity of image j, Ai is the non-diffusion weighted signal intensity of compartment i at zero TE, TE is the echo time, R2

is the reciprocal of the T2 relaxation time of compartment i, b = (Δ−𝛿∕3)𝛿2|G|2𝛾2, with 𝛾 = 42.5781 MHz/T, ADCj,1 = c, ADCj,2 = gT
j

Dgj, ADCj,3 = dhT
j ,

where d is a vector with the ADC value of each orientation group and hj is a vector that selects the orientation group to which image j belongs (90

groups in total). Note that hj has at most one non-zero element and that element has a value of one. As displayed in the rightmost part of Equation A4,

the model can be written as a multiplication of matrices Mi, containing all rows Mi,j, with 𝜽 = [ln A1, R2,1, c, ln A2, R2,2, D11, D12, D13, D22, D23, D33, ln A3,

R2,3, d]T, which combines all 103 parameters into a single parameter vector. All parameters are estimated simultaneously from the 3311 measure-

ments provided per voxel by a maximum-likelihood estimator that assumes a Rician distribution of the measurements and simultaneously optimizes

the noise level.59 Finally, the signal intensities of the ‘unseen’ data are predicted by substituting the estimate into Equation A4.

A.1.6 Rokem (Standford, USA): a restriction-spectrum sparse fascicle model (RS-SFM)

The sparse fascicle model (SFM)43 is a member of the large family of models that account for the diffusion MRI signal in the white matter as a com-

bination of signals due to compartments corresponding to different axonal fibre populations (fascicles) and other parts of the tissue. Model fitting

proceeds in two steps. First, an isotropic component is fitted. We model the effects of both the measurement echo time (TE) and the measurement b
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value on the signal. These are fitted as a log(TE)-dependent decay with a low-order polynomial function and a b-value-dependent multi-exponential

decay (also including an offset to account for the Rician noise floor). The residuals from the isotropic component are then deconvolved with the

perturbations in the signal due to a set of fascicle kernels, each modelled as a radially symmetric (𝜆2 = 𝜆3) diffusion tensor. The putative kernels

are distributed in a dense sampling grid on the sphere. Furthermore, restriction spectrum imaging (RSI)60 is used to extend the model, by adding

a range of fascicle kernels at each sampling point, with different axial and radial diffusivities, capturing diffusion at different scales. To restrict the

number of anisotropic components (fascicles) in each voxel and to prevent overfitting, the RS-SFM model employs the Elastic N et algorithm (EN),79

which applies a tunable combination of L1 and L2 regularization on the weights of the fascicle kernels. We used elements of the SFM implemented

in the dipy software library80 and the EN implemented in scikit-learn.81 In addition, to account for differences in SNR, we implemented a weighted

least-squares strategy, whereby each signal’s contribution to the fit was weighted by its TE, as well as the gradient strength used. EN has two tun-

ing parameters, determining (1) the ratio of L1-to-L2 regularization and (2) the weight of the regularization relative to the least-squares fit to the

signal. To find the proper values of these parameters, we employed k-fold cross-validation,43 leaving out one shell of measurement in each iteration

for cross-validation. We determined that the tuning parameters with the lowest Least Squares Error (LSE)18 provide an almost-even balance of L1

and L2 penalty with weak overall regularization. Because of the combination of a dense sampling grid (362 points distributed on the sphere) and

multiple restriction kernels (45 per sampling point), the maximal number of parameters for the model is approximately 16 300, more than the num-

ber of data points. However, because regularization is employed, the effective number of parameters is much smaller, resulting in an active set of

approximately 20 regressors.82 We have made the code to reproduce our results fully available at https://arokem.github.io/ISBI2015.

A.1.7 Eufracio (CIMAT, Mexico): diffusion basis functions for multi–shell scheme

This model is based on the Diffusion Basis Functions (DBF) model,74 a discrete version of the Gaussian Mixture Model for the sphere: ŝi =∑m
j=1 𝛼j𝜙ij + 𝜖, with ŝi = si∕s0, 𝜙ij = exp

(
− bqT

i
Tjqi

)
and Tj = (𝜒1vjvT

j
+ 𝜒2I). The DBF model is reformulated by substituting 𝜙ij and Tj: ŝi =∑m

j=1 𝛼j exp
(
−bi𝜒2gT

i
gi

)
exp

(
−bi𝜒1(vT

j
gi)2

)
+𝜖. The first exponential can be defined as a scale factor that depends on the b values, 𝛽i = exp(−bi𝜒2qT

i
qi).

In this way, the 𝛽 i factors are associated with different b values, so the new model includes information for multi-shell schemes. The coefficients 𝛼

and the shell scale factor 𝛽 are computed by solving the optimization problem:

min
𝛼,𝛽c

f(𝛼, 𝛽c; 𝜆𝛼, 𝜆𝛽 ) = ||BΦ̃𝛼 − S||2
2 + 𝜆𝛼||𝛼||1 + 𝜆𝛽 ||𝛽0

c − 𝛽c||2
2 s.t. 1T𝛼 = 1, 𝛼 ⩾ 0 (A5)

where B = diag(𝛽c),

𝛽c =
1
#C

∑
i∈C

exp
(
− bi�̂�2(qT

i qi)
)

and C is the set of indices grouped by different b values (#C is the number of elements in it). The regularization term weighted by𝜆𝛼 demands sparse-

ness and the term weighted by 𝜆𝛽 prevents overfitting. The problem in Equation A5 is solved in three steps. First, the active atoms are predicted

(𝛼i > 0) with �̃� = argmin𝛼f(𝛼, 𝛽c; 𝜆𝛼, 𝜆𝛽 ). Second, the active atoms are corrected with𝛼 = argmin{𝛼i}∶�̃�i>0f(𝛼, 𝛽c;0, 𝜆𝛽 ). Finally, the factors 𝛽c are updated

with 𝛽c = argmin𝛽c
f(𝛼, 𝛽c; 𝜆𝛼, 𝜆𝛽 ). To solve each step, the active sets algorithm for quadratic programming is used.

To train the model for the WMM’15 data, Equation A5 is solved for each voxel with the training data to find the optimal weights 𝛼j and scale

factors 𝛽c that best reproduce the training data. For this challenge, the 𝛽c factors are grouped by the 36 training shells and the method param-

eters are set by hand: 𝜆𝛼 = 0.5, 𝜆𝛽 = 0.02, 𝜒1 = 9.5 × 10−4and 𝜒2 = 5 × 10−5. To predict the unseen signal at each voxel, the reformulated

model is used with the optimal weights 𝛼j and the 12 scale factors for the unseen 𝛽c are calculated by interpolation with the 36 optimal 𝛽c of the

training data.

A.1.8 Loya-Olivas_1 and Loya-Olivas_2 (CIMAT, Mexico): Linear Acceleration of Sparse and Adaptive Diffusion Dictionary
(LASADD)

LASADD is a multi–tensor based technique to adapt dynamically the diffusion functions (DFs) dictionary to a DW–MRI signal.83,84 The method

changes the size and orientation of relevant diffusion tensors (DTs). The optimization algorithm uses a special DT expression and assumptions to

reduce the computational cost.

The one-compartment version (LASADD–1C) is based on a DBF multi–tensor model:74s∗
i
=

∑n
j=1 𝛼j𝜙i,j, where s∗

i
= si∕s0 i, 𝜙i,j = exp

(
−bigT

i
Tjgi

)
,

𝛼j > 0 and
∑n

j=1 𝛼j = 1. LASADD expresses the DT as

Tj = 𝜒1 jvjv
T
j + 𝜒2 jI, (A6)

where 𝜒{1,2}j
are scalars associated with the eigenvalues, vj is the principal diffusion direction (PDD) and I is the identity matrix. The algorithm

iterates three steps, like Aranda et al.:85,86 Predict, Correct, and Generate, until convergence. Prediction selects the relevant DFs using LASSO to

regulate the number to choose. Correction adjusts the volume fraction, size and orientation of the DTs. Taking advantage of the DT expression and

Taylor first-order series approximation of the exponential, the optimizations are reduced to bounded least-squares problems, which are solved by a

Projected Gauss–Seidel scheme. Generation controls the overestimation of fibres by adding to the basis the DTs resulting from combining two and

three DFs for the new iteration.

https://arokem.github.io/ISBI2015
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An extra refinement to the computed results, named LASADD–3C, splits each detected DF into three compartments:87 intracellular (IC), extra-

cellular (EC) and CSF. The multi-tensor model is s∗
i
=
∑n

j=1 𝛼
IC
j
𝜓i,j+

∑n
j=1 𝛼

EC
j
𝜃i,j+𝛼CSF𝜔i with

∑n
j=1

(
𝛼IC

j
+ 𝛼EC

j

)
+𝛼CSF = 1. The𝜓 i,j models the directional

IC compartment diffusion for each fibre bundle using TIC
j

= 𝜒0 jvjvT
j

. The EC compartment with hindered diffusion uses the representation (A6) for

𝜃i,j. The isotropic diffusion𝜔i uses TCSF = 𝜒3I. This stage keeps the PDDs fixed and only adjusts the 𝛼’s and 𝜒 ’s of the three compartments.

The parameters of the models were estimated using the training dataset: the b values using the equation by Stejskal and Tanner88 and the S0

values as the median of the gradient–free signals with equal echo time per voxel. The initial basis comprises 33 PDDs distributed in the unitary

sphere. The bounds 𝜒 {0,1} ∈ [1,39] × 10−4 and 𝜒{2,3} ∈ [1,9] × 10−4mm2∕s and the LASSO regularization parameter (equals 1.7) was tuned by hand

such as to provide the minimum error. The best multi-tensorial model for both algorithms was used for each voxel to predict the corresponding

unseen data.

A.2 Signal models

A.2.1 Alipoor (Chalmers, Sweden)

The diffsuion MRI signal is modelled as a fourth-order symmetric tensor as proposed by Özarslan and Mareci.89 Let gi = [xiyizi] and ai =
[z4

i
4yiz3

i
6y2

i
z2

i
4y3

i
zi y4

i
4xiz3

i
12xiyiz2

i
12xiy2

i
zi 4xiy3

i
6x2

i
z2

i
12x2

i
yizi 6x2

i
y2

i
4x3

i
zi 4x3

i
yi x4

i
]T be a gradient encoding direction and

the corresponding design vector, respectively. The diffusion signal is then described by

S(gi) = S0 exp

(
−TE

T2

)
exp(−btT ai) (A7)

where S(gi) is the measured signal when the diffusion sensitizing gradient is applied in the direction gi, S0 is the observed signal in the absence of such

a gradient, b is the diffusion-weighting factor and t ∈ R
15 contains the distinct entries of a fourth-order symmetric tensor. Note that d(gi, t) = d(gi) is

used for simplification. Given measurements in N > 15 different directions, the least-squares (LS) estimate of the diffusion tensor is t̂ = (GT G)−1GT y,

where G is an N × 15 matrix defined by G = [a1a2 · · · aN]T and yi = −b−1 ln(S(gi)∕S0). We use the weighted LS tensor estimation method in Alipoor

et al.90 to mitigate the influence of outliers.

To estimate the diffusion signal for a given acquisition protocol with TE = TEx, b = bx and 𝛿 = 𝛿x, the two non-diffusion-weighted measurements

with the closest TE to TEx (among measurements with 𝛿 = 𝛿x) are used to estimate T2 and S0 for each voxel. Then, data from the closest shell to bx

(among shells with 𝛿 = 𝛿x) are used to estimate the tensor describing the underlying structure.

A.2.2 Sakaie–Tatsuoka–Ghosh (Cleveland, USA): an empirical approach

As the extent of q space in the dataset is unusually comprehensive, we chose a simple, generic approach to gain intuition. Visual inspection suggested

use of a restricted and hindered component, each with angular variation:

Si = ATEi
(fRi + (1 − f) exp(−biDi)) (A8)

where Si is the predicted signal for a signal acquired with TEi, bi. ATEi
is the median signal at a given TE with no diffusion weighting. Fitted parameters

are f, the volume fraction of Ri, the restricted component, and Di, the diffusivity. Ri and Di are modelled as spherical harmonics with real, antipo-

dal symmetry91 with maximum degree 4. The model has 31 fit parameters for each voxel. Data were fitted using using a non-linear least-squares

algorithm (lsqcurvefit, MATLAB). Prior to the fit, data points with non-zero bvalue that had a signal higher than the median of the b = 0 signal plus

1.4826 times the median absolute deviation were excluded. Shells with a normalized median signal smaller than that of shells with lower bvalues

were also excluded. Normalization was performed by dividing by the median of the b = 0 signal with the same TE.

A.2.3 Fick (INRIA, France): a spatio-temporal functional basis to represent the diffusion MRI signal

We use our recently proposed spatio-temporal (3D+t) functional basis61 to represent the diffusion MRI signal simultaneously over

three-dimensional wave vector q and diffusion time 𝜏 . Based on Callaghan’s theoretical model of spatio-temporal diffusion in pores,92 our basis

represents the 3D+t diffusion signal attenuation E(q, 𝜏) as a product of a spatial and temporal functional basis as

E(q, 𝜏) =
Nmax∑
N=0

∑
{jlm}

Omax∑
o=0

c{jlmo} Sjlm(q, us)To(𝜏, ut) (A9)

where To is our temporal basis with basis order o and Sjlm is the spatial isotropic MAP-MRI basis29 with radial and angular basis orders j, l and m. Here,

Nmax and Omax are the maximum spatial and temporal order of the bases, which can be chosen independently. We formulate the bases themselves as

Sjlm(q, us) =
√

4πi−l
(

2π2u2
s q2

)l∕2
e−2π2 u2

s q2

× Ll+1∕2
j−1

(
4π2u2

s q2
)

Ym
l (u)

To(𝜏, ut) = exp(−ut𝜏∕2)Lo(ut𝜏)

(A10)

with us and ut the spatial and temporal scaling functions, Ym
l

the spherical harmonics and Lo a Laguerre polynomial. We calculate the spatial scaling us

by fitting an isotropic tensor to the TE-normalized signal attenuation E(q, ·) for all q. Similarly, we compute ut by fitting an exponential e−ut𝜏∕2 to E(·, 𝜏)
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for all 𝜏 . We fit our basis using Laplacian-regularized least squares in the following steps. We first denote Ξi(q, 𝜏, us, ut) = Sjlm(i)(q, us)To(i)(𝜏, ut) with

i ∈ {1 … Ncoef}, with Ncoef the number of fitted coefficients. We then construct a design matrix Q ∈ R
Ndata ×Ncoef with Qik = SNi

(A,qk)Toi
(𝜏k, ut).

The signal is then fitted as c = argminc||y − Qc||2 + 𝜆U(c) with y the measured signal, c the fitted coefficients and 𝜆 the weight for our analytic

Laplacian regularization U(c). We used generalized cross-validation93 to find the optimal regularization weighting 𝜆 in every voxel. In our submitted

results, we used a spatial order of 8 and a temporal order of 4, resulting in 475 fitted coefficients.

A.2.4 Rivera (CIMAT, Mexico): baseline method: robust regression

We regard this very simplistic model as a baseline for other model-based methods. It assumes as little information as possible from the diffusion

signal. The vector of independent variables is xi = [gi, |G|i,Δi, 𝛿i, TEi, bi], containing the gradient strength g, the echo time TE and the b value b. Given

signal si, we then estimate the parameters of the linear regression model:

s = X𝜃 + 𝜖 (A11)

where 𝜃 ∈ R23 is the unknown vector of coefficients, 𝜖 is the residual error and

X =
[
x, x|2,Δ 𝛿,Δ TE,Δ b, 𝛿 TE, 𝛿 b, TE b,1

]
is the matrix design (x|2 is obtained from squaring each element of the matrix x). To account for outliers, we estimate 𝜃 with a weighted (robust)

least-squares approach using the Lasso regularization:

𝜃t+1 = argmin
𝜃

||Wt(X𝜃 − y)||2
2 + 𝜆||𝜃||1 (A12)

where W0 is the identity matrix and each subsequent W is computed via

Wt+1 = diag
(

vt+1
i wt+1

i

)
(A13)

with outlier weighting in𝜔t+1
i

= 𝜅2∕(𝜅2 + (yi − X𝜃t+1
i

)2) through 𝜅, an arbitrary parameter that controls the outlier sensitivity. The protocol weight

vt+1
i = meanj∈Ωi

{
wt+1

j

}
and

Ωi = {j ∶ TEj = TEi, |Gj| = |Gi|}
(A14)

computes a confidence factor for the complete protocol.

Equations A12 and A13 are iterated three times. The final estimated signal is computed using (A11), using the protocol of the unseen signal.
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