
NOVEL CATALYSTS FOR THE

HYDROXYMETHYLATION OF ALLYL ALCOHOL

A CONVENIENT SYNTHETIC ROUTE TO 1, 4-BUTANEDIOL

Ine Ida Françoise Boogaerts

A Thesis Submitted for the Degree of PhD
at the

University of St Andrews

2009

Full metadata for this item is available in
St Andrews Research Repository

at:
http://research-repository.st-andrews.ac.uk/

Please use this identifier to cite or link to this item:
http://hdl.handle.net/10023/959

This item is protected by original copyright

http://research-repository.st-andrews.ac.uk/
http://hdl.handle.net/10023/959


Novel Catalysts for the

Hydroxymethylation of Allyl Alcohol

A Convenient Synthetic Route to 1, 4-Butanediol

Thesis presented to the University of St. Andrews in application

for the degree of Doctor of Philosophy

from the decision of the Examining Committee following

defense on 22nd October 2009 at 9 o’clock

by

Ine Ida Françoise Boogaerts

born 13th February 1983 in Turnhout



Academic promoter Prof. Dr. D. J. Cole-Hamilton

School of Chemistry, University of St. Andrews

External examiner Prof. Dr. C. Claver

Facultat de Química, Universitat Rovira i Virgili

Internal examiner Dr. C. S. J. Cazin

School of Chemistry, University of St. Andrews

The work described in this thesis was conducted at

School of Chemistry, University of St. Andrews

The work described in this thesis was financially supported by

Lyondell-Basell



Declaration

I, Ine Ida Françoise Boogaerts, hereby certify that this thesis, which is approximately 55.760

words in length, has been written by me, that it is the record of work carried out by me and

that it has not been submitted in any previous application for a higher degree.

I was admitted as a research student in October, 2005 and as a candidate for the degree of

Doctor of Philosophy in September, 2006; the higher study for which this is a record was

carried out in the University of St Andrews between 2005 and 2009.

date: 29/10/09 signature of candidate

I hereby certify that the candidate has fulfilled the conditions of the Resolution and

Regulations appropriate for the degree of Doctor of Philosophy in the University of St

Andrews and that the candidate is qualified to submit this thesis in application for that degree.

date: 29/10/09 signature of supervisor

In submitting this thesis to the University of St Andrews we understand that we are giving

permission for it to be made available for use in accordance with the regulations of the

University Library for the time being in force, subject to any copyright vested in the work not

being affected thereby. We also understand that the title and the abstract will be published,

and that a copy of the work may be made and supplied to any bona fide library or research

worker, that my thesis will be electronically accessible for personal or research use unless

exempt by award of an embargo as requested below, and that the library has the right to

migrate my thesis into new electronic forms as required to ensure continued access to the

thesis. We have obtained any third-party copyright permissions that may be required in order

to allow such access and migration, or have requested the appropriate embargo below.



The following is an agreed request by candidate and supervisor regarding the electronic

publication of this thesis:

Embargo on both all or part of printed copy and electronic copy for the same fixed period of 5

years on the following ground:

publication would be commercially damaging to the researcher, or to the

supervisor, or the University.

date: 29/10/09 signature of candidate

signature of supervisor



If I can stop one heart from breaking,

I shall not live in vain.

If I can ease one life of aching,

Or cool one pain,

Or help one fainting robin,

Unto his nest again,

I shall not live in vain.

(Emily Dickinson, 1830-1886)

In loving memory of

Frans Boogaerts

Jozef Poels



Table of Contents

Chapter 1 Hydroxymethylation Catalysis: A Conceptually Simple 1

Alternative to Classical Hydroformylation-Reduction Sequences

Chapter 2 Enhanced Linear-Selective Hydroxymethylation with 29

the Rhodium Complexes of Bis-(diethylphosphine) Modified

Alicyclics

Chapter 3 Enhanced Specific Activity for the Hydroformylation of 67

Allylic Alcohols via the Meta-Effect

Chapter 4 Activating Domino Hydroxymethylation via Multi- 107

Component Catalysis

Chapter 5 Hydroxymethylation Catalysis Mediated by the Rhodium 139

Complexes of Self-Assembling Heterodimers Based on DNA

Base-Pairs

Summary 173

Appendices 177

Acknowledgements 181



Table of Contents

Chapter 1 Hydroxymethylation Catalysis: A Conceptually Simple 1

Alternative to Classical Hydroformylation-Reduction Sequences

Chapter 2 Enhanced Linear-Selective Hydroxymethylation with 29

the Rhodium Complexes of Bis-(diethylphosphine) Modified

Alicyclics

Chapter 3 Enhanced Specific Activity for the Hydroformylation of 67

Allylic Alcohols via the Meta-Effect

Chapter 4 Activating Domino Hydroxymethylation via Multi- 107

Component Catalysis

Chapter 5 Hydroxymethylation Catalysis Mediated by the Rhodium 139

Complexes of Self-Assembling Heterodimers Based on DNA

Base-Pairs

Summary 173

Appendices 177

Acknowledgements 181



1

-Chapter 1-

Hydroxymethylation Catalysis:

A Conceptually Simple Alternative to Classical Hydroformylation-

Reduction Sequences

Abstract. Rhodium-catalysed hydroxymethylation has been of commercial interest since the early

1970s. Much emphasis has been placed on the development of a hydroformylation-hydrogenation

sequence, however capacity to optimise selectivity for both transformations has proved limited.

Considerable yield loss via heavy-ends formation, even under modest operating conditions, is another

limitation. An alternative scheme that effects all relevant bond-forming transformations in a single

mechanism was therefore developed. In this chapter, the development of these hydroxymethylation

pathways is reviewed. Special attention is given to their application for selective conversion of allyl

alcohol to 1, 4-butanediol.



Chapter 1

1.1 Introduction

Devising methodologies for the elaboration of relatively simple and inexpensive feedstock to

valuable homologues is the underlying theme of most transition-metal catalysed processes. The

hydroformylation of α-alkenes is thus established as a clean and selective method for homologation of 

the carbon skeleton by introducing the synthetically versatile aldehyde functionality.1 The aldehyde is

not usually the intended end-product and is typically diverted to the alcohol via reduction, the

carboxylic acid via oxidation, the amine via hydroamination or the N-acetylated amino acid via

amidocarbonylation.2 However, catalyst efficiency and process efficiency are limited by the

conventional focus on each catalytic reaction as a discrete event.

Converging both processes into a single reaction is thus appealing. This approach is

associated with improved work-up efficiency, as only one isolation and purification phase is required,

and with process efficiency, as both transformations can occur without necessity for monitoring and

intervention.3 A taxonomy of coupled catalysis was proposed by Fogg and dos Santos,4 and their

terminology allows demarcation between the different mechanisms of a catalytic transformation

(Figure 1).
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Hydroformylation-coupled catalysis is also an area of academic interest for which the reader

is referred to reviews by Eilbracht and Breit. 6, 7

1.2 Hydroxymethylation Catalysis

In conventional hydroformylation, the sporadic reduction of aldehyde products to alcohols is

a common parallel and consecutive reaction that demotes efficiency and economy by encouraging the

formation of heavy condensation products via acetalisation, aldolisation, Cannizzaro dismutation,

esterification, oligomerisation etc.8 Conversely, optimising hydroxymethylation as the predominant

catalytic pathway is of significant commercial interest as ~ 60% of aldehyde capacity is diverted to

alcohols, primarily for the polymer and the detergent industries. 5b, 8c, 9 From a fine-chemicals

perspective, hydroxymethylation could be an attractive alternative to the classical syntheses via

oxymercuration-demercuration and hydroboration-oxidation.

Hydroxymethylation is effected by tris(alkyl)phosphine-modified cobalt complexes, but their

low specific activity requires a large volume of reaction and substantial hydrogenation of the

feedstock must also be tolerated.10 The application of a cobalt system for industrial production is

further limited by the need for a high-pressure and high-temperature infrastructure. It is therefore of

interest to review applications that give a practical selectivity under mild operating conditions. The

development of ruthenium,11 platinum12 and palladium13 systems as alternatives has been limited by

the required presence of an acidic co-catalyst or a halide anion promoter which can form the

corresponding acid under the operating conditions. Rhodium complexes are of interest as they have

high reactivity, high specific activity and do not neccesitate the addition of corrosive acids.

Unfortunately, the need for highly efficient catalyst recovery has limited their use to date.8c

1. 2. 1 Auto-tandem Hydroxymethylation

In auto-tandem hydroxymethylation both hydroformylation and hydrogenation are

mediated by a single catalyst of essentially conserved structure.4 These processes are considered

sequential in terms of transformation of a given molecule of α-alkene but are essentially concurrent,14

operating spontaneously by cooperative interaction. Particular merits of this scheme include efficient

catalyst utility and minimal interaction of the catalytic species as these are similar. Against this must

be set the potential for side reactions, where the substrate can itself enter into both catalytic cycles.15

A more fundamental difficulty lies in the limited capacity to optimise selectivity for both catalyses.4,

7a, 14 Fundamentally, linear-selective hydroformylation and chemoselective C=O hydrogenation are

critical. Where the appropriate balance can be established, this methodology is exceptionally efficient.
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Homogeneous Catalyst Systems

A first example of controlled hydroxymethylation was reported by Slaugh and Mullineaux

using PnBu3/[RhCl3·3H2O] = 2/1 with sodium acetate as stabiliser.16 Similar complexes were

previously reported to be active for reduction of a C=O functionality but significantly less for

reduction of a C=C functionality.17 Application of the catalyst at 195°C and 92 bar CO/H2 = 1/2.1 in

ethanol effects 85% conversion of 1-pentene after 3 hours, partitioned as 5 mol% C6-alcohol in l/b = 5

and 93 mol% C6-aldehyde in l/b = 2, together with 2 mol% pentane from competing substrate

hydrogenation. The distribution of regio-isomers in each fraction is dependent only on the sequential

conversion simply because the linear aldehyde is more susceptible to hydrogenation than the branched

aldehyde. Extending the reaction period to 12 hours gives an alcohol/aldehyde distribution of 25/60,

with l/b = 2 for each fraction. It must be cautioned, however, that esters formed via Reppe-type

chemistry could also be significant products under these operating conditions.18

The hydroxymethylation of 1-hexene with [Rh(R)(CO)(L)2] (R = [C2H5COO]-, [C3H7COO]-,

[C7H15COO]-, [PhCH=CHCOO]- and [CF3COO]- , L = PEt3, PnPr3, PnBu3, PCy3 and POct3) was

extensively researched at British Petroleum, and subsequently reported in a series of patents.19

Table 1: Hydroxymethylation of 1-hexene with [Rh(R)(CO)(L)2].
a

L R medium
time 1-hexene-based selectivity (%)

(h) C=O (l/b) C-OH (l/b) hyd.

PEt3 [C3H7COO]- heptanes 6 6 (0/1) 92 (2.4) 2

PnPr3 [C3H7COO]- heptanes 5.5 3 (0/1) 95 (2.2) 2

PnBu3 [C3H7COO]- heptanes 6 7 (0/1) 91 (2.5) 2

PnBu3 [C2H5COO]- octanol 2 41 (0.9) 51 (7.5) 1

4 14 (0.1) 80 (3.4) 2

PnBu3 [C3H7COO]- octanol 0.5 73 (2.2) 20 (9.0) trace

4 4 (0.0) 93 (2.9) 2

PnBu3 [C7H15COO]- octanol 2 31 (0.3) 61 (4.1) 1

4 16 (0.1) 79 (2.6) 2

PnBu3 [PhCH=CHOO]- octanol 1 75 (1.8) 17 (17.0) 3

4 27 (0.3) 70 (4.4) 3

PnBu3 [HCOO]- octanol 21.5 86 (1.8) 0 (-) trace

PnBu3 [CF3COO]- octanol 4 97 (2.2) 2 (1/0) 2

PEt3 [PhCH=CHOO]- heptanes 8 3 (0.0) 95 (4.4) 2

PnBu3 [PhCH=CHOO]- heptanes 9 47 (0.9) 51 (6.3) 2

PnBu3 [PhCH=CHOO]- octanol 4 27 (0.3) 70 (2.4) 3
aConditions: 30 mL solvent, 11 mM [Rh], Rh/1-hexene =1/360, 88°C, 33 bar CO/H2 = 1/2.
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This catalyst family is able to effect the desired conversion under milder operating conditions, at

temperatures below 100°C and less than 40 bar CO/H2 = 1/2. Chemoselectivity can be optimised by

varying the reaction medium and the anionic auxiliary (Table 1). Evidently, two criteria must be met

in order to influence practical conversion of 1-hexene to the homologous alcohols. Firstly, a protic

medium should be employed, as this significantly enhances activity for hydroxymethylation.

Secondly, the rhodium catalyst must be sufficiently basic, since a trifluoroethanoate-modified catalyst

gives no alcohol products.

In an extensive survey of rhodium complexes of neutral phosphorus, nitrogen, arsenic,

antimony and sulphur auxiliaries as active hydroxymethylation catalysts, Foster and Lawrenson

recognised that basic trialkylphosphines are the preferred modifying agents as they generate strongly

nucleophilic rhodium-hydride species.20 Superior catalysts can be generated when these are

amalgamated with a chelating modifier, particularly a β-diketone,21 affording complexes of the type

[Rh(� -acac)(CO)(L)] (Table 2). A protic medium is once again shown to enhance chemoselectivity at

lower temperatures; specifically a monohydric alcohol with a carbon skeleton higher than C4 is

preferred as lower homologues tend to effect intermolecular acetalisation of the intermediate aldehyde

products. Hydroxymethylation is only observed at a sufficiently high Rh/S molar ratio, typically of the

order of 1/100-500, and high partial pressure of hydrogen in the gas feedstock, ideally in a ratio

CO/H2 < 1/1. The nature of the organic chelating auxiliary in the catalyst is another important

consideration.

Table 2: Hydroxymethylation of 1-hexene with [Rh( � -acac)(CO)(L)].a

L (CH3CO)2-� medium
time 1-hexene-based selectivity (%)

(h) C=O (l/b) C-OH (l/b) hyd.

PnBu3 � = CH heptanes 1 74 (2.1) 4 (1/0) 2

PnBu3 � = CH octanol 11 0 (-) 99 (2.4) 1

PPh3 � = CH heptanes 4.5 97 (2.2) 0 (-) 2

PnBu3 � = C(CH2CH3) heptanes 12 32 (0.1) 67 (0.8) 1
aConditions: 30 mL solvent, 10 mM [Rh], Rh/1-hexene =1/400, 85°C, 40 bar CO/H2 = 1/2.

Trialkylphosphine-modified rhodium cluster complexes in aromatic media were reported by

Smith for application in the hydroxymethylation of allyl alcohol.22 In this reference PnBu3/[Rh6(CO)16]

= 180/1 at 125°C and 63 bar CO/H2 = 1/2 in benzene gives the C4-diol products in l/b = 3, but with

high concurrent selectivity to 1-propanol from competing substrate hydrogenation.

The high solubility of rhodium complexes modified with low molar volume

trialkylphosphines in hydrocarbon media is successfully translated to supercritical carbon dioxide. In

this transport vector chemoselectivity is apparently determined by the phase behaviour of the catalytic
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system, as observed by Sellin et al. upon conversion of 1-hexene with PEt3/[Rh(OAc)2]2 (Figure 2).23

Hydroxymethylation occurs when the catalyst system is below the critical point,24 where the poor

solvating properties of the low pressure carbon dioxide phase give rise to a biphasic system. When the

solution is supercritical, however, aldehyde products are recovered almost exclusively. This suggests

that hydroformylation catalysis takes place in the supercritical phase, with tandem hydrogenation in

the liquid phase if this is present. Alternatively, hydroxymethylation can be instigated when the

catalyst system is above the critical point by addition of a fluorinated alcohol.

Figure 2. Course of allyl alcohol hydroxymethylation with PEt3/[Rh(OAc)2]2 in CO2:

(□) conversion, (◊) C7-aldehydes, (Δ) C7-alcohols.23

(Conditions: 36 mL CO2, ~ 4.6 mM [Rh], PEt3/Rh = 3/1, Rh/1-hexene = 1/47, 100°C, 40 bar CO/H2 = 1/1)

A core frustration of hydroxymethylation catalysts modified with trialkylphosphines is low

linear selectivity, typically l/b > 2.5. This is almost certainly due to these auxiliaries being classified

low in the π-acceptor strength series and small in terms of sterics.25 It is thus tempting to exploit the

hydrogenation activity of these phosphines in an architecture recognised as conducive to high

regioselectivity. Ichihara et al. synthesised a range of bis(dialkylphosphine)-substituted BISBI

analogues as the natural bite angle of this scaffold effects ee chelation in trigonal bipyramidal

geometry,26 a mode correlated with linear-selective hydroformylation. The L-L/[Rh(acac)(CO)2] (L-L

= Me-BISBI, nHex-BISBI, neoPent-BISBI and iPr-BISBI) complexes were applied for the

hydrohydroxymetylation of 1-decene in polar media (Table 3). Interestingly, catalyst modification

with high molar volume dialkylphosphine moieties significantly reduces the chemoselectivity. This

effect was associated with retarded tandem hydrogenation, so that the aldehyde products were

preferentially diverted to aldols under the relatively forcing operating conditions.27
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Table 3: Hydroxymethylation of 1-decene with L-L/[Rh(acac)(CO)2].
a

L-L L-L/Rh medium
T time 1-decene-based selectivity (%)

(°C) (h) C=O (l/b) C-OH (l/b)

Me-BISBI 5 ethanol 150 6 < 1 (0/1) 77 (4.1)
nHex-BISBI 5 ethanol 150 20 22 (1.4) 53 (5.4)

neoPent-BISBI 5 ethanol 150 20 28 (0.5) 17 (0.8)
iPr-BISBI 5 ethanol 150 30 13 (0.2) 25 (1.0)

Me-BISBI 2 ethanol 150 6 20 (0.9) 62 (3.8)

Me-BISBI 10 ethanol 150 6 7 (0.7) 64 (6.0)

Me-BISBI 5 i-propanol 150 6 < 1 (0/1) 83 (5.3)

Me-BISBI 5 thf 120 6 96 (1.2) < 1 (1/0)

Me-BISBI 5 ethanol 120 6 8(1.6) 36 (9.2)

Me-BISBI 5 ethanol 170 6 < 1 (0/1) 97 (4.1)
aConditions: 1 mL solvent, 8 mM [Rh], Rh/1-decene =1/1000, 40 bar CO/H2 = 1/1.

Higher reactivity of the linear aldehyde for aldol condensation is manifested in lower regioselectivity.

The regioselectivity of these complexes is notably below that of the parent complex, which under

analogous operating conditions affords l/b = 25. Slightly enhanced regiocontrol and chemocontrol are

achieved in a more sterically demanding medium. This solvent effect presumably arises from its

coordination to rhodium, thereby exerting hindrance in the catalyst coordination sphere and favouring

formation of the less-strained linear rhodium-alkyl-carbonyl complex.28

Alternatively, dialkylphosphine moieties can be introduced onto the periphery of a dendrimer.

A dendritic complex typically retains the chemical properties of its small molecule complex but is

modified by the steric requisite of the dendrimer architecture.29 Ropartz et al. reported that the

modification of [Rh(OAc)2]2 with diethylphosphine-functionalised polyhedral oligosilsesquioxane

dendrimers affords excellent catalysts for the hydroxymethylation of higher alkenes and

functionalised alkenes in ethanol (Table 4).30 Reaction profiles confirm the presence of two kinetic

regimes. Despite containing variable spacer units, these dendritic complexes afford comparable linear

selectivity in the hydroxymethylation of 1-octene. This implicates similar regioselective determinants

in the hydroformylation cycle. Their regioselectivity nevertheless exceeds that of the

triethylphosphine-modified catalyst, which under analogous conditions affords l/b = 2,31 suggesting

that some steric control is indeed exerted by the dendrimer architecture.

The reactivity of trivalent phosphorus nuclei in alkylphosphines makes their rhodium

complexes susceptible to deactivation under the action of impurities in the system, particularly traces

of oxygen and sulfur. Although rigorous purification of the feedstock can improve regioselectivity,32

there is an interest in developing hydroxymethylation catalysts with more chemically inert auxiliaries.
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Table 4: Hydroxymethylation of α-alkenes with dendrimer-modified [Rh(OAc)2]2.
a

L substrate medium
time conversion-based selectivity (%)

(h) conv. C=O (l/b) C-OH (l/b)

G1-16ethylPEt2 1-octene ethanol 8 > 99.9 nr 97.2 (3.1)

G1-24ethylPEt2 1-octene ethanol 8 > 99.9 nr 96.8 (3.1)

G1-24propylPEt2 1-octene ethanol 1 57.9 7.0 (nr) 50.9 (3.8)

4 > 99.9 nr 97.9 (2.9)

G1-24ethylPEt2 allyl alcohol ethanol 0.25 67.5 41 (1.6) 20 (2.6)

2 99.9 3 (0.2) 91 (2.0)

G1-24ethylPEt2 allyl alcohol thf 3 99.8 12 (0.5) 82 (2.6)

9 99.9 1 (0.2) 94 (2.3)
aConditions: 4 mL solvent, 8 mM [Rh], L/Rh = 4/1, Rh/substrate =1/200, 120°C, 40 bar CO/H2 = 1/1.

Trialkylamines and nitrogen-containing heterocycles have received particular attention as

alternative modifying agents, since the early work of Fell and Guerts showed that their rhodium

complexes effect hydroxymethylation under relatively mild operating conditions.33 These systems

were later reported to be active for selective hydrogenation of α, β-unsaturated aldehydes to the 

homologous alcohol products.34 In an extended sequence, alkane dehydrogenation over a

heterogeneous bimetallic catalyst has been integrated into the cascade reaction.35

IR studies have shown that in the presence of an amine rhodium carbonyl precursors readily

form anionic clusters:

[Rhx(CO)y+1] ↔ [Rhx(CO)y(NR3)]
n- ↔ [Rhx(CO)y(alkene)]n-.36

The observed inhibition of tandem hydrogenation at low Rh/S molar ratios indicates competitive

coordination of the amine with the alkene rather than with the aldehyde, thus it seems that

[Rhx(CO)y(alkene)]n- and [Rhx(CO)y(NR3)]
n-are independently active in the hydroformylation cycle

and the hydrogenation cycle respectively. Methodological investigations have shown that monomeric

amines affect the rate of tandem hydrogenation as a function of their concentration,33, 34, 36a but this is

not observed when polymeric amine modifiers are employed. Mizoroki et al. found that aminated

polystyrene interacts strongly with [Rh(CO)2Cl]2 to replace CO auxiliaries leading to first order

dependence in carbon monoxide instead.37

Imai reported that rhodium complexes of nitriles are also effective hydroxymethylation

catalysts.38 Full conversion of undecene is effected in 3 hours, but more forcing operating conditions

are required than when amine modifiers are employed (Table 5). Typically < 3 mol% product from

competing substrate hydrogenation is recovered.

It is worth noting that in instances where a cationic rhodium precursor is used, the promoting

effect of these bases may simply be due to more efficient formation of the active rhodium-hydride-
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dicarbonyl complex as the acid formed with the precursor counter-ion is neutralised, particularly if

this is a halide or tetrafluoroborate.

Table 5: Hydroxymethylation of undecene with L/[Rh(CO)2Cl]2.
a

L
undecene-based selectivity (%) Δpb

conv. dodecanal dodecanol (bar)

- 100.0 76 20 23

succinonitrile 100.0 16 81 7

adiponitrile 100.0 15 78 19

benzonitrile 100.0 41 56 nr

diphenylacetonitrile > 99.5 52 44 nr

acetonitrile > 99.2 72 25 nr
aConditions: 6 mM [Rh], L/Rh = 146/1, Rh/1-undecene =1/1095, 150°C, 150 bar CO/H2 = 1/1, 3 hours.
bConsumption of CO/H2.

The first examples of combinatorial hydroxymethylation systems were reported by Drent,

juxtaposing rhodium complexes of trialkylphosphines with a carbonitrile promoter in the conversion

of allyl alcohol (Table 6).39 Higher linear alkyl carbonitriles appear to be preferential for this purpose.

Additionally, utilising the carbonitrile as the reaction medium is advantageous for selective product

recovery as the diols readily separate. Successful practice does not appear to be predicated upon the

exact structure of the active rhodium species, since coordination of the carbonitrile is not precluded.

Table 6: Hydroxymethylation of allyl alcohol with L/[Rh(R)(CO)2]x in carbonitriles.a

L R, � L/Rh carbonitrile
T conversion-based selectivity (%)

(°C) 1, 4-butanediol

PnOct3 acac, 1 2.5 decane 75 40

PnOct3 Cl, 2 10 heptane 85 65

PnBu3 acac, 1 15 nonane 95 69

PnBu3 acac, 1 5 octane 75 55 (phase separation)

PnBu3 acac, 1 5 benzyl 75 inactive

P(benzyl)3 acac, 1 5 heptane 75 inactive

PEt2Ph acac, 1 10 tridecane 75 20 (phase separation)
aConditions: 10 mM [Rh], Rh/allyl alcohol = 1/345, 60 bar CO/H2 = 1/2, 5 hours.

In an extensive survey, acidic compounds were screened as promoters in combinatorial

systems with the rhodium complexes of triethylphosphine or trioctylphosphine, specifically for the

double hydroxymethylation of butadiene to 1, 6-hexanediol.40 Ideally proton ionisation occurs in the

pKa range 5-20, and in this category those promoters with a capacity for hydrogen bonding such as
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amines, thiols and alcohols are particularly preferred. It seems that the role of the promoter is to

activate the hydrogenation catalyst, possibly by a hydride transfer.

In a different approach, the quantitative hydroxymethylation of alkenylphosphines is

effected (Scheme 1).41 Due to the intramolecular chelation, regioselectivity and chemoselectivity

depend upon the number of methylene spacers between the allylic functionality and the phosphine

moiety. Additional stereocontrol is observed in the case of endo-cyclic substrates, and in a detailed

study analogues of the chelating intermediates were isolated and characterised.42

Scheme 1. Intramolecular hydroxymethylation of alkenylphosphines.
41

It is worth mentioning from the perspective of synthetic efficiency that the

hydroformylation product could also undergo stoichiometric modification prior to hydrogenation.

Hydroaminomethylation is a typical example of such convergent synthesis, and the methodology has

most recently been applied for the construction of complex organic amines43 and

azamacroheterocycles.44 Breit and Zahn developed a hydroformylation-Wittig-hydrogenation cascade

sequence for expanding the carbon skeleton of β-methylallyl o-diphenylphosphinobenzoate esters.45

In an analogous methodology a piperidine-catalysed Knoevenagel condensation with malonates, β-

ketoesters and β-diketones is incorporated instead.46 Hydroxymethylation catalysis could also be

coupled with homologation of the alcohol product by the introduction of CO units, resembling

Fischer-Tropsch synthesis.

Heterogenised Catalyst Systems

The gas-phase hydroxymethylation of lower alkenes over heterogenised bimetallic species

has been extensively explored.47 The modification of a polysilicate-supported rhodium catalyst with

molybdenum, iron, vanadium or zinc improves chemoselectivity, in that order (Table 7).48 The

hydrogen activation sites on these modified species are not inhibited by carbon monoxide adsorption

and are believed to be responsible for higher C=O hydrogenation activity. Propensity for C=C

hydrogenation decreases along the series of promoters, and the unmodified catalyst affords the highest

yield of substrate hydrogenation product. The application of cluster-derived and zirconium oxide-

supported analogues for analogous reactions has also been reported.49
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Table 7: Gas-phase hydroxymethylation of propene over M-Rh/SiO2.
a

M-Rh/SiO2 M/Rh
propene-based selectivity (%)

conv. C=O (b/l) C-OH (b/l) hyd.

Rh/SiO2 0 0.03 37 (0.0) 0.0 (-) 63

Mo-Rh/SiO2 0.5 1.27 < 1 (0.0) 32 (0.1) 68

1 0.65 < 1 (0.0) 39 (0.2) 61

V-Rh/SiO2 1 0.11 2 (0.0) 68 (0.3) 30

Fe-Rh/SiO2 1 0.17 7 (0.6) 57 (0.1) 36

Zn-Rh/SiO2 1 0.07 15 (0.5) 68 (0.4) 17
aConditions: M-Rh/SiO2 = 0.1 g, 145°C, 34 bar propene, 68 bar CO/H2 = 1/1, flow rate = 6 mL min-1, 1 hour.

Alternatively, the catalyst-support interactions can be manipulated in order to direct

hydroxymethylation. This approach was described by Sandee et al. using [Rh(CO)(N-(OMe)3Si-

propyl-Nixantphos)]+ immobilised on silica (Figure 2).50

Figure 2. Course of 1-octene hydroxymethylation with silica-immobilised

[Rh(CO)(N-(OMe)3Si-propyl-Nixantphos)]+ in toluene:

(□) 1-octene, (◊) 1-nonanal + 1-nonanol , (Δ) 1-nonanal, (×) 1-nonanol.50

(Conditions: 10 mL toluene, 7×10-1 mM [Rh], L-L/Rh = 10/1, Rh/1-octene = 1/637, 80°C, 50 bar CO/H2 = 1/1)

Under an atmosphere of syngas, the acidic silanols on the silica surface can convert the rhodium-

hydride-dicarbonyl to the rhodium-carbonyl cation by protonation and subsequent elimination of

hydrogen, and both species co-exist. Application of this system at 80°C and 50 bar syngas in toluene

effects 20% conversion of 1-octene after 2 hours, partitioned as 96 mol% C9-aldehyde in l/b = 65 and

4 mol% 1-nonanol, together with traces of octene isomers. Extended reaction periods increase the

alcohol/aldehyde distribution, by exclusive hydrogenation of the linear aldehyde product. At 98%
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conversion of 1-octene, 1-nonanol is recovered as the predominant product. It must be noted that such

a clean and selective hydroxymethylation system is quite uncommon for rhodium catalysts. Upon

addition of an alcohol or an amine, hydrogenation activity is suppressed as the acidic silanols on the

support are deactivated. This allows simple switching between the hydroxymethylation mode and

hydroformylation mode of the system, with catalyst performance retained in each.

WGSR catalysts

The application of WGSR catalysts in hydroxymethylation can be traced to the early work of

Reppe, in which basic solutions of [Fe(CO)5] were used.52 There is considerable interest in developing

this route as equilibrium thermodynamics dictate that low temperature and low pressure should favour

the conversion:

CO + H2O → CO2 + H2 (ΔHø = -41.1 kJ mol-1).53

Much attention has been paid to rhodium carbonyl clusters as WGSR catalysts because they

can generate highly nucleophilic hydride species in basic solution.54 IR analyses suggest the

nucleophilic activation of a CO moiety on [Rh6(CO)16] by water or a hydroxyl ion and subsequent

decarboxylation to [Rh6HCO)15]
-:

[Rh6(CO)16] + OH- → [Rh6(HOC=O)(CO)15]
- → [Rh6(OC=O)H(CO)15]

- → [Rh6H(CO)15]
- + CO2.

55

This anionic cluster has been acknowledged as an active catalyst for the hydrogenation of aldehydes.56

The first examples of WGSR-based hydroxymethylation were reported for 1-pentene by

Laine, using basic aqueous methanol solutions of [Rh6(CO)16].
52, 57 The rate of tandem hydrogenation

is reduced five-fold between pH 13 and pH 10 as the active cluster dimerises to [Rh12(CO)32]
2-.56 The

C6-aldehyde products are preferentially diverted to the corresponding esters under the relatively

forcing operating conditions. Further complications arise as a result of catalyst decomposition below

pH 10. Low regioselectivities suggests significant substrate isomerisation, a conclusion which is

supported by the detection of traces of 2-ethylbutanol. Interestingly, the problematic substrate

hydrogenation encountered under hydroformylation conditions does not occur here.

The addition of a strong nitrogen base to the aqueous alcoholic solution of a rhodium

carbonyl cluster can enhance activity for WGSR, and Kaneda et al. reported the efficacy of diamine-

modified and aminopyridine-modified [Rh6(CO)16] systems in hydroxymethylation of 1-octene

(Table 8).58 Comparable successes were later recorded using [Rh6(CO)16] heterogenised on an

aminated polymer, with catalysis operating in a triphasic system thus allowing for a simple work-up

procedure.59

Apparently rhodium carbonyl clusters interact strongly with small tertiary amines,60 which may be

why only hydroformylation products are recovered when the triethylamine-modified [Rh6(CO)16]

system is applied. 2-Ethoxyethanol is the preferred medium,54c with the ether functionality able to

solvate and stabilise the rhodium cluster anions reported to be active in aldehyde hydrogenation.
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These species appear to effect highly selective C=O reduction since no nonane from competing

substrate hydrogenation is recovered, however, α, β-unsaturated aldehydes undergo exclusive C=C 

reduction. This has been observed in catalysis under both 1 bar and 100 bar carbon monoxide.61

Table 8: WGSR-hydroxymethylation of 1-octene with [Rh6(CO)16] in basic aqueous ethoxyethanol.a

amine pKa

1-octene-based selectivity (%)

conv. C=O (l/b) C-OH (l/b) iso.

tetramethylpropylenediamine
(TMPDA)

10.2 95 0 (-) 84 (2.8) 16

tetramethylethylenediamine
(TMEDA)

8.9 88 26 (1.9) 58 (4.8) 16

4-dimethylaminopyridine
(DMAP)

9.7 97 1 (0/1) 83 (1.6) 16

triethylamine 10.6 42 4 (2.0) 9 (3.5) 86
aConditions: 3 mL methanol basified with amine solution (21 M) , 16 mM [Rh], Rh/1-octene =1/60, 80°C, 5 bar

carbon monoxide, 5 hours.

In another application for organic synthesis, the TMPDA-modified system effects linear-

selective hydroxymethylation of allyl alcohol under mild WGSR conditions.62 Catalysis under the

optimised conditions of 60°C, 10 bar CO and [H2O] = 200 mol L-1 gives 72% 1, 4-butanediol, 8% γ-

butyrolactone and 20% isomerisation products in the recovered solution. Exchanging a diamine ligand

for DMAP shifts the linear product distribution in preference of γ-butyrolactone. This is presumably 

formed via intramolecular cyclisation in a rhodium-acyl species,63 in which chelation of the diamine

prevents coordinating activation of the hydroxyl functionality.

1. 2. 2 Domino Hydroxymethylation

Methodological and mechanistic investigations have shown that aldehyde products do not

have to be intermediaries in a hydroxymethylation scheme.31, 64 All the relevant bond-forming

transformations can be effected in a single catalytic mechanism, in which the sequential elaboration is

a consequence of the functionality generated in the preceding step.3

Table 9: Comparative merits of classes of coupled catalysis.

multi-catalytic auto-tandem domino

work-up efficiency negligible high high

process efficiency negligible high high

catalyst utility inefficient efficient efficient

capacity to optimise selectivity high limited high

interaction of catalytic species none minimal none
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From a technical perspective such a pathway should overcome the limitations of the auto-tandem

methodology (Table 9).4

Preliminary Studies

The hydroxymethylation of 1-hexene with [RhH(PEt3)3] in ethanol was extensively studied by

MacDougall and Cole-Hamilton, and reported in a series of communications.31, 64, 65 This catalysis

superficially resembles that reported by Foster and Lawrenson,20, 21a the important difference being

that here PEt3/Rh > 2 rather than PEt3/Rh < 1.5. Solution NMR studies indicate coordination of two

triethylphosphine ligands per rhodium in the relevant complexes. Deuterium labelling confirms that

hydroxymethylation does not proceed by the auto-tandem pathway (Scheme 2). The predominant

isotopomer of 1-heptanol recovered from 1-heptanal hydrogenation ie. H/DO-CH2-CH2-CH2-C4H9 is

only observed in 10% 1-heptanol recovered from 1-hexene hydroxymethylation ie. H/DO-CHD-CH2-

CHD-C4H9.

Scheme 2. Established labelling patterns in 1-heptanol:

(a) Deuteriohydroxymethylation of 1-hexene with [RhH(PEt3)3],

(b) Deuteration of 1-heptanal with [RhH(PEt3)3] in ethanol.

Strong chemoselective sensitivity to the medium is detected and a polar medium is necessary

for quantitative conversion of 1-hexene to the homologous alcohols, 65 as similarly observed for the

auto-tandem methodology (Table 10). Evidently, the capacity of the medium as a hydrogen donor

determines which hydroxymethylation scheme is prevalent. These observations led to the proposition

that protonation of a key rhodium intermediate by an alcoholic medium occurs.67 Alcohols are

similarly exploited as the proton source in catalytic generation of diethylketone from ethane, carbon

monoxide and said alcohol.68 The presence of proton sponge in an ethanolic catalyst solution inhibits

activity and chemoselectivity only marginally, as the medium remains in relative excess.

(a)

(b)
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Table 10: Hydroxymethylation of 1-hexene with [RhH(PEt3)3].
a

medium additive (quantity)
p time conversion-based selectivity (%)

(bar) (h) C=O (l/b) C-OH (l/b)

toluene 40 2 92 (2.1) 4 (1/0)

16 92 (2.2) 1 (1/0)

thf 40 2 101 (2.4) 0 (-)

16 4 (0/1) 115 (2.9)

thf deio. water (2 mL) 40 2 46 (1.1) 50 (7.5)

16 0 (-) 100 (2.4)

methanol 30 16 0 (-) 105 (2.4)

ethanol 40 2 0 (-) 101 (3.0)

30 16 0 (-) 102 (2.3)

i-propanol 30 16 0 (-) 99 (2.4)

heptanol 40 2 0 (-) 100 (2.0)

heptanol 16 0 (-) 100 (1.8)

ethanol triethylamine (1 mL) 40 3 2 (1.0) 87 (2.4)

ethanol proton sponge (1 g) 40 2.5 4 (0.6) 78 (2.9)
aConditions: 4 mL solvent, 8 mM [Rh], Rh/1-hexene =1/300, 120°C, CO/H2 = 1/1.

The catalytic parameters are predominantly imposed by the temperature and the catalyst

concentration.31 Practical conversion occurs at 60°C with activity then following Arrhenius behaviour

up to 140°C, above which catalyst decomposition sets in. The hydroxymethylation pathway

predominates at all temperatures, but some hydroformylation occurs out-with this optimum range. A

relatively high catalyst concentration is necessary for significant chemocontrol, and ideally [Rh] ≥ 4 

mmol L-1. Hydroformylation products become progressively predominant below this limit, with a

sequential hydrogenation affording the observed alcohols. Activity and selectivity are independent of

the pressure condition in the range 20 to 60 bar for CO/H2 in the range 0.5/1 to 1/1. The catalyses

were performed in unstirred autoclaves,66 so it is highly likely that mass transport effects are limiting.

Modelling Catalytic Intermediates

Faber commented that the bond-forming transformations in a domino scheme are not readily

intercepted,69 so progressive catalytic intermediates are best replicated via stoichiometric reactions.

As an analogue of [Rh(CO-Oct)(CO)2(PPh3)2], which has been spectroscopically identified during the

[RhH(CO)(PPh3)3]-catalysed hydroformylation of 1-octene,70 the fluxional complex [Rh(CO-

Me)(CO)2(PEt3)2] was synthesised and incremental addition of ethanol to its solution was monitored

by 13C NMR spectroscopy.64 The acyl carbon resonance at δC = 238 ppm shifts downfield toward
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frequencies at which carbenic carbons are known to resonate as a function of ethanol concentration,

with ΔδC = 10.2 ppm in neat ethanol. A hydroxycarbene carbon resonance is typically observed at δC

≈ 300 ppm,71 which suggests that protonation of the acyl functionality does not occur. Furthermore,

the solution is found to be non-conducting. More probably, hydrogen-bonding between the acyl

oxygen and ethanol creates carbenic character in the interaction between the acyl carbon and rhodium

(Scheme 3).72 The similarity of the constants for this equilibrium with ethanol and trifluoroethanol can

then be rationalised as a compensation, by which the stronger hydrogen-bonding interaction between

the complex and alcohol necessitates the breakage of stronger intermolecular hydrogen-bonds

between the alcohol molecules.

Scheme 3. Modelling catalytic intermediates of domino hydroxymethylation:

(i) carbon monoxide, CD3OD, (ii) argon.

In the catalytic mechanism, however, the key intermediate is proposed to be square planar

[Rh(CO-Me)(CO)(PEt3)]. The removal of one CO auxiliary will localise a higher electron density on

the acyl oxygen through inductive effects, thus increasing its susceptibility to protonation. Upon

passing argon through a methanolic solution of [Rh(CO-Me)(CO)2(PEt3)2], the complex

[Rh(=C{OH}Me)(CO)2(PEt3)2] was generated.31 The acyl carbon resonance shifts downfield to δC =

304 ppm, consistent with protonation of the acyl functionality and the existence of a rhodium-

hydroxycarbene intermediate. Carbenic complexes were previously recognised as important in the

mechanisms of alkene metathesis,73 palladium-catalysed copolymerisation of propene and carbon

monoxide,74 and ruthenium-catalysed hydrogenation of carbon monoxide.67a

The mechanism for domino hydroxymethylation of 1-hexene was proposed on the basis of

these stoichiometric reactions, and is consistent with the deuterium labelling pattern of 1-heptanol

previously observed (Scheme 4). The 18-electron rhodium-hydride-carbonyl i is prepared in situ from

[RhD(PEt3)3] under a CO atmosphere, from which the active 16-electron rhodium-hydride-carbonyl ii

is formed via dissociation of triethylphosphine. Coordination of 1-hexene followed by hydride

migration gives the rhodium-alkyl-carbonyl species iii. Coordination of carbon monoxide and

subsequent migratory insertion leads to the rhodium-acyl-carbonyl complex iv. Protonation of acyl

oxygen in iv by ethanol then affords the cationic rhodium-hydroxycarbene v countered by the

ethoxide anion. The first oxidative addition of deuterium is followed by reductive elimination of the

isomeric alcohol products, and the second by elimination of ethanol from the catalyst to recycle the

active species i
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Scheme 4. Mechanism for domino hydroxymethylation of 1-hexene with [RhD(PEt3)3] in ethanol.

Upon Chemoselectivity

It has been demonstrated that the complexes of triarylphosphines, phosphates and phosphites

are insufficiently basic to function as hydroxymethylation catalysts.25, 32 Conversely, a

trialkylphosphine-modified catalyst does not necessarily effect the selective conversion of an α-alkene 

to the homologous alcohols (Table 11).27b, 31

Table 11: Hydroxymethylation of with L/[Rh(OAc)2]2 in ethanol.a

L
p conversion-based selectivity (%)

(bar) C=O (l/b) C-OH (l/b) acetals

PMe3 48 trace 99 (2.5) trace

PEt3 40 0 (-) 101 (3.0) 0

PnBu3 44 trace 106 (2.4) trace

PiBu3 40 74 (1.4) 22 (2.4) 2

PiPr3 52 80 (1.1) 19 (2.3) 1
aConditions: 4 mL ethanol, 8 mM [Rh], L/Rh = 3/1, Rh/1-hexene = 1/300, 120°C, CO/H2 = 1/1, 16 hours.
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A model study on [Rh(Me)(CO)(PiPr3)2] has shown that under a carbon monoxide atmosphere

[Rh(CO-Me)(CO)3(P
iPr3)] is exclusively formed, with the acyl functionality and the tri(iso-

propyl)phosphine ligand mutually trans in the axial sites of the trigonal bipyramid.27a The addition of

50% methanol to a thf solution of this complex was monitored by 13C NMR spectroscopy. The acyl

carbon resonance shifts only 4 ppm downfield, confirming insufficient electron density is localised on

the acyl oxygen to allow interaction with the hydroxyl proton and function of the hydroxymethylation

mechanism (route 2, Scheme 5). Rather, oxidative addition of hydrogen and reductive elimination of

the aldehyde takes place (route 1, Scheme 5). Similar observations are reported for analogous

modelling on [Rh(Me)(CO)(PiBu3)2], although some formation of [Rh(CO-Me)(CO)2(P
iBu3)2] is

detected presumably because the secondary carbon atom is further removed from the rhodium.27b

Scheme 5. Chemoselective determination in domino hydroxymethylation.

L = CO → route 1, L = PR3 → route 2. 

1. 3 Allyl Alcohol Hydroxymethylation: A Route to 1, 4-Butanediol

It is of course of interest to extend this catalysis to more challenging substrates. Indeed,

[RhH(PEt3)3] in ethanol reportedly catalyses highly selective conversion of styrene to 2-

phenylpropan-1-ol (with traces of polymeric products) and of 3, 3-dimethylbutene to 4, 4-

dimethylpentan-1-ol, with similar regioselectivities noted upon their hydroformylation.31, 75

Analogous conversion of allyl alcohol to C4-diols is of particular interest as the hydroxyaldehyde

products eliminated from its hydroformylation pathway are highly reactive with respect to

dehydration, acetalisation and aldol condensation, and thus costly in terms of atom economy.76 Strong

selectivity for either regio-isomer is also important because the boiling points of 1, 4-butanediol and

2-methyl-propane-1, 3-diol are high and in close range, making for an intensive separation process.77
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1. 3. 1 Constructive Commodity Products78

1, 4-Butanediol is a versatile intermediate in the chemical industry. It is widely used as a

cross-linking agent for urethane polymers, including thermoplastic polyurethanes, cast elastomers and

microcellular elastomers, and for thermoplastic polyester polymers, specifically polybutylene

terephthalate and copolyester elastomers. The tough elastomeric network of these thermoplastics

relies on the crystalline domains provided by 1, 4-butanediol. 1, 4-Butanediol is also used as chain

extender in oxidation resistant polyester plasticers and flexible copolyester hot-melt adhesives.

Approximately 35% of 1, 4-butanediol is converted to thf as a solvent for polyvinyl chloride

adhesives and as a precursor to the polyether diols poly-thf®, adipate and polycarprolactone. Poly-

thf® is used in the formulation of elastomeric fibres such as Spandex and the thermoplastic elastomer

Hytrel.

1, 4-Butanediol may also be diverted to furanone products. Dehydration affords γ-

butyrolactone, which has application as a speciality polymer solvent and as a precursor to N-

methylpyrrolidone, a replacement for chlorinated solvents, and N-vinylpyrrolidone, an intermediate in

the formulation of foundry resins and certain herbicides.

Smaller volume applications include formulation as 1, 4-butanediol dimethanesulfane in

Myleran®, a chemotherapeutic agent to treat chronic myelocytic leukemia, and reaction with

phosgene to yield chloroformates.

The applications of 2-methylpropane-1,3-diol are more limited for which the reader is

referred to the hpv-review.79

1. 3. 2 Commericial Technologies

Although 1, 4-butandiol has a relatively modest market with worldwide production in 2008 at

1 million metric tonnes,80 several commercial technologies have been developed (Table 12).81 As

relevant to this research the propylene-oxide technology for 1, 4-butanediol production,

commercialised by Lyondell-Basell in 1990, is described in detail.82

Propylene oxide is isomerised to allyl alcohol via the FMC-Progil process which employs a

lithium phosphate catalyst (280°C, 10 bar). The hydroformylation catalyst is a DIOP-modified

rhodium species to which a trace of DPPB is added, Rh/DIOP/DPPB = 1/75/0.2. The presence of

DPPB elegantly averts catalyst poisoning by acyl intermediates or methacrolein. The high reactivity

of allyl alcohol allows operating conditions to be kept mild, also effecting suppression of heavy-ends

formation (60 to 65°C, 2 to 2.5 bar CO/H2 ≈ 1/4). Starvation of carbon monoxide is prevented by 

expeditious recycling of the gas feedstock. The reaction is monophasic, with the catalyst components

suspended in toluene.
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Multi-stage extraction with water (30°C, water/toluene (v/v) = 1) allows recovery of the

hydrophilic hydroxyaldehyde products in the aqueous phase and recycling of the apolar catalyst in

the organic phase, typically with rhodium leaching below 10 ppb. However, some bleed of the

catalyst phase is necessary in order to remove the less polar heavy-ends and also oxidised DIOP that

will accumulate in the organic recycle. Raney nickel-catalysed hydrogenation of the aqueous extract

of 4-hydroxybutanal and 2-methyl-3-hydroxypropanal gives the corresponding diols, together with

traces of heavy-ends and nickel (60-80 °C, 9-18 bar). The nickel is precipitated by basifying the

product solution to pH 8.5, and the water, together with any residual hydroxyaldehyde, is removed by

distillation at 100°C. The diols are isolated from the high-boiling heavy-ends by distillation at 180°C,

and a subsequent fractional distillation then separates the regio-isomers.

Lyondell-Basell operates this technology in a 55 kilo-tonne per annum capacity in

Channelview, USA, together with a 126 kilo-tonne per annum capacity in Rotterdam, the

Netherlands. For a description of the continuous-flow process equipment used, the reader is referred

to the original patent by Matsumoto et al.76

1. 3. 3 Domino Hydroxymethylation of Allyl Alcohol

In protic media, the rhodium complexes of trialkylphosphines effect the domino

hydroxymethylation of allyl alcohol.83 Expectedly, 1, 4-butanediol is the exclusive linear product, but

surprisingly 2-methylpropanol predominates as the branched isomer. Product analysis over the course

of catalysis has shown that 2-methylpropanol is formed via 2-methylpropanal (Figure 3).83b

Figure 3. Course of allyl alcohol hydroxymethylation with PEt3/[Rh(OAc)2]2 in ethanol:

(□) 1, 4-butanediol, (◊) 2-methylpropanol, (Δ) 2-methylpropanal, (×) 1-propanol.

(Conditions: 4 mL ethanol, 8 mM [Rh], PEt3/Rh = 11/1, Rh/allyl alcohol =1/300, 120°C, 40 bar CO/H2 = 1/1)

0

10

20

30

40

50

60

70

0 1 2 3 4 5

y
ie

ld
(%

)

CO/H2 pressure ratio



Chapter 1

22

Formally this product arises from anti-Markovnikoff addition of methane across the C=C

functionality in allyl alcohol, so that a conjugation-driven dehydration from either rhodium-(2-

methylhydroxypropanoyl) or rhodium=(2-methylpropenediol) is necessary for its formation.

Deuterium labelling is consistent with a mechanism in which the 2-methylpropanal is derived via

enol-keto tautomerisation of 2-methyl-1-propenol,83a and on this basis a catalytic pathway for the

branched-selective domino hydroxymethylation of allyl alcohol was proposed (Scheme 6).

Formation of 1, 4-butanediol and 2-methylpropanol as the linear and branched isomers can be

considered advantageous as their boiling points are apart sufficiently to facilitate fractional distillation

of a mixture.77 Nevertheless, the consideration of 2-methylpropanol as a low-value product places

stronger emphasis on a linear-selective transformation, which is a prominent limitation of this current

methodology.83b

Scheme 6. Mechanism for branch-selective domino hydroxymethylation of

allyl alcohol with PEt3/[Rh(OAc)2]2 in ethanol.
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The high activity for allyl alcohol isomerisation and hydrogenation, increasing at lower

CO/H2 pressure ratios, and the ease of catalyst deactivation are other core frustrations, and therefore a

brief review is dedicated to each.

(1) Substrate isomerisation

The isomerisation of allyl alcohol to 1-propanal is driven by the thermodynamic gain in

carbonyl formation, which renders the equilibrium effectively irreversible:

CH2=CH2CH2OH → CH3CH2CH=O (ΔHø = -125 kJ mol-1).84

Although the double bond migration is generally accepted to proceed either via a metal

hydride addition-elimination mechanism or via a π-allyl metal-hydride mechanism more 

extensive isomerisation than unfunctionalised alkenes has led to the postulation of a third

mechanism invoking chelation of the allylic alcohol.85 From the commercial perspective, the

isomerisation of allyl alcohol represents a yield loss which can be adversely manifested in the

process economics.

(2) Substrate hydrogenation

The hydroxymethylation catalysts exhibit strong capacity for hydrogenation, which under

controlled conditions can be applied for the direct synthesis of alcohols.8, 9, 86 A sufficiently

high vapour pressure for gas phase catalysis makes it difficult to suppress hydrogenation of

the C=C functionality in allyl alcohol,61 which represents a yield loss.

(3) Catalyst degeneration

Under hydroformylation conditions catalyst deactivation is primarily the consequence of

poisoning by α, β-unsaturated aldehydes such as methacrolein.87 More generally, oxidative

addition of the C-O bond in allyl alcohol to rhodium aggravates oxidation of the coordinated

phosphine ligand.88

1. 4 Outline of Thesis

The current demands for linear alcohol products cannot be satisfied by the available

hydroxymethylation methodologies. The development of novel catalytic strategies is therefore

imperative. Herein are described a number of such approaches, specifically for the selective

conversion of allyl alcohol to 1, 4-butanediol.

Chapter 2 describes the development of a versatile synthetic route to modular

bis(diethylphosphine)-modified carbocyclic ligands. Their chelation modes in the rhodium-hydride-

dicarbonyl complex are identified by high pressure NMR spectroscopy and compared with that of the

triethylphosphine-modified complex. The application of these rhodium species for the

hydroxymethylation of allyl alcohol, and their compatibility with aqueous biphasic catalyst recycling

is discussed. Up to 53 mol% selectivity to 1, 4-butanediol was attained.
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Recent literature reports have shown that bis(3, 5-dimethylphenyl)phosphine-modified

chelates significantly improve the activity of their rhodium complexes for linear-selective

hydroformylation of allyl alcohol. In Chapter 3, the source of this meta-effect and its influence on

catalyst performance are assessed. The physicochemical characteristics of hybrid triarylphosphines

and their coordination behaviour with rhodium(I) precursors under nitrogen are determined and

compared. A semi-empirical rate model for the hydroformylation of allyl alcohol with [RhH(CO){(3,

5-Me2Ph)3P}3] and recyclability of this catalyst are discussed. Selectivity to linear

hydrodroxyaldehyde derivatives reached 96 mol%. The application of [RhH(CO){(3, 5-Me2Ph)3P}3]

for highly selective hydroformylation of 1, 1-bis(p-fluorophenyl)-2-propenol to 5, 5-bis(p-

fluorophenyl)tetrahydrofuranol is described in context of a new synthetic route to the neuroleptic

Fluspirelen.

The application of mixed-ligand catalysis is presented in Chapter 4, using systems based on a

bis(diarylphosphine) chelate/triethylphosphine composition. The coordination behaviour of the mixed

ligands with rhodium(I) precursors under nitrogen and syngas and the performance of the mixed-

ligand system in allyl alcohol hydroxymethylation are discussed. The highest observed selectivity to

1, 4-butanediol is 66 mol%. The influence of triethylphosphine on selectivity is investigated by

selective additive experiments and deuterium labelling, giving some insight into the catalytic

pathway.

The extension of a supramolecular methodology based on adenine-thymine base paIRing is

presented in Chapter 5. Hetero-combinatorial assembly of the platforms and the rhodium chemistry of

the heterodimers is investigated by a range of NMR spectroscopic methods. The performance of the

heteroleptic rhodium catalysts in allyl alcohol hydroxymethylation is discussed. Although selectivity

to 1, 4-butanediol can reach 73 mol%, these species are sensitive to the operating conditions.
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-Chapter 2-

Enhanced Linear-Selective

Hydroxymethylation with the Rhodium Complexes

of Bis-(diethylphosphine) Modified Alicyclics

Abstract. Complexes of the type [RhH(CO)2(L-L)] (L-L = trans-1, 2-bis (diethylphosphinomethyl)

cyclohexane (7a), trans-1, 2-bis-(diethylphosphinomethyl) cyclopentane (7b) and trans-1, 2-bis-

(diethylphosphinomethyl) cyclobutane (7c)) adopt predominantly ea geometry, which effects domino

hydroxymethylation as the primary catalytic scheme. An increasingly flexible chelate ring in the order

7c < 7b < 7a led to simultaneously enhanced activity and inhibited regioselectivity. These catalysts

could be recycled via biphasic separation with high efficiency, the small loss ascribed to catalyst

poisoning by methacrolein.
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2. 1 Introduction

The DIOP ligand has been of interest for applications that require the geneneration and

stabilisation of an asymmetic catalyst since its preparation was first reported by Dang and Kagan in

1971 (Figure 1).1 Previous reports on asymmetric hydroformylation quoted the use of chiral

heterogeneous catalysts2 or homogeneous precursors modified with chiral monophosphines,3 but

relatively low optical inductions were observed. DIOP-modified

rhodium and platinum-tin chloride complexes have been applied

with comparative success in the asymmetric hydroformylation

of prototypical alkenes.1a, 4, 5 This chelate is of keen interest as it

can be easily tuned for enchanced selectivity or catalyst recovery

by modifications in the phosphorus moeity and in Figure 1. DIOP ligand.

the dioxolan ring.6

Maki et al. first explored the application of DIOP-modified rhodium as a catalyst for the

hydroformylation of allyl alcohol, and reported excellent regioselectivity.7 In subsequent research by

Lyondell-Basell significant suppression of C3-product formation was observed,8 presumably because

the C2-symmetry element of the ligand minimises the number of potential substrate-catalyst

arrangements thereby eliminating competing pathways. Improved linear-selective hydroformylation

appears to be substrate specific however, and only minor enhancements have been observed upon

hydroformylation of 1-hexene and 1-octene.9, 10

This intimate lock-and-key relationship between DIOP and allyl alcohol stimulated our

exploration of chiral diphosphines based on alternative alicyclic scaffolds, as related catalysts

frequently display a continuum with respect to activity and selectivity. Thus, rhodium modified with

trans-2, 3-bis(diphenylphosphinomethyl)bicyclo-[2, 2, 1] heptane or with trans-2, 3-

bis(diphenylphosphinomethyl)-bicyclo-[ 2, 2, 1] hept-5-ene catalyses the hydroformylation of allyl

alcohol with comparable regioselectivity and chemoselectivity.7c

Figure 2. Chiral carbocyclic-based diphosphines 1-3.

In this chapter we report the synthesis of 1-3, which have a modular scaffold configuration

but are essentially isoelectronic (Figure 2). The considerations were initially examined by molecular

modelling, and then confirmed by high pressure NMR spectroscopy of their chelated rhodium(I)

O

O

PPh2

PPh2
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species. The application of these complexes in hydroxymethylation catalysis was investigated, and

their recovery and recyclability is described. Mechanistic inferences are made on the basis of

deuterium labelling studies.

2. 2 Synthesis

All three ligands are synthesised by the same synthetic route (Scheme 1).

COOH

COOH

Cl

Cl

P(NEt2)2
.BH3

P(NEt2)2
.BH3

PEt2

PEt2

PEt2.BH3

PEt2.BH3

i, ii

ClP(NEt2)2
.BH3

iii

iv

vi

4b

6b 2

PCl2.BH3

PCl2.BH3

v

5b

Scheme 1. Retrosynthesis of 2:

(i) LiAlH4, -10°C→80°C, thf, (ii) SOCl2, 90°C, neat, (iii) Li/naphthalene,

-75°C→ambient T, thf, (iv) gaseous HCl, ambient T, Et2O, (v) EtMgBr, 0°C →70°C, 

(vi) HBF4·O(CH3)2, ambient T, CH2Cl2.

The reduction of commercially available trans-1, 2-cycloalkane dicarboxylic acid to trans-1,

2-cycloalkanedimethanol is achieved with 2.3 equivalents lithium aluminium hydride, and

subsequent reaction with excess thionyl chloride gives the trans-1, 2-bis-(chloromethyl)cycloalkane in

74-82% yield after bulb-to-bulb distillation. Subsequent nucleophilic substitution of the dichloro-

derivatives was found to proceed more cleanly than that of the difluoro and bis(toluenesulfonyl)

analogues.

Treatment of bis-(diethylamino)chlorophosphine with 1.2 equivalents BH3·thf furnishes bis-

(diethylamino)chlorophosphine borane as a viscous oil. Purification is effected by eluting through a

short column of silica gel to give 84% yield, as all attempts at column chromatography were met with

decomposition. Effective lithium/chloride exchange is accomplished by the addition of 2 equivalents

lithium naphthalenide, generated from metallic lithium and a stoichiometric amount of naphthalene.

The orange solution of lithiated bis-(diethylamino)phosphine borane is found to be ~ 96% pure by

31P{1H} NMR spectroscopy.11
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Lithiated bis-(diethylamino)phosphine borane is quenched with 0.5 equivalents trans- 1, 2-

bis-(dichloromethyl) cycloalkane. Nucleophilic substitution with lithium bis-(diethylamino)phosphide

led to intramolecular ring closure,12a and the phosphonium chloride thus formed was found to be

resistant to reduction by sodium acetate. Attempted ring opening by addition of excess lithiated

phosphide furnished the heterocyclic ylid,12b probably by proton abstraction from a bridging

methylene. The C2-symmetrical trans-1, 2-bis-{(diethylamino)phosphinomethyl} cycloalkane borane

complex (4a-c) is obtained as white crystals in 71-75% yield following column chromatography.

Saturation of an ethereal solution with hydrochloric acid furnishes the trans- 1, 2-bis-

(dichlorophosphinomethyl) cycloalkane borane (5a-c), characterised in situ, which is treated directly

with 4 equivalents ethyl magnesium bromide to give the trans-1, 2-bis-(diethylphosphinomethyl)

cycloalkane borane (6a-c). The residue is then purified by flash chromatography affording 57-69% of

the compound as white solid.

Surprisingly, the adducts were found to be resistant to aminolysis by excess diethylamine,

triethylamine, morpholine and 1, 4-diazabicyclo[2.2.2]octane.13 However, deprotection could be

achieved by stirring with a 15-fold excess fluoroboric acid dimethyl ether complex. All attempts at

traditional purification were unsuccessful. The oxide impurities were found to be insoluble in pentane

and spectroscopically pure samples are obtained by washing the crude product with pentane, then

decanting from the impurity sludge. 1-3 are thus recovered as viscous colourless oils in 44-51% yield.

2. 3 Theoretical Considerations

In order to approximate the influence of carbocyclic ring structure on natural bite angle,14 Rh-

1, Rh-2 and Rh-3 fragments were modelled. Initial conformations were calculated from the

crystallographic structure of [Rh(acac)(DIOP)]15 using the PM3(tm) method as implemented in

SPARTAN SGI,
16 and geometry optimisations were finalised by eigenvector following as implemented

in GAUSSIAN 98.17

1 2 3

βn (°): 98.7 101.4 102.9
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The molecular model indicates that the natural bite angle is less than 103° in all cases,

therefore a preference for ea chelation in trigonal bipyramidal geometry is expected. An ea rhodium-

acyl-dicarbonyl complex endows the acyl moiety with the full σ-donor capacity of a trans phosphorus

and should therefore promote its susceptibility to protonation by the solvent, effecting domino

hydroxymethylation. In the ee geometry the trans site is occupied by a strong π-acceptor CO auxiliary 

and the electronic effect might be diluted.

2. 4 Rhodium(I) Chemistry Under Syngas

The influence of carbocyclic ring structure on the formation of rhodium(I) complexes was

investigated by high pressure NMR spectroscopy, using triethylphosphine as a non-chelating

reference (Table 2). The species were generated in situ from [Rh(acac)(CO)2].

Table 2: HP-NMR data for the rhodium(I) complexes of 1, 3 and PEt3 under syngas in d8-toluene.a

complex L-L

31P{1H} 1H (hydride region)

δ (ppm) 1JRh-P (Hz) δ (ppm) 1JRh-H (Hz) 2JP-H (Hz) 2JP-H (Hz)

[RhH(CO)2(L-L)] 1 d. 22.7 114 dt. -9.2 11.8 52.6 2.1, 105.2

3 d. 12.4 117 dt. -9.6 8.7 39.2

PEt3 d. 22.1 122 td. -10.1 5.8 14.8

[Rh(CO)2(L-L)]2 1 d. 7.3 157

3 d. -0.41 158

[Rh(CO)(L)3]2 PEt3 d. 18.2 95
aConditions: 1.5 mL d8-toluene, 12.9 mM [Rh], L-L/Rh = 2/1, 40°C, 40 bar CO/H2= 1/1.

1. The formation of [RhH(CO)2(1)], a resting state under hydroformylation conditions, is

confirmed after 15 minutes at 40°C. The hydride signal is observed as a doublet of triplets at

δH = -9.4 ppm in the 1H NMR spectrum, with 1JRh-H = 11.8 Hz and 2JP-H = 52.6 Hz (Figure 3a). Small

cis

phosphorus-hydride couplings, usually in the range 1-16 Hz, are reported for rhodium-hydride-

dicarbonyl complexes with ee geometry.11, 18 Species with an ea configuration display a large trans

phosphorus-hydride coupling in the slow exchange limit, usually in the range 90-120 Hz.11, 19 The

intermediate triplet coupling observed in the present case therefore suggests a time-averaged cis/trans

relationship between the two phosphorus nuclei. De-resolution of the cis coupling at -40°C is

manifested in the broadening of the central resonance. The slow exchange limit is reached at -80°C,

with the discrete trans coupling resolved as 2JP-H = 105.2 Hz and the discrete cis coupling is 2JP-H =

2.1 Hz. The ee/ea equilibrium ratio is thus calculated to be 5/95 (Equation 1).2
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The 31P{1H} NMR spectrum  exhibits a characteristic doublet at δP = 22.7 ppm, with 1JRh-P = 114 Hz

(Figure 3b). Broadening of this signal is observed at -80°C and attributed to a time-averaged C2-

symmetry of the chelate ring. This assignment is consistent with NMR analyses of similar

compounds.21 The two equatorial CO auxiliaries give rise to a sharp singlet at δC = 190.9 ppm in the

13C{1H} NMR spectrum (Figure 4).

(a) (b)

Figure 3. HP-NMR spectra of [RhH(CO)2(1)]:

(a) 1H NMR spectrum of hydride region at 40°C (lower), -60°C (centre) and -80°C (upper),

(b) 31P{1H} NMR spectrum at 40°C (lower) and -80°C (upper).

The doublet resonating at δP = 7.3 ppm in the 31P{1H} NMR spectrum displays a complex

pattern consistent with an AA’A’’A’’’XX’ spin system, which is ascribed to the formation of the

[Rh(CO)(1)(μ-CO)]2 dimer.22 Fast site exchange between the bridging and terminal carbonyls is

manifested as a single broad resonance at δC = 225.7 ppm in the 13C{1H} NMR spectrum, between the

usual positions for a terminal CO (180-200 ppm) and a bridging CO (230-240 ppm) auxiliary. At

temperatures below 25°C it is no longer possible to observe the fine structure.

Figure 4. HP-13C{1H} NMR spectrum of rhodium(I) complexes based on 1 at 40°C.
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The formation of [RhH(CO)(1)(η1-1)] is evidenced by a doublet of triplets at δP = 78.6 ppm,

with 1JRh-P = 109 Hz and 2JP-P = 67 Hz, a doublet of doublets at δP = 12.7 ppm, with 1JRh-P = 103 Hz and

2JP-P = 67 Hz, and a singlet at δP = -23.4 ppm in the 31P{1H} NMR spectrum. A 1H/31P-HMQC NMR

sequence correlates these signals with the broad resonance at δH = -10 .5 ppm in 1H NMR spectrum.

Irreversible dissociation of this complex is noted below 8°C, which could be responsible for the

observed colour change of the solution from orange to red on cooling. It is surprising that an AMTX

spin system is observed, but the AB2X spin system reported for analogous systems is not detected.23

3. The [RhH(CO)2(3)] complex is characterised by a doublet of triplets at δH = -9.7 ppm in the

1H NMR spectrum, with 1JRh-H = 8.7 Hz and 2JP-H = 39 Hz, after 20 minutes at 40°C (Figure 5a). The

dynamic equilibration between the ee and ea geometries could not be frozen at -60°C, which suggests

that the energy difference between these isomers is as low as 8.38 kJ mol-1.20 The discrete phosphorus-

hydride coupling constants cannot be determined, so it is most accurate to define a maximum and a

minimum ee/ea equilibrium ratio at each temperature using -2 and +2 Hz as limits of the cis coupling

and assuming trans 2JP-H = 105 Hz: at -60°C (ee/ea)max = 78/22 and (ee/ea)min = 76/24, at 25°C

(ee/ea)max = 77/23 and (ee/ea)min = 75/25 and at 80°C (ee/ea)max = 75/25 and (ee/ea)min = 73/27. The

doublet at δP = 12.4 ppm, with 1JRh-P = 117 Hz, is assigned as the corresponding signal in the 31P{1H}

NMR spectrum (Figure 5b). Broadening of this signal is noted at -60°C.

(a) (b)

Figure 5. HP-NMR spectra of [RhH(CO)2(3)]:

(a) 1H NMR spectrum of hydride region at 40°C (lower) and -60°C (upper),

(b) 31P{1H} NMR spectrum at 40°C (lower) and -60°C (upper).

Formation of the carbonyl-bridged rhodium dimer is confirmed by the apparent doublet at

δP = -0.41 ppm in the 31P{1H} NMR spectrum, with 1JR-Ph = 158 Hz (Figure 6). The discrete coupling

constants are obtained from the simulated NMR spectrum as 1JRh-P = 157 Hz, 3JRh-P = 8 Hz, 2JP-P = 46
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Hz, 4JP-P = 5 Hz. It is demonstrated that higher temperatures promote formation of the mononuclear

complex at the expense of [Rh(CO)(3)(μ-CO)]2. This corresponds with the reported formation of the

dimer by exothermal loss of hydrogen.24

Figure 6. HP-31P{1H} NMR spectrum of [Rh(CO)(3)(μ-CO)]2 at 40°C: observed, simulated (reverse).

Triethylphosphine. By reference to earlier reports,25 the presence of [RhH(CO)2(PEt3)2] is

confirmed by the triplet of doublets at δH = -10.1 ppm in the 1H NMR spectrum, with 1JRh-H = 5.8 Hz

and 2JP-H = 15 Hz, and the doublet at δP = 22.1 ppm in the 31P{1H} NMR spectrum, with 1JRh-P = 122

Hz (Figure 7).

(a) (b)

Figure 7. HP-NMR spectra of the rhodium(I) complexes based on triethylphosphine:

(a) 1H NMR spectrum of hydride region at 40°C (lower) and 80°C (upper),

(b) 31P{1H} NMR spectrum at 40°C (lower) and 80°C (upper).

The 31P{1H}NMR spectrum establishes [Rh(CO)(PEt3)3]2 as the main competing species from

the strong doublet at δP = 18.2 ppm, with 1JRh-P = 95 Hz.25 The dimer is presumably formed by loss of
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[RhH(CO)2(PEt3)2], [Rh(CO)(PEt3)3]2 and free triethylphosphine at higher temperatures.

Fluxional processes in [RhH(CO)2(1)]. A simultaneous bending motion of the hydride and

CO auxiliaries in [RhH(CO)2(1)] can effectively interconvert the equatorial and axial phosphorus

nuclei without need for the two successive interconversions via the high-energy intermediate

prescribed by Berry-type rotation (Figure 8).26 This rearrangement is also more credible in

consideration of the favoured ea chelation and inflexible nature of 1.27

(a) (b)

Figure 8. Phosphorus exchange processes in an ea geometry: (a) e-a phosphorus exchange, (b) Berry rotation.
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Figure 9. Intramolecular phosphorus exchange in [RhH(CO)2(1)]

(a) Eyring plot, (b) 1H NMR spectra (-80 to 22°C) and calculated exchange rates.

Rate constants for the exchange process were determined by dynamic line-shape analyses of

MR and simulated 1H NMR spectra over the temperature range -80 to 22°C,28 and are

� = �
� � �

ℎ
� � �

∆ �
� � � �

� ∆ �
� � � (Equation 2)
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constructed as an Eyring plot (Figure 9). The enthalpy of activation and entropy of activation are thus

calculated to be ΔHǂ = 45.78 kJ mol-1 and ΔSǂ = 0.45 J K-1 mol-1 (Equation 2). The small entropy of

activation is characteristic of an intramolecular rearrangement. 27, 29 This renders the activation

barrier relatively insensitive to the temperature condition, for example ΔGǂ
293K = 45.65 kJ mol-1 and

ΔGǂ
333K = 45.63 kJ mol-1.

The exchange process in [RhH(CO)2(3)] cannot be analysed in such detail because the

extensive line-broadening at lower temperatures, 11.6 Hz relative to 2 Hz, introduces a significant

error into rate constant determination.

The complex [RhH(CO)2(1)] provides an example of the trans fusion of cyclohexane to

cycloheptane.   The symmetrical doublet at δP = 22.7 ppm in the 31P{1H} NMR spectra corresponds to

a dynamic equilibrium between different conformers of the seven-membered chelate ring, a

phenomenon first highlighted in research by Brown and Chaloner.30 One of the ring conformations

can be described as a C4-chair and the other as a distorted B5-boat (Figure 10).31 Coalescence of the

signal is noted in the range -20 to -80°C, indicating that the barrier to chair↔boat interconversion is 

approached in this temperature range. The inversion barrier in cycloheptane is ΔGǂ
184K = 8.5 kJ mol-1,31

but cyclic fusion creates strain energy in the ground state so a lower activation barrier is expected for

[RhH(CO)2(1)].33

Figure 10. View of the C4 (left) and distorted B5 (right) chelate ring conformations in [RhH(CO)2(1)].
21b

2. 5 Catalysis

In order to investigate the extended influence of carbocyclic ring structure, the complexes

[RhH(CO)2(L-L)] (L-L = trans-1, 2-bis-(diethylphosphinomethyl) cyclohexane (7a), trans-1, 2-bis-

(diethylphosphinomethyl) cyclopentane (7b) and trans-1, 2-bis-(diethylphosphinomethyl)

cyclobutane (7c)) were applied for the hydroxymethylation of allyl alcohol (Table 3). These were

prepared in situ from [Rh(acac)(CO)2], and the solutions were incubated at the requisite temperature

and 30 bar CO/H2 = 1 for 40 minutes in order to maximise the rhodium-hydride-dicarbonyl/carbonyl-

bridged rhodium dimer ratio.

A product mixture of linear aldehyde, branched aldehyde, linear alcohol (1, 4-butanediol) and

branched alcohol (2-methylpropanol) is recovered. The linear aldehyde and branched aldehyde are

obtained as statistical mixtures of crotonaldehyde and 2-ethoxyfuran and methacrolein, 2-

methylpropanal and 1, 1-diethoxy-2-methylpropane respectively. Substrate isomerisation leads to the
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formation of 1-propanal and 2-methylpentanal, and 1-propanol is recovered as the substrate

hydrogenation product. 34

Table 3: Hydroxymethylation of allyl alcohol with 7a-7c in ethanol.a

catalyst L-L/Rh
T allyl alcohol-based selectivity (mol%) kd

TOFe (h-1)

(°C) C=Ob (l/b) -OHc (l/b) iso. hyd.

7a 1 120 19 (3.1) 47 (3.3) 30 4 10.31 126.4

7a 2 60 36 (2.7) 52 (2.8) 6 6 10.59 130.2

7a 2 120 25 (2.5) 60 (2.5) 10 5 11.07 135.6

7a 5 60 26 (2.6) 68 (2.7) 2 4 11.34 137.8

7a 5 90 20 (2.5) 73 (2.6) 2 5 11.38 140.3

7a 5 120 22 (2.3) 66 (2.3) 5 6 11.61 141.9

7a 10 90 25 (2.4) 70 (2.5) 1 4 9.82 120.2

7a 10 120 25 (2.3) 66 (2.3) 3 6 10.09 124.5

7b 1 120 35 (3.2) 37 (3.4) 24 4 3.49 43.7

7b 2 90 42 (3.6) 45 (3.7) 8 5 3.72 45.6

7b 2 120 39 (3.4) 49 (3.4) 9 3 4.03 49.3

7b 5 60 40 (3.8) 51 (3.9) 4 5 4.17 51.1

7b 5 90 37 (3.7) 56 (3.8) 1 6 4.51 55.2

7b 10 90 42 (3.7) 52 (3.6) 1 5 2.98 36.5

7b 10 140 35 (3.2) 47 (3.4) 1 17 2.74 33.6

7c 1 120 37 (5.0) 38 (5.2) 21 4 3.26 39.9

7c 2 120 43 (5.6) 47 (5.6) 6 4 3.70 45.3

7c 2 140 35 (5.3) 45 (5.3) 1 19 2.47 30.2

7c 5 90 41 (6.4) 54 (6.6) 1 4 4.22 51.7

7c 5 120 44 (6.2) 51 (6.3) 1 4 4.48 54.9

7c 10 90 46 (6.4) 50 (6.7) 0 4 3.44 42.1

- - 120 82 (0.8) 1 (1.1) 15 2 4.75 58.2
aConditions: 4 mL ethanol, 8 mM [Rh], Rh/allyl alcohol = 1/370, 40 bar CO/H2 = 1.bHydroxyaldehyde

derivatives. cDiol derivatives. dFirst order rate constant (× 10-5 s-1) calculated as the gradient of a plot of

ln(Pt/Pt=0) in time. eTurnover frequency at 1 mol L-1 allyl alcohol.

Activity. Initial reaction rates were determined from reaction profile plots of ln(Pt/Pt=0) in

time. Previously it was shown that catalyst modification with DMPE inhibits the reaction markedly,25a

but this does not appear to be a general trend for cis-chelating diphosphines. Activity of the

complexes 7a-7c varies non-linearly as a function of the L-L/Rh molar ratio. Type I kinetics (Equation

3) is assumed from the observed first order dependence on allyl alcohol concentration,35 so the inverse
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dependency beyond L-L/Rh = 5 is most probably due to competition between the diphosphine and

allyl alcohol for coordination sites on the rhodium.

� � � � 	(� � � � 	� ) =
� [ � � � � � 	� � � � ℎ� � ][� ℎ]

� + [� ]
(Equation 3)

The catalysts are shown to be active in the temperature range 60 to 120°C. The enhancement at

elevated temperatures is typical Arrhenius behaviour, but some contribution from thermodynamic

instability of the dimeric resting state at higher temperature cannot be not precluded.

Complexes 7b and 7c display comparable activity, which suggests that diphosphines based on

smaller carbocyclic scaffolds impart comparable stability upon chelation. Interestingly, complex 7a is

found to be more than twice as active. This difference can be correlated with the relative position of

the monomer↔dimer equilibrium, as the latter is known to be inactive for hydroformylation. 19, 36 At a

given temperature, the concentration of each rhodium can be determined from the high pressure

31P{1H} NMR spectrum and the Henry coefficient can be used to determine the concentration of

hydrogen in solution (Table 4).37

Table 4: Thermodynamic data for H2+ [Rh(CO)(L-L)(μ-CO)]2 ↔ 2 [RhH(CO)2(L-L)] equilibria of 7a

and 7c in d8-toluene.a

7a 7c BDPPb

[H2] =  √(p/KH) (M) 0.021 0.021 0.014-0.033

[RhH(CO)2(L-L)] (mM) 10.56 2.74

[Rh(CO)(L-L)(μ-CO)]2 (mM) 2.74 3.42

K =
[RhH(CO)2(L-L)]2 -

[Rh(CO)(L-L)(μ-CO)]2[H2]
1.93 1.36 1.82

aConditions: 1.5 mL d8-toluene, 12.9 mM [Rh], 70°C, 40 bar CO/H2 = 1.b19 in References and Notes.

Of course, higher flexibility of the chelate ring in 1 is also a consideration because this should lower

the relevant transition state energies during catalysis.

Regioselectivity. It is demonstrated for 7a that increasing the L-L/Rh molar ratio from 2 to 5

suppresses allyl alcohol isomerisation by 4.8 mol%, with a corresponding improvement in selectivity

to branched products. Under analogous conditions with 7b and 7c isomerisation is almost eliminated

as the L-L/Rh molar ratio approaches 5, but in these cases enhanced selectivity to linear products is

observed. Regioselectivity is not sensitive to higher L-L/Rh molar ratios presumably due to a

saturation effect. Upon increasing temperature, selectivity to linear products drops as the activation

energy difference between rhodium-hydroxypropyl-carbonyl and rhodium-methylhydroxyethyl-
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carbonyl formation is reduced. Furthermore, allyl alcohol isomerisation becomes progressively

competitive.

Regioselectivity is found to correlate with the torsional angle PCH2----CH2P of the trans-

fused carbocyclic scaffold, r2 = 0.98, which is affiliated with the configurational rigidity of the

cycloheptane ring formed upon chelation (Figure 11).38 The O=CC----CC=O torsional angles of the

corresponding dicarboxylic acids have been used here as a first approximation.39 Upon coordination

of allyl alcohol to the square-planar rhodium-hydride-carbonyl species the other auxiliaries bend away

in response to electronic orbital rehybridisation on the rhodium, approaching a less congested trigonal

bipyramidal geometry. The observations suggest that attainment of a rigid chiral chelate ring

configuration arranges the geometrical orientation of the ethyl chains on the phosphorus nuclei for

anti-Markovnikoff hydride migration.

Figure 11. Regioselectivity of 7a-7c in hydroxymethylation of allyl alcohol as a function of the

carbocyclic scaffold torsional angle PCH2-----CH2P.

Chemoselectivity. In all cases using L-L/Rh = 1 gives excessive activity for the isomerisation

of allyl alcohol because coordinatively unsaturated rhodium species are available to accommodate the

intermediate hydrido η3-allyl configuration, although surprisingly this transformation is not catalysed

by the unmodified rhodium precursor. It is presumed the isomerisation catalysts are deactivated by the

incorporation of their rhodium into bis-phosphine or tris-carbonyl complexes.

Complexes 7a-7c are found to be moderately active for the hydrogenation of allyl alcohol.

The strong σ-donor character of the diphosphines concurrently promotes oxidative addition of 

hydrogen to the rhodium-alkyl-dicarbonyl complex and impedes CO insertion into the rhodium-alkyl

bond. Blackening of the autoclave is observed at 140°C and taken as evidence for catalyst

L-L/Rh= 2, 120°C

L-L/Rh= 5, 90°C

L-L/Rh= 10, 90°C
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decomposition. High selectivity to hydrogenation product at this temperature is therefore tentatively

ascribed to heterogeneous hydrogenation by metallic rhodium.

A mixture of diols and hydroxyaldehydes is recovered from catalysis with 7a-7c, despite

favourable ea geometry relative to triethylphosphine. Since a domino hydroxymethylation scheme is

implicated, it is suggested that enforced ea geometry in the rhodium-butyldiol-hydride-carbonyl

cation can induce adverse chemoselectivity (Figure 12). The placement of a strong σ-donor phosphine 

trans to the functionalised moiety enhances negative fractional charge on its coordinated carbon,

impeding nucleophilic interaction with the hydride and making β-hydride abstraction by rhodium or 

the ethoxide anion more favourable. Consequently reductive elimination of the hydroxyaldehyde is

observed. For complexes 7b and 7c, which exist in a higher ee/ea equilibrium ratio, aldehyde products

can also be formed via the conventional hydroformylation pathway.

Figure 12. The ea and ee geometry of the rhodium-hydroxypropanol-hydride-carbonyl cation.

Relatively harsh temperature conditions are required to attain moderate chemoselectivity at

low L-L/Rh molar ratios. The highest selectivity to diols is consistently obtained at L-L/Rh = 5 and

90°C. When the molar ratio exceeds this limit, temperature ceases to be an important parameter.

Heterogeneous hydrogenation can account for the relatively high percentage of diol derivatives

recovered when catalysis is performed at 140°C.

Recycling. Complexes 7a and 7c are expected to be resilient to the rhodium-induced

fragmentation suffered by the diphenylphosphine-substituted analogues,40 so their potential

recyclability was studied under reaction conditions approximating the process parameters used by

Lyondell-Basell (Table 5).41 After each cycle the reaction mixture was carefully transferred from the

autoclave with a small overpressure. The catalyst was recycled efficiently following aqueous

extraction of the products (Figure 13).

The conversion is slightly reduced upon catalyst recycling. In order to gain insight into the

origin of this, the consumption of CO/H2= 1 in time was monitored for two consecutive cycles using

12a (Figure 14). The protracted initial rate observed for the second cycle is associated with lower

overall conversion. Analysis of the aqueous phase after the first cycle by ICP-MS establishes that this
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is not due to rhodium leaching. Furthermore, second cycle aqueous extracts are found to be

catalytically inactive.

Table 5: Recyclability of 7a and 7c in the hydroformylation of

allyl alcohol by toluene/water extraction.a

(a) (b)

aConditions: 4 mL toluene, 8 mM [Rh], L-L/Rh = 5, Rh/allyl alcohol = Figure 13. Phase separation:

1/250, 60°C, 10 bar CO/H2=1. bTotal conversion of allyl alcohol after (a) cycle 1, (b) cycle 3.

1 hour.

Figure 14. Plot of ln[(Pt-Pmin)/(P0-Pmin)] in time for allyl alcohol hydroformylation

with 7a over two consecutive cycles: (□) cycle 1, (◊) cycle 2. 

The partitioning of crotonaldehyde, 2-ethoxyfuran, γ-butyrolactone, methacrolein, 2-

methylpropanal, 1, 1-diethoxy-2-methylpropane, 1-propanal, 2-methylpentanal and 1-propanol in the

biphasic toluene/water system was examined (Table 6). A majority of these reaction products exhibit
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3 83.5 3.42 3.1

7c 1 81.3 5.9
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substantial affinity for the aqueous phase. The moderate partitioning of 2-methylpentanal and 1, 1-

diethoxy-2-methylpropane can be explained by their relatively developed aliphatic character.

Surprisingly, methacrolein has an approximately equal distribution over the two phases. Significantly

reduced conversion is observed upon enriching a first cycle solution of 12a with methacrolein,

implicating a role as catalyst poison.42

31P{1H} NMR spectroscopy of the organic extracts of 12c shows that only 3% of the

phosphorus donor sites are lost through oxidation per cycle, despite the oxygen-sensitive nature of

these diphosphines. Observed retention of linear selectivity upon catalyst recycling corroborates this.

However, the oxidised species do not display sufficient affinity for the aqueous phase on extraction to

eliminate them as another source of catalyst deactivation.

Table 6: Partitioning of allyl alcohol hydroformylation products in H2O/toluene

aPartition coefficients in a 1:1 (v/v) mixture of H2O and toluene at 0°C determined by gravimetric methods

(Ƥ = caqueous /corganic). The average measurement is given with estimated error ±1 in the last digit.

2. 6 Deuterium Labelling Studies

Deuterium isotope effects in 13C{1H} NMR spectroscopy. 13 C{1H} NMR spectroscopy has

been widely used to monitor the position of deuterium labels in organic compounds.43 A deuterium

nucleus has spin I = 1 giving rise to distinctive splitting patterns depending on the extent of

incorporation (Figure 15). Splitting by a directly bound deuterium nucleus is approximately one-sixth

that of the corresponding proton-carbon coupling, due to the smaller gyromagnetic ratio of deuterium.

Deuterium incorporation also induces carbon isotope shifts upfield. Measurable effects are

principally observed on carbon resonances from directly bonded deuterium atoms (α) and deuterium 

on vicinal carbons (β). The α-shift is of the order of 0.4 ppm per deuterium, while β-shifts are ~ 0.05-

0.12 ppm per deuterium depending on the environment of the carbon nucleus. It is generally accepted

compound Ƥa H2O/toluene

crotonaldehyde 62

2-ethoxyfuran 64

γ –butyrolactone 58

methacrolein 0.8

2-methylpropanal 59

1, 1-diethoxy-2-methylpropane 9.3

1-propanal 65

2-methylpentanal 17

1-propanol 66
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that these arise from slight changes of averaged molecular geometry caused by rovibrational

perturbations on isotopic substitution.

Figure 15. 13
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Table 7a: Deuteriohydroxymethylation of 1-hexene with 12a-deuteride in ethanola – 13C{1H} NMR C7-OH product analysis.a

7/ppm

14.13

14.13

14.12

14.12

aConditions: 4 mL ethanol, 8 mM [Rh], 1/Rh = 2, Rh/1-hexene = 1/200, 120°C, 40 bar CO/(D2 or H2) = 1, 3 hours.

6/ppm

22.77

23.15

22.86

22.86

5/ppm

32.01

29.41

31.99

31.99

7/ppm

14.10

14.08

14.07

14.10

13.07

4/ppm

29.24

33.05

29.40

29.40

6/ppm

22.70

22.61

22.61

23.00

21.97

JC-D/Hz

t. 19.3

t. 19.3

5/ppm

31.80

31.84

31.83

29.30

29.12

3/ppm

25.51

16.38

25.91

25.91

4/ppm

29.30

29.32

29.31

34.30

34.24

I

79

21

62

38

3/ppm

25.60

25.92

25.98

17.00

16.73

2/ppm

32.52

35.57

32.82

32.73

2/ppm

32.20

32.80

32.83

35.62

35.85

JC-D/Hz

m. 21.4

m. 20.9

t. 21.1

1/ppm

62.80

62.72

62.45

69.90

68.16

1/ppm

61.84

67.25

62.39

62.02

heptanol - calculated

heptanol - sample

heptanol/OD - D2O exchange

2-methylhexanol - calculated

2-methylhexanol - sample

1-hexene +CO/D2

H/DO-CD2-CH2-CHD-C4H9

H/DO-CD2-CH(CH2D)-C4H9

1-heptanal +CO/D2

H/DO-CH2-CH2-CH2-C4H9

H/DO-CHD-CH2-CH2-C4H9
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Table 7b: Deuteriohydroxymethylation of 1-hexene with 12a-deuteride in ethanola – 13C{1H} NMR C7-C= O product analysis.a

7/ppm

14.07

13.98

14.06

14.06

13.97

aConditions: 4 mL ethanol, 8 mM [Rh], 1/Rh = 2, Rh/1-hexene = 1/200, 120°C, 40 bar CO/(D2 or H2) = 1, 3 hours.

6/ppm

22.68

22.82

22.71

22.71

22.94

5/ppm

31.80

29.37

31.81

31.81

29.39

7/ppm

14.10

14.03

14.10

I

68

10

22

6/ppm

22.70

22.14

22.70

4/ppm

29.10

30.44

29.01

29.09

30.45

5/ppm

31.50

31.64

28.80

JC-D/Hz

t. 19.6

t. 19.6

4/ppm

28.80

28.94

29.60

3/ppm

22.25

13.42

21.90

22.26

13.09

3/ppm

28.20

28.53

14.00

2/ppm

44.04

46.47

43.83

43.97

46.28

2/ppm

43.50

43.97

46.40

JC-D/Hz

t. 25.9

t. 25.9

t. 25.3

1/ppm

202.20

202.73

204.10

1/ppm

203.27

205.66

202.85

202.85

205.21

heptanal - calculated

heptanal- sample

2-methylhexanal - calculated

1-hexene +CO/H2

O=CH-CH2-CH2-C4H9

O=CH-CH(CH3)-C4H9

1-hexene +CO/D2

O=CD-CH2-CHD-C4H9

O=CD-CH2-CH2-C4H9

O=CD-CH(CH2D)-C4H9



C
h

a
p

ter
2

4
8

Figure 16. Deuteriohydroxymethylation of 1-hexene in ethanol- 13C{1 } NMR spectrum of –OH product fraction.
H
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Figure 17. Deuteration of 1-heptanal in ethanol- 13C{1H} N R spectrum of product fraction.
M
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Figure 18. Deuteriohydroxymethylation of 1-hexene in ethanol- 13C{ } NMR spectrum of C=O product fraction.
1H
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H/DO-CD2-CH2-CHD-C4H9 and H/DO-CD2-CH(CH2D)-C4H9 are identified as the linear and

branched alcohol products from the deuteriohydroxymethylation of 1-hexene (Figure 16). The C1

signal is resolved as a quintet for both 1-heptanol, JC-D = 21.4 Hz, and 2-methylhexanol, JC-D = 20.9

Hz. The α-shifts are ~ 0.40 ppm per deuterium, allowing for some β-shift from partial deuteration of 

the hydroxyl site. The expected C1 and β-shifted C1 resonances are resolved as a time-averaged signal

due to rapid hydrogen-deuterium exchange in the hydroxyl site, thus it is not possible to establish

which isotope is incorporated in the hydroxyl position of the initially formed product. Replacing the

hydroxyl hydrogen with deuterium by exchange with D2O causes C1 to shift 0.27 ppm upfield. The

C3 signal of both products is split into a triplet by coupling to a single deuterium nucleus, JC-D = 19.3

Hz. α-shifts of 0.47 ppm and 0.35 ppm are observed for 1-heptanol and 2-methylhexanol respectively. 

The C2 resonances experience an upfield shift of ~ 0.30 ppm, equivalent to three β-shifts, due to the 

deuterium nuclei on vicinal carbons. A β-shift of 0.08 ppm is also noted for the C4-signal of 1-

heptanol.

1-Heptanol is recovered as H/DO-CH2-CH2-CH2-C4H9 and H/DO-CHD-CH2-CH2-C4H9 from

the deuteration of 1-heptanal (Figure 17). The signals from the non-deuterated isotopomer appear at

the expected frequencies, while monodeuteration in the C1 position causes splitting of this signal into

a triplet, JC-D = 21.1 Hz, with an α-shift of 0.37 ppm. A β-shift of 0.10 ppm is observed for the 

corresponding C2 resonance. By integration of the C2 signals it is established that only 36% of 1-

heptanol has deuterium incorporated in the C1 position. It can thus be concluded that 1-heptanal is not

an intermediate in this hydroxymethylation, since a auto-tandem scheme should yield primarily

H/DO-CHD-CH2-CHD-C4H9 but only H/DO-CD2-CH2-CHD-C4H9 is observed. Even if all 1-heptanal

is eliminated in the form O=CD-CH2-CHD-C4H9, a mixture of monodeuterated and dideuterated C1 is

expected in the sequential product.

By comparison with the products from the corresponding hydroformylation reaction, it is

shown that the aldehydes are recovered primarily as O=CD-CH2-CHD-C4H9 and O=CD-CH(CH2D)-

C4H9 (Figure 18). The C1 signal is split into a triplet for both 1-heptanal, JC-D = 25.9 Hz, and 2-

methylhexanal, JC-D = 25.3 Hz, with α-shifts of 0.42 ppm and 0.45 ppm respectively. The C3

resonances are also resolved as strong triplets, JC-D = 19.6 Hz. α-shifts of 0.35 ppm and 0.33 ppm are 

observed for the 1-heptanal and 2-methylhexanal signals respectively. The C2 signals of 1-heptanal

and 2-methylhexanal are subject to a β-shift of ~ 0.20 ppm, due to two deuterium nuclei on vicinal 

carbons. Fine splitting of these signals, 2JC-D = 3.2 Hz for 1-heptanal and 2JC-D = 2.8 Hz for 2-

methylhexanal, is the result of two-bond coupling to the deuterium incorporated in the C1 position.

The enhanced coupling is probably due to the enlarged bond angle imposed by the sp2 hybridised state

of C1. A β-shift of 0.09 ppm is observed for the C4 resonance of 1-heptanal. A small percentage of 1-

heptanal is shown to be present as O=CD-CH2-CH2-C4H9. A weak C2 signal is noted downfield of the

main triplet, with a β-shift of 0.07 ppm induced by the deuterium nucleus on C1. Fine splitting is not

observed however, presumably due to partial eclipse by the main C2 signal. Weak singlets due to the
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C3 and C4 nuclei are observed 0.36 ppm and 0.08 ppm downfield from their main resonances

respectively. By integration of the C4 signals it is shown that 87% of 1-heptanal is deuterated in the C3

position.

The fact that 1-hexene deuteriohydroxymethylation gives 1-heptanol exclusively

monodeuterated in the C3-position together with 1-heptanal partially non-deuterated in the C3-position

shows that 1-heptanal cannot be an intermediate in the production of 1-heptanol. Either different

modes of C3-D/H bond formation are possible, the C3 position is modified later in the catalytic

pathway or the isotopic pattern on C3 determines chemoselective outcome. Since the C3-D/H bond

formation precedes chemoselective determination in the catalytic scheme, it seems very unlikely that

the hydroxymethylation products have a different C3 labelling pattern as a result of possible different

modes. Instead, an agostic association between the hydroxyl-oxygen and the isotopic nucleus

incorporated in the C3 position via a transient 5-membered intermediate is proposed to occur in the

rhodium-hydroxyheptyl-deuteride-carbonyl complex (Scheme 2).

Scheme 2. Proposed sequences for aldehyde and alcohol formation.

This is expected to be more severe with the protium analogue because a carbon-deuterium bond has

smaller vibrational frequencies relative to a carbon-hydrogen bond, which can be regarded as the

deuterium nucleus having a smaller effective van der Waals radius.45 The association can enforce

migration of the hydroxyl hydrogen onto rhodium and reductive elimination of 1-heptanal. The

elimination of concurrently coordinating ethoxide as ethanol-OD then generates a rhodium-hydride-

carbonyl species, which can account for the small percentage of hydrogen incorporated in the C3 site

of 1-heptanal. If this is correct, all rhodium-hydroxyheptyl-deuteride-carbonyl species with a non-

deuterated C3-site must undergo the β-hydride abstraction, suggesting a remarkably high secondary 

isotope effect. The steric considerations of the isotopic nuclei are also manifested in regioselective
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control, since hydride migration apparently favours formation of the less hindered rhodium-hexyl-

carbonyl complex.

Regiocontrol. Deuteriohydroxymethylation provides a sensitive probe to distinguish between

irreversible and reversible formation of the rhodium-alkyl-dicarbonyl species.46 Irreversible formation

will result in deuterium incorporation in the C3 position while reversibility provides a competing

mechanism for deuterating the C2 site instead (Scheme 3). In this case all the C7 reaction products

were recovered with deuterium incorporated exclusively in C1 and C3 positions. It can thus be stated

that for these systems, regioselectivity is determined by irreversible hydride migration onto

coordinated 1-hexene, forming the rhodium-hexyl/methylpentyl-dicarbonyl intermediate committed to

carbonylation.

Scheme 3. Deuteriohydroxymethylation prove for the reversibility of

rhodium-alkyl-dicarbonyl formation.

Mechanism of allyl alcohol isomerisation/hydrogenation. C3-product formation from allyl

alcohol is deleterious to process economics, so the formation mechanisms have been explored in

detail by applying the complex 7a-deuteride for the deuteriohydroxymethylation of allyl alcohol.
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Following fractional distillation off the catalyst, the C3-product and solvent fractions were examined

by 13C{1H} NMR spectroscopy (Table 8).

1-Propanal is obtained as the final product of allyl alcohol isomerisation. The double bond

migration can proceed either by metal hydride addition-elimination or by an intramolecular hydrogen

1, 3-shift via a π-allyl complex (Scheme 4). 47 A third possibility could be isomerisation by an internal

redox mechanism, involving bidentate coordination of the substrate, although this has only been

reported for ruthenium complexes.48 Tautomerisation of prop-1-en-1-ol then generates the aldehyde.

(a)

(b)

Scheme 4. Rhodium-catalysed allyl alcohol isomerisation mechanisms:

(a) metal hydride addition-elimination (b) via π-allyl complex. 

1-Propanal is recovered exclusively as O=CH-CH2-CH3 (Figure 19). This is consistent with

the π-allyl-rhodium mechanism, but the enol was not intercepted during catalysis. The kinetic stability 

of prop-1-en-1-ol under atmospheric pressure CO/H2 = 1 was therefore monitored by 1H NMR

spectroscopy, according to procedure of Bergens and Bosnich (Table 9).49 Although some catalytic

tautomerisation is observed, a thermal pathway seems predominant. At room temperature all prop-1-

en-1-ol solutions took ~ 45 minutes to completely dissipate, but at 100°C tautomerisation was found

to be complete within 3 minutes.

Scheme 5. Rhodium-catalysed isomerisation of allyl alcohol-OD.

A thermal tautomerisation pathway is further implicated by the observation that deuterium is

transferred exclusively to the C2 position of 1-propanal upon the deuteriohydroxymethylation of allyl

alcohol-OD;50 a catalytic process would probably have led to some scrambling (Scheme 5).
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Table 8: Deuteriohydroxymethylation of allyl alcohol with 12a-deuteride in ethanol – 13C{1H} NMR

C3- product analysis.a

1/ppm 2/ppm 3/ppm

propanal - calculated 202.20 37.30 6.50

propanal - sample 203.21 37.19 6.04

propanol - calculated 65.00 25.20 10.10

propanol - sample 64.45 24.29 10.18

propanol/OD – D2O exchange 65.28 24.11 10.26

1/ppm JC-D/Hz I 2/ppm JC-D/Hz 3/ppm JC-D/Hz

allyl alcohol-OH + CO/D2

O=CH-CH2-CH3 203.40 37.17 5.98

H/DO-CH2-CHD-CH2D 64.23 63 22.91 t. 20.1 9.70 t. 19.8

H/DO-CH2-CH2-CH3 64.31 37 23.43 10.21

allyl alcohol-OD + CO/H2

O=CH-CHD-CH3 203.31 36.81 t. 20.1 5.87

1-propanal + CO/D2

H/DO-CH2-CH2-CH3 64.37 86 25.70 36.6 10.03

H/DO-CHD-CH2-CH3 63.98 t. 21.6 14 25.60 33.7 10.03

aConditions: 4 mL ethanol, 8 mM [Rh], 1/Rh = 1, Rh/allyl alcohol = 1/200, 120°C, 40 bar CO/(D2 or H2) = 1.

Table 9: Kinetic stability of prop-1-en-1-ol in d8-toluene solution.a

[Rh]
T

TOF98
b

primary spectrumc

(°C) prop-1-en-1-ol d(i) 1-propanal d(ii)

0 25 1.81 97 3

5 25 2.33 95 3

8 25 2.75 97 4

8 80 13.62 77 22

0 100 27.84 56 45
aConditions: 0.5 mL d8-toluene, atmospheric pressure CO/H2=1, 0.1 M [prop-1-en-1-ol]. bTurn

over frequency (×10-8 mol s-1) determined at ~ 98% tautomerisation. cPrimary spectrum ran after

1.34 min. dCH3-
(i)dd. δ = 1.58, 1J = 6.6 Hz, 2J = 1.8 Hz,(ii)t. δ = 1.09, 1J = 7.1 Hz.



C
h

a
p

ter
2

5
6

Figure 19. Deute ohydroxymethylation of allyl alcohol in ethanol- 13C{1H} NMR spectrum of C3-product fraction.
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Figure 20. Deuteration of 1-propanal in ethanol- 13C{1H} NM spectrum of product fraction.
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1-Propanol is recovered as a mixture of H/DO-CH2-CH2-CH2 and H/DO-CH2-CHD-CH2D

(Figure 19). The C2 signal of the dideuterated product is split into a triplet by coupling to a single

deuterium nucleus, JC-D = 20.1 Hz. The C3 resonance is similarly resolved as a triplet, JC-D = 19.8 Hz.

For these signals the α-shift is compounded with a β-shift due to the deuterium nucleus on the vicinal

carbon, to give observed upfield shifts of ~ 0.50 ppm. A β-shift of 0.13 ppm is observed for the C1-

resonance, taking into account some β-shift resulting from partial deuterium incorporation into the

hydroxyl position. Exchange of the hydroxyl hydrogen in 1-propanol with deuterium is shown to

induce a β-shift of 0.22 ppm in the C1 signal. It can be inferred that catalytic deuteration of allyl

alcohol is responsible for the formation of this isotopomer, since deuteration of 1-propanal can only

place deuterium in the C2 site. The resonances from non-deuterated 1-propanol appear at the expected

frequencies. By integration of the C1 signals it is shown that 63% of 1-propanol is deuterated in the C2

position. Derivation of this isotopomer by deuteration of the isomerisation product is confirmed by the

deuteration of 1-propanal, which gives 86% H/DO-CH2-CH2-CH2 and 14% H/DO-CHD-CH2-CH2

(Figure 20) as determined by integration of the C2 signals.

2. 7 Conclusions

Strong σ-donor diphosphines based on a carbocyclic scaffold have been prepared in four steps 

via the borane adducts. High oxophilicity of the phosphorus nuclei makes the synthesis and

purification of these bisphosphines quite challenging. Their rhodium(I) species were characterised by

high pressure NMR spectroscopy. The rhodium-hydride dicarbonyl complexes exist preferentially as

the ea isomer, and the activation barrier for phosphorus exchange was calculated to be ~ 46 kJ mol-1.

The carbonyl-bridged rhodium dimer was identified as the main competing species.

Minor modification of the structural nature of the carbocyclic scaffold had significant impact

on catalyst activity and selectivity. A more flexible chelate ring enhanced activity by favouring a

higher rhodium-hydride-dicarbonyl/ rhodium dimer ratio, but inhibited regioselectivity by not being

able to rigidify the configuration of the substituents on phosphorus. Regiocontrol was shown to be

manifested in irreversible formation of the rhodium-alkyl-dicarbonyl complex. The chelate rings were

stable at elevated temperatures allowing activity to be increased to a synthetically useful level, but

decomposition of the catalysts was noted at 140°C. Under replicated conditions of the Lyondell-

Basell process the catalysts could be recycled via biphasic separation without excessive loss of

rhodium to the product extraction phase. However, a slight loss in activity was observed, probably

due to catalyst poisoning by methacrolein.

Deuterium labelling studies implicated domino hydroxymethylation as the primary catalytic

scheme. It is proposed that diol derivatives are recovered as primary products by reductive elimination

from the rhodium-hydroxyalkyl-hydride-carbonyl cation whereas β-hydride abstraction or reversion 



Chapter 2

58

of the protonation equilibrium leads to elimination of hydroxyaldehyde products. It was also shown

by deuterium labelling that allyl alcohol isomerisation proceeds by intramolecular hydrogen 1, 3-shift

via a π-allyl complex.  

2.8 Experimental Section

Materials. Chemicals were purchased from Acros Organics, Sigma-Aldrich and Strem. All

operations were performed under N2 (passed through column of dichromate adsorbed on silica) in a

glove box or using standard Schlenk and catheter tubing techniques. All glassware was flame-dried

under vacuum. Diethyl ether, hexane and thf were distilled from sodium benzophenone ketyl,

dichloromethane was distilled from calcium hydride and absolute ethanol was distilled from

magnesium ethoxide. HPLC-grade toluene and pentane were dispensed from argon-flushed La Roche

A-2/Engelhard Q-5 drying columns. All solvents were degassed prior to use by fpt cycles. Celite and

Kieselgel (60 SiO2) were activated in a tube furnace at 250°C for 3 hours. The trans- 1, 2-bis-

(chloromethyl) cycloalkanes51 and lithiated bis-(diethylamino)phosphine borane12 were prepared

according to the literature procedures.

Analytical techniques. NMR spectra were recorded on Bruker Avance 300 and Bruker

Avance II 400 spectrometers with tetramethylsilane (1H, 13C) and 85% H3PO4 (31P) as external

references. IR spectra were recorded on a Perkin-Elmer 1710 FT-IR spectrometer. Gas

chromatography was performed on a Hewlett-Packard 6890 chromatograph fitted with a 30 m

BP10™ column (carrier gas 3.2 mL min-1 He, flame-ionisation detector). Elemental analyses were

done using a Perkin-Elmer 240C CHNS/O microanalyser. ICP-MS analyses were performed on an

Iris Advantage analyser.

Trans- 1, 2-bis-((diethylamino)phosphinomethyl) cyclohexane borane (4a). A solution of

1.0431 g trans-1, 2-bis-(chloromethyl) cyclohexane (5.76 mmol) in thf (15 mL) was added dropwise

to 35 mL of a 0.33 M solution of lithiated bis-(diethylamino)phosphine borane (11.52 mmol) in thf at

-78°C. The reaction mixture was slowly warmed to 25°C and stirred for 10 hours. Solvent was

removed in vacuo, then chloroform (25 mL) was added and the resulting suspension was filtered

successively over Celite and MgSO4. The filtrate was concentrated in vacuo and the off-white solid

purified by column chromatography (Kieselgel, toluene) yielding 1.5861 g (74 %) of white crystals.

Rf = 0.52 (toluene). 1H NMR (CDCl3, 300.1 MHz): δ 3.08 (m, 8H), 2.77 (m, 4H), 1.96 (m, 2H), 1.58-

1.34 (m, 8H), 1.11 (t, J = 6.9 Hz, 12H), 1.09-0.33 (br, 3H). 13C{1H} NMR (CDCl3, 75.5 MHz): δ 43.9 

(d, 2JP-C = 14.5 Hz), 35.6 (s), 33.4 (s), 32.1 (d, 1JP-C = 26.8 Hz), 27.1 (s), 14.9 (d, 3JP-C = 2.4 Hz).

31P{1H} NMR (C6D6, 121.4 MHz): δ 36.2 (q, 1JP-B = 64.3 Hz). Anal. Calculated for C16H40B2N4P2: C,
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51.65; H, 10.84; N, 15.06. Found: C, 51.61; H, 10.69; N, 15.05. Ir (KBr, cm-1): 2355 (s, νB-H), 2339

(w, νB-H), 651 (m, νP-B).

Trans- 1, 2-bis-((diethylamino)phosphinomethyl) cyclopentane borane (4b). Preparation

of 4b was performed by a similar procedure to that employed for the preparation of 4a. Starting from

0.9323 g trans-1, 2-bis-(chloromethyl) cyclopentane (5.58 mmol) and 35 mL of a 0.32 M solution of

lithiated bis-(diethylamino)phosphine borane (11.16 mmol) in thf yielded 1.4985g (75%) of white

crystals. Rf = 0.55 (toluene). 1H NMR (CDCl3, 300.1 MHz): δ 3.04 (m, 8H), 2.69 (m, 4H), 1.87 (m, 

2H), 1.49-1.37 (m, 5H), 1.11 (t, J = 6.9 Hz, 12H), 1.05-0.41 (br, 3H). 13C{1H} NMR (CDCl3, 75.5

MHz): δ 37.2 (d, 2JP-C = 14.5 Hz), 34.7 (s), 33.8 (d, 1JP-C = 27.1 Hz), 30.4 (s), 25.1 (s), 16.3 (d, 3JP-C =

2.4 Hz). 31P{1H} NMR (C6D6, 121.4 MHz): δ 36.8 (q, 1JP-B = 64.4 Hz). Anal. Calculated for

C15H38B2N4P2: C, 50.32; H, 10.70; N, 15.65. Found: C, 50.41; H, 10.63; N, 15.62. Ir (KBr, cm-1):

2357 (s, νB-H), 2344 (w, νB-H), 655 (m, νP-B).

Trans- 1, 2-bis-((diethylamino)phosphinomethyl) cyclobutane borane (4c). Preparation of

4c was performed by a similar procedure to that employed for the preparation of 4a. Starting from

0.8999 g trans-1, 2-bis-(chloromethyl) cyclobutane (5.88 mmol) and 35 mL of a 0.34 M solution of

lithiated bis-(diethylamino)phosphine borane (11.76 mmol) in thf yielded 1.4362 g (71%) of white

crystals. Rf = 0.57 (toluene). 1H NMR (CDCl3, 300.1 MHz): δ 3.05 (m, 8H), 2.63 (m, 4H), 2.26 (m, 

2H), 1.93-1.79 (m, 4H), 1.11 (t, J = 6.9 Hz, 12H), 1.01-0.37 (br, 3H). 13C{1H} NMR (CDCl3, 75.5

MHz): δ 40.7 (d, 1JP-C = 27.1 Hz), 36.3 (d, 2JP-C = 14.5 Hz), 31.1 (s), 27.2 (s), 17.1 (d, 3JP-C = 2.4 Hz).

31P{1H} NMR (C6D6, 121.4 MHz): δ 37.1 (q, 1JP-B = 64.4 Hz). Anal. Calculated for C14H36B2N4P2: C,

48.88; H, 10.55; N, 16.29. Found: C, 49.01; H, 10.59; N, 16.19. Ir (KBr, cm-1): 2358 (s, νB-H), 2341

(w, νB-H), 658 (m, νP-B).

Trans- 1, 2-bis-(dichlorophosphinomethyl) cyclohexane borane (5a). Excess anhydrous

HCl was bubbled through a solution of 1.3000 g 4a (3.49 mmol) in diethyl ether (50 mL) at -78°C for

10 minutes. The ammonium salt was removed by filtering the reaction mixture through a glass frit,

and washed with diethyl ether (3×15 mL). The combined extracts were reduced under pressure to ~ 25

mL, and the product was characterised in situ. The solutions were then made up with diethyl ether to

35 mL. 1H NMR (d4-methanol, 300.1 MHz): δ 2.82 (m, 4H), 1.77 (m, 2H), 1.54-1.37 (m, 8H), 1.42-

0.77 (br, 3H). 13C{1H} NMR (d4-methanol, 75.5 MHz): δ 55.1 (d, 1JP-C = 28.5 Hz), 25.4 (s), 31.5 (s),

26.2 (s). 31P{1H} NMR (d4-methanol, 121.4 MHz): δ 96.4 (q, 1JP-B = 46.6 Hz).

Trans- 1, 2-bis-(dichlorophosphinomethyl) cyclopentane borane (5b). Preparation of 5b

was performed by a similar procedure to that employed for the preparation of 5a, starting from 1.2000

g 4b (3.49 mmol). The product was characterised in situ. 1H NMR (d4-methanol, 300.1 MHz): δ 2.75 
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(m, 4H), 1.64-1.44 (m, 8H), 1.45-0.82 (br, 3H). 13C{1H} NMR (d4-methanol, 75.5 MHz): δ 54.8 (d, 

1JP-C = 28.8 Hz), 28.3 (s), 34.1 (s), 24.6 (s). 31P{1H} NMR (d4-methanol, 121.4 MHz): δ 96.9 (q, 1JP-B

= 46.8 Hz).

Trans- 1, 2-bis-(dichlorophosphinomethyl) cyclobutane borane (5c). Preparation of 5c was

performed by a similar procedure to that employed for the preparation of 5a, starting from 1.2000 g 4c

(3.49 mmol). The product was characterised in situ. 1H NMR (d4-methanol, 300.1 MHz): δ 2.73 (m, 

4H), 1.92 (m, 2H), 1.99-1.79 (m, 4H), 1.38-0.79 (br, 3H). 13C{1H} NMR (d4-methanol, 75.5 MHz): δ 

54.7 (d, 1JP-C = 28.9 Hz), 32.9 (s), 26.4 (s). 31P{1H} NMR (d4-methanol, 121.4 MHz): δ 97.2 (q, 1JP-B =

46.6 Hz).

Trans- 1, 2-bis-(diethylphosphinomethyl) cyclohexane borane (6a). The solution of 5a

(3.49 mmol) in diethyl ether was added dropwise to 4.6 mL of a 1.5 M solution of ethyl magnesium

bromide (6.98 mmol) in diethyl ether at -20°C. The reaction mixture was heated to 85°C under gentle

reflux, and maintained for 16 hours. After cooling to 15°C, the precipitated magnesium salts were

filtered over Celite and washed with hexane (2×10 mL). The solvents were removed in vacuo and the

viscous white resin was purified by column chromatography (Kieselgel, hexane/dichloromethane =

7/3) yielding 0.7611 g (69%) of white solid. Rf = 0.64 (hexane/dichloromethane = 7/3). [α]20
D =

+49.8° (c 2.58, toluene). 1H NMR (CDCl3, 300.1 MHz): δ 2.81 (m, 4H), 1.87 (m, 2H), 1.66 (dq, J =

7.1 Hz, 2JP-H = 9.6 Hz, 8H), 1.53-1.27 (m, 8H), 1.01 (dt, J = 7.1 Hz, 3JP-H = 2.9, 12H), 1.06-0.42 (br,

3H). 13C{1H} NMR (CDCl3, 75.5 MHz): δ 34.4 (s), 33.7 (s), 32.9 (d, 1JP-C = 27.3 Hz), 27.3 (d, 1JP-C =

27.2 Hz), 26.2 (s), 11.7 (d, 2JP-C = 12.4 Hz). 31P{1H} NMR (C6D6, 121.4 MHz): δ 19.1 (q, 1JP-B = 67.8

Hz). Anal. Calculated for C16H40B2P2: C, 60.80; H, 12.76. Found: C, 61.01; H, 12.81. Ir (KBr, cm-1):

2367 (s, νB-H), 2344 (w, νB-H), 678 (m, νP-B).

Trans- 1, 2-bis-(diethylphosphinomethyl) cyclopentane borane (6b). Preparation of 6b was

performed by a similar procedure to that employed for the preparation of 6a. Starting from the

solution of 5b (3.49 mmol, 35 mL) and 4.6 mL of a 1.5 M solution of ethyl magnesium bromide (6.98

mmol) in diethyl ether yielded 0.6013 g (57%) of white solid. Rf = 0.66 (hexane/dichloromethane =

7/3). [α]20
D = -12.6° (c 1.48, toluene). 1H NMR (CDCl3, 300.1 MHz): δ 2.72 (m, 4H), 1.83 (m, 2H), 

1.68 (dq, J = 7.1 Hz, 2JP-H = 9.8 Hz, 8H), 1.61-1.33 (m, 5H), 1.01 (dt, J = 7.1 Hz, 3JP-H = 3.1, 12H),

1.08-0.39 (br, 3H). 13C{1H} NMR (CDCl3, 75.5 MHz): δ 35.7 (s), 34.1 (d, 1JP-C = 27.5 Hz), 31.2 (s),

27.8 (d, 1JP-C = 27.2 Hz), 24.9 (s), 10.3 (d, 2JP-C = 12.4 Hz). 31P{1H} NMR (C6D6, 121.4 MHz): δ 19.9 

(q, 1JP-B = 67.8 Hz). Anal. Calculated for C15H38B2P2: C, 59.65; H, 12.68. Found: C, 59.71; H, 12.64.

Ir (KBr, cm-1): 2367 (s, νB-H), 2347 (w, νB-H), 684 (m, νP-B).
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Trans- 1, 2-bis-(diethylphosphinomethyl) cyclobutane borane (6c). Preparation of 6c was

performed by a similar procedure to that employed for the preparation of 6a. Starting from the

solution of 5c (3.49 mmol, 35 mL) and 4.6 mL of a 1.5 M solution of ethyl magnesium bromide (6.98

mmol, 4.6 mL) in diethyl ether yielded 0.6237 g (62%) of white solid. Rf = 0.74

(hexane/dichloromethane = 7/3). [α]20
D = -15.7° (c 1.22, toluene). 1H NMR (CDCl3, 300.1 MHz): δ 

2.69 (m, 4H), 2.05 (m, 2H), 2.02-1.87 (m, 4H), 1.68 (dq, J = 7.1 Hz, 2JP-H = 9.9 Hz, 8H), 1.01 (dt, J =

7.1 Hz, 3JP-H = 3.2, 12H), 1.11-0.60 (br. q, 1JB-H = 95.6 Hz, 3H). 3 13C{1H} NMR (CDCl3, 75.5 MHz):

δ 38.4 (d, 1JP-C = 27.5 Hz), 35.7 (s), 27.9 (s), 27.2 (d, 1JP-C = 27.2 Hz), 10.0 (d, 2JP-C = 12.4 Hz).

31P{1H} NMR (C6D6, 121.4 MHz): δ 20.3 (q, 1JP-B = 67.8 Hz). Anal. Calculated for C14H36B2P2: C,

58.38; H, 12.60. Found: C, 58.23; H, 12.62. Ir (KBr, cm-1): 2372 (s, νB-H), 2351 (w, νB-H), 688 (m, νP-

B).

Trans- 1, 2-bis-(diethylphosphinomethyl) cyclohexane (1). Deprotection of the borane

complex was accomplished via a modified literature procedure. 4.2 mL of fluoroboric acid dimethyl

ether complex (34.75 mmol) was added dropwide to 0.7322 g 6a (2.32 mmol) in dichloromethane (30

mL) at -15°C. The reaction mixture was allowed to warm to room temperature and stirred overnight.

After diluting with dichloromethane (15 mL) and saturated NaHCO3 solution (35 mL) the reaction

mixture was stirred a further 20 minutes, then the aqueous phase was extracted with dichloromethane

(3×15 mL). The combined extracts were washed successively with brine (15 mL) and water (2×10

mL) and dried over MgSO4. The solvents were removed in vacuo, and pentane was added to the

residue. The mixture was sonicated over 5-10 minutes, and the solution transferred from the insoluble

paste by syringe. Concentrating in vacuo afforded 0.2975 g (44%) of viscous colourless oil. 1H NMR

(C6D6, 300.1 MHz): δ 2.73 (dd, J = 5.6 Hz, 2JP-H = 10.1 Hz), 1.91 (m, 2H), 1.64 (dq, J = 7.0 Hz, 2JP-H =

9.9 Hz, 8H), 1.63-1.27 (m, 8H), 0.98 (dt, J = 7.0 Hz, 3JP-H = 3.1, 12H). 13C{1H} NMR (C6D6, 75.5

MHz): δ 35.1 (s), 33.6 (s), 33.2 (d, 1JP-C = 28.2 Hz), 27.2 (s), 19.3 (d, 1JP-C = 27.9 Hz), 9.9 (d, 2JP-C =

12.1 Hz). 31P{1H} NMR (C6D6, 121.4 MHz): δ – 27.4. Anal. Calculated for C16H34P2S2: C, 54.52; H,

9.72; S, 18.19. Found: C, 54.39; H, 9.65; S, 17.97.

Trans- 1, 2-bis-(diethylphosphinomethyl) cyclopentane (2). Preparation of 2 was performed

by a similar procedure to that employed for the preparation of 1. Starting from 0.5921 g 6b (1.96

mmol) and 3.5 mL of fluoroboric acid dimethyl ether complex (29.41 mmol) yielded 0.2555 g (47%)

of viscous colourless oil. 1H NMR (CDCl3, 300.1 MHz): δ 2.65 (m, 4H), 1.87 (m, 2H), 1.65 (dq, J =

7.0 Hz, 2JP-H = 9.9 Hz, 8H), 1.61-1.33 (m, 5H), 1.01 (dt, J = 7.0 Hz, 3JP-H = 3.1, 12H). 13C{1H} NMR

(CDCl3, 75.5 MHz): δ 36.2 (s), 35.4 (d, 1JP-C = 28.3 Hz), 35.1 (s), 25.8 (s), 19.6 (d, 1JP-C = 27.9 Hz),

10.0 (d, 2JP-C = 12.1 Hz). 31P{1H} NMR (C6D6, 121.4 MHz): δ – 26.8. Anal. Calculated for

C15H32P2S2: C, 53.39; H, 9.56; S, 19.00. Found: C, 53.52; H, 9.44; S, 18.97.



Chapter 2

62

Trans- 1, 2-bis-(diethylphosphinomethyl) cyclobutane (3). Preparation of 3 was performed

by a similar procedure to that employed for the preparation of 1. Starting from 0.6172 g 6c (2.14

mmol) and 3.8 mL of fluoroboric acid dimethyl ether complex (32.15 mmol) yielded 0.2874 g (51%)

of viscous colourless oil. 1H NMR (CDCl3, 300.1 MHz): δ 2.59 (m, 4H), 2.04-1.88 (m, 4H), 1.65 (dq, 

J = 7.0 Hz,2JP-H = 9.9 Hz, 8H), 1.01 (dt, J = 7.0 Hz, 3JP-H = 3.1, 12H). 13C{1H} NMR (CDCl3, 75.5

MHz): δ 38.3 (d, 1JP-C = 28.5 Hz), 35.7 (s), 27.6 (s), 20.1 (d, 1JP-C = 27.9 Hz), 9.9 (d, 2JP-C = 12.1 Hz).

31P{1H} NMR (C6D6, 121.4 MHz): δ -26.1. Anal. Calculated for C14H30P2S2: C, 52.15; H, 9.38; S,

19.89. Found: C, 52.31; H, 9.36; S, 19.76.

Theoretical studies. The natural bite angles of 1-3 were determined by semi-empirical

calculations. Initial conformations of Rh-1, Rh-2 and Rh-3 were determined by the PM3(tm) method

as implemented in the SPARTAN SGI software, using the crystallographic data for [Rh(acac)(DIOP)] as

the starting point. The geometries thus obtained were further optimised by eigenvector following as

implemented in the GAUSSIAN 98 program, with a termination criterion of rms gradient < 0.001 kJ

mol-1 Å-1.

High pressure NMR. In a typical experiment the 10 mm sapphire NMR cell was primed with

a solution of 5.0 mg [Rh(acac)(CO)2] (0.02 mmol) and 1, 3 or PEt3 (0.04 mmol) in d8-toluene (1.5

mL) under N2. The cell was purged thrice with CO/H2 = 1 and then pressurised to 40 bar. NMR

spectra at different temperatures were recorded. Line-shape analyses and simulations were performed

using the dNMR and daisy spectrum simulation options in the TOPSPIN™ software provided by Bruker

BioSpin.

Catalysis. Syngas was purchased from BOC (Caution! Carbon monoxide is extremely

poisonous and accidents may be lethal. A sensitive personal detector was carried and all experiments

were performed in a well ventilated fume-hood fitted with a detector, maintaining the concentration of

carbon monoxide below the mac value at all times). Hydroxymethylation reactions were carried out

on the CAT rig with stirrer speed set at 800 rpm. In a typical experiment a solution of 1-3 (0.04-0.40

mmol) in ethanol (3 mL) was added to 10.4 mg [Rh(acac)(CO)2] (0.04 mmol). The resulting

solution was sonicated over 10 minutes and transferred into the autoclave under CO/H2 = 1; any

residues were transferred with a further aliquot of ethanol (1 mL). The solution was incubated for 40

minutes at the appointed temperature and 30 bar CO/H2 = 1. After 1 mL allyl alcohol (14.70 mmol,

azeotropically dried with toluene and distilled) was injected the pressure was adjusted to 40 bar, and

the reaction was run to completion. The autoclave was then cooled and depressurised. 50 μL diglyme 

was added as internal standard to a 1 mL aliquot of the product solution, and the sample was analysed

by GC. The experiments were performed at least in duplo.



Enhanced Linear-Selective Hydroxymethylation with the Rhodium Complexes of Bis(diethylphosphine) ...

63

For catalyst recycling experiments, a solution of 1 or 3 (0.08 mmol) in toluene (3 mL) was

added to 10.4 mg [Rh(acac)(CO)2] (0.04 mmol). The resulting solution was sonicated over 10 minutes

and transferred into the autoclave under CO/H2 = 1; any residues were transferred with a further

aliquot of toluene (1 mL). The solution was incubated for 20 minutes at 60°C and 10 bar CO/H2 =1. 1

mL allyl alcohol (14.70 mmol) was injected and the reaction was run to completion. The autoclave

was cooled, depressurised to 1 bar and the product solution thus transferred via cannula to a Schlenk

vessel equipped with a magnetic stirrer. The addition of water (2.5 mL) gave immediate phase

separation and the biphasic system was stirred 5 minutes at 20°C. The organic phase was carefully

transferred to a volumetrically graduated Schlenk tube via syringe; fresh toluene was added to make

up 4 mL volume. This solution was re-applied in catalysis.

Determination of partition coefficients. A known amount of product (2.3 mmol) was

solvated in water (2 mL). A biphasic system was created by the addition of toluene (2 mL). The

mixture was sonicated over 5-10 minutes and then allowed to equilibrate at 0°C. Once two clear

phases were obtained, a 0.5 mL aliquot was withdrawn from each and its weight determined (± 0.5

mg).

Deuterium labelling. Carbon monoxide was purchased from BOC and D2 was purchased

from Cambridge Isotope Laboratories. Labelling reactions were performed in a hastelloy autoclave.

In a typical experiment a solution of 1 and 10.4 mg [Rh(acac)(CO)2] (0.04 mmol) in ethanol (4 mL)

was sonicated over 10 minutes and transferred into the autoclave under carbon monoxide, together

with 1 mL substrate. The autoclave was pressurised with 20 bar D2 and 20 bar carbon monoxide, and

then heated to 120°C. After 3 hours the autoclave was cooled and depressurised. The product mixture

was fractioned by spinning-band distillation. The fractions were analysed qualitatively by 13C{1H}

NMR spectroscopy and quantitatively by 13C{1H, 2H} NMR spectroscopy.
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-Chapter 3-

Enhanced Specific Activity in the Hydroformylation of

Allylic Alcohols via the Meta-Effect

Abstract. Hybrid phosphines of the form PArAr’2 (Ar = Ph, C6H4-3-Me, C6H3-3, 5-Me2 and Ar’ =

Ph, C6H4-3-Me, C6H3-3, 5-Me2) were prepared, and their physicochemical properties assessed as a

function of systematic meta-substitution. Although the structural requisite of the triarylphosphine was

not significantly affected, variable temperature 1H NMR spectroscopy has shown that the steric

exertions of meta-methyl substituents increase the activation barrier to phosphorus-(ipso)carbon

rotation. The consequential formation of a rigid and well-defined coordination sphere in

[RhH(CO){(3, 5-Me2Ph)3P}] effects dramatically enhanced linear-selective hydroformylation of

allylic alcohols. This catalyst was recycled via biphasic separation twelve times with 94 % average

retention of activity. The kinetics of allyl alcohol hydroformylation with [RhH(CO){(3, 5-

Me2Ph)3P}3] were investigated in the temperature range 333-353 K, from which the activation energy

was found to be EA = 32.62 kJ mol-1.
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3. 1 Introduction

The most rudimentary approach to ligand development involves simple modification of an

exisiting motif. In the case of triphenylphosphine, this strategy has been implemented by introducing

substitution patterns onto the phenyl moieties. The screening of these triarylphosphines in asymmetric

catalysis has led to the identification of a meta-effect,1 effectively an enantiomeric enhancement when

a phenyl ring is substituted with a 3, 5-dialkylphenyl ring. Transition metal complexes modified with

a bis(3, 5-dialkylphenyl)phosphine chelate have also been applied successfully for a variety of

catalytic transformations (Table 1). The intricacies of the meta-effect have so far only been

investigated with high specificity for particular complexes.

Table 1: Examples of enantioselective enhancement in current literature.

transformation catalyst substrate ee (%)

Heck arylation [Pd(3, 5-Me2- MeO-BIPHEP)Cl2] dihydrofuran 86-90 1a

allylic alkylation [Pd(3, 5-tBu2- MeO-BIPHEP)Cl2] oxobenzonorbornadiene 97-98 1b

hydrogenation [Rh(3, 5-Me2- GLUPhos)(COD)]SbF6 dehydroamino acid 97-99 2

[Ru(C6H6)(3, 5-Me2BINAP)Cl2]/

diamine (jst-class catalysts)
acetophenones 80-99 3

[Ru(C6H6)(3, 5-Me2-BINAP)Cl2] β-keto esters 88-95 4

hydrocyanation [Ni(COD)2]/3, 5-(CF3)2C6H3 vinyl arenes 75-91 5

hydrosilylation [Pd(π-C3H5)Cl]2/3, 5-(CF3)2-H-MOP styrenes 95-98 6

fluorination [Pd(m-OH)(3, 5-Me2-BINAP)]2
+ cyclic β-keto esters 88-92 7

Unfortunately the application of such catalysts for non-asymmetric transformations has been

relatively overlooked. Recently, White et al. applied rhodium complexes of bis(3, 5-

dimethylphenyl)phosphine-DIOP and bis(3, 5-dimethylphenyl)phosphine-CBM for the

hydroformylation of allyl alcohol,8 reporting significantly enhancemed linear selectivity and

suppression of C3-product formation. Yields of 94.1 kg 4-hydroxybutanal per gram rhodium have

been achieved with these species under optimised conditions. The corresponding activities are equally

intriguing, but have not been explored further.

In this chapter we report the first systematic evaluation of how meta-methyl substitution in

triarylphosphines affects their physicochemical requisites, both in isolated state and in their

rhodium(I) complexes. The performance of [RhH(CO){(3, 5-Me2Ph)3P}3] in allyl alcohol

hydroformylation is presented from the perspectives of catalyst recycling and macrokinetics.

Application of the aforementioned species in an alternative preparation of the neuroleptic Fluspirelen

is also described.
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3. 2 Indexation of Ligand Characteristics

Hybrid triarylphosphines are of increasing interest as ligands, however systematic reports of

their characteristics remain scarce in the literature. Specifically, the physicochemical exertions of a

meta-methyl substituent on the aryl ring are of theoretical and experimental interest.9

Electronic parameters. Experimental determination of the electronic properties of a series

of phosphines requires a responsive and sensitive probe. Relative scales have been constructed on the

basis of collections and estimates of their acidity constants, calorimetric data and spectroscopic

measurements of their transition metal carbonyl complexes,10 however the Tolman electronic

parameter (χ) remains the preferred characterisation. Monodentate phosphines are related by the A1

stretching frequency of their [Ni(CO)3(A)] complexes (Equation 1).11

� � � = � � � [Ni(CO) � (P � Bu � )] + � 												(Equation 1)

Strong σ-donor phosphines decrease the formal charge on nickel, which increases nickel-CO π-back-

bonding and shifts the relevant band to a lower frequency. The complexes [Ni(CO)3(L)] (L = PPh3,

P(C6H4-3-Me)3, P(C6H3-3, 5-Me2)Ph2, P(C6H3-3, 5-Me2)2Ph and P(C6H3-3, 5-Me2)3) were prepared in

situ from [Ni(CO)4] in dichloromethane (Table 2). Tolman defined these conditions of measurement

in order to eliminate the dependence of  νCO on solvent choice and on packing effects and

polymorphism in the solid state sample. 11, 12

Table 2: Spectral data for [Ni(CO)3(L)] in dichloromethane.a

L
A1 νCO

χ

13C{1H} δb

CB/EB

(cm-1) (ppm)

PPh3 2069.1 13.0 4.2 4.4

P(C6H4-3-Me)3 2067.0 10.9 4.4 5.2

P(C6H3-3, 5-Me2)Ph2 2067.8 11.7 4.3 4.8

P(C6H3-3, 5-Me2)2Ph 2066.8 10.7 4.4 5.2

P(C6H3-3, 5-Me2)3 2065.7 9.6 4.5 5.7
aConditions: 2 mL dichloromethane, ~ 50 mM [Ni(CO)3(L)], 25°C, atmospheric pressure of nitrogen. b Reported

downfield from [Ni(CO)4].

Replacements of triphenylphosphine in [Ni(CO)3(L)] with tri(meta-methylphenyl)phosphine

and tris-(3, 5-dimethylphenyl)phosphine shift the νCO band of the complex to lower frequency by 2.1

cm-1 and 3.4 cm-1 respectively. Similarly, each substitution of a phenyl-substituent in

triphenylphosphine with a (3, 5-dimethylphenyl)-substituent shifts this to a lower frequency by ~ 1.0
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cm-1. The IR data confirm that a meta-methyl substituent exerts positive inductive and mesomeric

effects on the conjugated system, with a corresponding shift of ~ -0.6 cm-1.

The data displays good proportionality for the sum of the Hammett parameter, σ (m-Me) = -0.069.13

The correlation is fitted by r2 = 0.98, which demonstrates that the accuracy of the measurements made

by this method. Moreover, insignificant deviation from this electronic correlation intimates effective

isostericity of these triarylphosphines.

The IR data is advantageous because it can be reliably compared with that calculated from the

electrostatic-covalent (ECW) model (Equation 2).14 In effect, EB and CB provide a dual-parameter,

enthalpy-based σ-donor scale that is used to correlate the physicochemical measurement (x) and the

donor-acceptor bond strength.

x = � � � � + 	 � � � � + 	� 								(Equation 2)

In order to incorporate these hybrid triarylphosphines into the model, in situ formation of the

[Ni(CO)3(L)] adducts in d2-dichloromethane was additionally monitored by 13C{1H} NMR

spectroscopy. Stronger nickel-CO π-back-bonding shields the carbon nucleus as separation between 

the ground state and the lowest energy excited states is reduced.15 The CB/EB ratio for each donor can

then be calculated from the simultaneous equations, one for each physicochemical measurement. The

relevant input values are EA = -52.4, CA = -12.2 and W = 2143 for ν-[Ni(CO)3(L)], and EA = 8.27, CA

= 1.95 and W = -7.47 for 13C-[Ni(CO)3(L)].14c

Electrochemical behaviour. Most triarylphosphines are relatively easy to oxidise to the

corresponding phosphoniumyl radical.16 It is well-established that the kinetic stability of such species

is almost exclusively determined by the steric embrace of the phosphorus nucleus,17 so the anodic

oxidations of triphenylphosphine, tri(meta-methylphenyl)phosphine and tris-(3, 5-

dimethylphenyl)phosphine in n-butyronitrile were investigated (Table 3).

Table 3: Anodic oxidation data for triarylphosphines.a

pulse voltammetry cyclic voltammetry

mV s-1 Ep (V) V s-1 Ic/Ia

PPh3 (···) 10 1.41 0.25 0

5 0

P(C6H4-3-Me)3 (---) 10 1.33 0.25 0

P(C6H3-3, 5-Me2)3 (― ) 10 1.19 0.25 0

5 0
aConditions: 3.5 mL n-butyronitrile, 10 mM [tris(aryl)- phosphine], 0.1M [NnBu4][PF6].
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The life-time of a phosphoniumyl radical can be estimated from the ratio of cathodic peak

current (Ic) to anodic peak current (Ia) in the cyclic voltammogram.18 The shapes of these did not

change significantly upon increasing meta-substitution in the triarylphosphine, and non-detection of a

cathodic peak current upon reversion of the potential sweep intimates that fundamentally transient

phosphoniumyl radicals are generated (Figure 1). Even at a scanning rate of 5 V s-1, the oxidations are

virtually irreversible. This confirms a comparable kinetic stabilisation of the phosphoniumyl radical,

and thus a comparable steric embrace of the phosphorus nucleus..

Figure 1. Cyclic voltammograms of systematic meta-substituted triarylphosphines.

The anodic oxidations of triphenylphosphine, tris(meta-methylphenyl)phosphine and tris(3,

5-dimethylphenyl)phosphine in n-butyronitrile were also modulated by normal pulse voltammetry

with reference to the saturated calomel electrode,19 which gave reproducible oxidation potentials (Ep).

Defined diffusion-controlled anodic waves are evident from the voltammograms, and single electron

oxidations are implicated (Figure 2).18b

Figure 2. Normal pulse voltammograms of systematic meta-substituted triarylphosphines.
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Changing from triphenylphosphine to tri(meta-methylphenyl)phosphine and tris-(3, 5-

dimethylphenyl)phosphine reduces the oxidation potential by 0.08 V and 0.22 V respectively,

reflecting a change in the energy of the HOMO. The systematic introduction of meta-methyl

substituents increases the relative contribution of the 3p atomic orbital of the phosphorus nucleus to

this molecular orbital, thereby increasing its energy and facilitating the expulsion of an electron.

Molecular structures. A structural comparison of hybrid meta-methyl substituted

triarylphopshines is necessarily limited because a search of the Cambridge Crystallography Data

Centre database led to the location of only three reported molecular structures of relevance;

triphenylphosphine,20 tri(3-methylphenyl)phosphine20 and tris(3, 5-dimethyl-4-

methoxyphenyl)phosphine.9b White crystals of tris(3,5-dimethylphenyl)phosphine suitable for single

crystal X-ray diffraction analysis were obtained by slow diffusion of n-pentane into a concentrated

chloroform solution. The molecular structure is presented (Figure 3). Selected bond angles and

distances for several of these geometries are presented in a comparative compilation (Table 4).

Figure 3. ORTEP drawing of tris(3, 5-dimethylphenyl)phosphine with ellipsoids at 50 % probability level.

Hydrogen atoms are omitted for clarity.

The isomorphs adopt a paddle-like configuration in which the aryl rings extend from an axis

of rotation and twist to impart a helical conformation to the molecule. The carbon-phosphorus- carbon

bond angles in triphenylphosphine (e.g. C(1)-P(1)-C(9) = 102.0°), tri(3-methylphenyl)phosphine (e.g.

C(1)-P(1)-C(9) = 102.2 °) and tris(3, 5-dimethylphenyl)phosphine (e.g. C(1)-P(1)-C(9) = 102.46°)

correspond well with one another, suggesting that meta-methyl substituents do not significantly alter

the steric configuration at the donor site. The phosphorus-carbon bond distances in
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triphenylphosphine (e.g. P(1)-C(17) = 1.840 Ǻ ), tri(3-methylphenyl)phosphine (e.g. P(1)-C(17) =

1.838 Ǻ ) and tris(3, 5-dimethylphenyl)phosphine (e.g. P(1)-C(17) = 1.840 Ǻ ) are similarly 

convergent. The sp2-sp2 and sp2-sp3 carbon-carbon bond distances average 1.387 Ǻ  and 1.533 Ǻ  

respectively.

Table 4: Selected bond lengths (Å) and bond angles (°) for triarylphosphines, (ESD).

bond distance bond angle

triphenylphosphine

P(1)-C(1) 1.844 (6) C(1)-P(1)-C(9) 102.0 (27)

P(1)-C(9) 1.820 (6) C(1)-P(1)-C(17) 103.8 (28)

P(1)-C(17) 1.840 (5) C(9)-P(1)-C(17) 101.7 (28)

C(17)-C(18) 1.406 (7)

C(21)-C(24) 1.526 (7)

tris(3-methylphenyl)phosphine

P(1)-C(1) 1.838 (8) C(1)-P(1)-C(9) 102.2 (3)

P(1)-C(9) 1.829 (7) C(1)-P(1)-C(17) 102.2 (3)

P(1)-C(17) 1.838 (7) C(9)-P(1)-C(17) 100.6 (3)

C(17)-C(18) 1.402 (12)

C(21)-C(24) 1.532 (11)

tris(3, 5-dimethylphenyl)phosphine

P(1)-C(1) 1.838 (3) C(1)-P(1)-C(9) 102.46 (12)

P(1)-C(9) 1.830 (3) C(1)-P(1)-C(17) 103.22 (12)

P(1)-C(17) 1.840 (3) C(9)-P(1)-C(17) 99.85 (11)

C(17)-C(18) 1.385 (4)

C(21)-C(24) 1.517 (4)

The torsional angles measured from the centroid of the

three ipso carbons through the phosphorus nucleus back to the

ipso carbons can be used to quantitatively describe the rotation

of the aryl rings from vertical positions (Figure 4).21 By this

technique, the zero-torsion angle occurs when the aryl ring

eclipses the corresponding phosphorus-(ipso)carbon bond. An

increase in the torsional angle is then proportional to the

rotational freedom of the aryl ring. The average torsional angles

methylphenyl)phosphine and tris(3, 5-dimethylphenyl)phosphine are

133° respectively. Although these differences are relatively minor, so

certainly imposed by short contacts between the methyl substitue

Ar Ar

Ar

P


Figure 4. Torsional angle (ϕ)  

in triarylphosphines.
for triphenylphosphine, tri(3-

determined as 144°, 136° and

me restricted rotation is almost

nts on one aryl ring and the
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conjugated skeleton of another aryl ring. Pregosin et al. identified such contacts via intramolecular

NOEs in the 2-dimensional NMR spectra of palladium and ruthenium complexes of tris(3, 5-di-tert-

butylphenyl)phosphine.1a

3. 3 Rhodium(I) Chemistry Under Nitrogen

A solid state model of triarylphosphines intimates some restricted rotational freedom of meta-

methyl substituted aryl rings around their phosphorus-(ipso)carbon bonds, and it is of interest to

define how this is manifested in their rhodium(I) chemistry.

Isolated complexes. [Rh(CO)2Cl]2 and the triarylphospine reacted smoothly in cold toluene,

with yellow prisms of the trans-[Rh(CO)(L)2Cl] complex obtained upon ethanolic crystallisation of

the crude residue (Table 5). The 31P NMR spectra show a sharp doublet at δP = 29.8-31.7 ppm,

consistent with a trans square planar configuration of the phosphorus nuclei. Each substitution of a

phenyl-substituent in triphenylphosphine with a (3, 5-dimethylphenyl)-substituent reduces the

rhodium-phosphorus coupling, reflecting decreasing electronegativity of the triarylphosphines. In the

IR spectra, the intense νCO band observed at 1974-1979 cm-1 is characteristic of a terminal CO

auxiliary trans to chloride.22 The spectral data is in excellent agreement with that previously reported

for trans-[Rh(CO)(PPh3)2Cl].22c

Table 5: Spectroscopic and analytical data for trans-[Rh(CO)(L)2Cl].

L

31P{1H} NMRa IR (cm-1)b CHN found (calc.)

δ (ppm) 1JRh-P (Hz) υCO C H

PPh3 31.7 132 1979 (s) 64.19 (64.32) 4.30 (4.38)

P(3, 5-Me2Ph)Ph2 31.0 129 1977 (s) 65.85 (65.92) 4.99 (5.13)

P(3, 5-Me2Ph)2Ph 30.3 128 1976 (s) 67.47 (67.30) 5.84 (5.77)

P(3, 5-Me2Ph)3 29.8 126 1974 (s) 68.48 (68.49) 6.41 (6.33)
a1mL d3-chloroform, 7 mM [Rh], ambient temperature, atmospheric pressure of nitrogen. bKBr disc.

The solid state structure of trans-[Rh(CO){(3, 5-Me2Ph)3)P}2Cl] was determined. Yellow

prisms suitable for single crystal X-ray diffraction analysis were obtained by slow diffusion of

acetonitrile into a concentrated dichloromethane solution. The molecular structure and selected bond

angles and distances are presented (Figure 5, Table 6). The complex has crystallographically imposed

mirror symmetry, with a slightly distorted square planar rhodium geometry shown in the immediate

bond angles (P(1)-Rh(1)-P(2) = 172.7°, Cl-Rh-C = 186.8°, Cl(1)-Rh(1)-P < 90° and C(51)-Rh(1)-P >

90°). The bond distances in the nearest surrounding of rhodium  (Rh(1)-P(1) = 2.335 Ǻ , Rh(1)-P(2) = 

2.326 Ǻ , Rh(1)-C(51) = 1.813 Ǻ  and Rh(1)-Cl(1) = 2.361 Ǻ ) correspond well with those of trans-
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[Rh(CO)(PPh3)2Cl].23 The bond distance in CO (C-O = 2.14 Ǻ ) is considered fairly standard for 

complexes of this type.24 With relevance to the hydroformylation scheme [Rh(CO){(3, 5-

Me2Ph)3)P}2Cl] can be considered a structural model of [RhH(CO){(3, 5-Me2Ph)3)P}2],
25 formed by

CO dissociation from the catalyst resting state. Square planar hydride complexes of nickel,

molybdenum and tungsten have previously been generated by substitution of halide auxiliaries using

SuperHydride®.26 Unfortunately, attempts to convert [Rh(CO){(3, 5-Me2Ph)3)P}2Cl] to its hydride

analogue by this method failed. Square planar [RhH(CO)(L)2] species are rarely observed.27

Figure 5. ORTEP drawing of trans-[Rh(CO){(3, 5-Me2Ph)3)P}2Cl] with ellipsoids at 50 % probability level.

Hydrogen atoms are omitted for clarity.

Table 6: Selected bond distances (Ǻ ) and bond angles (°) for trans-[Rh(CO){(3, 5-Me2Ph)3)P}2(CO)],

(ESD).

bond distance bond angle

Rh(1)-P(1) 2.335(19) P(1)-Rh(1)-P(2) 172.7(3)

Rh(1)-P(2) 2.326(2) C(51)-Rh(1)-Cl(1) 186.8(3)

Rh(1)-C(51) 1.813(3) P(1)-Rh(1)-Cl(1) 87.11(8)

Rh(1)-Cl(1) 2.361(7) P(2)-Rh(1)-Cl(1) 87.11(8)

P(1)-Rh(1)-C(51) 93.0 (3)

P(2)-Rh(1)-C(51) 92.8(3)

C(51)-O(51) 1.126(4)

P(1)-C(1) 1.818(7) Rh-P(1)-C(1) 114.9(2)

P(1)-C(17) 1.833(8) Rh-P(1)-C(17) 115.6(2)
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Solution dynamics under nitrogen. To complement the measurements of the isolated

structures, the solution dynamics of [Rh(CO){(3, 5-Me2Ph)Ph2P}2Cl] and [Rh(CO){(3, 5-

Me2Ph)2PhP}2Cl] were probed by variable temperature 1H NMR spectroscopy (Figure 6).

(a) (b)

Figure 6. Variable temperature 1H NMR spectra of [Rh(PAr3)2(CO)Cl] (methyl region):

(a) PAr3 = P(3, 5-Me2Ph)Ph2 at 25°C, -10°C, -30°C, -60°C (ascending),

(b) PAr3 = P(3, 5-Me2Ph)2Ph at 25°C, -10°C, -30°C, -60°C (ascending).

The methyl protons in [Rh(CO){(3, 5-Me2Ph)Ph2P}2Cl] are resolved as a sharp singlet at

ambient temperature, but at -30°C rotation of the meta-substituted ring around its phosphorus-

(ipso)carbon bond begins to become restricted. This rotation is frozen at -60°C. The 1H NMR

spectrum of [Rh(CO){(3, 5-Me2Ph)2PhP}2Cl] is marked by two spin systems, due to a configuration

with one meta-substituted ring in an equatorial site and the other in a pseudo-axial site (Figure 7).

Figure 7. Aryl ring positions in a rhodium-coordinated fragment of P(3, 5-Me2Ph)2Ph.

Restricted phosphorus-(ipso)carbon rotation begins to affect one of these at -10°C, the low barrier to

rotation implicating the equatorial analogue.1b The two inequivalent methyl signals are resolved at -
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30°C, and at this temperature slower dynamic of the second meta-substituted is also noted. The four

methyl signals are resolved at -40°C.

Rate constants for the phosphorus-(ipso)carbon rotation of the 3, 5-dimethylphenyl moieties

in [Rh(CO){(3, 5-Me2Ph)Ph2P}2Cl] and [Rh(CO){(3, 5-Me2Ph)2PhP}2Cl] were determined by

dynamic line-shape analyses of the 1H NMR and simulated 1H NMR spectra at -30°C, and the

corresponding activation barriers were calculated from the Eyring equation (Equation 3) (Table 7).

Table 7: Phosporus-(ipso)carbon rotation in [Rh(CO)(L)2Cl].a

L k Δ ǂG243K

(Hz) (kJ mol-1)

(3, 5-Me2Ph)Ph2P 8630 40.79

(3, 5-Me2Ph)2PhP (e) 3192 42.23

(3, 5-Me2Ph)2PhP (pseudo-a) 2966 42.27
a1mL d8-toluene, 7 mM [Rh], -30°C, atmospheric pressure of nitrogen.

These calculations suggest that substitution of a phenyl substituent in a hy

(3, 5-dimethylphenyl) substituent increases the rotational activation barri

certainly because the motion of meta-substituted aryl rings past ea

Stabilisation of the pseudo-axial aryl by π-stacking with the conj

[Rh(CO){(3, 5-Me2Ph)2PhP}2Cl] presumably accounts for the slightl

relative to the equatorial aryl . It is worth noting that this steric effect sho

five-coordinate transition states of the hydroformylation scheme.

Solubility. Trans-[Rh(CO)(L)2Cl] is smoothly converted to the

sequential reduction with sodium propoxide and hydrogen,29 for which s

examined (Table 8). NMR analyses highlight a similarity between thes

introduction of two meta-methyl substituents does not significantly aff

properties of the parent complex.

Table 8: Selected NMR data and solubility data for [RhH(CO)(L)3] in va

L
NMRa solub

δP (ppm) 1JRh-H (Hz) toluene diethyl eth

PPh3 19.2 9.4 83 76

P(C6H3-3, 5-Me2)Ph2 19.2 9.6 96 70

P(C6H3-3, 5-Me2)2Ph 19.5 9.7 110 65

P(C6H3-3, 5-Me2)3 19.7 9.9 120 62
aIn d3-chloroform. bSolubility in HPLC-grade solvent at 25°C.
brid triarylphosphine with a

er by ~1.5 kJ mol-1,28 almost

ch other is more strained.

ugated skeleton in  trans-

y higher barrier to rotation

uld be more significant in the

[RhH(CO)(L)3] complex by

olubility behaviour was then

e species, indicating that the

ect structural and electronic

rious organic media.

ility (g L-1)b

er acetone methanol

65 33

59 32

52 24

44 19

� = �
� � �

ℎ
� �

� ∆ �
� � (Equation 3)
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Upon changing from acetone to diethyl ether to toluene, solubilities of the [RhH(CO)(L)3]

complexes improve with decreasing polarity of the medium. The magnitude of the change

corresponds to the meta-methyl substitution pattern in the triarylphosphine, which expands the

lipophilic domain of its complex making it relatively more apolar. Relatively low solubilities in

methanol are no doubt due to the poor hydrogen bonding character of these species.

3. 4 Catalysis

To evaluate the meta-effect as a control element for catalyst performance, the complex

[RhH(CO){(3, 5-Me2Ph)3P}3] was prepared. Using the hydroformylation of allyl alcohol in toluene as

a model reaction, the effects of the operating conditions on the performance of the catalyst were

assessed.30 The catalyst solutions were incubated at the requisite temperature and CO/H2 pressure for

10 minutes to allow milieu stabilisation. The specific activity of the catalyst is best described by a

conversion-time profile, from which mass balance and reaction stoichiometry can also be estimated.

In the experimental range of operating conditions a product mixture of typically > 93% linear

aldehyde (2-hydroxyfuran) and < 7% branched aldehyde (2-methylpropanal) is recovered.31 This high

regioselectivity is ascribed specifically to the steric exertions of the meta-methyl substituents on the

rings of the triarylphosphine. The restricted rotation of the (3, 5-dimethylphenyl) moieties around

their phosphorus-(ipso)carbon bond in addition to steric crowding, which makes this ligand more

intrusive with respect to other auxiliaries, should create a rigid and well-defined coordination sphere

around rhodium.

Catalyst concentration. The dependence of conversion and selectivity on the catalyst

concentration is presented (Figure 8). Complete conversion is achieved in all cases in < 14 minutes.

Catalyst productivity increases five-fold along the experimental range, making catalyst concentration

a limiting factor for the activity. The catalyst gives little activity for the isomerisation of allyl alcohol,

typically < 0.25 mol %, which suggests that an intermediate hydrido η 3-allyl rhodium configuration

required cannot be accommodated.31 Unusually, no activity for the hydrogenation of allyl alcohol is

observed.

Calculated at complete conversion, linear selectivity increases from l/b = 14.7 at [Rh] = 4.27

mM to l/b = 18.2 at [Rh] = 6.83 mM. These are exceptionally high ratios for allyl alcohol and

particularly impressive in consideration of the modest L/Rh molar ratio used. Similar patterns have

been reported for [RhH(CO)(Ph3P)3]
32 and [RhH(CO){(p-CF3-C6H4)3P}3].

32 It is assumed that high

catalyst loadings minimise dissociation of the active species, in the tris-carbonyl end-product is active

for branch-selective hydroformylation:
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[RhH(CO){(3, 5-Me2Ph)3P}3]↔ [RhH(CO)2{(3, 5-Me2Ph)3P}2]↔ [RhH(CO)3{(3, 5-Me2Ph)3P}2].
33

The distribution of the regio-isomers in time changes more significantly at higher catalyst

concentrations, which suggests that the rate of branch-selective hydroformylation becomes

increasingly competitive. Kinetic selectivity studies have previously shown that the rate of linear-

selective hydroformylation and the rate of branch-selective hydroformylation are most accurately

expressed by different models.34

Figure 8. Conversion-time profiles for allyl alcohol hydroformylation with

[RhH(CO){(3, 5-Me2Ph)3P}3]at variable catalyst concentration:

(□) 4.27 mM [Rh], (◊) 5.12 mM [Rh], (Δ ) 6.83 mM [Rh], (■- ♦-▲ ) l/b ratio.

(Conditions: 4 mL toluene, 2.94 M [allyl alcohol], 353 K, 30 bar CO/H2 = 1)

Allyl alcohol concentration. The demonstration of consistently high specific activity at a

high substrate/catalyst molar ratio is an important measure of the commercial feasibility of a catalytic

reaction. The effect of the allyl alcohol concentration on conversion and selectivity is presented

(Figure 9).

Calculated at 5 minutes, conversion drops from 100 mol% at Rh/S= 1/257 to 89 mol% at Rh/S

= 1/861. This is correlated with a higher activity for the isomerisation of allyl alcohol which ties up

the catalyst in an alternative pathway. Furthermore, Strohmeier and Michel have shown that

hydroformylation catalyes at high substrate concentrations proceed with negligible conversion due to

formation of the inactive carbonyl-bridged rhodium dimer. 35

The regioselectivity is found to be adversely affected by increasing allyl alcohol

concentration, suggesting that the branch-selective scheme is higher order with respect to this

parameter than the linear-selective pathway. Similar behaviour has been recognised in selectivity
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studies on the cobalt-catalysed hydroformylation of propene and the rhodium-catalysed

hydroformylation of vinyl acetate.34b, 36

Figure 9. Conversion-time profiles for allyl alcohol hydroformylation with

[RhH(CO){(3, 5-Me2Ph)3P}3]at variable substrate concentration:

(□) 1.76 M [allyl alcohol], (◊) 2.94 M [allyl alcohol], (Δ ) 5.88 M [allyl alcohol],  

(□ - ◊ - Δ ) 1-propanal, (■- ♦-▲ ) l/b ratio.

(Conditions: (5-Vsubstrate) mL toluene, 6.83 mM [Rh], 333 K, 40 bar CO/H2=1)

Recycling. The solution stability of [RhH(CO){(3, 5-Me2Ph)3P}3] was assessed by recycling

experiments under reaction conditions approximating the process parameters used by Lyondell-Basell

(Table 9).37 After each cycle the reaction mixture was carefully transferred from the autoclave with a

small overpressure and the catalyst was recycled efficiently following aqueous extraction of the

products.

Table 9: Recyclability of [RhH(CO){(3, 5-Me2Ph)3P}3] in the hydroformylation of allyl alcohol by

toluene/water extraction.a

cycle TOF b (h-1) ar c [Rh]aq [P]aq

1 13.95×102

2 13.74×102 0.98 2.1 ppm 7.7 ppm

6 13.35×102 <0.99>ci

7 11.72×102 0.88

12 7.33×102 <0.92> cii
208.9 ppm 691.2 ppm

aConditions: 4 mL toluene, 5.12 mM [Rh], Rh/allyl alcohol = 1/574, 343 K, 10 bar CO/H2= 1. bTurnover

frequency defined as mol conversion per mol initial Rh per hour. cActivity retention (ar = acycle(n)/acycle(n-1)),
iaverage per cycle for cycles 3-6, iiaverage per cycle for cycles 8-12.
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Conversion is only significantly reduced after six or more consecutive cycles. The product

layers from cycles 6-12 are observed to be of a pale orange colour, suggesting some leaching of the

catalyst. Analysis of the collective aqueous extract by ICP-MS confirmed this view. Both rhodium

(208.9 ppm) and phosphorus (691.2 ppm) were detected, corresponding to a loss of 3.4% of initial

rhodium and 3.75% of initial phosphorus per cycle.38 It seems that an initial catalyst leaching

enhances this effect through subsequent cycles.

Despite a decrease in the turnover frequency, the total turnover number achieved after

multiple cycles make a strong case for the use of [RhH(CO){(3, 5-Me2Ph)3}P)3] in continuous flow

mode (Figure 10). The catalyst aliquot can be recycled twelve times, with ~ 94 % catalyst activity

retention per cycle giving a cumulative turnover number of 14.66×104 mol per mol of catalyst. This is

significantly higher than the cumulative turnover number achieved with [RhH(CO)(PPh3)3].

Figure 10. Cumulative turnover number achieved in the hydroformylation of allyl alcohol:

(■) [RhH(CO){(3, 5-Me2Ph)3P}3], (■) [RhH(CO)(Ph3P)3] in cycle 12.

(Conditions: 4 mL toluene, 5.12 mM [Rh], Rh/allyl alcohol = 1/574, 343 K, 10 bar CO/H2= 1)

3. 5 Macrokinetics

Ideally, the rate equation of a catalytic reaction allows recognition of mechanistic aspects

over a broad range of operating conditions and application for engineering designs.39 The kinetics of

allyl alcohol hydroformylation with [RhH(CO){(3, 5-Me2Ph)3P}3] in toluene was therefore

systematically investigated (Table 10).
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Table 10: Experimental range for macrokinetic study on hydroformylation of allyl alcohol with

[RhH(CO){(3, 5-Me2Ph)3P}3].

catalyst concentration (mM) 4.27-8.54

allyl alcohol concentration (M) 0.59-5.88

carbon monoxide partial pressure (MPa) 0.20-2.03

hydrogen partial pressure (MPa) 0.51-2.03

temperature (K) 333-353

medium toluene

reaction volume (mL) 5

Material balance. For accurate kinetic analysis it was necessary to first illustrate mass

balance and gas balance (Table 11). Measured at three-minute intervals, the observed molar

consumptions of carbon monoxide and hydrogen correspond well with the requisite consumption

calculated from the molar formation of hydroxyaldehyde products. The calculated composition of

CO/H2 in the autoclave at each interval confirms that supply of CO/H2 = 1 is adequate to maintain the

initial stoichiometry of the gaseous reagents. The calculated amount of hydrogen correlates with that

determined by gas analysis of the sample within a 4% error range.

Kinetic regime. Since hydroformylation involves gaseous reagents in a liquid medium,

kinetic analysis must be performed with no possibility for mass-transfer limitations.40 By evaluating

the reaction rate as a function of agitation, kinetic regime is identified above 18 Hz (Figure 11).

Therefore consecutive rate data has been collected at an agitation speed of 20 Hz.

Figure 11. Activity of [Rh{(3, 5-Me2Ph)3}P)3(CO)H] in the hydroformylation

of allyl alcohol as a function of agitation.

(Conditions: 4 mL toluene, 6.83 mM [Rh], Rh/allyl alcohol = 1/690, 353 K, 40 bar CO/H2 = 1)
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Table 11: Mass balance in the hydroformylation of allyl alcohol with [RhH(CO){(3, 5-Me2Ph)3P}3]

in toluene.a

0 min 3 min 6 min 9 min

2-hydroxyfuran (mmol) 0.00 7.06 16.36 20.99

2-methylpropanal (mmol) 0.00 0.42 0.91 1.23

1-propanal (mmol) 0.00 0.11 0.17 0.17

allyl alcohol conversion (mmol) - 7.59 17.44 22.39

carbon monoxide requirement (mmol) 0.00 7.48 17.27 22.22

hydrogen requirement (mmol) 0.00 7.90 18.18 23.45

CO/H2 requirement (mmol) - 15.38 35.45 45.67

CO/H2 requirement (MPa) - 1.07 2.46 3.17

CO/H2 consumed - 18/19 19/20 18/19

CO/H2 consumed (MPa) 0.00 1.12 2.52 3.26

CO/H2 consumed (mmol) - 16.14 36.31 46.25

material balance error (%) - < 4.7 < 2.5 < 2.8

CO/H2 restocked (MPa) 0.00
0.56
0.56

1.23
1.23

1.59
1.59

CO/H2 restocked (mmol) -
8.07
8.07

17.72
17.72

22.91
22.91

autoclave carbon monoxide content (mmol) 29.20 29.42 29.23 29.61

autoclave hydrogen content (mmol) 29.20 28.99 28.30 28.36

autoclave carbon monoxide content (%) 50.00 50.37 50.81 51.08

autoclave hydrogen content (%) 50.00 49.63 49.19 48.92
aConditions: 4.4 mL toluene, 1.71 mM [Rh], Rh/allyl alcohol = 1/1029, 343 K, 4.05 MPa CO/H2 = 1.

The presence of kinetic regime can be confirmed upon evaluating the ratio of observed rate to

maximum mass transport rate, as proposed by Chaudhari and Doraiswamy (Equation 3).42 The

maximum mass transport rate for a gas is defined as the product of its concentration in the liquid and

the mass transport coefficient.

� =
� � � �
� ( � � � )

(Equation 3)

The solubility of the gas at the interface was calculated from the relevant Henry constant (Table 13).

The volumetric mass transport coefficient was determined as 0.3039 s-1 from the proposed correlation

(Equation 4). For catalysis described herein, αCO is in the range 0.11-0.46 and αH2 is in the range 0.08-

0.34 confirming that the rate of hydroformylation is generally lower than the prevailing rate of mass

transfer.
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�
� . �

�
ℎ�
ℎ�
�
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(Equation 4)

s agitation (Hz) 20.0

vg gas volume (m3) 10.2×10-5

vl liquid volume (m3) 5.0×10-5

d1 rotor diameter (m) 2.0×10-2

d2 autoclave diameter (m) 3.7×10-2

h1 rotor height (m) 0.4×10-2

h2 liquid height (m) 1.4×10-5

Gas solubilities. Solubility data for carbon monoxide and for hydrogen in the liquid medium

are necessary for interpreting hydroformylation kinetics, and are also of practical interest for

calculating vapour-liquid equilibria in systems with commercial potential. A large volume of

solubility data for these gases in neat liquids is available,43 but a literature search has shown that for

liquid mixtures this information is limited.44

(a) (b)

(c) (d)

Figure 12. HP-IR spectra of carbon monoxide in toluene at 333K:

(a) 0.71 MPa, (b) 2.33 MPa, (c) 4.05 MPa, (d) 6.79 MPa.
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The concentration of carbon monoxide in mixtures of toluene and allyl alcohol was

determined experimentally at 333 K, 343 K and 353 K in the pressure range 0.71-6.79 MPa, using

beam depth measured by high-pressure IR spectroscopy. A worked example is presented (Figures 12-

13, Table 12).

Figure 13. Beam-depth calibration for carbon monoxide solubility in toluene.

Table 12: HP-IR data for carbon monoxide solubility in toluene at 333 K.a

0.71 MPa 2.33 MPa 4.05 MPa 6.79 MPa

spectral quality

allowed range 5.6-9.8 5.6-9.8 5.6-9.8 5.6-9.8

peak value 8.92 9.06 8.77 9.44

analysis

νCO (cm-1) 2131 2132 2131 2131

beam depth 4.04 18.92 33.01 54.18

n (mmol) 0.84 4.00 6.98 11.45

[CO] (mol L-1) 0.04 0.20 0.35 0.57
aConditions: 20 mL toluene, 333 K, mixing period of 15 minutes at 15 Hz.

In accordance with Henry’s law (Equation 5) the concentration increases linearly with pressure; this

correlation is fitted by r2 > 0.99. The solubility is therefore best defined as the Henry constant (KH)

(Table 13). Good agreement with the literature data demonstrates the validity of this methodology.
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Table 13: Henry constants (MPa L mol-1) for carbon monoxide and hydrogen in mixtures of toluene

and allyl alcohol.

liquid mixture solute gas 333 K 343 K 353 K

toluene carbon monoxide
11.81

(11.90a)
11.67

(11.70a)
11.55

(11.53b)

toluene hydrogen 29.30c 28.10c 26.80b

10% allyl alcohol/toluene carbon monoxide 12.01 11.86 11.68

20% allyl alcohol/toluene carbon monoxide 12.22 12.04 11.89

40% allyl alcohol/toluene carbon monoxide 12.47 12.41 12.33

80% allyl alcohol/toluene carbon monoxide 13.12 13.07 12.65

allyl alcohol carbon monoxide 13.54 13.29 13.08
a44c in References and Notes. b45 in References and Notes. c43a in References and Notes.

The solubility of carbon monoxide increases with temperature, but this effect is relatively small. It has

previously been shown that the solubility of carbon monoxide is reduced in polar liquids,44b, 45 and this

trend is observed as the concentration of allyl alcohol in toluene increases. The enthalpy of carbon

monoxide dissolution is estimated to be Δ absH = 1.07 kJ mol-1 in toluene and Δ absH = 1.69 kJ mol-1 in

allyl alcohol (Figure 14).

Figure 14. Eyring plot for carbon monoxide concentration in organic liquids at 0.101 MPa:

(□) toluene, (◊) allyl alcohol. 

The solubility of carbon monoxide in neat toluene has been additionally calculated using a

semi-empirical correlation based on the theory of regular solution (Equation 6).46
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− ln( � � ) = ln �
� �
�

� �
� � +

∅� � � ( � � − � � )�

� �
(Equation 6)

� � � � �
� � fugacity of hypothetical liquid solute (atm) Equation 7

� � � � �
� � fugacity of pure gas (atm) Equation 8

Φ1 volume fraction of solvent unity

v2 molar liquid volume of solute (m3 mol-1) 3.210×10-5

δ1 solvent solubility parameter (J 0.5 m-1.5) 18.203×10-3

δ2 gas solubility parameter (J 0.5 m-1.5) 6.403×10-3

The fugacity of the hypothetical liquid solute is determined by the critical temperature and critical

pressure of carbon monoxide, and may be calculated from the correlation between fugacity and

temperature in the range 273-373 K (Equation 7).46b

� � (� �
� ) = 4.7475 + 588.52 � � � − (1.3151 × 10 � )� � � (Equation 7)

The fugacity of pure carbon monoxide is defined as the pressure quotient needed at a given

temperature to satisfy the ideal gas equation, and can be calculated from its fugacity coefficient

(Equation 8).46c

� � (� �
� ) = � 	

37.59 − 155.15 �
133
�
�
� . �

� �
� 									(Equation 8)

The theory of regular solution postulates that activity coefficients are inversely proportional to

temperature, so that the term (Φ1v2(δ1- δ2)
2) is constant with temperature. The solubility parameter for

carbon monoxide and its molar volume were therefore taken from the literature.47 The solubility

parameter for toluene was determined from its heat of vapourisation at 298 K and molar volume

(Equation 9).48 This approach is only valid for non-polar liquids; a correction factor must be

introduced to determine the solubility parameter for polar liquids.49

� � = �
∆ � � − � �

� �
� 												(Equation 9)

From the concentration of solute gas in the liquid phase thus calculated, the Henry constant is

determined. The comparison between theoretical and experimental solubilities is fitted by r2 > 0.97

(Figure 15).
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Figure 15. Correlation of calculated and experimental solubility of carbon monoxide in toluene.

The solubility data for hydrogen in toluene was taken directly from the literature (Table 13).

Liquid mixtures should affect carbon monoxide solubility more significantly than hydrogen solubility

due to the presence of a dipole moment and higher polarisability.50

Initial rate data. Initial rates of hydroformylation were determined from reaction profile

plots of CO/H2 uptake in time using IGOR PRO.51

Figure 16. Activity of [RhH(CO){(3, 5-Me2Ph)3P}3] in the hydroformylationof allyl alcohol as a

function of catalyst concentration:(□) 333 K, (◊) 343 K, (Δ ) 353 K, (-) predicted.

(Conditions: 4 mL toluene, 2.94 M [allyl alcohol], 40 bar CO/H2 = 1)
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The rate of hydroformylation of allyl alcohol increases linearly with catalyst concentration at

all range temperatures (Figure 16). This fractional-order dependence is consistent with a higher

effective concentration of the active rhodium species, in concurrence with previous reports.51

Figure 17. Activity of [RhH(CO){(3, 5-Me2Ph)3P}3]the hydroformylationof allyl alcohol as a

function of substrate concentration:(□) 333 K, (◊) 343 K, (Δ ) 353 K.

(Conditions: (5-Vsubstrate) mL toluene, 6.83 mM [Rh], 40 bar CO/H2 = 1)

The rate of hydroformylation is found to be of a negative order with respect to allyl alcohol

concentration at all range temperatures, and the individual reaction profile plots indicate that rate

increases in time (Figure 17). This case of substrate inhibited kinetics is almost certainly attributable

to a amalgamation of increasingly competitive isomerisation of allyl alcohol which traps the catalyst

in an alternative scheme, and formation of the carbonyl-bridged rhodium dimer, which is inactive for

hydroformylation.53 Disintegration of the catalyst by ligand oxidation under the action of the allyl

alcohol hydroxyl functionality may also contribute.54 Desphande and Chaudhari previously reported

substrate inhibited kinetics in the hydroformylation of 1-hexene with [RhH(CO)(PPh3)3] beyond a

critical concentration.52b

The rate of hydroformylation of allyl alcohol at all range temperatures indicates first-order

kinetics with respect to the partial pressure of hydrogen (Figure 18). This is a common feature in

rhodium-catalysed hydroformylation catalysis and suggests that oxidative addition of hydrogen to the

rhodium-acyl-carbonyl intermediate is the rate limiting process. 52 In order to ensure that the rhodium

is not primarily incorporated into the carbonyl-bridged dimer under rapid equilibration, as this is also

expected to effect a positive order with respect to this parameter,55 the partial pressure of hydrogen

was kept below 0.51 MPa with a modest Rh/S molar ratio.
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Figure 18. Activity of [RhH(CO){(3, 5-Me2Ph)3}P)3] in the hydroformylationof allyl alcohol as a

function of hydrogen partial pressure:(□) 333 K, (◊) 343 K, (Δ ) 353 K, (-) predicted. 

(Conditions: 4.4 mL toluene, 6.83 mM [Rh], Rh/allyl alcohol = 1/258, 40 bar CO/H2/Ar = 20/� /(20-� ))

The rate of hydroformylation of allyl alcohol is more complexly dependent upon the partial

pressure of carbon monoxide (Figure 19). In the region of substrate inhibited kinetics the effective

concentration of the active rhodium species is reduced by association equilibria, where the

bis-carbonyl and tris-carbonyl species cannot activate hydrogen:

[Rh(RCO)(CO)(L)2]↔  [Rh(RCO)(CO)2(L)2]↔  [Rh(RCO)(CO)3(L)2].

Figure 19. Activity of [RhH(CO){(3, 5-Me2Ph)3P}3 in the hydroformylation of allyl alcohol as a

function of carbon monoxide partial pressure: (□) 333 K, (◊) 343 K, (Δ ) 353 K.

(Conditions: 4.4 mL toluene, 6.83 mM [Rh], Rh/allyl alcohol = 1/258, 40 bar CO/H2/Ar = � /20/(20-� ))
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At a lower partial pressure of carbon monoxide formation of these saturated complexes is expected to

be negligible, and the rate is found to be of a positive order.

The temperature dependence of the reaction is constructed as an Arrhenius plot (Figure 20)

from which the activation energy is calculated to be EA = 32.62 kJ mol-1 (Equation 10).

Figure 20. Arrenhius plot for hydroformylation of allyl alcohol with [RhH(CO){(3, 5-Me2Ph)3}P)3].

Deshpande and Chaudhari previously established the activation energy for the hydroformylation of

allyl alcohol with [RhH(CO)(PPh3)3] as EA = 94.00 kJ mol-1,54 which is significantly higher. One

explanation may that ground state excitation effects greater change in the rotation dynamic around the

rhodium-phosphorus bond in [RhH(CO){(3, 5-Me2Ph)3}P)3]. Assuming an associative rate limiting

step, which produces a more ordered transition state, this entropic contribution should then accelerate

the reaction.

Kinetic model. As the experimental data was collected under relatively mild temperature

conditions, it would be inaccurate to reduce rate limitation to one single step of the hydroformylation

mechanism.40 By the method of initial rates, the data is found to be well represented by the expression

� � � � =
� [� � ][ � � ]� . � [� ℎ]� .� [� � � � � 	� � � � ℎ� � ]

(1 + 	 � � [� � ])(1 + � � [� � � � � 	� � � � ℎ� � ])
(Equation 11)

[� � ] PCO × HCO (mol L-1)

[� � ] PH2 × HH2 (mol L-1)

[Rh] (mol L-1)
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y = -3.9238x + 6.3284
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The experimental data at 353 K was fitted to the model using the nonlinear least-squares regression

analysis option in ORIGIN,56 which is based on the Marquardt method. The parameters were then

estimated as k = 6.22×106 L3 mol-4.6 s-1, K1 = 1.31×104 L mol-1, K2= 7.29×103 L mol-1. The standard

deviation between experimental and predicted data is determined as ϕmin = 2.05×10-11. This objective

function is within the acceptable range.57 The data derived from the rate expression demonstrates

good comparability with that determined experimentally (Figures 16 and 18).

3. 6 Integrated Catalysis

The molecular configuration of a 4, 4-bis(para-fluorophenyl)butyl moiety bound to a nitrogen

heterocycle represents a class of therapeutically active compounds,58 including the neuroleptics

Fluspirilen (1), Penfluridol and Pimozide, the Parkinsons relief drug PR-608, the vasodilator

Lidoflazine and a number of hypolipaemic agents. A key synthon for this structural framework, 4, 4-

bis(para-fluorophenyl)butylbromide (6) is commercially prepared from cyclopropane carboxylic acid

methyl ester and para-fluorophenyl magnesium bromide,59 but the procedure is frustrated by low

overall yield, typically > 50%.

The hydroformylation of tertiary allylic alcohols provides a construction strategy to

substituted furanols, which are valuable and versatile units in fine-chemical synthesis (Figure 21).60

α, α-dimethyl allyl 
alcohol

[Rh2O3] 110°C, 200 bar 81% 61

linalool PPh3/[Rh(CO)(PPh3)3H] =760 100°C, 75 bar 86% 62

linalool [Rh(μ-StBu)(CO)(TPPTS)]2 80°C, 10 bar 90% 63

α-vinylbenzhydrol PPh3/[Rh(OAc)2 = 4 100°C, 75 bar 84% 64

Figure 21. Examples of hydroformylation of tertiary allylic alcohols.

In particular, the 5, 5-diaryltetrahydrofuranols are easily reduced to the corresponding 4, 4-

bis(aryl)butanediols.65 Subsequent hydrogenolysis of the tertiary carbon-oxygen bond should yield the

4, 4-bis(aryl)butanol,66 which is a convenient precursor to the bromide. This new preparative

approach to 4, 4-bis(para-fluorophenyl)butylbromide has been incorporated into the total synthesis of

Fluspirilen (1) (Scheme 1).
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Scheme 1. Synthesis of 1:

(i) CH2=CHMgBr, 5°C→ aT, Et2O, (ii) [RhH(CO){(3, 5-Me2Ph)3}P)3]/30 bar CO/H2 = 1, 70°C, toluene,

(iii) NaBH4/NaOH, aT, MeOH, (iv) 10% Pd/C/1 bar H2, 80°C, EtOH, (v) Br2/PPh3, < 5°C→ aT, MeCN, 

(vi) 1-phenyl-1, 3-8-triazaspiro[4, 5]decan-4-one/Na2CO3/KI, 120°C, toluene.

The reaction of commercially available 4, 4-bis(para-fluorophenyl)benzophenone with 1.1

equivalents vinyl magnesium bromide gives 1, 1-bis(para-fluorophenyl)-2-propenol (2) as colourless

oil in 82% yield after bulb-to-bulb distillation. Following optimisation, the hydroformylation of 2 is

performed using 2×10-3 equivalents [RhH(CO){(3, 5-Me2Ph)3}P)3] in toluene at 70°C and 30 bar

CO/H2 =1 (Table 14). The GC-FID spectra at 3 hour time intervals are presented (Figure 22). In
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accordance with previous reports it is assumed that 4, 4-bis(fluorophenyl)benzophenone and 1-

propanal are primarily formed via thermal retro-aldolisation of the branched hydroformylation

product.58b

Table 14: Hydroformylation of 2 with [RhH(CO){(3, 5-Me2Ph)3}P)3] in organic media.a

T p

medium

conv. substrate-based selectivity (mol%)b

(°C) (bar) (%) 3
4, 4’-bis(p-fluorophenyl)

benzophenone
1-propanal

50 30 toluene 93 88 2 3

50 50 toluene 96 94 1 1

70 30 toluene 98 96 1 1

70 30 thf 89 83 3 3

70 50 toluene 99 94 2 3

70 50 hexanes 90 86 2 2

110 30 toluene 100 95 2 3

110 30 thf 99 90 4 5

110 50 toluene 100 96 2 2
aConditions: 5 mL medium, 8 mM [Rh], Rh/allyl alcohol = 1/102, CO/H2 = 1, 9 hours. b A2. 2 for GC

parameters for this substrate.

Figure 22. Sequential GC-FID spectra for hydroformylation of 2 with[RhH(CO){(3, 5-Me2Ph)3}P)3] in time.a

aRt = 15.22 (2), Rt = 16.38 (3-hydroxyaldehyde), Rt = 17.68 (3-furanol).

5, 5-Bis(para-fluorophenyl)tetrahydrofuranol (3) is crystallised from the crude product residue with

n-pentane as white powder in 93% yield. A simple reduction with 0.4 equivalents sodium borohydride
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in 2 M sodium hydroxide furnishes 4, 4-bis(para-fluorophenyl)-1, 4-butanediol (4), recovered as

white solid in 91% yield following flash chromatography. Regioselective hydrogenolysis of 4 with

10% palladium on carbon in toluene at 80°C and 1 bar hydrogen gives 4, 4-bis(para-fluorophenyl)-

butanol (5) as white solid in 84% yield after flash chromatography. The bromine functionality is

introduced upon reaction of 5 with 1.6 equivalents bromine in the presence of triphenylphosphine.

Purification is effected by flash chromatography to give 84% of 6 as pale yellow oil. N-alkylation of

1-phenyl-1, 3-8-triazaspiro[4, 5]decan-4-one with 1.1 equivalents 6 in the presence of puratronic

sodium carbonate and potassium iodide provides 1.67 The crude residue is crystallised from n-hexane

and purified by flash chromatography to give the pure product as white powder in 71% yield. The

overall yield based on 4, 4-bis(para-fluorophenyl)benzophenone is 48%.

3. 7 Conclusions

The concept of selectivity enhancement via meta-effect has been successfully applied for

several catalytic transformation, but studies that seek to establish a thorough understanding of how

meta-substitution in triarylphosphines affects their physicochemical properties and transition metal

chemistry are scarce. In this chapter, the relevant effects of systematic meta-methyl substitution in

triphenylphosphine are reported. It was shown that meta-methyl substituents do not have a significant

structural impact on the uncoordinated ligand, but variable temperature 1H NMR studies indicated a

significant change to the solution dynamics of its Vaska complex. As rotation of the 3, 5-disubstituted

aryl rings past each other is more strained, the activation barrier to phosphorus-(ipso)carbon rotation

in the bis(3, 5-dimethylphenyl)phenylphosphine-modified species was calculated to be ~ 0.45 kJ mol-1

higher than that in the (3, 5-dimethylphenyl)diphenylphosphine-modified species. Rhodium

complexes of the highly meta-substituted triarylphosphines displayed more defined solubility as a

consequence of their lipophilic methyl domains.

The performance of [RhH(CO){(3, 5-Me2Ph)3P}3] in allyl alcohol hydroformylation

confirmed a significant meta-effect on regioselectivity, as restricted phosphorus-(ipso)carbon rotation

effects a well-defined coordination sphere around rhodium. Linear-selective hydroformylation was

found to be most favoured at high catalyst concentration and low substrate concentration. Under

replicated conditions of the Lyondell-Basell process, this catalyst could be recycled with ~94%

efficiency via biphasic separation. The kinetics of this reaction in toluene was found to be

satisfactorily represented by the model

� � � � =
� [� � ][ � � ]� . � [� ℎ]� . � [� � � � � 	� � � � ℎ� � ]

(1 + 	 � � [� � ])(1 + � � [� � � � � 	� � � � ℎ � � ])
.
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The parameters k, K1 and K2 were determined in the temperature range 333-353 K, and the activation

energy was calculated to be ~ 33 kJ mol-1. A novel methodology for determination of carbon

monoxide concentration in solution mixtures has also been described.

The complex [RhH(CO){(3, 5-Me2Ph)3P}3] also catalysed highly linear-selective

hydroformylation of 1, 1-bis(p-fluorophenyl)-2-propenol, which can be exploited as a key step in a

new preparative route to Fluspirelen.

Although advantageous in this instance, it is worth noting that restricted phosphorus-

(ipso)carbon rotation in the transition metal complexes of a meta-methyl substituted triarylphosphine

could induce a change in transition state structures of the catalytic scheme, thereby reducing

selectivities. Further, the catalytic transformation of a sterically exerting substrate could well lead to

an insignificant meta-effect. It is of interest to identify the extent to which selectivity enhancement is

substrate specific.

3.8 Experimental Section

Materials. Chemicals were purchased from Lancaster Synthesis, Alfa Aesar, Sigma-Aldrich,

Matheson and Strem. Unless stated otherwise, all operations were performed under N2 (passed

through column of dichromate adsorbed on silica) in a glove box or using standard Schlenk and

catheter tubing techniques. All glassware was flame-dried under vacuum. Diethyl ether, hexane and

thf were distilled from sodium benzophenone ketyl, dichloromethane, acetonitrile and n-butyronitrile

were distilled from calcium hydride, absolute ethanol was distilled from magnesium ethoxide

methanol was distilled from calcium methoxide, all under N2 onto activated Linde 4 Å molecular

sieves. HPLC-grade toluene, and pentane were dispensed from argon-flushed La Roche A-

2/Engelhard Q-5 drying columns. All solvents were degassed prior to use by fpt cycles. MgSO4,

Na2SO4, Celite and Kieselgel (60 SiO2) were activated in a tube furnace at 250°C for 3 hours.

Analytical techniques. NMR spectra were recorded on Bruker Avance 300 and Bruker

Avance II 400 spectrometers with tetramethylsilane (1H, 13C) and 85% H3PO4 (31P) as external

references. Solution IR spectra were recorded on a Nicolet Avatar 360 FT-IR spectrometer. Gas

chromatography was performed on a Hewlett-Packard 6890 chromatograph fitted with a 30 m

BP10™ column (carrier gas 3.2 psi He, flame-ionisation detector). Gas phase analyses were done on

an SRI Multiple gas analyser. Elemental analyses were done using a Perkin-Elmer 240C CHNS/O

microanalyser. ICP-MS analyses were performed on an Iris Advantage analyser. Melting point ranges

were determined using an MPA1000 OptiMelt analyser. Cyclic voltammograms were recorded using

an IPC-Pro 7.56 potentiostat in three-electrode mode with a 3 mm pyrographite electrode as working

electrode, a commercial sce as reference electrode and a platinum electrode as auxiliary. Normal pulse

voltammograms were recorded on a Tacussel PRG 5 potentiostat in three-electrode mode with a
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platinum disk electrode as working electrode, a commercial sce as reference electrode and a platinum

electrode as auxiliary.

(3, 5-Dimethylphenyl)diphenylphosphine. Over 30 min, 4.6 mL of a 2.5 M solution of n-

BuLi (11.50 mmol) in hexanes was added to a solution of 2.1550 g 5-bromo-m-xylene (11.65 mmol)

in thf (125 mL) at -40°C. After stirring at constant temperature for 75 min 2.0 mL

diphenylchlorophosphine (11.50 mmol) was introduced dropwise, and the yellow solution was slowly

warmed to 35°C. After diluting with 0.02 M HCl (15 mL), thf was removed in vacuo and the

remaining mixture was extracted with dichloromethane (2×25mL). The combined extracts were

percolated through a column of MgSO4-zsm-5, and filtrate was concentrated in vacuo. The oily

residue was crystallised from ethanol, yielding 1.9851 g (59 %) of white crystals. Mpr. 62-64°C. 1H

NMR (CDCl3, 300.1 MHz): δ 7.42-7.33 (m, 10H), 6.94 (s, 1H), 6.91 (d, J = 8.7 Hz, 2H), 2.31 (s, 6H).

31P{1H} NMR (CDCl3, 121.4 MHz): δ – 4.6. Anal. Calculated for C17H15N2P: C, 82.74; H, 6.60.

Found: C, 82.59; H, 6.69.

Bis(3, 5-dimethylphenyl)phenylphosphine. Preparation of bis(3, 5-

dimethylphenyl)phenylphosphine was performed by a similar procedure to that employed for the

preparation of (3, 5-dimethylphenyl)diphenylphosphine. Starting from 2.1550 g 5-bromo-m-xylene

(11.65 mmol), 4.6 mL of a 2.5 M solution of n-BuLi (11.50 mmol) in hexanes and 0.9850 g

dimethylphenylphosphonite (11.50 mmol) yielded 0.8642 g (46 %) of white crystals. Mpr. 91-92°C.

1H NMR (CDCl3, 300.1 MHz): δ 7.45-7.34 (m, 5H), 6.89 (s, 2H), 6.85 (d, J = 8.7 Hz, 4H), 2.28 (s,

12H). 31P{1H} NMR (CDCl3, 121.4 MHz): δ – 4.4. Anal. Calculated for C17H15N2P: C, 82.99; H, 7.28.

Found: C, 82.81; H, 7.35.

Tris(3, 5-dimethylphenyl)phosphine. Preparation of tris(3, 5-dimethylphenyl)phosphine was

performed by a similar procedure to that employed for the preparation of (3, 5-

dimethylphenyl)diphenylphosphine. Starting from 2.1550 g 5-bromo-m-xylene (11.65 mmol), 4.6 mL

of a 2.5 M solution of n-BuLi (11.50 mmol) in hexanes and 1.200 g triphenylphosphite (11.50 mmol)

yielded 0.8296 g (62 %) of white crystals. Mpr. 158-159°C. 1H NMR (CDCl3, 300.1 MHz): δ 6.93 (s, 

3H), 6.89 (d, J = 8.8 Hz, 6H), 2.25 (s, 18H). 31P{1H} NMR (CDCl3, 121.4 MHz): δ – 4.0. Anal.

Calculated for C17H15N2P: C, 83.20; H, 7.86. Found: C, 83.07; H, 7.85.

Synthesis of complexes from [Ni(CO)4]. A solution of 1.7 mg [Ni(CO)4] (0.01 mmol) in

dichloromethane (1 mL) was added to the triarylphosphine (0.1 mmol) at 15°C under N2. The solution

was sonicated over 10 minutes, and allowed to warm to 25°C. Any unreacted precursor was carefully

removed in vacuo. The stock solution was diluted with dichloromethane (1 mL) for analysis by

solution IR spectroscopy, calibrated with solutions of [Ni(CO)3(PPh3)] (A1 νCO = 2069.1 cm-1). The
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stock solution was also diluted with d2-dichloromethane (1 mL) for analysis by 13C{1H} NMR

spectroscopy, calibrated with a solution of [Ni(CO)4] (δC = 396).

Electrochemical studies. A solution of the triarylphosphine (4.65×10-3 mmol) in n-

butyronitrile (1 mL) was prepared with a solution of 58.1 mg tetra-n-butylammonium

hexafluororphosphate (0.15 mmol) in n-butyronitrile (1 mL), which had been percolated through a

column of activated alumina. This was transferred to the cell and purged with N2 for 20 minutes. For

cyclic voltammetry, the working electrode was cleaned with aluminium powder for 3 minutes before

analysis. Voltammograms were recorded at scanning rates in the range 250-5000 mV s-1. For normal

pulse voltammetry, the platinum disk electrode was cleaned by cathodic pretreatment in the test

solution for 60 s at -1800 mV before analysis. Voltammograms were recorded using pulse duration of

28 ms, cycle duration of 1 s and scanning rate of 10 mV s-1.

Crystal structure determination of tris(3, 5-dimethylphenyl)phosphine. Suitable crystals

were grown by method of slow-diffusion of n-pentane into a concentrated chloroform solution.

[C24H27P], Mr = 346.43. A white plate-shaped crystal (0.24 mm × 0.24 mm × 0.24 mm) was fixed to a

glass capillary and transferred into the N2 stream on a Rigaku Mercury/MM007 RA diffractometer

with rotating anode. The measure crystal was monoclinic, space group P21 with a = 14.406(4) Å, b =

9.033(2) Å, c = 17.313(5) Å, α = 90.000°, β = 112.665(7)°, γ = 90.000°, V = 2078.9(10) Å3, Z = 4, Dx

= 1.107 g cm-3, F(000) = 744, μ(MoKα) = 0.135 mm-1. 12833 reflections were measured, 3800 of

which were independent, Rint = 0.0676 (3.06° < θ < 25.36°, T = 93(2) K, MoKα radiation, graphite

monochromator, λ = 0.71073 Å, ϕ scan and ω scans with κ offset, distance crystal to detector 50 mm,

absorption correction by multiscan. The structure was solved by the heavy atom method and refined

by the full-matrix least-squares against F2 method in SHELLXTL.68 Refinement converged at wR2 =

0.1539, GooF = 1.046 and -0.296 < Δ ρ < 0.301 e Å-3.

Synthesis of complexes from [Rh(CO)2Cl]2. A solution of the triarylphosphine (0.03 mmol)

in toluene (3 mL)) was added to 11.7 mg [Rh(CO)2Cl]2 (0.03 mmol) at 30°C under N2. When carbon

monoxide evolution was no longer discernable, the yellow solution reduced in vacuo. The crude

residue was crystallised from boiling ethanol. Evaporating the solvent afforded yellow prisms which

were washed with cold methanol (2×1.2 mL).

Crystal structure determination of trans-[Rh{(3, 5-Me2Ph)3)P}2(CO)Cl]. Suitable crystals

were grown by method of slow-diffusion of acetonitrile into a concentrated dichloromethane solution.

[C49H54ClOP2Rh], Mr = 859.22. A yellow prism-shaped crystal (0.20 mm × 0.20 mm × 0.06 mm) was

fixed to a glass capillary and transferred into the N2 stream on a Rigaku Mercury/MM007 RA

diffractometer with rotating anode. The measure crystal was monoclinic, space group Cc with a =
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17.8670(14) Å, b = 17.6180(13) Å, c = 14.4793(12) Å, α = 90.000°, β = 110.752(4)°, γ = 90.000°, V

= 4262.1(6) Å3, Z = 4, Dx = 1.339 g cm-3, F(000) = 1792, μ(MoKα) = 0.574 mm-1. 18377 reflections

were measured, 7212 of which were independent, Rint = 0.0586 (1.68° < θ < 25.35°, T = 93(2) K,

MoKα  radiation, graphite monochromator, λ = 0.71073 Å, ϕ scan and ω scans with κ offset, distance

crystal to detector 50 mm, absorption correction by multiscan. The structure was solved by the heavy

atom method and refined by the full-matrix least-squares against F2 method in SHELLXTL.68

Refinement converged at wR2 = 0.1180, GooF = 1.185 and -0.974 < Δ ρ < 0.623 e Å-3.

Variable temperature NMR spectroscopy. An NMR tube was primed with a solution of the

complex trans-[Rh(CO)PAr3)2Cl] (0.02 mmol) in d3-chloroform under N2, and sonicated over 5

minutes. 1H NMR spectra were recorded in the temperature range -60 to 25°C. Line-shape analyses

was performed using the dNMR option in the TOPSPIN™ software provided by Bruker BioSpin..69

Synthesis of complexes from trans-[Rh(CO)(PAr3)2Cl]. To a solution of the trans-

[Rh(CO)(PAr3)2Cl] (1 mmol) and the triarylphosphine (2 mmol) in toluene (25 mL) under CO, was

added 0.1642 g sodium propoxide (2 mmol, freshly prepared)69 in one portion. The reaction mixture

was maintained at 55°C for 3 hours. The orange suspension was cooled to ambient temperature and

the sodium chloride was removed by filtering through a Celite pad. The filtrate was reduced under

pressure to ~ 6 mL. H2 was bubbled through the red solution until no further colour change to yellow

was observed. The solution was reduced under pressure to ~ 0.5 mL, from which the product

crystallised upon treatment with n-hexane.

Catalysis. Carbon monoxide and hydrogen were purchased from BOC (Caution! Carbon

monoxide is extremely poisonous and accidents may be lethal. A sensitive personal detector was

carried and all experiments were performed in a well ventilated fume-hood fitted with a detector,

maintaining the concentration of carbon monoxide below the mac value at all times).

Hydroformylation reactions were carried out on the CAT rig with stirrer speed set at 1200 rpm. In a

typical experiment a solution of [RhH(CO){(3, 5-Me2Ph)3P}3] (0.021-0.043 mmol) in toluene (1.6-

3.8 mL) was sonicated over 10 minutes and transferred into the autoclave under N2; any residues were

transferred with a further aliquot of toluene (1 mL). The solution was incubated for 20 minutes at the

requisite temperature and 30 bar CO/H2. After allyl alcohol (2.94-29.41 mmol, azeotropically dried

with toluene and distilled) was injected the pressure was adjusted to 40 bar, and the reaction was run

to completion. The autoclave was then cooled and depressurised. Intermittently, gas samples were

withdrawn from the void space in the autoclave using a stainless steel gas pipette and analysed for H2

content. 50 μL diglyme was added as internal standard to a 1 mL aliquot of the product solution, and 

the sample was analysed by GC. The experiments were performed at least in duplo.



Chapter 3

100

For catalyst recycling experiments, a solution of [RhH(CO){(3, 5-Me2Ph)3P}3] (0.0026

mmol) in toluene (3 mL) was sonicated over 10 minutes and transferred into the autoclave under

CO/H2 = 1; any residues were transferred with a further aliquot of toluene (1 mL). The solution was

incubated for 20 minutes at 60°C and 10 bar CO/H2 =1. 1 mL allyl alcohol (14.70 mmol) was injected

and the reaction was run to completion. The autoclave was cooled, depressurised to 1 bar and the

product solution thus transferred via cannula to a Schlenk vessel equipped with a magnetic stirrer. The

addition of water (2.5 mL) gave immediate phase separation and the biphasic system was stirred 5

minutes at 20°C. The organic phase was carefully transferred to a volumetrically graduated Schlenk

tube via syringe; fresh toluene was added to make up 4 mL volume. This solution was re-applied in

catalysis.

Gas solubility. The HP-IR autoclave was primed with 20 mL of the appointed liquid under

N2. The cell was purged twice with 4 bar CO and heated to the desired temperature. Following

thermal equilibration, the void space in the cell was carefully flushed with CO and pressurised as

appointed. Equilibrium between the liquid phase and the gas phase was initiated by agitating at 15 Hz

for 10 minutes. The IR spectrum was then recorded. The reference spectrum of the liquid under 1 bar

N2 at the appointed temperature was subtracted from the experimental spectrum.

1, 1-Bis(p-fluorophenyl)-2-propen-1-ol (2). 12.6 mL of a 1 M solution of vinyl magnesium

bromide (12.600 mmol) was added dropwise to a solution of 2.5000 g 4, 4’-difluorobenzophenone

(11.450 mmol) in diethyl ether (25 mL) at 0°C.The reaction mixture was heated to 80°C, and

maintained under gentle reflux for 5 hours. After cooling to ambient temperature the reaction was

quenched by addition of saturated NH4Cl solution (15 mL), and the aqueous phase was extracted with

diethyl ether (3×15 mL). The combined extracts were dried over MgSO4 and concentrated in vacuo.

The residual pale yellow liquid was purified by bulb-to-bulb distillation (93°C, 0.05 mmHg), yielding

2.3121g (82 %) of clear oil. 1H NMR (CDCl3, 300.1 MHz): δ 7.43-7.29 (m, 4H), 7.14-6.95 (m, 4H), 

6.46 (dd, J = 10.8, 16.9 Hz, 2H), 2.41 (s, 1H). MS (70 eV) m/z (relative intensity): 246 (M+, 2). Anal.

Calculated for C15H12OF2: C, 73.16; H, 4.91. Found: C, 72.98; H, 4.97.

5, 5-Bis(p-fluorophenyl)tetrahydrofuranol (3). A Hastelloy autoclave was primed with a

solution of 9.37 mg [RhH(CO){(3, 5-Me2Ph)3P}3] (0.008 mmol) and 1.000 g 2 (4.060 mmol) in

toluene (5 mL) under N2, and pressurised with 30 bar CO/H2 = 1. After 9 hours at 70°C the autoclave

was cooled and depressurised. GC analysis of the product mixture confirms 98% conversion,

partitioned as 96% 3, 1% 4, 4’-bis(para-fluorophenyl)benzophenone and 1% 1-propanal. The

recovered solution was concentrated in vacuo and the white residue was crystallised from n-hexane,

yielding 0.9828 g (93 %) of white flakes. Mpr. 110-113°C. 1H NMR (CDCl3, 300.1 MHz): δ 7.52-

7.30 (m, 4H), 7.05-6.89 (m, 4H), 5.74 (q, J = 3.6 Hz, 1H), 2.68-2.53 (m, 2H), 2.06 (m, 2H). MS (70
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eV) m/z (relative intensity): 276 (M+, 10). Anal. Calculated for C16H14OF2: C, 69.56; H, 5.11. Found:

C, 69.62; H, 4.20.

1, 1-Bis(p-fluorophenyl)-1, 4-butanediol (4). A suspension of 53.4 mg sodium borohydride

(0.008 mmol) and 80 μL of a 2 M NaOH solution in H2O (0.75 mL) was added dropwise to a solution

of 1.0000 g 3 (3.600 mmol) in methanol (10 mL). The reaction mixture was stirred at ambient

temperature, the conversion being monitored by gc-ms. Methanol was removed under reduced

pressure, and after diluting (3 mL) the aqueous mixture was extracted with diethyl ether (3×10 mL).

The combined extracts were percolated through a column of MgSO4-zsm-5 and concentrated in

vacuo. The off-white residue was purified by flash chromatography (Kieselgel, hexane/diethyl ether =

3/2), yielding 0.9117 g (91 %) of white solid. Rf = 0.52 (hexane/diethyl ether = 3/2). Mpr. 93-94°C.

1H NMR (CDCl3, 300.1 MHz): δ 7.50-7.33 (m, 4H), 7.07-6.91 (m, 4H), 3.73 (t, J = 7.2 Hz, 2H), 3.48

(br s, 1H), 2.44 (t, J = 7.2 Hz, 2H), 1.91 (br s, 1H), 1.72-1.55 (m, 2H). MS (70 eV) m/z (relative

intensity): 278 (M+, 1). Anal. Calculated for C16H16O2F2: C, 69.05; H, 5.79. Found: C, 69.24; H, 5.91.

1, 1-Bis(p-fluorophenyl)-butanol (5). A suspension of 0.500 g 4 (1.800 mmol) and 0.2250 g

10 % Pd/C in ethanol (10 mL) was treated with H2. The reaction mixture was maintained at 95°C

under reflux for 16 hours. After cooling to ambient temperature the suspension was filtered through a

pad of Celite, and the filtrate was reduced in vacuo. The opaque liquid residue was purified by flash

chromatography (Kieselgel, hexane/diethyl ether = 7/3), yielding 0.3966 g (84%) of clear oil. Rf =

0.46 (hexane/diethyl ether = 7/3). 1H NMR (CD2Cl2, 300.1 MHz): δ 7.22-7.07 (m, 4H), 7.02-6.92 (m, 

4H), 3.90 (t, J = 0.6 Hz, 1H), 3.41 (t, J = 7.2 Hz, 2H), 2.25-2.12 (m, 2H), 1.89-1.76 (m, 2H). MS (70

eV) m/z (relative intensity): 262 (M+, 7). Anal. Calculated for C16H16OF2: C, 73.27; H, 6.15. Found: C,

73.54; H, 6.17.

1, 1-Bis(p-fluorophenyl)butylbromide (6). A solution of 0.7500 g triphenylphosphine (2.850

mmol) in acetonitrile (4 mL) was cooled to 0°C and added dropwise to 0.4550 g bromine, maintaining

temperature at < 5°C. The mixture was slowly warmed to ambient temperature and a solution of

0.5000 g 5 (1.800 mmol) in acetonitrile (1.5 mL) was added dropwise. The resulting solution was

stirred for 4 hours and then concentrated under reduced pressure. The residue was taken up with n-

pentane, and the resulting suspension filtered through a pad of Celite. The filtrate was reduced in

vacuo and the yellow liquid residue was purified by flash chromatography (Kieselgel, hexane/diethyl

ether = 7/3), yielding 0.5159 g (84 %) of pale yellow oil. Rf = 0.57 (hexane/diethyl ether = 7/3). 1H

NMR (CDCl3, 300.1 MHz): δ 7.20-7.09 (m, 4H), 7.05-6.92 (m, 4H), 3.90 (t, J = 0.6 Hz, 1H), 3.44 (t,

J = 7.2 Hz, 2H), 2.21-2.10 (m, 2H), 1.94-1.72 (m, 2H). MS (70 eV) m/z (relative intensity): 325 (M+,

3). Anal. Calculated for C16H15OF2Br: C, 73.30; H, 6.10. Found: C, 73.44; H, 6.22.
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Fluspirelen (1). A solution of 0.7500 g 6 (2.325 mmol), 0.4689 g 1-phenyl-1, 3, 8-

triazaspiro[4, 5]decan-4-one (2.025 mmol) 0.3728 g puratronic Na2CO3 (3.525 mmol) and three

crystals of KI in toluene (10 mL) was maintained at 125°C under reflux, the conversion being

monitored by gc-ms. The reaction mixture was cooled to ambient temperature and diluted with

toluene (5 mL) and H2O (9 mL). The organic phase was removed, dried over Na2SO4 and

concentrated in vacuo. The pale yellow residue was crystallised from n-pentane and purified by flash

chromatography (Kieselgel, chloroform), yielding 0.6838 g (71 %) of white powder. 1H NMR

(CD2Cl2, 300.1 MHz): δ 7.25-6.88 (m, 13H), 4.69 (s, 2H), 3.90 (t, J = 0.6 Hz, 1H), 2.77-2.55 (m, 6H),

2.43 (t, J = 7.2 Hz, 2H), 2.06 (q, J = 7.2 Hz, 2H), 1.73 (d, J = 7.2 Hz, 2H), 1.54-1.34 (m, 2H). MS (70

eV) m/z (relative intensity): 475 (M+, 6). Anal. Calculated for C29H31N3OF2: C, 73.24; H, 6.57; N,

8.84. Found: C, 73.13; H, 6.62; N, 8.86.
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-Chapter 4-

Activating Domino Hydroxymethylation via

Multi-Component Catalysis

Abstract. The specific activity of a diphosphine-modified rhodium catalyst for hydroformylation was

successfully translated for hydroxymethylation by incorporating into the system a modest molar ratio

of triethylphosphine. Experimental observations have implicated the presence of a tris-phosphine

rhodium species at the instant chemoselectivity is determined, but an analogous complex could not be

synthesised. It was ascertained that a sequential hydrogenation, homogenous or heterogeneous, was

not responsible. At higher molar ratios of triethylphosphine, the activity of its complexes frustrated

catalysis.
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4. 1 Introduction

The domino hydroxymethylation scheme involves two critical selectivity determinations,

each optimised by a rhodium catalyst of specific structure. The complexes of those diarylphosphine-

substituted chelates with a natural bite angle in the range 115 to 145° confer high regioselectivity,1

while the complexes of primary trialkylphosphines confer high chemoselectivity.2 In a conventional

approach to overall selectivity improvement, a new ligand is configured from the appropriate features

of the individuals, often via a laborious synthetic route. A mixed-ligand methodology then becomes

an interesting alternative.

At a low diphosphine to transition metal molar ratio the inclusion of a monophosphine may

effect equilibria between bis-phosphine and tris-phosphine catalytic intermediates, which should

exert a significant influence upon activity and selectivity. Inclusion of triphenylphosphine and

diarylalkylphosphines in a solution of DIOP-modified rhodium is of reported benefit to

regioselectivity in hydroformylation catalysis.3 31P{1H} NMR spectroscopy of the catalyst solution

confirms the formation of a tris-phosphine-modified rhodium-hydride-dicarbonyl species (Figure 1).3a

Figure 1. Equilibration of [Rh(CO)2-x(L-L)(L)xH] (x = 0 or 1) in mixed-ligand systems.

Although the dissociation of a CO auxiliary from such a species is quite improbable, the presence of

tris-phosphine complex during alkene coordination and subsequent hydride migration was proposed

to account for the observed improvement. A similar mixed-ligand system gave enhanced

regioselectivity and enhanced enantioselectivity in the hydroformylation of styrene with both

rhodium4 and platinum-tin chloride5a catalysts. In the latter case, the species [Pt(DPPP)(PPh2Py)Cl]+

has been characterised spectroscopically.5b

At high mixed-ligand to rhodium molar ratios, systems comprised of a diphosphine and a

trialkylphosphine reportedly effect highly selective hydroxymethylation of 1-octene to 1-nonanol6 and

5-penten-1-ol to 1, 6-hexanediol.7 In the simplest case such a mixture will afford three rapidly inter-

converting catalysts: two non-mixed bis-phosphine species and one mixed tris-phosphine species. In a

more realistic spectrum some or all of two non-mixed mono-phosphine species, a mixed bis-

phosphine species and two non-mixed tris-phosphine species are formed alongside,8 in addition to

active complexes of higher nuclearity. The conglomeration of catalytic profiles then frustrates

discussion of a mechanistic discourse.
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With these considerations in mind, we report the utility of bis(diarylphosphine)

chelate/triethylphosphine systems in the hydroxymethylation of allyl alcohol at relatively low mixed-

ligand to rhodium molar ratios. The choice of diphosphine was made with a view to evaluating a

representative range of natural bite angles and rigidity, these structural considerations borne out by

molecular modelling (Figure 2). The complexation behaviour in these multi-component systems was

investigated by NMR spectroscopy and IR spectroscopy, under both atmospheric and catalytic

conditions. Mechanistic inferences are made on the basis of catalytic studies and deuterium labelling

studies.

Figure 2. Diphosphine range (l→ r): XANTPHOS, DIOP, CBM-DXP, BISBI. 

4. 2 Theoretical considerations

Computer modelled geometries were used to estimate the natural bite angle and the flexibility

range of the diphosphines.9 Initial calculations were performed using the PM3(tm) method as

implemented in SPARTAN SGI
10 with high energy constraints fixing the rhodium-phosphorus bond

length at 2.315 Å, a typical distance observed in crystal structures.11 The natural bite angle was

determined from the minimised conformation, accessed by eigenvector following as implemented in

GAUSSIAN 98.12 The flexibility range was estimated from a computed plot of potential energy as a

function of the bite angle.

Table 1: Natural bite angles from molecular modelling, (corresponding flexibility range).a

XANTPHOS DIOP CBM-DXP BISBI

PM3(tm)b 112.1
(96-133)

102.8
(94-117)

103.2
(93-122)

112.6
(104-142)

Tripos force fieldci 111.7
(97-135)

102.3
(90-120)

112.6
(101-148)

Amber force fieldcii 102.3
(90-120)

113.0
(92-155)

arRh-P = 2.315 Å. b
SPARTAN SGI. ci

SYBYL, 13 in References and Notes, cii
MACROMODEL, 14 in References and

Notes.
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4. 3 Rhodium(I) Chemistry

Complexes under nitrogen. The influence of a competitive triethylphosphine concentration

on diphosphine coordination behaviour was investigated, monitoring in situ complexation reactions in

ethanol by NMR and solution IR spectroscopy. Addition of a solution of the mixed ligands gives

exclusive formation of the [Rh(acac)(L-L)] complex (Table 2).

Table 2: Spectroscopic and analytical data for [Rh(acac)(L-L)].

L-L

31P{1H} NMR CHN found (calc.)

δ (ppm) 1JRh-P (Hz) Δ δc (ppm) C H

XANTPHOS in situa d. 42.2 179 56.4

isolatedb d. 42.9 178 57.1 42.82 (42.76) 3.31 (3.47)

DIOP in situ d. 39.1 188 62.4

isolated d. 41.5 186 64.8 37.68 (37.80) 3.79 (3.83)

CBM-DXP in situ d. 36.8 185 62.7

isolated d. 35.9 183 61.8 40.47 (40.66) 4.15 (4.23)

BISBI in situ d. 48.7 174 60.6

isolated d. 48.0 174 59.9 44.26 (44.34) 3.49 (3.60)
aIn situ: 1 mL 40% ethanol (v/v in d8-thf), 10 mM [Rh], L-L/PEt3/Rh = 1/2/1, ambient temperature, atmospheric

pressure of nitrogen, 1 hour. b1 mL d3-chloroform, ambient temperature, atmospheric pressure of nitrogen.
cCoordination shift (Δ δ = δcomplex-δC).

In the 31P{1H} NMR spectrum, the complex is resolved as a sharp doublet at δP = 36.8-50.5 ppm. A

singlet at δP ≈ -17.2 ppm is attributed to free triethylphosphine.15 The coordination shifts for

[Rh(acac)(L-L)] (L-L = DIOP, CBM-DXP and BISBI) correspond to the formation of a seven-

membered chelating ring,16 with magnitude approximately proportional to rigidity. In the

corresponding solution IR spectra no νCO bands are observed at ~ 1980 cm-1 or in the range 1760-1740

cm-1, which confirms chelation of the diphosphine and acac respectively.17 The isolated complexes,

obtained as red prisms, were subjected to microanalysis to verify composition.

Yellow crystals of [Rh(acac)(DIOP)] suitable for single crystal X-ray diffraction analysis

were obtained by slow evaporation of acetone from a concentrated solution. The molecular structure

and selected bond angles and distances are presented (Figure 3, Table 3). The empirical formula is

given as [C37.5H42O4.5P2Rh] because a molecule of acetone co-crystallises per two molecules of the

complex. The rhodium has a slightly distorted square planar coordination sphere and the rhodium-

DIOP unit has C2-symmetry. Bond angles (e.g. P-Rh-P = 95.5°) and distances (e.g. Rh-P = 2.18 Ǻ  and 

Rh-O = 2.07 Ǻ ) correspond well with those of other [Rh(acac)(PR3)2] complexes and do not merit

further comment.18
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Figure 3. ORTEP drawing of [Rh(acac)(DIOP)] with ellipsoids at 50 % probability level.

Hydrogen atoms are omitted for clarity.

Table 3: Selected bond distances (Ǻ ) and bond angles (°) for [Rh(acac)(DIOP)], (ESD). 

bond distance bond angle

Rh-P(1) 2.188(2) P(1)-Rh-P(6) 95.4(19)

Rh-P(6) 2.194(17) P(1)-Rh-O(35) 89.2(15)

Rh-O(35) 2.044(5) P(1)-Rh-O(37) 176.6(15)

Rh-O(37) 2.079(5) P(6)-Rh-O(35) 175.2(15)

P(6)-Rh-O(37) 87.9(14)

O(35)-Rh-O(37) 87.4(19)

P(1)-C(2) 1.848(8)

C(2)-C(3) 1.450(9) Rh-P(1)-C(2) 118.9(3)

P(6)-C(5) 1.812(7)

C(4)-C(5) 1.540(10) Rh-P(6)-C(5) 122.4(2)

C(3)-C(4) 1.549(10)

The complexation reaction of neat triethylphosphine was followed by solution IR spectroscopy and

indicates the formation of [Rh(acac)(CO)(PEt3)] by a νCO absorption band at 1981 cm-1 due to the

terminal CO moiety. Displacement of the second CO auxiliary could not be achieved, even after

purging the solution with nitrogen. Indeed, reports of analogous rhodium-trialkylphosphine

complexes are rare.19

The precursors [Rh(CO)2Cl]2 and [RhCl3∙3H2O] reacted smoothly with the diphosphine to

afford the sparingly soluble trans-bridged [Rh(CO)(μ-L-L)Cl]2 dimer, leaving free triethylphosphine
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in solution (Table 4). The 31P{1H} NMR spectra show a broad doublet at δP = 78.6-82.4 ppm, the

trans square planar coordination of the phosphorus nuclei demonstrated by their unique environment.

In the corresponding solution IR spectra, the νCO band at 1953-1977 cm-1 is characteristic of a terminal

CO auxiliary trans to chloride.20 As expected, the magnitude of this band depends upon the

electronegativity of the diphosphine. A weak νRh-Cl band at 319-335 cm-1 is also observed. The

spectral data is in excellent agreement with that reported for the [Rh(CO)(μ-DPPE)Cl]2 dimer,21 which

would suggest a similar structure is taken up by these new complexes. In the molecular structure of

[Rh(CO)(μ-dppe)Cl]2 each rhodium nucleus sits in a symmetrical, quasi-octahedral environment and

is as Rh(III).22 Conductivity measurements confirm that only the dinuclear species was present in

solution, with no ionic dissociation of [Rh(μ-L-L)(CO)Cl]2 to [Rh(L-L)2]
+[Rh(CO)2Cl2]

-.

Table 4: Spectroscopic and physical data for solutions of [Rh(CO)(L-L)Cl]n.

aConditions: 1mL 40% ethanol (v/v in d8-thf), 10 mM [Rh], L-L/PEt3/Rh = 1/2/1, ambient temperature,

atmospheric pressure of nitrogen. biConditions: 1mL 50% ethanol (v/v in d8-thf), 20 mM [Rh] with L-L/PEt3/Rh

= 1/1/2, ambient temperature, atmospheric pressure of nitrogen, 1.5 hours. bii0.3 hours, 2JP-P = 35 Hz.
cConductivity in ~ 0.25 mM [Rh] ethanol solution.

Observation of the square planar [Rh(CO)(L-L)Cl] species was not expected because natural bite

angle constraints of the diphosphine should result in formation of the energetically unstable cis

geometry.20b Surprisingly then, the formation of cis-[Rh(CO)(CBM-DXP)Cl] is evidenced by two

doublet of doublets in the 31P{1H} NMR spectrum (Figure 4a). It seems that the 3, 5-dimethylphenyl

substituents on phosphorus provide sufficient site isolation to retard dimeric association. The

resonance at δP = 45.1 ppm is ascribed to the phosphorus nucleus trans to CO, and that at δP = 68.4

ppm is ascribed to the phosphorus nucleus trans to chloride. The pattern is qualitatively similar to that

observed for cis-[Rh(CO)(DPPE)Cl],21 but a smaller rhodium-phosphorus coupling is suggestive of

shorter rhodium-phosphorus bond lengths. This is consistent with the lower electronegativity of

CBM-DXP. The solution IR spectrum shows a νCO band at 2003 cm-1 which is characteristic of a

terminal CO trans to phosphorus (Figure 4b). Complexation of [Rh(CO)2Cl]2 with only

precursor L-L n

31P{1H} NMR IR (cm-1) Λ M
c

δ (ppm) 1JRh-P (Hz) νCO νRh-Cl (Ω-1 cm2 mol-1)

[Rh(CO)2Cl]2
a,

RhCl3∙3H2O
bi

XANTPHOS 2 d. 80.5 129 1963 (s) 335 (w) 1.81

DIOP 2 d. 79.4 124 1953 (s) 319 (w) 1.68

CBM-DXP 2 d. 78.5 121 1977(s) 324 (w) 1.53

BISBI 2 d. 79.1 125 1959 (s) 317 (w) 2.05

PEt3 1 d. 25.1 116 1958 (s) 301 (w)

RhCl3∙3H2O
bii CBM-DXP 1 dd. 45.1

dd. 68.4

124

153

2003 (s) 341 (w)
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triethylphosphine gave trans-[Rh(CO)(PEt3)2Cl], its spectral data in good agreement with that in the

literature.23

(a)

(b)

Figure 4. Solution IR and NMR spectra of [Rh(CO)(CBM-DXP)Cl]n in 33% ethanol/d8-thf:

(a) cis-[Rh(CO)(CMB-DXP)Cl], (b) trans-[Rh(CO)(μ-CMB-DXP)Cl]2.

Complexes under syngas. When competing concentrations of a diphosphine and

triethylphosphine are present in solution with a rhodium precursor under syngas, the catalyst resting

state could potentially exist as an equilibrium ensemble of the bis-phosphine-modified rhodium-

hydride-dicarbonyl complex, the carbonyl-bridged rhodium dimer and the tris-phosphine-modified

rhodium-hydride-carbonyl complex. In situ formation of rhodium complexes from [Rh(acac)(CO)2] in

d4-methanol was therefore investigated by high pressure NMR spectroscopy (Figure 5). Comparison

with the reference system indicates almost exclusive formation of [RhH(CO)2(XANTPHOS)],

together with free triethylphosphine. After 15 minutes at 40°C, the complex is characterised by an

apparent triplet of doublets at δH = -8.9 ppm in the 1H NMR spectrum, with 1JH-Rh = 6.6 Hz and 2JP-H =

14.7 Hz, and a doublet at δP = 20.7 ppm in the 31P{1H} NMR spectrum, with 1JRh-P = 124 Hz. It is

worth noting the broad resonance at δP ≈ 9 ppm in the 31P{1H} NMR spectrum, which suggests that
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formation of the carbonyl-bridged rhodium dimer is inhibited. Line-shape analyses of the 31P{1H}

NMR spectra over the temperature range -5 to 100°C gives no evidence for exchange between the

XANTPHOS-chelated rhodium complex and free triethylphosphine (Figure 6).24

(a) (b)

Figure 5. HP-NMR spectra of [Rhh(CO)2(XANTPHOS)]/PEt3 (solid) and reference (perforated) at 45°C:

(a) 1H NMR spectrum, (b) 31P{1H}NMR spectrum.

Figure 6. 31P NMR spectra of [RhH(CO)2(XANTPHOS)]/PEt3 (-5 to 100°C) and calculated exchange rates.

The apparent influence of triethylphosphine on the solution concentration of

[Rh(CO)(XANTPHOS)(μ-CO)]2 was then investigated by high pressure IR spectroscopy (Table 5). A

solution of [Rh(acac)(XANTPHOS)] in methanol was pressurised with CO/H2 = 1. In the reference

spectrum the terminal and bridging νCO bands from the carbonyl-bridged rhodium dimer are observed

//

//

//



Activating Domino Hydroxymethylation via Multi-Component Catalysis

at 1985 cm-1 and 1723 cm-1 respectively, together with νCO bands at 2037 cm-1 (ν1), 1990 cm-1

(ν2), 1983 cm-1 (ν3) and 1948 cm-1 (ν4) that can be assigned to the geometric isomers of

[RhH(CO)2(XANTPHOS)]. The strong terminal νCO band from [Rh(CO)(XANTPHOS)(μ-CO)]2

somewhat masks the ν2 and ν3 bands. Depressurising and repressurising with CO/D2 = 1 allowed

distinction between ee-[RhH(CO)2(XANTPHOS)] and ea-[RhH(CO)2(XANTPHOS)].25 The ν1 and

ν3 bands shift to a lower frequency upon hydride/deuteride exchange and are therefore assigned to the

CO moieties of the ee comples, with the unshifted ν2 and ν4 bands assigned to those of the ea isomer.

Table 5: HP-IR data for [RhH(CO)2(XANTPHOS)] and [Rh(CO)(XANTPHOS)(μ-CO)]2 in

methanol.a

aConditions: 10 mL methanol, 5 mM [Rh], XANTPHOS/Rh = 2, 40°C, 40 bar CO/(D2 or H2) = 1.

Figure 7. HP

complex
νCO (cm-1)

CO/H2 CO/D2

ee- [RhH(CO)2(XANTPHOS)] 2037 (sym), 1983 (anti) 2020 (sym), 1966 (anti)

ea- [RhH(CO)2(XANTPHOS)] 1990 (sym), 1944 (anti) 1990 (sym), 1943 (anti)

[Rh(CO)(XANTPHOS)(μ-CO)]2 1984, 1723 (μ) 1985, 1723 (μ) 
0 min
3 min
6 min
115

-IR spectra of the XANTPHOS/PEt3/[Rh(acac)(CO)2] system in time.

10 min
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Twenty minutes after enriching the catalyst solution in 25.8 mM triethylphosphine the terminal νCO

band from the dimer is no longer discernable (Figure 7). This suggests that the free phosphine has a

deleterious effect on bimetallic association. The anti-symmetric νCO bands from the

[RhD(CO)2(XANTPHOS)] complexes intensify simultaneously, and the corresponding symmetric νCO

bands become resolved at 2020 cm-1 and 1990 cm-1 for the ee and ea geometries respectively.

4. 4 Catalysis

The selectivity of catalytic systems formed upon increasing the concentration of

triethylphosphine in a solution of diphosphine and rhodium precursor was assessed (Table 6). The

catalytic solutions were prepared in situ from [Rh(acac)(CO)2], and incubated for a period of 20

minutes to under 30 bar CO/H2 = 1 at 120°C to allow formation of the active species.

Regioselectivity. As the catalyst solutions become enriched in up to 16 mM

triethylphosphine, its cone angle enabling coordination as a third phosphine,26 the selectivity for linear

products diminishes only slightly from that observed for the reference systems. The resident state of

rhodium is almost certainly [RhH(CO)2(L-L)], because CO dissociation from the tris-phosphine

complex would be controversial. Although equilibrium between bis-phosphine and tris-phosphine

rhodium species during subsequent allyl alcohol coordination and hydride migration is not precluded,

the regioselective enhancement typically associated with a mixed ligand effect is not observed.3a, 3b, 4

Even a competitive excess of triethylphosphine, defined as L-L/PEt3/Rh = 2/ > 2/2, is seemingly

ineffective at promoting the association equilibrium, which implies that only the diphosphine is

coordinated to rhodium at the instant regioselectivity is determined.

Further enrichment in triethylphosphine leads to a higher decline in regioselectivity for the

diol fraction, but no significant deviation of this parameter is observed for the hydroxyaldehyde

fraction. The involvement of a triethylphosphine-modified rhodium catalyst, which independently

effects diol formation with regioselectivity in the range 1.8 (PEt3/Rh = 1.25) to 2.4 (PEt3/Rh = 2.5),2b,

2d is thus intimated. However such a system also exhibits lower activity and so, regardless of

concentration in the solution, its contribution to the observed regioselectivity effectively remains low.

The slightly enhanced regioselectivity noted for the diol fraction is almost certainly due to a

small degree of sequential hydrogenation, because steric demands make 4-hydroxybutanal more

susceptible to this transformation than 2-methyl-3-hydroxypropanal.

Chemoselectivity. Interestingly, selectivity to the C3-products derived from the isomerisation

of and the hydrogenation of allyl alcohol remains relatively unaffected by the catalyst stoichiometry.
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Table 6: Product profile for hydroxymethylation of allyl alcohol with diphosphine/PEt3/Rh

systems in ethanol.a

allyl alcohol-based selectivity (mol%)
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C=Ob C-OHc C3
d

(mM) (l/b) (l/b)

X
A

N
T

P
H

O
S

0 9 1 2 13 0 10 54 11 0 0 0 0 89 (5.1) 0 11

0.5 8 0 0 14 1 6 62 6 1 0 0 0 89 (5.1) 1 (b) 10

4 6 1 2 11 2 7 52 5 1 0 10 2 89 (5.2) 2 (0.2) 9

10 0 4 3 0 9 3 12 0 3 2 56 5 18 (4.9) 72 (5.3) 10

16 1 3 2 0 11 3 6 1 3 1 59 6 12 (4.9) 78 (5.2) 10

24 1 5 2 0 18 0 12 0 3 1 49 7 13 (4.8) 75 (2.9) 12

32 0 4 3 0 21 0 14 1 4 2 40 9 16 (4.7) 72 (2.4) 12

D
IO

P

0 2 0 2 11 2 15 63 4 0 0 1 0 96 (6.3) 3 (0.5) 2

4 1 0 5 6 2 13 56 2 0 0 15 0 81 (6.3) 17 (6.5) 2

10 1 0 3 0 9 7 11 0 0 1 61 7 20 (6.3) 78 (6.5) 1

16 1 1 2 0 10 5 8 0 0 1 67 5 15 (6.3) 83 (6.5) 2

24 0 1 2 0 15 3 8 3 0 1 61 5 17 (6.2) 82 (4.3) 2

32 1 1 3 0 17 0 12 5 0 2 52 8 19 (6.2) 79 (3.7) 2

C
B

M
-D

X
P

0 3 0 1 5 0 27 57 7 0 0 0 0 97 (13.2) 0 3

4 2 1 5 1 1 31 45 3 1 0 8 1 85 (13.1) 10 (14.3) 5

10 1 1 2 0 4 13 11 2 1 1 58 6 28 (13.1) 68 (14.3) 4

16 0 2 1 0 5 7 12 1 1 0 66 5 20 (13.1) 76 (14.3) 4

24 0 0 1 0 7 7 15 2 2 1 58 6 24 (13.0) 72 (10.3) 4

32 0 2 2 0 7 5 17 3 1 1 56 6 26 (12.9) 70 (9.2) 4

B
IS

B
I

0 9 1 1 14 0 13 49 5 4 0 0 0 82 (4.5) 0 18

4 7 2 2 13 0 10 52 4 4 0 3 0 80 (4.5) 3 (4.7) 17

10 4 4 4 1 10 4 15 0 4 1 49 0 24 (4.5) 60 (4.6) 16

16 4 6 3 0 11 5 9 0 4 1 49 5 17 (4.5) 65 (4.5) 18

24 4 7 3 1 20 3 13 1 3 2 38 3 20 (4.4) 63 (4.4) 17

32 6 5 4 0 23 3 15 2 3 1 31 4 23 (4.4) 60 (4.4) 17
aConditions: 4 mL ethanol, 8 mM [Rh], diphosphine/Rh = 2, Rh/allyl alcohol = 1/185, 120°C, 40 bar CO/H2 =

1, 4 hours. bHydroxyaldehyde derivatives. cDiol derivatives.dProducts of isomerisation and hydrogenation.
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It is worth mentioning that 2-methylpentenal becomes a significant product in this distribution at

higher concentrations of triethylphosphine. One explanation is that free triethylphosphine behaves as

the base which is necessary to initiate the aldol condensation of 1-propanal.

The reference catalysts yield predominantly hydroxyaldehyde fractions. Composite assays of

these are complicated by the thermal sensitivity of 4-hydroxybutanal and 2-methyl-3-

hydroxypropanal. The linear isomer undergoes extensive degradation to 2-furanol, which is stabilised

via dehydration to the vinyl cyclic ether or via alcoholysis with the solvent, and dehydration to

crotonaldehyde, stabilised by α, β-conjugation. The branched isomer dehydrates smoothly to 

methacrolein, which is found to undergo oligomerisation over longer reaction periods.

Figure 8. Conversion-time profile (b isomer only) for allyl alcohol

hydroxymethylation with the DIOP/PEt3/Rh system:

(□) 2-methylpropanol, (◊) 2-methylpropanal, (Δ ) methacrolein, (×) 2-methylpropane-1, 3-diol. 

(Conditions: 4 mL ethanol, 8 mM [Rh], DIOP/PEt3/Rh = 2/2/1,

Rh/allyl alcohol = 1/185, 120°C, 40 bar CO/H2 = 1)

As the catalyst solutions are enriched in up to 16 mM triethylphosphine, 1, 4-butanediol and 2-

methylpropanol formation is promoted at the expense of the hydroxyaldehyde fraction. By monitoring

the recovered product mixture as a function of time it is demonstrated that 2-methylpropanol is

formed via 2-methylpropanal, with an expected positive dependence on the concentration of

triethylphosphine, and that the latter is not the product of selective methacrolein hydrogenation

(Figure 8). An alternative possibility for 2-methylpropanal formation is via conjugation-driven

dehydration of the rhodium=methylpropendiol-carbonyl intermediate.2b, 2d Certainly this mechanism

would account for the observation that anti-Markovnikoff hydride migration gave 1, 4-butanediol

selectively, since dehydration of the rhodium=butenediol-carbonyl intermediate does not result in

conjugated double bonds. It can be ascertained that the dehydration does not occur in the rhodium-
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methylhydroxypropanoyl-dicarbonyl complex, although this would also give a conjugated system,

since this route should also give a quantitative yield of methacrolein (Scheme 1). Non-intermediacy of

the hydroxyaldehydes is further demonstrated by the resistance of 2-ethoxyfuran to the tandem

hydrolysis-hydrogenation necessary for 1, 4-butanediol formation, unless in the presence of a weak

base such as alumina or kieselgel

Rh

P

P

CO

O

HOH2C

Rh

P

P

CO

O

Rh

P

OC H

H

P

O

Rh

P

P

CO

O

Rh

P

OC H

H

P

O

O C

OH

O

H2

H2

reductive
elimination

H2

-H2O reductive
elimination

Scheme 1. Product pathways from dehydration of the rhodium-methylhydroxypropanoyl-dicarbonyl complex.

The stoichiometry at the point of inversion, defined as L-L/PEt3/Rh = 1/2/1, suggests that a

tris-phosphine rhodium intermediate exists at the instant where chemoselectivity is determined.

Despite no evidence for triethylphosphine coordination in the regioselective determinant, in a broader

approach equilibration between the bis-phosphine and trisphosphine modified rhodium-acyl-

dicarbonyl complexes could be of consideration (Scheme 2).

Scheme 2. Equilibration of chelated rhodium-acyl complexes in the presence of triethylphosphine.

The displacement of a strong π-acceptor CO auxiliary by a strong σ-donor auxiliary should render the 

acyl oxygen electronegative, allowing protonation by ethanol as the pivotal step in domino

hydroxymethylation. Reversible CO dissociation from the rhodium-octyl-dicarbonyl complex has
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previously been observed at 5°C.1 A selection of experiments was therefore repeated over a range of

carbon monoxide partial pressures, maintaining a constant hydrogen partial pressure and 40 bar total

pressure by addition of argon (Figure 9). The enhanced chemoselectivity at reduced carbon monoxide

partial pressure reflects more facile CO displacement by triethylphosphine. The correlation is

rendered non-linear however by increasingly competitive allyl alcohol hydrogenation in range 5-15

bar. Furthermore, 2-methylpropanal becomes a significant product at the expense of 2-methylpropanol

when carbon monoxide partial pressure drops below 8 bar. If the hydrogenation catalyst exists

predominantly as a tris-phosphine-modified rhodium-hydride, then steric hindrance would prevent

hydrogenation of this branched product.

Figure 9. Hydroxymethylation activity of XANTPHOS/PEt3/Rh system for allyl alcohol as a

function of carbon monoxide partial pressure:V(■) yield (diols), (■) l/b.

(Conditions: 4 mL ethanol, 8 mM [Rh], XANTPHOS/PEt3/Rh = 2/2/1,

Rh/allyl alcohol = 1/185, 120°C, 40 bar CO/H2 = 1)

For catalyst solutions that are equimolar with respect to triethylphosphine a perfect linear

correlation between chemoselectivity and flexibility of the diphosphine is established, typically r2 >

0.98 (Figure 10). Rigidity of the chelate scaffold appears to be an important requisite for enhanced

hydroxymethylation activity. One explanation may be that triethylphosphine can enforce the η 1-

dissociation of a more flexible diphosphine, effectively maintaining a bis-phosphine-modified

rhodium-acyl-dicarbonyl intermediate. This would also account for the observed accentuation at

higher triethylphosphine concentrations. For all the sequences investigated, optimum conversion of

allyl alcohol to 1, 4-butanediol is observed when the catalyst stoichiometry approximates L-L/PEt3/Rh

= 2/2/1.
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Figure 10. Hydroxymethylation activity of L-L/PEt3/Rh systems for allyl alcohol as a

function of L-L flexibility range:(□) L-L/PEt3/Rh = 2/0.5/1, (◊)L-L/PEt3/Rh = 2/1.25/1, (Δ ) L-L/PEt3/Rh = 2/2/1.

When the concentration of triethylphosphine exceeds that of the diphosphine, unexpected

regression of chemoselectivity is observed. In this region of excess the deprotonation of ethanol by

free triethylphosphine could be responsible.27a In order to evaluate this a base solution of L-L/PEt3/Rh

= 2/2/1 in ethanol was enriched in 8 mM N, N-dimethylbenzylamine, which has a comparable acidity

constant to triethylphosphine,27b and then applied for catalysis. The product mixtures were assayed

against those obtained using the base solution enriched in 8 mM triethylphosphine (Table 7).

Table 7: Hydroxymethylation of allyl alcohol with basified L-L/PEt3/Rh systems in ethanol.a

L-L baseb
allyl alcohol-based selectivity (mol%)

C=Oc (l/b) -OHd (l/b) iso. hyd.

XANTPHOS triethylphosphine 13 (4.8) 75 (2.9) 9 3

dimethylbenzylamine 13 (4.9) 77 (5.2) 8 2

DIOP triethylphosphine 17 (6.2) 82 (4.3) 1 0

dimethylbenzylamine 16 (6.2) 81 (6.4) 2 1

BISBI triethylphosphine 20 (4.4) 63 (2.2) 15 2

dimethylbenzylamine 20 (4.6) 63 (4.5) 14 3
aConditions: 4 mL ethanol, 8 mM [Rh], L-L/PEt3/Rh = 2/2/1, Rh/allyl alcohol = 1/185, 120°C, 40 bar CO/H2 =

1, 3 hours. b8 mM [base]. cHydroxyaldehyde derivatives. dDiol derivatives.

Comparable inhibition of chemoselectivity is observed with these systems, confirming the role of free

triethylphosphine as a proton sponge. The corresponding decline in linear selectivity for systems

enriched in triethylphosphine is not observed in the test systems however, and suggests the emerging

activity of a triethylphosphine-modified rhodium catalyst in the former case. It must be noted that

amine-modified rhodium catalysts have been successfully applied in hydroxymethylation catalysis,28

y = -0.3491x

y = -0.445x

y = -0.445x

0

10

20

30

40

50

60

70

80

90

20 25 30 35 40 45 50 55 60 65 70

y
ie

ld
m

o
l

%

flexibility range (°)



Chapter 4

122

so some modification of the active catalyst in the presence of N, N-dimethylbenzylamine should be of

consideration.

Catalyst decomposition. A dramatic colour change was observed upon recovering each

sequence of catalyst solutions (Figure 11). Filtration through a thin silica pad revealed the dispersion

of a fine metallic black powder in the medium of darker samples, suggesting some decomposition of

the homogeneous catalyst.

Figure 11. Example of a recovered catalyst sequence.

Metallic rhodium thus formed could be responsible effecting auto-tandem hydroxymethylation, so 0.2

gram atom elemental mercurcy per gram atom rhodium was introduced into the autoclave before re-

application of the L-L/PEt3/Rh system in catalysis. Any colloidal rhodium should amalgamate with the

mercury and not be available as a heterogeneous hydrogenation catalyst. On analysis, 11 mol%

hydroxyaldehyde, with l/b = 4.7, and 76 mol% diol, with l/b = 5.1, are recovered for the

XANTPHOS/PEt3/Rh system; 15 mol% hydroxyaldehyde, with l/b = 6.2, and 82 mol% diol, with l/b

= 6.0, are recovered for the DIOP/PEt3/Rh system; 21 mol% hydroxyaldehyde, with l/b = 13.4, and

75 mol% diol, with l/b = 13.7, are recovered for the CBM-DXP/PEt3/Rh system; 17 mol%

hydroxyaldehyde, with l/b = 3.9, and 64 mol% diol, with l/b = 4.2, are recovered for the

BISBI/PEt3/Rh system. The similarity of these product distributions with those identified for reactions

without mercury present indicates homogeneity of the reaction. Ions of lead, mercury and bismuth

should also inhibit heterogeneous hydrogenation as they are reducible by metallic rhodium.29 Addition

of 0.2 g atom lead distearate per gram atom rhodium does not appear to root an influence on

hydroxymethylation activity.30

Monitoring the post-filtration solution concentration of rhodium in time by icp-oes has shown

that formation of the colloidal species only starts to occur on a significant scale upon complete

substrate conversion (Figure 12).31 The deposition of a rhodium mirror below the solution level was

observed in the last three runs. The exact role of triethylphosphine in destabilising the catalyst

remains unclear.
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Figure 12. Decomposition of BISBI/PEt3/Rh systems in hydroxymethylation of allyl alcohol in time:

(□) allyl alcohol, (◊) colloidal Rh.a

(Conditions: 4 mL ethanol, 8 mM [Rh], BISBI/PEt3/Rh = 2/2/1,

Rh/allyl alcohol = 1/185, 120°C, 40 bar CO/H2 = 1)

Medium effect. The possibility for fine-tuning the specific hydroxymethylation activity of

these catalyst systems through a medium effect was investigated (Table 8). Solvent polarity is defined

here as the overall solvation capability and as such it cannot be quantitatively described by the

physical parameters of the idealised electrostatic model. Instead, the solvatochromatic dye Nile Red is

used as a polarity indicator (Figure 13).32

Figure 13. Nile Red dye.

An empirical scale was constructed from the molar transition energies of the chromophore in solution,

measured as λabs
max by UV-vis spectrometry. A bathochromic shift of λabs

max is observed with

increasing solvent polarity, which means that solvation stabilises the Franck-Condon excited state

relative to the equilibrium ground state of Nile Red.33
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246.6

235.2

224.4

223.8

219.3

217.7

200 210 220 230 240 250

hexane

thf

t-amyl alcohol

t-butanol

ethanol

methanol

ENR (kJ mol-1)b

Table 8: Hydroxymethylation of allyl alcohol with DIOP/PEt3/Rh system in organic media.a

aConditions: 4 mL solvent, 8 mM [Rh], DIOP/PEt3/Rh = 2/2/1, Rh/allyl alcohol = 1/185, 120°C, 40 bar CO/H2 =

1, 3 hours. bMolar transition energy (kJ mol-1) calculated from ENR = (hcNA/λabs
max) × 106. cYield of

hydroxyaldehyde derivatives (mol%). dYield of diol derivatives (mol%).

In aprotic media, complete conversion of allyl alcohol is effected within 2 hours. Primarily

hydroxyaldehyde derivatives are formed, presumably via the formal hydroformylation mechanism,

with 2-methylpropanol as the only recognised diol derivative. This apparent anomaly could be the

result of intramolecular protonation of the acyl moiety in the rhodium-methylhydroxypropanoyl-

carbonyl intermediate via a six-membered heterocycle, prompted by the steric requirements of the

methyl group (Figure 14). For the linear isomer this would involve an energetically less-favoured

seven-membered heterocycle.

Figure 14. Proposed intramolecular protonation in the rhodium-methylhydroxypropacyl-carbonyl complex.

Significant sequential hydrogenation is observed over a prolonged reaction time in thf, which

has higher polarity than hexane. Activity for hydroxymethylation remains much less than when a

protic medium is employed however, because at a low concentration of proton source the domino

pathway becomes less important, although presumably allyl alcohol and hydroxyaldehyde products

could also function as such. The regioselectivity of each fraction is primarily governed by the

conversion of hydroxyaldehydes to diols, as hydrogenation of the linear isomer is preferential.

Significant chemoselectivity, defined as > 30% of the product mixture, is observed after 2 hours in

protic media. The regioselectivity of the diol fractions is not found to be significantly higher than that

2 hours 15 hours

C=Oc -OHd C=O -OH

(l/b) (l/b) (l/b) (l/b)

17 (6.3) 79 (6.6) 15 (6.4) 81 (6.5)

16 (6.4) 84 (6.4) 12 (6.3) 85 (6.4)

23 (6.1) 68 (6.9) 2 (0.4) 92 (6.3)

25 (6.8) 72 (6.9) 3 (0.1) 94 (6.4)

86 (7.3) 9 (0) 20 (5.3) 73 (6.8)

90 (7.4) 4 (0) 45 (4.8) 48 (7.6)
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of the corresponding hydroxyaldehyde fractions. Interestingly, 2-methyl-1, 3-propanediol becomes a

significant product at the expense of 2-methylpropanol in tertiary alcoholic media. This is of interest

because Lyondell-Basell has recently shown the potential for 2-methyl-1, 3-propanediol application in

unsaturated polyester resin formulations,34 so it remains the preferred branched product.

4. 5 Deuterium Labelling Studies

Mechanism of 1-hexene deuteriohydroxymethylation. The selective formation of 1-

heptanol and 2-methylhexanol via the auto-tandem hydroxymethylation of 1-hexene can be elegantly

demonstrated by a corresponding labelling pattern in 1-heptanol recovered from 1-hexene

deuteriohydroxymethylation and 1-heptanol recovered from 1-heptanal deuteration.35 In order to

establish whether this is the present pathway for 1-heptanol formation, labelling reactions using

combinations of either CO/D2= 1 or CO/H2= 1 in the gas phase and ethanol-OD or ethanol-OH in the

solvent phase were conducted. Catalyst solutions were prepared in situ from [Rh(acac)(CO)2], using

XANTPHOS/PEt3/Rh= 2/2/1, under 40 bar CO/D2=1 at 120°C. Following fractional distillation, the

product and solvent fractions were examined by 13C{1H} NMR and 1H NMR spectroscopy

respectively (Table 9).

Only 1-heptanol is recovered from 1-hexene deuteriohydroxymethylation in ethanol-OH.

H/DO-CD2-CH2-CHD-C4H9 and H/DO-CHD-CH2-CHD-C4H9 are observed as the major and minor

isotopomers respectively (Figure 15). The main C1 signal is split into a quintet by coupling to two

deuterium nuclei, JC-D = 21.3 Hz. The observed distortion is due to the underlying minor C1 resonance

which is resolved as a triplet, JC-D = 21.5 Hz. The corresponding α-shifts average ~ 0.40 ppm per 

deuterium. The incorporation of hydrogen at C1 may be due to hydrogen impurity in carbon monoxide

and traces of hydrogen have previously been detected in carbon monoxide cylinders of the type used

for these experiments. However, the selectivity of incorporation suggests that exchange of deuterium

in one of the cationic rhodium intermediates with hydrogen from ethanol is a more credible source.

Solvent ethanol-OH has undergone 22% conversion to ethanol-OD, compared with only 6% exchange

observed in the absence of 1-hexene. Deuterium incorporation in the hydroxyl site of initially formed

product could not be quantitatively determined due to the hydrogen-deuterium exchange equilibrium

established in this site. Upon exchange with D2O, a β-shift of 0.27 ppm is observed for the C1 signal.

The C3 signal of both products is split into a triplet by coupling to a single deuterium nucleus, JC-D =

19.3 Hz, which confirms the absence of hydrogen in the gas phase. The corresponding α-shifts are 

0.37 ppm. The main C2 signal experiences an upfield shift of 0.32 ppm, equivalent to three β-shifts 

due to the deuterium nuclei on vicinal carbons. The minor C2 signal appears ~ 0.10 ppm downfield of

this. A β-shift of 0.08 ppm is also observed for the C4-resonances. By integration of the C2 signals it is

established that 86% of 1-heptanol was dideuterated in the C1 site.
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Table 9: Deuteriohydroxymethylation of 1-hexene with XANTPHOS/PEt3/Rh in ethanola – 13C{1H} NMR C7-product analysis.a

7/ppm

14.09

14.09

14.12

14.12

14.12

14.12

14.11

aConditions: 4 mL ethanol, 8 mM [Rh], XANTPHOS/PEt3/Rh = 2/2/1, Rh/1-hexene = 1/200, 120°C, 40 bar CO/(D2 or H2) = 1, 3 hours.

6/ppm

22.63

22.63

22.86

22.86

22.86

22.86

22.86

5/ppm

31.85

31.85

31.99

31.99

32.00

32..0

32.00

4/ppm

29.27

29.27

29.40

29.40

29.40

29.40

29.38

JC-D/Hz

t. 19.3

t. 19.3

3/ppm

25.55

25.55

25.91

25.91

25.92

25.92

25.91

I

86

14

59

41

45

55

2/ppm

32.48

35.57

32.82

32.75

32.83

32.76

32.75

JC-D/Hz

m. 21.3

t. 21.5

t. 21.5

t. 21.5

1/ppm

61.88

62.09

62.49

62.11

62.51

62.10

62.09

1-hexene +CO/D2, ethanol-OH

H/DO-CD2-CH2-CHD-C4H9

H/DO-CHD-CH2-CHD-C4H9

1-heptanal +CO/D2, ethanol-OH

H/DO-CH2-CH2-CH2-C4H9

H/DO-CHD-CH2-CH2-C4H9

1-heptanal +CO/H2, ethanol-OD

H/DO-CH2-CH2-CH2-C4H9

H/DO-CHD-CH2-CH2-C4H9

1-heptanal +CO/D2, ethanol-OD

H/DO-CHD-CH2-CH2-C4H9
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1-Heptanol is recovered as H/DO-CHD-CH2-CH2-C4H9 and H/DO-CH2-CH2-CH2-C4H9 from

the deuteration of 1-heptanal in ethanol-OH (Figure 16). The C1 signal of the monodeuterated product

is resolved as a triplet, JC-D = 21.5 Hz. An α-shift of 0.36 ppm and β-shift of 0.07 ppm are observed 

for C1 and C2 respectively. Resonances from non-deuterated 1-heptanol appear at the expected

frequencies. Ethanol-OH appears to be the source of the hydrogen incorporated at C1, since 84%

exchange to ethanol-OD is observed in the solvent fraction. Integration of the C2 signals shows that

59% of 1-heptanol has no deuterium incorporated in the C1 position. Therefore if 1-hexene

deuteriohydroxymethylation proceeds via a auto-tandem scheme, ~ 60% of 1-heptanol should be

recovered with one deuterium in the C1 site. Since only 14% is observed as this isotopomer, it can be

concluded that 1-heptanol is reductively eliminated as a primary reaction product.

Mechanism of 1-heptanal deuteration. At this point it is prudent to rationalise the labelling

pattern in the deuteration products of 1-heptanal (Scheme 3).

Scheme 3. Proposed mechanism for the deuteration of 1-heptanal with

L-L/PEt3/Rh systems in ethanol.

Since deuteration via the rhodium-heptoxy-carbonyl species necessitates deuterium incorporation in

the C1 position, the mechanism almost certainly proceeds via the rhodium-hydroxyheptyl-carbonyl

complex. This requires low oxophilicity of rhodi um,36 implicating the possibility that a tris-phosphine

complex is present at the point of deuteride migration. Since protonation equilibria are often rapidly

established, formation of the precursor for H/DO-CH2-CH2-CH2-C4H9 elimination should compete
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effectively with the oxidative addition of D2, which generates the precursor for H/DO-CHD-CH2-

CH2-C4H9 elimination.2a, 2c

The role of the solvent as the hydride source is confirmed upon 1-heptanal hydrogenation in

ethanol-OD which gives a different composite mixture of the isotopomers (Figure 17).

Figure 17. Hydrogenation of 1-heptanal in ethanol-OD- 13C{1H} NMR spectrum of product fraction.

By integration of the C2 signals it is shown that 55% of 1-heptanol has deuterium incorporated in the

C1 position. Analysis of the solvent fraction reveals that 76% deuterium exchange had occurred in the

hydroxyl position, with no indication of deuterium incorporation in any other sites. Exclusively

H/DO-CHD-CH2-CH2-C4H9 is formed upon 1-heptanal deuteration in ethanol-OD, thus only the

isotopic nucleus in the hydroxyl position of the solvent is involved.

4. 6 Conclusions

As demonstrated explicitly in hydroxymethylation catalysis, the introduction of a primary

trialkylphosphine to a solution of rhodium precursor and diphosphine can significantly affect specific

activity (Figure 18). Using the L-L/PEt3/Rh system in a protic medium, diol products were recovered

in ~ 50 mol% yield as the PEt3/Rh molar ratio approached 1. Heterogeneous hydrogenation does not

appear to be taking place, and deuterium labelling studies implicated that catalysis proceeds via the

domino scheme. There is evidence for the involvement of a tris-phosphine-modified rhodium-acyl-
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carbonyl complex, but in situ complexation with various rhodium salts afforded exclusively

diphosphine-modified species, with free triethylphosphine in solution. In terms of regioselectivity, the

absence of a mixed ligand effect indicated that only the chelate was coordinated to rhodium at the

instant this was determined. As the concentration of PEt3 exceeds that of the diphosphine, competitive

activity of triethylphosphine-modified rhodium species is presumed to account for reduced linear

selectivity. In the absence of allyl alcohol, free triethylphosphine had a seemingly deleterious effect

on the solution stability of [Rh(CO)(L-L)(μ-CO)]2 and the active catalyst.

Figure 19. Hydroxymethylation
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acetone, tert-butanol and tert-amyl alcohol were distilled from calcium hydride, all under N2 onto

activated Linde 4 Å molecular sieves. All solvents were degassed prior to use by fpt cycles.

XANTPHOS,13 DIOP37 and BISBI38 were prepared according to the literature procedures; CBM-DXP

was provided by Lyondell-Basell.

Analytical techniques. NMR spectra were recorded on Bruker Avance 300 and Bruker

Avance II 400 spectrometers with tetramethylsilane (1H, 13C) and 85% H3PO4 (31P) as external

references. Solution IR spectra were recorded on a Nicolet Avatar 360 FT-IR spectrometer. UV-vis

absorption spectra were recorded on a Hewlett-Packard 8453 UV-vis spectrophotometer. Gas

chromatography was performed on a Hewlett-Packard 6890 chromatograph fitted with a 30 m

BP10™ column (carrier gas 3.2 psi He, flame-ionisation detector). Elemental analyses were done

using a Perkin-Elmer 240C CHNS/O microanalyser. ICP-MS analyses were performed on an Iris

Advantage analyser. Conductivity was measured in ~ 0.25 mM ethanol solution with a Metrohm E518

conductimeter.

Theoretical studies. The natural bite angles of the chelates were determined by semi-

empirical calculations. Initial Rh-(L-L) conformations were determined by the PM3(tm) method as

implemented in the SPARTAN 5. 1. 1 SGI software, with the rhodium-phosphorus bond length fixed at

2.315 Å. The geometries were optimised by eigenvector following as implemented in the GAUSSIAN

98 program, with a termination criterion of rms gradient < 0.001 kJ mol-1 Å-1. The flexibility range

was estimated from a plot of Rh-(L-L) potential energy as a function of the bite angle.

Synthesis of complexes from [Rh(acac)(CO)2]. A solution of the diphosphine (0.01 mmol)

and 2.9 μL triethylphosphine (0.02 mmol) in ethanol (1 mL, 40% volume by volume in d8-thf) was

added to 2.5 mg [Rh(acac)(CO)2] (0.01 mmol) held in an NMR tube at 30°C under N2. After 1 hour

the red solution was analysed by 31P{1H} NMR spectroscopy. Evaporating the solvent afforded red

prisms, which were washed with hexane (2×0.4 mL).

Synthesis of complexes from [Rh(CO)2Cl]2. A solution of the diphosphine (0.01 mmol) and

2.9 μL triethylphosphine (0.02 mmol) in ethanol (1 mL, 40% volume by volume in d8-thf) was added

to 3.9 mg [Rh(CO)2Cl]2 (0.01 mmol) held in an NMR tube at 30°C under N2. When carbon monoxide

evolution was no longer discernable, the yellow solution was analysed by 31P{1H} NMR spectroscopy

and by solution IR spectroscopy.

Synthesis of complexes from [RhCl3∙3H2O]. A solution 0.1180 g [RhCl3∙3H2O] (0.45

mmol) in ethanol (8 mL) was added dropwise to a refluxing solution of the diphosphine (0.45 mmol)

and 131.3 μL triethylphosphine (0.90 mmol) in ethanol (15 mL) at 80°C under N2. After 30 minutes, 2
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mL 40% formaldehyde (weight by volume in water) was slowly injected and the mixture was allowed

to stir for another 2 hours. An aliquot of the yellow solution (0.5 mL) was withdrawn for analysis by

31P{1H} NMR spectroscopy and by solution IR spectroscopy.

Crystal structure determination of [Rh(acac)(DIOP)]. Suitable crystals were grown by

method of slow-cooling an acetone solution. [C37.5H42O4.5P2Rh], Mr = 729.56. A red prism-shaped

crystal (0.14 mm × 0.10 mm × 0.10 mm) was fixed to a glass capillary and transferred into the N2

stream on a Rigaku Mercury/MM007 RA diffractometer with rotating anode. The measure crystal was

monoclinic, space group P21 with a = 10.6780(7) Å, b = 17.6957(10) Å, c = 20.2971(12) Å, α =

90.000°, β = 92.298(10)°, γ = 90.000°, V = 3832.1(4) Å3, Z = 4, Dx = 1.2965 g cm-3, F(000) = 1512,

μ(MoKα) = 0.565 mm-1. 19222 reflections were measured, 9540 of which were independent, Rint =

0.0595 (1.91° < θ< 23.19°, T = 93(2) K, MoKα  radiation, graphite monochromator, λ = 0.605382 Å, 

ϕ scan and ω scans with κ offset, distance crystal to detector 50 mm, absorption correction by

SADABS). The structure was solved by the heavy atom method and refined by the full-matrix least-

squares against F2 method in SHELLXTL.39 Refinement converged at wR2 = 0.1273, GooF = 0.938 and

-0.869 < Δ ρ< 0.862 e Å-3.

High pressure NMR. The 10 mm sapphire NMR cell was primed with a solution of 5.0 mg

[Rh(acac)(CO)2] (0.02 mmol), 11.6 mg XANTPHOS (0.02 mmol) and 5.8 μL triethylphosphine (0.04 

mmol) in d4-methanol (1.5 mL) under N2. The cell was purged thrice with 10 bar CO/H2 = 1 and then

pressurised to 40 bar. NMR spectra at different temperatures were recorded. Line-shape analyses was

performed using the dNMR option in the TOPSPIN™ software provided by Bruker BioSpin.

High pressure IR. The HP-IR cell was primed with a solution of 7.0 mg [Rh(acac)(CO)2]

(0.05 mmol) and 28.9 mg XANTPHOS (0.05 mmol) in methanol (10 mL) under N2. The cell was

purged twice with 10 bar CO/H2 = 1 and then pressurised to 40 bar. The IR spectrum at 40°C was

recorded. Hydride-deuterium exchange was performed by cooling the cell to 25°C, depressurising and

purging the solution thrice with 5 bar D2. Hereafter the autoclave was pressurised with 20 bar D2 and

20 bar carbon monoxide. The IR spectrum at 40°C was recorded, a solution of 14.6 μL PEt3 (0.10

mmol) in methanol (1 mL) was injected and another IR spectrum recorded after 20 minutes. The

reference spectrum of methanol under 40 bar CO/(D2/H2) = 1 at 40°C was subtracted from the

experimental spectrum.

Catalysis. Syngas was purchased from BOC (Caution! Carbon monoxide is extremely

poisonous and accidents may be lethal. A sensitive personal detector was carried and all experiments

were performed in a well ventilated fume-hood fitted with a detector, maintaining the concentration of

carbon monoxide below the mac value at all times). Hydroxymethylation reactions were carried out
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on the CAT rig with stirrer speed set at 800 rpm. In a typical experiment a solution of the diphosphine

(0.08 mmol) and triethylphosphine (0.00-0.16 mmol) in ethanol (3 mL) was added to 10.4 mg

[Rh(acac)(CO)2] (0.04 mmol). The resulting solution was sonicated over 10 minutes and transferred

into the autoclave under CO/H2 = 1; any residues were transferred with a further aliquot of ethanol (1

mL). The solution was incubated for 20 minutes at 120°C and 30 bar CO/H2 =1. After 1 mL allyl

alcohol (14.70 mmol, azeotropically dried with toluene and distilled) was injected the pressure was

adjusted to 40 bar, and the reaction was run to completion. The autoclave was then cooled and

depressurised. 50 μL diglyme was added as internal standard to a 1 mL aliquot of the product 

solution, and the sample was analysed by GC. The experiments were performed at least in duplo.

For experiments with a proton sponge, 5.94 μL N, N-dimethylbenzylamine (0.04 mmol) was

added to a pre-catalyst solution of 10.4 mg [Rh(acac)(CO)2] (0.04 mmol), diphosphine (0.08 mmol)

and 11.6 μL triethylphosphine (0.08 mmol) in ethanol (4 mL). For testing of reaction homogeneity the 

autoclave was charged with 1 mL mercury and purged thrice with CO/H2 = 1 before a solution of 10.4

mg [Rh(acac)(CO)2] (0.04 mmol), diphosphine (0.08 mmol) and 11.6 μL triethylphosphine (0.08 

mmol) in ethanol (4 mL) was introduced. For investigating catalyst decomposition, a solution of 10.4

mg [Rh(acac)(CO)2] (0.04 mmol), 44.5 mg BISBI (0.08 mmol) and 11.6 μL triethylphosphine (0.08 

mmol) in ethanol (4 mL) was applied in catalysis for an appointed reaction time. After filtration

through a 2 mm × 4.5 mm pad of silica the product mixture was subjected to ICP-MS analysis.

Conversion was calculated from the pressure change using Δ P = Δ c·R·T. Experiments at variable 

carbon monoxide partial pressures were performed in a Hastelloy autoclave. The autoclave was

primed with a solution of 10.4 mg [Rh(acac)(CO)2] (0.04 mmol), 46.4 mg XANTPHOS (0.08 mmol),

11.6 μL triethylphosphine (0.08 mmol) and 1 mL allyl alcohol (14.70 mmol) in ethanol (4 mL) under 

carbon monoxide, then pressurised as appointed. After 20 bar H2 was introduced, the total pressure

was adjusted with argon to 40 bar, and the autoclave heated to 120°C. After 4 hours the autoclave was

cooled and depressurised.

Polarity measurements. The absorption maximum of Nile Red was determined by

transmission UV-vis spectroscopy of a 1.89 mM solution, and related to the molar transition energy

by ENR = (hcNA/λabs
max) × 106.

Deuterium labelling. Carbon monoxide was purchased from BOC and D2 was purchased

from Cambridge Isotope Laboratories. Labelling reactions were performed in a Hastelloy autoclave.

In a typical experiment a solution of 10.4 mg [Rh(acac)(CO)2] (0.04 mmol), 46.4 mg XANTPHOS

(0.08 mmol) and 11.6 μL triethylphosphine (0.08 mmol) in ethanol (4 mL) was sonicated over 10 

minutes and transferred into the autoclave under carbon monoxide, together with 1 mL substrate. The

autoclave was pressurised with 20 bar D2 and 20 bar carbon monoxide, and then heated to 120°C.

After 3 hours the autoclave was cooled and depressurised. The product mixture was fractionally
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distilled off the catalyst. The C7-fraction was analysed qualitatively by 13C{1H} NMR spectroscopy

and quantitatively by 13C{1H, 2H} NMR spectroscopy and the solvent fraction was analysed by 1H

NMR spectroscopy.
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-Chapter 5-

Hydroxymethylation Catalysis Mediated

by the Rhodium Complexes of Self-Assembling

Heterodimers Based on DNA Base-Pairs

Abstract. Heterodimers of 2-N-pivaloylaminopyridine phosphines and isoquinolyl phosphines have

been screened as diphosphine ligands for the rhodium-catalysed hydroxymethylation of allyl alcohol.

The intramolecular hydrogen-bonding network is not resistant to erosion, but under appropriate

operative conditions highly selective catalysts were afforded. In a typical example, for complexes of

the type [RhH(CO)2(PAPP/IQP)] ( PAPP = 6-(diphenylphosphino)-2-pivaloylaminopyridine/IQP =

3-(diphenylphosphino)isoquinolin-1(2H)-one (22a), 3-(diethylphosphino)isoquinolin-1-(2H)-one

(22b), 3-(dicyclohexyl)isoquinolin-1-(2H)-one (22c) and 3-(bis(3, 5-dimethylphenyl)isoquinolin-1-

(2H)-one (22d)), linear selectivity increased in the order 22b < 22a < 22c < 22d. Activity for

hydroxymethylation was found to be proportional to the acidity constant of the heterodimer,

increasing in the order 22a < 22d < 22b < 22c. Overall, complexes based on the assembly of a

dicyclohexylphosphine platform and a bis(3, 5-dimethylphenyl)phosphine platform proved most

desirable, effecting up to 73 mol% selectivity to 1, 4-butanediol.
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5.1 Introduction

A beneficial chelate effect on hydroformylation catalysis is well established, but conventional

synthetic routes to diphosphine ligands are laborious. The supramolecular concept is based on

generating diphosphines via the assembly of two easily accessible monophosphines with a

complimentary binding motif. There is potential for an extensive catalyst tuning strategy suited to a

combinatorial methodology and high throughput experimentation.1

Dynamic metal-ligand interactions offer one approach to supramolecular design,2 and these

binding motifs are principally represented by axial coordination of a nitrogen-donor to the metal

centre of a metalloporphyrin. This approach has been applied for the construction of coordination

polymers and molecular squares,3 and the interactions are found to be stable under conditions relevant

to catalysis.4 By the templation of zinc(II) salphen on pyridylphosphines, Kleij et al. have illustrated

that the coordination geometry of the encapsulated assembly is determined by the configuration of the

latter.5 Thus, sterically demanding tri(m-pyridyl)phosphine-based supramolecular structures were

found to be mono-coordinated in several transition metal complexes. Conversely, the rhodium(I)

complexes of tri(p-pyridyl)phosphine-based supramolecular structures displayed behaviour typical of

chelated rhodium(I) species in the hydroformylation of 1-octene. The activity of these catalysts

appeared to be regulated by the substitution pattern of the meso-phenyl functionalities. This

coordinative pattern was later advanced by Reek et al. to create a library based on phosphite-modified

zinc(II) porphyrins and nitrogen-containing phosphines, popularly termed SUPRAPhos.6 The

chelation behaviour of these assemblies in rhodium(I) species was confirmed both by high pressure

NMR spectroscopy and complexation studies. The catalytic parameters of these complexes in the

hydroformylation of styrene were shown to be highly dependent upon the structural units, but in all

cases chelation was maintained under the operating conditions.

Alternatively, supramolecular architectures can be realised via hydrogen-bonding. Breit et al.

developed a 6-(diphenylphosphino)-2-pyridone platform which assembles with its tautomer in the

presence of transition metal salt.7 The rhodium(I) complex was found to be an active and selective

catalyst for the hydroformylation of terminal alkenes functionalised with bromide, acetate, ester,

ketone, carbamate, salicylate or hydroxyl. However, cleavage of the hydrogen-bonding network was

noted in the presence of protic additives. Duckmanton et al. and Reek et al. independently introduced

monophosphines with a urea appendage,8 thereby establishing a self-complementary hydrogen-

bonding motif. Anion sequestration into the bisurea binding pocket was found to direct a well-defined

trans-chelation of the homodimers in their transition metal complexes, and the hydrogen-bonding

network in these has been observed both in solution and in solid state. In the hydroformylation of 1-

octene, the rhodium(I) complexes of these anion-templated homodimers were found to be relatively

inactive, with regioselectivity of the order obtained with [Rh(acac)(CO)(PPh3)] under analogous
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conditions. The interaction between methylated cyclodextrins, used as inverse phase transfer reagents

in aqueous biphasic hydroformylation,9 and sulfonated phosphine ligands has been extensively

explored.10 In the case of TPPTS and flexible diphosphines, the formation of an inclusion complex

causes η 1-dissociation of the ligand from the rhodium species with a corresponding decline in linear

selectivity. Interestingly, the opposite effect is observed in the case of rigid diphosphines.

The synthesis of asymmetric diphosphines has remained challenging. In this context Reetz

and Feringa have shown the viability of a simple mixture of two monophosphines and a late transition

metal, in which the heterocombination and two homocombinations exist simultaneously.11 Self-

association of platforms with different phosphorus donors generates a similar statistical mixture, but

catalyst optimisation is only feasible when the heterodimer is more active and selective than either of

the homodimeric species. Furthermore, a well-defined heteroleptic assembly is essential for the

demarcation of catalyst structure impact on activity and selectivity.7a

The DNA base pairing of adenine and thymine exemplifies well-defined complementary

heterodimer assembly. Watson and Crick identified that the physical basis relies on inherent fixation

of adenine as the lactim tautomer and thymine as the lactam tautomer.12 Breit et al. have created a

model template to emulate these properties (Figure 1).13

Figure 1. Heterodimerisation: (▬ ) adenine-thymine base pair,   

(▬ ) aminopyridine-isoquinolone platforms.

Coordination of the diarylphosphine-modified platforms with [Pt(cod)Cl2] in an aprotic solution led

exclusively to the heteroleptic cis-complex, and the construction of a hydrogen-bonding network

evocative of DNA base pairing was confirmed by single crystal X-ray crystallography. The catalyst

library was screened for the hydroformylation of 1-octene. The heteroleptic complexes exhibited

excellent activity and significantly enhanced regioselectivity relative to their homoleptic analogues.

An analogous chiral library was screened with equal success for the asymmetric hydrogenation of

acetamido-acrylate, methyl-α-acetyl-amino cinnamate and dimethylitaconate. 

As an extension of their original work Breit et al. have developed a template based on new

heterocyclic platforms, namely 2-N-pivaloyl aminothiazolylphosphine and azaindolylphosphine.14
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Catalysts with outstanding activity and regioselectivity were identified for the hydroformylation of 1-

hexene, even when catalysis was performed in a protic medium such as methanol. Stronger hydrogen-

bonding upon incorporation of a five-membered heterocycle was held accountable for the improved

rigidity of this heterodimer. Their findings have motivated our research into the application of this

approach for the hydroxymethylation of allyl alcohol.

In this chapter, dimerisation of the 2-N-pivaloylaminopyridylphosphine platforms 1-4 and

isoquinolylphosphine platforms 5-8 (Figure 2) was investigated by 1H NMR titration in solution and

by complexation with different rhodium precursors. The chelation mode of a selected heterodimer in

its rhodium-hydride-dicarbonyl complex was elucidated by high pressure NMR spectroscopy. The

optimum parameters for the hydroxymethylation of allyl alcohol were established and the

performance of the heteroleptic rhodium(I) complexes is discussed in terms of steric and electronic

requisites.

Figure 2. 2-N-pivaloylaminopyridylphosphines 1-4 and isoquinolylphosphines 5-8.

5. 2 Synthesis

2-N-Pivaloylaminopyridinyl phosphines. The retro-synthetic route towards 1-4 is illustrated

(Scheme 1). 2-Bromo-6-aminopyridine is accessed from commercially available 2, 6-dibromopyridine

by its reaction with 1.1 equivalents sodium amide, generated in situ from metallic sodium, ferric

nitrate and liquid ammonia. Protection of the amine with 3 equivalents trifluoroacetic acid anhydride

in triethylamine gives 2-bromo-6-N-trifluoroacetylaminopyridine (9) as yellow oil in 82% yield after

flash chromatography. Clean lithium/bromide exchange is achieved by the addition of 2 equivalents

n-BuLi, as verified by the 1H NMR spectrum of a D2O quenched sample. The lithiated 6- N -

trifluoroacetylaminopyridine is trapped with a small excess of diarylchlorophosphine or

dialkylchlorophosphine, causing a colour change from bright to pale yellow. Direct deprotection of

the amine function is accomplished by stirring with 10 equivalents potassium carbonate in methanol.
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Scheme 1. Synthesis of 2-N-pivaloylaminopyridinyl phosphines 1-4:

(i) Na/Fe(NO)3·9H2O/liquid NH3, -80°C, (ii) TFAH/NEt3, 0°C→ ambient T, CH2Cl2, (iii) n-BuLi, -100°C, THF,

(iv) ClPR2, -80°C→ ambient T, (v) K2CO3, 60°C, MeOH, (vi) (CH3)3COCl/NEt3, 0°C→ ambient T, CH2Cl2.

Purification is effected by flash chromatography to give ~ 85% of6-(diarylphosphino)-2-

aminopyridine (10a, 10d) or ~ 49% of 6-(dialkyphosphino)-2-aminopyridine (10b, 10c) as opaque

residue. The pivaloate group is introduced upon reaction of 10a-10d with 1.5 equivalents

pivaloylchloride in the presence of triethylamine. Thus obtained are 61% of 1 as white foam, 59% of

3 as pale yellow foam and 65% of 4 as white foam, following flash chromatography. A hexane

solution of 2 is percolated through a column of deactivated silica to give the pure product as viscous

yellow oil in 53% yield.

Isoquinolonyl phosphines. The retro-synthetic approach to 5-8 is shown (Scheme 2).

Homophthalimide (11) is generated from commercially available homophthalic acid via distillation of

a 1, 2-dichlorobenzene solution of its ammonium salt. A crystallisation from aqueous acetic acid gives

91% 11 as powdery white solid. This method gave a considerably cleaner product than direct heating

of the ammonium salt.15 The chlorodehydroxylation of 11 with neat PhPOCl2 and a crystallisation

from absolute ethanol gives 1, 3-dichloroisoquinoline (12) as a white powder in 88% yield.16 The use

of a Fischer Porter bottle was necessary if using POCl3, since the reaction only proceeds at 145°C

which is considerably above the reflux temperature of this reagent. The utility of less-volatile PCl5

was diminished by a tendency also to function as an oxidative chlorodehydroxylating agent. A simple

nucleophilic substitution with 1.2 equivalents freshly sublimed potassium-tert-butoxide furnishes
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Scheme 2. Synthesis of isoquinolonyl phosphines 5-8:

(i) 28% NH4OH, 80°C at 5 mmHg, dichlorobenzene, (ii) PhPOCl2, 160°C, neat,

(iii) t-BuOK, 90°C, toluene, (iva) n-BuLi, -100°C, THF then ClP(alkyl)2, -80°C→ ambient T  

(ivb) Na/P(aryl)3/liquid NH3, -78°C→ ambient T, THF, (v) HCO2H/H2O, ambient T.

1-tert-butoxy-3-chloroisoquinoline (13), recovered as clear oil in 89% yield after bulb-to-bulb

distillation of the crude residue. Clean lithium/chloride exchange with 1 equivalent n-BuLi is noted

from the 1H NMR spectrum of a D2O quenched sample of the bright yellow solution. The lithiated 1-

tert-butoxyisoquinoline is smoothly quenched with 1 equivalent dialkylchlorophosphine. Crude 1-

tert-butoxy-3-(diethylphosphino)-isoquinoline (14b) is obtained in 77% yield, but all attempts at

purification are met with decomposition. The crude residue of 1-tert-butoxy-3-

dicyclohexylphosphino-isoquinoline (14c) is recrystallised from absolute ethanol to yield the product

as white solid in 59% yield. The 1-tert-butoxy-3-(diarylphosphino)-isoquinolines (14a, 14d) are

derived by in situ reaction of 1-tert-butoxy-

3-chloroisoquinoline with sodium and the triarylphosphine in liquid ammonia. Recrystallisation from

methanol gives ~ 70% 14a and 14b. Aqueous dilution of a concentrated formic acid solution of 14a-

14d leads to instantaneous precipitation of 5-8. A second crop of 5, 7 and 8 is available upon

crystallising the aqueous formic acid residue from acetone. The high purity crops yield 70% of 5, 73%

of 7 and 66% of 8 as white flakes. The crude residue of 6 is extracted with n-pentane/petroleum ether

and decanted from the sludge to give the pure product as viscous pale yellow oil in 53% yield.
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5. 3 Heterodimerisation and Rhodium Chemistry in Solution

Heterodimerisation. The association behaviour of the complementary platforms was

investigated by 1H NMR titrations in solution.17 This technique provides several independent signals

for evaluation and the observed chemical shift change also imparts conformational information about

the supramolecular structure, which is difficult to extract from UV-vis titration and calorimetric

data.18 Hydrogen bonding induces protons to shift upfield and the extent of association is here

evaluated in terms of the chemical shift difference observed for the pivaloyl amide proton and the

quinolyl amide proton.

The heterodimeric configurations of 1/7 and 4/5 were validated using the method of

continuous variation. For each system the mole fraction of the isoquinolyl phosphine was

incrementally varied in the range 0-1, while maintaining an absolute concentration of 1 mM. The

derived Job plots are highly symmetrical with maxima at mr = 0.5, which corresponds to a 1/1

stoichiometry in solution (Figure 3).

Figure 3. Continuous variation plot derived from 1H NMR titration data: (□) 1/7, (Δ ) 4/5.

The associations of 1/7 and 4/5 were examined by classical titration, with the concentration of

the 2-N-pivaloylaminopyridyl phosphine fixed at 5 mM and the concentration of the isoquinoloyl

phosphine incrementally amplified (Figure 4). The association constant (Kα) was calculated by fitting

the experimental data to the 1/1 association model (Equation 1) using the nonlinear least-squares fit

method in ORIGIN,12 which operates the Levenberg-Marquardt algorithm.20
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Figure 4. Titration curves:

(□) 1/7 in benzene, (◊) 4/5 in benzene, (■) 1/7 in methanol, (♦) 4/5 in methanol.

In either medium, the association constants for both heterodimers are comparable (Table 1).

The small discrepancy is possibly the result of additional π-stacking interactions between the aryl 

functionalities on 4 and 5. Some interference of a free hydroxyl moiety with the hydrogen-bonding

network is manifested as slightly lower constants for association in methanol. Nevertheless,

application in protic media is not exempt because the Weber- Person-Deranleau criteria, which state

that Kα  > 1×103 M for accurate determination, are still met.21 The association constant for 4/5

assembly in benzene is enhanced fourteen-fold in the presence of a rhodium salt, corresponding to a

6.41 kJ M-1 difference in binding free energy. The rhodium coordination sphere can thus be regarded

as a templation arena.

Table 1: Constants for the association of 2-N-pivaloylaminopyridyl phosphine and isoquinolyl

phosphine in solution.a

PAPP/IQP
Kα

b

- Δ G°c

benzene methanol

1/7 1.09 1.04 17.04

4/5 1.11 1.07 17.08

4/5 + [RhH(CO)(PPh3)3] 15.38 23.49
aConditions: 0.4 mL solvent, 5 mM [PAPP], 25°C, atmospheric pressure of argon. bAssociation constant (× 103

M-1). cFree binding energy in benzene (kJ M-1) calculated from  Δ G° = -RTlnKα.

Rhodium(I) complexes under nitrogen. Tranferability of the hetero-combinatorial

association to a cationic rhodium centre was investigated, monitoring in situ complexation with

[Rh(cod)2][BF4] by 31P{1H} NMR spectroscopy (Table 2).
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Table 2: 31P{1H} NMR data for [Rh(X)(PAPP/IQP)][BF4] complexes in d2-dichloromethane.a

PAPP/IQP X
PAPP IQP

δ (ppm) 1JRh-P (Hz) δ (ppm) 1JRh-P (Hz) 2JP-P (Hz)

1/6 cod dd. 30.2 138 dd. 1.1 126 28

2/5 cod dd. 1.1 126 dd. 30.7 138 28

3/8 – (92%) phen dd. 6.4 119 dd. 28.9 136 29

3/8 – (8%) phen dd. 4.2 118 dd. 24.9 134 26

4/7 – (89%) phen dd. 28.2 136 dd. 7.1 120 29

4/7 – (11%) phen dd. 24.4 135 dd. 5.6 118 26
aConditions: 0.5 mL d2-dichloromethane, 50 mM [Rh], Rh/PAPP/IQP= 1/1/1, ambient temperature,

atmospheric pressure of nitrogen, 2 hours.

Formation of the heteroleptic complexes [Rh(cod)(1/6)]BF4] and [Rh(cod)(2/5)][BF4] is demonstrated

by the resolution of two doublets of doublets (Figure 5a).

(a)

(b)

Figure 5. 31P{1H} NMR spectra of [Rh(PAPP/IQP)(X)][BF4]:

(a) [Rh(cod)(2/5)][BF4], (b) [Rh(phen)(3/8)][BF4].

The unambiguous determination of rhodium-phosphorus coupling and phosphorus-

phosphorus coupling for [Rh(cod)(3/8)][BF4] and [Rh(cod)(4/7)][BF4] is frustrated by extensive line-

broadening, the consequence of an unresolved dynamic process. For these, a more defined complex

was afforded upon replacing the cod auxiliary by addition of 1, 10-phenanthroline.22a The heteroleptic
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complexes [Rh(phen)(3/8)][BF4] and [Rh(phen)(4/7)][BF4] appear to exist as two ABX spin systems

in a ~ 9/1 ratio (Figure 5b). One possibility for the formation of rotamers may be distorted square

planar coordination geometry at rhodium,22 induced by two locking configurations of the rigid

phosphorus substituents. An alternative explanation could be that supplementary axial chirality is

induced by distortion of the hydrogen-bonding network in the chelate.13b

Rhodium(I) complexes under syngas. The chelation geometry in [RhH(CO)2(4/6)] was

elucidated by high pressure NMR spectroscopy. In situ formation of the complex from

[Rh(acac)(CO)2] in d8-toluene is found to occur after 15 minutes at 45°C. The hydride resonance is

observed as a doublet of doublet of doublets at δH = 9.36 ppm in the 1H NMR spectrum, with 2JP-H =

9.5 and 2JP-H = 5.7 Hz (Figure 6). These are typical of a cis-coupling between apical hydride and

equatorial phosphine in a trigonal bipyramidal complex.23 From the 1H{31P} NMR spectrum, 1JRh-H =

3.8 Hz is determined. The relatively small magnitude indicates that the dynamic equilibrium favours

ee chelation.24 Two broad doublets are observed in the corresponding 31P{1H} NMR spectrum. Due to

the extensive line broadening rhodium-phosphorus coupling and phosphorus-phosphorus coupling

cannot be identified.

(a) (b)

Figure 6. High pressure NMR spectra of [RhH(CO)2(4/6)] at 45°C:

(a) 1H NMR spectrum (b) 1H{31P}NMR spectrum.

The Rossi and Hoffmann molecular orbital analysis of electronic site preference in penta-

coordinate d8 metal complexes suggests preference of π-acceptor auxiliaries for equatorial 

coordination and preference of σ-donor auxiliaries for axial coordination in order to prevent electronic 

destabilisation.25 This electronic imposition on the chelation mode has been observed experimentally

in the rhodium-hydride-dicarbonyl complexes of electronically asymmetic diphosphines.24d The

suspected ee geometry of [RhH(CO)2(4/6)] therefore suggests that the chelation mode for these

systems is determined foremost by constraints of the associated platforms.



Hydroxymethylation Catalysis Mediated by the Rhodium Complexes of Self-Assembling Heterodimers Based ...

149

5. 4 Heterodimeric Stability

In order to ensure that the heterodimer is operative in catalysis, intramolecular hydrogen-bond

stability was evaluated in terms of linear selectivity observed in the hydroxymethylation of allyl

alcohol. A strong chelate effect on this parameter is well established.26 The complex [RhH(CO)2(2/6)]

(22f) was prepared upon pressurising a solution of [Rh(2/6)(acac)] with 40 bar CO/H2 = 1 at the

requisite temperature.

Temperature. Asymmetrically placed hydrogen bonds are recognised as being thermally

sensitive with bond energies approximating -30 kJ mol-1,27 so the thermal endurance of the

heterodimeric structure was assessed by screening regioselectivity against reaction temperature

(Figure 7). Approximate regioselectivity is maintained at l/b ≈  6.3 in the range 60 to 95°C. Above 

100°C deterioration towards the regioselective range of the non-chelated reference system is noted,

corresponding to a continuous erosion of the hydrogen-bonding network between 2 and 6. The

deposition of black mirror in the autoclave indicates catalyst decomposition at temperatures exceeding

140°C.

Figure 7. Temperature effect on regioselectivity in the hydroformylation of allyl alcohol: (□) 22f, (◊) PPhEt2.

(Conditions: 4.5 mL toluene, 8 mM [Rh], 2/6/Rh = 2/2/1, 40 bar CO/H2=1, Rh/allyl alcohol = 1/184)

Rhodium/allyl alcohol molar ratio. The resilience of the heterodimer against disruption by

the hydrogen-bonding capacity of the substrate was evaluated as a function of the Rh/S molar ratio

(Figure 8). The regioselectivity remains apparently unaffected when this molar ratio is in the range

1/90 to 1/290. At higher values a deleterious effect on linear selectivity is observed, indicating
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cleavage of the hydrogen-bonding network between 2 and 6. Interestingly, the regioselectivity is

affected to a smaller degree by high 10-decen-1-ol to rhodium molar ratios. This disparity is most

likely attributable to a degree of catalyst poisoning by methacrolein in the former system,28 which

effectively reduces catalyst concentration. Such a suggestion is in concurrence with previous reports

in which a high catalyst concentration was correlated with improved regioselectivity.26 Additionally,

more prominant dispersion forces in 10-decen-1-ol may negate its structural dissociation and possible

interference with hydrogen-bonding in the heterodimer.

Figure 8. Rh/S molar ratio effect on the hydroformylation of homoallylic alcohols with 22f:

(□) allyl alcohol, (◊) 10-decen-1-ol.a

(Conditions: (5-Vsubstrate) mL toluene, 8 mM [Rh], 2/6/Rh = 2/2/1, 90°C, 40 bar CO/H2=1)

Reaction medium. Although hydroxymethylation can be optimised relative to

hydroformylation by employing as the medium a linear alcohol, a free hydroxyl moiety was

previously found to inhibit hydrogen-bonding in analogous heterodimers.13a The possibility for fine-

tuning catalyst selectivity through a solvent effect was therefore investigated (Table 3). The

substituted di(tert-butyl)methanols were synthesised according to the literature procedures.29 The

relative polarity of each medium was estimated from the solvatochromatic shift of its Nile Red

solution.30

As expected, hydroxymethylation does not occur when catalysis is performed in toluene. A

polar medium is necessary in order to activate the rhodium-bound acyl functionality, either for

hydride transfer or protonation. Coordinating solvents such as alcohols may be capable of partaking in

catalysis by coordination to rhodium, and the high linear selectivity observed in iso-propanol and tert-

butanol could therefore be attributed to crowding in the catalyst coordination sphere which would

enforce formation of the less sterically hindered linear rhodium-hydroxypropyl-carbonyl intermediate.
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It is therefore surprising to observe adverse chemoselectivity when catalysis is performed in high

substituted di(tert-butyl)methanols. One explanation could be that these do not form self-associated

polymers higher than cyclic or open dimers, which are more liable todisrupt the hydrogen-bonding

network in the heterodimer than polymeric associations of smaller homologues.

5. 5 Catalysis

The performance of hetero-combinatorial catalysts derived from the matrix of 1-8 was

assessed; the homo-combinatorial systems were used as monodentate prototypes to calibrate the data

(Table 5). The complexes [Rh(acac)(PAPP/IQP)] (PAPP = 1-4, IQP = 5-8) were prepared and

coordination was confirmed by 31P{1H} NMR spectroscopy (Table 4). The corresponding trigonal

bipyramidal species [RhH(CO)2(PAPP/IQP)] (22a-22p) were generated upon pressurising with 40 bar

CO/H2=1 at 90°C in the presence of excess 2-N-pivaloylaminopyridyl phosphine and isoquinolyl

phosphine. Generating the active complex in this manner avoids the complications associated with

having several rhodium species present.31

A product mixture of linear aldehyde (2, 3-dihydrofuran, 2-furanol, 1-butanol), branched

aldehyde (2-methylpropanal), linear alcohol (1, 4-butanediol, 3-butenol) and branched alcohol (2-

methylpropanol) was recovered; only trace quantities of other isomers were observed. 1-Propanal and

1-propanol were recovered as the substrate isomerisation and substrate hydrogenation products

respectively. 32

Table 3: Hydroxymethylation of allyl alcohol with 22f in organic media.a

ENR (kJ mol-1)b diol fraction

yield (mol%) l/b

55 4.6

64 4.5

61 6.4

55 5.2

16 3.6

25 3.9

3 1/0
aConditions: 4 mL solvent, 8 mM [Rh], 2/6/Rh = 2/2/1, 90°C, 40 bar CO/H2 = 1, 4 hours. bMolar

transition energy (kJ mol-1) calculated from ENR = (hcNA/λabs
max) × 106.
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Table 4: 31P{1H} NMR dataa and selected ESI-MS data for [Rh(acac)(PAPP/IQP)] complexes.

precursor
for

PAPP IQP
M+-acac

δ (ppm) 1JRh-P (Hz) δ (ppm) 1JRh-P (Hz) 2JP-P (Hz)

1/5 22a dd. 57.4 185 dd. 57.8 186 51 795.12

1/6 22b dd. 58.4 185 dd. 28.8 174 50

1/7 22c dd. 58.1 184 dd. 35.3 189 49

1/8 22d dd. 57.6 185 dd. 56.8 184 51

2/5 22e dd. 28.6 179 dd. 58.4 186 50 698.16

2/6 22f dd. 28.4 179 dd. 28.9 180 49

2/7 22g dd. 29.1 178 dd. 34.7 174 49 710.31

2/8 22h dd. 28.5 179 dd. 56.7 184 50

3/5 22i dd. 33.4 174 dd. 58.9 185 49 806.25

3/6 22j dd. 59.0 173 dd. 33.1 180 48

3/7 22k prepared in situ as precursor did not form cleanly

3/8 22l dd. 32.9 174 dd. 57.6 183 50

4/5 22m dd. 56.3 183 dd. 57.7 186 51 850.23

4/6 22n dd. 56.6 182 dd. 28.6 179 50

4/7 22o dd. 56.9 181 dd. 34.9 174 49 864.32

4/8 22p dd. 56.4 183 dd. 56.7 184 51
aConditions: 1.2 mL d3-chloroform, 8 mM [Rh], PAPP/IQP/Rh = 1/1/1, ambient temperature, atmospheric

pressure of nitrogen.

Figure 9. Plot of ln[(Pt-Pmin)/(P0-Pmin)] in time for allyl alcohol hydroxymethylation with 22a-d:

 (□) 22a, (◊) 22b, (Δ ) 22c, (×) 22d.
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Table 5: Hydroxymethylation of allyl alcohol with 22a-22p in iso-propanol.a

catalyst
allyl alcohol-based selectivity (mol%)

kd tofe (h-1)
C=Ob (l/b) -OHc (l/b) iso. hyd.

Rh-1/1 83 (3.4) 2 (1/0) 10 5 8.9 400.5

Rh-2/2 9 (2.5) 71 (2.7) 14 6 8.4 377.9

Rh-3/3 59 (1.5) 5 (0.2) 30 6 7.3 328.4

Rh-4/4 96 (16.5) 0 (-) 3 1 9.7 436.6

Rh-5/5 86 (3.6) 1 (1/0) 8 5 9.2 414.2

Rh-6/6 10(2.9) 73 (3.0) 12 5 8.8 296.3

Rh-7/7 66 (1.7) 5 (0.4) 23 6 7.6 341.8

Rh-8/8 95 (16.8) 0 (-) 2 3 9.8 440.7

22a 95 (11.1) 0 (-) 3 2 5.4 243.1

22b 57 (10.2) 36 (10.6) 3 4 3.1 139.5

22c 30 (11.4) 63 (11.5) 5 2 2.8 126.0

22d 96 (18.7) 0 (-) 2 2 5.9 265.3

22e 61 (9.9) 34 (9.9) 3 2 3.2 143.7

22f 36 (6.4) 57 (5.1) 2 2 2.4 108.4

22g 13 (9.5) 80 (9.8) 5 2 1.6 72.1

22h 62 (16.2) 35 (16.3) 2 1 3.5 157.7

22i 35 (11.4) 64 (11.7) 1 1 2.9 130.3

22j 14 (9.2) 79 (9.7) 5 2 1.6 73.8

22k 72 (1.7) 4 (0.3) 19 5 7.1 319.6

22l 33 (18.8) 63 (19.1) 3 1 3.1 140.1

22m 97 (19.1) 0 (-) 2 1 5.9 265.2

22n 60 (16.0) 38 (16.1) 1 1 3.5 157.5

22o 35 (18.7) 61 (19.0) 1 3 2.9 132.3

22p 99 (23.1) 0 (-) 1 0 6.1 274.9
aConditions: 4 mL iso-propanol, 8 mM [Rh], Rh/PAPP/IQP = 1/2/2, Rh/allyl alcohol = 1/185, 90°C, 40 bar

CO/H2 = 1. bHydroxyaldehyde derivatives. cDiol derivatives. dFirst order rate constant (× 10-4 s-1) calculated as

the gradient of a plot of ln(Pt/Pt=0) in time. eTurnover frequency at 1 mol L-1 allyl alcohol.

Activity. Initial reaction rates were determined from reaction profile plots of ln(Pt/Pt=0) in

time (Figure 9). The reactions are found to be first order with respect to allyl alcohol concentration.

This is indicative of type I kinetics wherein the catalyst resting state is the rhodium-hydride-

dicarbonyl complex and the rate-determining step is allyl alcohol coordination to the 16-electron

rhodium-hydride-carbonyl species.

Compared with most traditional diphosphine-modified catalysts, these heteroleptic complexes

display remarkably high activity. Enhanced activity may be attributable to the two-point hydrogen-
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bonding motif which imparts no additional degrees of freedom to the platforms, with rotation of the

binding motif around a parallel axis not affecting the relative positions of appended groups. Similar

activating effects have been observed in hydroformylation with covalent diphosphine-modified

catalysts.

Catalyst activity was monitored as a function of the phosphorus substitution pattern (Figure

10). The electronic requisite of each platform was determined as the amplitude of the phosphorus-

selenium coupling constant in the corresponding selenide, readily obtained upon reaction of 1-8 with

an excess of elemental selenium in d3-chloroform. The reliability of this method for assessing the σ-

donor character of the phosphorus lone-pair orbital is established.3
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Regioselectivity. The regioselectivity displayed by the heteroleptic catalysts is typically 3

times that of their homoleptic analogues, which confirms the presence of a chelate in the kinetically

competent species. Furthermore, performance with regards to this parameter exceeds the level

typically achieved with diphosphine-modified catalysts.34 A possible explanation could be that charge

distortion induced by the asymmetric chelate enables stabilisation of the rhodium-hydroxypropyl-

carbonyl complex via a β-agostic interaction between the hydroxyl oxygen in the substrate and the 

rhodium centre, while rendering a similar interaction in the rhodium-methylhydroxyethyl-carbonyl

unattractive by prospective formation of a four-membered heterocycle (Figure 11). The enhanced

stability of the transient linear isomer could result in a higher concentration of this species or in a

lower activation barrier for its formation.

Figure 11. β-agostic oxygen-rhodium interaction in the rhodium-hydroxyalkyl-carbonyl regio-isomers. 

The highest linear selectivity is attained with 22p. Catalyst systems incorporating either

component platform 4 or 8 also give a superior performance, with an approximate two-fold

enhancement noted over those incorporating the diphenylphosphine-modified analogues. The

rotational limitation of the bis-(3, 5-dimethylphenyl)phosphine moiety enforces the chiral

configuration required for anti-Markovnikoff hydride migration.35 The reduced regioselective

performance of 22b, 22e-22h, 22j and 22n is collective consequence of small steric requirement and

strong σ-donor capacity.26 According to the Chatt-Dewar-Duncanson model of metal-alkene binding,

strong σ-donor auxillaries promote α-alkene coordination with the substituent oriented opposite to the 

hydride position of the equatorial plane.36 Migration of the hydride to the terminal alkenic carbon is

exasperated by extensive metal-alkene π-backbonding which introduces a high barrier to alkene 

rotation. Additionally, strong σ-donor ligands augment rhodiumδ+-hydrideδ- polarisation and facilitate

nucleophilic interaction between the hydride and the terminal alkenic carbon, which bears a more

positive fractional charge.37 22c, 22g, 22i-22j, 22l and 22o afford comparable regioselectivity to 22b-

22e, 22i and 22m. This intimates that the steric requisite of the dicyclohexylphosphine moiety takes

precedence over its electronic consideration, with hindrance created in the rhodium coordination

sphere favouring formation of the less demanding linear rhodium-hydroxypropyl-carbonyl. The

involvement of a mono-phosphine-modified regioselective determinant in hydroxymethylation with

22k is corroborated by coincident regioselectivity when the homoleptic catalysts Rh-3/3 and Rh-7/7

are applied.
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It is noteworthy that modification of the phosphorus moiety on the aminopyridine platform

has the greater impact on catalyst performance, probably because the electronegative nature of the

isoquinolone nucleus38 delocalises the electronic influence of the phosphorus moiety. In light of

earlier comment, such a consideration would also account for the higher regioselectivity of the

homoleptic catalysts based on the isoquinolone platform.

A slightly higher regioselectivity noted for the diol fraction than for the hydroxyaldehyde

fraction is almost certainly due to a small degree of sequential hydrogenation, because steric demands

make 4-hydroxybutanal more susceptible to this transformation than 2-methyl-3-hydroxypropanal.

Chemoselectivity. The heteroleptic catalysts give low selectivity to the C3-products derived

from the isomerisation and hydrogenation of allyl alcohol. The relative inactivity for isomerisation

may be due to the exclusive ee chelation mode adopted by the heterodimers in a trigonal bipyramidal

geometry. The embraced rhodium centre could be sterically inaccessible to the hydroxyl hydrogen, or

cannot sufficiently stabilise the intermediate hydrido η 3-allyl configuration.39

It is worth noting that for these asymmetric diphosphines, desirable chemoselective

determination may be negated by a trans influence. There should be an electronic preference for

formation of the new rhodium-hydroxybutanoyl/2-methylhydroxypropanoyl σ-bond trans to the

weaker σ-donor platform. The most thermodynamically stable isomer is thus generated, with the CO 

auxillary coordinated trans to the stronger σ-donor platform. 

The presence of at least one dialkylphosphine-substituted platform in the catalyst motif leads

to significant chemoselectivity, defined as > 30 mol% of the recovered reaction products. The best

results are accomplished with the highly basic 22g and 22j, which give ~ 80 mol% diols. Steric

repulsion in 22k directs formation of the mono-phosphine rhodium-hydroxybutanoyl/2-

methylhydroxypropanoyl-carbonyl complexes, which would account for the exclusive recovery of

hydroxyaldehydes in accordance with previous work using tri(iso-propyl)phosphine as the ligand.40

22a, 22d, 22m and 22p which are based exclusively on diarylphosphine-modified platforms yield < 2

mol% diols, almost certainly via sequential hydrogenation of the hydroxyaldehyde products.

Chemoselectivity was screened against the acidity constant of the heterodimer, defined as the

sum of those of the composite platforms. An acidity scale of 1-8 was developed in acetonitrile, which

has a sufficiently high dielectric constant to keep ion pairs dissociated.41 For each platform, the

constant for equilibrium with a protonated nitrogen-donor base of known acidity in acetonitrile was

measured by quantitative 1H and 31P{1H} NMR spectroscopy (Table 6).42 The p-

trifluoromethylanilinium, anilinium and morpholinium tetrafluoroborate salts were synthesised

according to the literature procedures.43 The data is fitted with 4th order polynomial trend-lines (Figure

14).
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Table 6: Thermodynamic data for phosphine/phosphonium salt equilibria of 1-8 in d3-acetonitrile.a

pKa
MeCNb

7.80

9.98

15.38

7.86

7.71

9.96

15.45

7.88

aConditions: 1.0 mL d3-acetonitrile, 0.1 M [L], 0.1 M [RNH3
+], 25°C. bAcidity constant (pKa

MeCN = pKa[RNH3
+]MeCN – pKMeCN). c44a in References and Notes. d44b in

References and Notes.

pK

0.80

0.60

1.22

0.74

0.89

0.64

1.15

0.72

K

0.16

0.25

0.06

0.18

0.13

0.23

0.07

0.19

[NH2]/[NH3
+]

0.21

0.61

0.06(mbd)

0.23

0.15

0.65 (mbd)

0.08(mbd)

0.26

[HL+]

[HL+]/[L]

0.79

0.41

0.94

0.78

0.85

0.35

0.92

0.72

δ P (ppm)

3.6

-3.1

22.5

2.4

4.9

-2.3

22.1

2.0

equilibration

0.5-1.5 h

1-1.5 h

< 3 h

1-1.5 h

< 1 h

< 1.5 h

2.5-3 h

< 1.5 h

base

pKa
MeCN

8.6c

10.6 d
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Figure 14. Chemoselectivity of 22a-22p in hydroxymethylation of allyl alcohol relative to

heterodimer pKa
MeCN = pKa(1-4)MeCN + pKa(1-4)MeCN:

(□) diol fraction, (◊) hydroxyaldehyde fraction. 

Chemoselectivity displays a considerable depence on the acidity constant when this is < 20 and > 24

(Figure 12). The transient plateau between these limits is implicative of a chemoselective

desensitisation, which could originate from an enhanced trans influence because electronic distinction

between the two platforms is highest when the acidity constant ≈ 23. Extensive steric interaction in the

coordination sphere of 22k is probably responsible for the significant deviation observed when the

acidity constant = 30.8.

5. 6 Conclusions.

One of the most beneficial features of supramolecular catalysis is the potential for efficient

catalyst screening. This has been applied successfully for general reactions, but reports for specific

transformations are scarce. In this chapter heterodimers based on 2-N-pivaloylaminopyridyl

phosphines and isoquinolyl phosphines were screened as diphosphine ligands for the rhodium-

catalysed hydroxymethylation of allyl alcohol. Association behaviour in solution confirmed a 1/1

binding stoichiometry, with association constants in the range 1.04×103 to 1.11×103 M-1, depending

on the medium. Heteroleptic species were formed upon complexation with neutral and cationic

rhodium salts, and preferential ee geometry of the rhodium-hydride-dicarbonyl complex suggests that

the chelation mode is predominantly imposed by the steric constraints of the hetero-combinatorial

assembly.

Despite the sensitivity of the intramolecular hydrogen-bonding network to temperature and

free hydroxyl functionalities, highly regioselective catalysts were afforded. Studies have indicated a
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correlation between chemoselectivity and the heterodimer acidity constant, but when electronic

distinction between the two platforms is high a trans influence renders this non-linear.

This research is intent on accomplishing linear-selective hydroxymethylation of allyl alcohol.

Heterodimers constructed from a diethylphosphine-modified platform in association with a

dicyclohexyl-modified platform gave highly chemoselective catalysts, with ~ 80 mol% diol

derivatives recovered in l/b ≈ 9.8. These structures combine strong σ-donor character with an 

intermediary steric requisite. The catalyst based on the bis(diethylphosphine)-heterodimer afforded

reasonable chemoselectivity, but lower linear selectivity. Excessive steric repulsion in the

bis(dicyclohexylphosphine)-heterodimer led to the formation of mono-phosphine catalysts, which

performed poorly. Heterodimers constructed from a bis(3, 5-dimethylphenyl)phosphine platform in

association with a dicyclohexyl platform gave highly regioselective catalysts but with some sacrifice

of chemoselectivity, with ~ 62 mol% diol derivatives recovered in l/b ≈ 19.1. These structures 

combine highly steric moieties with sufficient σ-donor character provided by the dicyclohexyl-

modified platform.

While the current results are promising, optimised rigidity of the heterodimeric structure is

necessary to economise batch catalysis in terms of substrate concentration and medium selection.

Breit has recently shown that substitution of the six-membered 2-N-pivaloylaminopyridine skeleton

for the 5-membered 2-N-pivaloylaminothiazole heterocycle led to a stronger hydrogen-bonding

network. An alternative would be to introduce an electronegative moiety adjacent to a donor site, and

to this end an investigation of the catalyst performance incited by 2-N-trifluoroacetylaminopyridine

platforms would be of interest.

5.7 Experimental Section

Materials. Chemicals were purchased from Acros Organics, Sigma-Aldrich, AGS and Strem.

Unless stated otherwise, all operations were performed under N2 (passed through column of

dichromate adsorbed on silica) in a glove box or using standard Schlenk and catheter tubing

techniques. All glassware was flame-dried under vacuum. Diethyl ether, hexane and thf were distilled

from sodium benzophenone ketyl, dichloromethane was distilled from calcium hydride, ethyl acetate

was twice distilled from P2O5, iso-propanol was distilled from sodium, all under N2 onto activated

Linde 4 Å molecular sieves. HPLC-grade toluene, pentane and cylcohexane were dispensed from

argon-flushed La Roche A-2/Engelhard Q-5 drying columns. All solvents were degassed prior to use

by fpt cycles. MgSO4, Celite and Kieselgel (60 SiO2) were activated in a tube furnace at 250°C for 3

hours. 2-Amino-6-bromopyridine,45 bis(3, 5-dimethylphenyl)chlorophosphine46 and tris(3, 5-

dimethylphenyl)phosphine46 were prepared according to the literature procedures.



Chapter 5

160

Analytical techniques. NMR spectra were recorded on Bruker Avance 300 and Bruker

Avance II 400 spectrometers with tetramethylsilane (1H, 13C), 85% H3PO4 (31P) and CFCl3 (19F) as

external references. Gas chromatography was performed on a Hewlett-Packard 6890 chromatograph

fitted with a 30 m BP10™column (carrier gas 3.2 mL min-1 He, flame-ionisation detector). Elemental

analyses were done using a Perkin-Elmer 240C CHNS/O microanalyser. Melting point ranges were

determined using an MPA1000 OptiMelt analyser.

6-Bromo-2-N-trifluoroacetylaminopyridine (9). 10.8 mL triethylamine (78.00 mmol,

distilled from KOH) was slowly added to a solution of 10.9 mL trifluoroacetic acid anhydride (78.00

mmol) in dichloromethane (6 mL) at 0°C, and after 5 minutes 4.5000 g 2-amino-6-bromopyridine

(25.95 mmol) was introduced in one portion. The solution was stirred at ambient temperature, the

conversion being monitored by GC-MS. The reaction was then quenched by addition of saturated

NaHCO3 solution (45 mL), and the aqueous phase was extracted with ethyl acetate (4×35 mL). The

combined extracts were dried over MgSO4 and concentrated in vacuo. The dark yellow residue was

purified by flash chromatography (Kieselgel, cyclohexane/ethyl acetate = 5/1), yielding 5.7356 g (82

%) of yellow oil. Rf = 0.43 (cyclohexane/ethyl acetate = 5/1). 1H NMR (CDCl3, 300.1 MHz): δ 8.63 

(br s, 1H), 8.08 (dd, J = 7.9 and 1.3Hz, 1H), 7.69 (t, J = 7.8 Hz, 1H), 7.34 (dd, J =7.8 and 1.4 Hz, 1H).

13C{1H} NMR (CDCl3, 75.5 MHz): δ 155.2 (q, 2JF-C = 37.4 Hz), 150.1 (s), 143.9 (s), 140.6 (s), 125.3

(s), 115.3 (q, 1JF-C = 286.4 Hz), 113.5 (s). 19F{1H} NMR (CDCl3, 282.2 MHz): 76.08. Anal.

Calculated for C7H4BrN2OF3: C, 31.25; H, 1.50; N, 10.41. Found: C, 31.11; H, 1.37; N, 10.34.

6-(Diphenylphosphino)-2-aminopyridine (10a). Over 10 min, 2.9 mL of a 1.6 M solution of

n-BuLi (4.67 mmol) in hexanes was added to a solution of 0.6267 g 9 (2.33 mmol) in thf (15 mL) at -

100°C. After stirring at constant temperature for 90 min a solution of 433 μL 

diphenylchlorophosphine (2.47 mmol) in thf (4 mL) was introduced dropwise. Following another 90

min at -100°C, the yellow solution was slowly warmed to 35°C and stirred 12 hours before

approximately 50 μL H2O (~ 2.80 mmol) was added. Solvents were then removed in vacuo and

dichloromethane (9 mL) was added to the residue. The resulting suspension was filtered through a

silica pad and in vacuo concentration of the filtrate gave cream foam. 31P{1H} NMR (CD2Cl2, 121.4

MHz): δ – 3.1.  

Direct deprotection was accomplished in situ by adding a suspension of 3.2040 g K2CO3 (22.12

mmol) in methanol (20 mL), and stirring gently at 60°C for 4 hours. After diluting with saturated

NaHCO3 solution (14 mL), the aqueous phase was extracted with ethyl acetate (3×25mL) and the

combined extracts were percolated through a column of MgSO4-zsm-5. The filtrate was concentrated

in vacuo and the off-white solid purified by flash chromatography (Kieselgel, hexane/ethyl acetate =

1/1), yielding 0.5632 g (87 %) of white solid. Rf = 0.46 (hexane/ethyl acetate = 1). 1H NMR (CDCl3,

300.1 MHz): δ 7.59 (dt, J = 7.6 Hz, 4JP-H = 8.0 Hz, 1H), 7.42 (m, 6H), 7.33 (m, 4H), 7.03 (dd, J = 7.5
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and 1.2 Hz, 1H), 6.19 (fine split d, J = 7.5 Hz, 1H), 4.74 (br s, 2H). 13C{1H} NMR (CDCl3, 75.5

MHz): δ 163.9 (d, 1JP-C = 9.2 Hz), 157.4 (d, 2JP-C = 14.8 Hz), 147.1 (s), 138.3 (d, 3JP-C = 1.5 Hz), 136.2

(d, 1JP-C = 20.6 Hz), 134.9 (d, 2JP-C = 10.2 Hz), 129.3, 128.7 (d, 3JP-C = 2.2 Hz), 108.6 (s). 31P{1H}

NMR (CDCl3, 121.4 MHz): δ – 12.3. Anal. Calculated for C17H15N2P: C, 73.36; H, 5.43; N, 10.07.

Found: C, 73.55; H, 5.44; N, 9.98.

6-(Diethylphosphino)-2-aminopyridine (10b). Preparation of 10b was performed by a

similar procedure to that employed for the preparation of 10a. Starting from 0.6100 g 9 (2.27 mmol),

2.8 mL of a 1.6 M solution of n-BuLi (4.55 mmol) in hexanes, 293 μL diethylchlorophosphine (2.41 

mmol) and 49 μL H2O (~ 2.7 mmol) yielded the protected product as yellow foam. 31P{1H} NMR

(CD2Cl2, 121.4 MHz): δ – 13.4. 

Direct deprotection using 3.1237 g K2CO3 (21.57 mmol) in methanol (20 mL) and purification by

percolating through a short column of triethylamine-deactivated silica at -5°C yielded 0.2192 g (53 %)

of opaque residue. 1H NMR (CDCl3, 300.1 MHz): δ 7.55 (dt, J = 7.5 Hz, 4JP-H = 8.0 Hz, 1H), 7.06 (dd,

J = 7.5, 1.3Hz, 1H), 6.19 (fine split d, J = 7.5 Hz, 1H), 4.91 (br s, 2H), 1.74 (dq, J = 8.1 Hz, 2JP-H =

13.7 Hz, 4H), 1.10 (td, J = 8.1 Hz, 3JP-H = 0.8 Hz, 6H). 13C{1H} NMR (CDCl3, 75.5 MHz): δ 159.5 (d, 

1JP-C = 8.8 Hz), 148.1 (d, 2JP-C = 14.0 Hz), 145.6 (s), 137.7 (d, 3JP-C = 1.5 Hz), 107.8 (s), 23.4 (d, 1JP-C =

24.8 Hz), 8.8 (d, 2JP-C = 10.6 Hz). 31P{1H} NMR (CDCl3, 121.4 MHz): δ – 16.9. Anal. Calculated for

C9H15N2PS: C, 50.45; H, 7.06; N, 13.07; S, 14.96. Found: C, 50.63; H, 6.94; N, 13.19; S, 14.93.

6-(Dicyclohexylphosphino)-2-aminopyridine (10c). Preparation of 10c was performed by a

similar procedure to that employed for the preparation of 10a. Starting from 0.6237 g 9 (2.32 mmol),

2.9 mL of a 1.6 M solution of n-BuLi (4.64 mmol) in hexanes, 543 μL dicyclohexylchlorophosphine 

(2.41 mmol) and 50 μL H2O (~ 2.80 mmol) yielded the protected product as white flakes. 31P{1H}

NMR (CD2Cl2, 121.4 MHz): δ 1.2. 

Direct deprotection using 3.1885 g K2CO3 (22.02 mmol) in methanol (20 mL) yielded 0.3301g (49 %)

of white solid. Rf = 0.58 (hexane/ethyl acetate = 1/2). 1H NMR (CDCl3, 300.1 MHz): δ 7.39 (dt, J =

7.5 Hz, 4JP-H = 8.2 Hz, 1H), 6.86 (dd, J = 7.5, 1.4 Hz, 1H), 6.44 (fine split d, J = 7.5 Hz, 1H), 4.48 (br

s, 2H), 1.63-1.42 (m, 20H), 1.40-1.26 (m, 2H). 13C{1H} NMR (CDCl3, 75.5 MHz): δ 158.4 (d, 1JP-C =

8.0 Hz), 148.3 (d, 2JP-C = 13.7 Hz), 146.2 (s), 138.5 (d, 3JP-C = 1.5 Hz), 107.2 (s), 29.4-28.8 (m).

31P{1H} NMR (CDCl3, 121.4 MHz): δ -0.7. Anal. Calculated for C17H27N2P: C, 70.31; H, 9.37; N,

9.65. Found: C, 70.36; H, 9.25; N, 9.66.

6-(Bis(3, 5-dimethylphenyl)phosphino)-2-aminopyridine (10d). Preparation of 10d was

performed by a similar procedure to that employed for the preparation of 10a. Starting from 0.6200 g

9 (2.31 mmol), 2.9 mL of a 1.6 M solution of n-BuLi (4.62 mmol) in hexanes, 501 μL 
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dicyclohexylchlorophosphine (2.45 mmol) and 50 μL H2O (~ 2.80 mmol) yielded the protected

product as cream foam. 31P{1H} NMR (CD2Cl2, 121.4 MHz): δ -3.6.  

Direct deprotection using 3.1747 g K2CO3 (21.92 mmol) in methanol (20 mL) yielded 0.6489 (84 %)

of white solid. Rf = 0.53 (hexane/ethyl acetate = 1). 1H NMR (C6D6, 300.1 MHz): δ 7.64 (dt, J = 7.4

Hz, 4JP-H = 8.0 Hz, 1H), 7.39 (t, J = 1.4 Hz, 2H), 7.03 (fine split m, 2H), 7.00 (dd, J = 7.4, 1.2 Hz, 1H),

6.56 (fine split t, J = 7.4 Hz, 1H), 3.99 (br s, 2H), 2.29 (s, 6H). 13C{1H} NMR (C6D6, 75.5 MHz): δ 

163.6 (d, 1JP-C = 9.2 Hz), 157.4 (d, 2JP-C = 14.8 Hz), 146.8 (s), 138.6 (d, 3JP-C = 2.6 Hz ) 138.3 (d, 3JP-C

= 1.5 Hz), 130.9, 128.6 (d, 1JP-C = 21.2 Hz), 127.3 (d, 2JP-C = 10.5 Hz), 108.9 (s), 21.7 (s). 31P{1H}

NMR (C6D6, 121.4 MHz): δ -12.9. Anal. Calculated for C21H23N2P: C, 75.43; H, 6.93; N, 8.38. Found:

C, 75.33; H, 7.05; N, 8.41.

6-(Diphenylphosphino)-2-pivaloylaminopyridine (1). To a solution of 0.1804 g 10a (0.65

mmol) in dichloromethane (45 mL) at 0°C, 172 μL triethylamine (1.24 mmol, distilled from KOH)

and 120 μL pivaloyl chloride (0.99 mmol) were added consecutively. The solution was slowly 

warmed to ambient temperature, stirred for 40 hours and reduced to half volume in vacuo. The

remaining suspension was stirred with approximately 0.2500 g activated charcoal and then filtered

through a Celite pad. The filtrate was concentrated in vacuo and the white residue was purified by

column chromatography (Kieselgel, cyclohexane/ethyl acetate = 8/1), yielding 0.1437g (61 %) of

white foam. Rf = 0.65 (cyclohexane/ethyl acetate = 8/1). 1H NMR (C6D6, 300.1 MHz): δ 8.49 (dd, J =

7.4, 1.2 Hz, 1H), 8.21 (dt, J = 7.5 Hz, 4JP-H = 8.0 Hz, 1H), 7.95 (br s, 1H), 7.45 (m, 6H), 7.41 (m, 4H),

7.12 (fine split d, J = 7.4 Hz, 1H), 1.28 (s, 9H). 13C{1H} NMR (C6D6, 75.5 MHz): δ 176.6 (s), 163.5 

(d, 1JP-C = 6.2 Hz), 152.8 (d, 2JP-C = 14.5 Hz), 146.1 (s), 138.5 (d, 3JP-C = 1.2 Hz), 136.2 (d, 1JP-C = 19.5

Hz), 134.9 (d, 2JP-C = 9.2 Hz), 129.3, 128.7 (d, 3JP-C = 1.5 Hz), 115.6 (s), 38.9 (s, weak), 28.4 (s).

31P{1H} NMR (C6D6, 121.4 MHz): δ -11.7. Anal. Calculated for C22H23N2PO: C, 72.91; H, 6.40; N,

7.73. Found: C, 72.79; H, 6.45; N, 7.79.

6-(Diethylphosphino)-2-pivaloylaminopyridine (2). Preparation of 2 was performed by a

similar procedure to that employed for the preparation of 1. Starting from 0.1514 g 10b (0.83 mmol),

219 μL triethylamine (1.58 mmol) and 153 μL pivaloyl chloride (1.25 mmol) gave a yellow residue. 

Purification of its hexane solution by percolating through a short column of triethylamine-deactivated

silica at -5°C yielded 0.1194 g (54 %) of viscous yellow oil. 1H NMR (C6D6, 300.1 MHz): δ 8.52 (dd, 

J = 7.5, 1.4 Hz, 1H), 8.13 (br s, 1H), 7.92 (td, J = 7.5, 4JP-H = 8.0 Hz, 1H), 7.04 (fine split d, J = 7.5

Hz, 1H), 1.69 (dq, J = 8.1 Hz, 1JP-H = 13.7 Hz, 8H), 1.28 (s, 9H), 1.07 (td, J = 8.1 Hz, 2JP-H = 0.8 Hz,

12H). 13C{1H} NMR (C6D6, 75.5 MHz): δ 176.5 (s), 159.8 (d, 1JP-C = 5.5 Hz), 147.4 (d, 2JP-C = 13.6

Hz), 145.9 (s), 137.5 (d, 3JP-C = 1.2 Hz), 115.6 (s), 38.9 (s, weak), 28.4 (s), 23.2 (d, 1JP-C = 22.7 Hz),

8.8 (d, 2JP-C = 9.8 Hz). 31P{1H} NMR (C6D6, 121.4 MHz): δ – 18.7. Anal. Calculated for

C14H23N2POS: C, 56.36; H, 7.77; N, 9.39; S, 10.74. Found: C, 55.99; H, 7.84; N, 9.37; S, 10.81.
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6-(Dicyclohexylphosphino)-2-pivaloylaminopyridine (3). Preparation of 3 was performed

by a similar procedure to that employed for the preparation of 1. Starting from 0.2014 g 10c (0.69

mmol), 179 μL triethylamine (1.32 mmol) and 128 μL pivaloyl chloride (1.04 mmol) yielded 0.1525 g 

(59 %) of pale yellow foam. Rf = 0.74 (hexane/ethyl acetate = 1/3). 1H NMR (CDCl3, 300.1 MHz): δ 

8.50 (dd, J = 7.5, 1.4 Hz, 1H), 8.15 (br s, 1H), 7.82 (dt, J = 7.5 Hz, 4JP-H = 8.2 Hz, 1H), 7.13 (fine split

d, J = 7.5 Hz, 1H), 1.59-1.38 (m, 20H), 1.36-1.25 (m, 2H), 1.26 (s, 9H). 13C{1H} NMR (CDCl3, 75.5

MHz): δ 176.5 (s), 158.4 (d, 1JP-C = 5.3 Hz), 146.5 (d, 2JP-C = 11.8 Hz), 145.0 (s), 137.7 (d, 3JP-C = 1.2

Hz), 114.8 (s), 39.2 (s, weak), 31.1-28.8 (m), 28.6 (s). 31P{1H} NMR (CDCl3, 121.4 MHz): δ 1.5.

Anal. Calculated for C22H35N2PO: C, 70.56; H, 9.42; N, 7.48. Found: C, 70.69; H, 9.40; N, 7.43.

6-(Bis(3, 5-dimethylphenyl)phosphino)-2-pivaloylaminopyridine (4). Preparation of 4 was

performed by a similar procedure to that employed for the preparation of 1. Starting from 0.1935 g

10c (0.58 mmol), 152 μL triethylamine (1.10 mmol) and 107 μL pivaloyl chloride (0.87 mmol) 

yielded 0.1578 g (65 %) of white foam. Rf = 0.71 (cyclohexane/ethyl acetate = 6/1).1H NMR (C7D8,

300.1 MHz): δ 8.48 (dd, J = 7.5, 1.2 Hz, 1H), 8.17 (dt, J = 7.5 Hz, 4JP-H = 8.0 Hz, 1H), 7.98 (br s, 1H),

7.39 (apparent t, J = 1.4 Hz, 2H), 7.16 (fine split t, J = 7.4 Hz, 1H), 7.03 (fine split m, 2H), 2.31 (s,

6H) 1.28 (s, 9H). 13C{1H} NMR (C7D8, 75.5 MHz): δ 176.6 (s), 163.1 (d, 1JP-C = 6.0 Hz), 152.6 (d, 2JP-

C = 14.2 Hz), 147.3 (s), 138.6 (d, 3JP-C = 1.2 Hz), 138.3 (s), 130.9 (s), 128.2 (d, 1JP-C = 19.8 Hz), 127.3

(d, 2JP-C = 10.0 Hz), 115.9 (s), 39.3 (s, weak), 28.3 (s). 31P{1H} NMR (C7D8, 121.4 MHz): δ -12.4.

Anal. Calculated for C26H31N2PO: C, 74.62; H, 7.47; N, 6.69. Found: C, 74.55; H, 7.42; N, 6.75.

Homophthalimide (11). This procedure does not require an inert atmosphere. From a

solution of 8.2300 g homophthalic acid (45.68 mmol) in 15 mL 28 % ammonium hydroxide solution

(~ 0.38 mol), H2O and ammonia were distilled off under reduced pressure (80°C and 5 mmHg) until

the yellow ammonium salt solidified. To this, o-dichlorobenzene (20 mL) was introduced and

subsequently distilled off (200°C and 760 mmHg). The orange residue was cooled to ambient

temperature and precipitation of the imide was induced by addition of cold methanol (15 mL). After

24 hours the suspension was filtered and the yellow solid was washed with methanol (3 × 15 mL).

The product was purified by a recrystallisation from 45% acetic acid solution, yielding 6.6992 g (91

%) of white needles after drying over P2O5 in vacuo. Mpr. 232-234°C. 1H NMR (CDCl3, 300.1 MHz):

δ 10.12 (s, 1H), 7.88 (dd, J = 7.5 and 1.3 Hz, 1H), 7.58-7.55 (m, 2H), 7.18 (td, J = 7.5, 1.2 Hz, 1H),

3.42 (s). 13C{1H} NMR (CDCl3, 75.5 MHz): δ 170.6 (s), 160.3 (s), 135.9 (s) 135.5 (s), 133.0 (s), 

130.4 (s), 127.9 (s), 126.1 (s), 38.3 (s). Anal. Calculated for C9H7NO2: C, 67.07; H, 4.38; N, 8.69.

Found: C, 66.95; H, 4.36; N, 8.65.

1, 3-Dichloroisoquinoline (12). In a neat reaction, 4.1550 g homophthalimide (25.78 mmol)

and 9.1 mL phenylphosphonic dichloride (64.45 mmol) were stirred together at 160°C for
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approximately 3 hours until evolution of HCl was no longer discernable by lithmus. The deep red

solution was cooled to 0°C and excess phenylphosphonic dichloride was hydrolysed by the addition

of cold H2O (50 mL, ~ 30 mL per 8 g reagent used). The aqueous mixture was extracted with diethyl

ether (4×30 mL). The combined extracts were treated with 5% KOH solution (20 mL), neutralised

with H2O, and then dried over MgSO4. The solution was concentrated in vacuo and the white residue

was crystallised from absolute ethanol, yielding 5.1057 g (88%) of white powder after drying over

P2O5 in vacuo. Mpr. 119-123°C. 1H NMR (C6D6, 300.1 MHz): δ 8.47 (dd, J = 7.6, 2.0 Hz, 1H), 7.84

(s, 1H), 7.72 (td, J = 7.6, 2.0 Hz, 1H), 7.61-7.58 (m, 2H). 13C{1H} NMR (C6D6, 75.5 MHz): δ 151.3 

(s), 144.9 (s), 139.2 (s, v. weak), 134.5 (s), 128.4 (s), 126.7 (s), 126.4 (s), 125.6 (s), 120.0 (s). Anal.

Calculated for C9H5NCl2: C, 54.58; H, 2.54; N, 7.07. Found: C, 54.68; H, 2.56; N, 7.00.

1-tert-Butoxy-3-chloroisoquinoline (13). To a solution of 3.1922 g 1, 3-dichloroisoquinoline

(16.12 mmol) in toluene (40 mL), 2.1706 g potassium-tert-butoxide (19.34 mmol, freshly sublimed at

160°C and 2 mmHg) was added in one portion. The solution was maintained at 90°C under gentle

reflux, the conversion being monitored by GC-MS. The yellow suspension was cooled to ambient

temperature, and filtered through a silica pad. The filtrate was concentrated in vacuo and the residual

yellow liquid was purified by bulb-to-bulb distillation (210°C, 10-1 mmHg), yielding 3.3817 g (89%)

of clear oil. 1H NMR (C6D6, 300.1 MHz): δ 8.42 (dd, J = 7.8, 2.2 Hz, 1H), 7.62 (dt, J = 7.8, 2.2 Hz,

1H), 7.54 (td, J = 7.8 and 2.2 Hz, 1H), 7.45 (m, 2H), 1.39 (s, 9H). 13C{1H} NMR (C6D6, 75.5 MHz): δ 

162.5 (s), 144.7 (s), 138.1 (s, weak), 131.7 (s), 126.5 (s), 126.2 (s), 124.1 (s), 117.9 (s), 112.8 (s),

86.4 (s, weak), 27.7 (s). Anal. Calculated for C13H14NOCl: C, 66.24; H, 5.99; N, 5.94. Found: C,

66.13; H, 6.08; N, 5.94.

1-tert-Butoxy-3-(diphenylphosphino)isoquinoline (14a). Over 5 minutes, 0.5500 g

elemental sodium (23.91 mmol) was added to liquid ammonia (~ 40 mL) at -78°C. To the dark blue

solution was introduced 3.0819 g triphenylphosphine (11.75 mmol), and after 2 hours a solution of

2.7622 g 13 (11.75 mmol) in thf (6 mL). The solution was slowly warmed to ambient temperature and

the ammonia was evaporated over 16 hours. The residue was quenched with H2O (30 mL), extracted

with diethyl ether (3 × 25 mL) and the combined extracts were percolated through a column of

MgSO4-zsm-5. The filtrate was concentrated in vacuo and the opaque residue was purified by a

recrystallisation from methanol, yielding 2.9891g (66%) of white solid after drying in vacuo at 50°C.

1H NMR (C6D6, 300.1 MHz): δ 8.42 (dd, J = 7.8 and 2.2 Hz, 1H), 7.62 (dt, J = 7.8, 2.2 Hz, 1H), 7.52

(td, J = 7.8, 2.2 Hz, 1H), 7.49-7.42 (m, 5H), 7.23-7.11 (m, 6H), 6.99 (dd, J = 2.2 Hz, 3JP-H = 7.2 Hz,

1H), 1.41 (s, 9H). 13C{1H} NMR (C6D6, 75.5 MHz): δ 164.1 (d, 1JP-C = 9.7 Hz), 160.5 (s), 138.0 (d,

3JP-C = 5.8 Hz, 4000 scans), 137.6 (d, 1JP-C = 11.7 Hz), 134.7 (d, 2JP-C = 18.9 Hz), 132.1 (s), 128.9 (s),

128.7 (d, 3JP-C = 7.2 Hz), 126.6 (s), 126.3 (s), 124.1 (s), 121.5 (d, 2JP-C = 24.7 Hz), 118.9 (s), 83.3 (s),

28.5 (s). 31P{1H} NMR (C6D6, 121.4 MHz): δ -3.4. 
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1-tert-Butoxy-3-(diethylphosphino)isoquinoline (14b). 2.7 mL of a 1.6 M solution of n-

BuLi (4.28 mmol) in hexanes was added dropwise to a solution of 1.0050 g 13 (4.28 mmol) in thf (35

mL) at -100°C. After stirring at constant temperature for 30 min a solution of 521 μL 

diethylchlorophosphine (4.28 mmol) was introduced. The yellow solution was slowly warmed to

25°C and stirred 5 hours before quenching with H2O (200 μL). After solvents were removed in vacuo,

the residue was treated with saturated ammonium chloride solution (30 mL) and extracted with

dichloromethane (3×30 mL). The combined extracts were dried over MgSO4 and concentrated in

vacuo, yielding 0.9536 g (77%) of viscous yellow oil. 1H NMR (CDCl3, 300.1 MHz): δ 8.44 (dd, J =

7.8 and 2.0 Hz, 1H), 7.65 (dt, J = 7.8, 2.0 Hz, 1H), 7.52 (td, J = 7.8, 2.2 Hz, 1H), 7.45 (td, J = 7.8, 2.0

Hz, 1H), 7.04 (dd, J = 2.0 Hz, 3JP-H = 6.9 Hz, 1H), 1.71 (dq, J = 8.5 Hz, 2JP-H = 14.2 Hz, 8H), 1.41 (s,

9H), 0.99 (t, J = 8.5 Hz, 12H). 13C{1H} NMR (CD2Cl2, 75.5 MHz): δ 161.4 (s), 159.7 (d, 1JP-C = 9.2

Hz), 136.8 (d, 3JP-C = 4.8 Hz, 4000 scans), 130.6 (s), 126.3 (s), 126.2 (s), 124.1 (s), 118.8 (s), 114.4 (d,

2JP-C = 21.9 Hz), 83.1 (s), 28.5 (s), 20.1 (d, 1JP-C = 23.2 Hz), 8.8 (d, 2JP-C = 10.4 Hz). 31P{1H} NMR

(CD2Cl2, 121.4 MHz): δ -8.9. 

1-tert-Butoxy-3-(dicyclohexylphosphino)isoquinoline (14c). Preparation of 14c was

performed by a similar procedure to that employed for the preparation of 14b. Starting from 1.0200 g

13 (3.53 mmol), 2.2 mL of a 1.6 M solution of n-BuLi (3.53 mmol) in hexanes, 779 μL 

dicyclohexylchlorophosphine (3.53 mmol) and a recrystallisation from absolute ethanol yielded

0.8279 g (59%) of off-white solid after drying in vacuo at 50°C. 1H NMR (CDCl3, 300.1 MHz): δ 8.42 

(dd, J = 7.8 and 1.8 Hz, 1H), 7.66 (dt, J = 7.8, 1.8 Hz, 1H), 7.53 (td, J = 7.8, 2.2 Hz, 1H), 7.47 (td, J =

7.8, 1.8 Hz, 1H), 7.01 (dd, J = 1.8 Hz, 3JP-H = 6.4 Hz, 1H), 1.6-1.43 (m, 16H), 1.41 (s, 9H), 1.32 (m, 4

H). 13C{1H} NMR (CDCl3, 75.5 MHz): δ 161.2 (s), 158.8 (d, 1JP-C = 5.5 Hz), 136.8 (d, 3JP-C = 1.2 Hz,

4000 scans), 130.6 (s), 126.4 (s), 126.0 (s), 124.1 (s), 118.6 (s), 113.7 (d, 1JP-C = 13.7 Hz), 83.4 (s),

34.0 (d, 2JP-C = 18.6 Hz), 30.8-28.6 (m), 28.3 (s), 26.7 (s). 31P{1H} NMR (CDCl3, 121.4 MHz): δ 4.3. 

1-tert-Butoxy-3-(bis(3, 5-dimethylphenyl)phosphino)isoquinoline (14d). Preparation of

14d was performed by a similar procedure to that employed for the preparation of 14a. Starting from

0.2820 g elemental sodium (12.26 mmol), 2.0858 g tris(3, 5-dimethylphenyl)phosphine (6.03 mmol)

and 1.4164 g 13 (6.03 mmol) yielded 1.9436 g (73%) of white solid. 1H NMR (C7D8, 300.1 MHz): δ 

8.43 (dd, J = 7.8 and 2.2 Hz, 1H), 7.62 (dt, J = 7.8, 2.2 Hz, 1H), 7.54 (td, J = 7.8, 2.2 Hz, 1H), 7.46 (td,

J = 7.8, 2.2 Hz, 1H), 7.34 (t, J = 1.8 Hz, 2H), 7.07 (dd, J = 2.2 Hz, 3JP-H = 7.0 Hz, 1H), 7.01 (m, 4H),

2.35 (s, 12H), 1.41 (s, 9H). 13C{1H} NMR (C7D8, 75.5 MHz): 13C{1H} NMR (C6D6, 75.5 MHz): δ 

162.9 (d, 1JP-C = 9.5 Hz), 160.5 (s), 138.3 (s), 137.4 (d, 3JP-C = 5.3 Hz, 3000 scans), 132.3 (s), 130.9 (s),

132.2 (d, 1JP-C = 10.5 Hz), 127.4 (d, 2JP-C = 17.8 Hz), 126.6 (s), 126.1 (s), 124.1 (s), 118.9 (s), 117.6 (d,

2JP-C = 22.0 Hz), 83.3 (s), 28.5 (s). 31P{1H} NMR (C7D8, 121.4 MHz): δ -4.2.  
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3-(Diphenylphosphino)isoquinolin-1(2H)-one (5). 1.500 g 14a (3.89 mmol) was dissolved

in neat concentrated formic acid (15 mL), and the solution was stirred at ambient temperature for 1

hour. Precipitation of the isoquinolone was induced by dilution with H2O (25 mL), and the suspension

was filtered through a glass frit. The white flakes were washed with 70% formic acid solution (3 × 5

mL). The combined aqueous formic acid filtrates were reduced in vacuo, and the opaque residue was

crystallised from acetone. The combined crops yielded 0.8968 g (70%) of white flakes after drying in

vacuo at 80°C. 1H NMR (CDCl3, 300.1 MHz): δ 9.29 (s, 1H), 7.65-7.45 (m, 14H), 7.03 (d, 3JP-H =

22.3 Hz, 1H), 2.34 (s, 12H). 13C{1H} NMR (CDCl3, 75.5 MHz): δ 162.9 (s),  145.3 (d, 1JP-C = 4.4 Hz),

138.5 (d, 3JP-C = 2.9 Hz), 136.4 (d, 1JP-C = 18.6 Hz), 132.4 (d, 2JP-C = 10.2 Hz), 132.4 (s), 130.1 (s),

129.3(d, 3JP-C = 7.3 Hz), 128.2 (s), 127.9 (s), 126.8 (s), 126.3 (s), 109.1 (d, 2JP-C = 16.0 Hz). 31P{1H}

NMR (C6D6, 121.4 MHz): δ -9.3. Anal. Calculated for C21H16NPO: C, 76.59; H, 4.90; N, 4.25. Found:

C, 76.47; H, 4.94; N, 4.27.

3-(Diethylphosphino)isoquinolin-1(2H)-one (6). Preparation of 6 was performed by a

similar procedure to that employed for the preparation of 5. Starting from 0.7500 g 14b (2.59 mmol)

and neat concentrated formic acid (10 mL) gave a yellow residue, to which n-pentane/petroleum ether

= 2/1 (5 mL) was added. The mixture was sonicated over 5-10 minutes and the solution was

transferred from the insoluble paste by syringe and concentrated in vacuo, yielding 0.3972 g (53%) of

viscous pale yellow oil. 1H NMR (C6D6, 300.1 MHz): δ 9.15 (s, 1H), 7.63-7.51 (m, 4H), 6.37 (d, 3JP-H

= 21.0 Hz, 1H), 1.48 (dq, J = 8.2 Hz, 2JP-H = 14.8 Hz, 8H), 0.97 (td, J = 8.2 Hz, 3JP-H = 0.5 Hz, 12H).

13C{1H} NMR (C6D6, 75.5 MHz): δ 155.9 (s),  142.5 (d, 1JP-C = 4.0 Hz), 138.4 (d, 3JP-C = 2.2 Hz),

132.0 (s), 128.2 (s), 127.9 (s), 126.5 (s), 127.7 (s), 108.3 (d, 2JP-C = 15.2 Hz), 18.4 (d, 1JP-C = 24.2 Hz),

9.11 (d, 2JP-C = 11.5 Hz). 31P{1H} NMR (C6D6, 121.4 MHz): δ -17.4. Anal. Calculated for

C13H16NPOS: C, 58.85; H, 6.08; N, 5.28; S, 12.09. Found: C, 58.71; H, 6.21; N, 5.05; S, 11.84.

3-(Dicyclohexylphosphino)isoquinolin-1(2H)-one (7). Preparation of 7 was performed by a

similar procedure to that employed for the preparation of 5. Starting from 1.0137 g 14c (2.55 mmol)

and neat concentrated formic acid (10 mL) yielded 0.6356 g (73%) of off-white powder. 1H NMR

(C6D6, 300.1 MHz): δ 9.26 (s, 1H), 7.65-7.45 (m, 4H), 6.33 (d, 3JP-H = 20.7 Hz, 1H), 1.6-1.43 (m,

16H), 1.32 (m, 4 H). 13C{1H} NMR (C6D6, 75.5 MHz): δ 155.7 (s),  142.1 (d, 1JP-C = 3.8 Hz), 138.3 (d,

3JP-C = 1.8 Hz), 132.1 (s), 128.4 (s), 128.1 (s), 127.5 (s), 126.8 (s), 107.5 (d, 2JP-C = 13.7 Hz), 30.8-28.6

(m), 26.7 (s). 31P{1H} NMR (C6D6, 121.4 MHz): δ 0.8. Anal. Calculated for C21H28NPO: C, 73.87; H,

8.27; N, 4.10. Found: C, 74.12; H, 8.35; N, 4.19.

3-(Bis(3, 5-dimethylphenyl)phosphino)isoquinolin-1(2H)-one (8). Preparation of 8 was

performed by a similar procedure to that employed for the preparation of 5. Starting from 0.9614 g

14d (2.18 mmol) and neat concentrated formic acid (9 mL) yielded 0.5546 g (66%) of white flakes.
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1H NMR (CDCl3, 300.1 MHz): δ 9.25 (s, 1H), 7.66-7. 52 (m, 4H), 7.35 (t, J = 1.9 Hz, 2H), 7.06 (m,

4H), 7.02 (d, 3JP-H = 21.6 Hz, 1H), 2.34 (s, 12H). 13C{1H} NMR (CDCl3, 75.5 MHz): δ 162.8 (s),  

144.9 (d, 1JP-C = 4.2 Hz), 138.7 (d, 3JP-C = 2.5 Hz), 138.4 (s), 132.4 (s), 132.0 (d, 1JP-C = 9.8 Hz), 130.9

(s), 127.4 (d, 2JP-C = 17.0 Hz), 128.3 (s), 128.0 (s), 126.8 (s), 126.3 (s), 108.6 (d, 2JP-C = 14.5 Hz), 21.9

(s). 31P{1H} NMR (C7D8, 121.4 MHz): δ –9.8. Anal. Calculated for C25H24NPO: C, 77.90; H, 6.28; N,

3.63. Found: C, 77.85; H, 6.17; N, 3.62.

Method of continuous variation. For a particular hetero-combinatorial assembly, a serial of

11 samples was prepared. Within each series, the mole fraction of the isoquinolinyl phosphine was

incrementally increased from 0 to 1 while maintaining an absolute concentration of 1 mM in d6-

benzene (1.5 mL). Each equilibrium was established in a 5 mm NMR tube at 25°C under N2. The 1H

NMR spectrum was recorded at 25°C. Chemical shift was given on the δ scale (ppm) and referenced 

to an external sample of tms (δ = 0.00). The chemical shift changes of the pivaloyl amide proton and 

of the quinolyl amide proton were then plotted as a function of the isoquinolinyl phosphine molar

ratio.

Determination of association constants. For a particular hetero-combinatorial assembly, the

concentration of the 2-N-pivaloylaminopyridyl phosphine was fixed at 5 mM in d6-benzene (1.5 mL)

and the concentration of the isoquinolinyl phosphine was incrementally increased to give molar ratios

in the range 0.2-4.0. Each equilibrium was established in a 5 mm NMR tube at 25°C under N2. The 1H

NMR spectrum was recorded at 25°C. Chemical shift was given on the δ scale (ppm) and referenced 

to an external sample of tms (δ = 0.00). Assuming a 1/1 association mechanism, the observed 

chemical shifts of the pivaloyl amide proton and of the quinolyl amide proton are described by the

equation

Δδ =
δ � − δ�
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in which Kα is the association constant and [ ]t denotes total concentration. Kα was thus solved using

the nonlinear least-square fit method in ORIGIN. The association of 4 and 5 was additionally evaluated

in the presence of 5.1 mg [Rh(CO)(PPh3)3H] (7.5×10-3 mmol), introduced at the start of the titration.

Duplicate titrations were performed in d4-methanol (1.5 mL).

Synthesis of complexes from [Rh(cod)2][BF4]. A solution of the 2-N-pivaloylaminopyridyl

(0.02 mmol) and the isoquinolinyl phosphine (0.02 mmol) in d2-dichloromethane (1 mL) was added

slowly to a solution of 8.1 mg [Rh(cod)2][BF4] (0.02 mmol) in d2-dichloromethane (1 mL) held in an

NMR tube at 32°C under N2. After 1 hour the clear solution was analysed by 31P{1H} NMR

spectroscopy. In order to afford sharper line width, the cod auxiliary in the complexes of 3/8 and 4/7



Chapter 5

168

was subsequently replaced by addition of 4.5 mg 1, 10-phenanthroline (0.025 mmol). In each case,

31P{1H} NMR spectroscopy of the red solution proved formation of the defined complex.

High pressure NMR. In a typical experiment the 10 mm sapphire NMR cell was primed with

a solution of 5.0 mg [Rh(acac)(CO)2] (0.02 mmol), 9.2 mg 4 (0.02 mmol) and 5.1 mg 6 (0.02 mmol)

in d8-toluene (1.5 mL) under N2. The cell was purged thrice with CO/H2 = 1 and then pressurised to

40 bar. NMR spectra were recorded at 45°C.

Synthesis of complexes from [Rh(acac)(CO)2]. A solution of the 2-N-pivaloylaminopyridyl

(0.10 mmol) and the isoquinolinyl phosphine (0.10 mmol) in toluene (5 mL) was added dropwise to a

solution of 25.9 mg [Rh(acac)(CO)2] (0.10 mmol) in toluene (3.5 mL) under N2. The red solution was

slowly warmed to 45°C, stirred for 2 hours and reduced to third volume in vacuo. Precipitation of the

complex was induced by dropwise addition of cold n-pentane and the suspension was filtered through

a glass frit. The red prisms were washed with n-pentane/acetone = 4/1 (4×2 mL) and then dried over

P2O5 in vacuo.

Catalysis. Syngas was purchased from BOC (Caution! Carbon monoxide is extremely

poisonous and accidents may be lethal. A sensitive personal detector was carried and all experiments

were performed in a well ventilated fume-hood fitted with a detector, maintaining the concentration of

carbon monoxide below the mac value at all times). Reactions were carried out on the CAT rig with

stirrer speed set at 800 rpm. In a typical experiment, a solution of the 2-N-pivaloylaminopyridyl (0.04

mmol) and the isoquinolinyl phosphine (0.04 mmol) in iso-propanol (3 mL) was added to the

corresponding [Rh(acac)(PAPP-IQP)] (0.04 mmol). The resulting solution was sonicated over 10

minutes and transferred into the autoclave under CO/H2 = 1; any residues were transferred with a

further aliquot of iso-propanol (1 mL). The solution was incubated for 10 minutes under 30 bar CO/H2

= 1 at 90°C. After 1 mL allyl alcohol (14.70 mmol, azeotropically dried with toluene and distilled)

was injected the pressure was adjusted to 40 bar, and the reaction was run to completion. The

autoclave was then cooled and depressurised. 50 μL diglyme was added as internal standard to a 1 mL 

aliquot of the product solution, and the sample was analysed by gc. The experiments were performed

in duplo.

Polarity measurements. The absorption maximum of Nile Red was determined by

transmission UV-vis spectroscopy of a 1.89 mM solution, and related to the molar transition energy

by ENR = (hcNA/λabs
max) × 106.

Preparation of phosphorus-selenides. A solution of 15.8 mg elemental selenium (0.2 mmol)

was added dropwise to a refluxing solution of the phosphine (0.04 mmol) in d3-chloroform (1.5 mL)
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held in an NMR tube at 25°C under N2. After 20 minutes the solution was analysed by 31P{1H} NMR

spectroscopy.

Determination of acidity constants. The constants for the equilibria

R-PPh2 + CF3-4-C6H4NH3
+ ↔ R-HPPh2

+ + CF3-4-C6H4NH2

R-PEt2 + C6H5NH3
+ ↔  R-HPEt2

+ + C6H5NH2

R-PCy2 + O(CH2CH2)2NH3
+ ↔  R-HPCy2

+ + O(CH2CH2)2NH2

R-PXy2 + CF3-4-C6H4NH3
+ ↔ R-HPXy2

+ + CF3-4-C6H4NH2

were studied. A solution of 1-8 (0.10 mmol) and the appropriate protonated nitrogen base (0.10

mmol) was prepared in d3-acetonitrile (1 mL). Each equilibrium was established in a 5 mm NMR tube

at 25°C under N2. After an equilibration period, the 1H and 31P{1H} NMR spectra were recorded at

25°C. Chemical shift was given on the δ scale (ppm) and referenced to an internal capillary of 

P(OMe)3 in d6-benzene (δ = 3.51, 137.7). The equilibrium constant was calculated from the ratios 

[RNH2]/[RNH3
+] and [HL+]/[L] were determined from the 1H and 31P{1H} NMR spectra respectively,

and related to the acidity constant by

pKa = pKa
MeCN[RNH3

+]– pKMeCN.

References and Notes

(1) (a) Stambuli, J. P.; Stauffer, S. R.; Shaughnessy, K. H.; Hartwig, J. F. J. Am. Chem. Soc. 2001, 123,

2677. (b) Harris, R. F.; Natio, A. A. J.; Copeland, G. T.; Miller, S. J. J. Am. Chem. Soc. 2000, 122,

11270. (c) Reetz, M. T. Angew. Chem. Int. Ed. 2002, 41, 1335. (d) de Vries, J. G.; de Vries, A. H. M.

Eur. J. Org. Chem. 2003, 799.

(2) For reviews see: (a) Wilkinson, M. J.; van Leeuwen, P. W. N. M.; Reek, J. N. H. Org. Biomol. Chem.

2005, 3, 2371. (b) Reyes, S. J.; Burgess, K. Chem. Soc. Rev. 2006, 35, 416. (c) Kleij, A. W.; Reek, J.

N. H. Chem. Eur. J. 2006, 12, 4218.

(3) (a) Coordination polymers. Anderson, H. L.; Hunter, C. A; Sanders, J. K. M. J. Chem. Soc.,

Chem. Commun. 1989, 226. (b) molecular squares. Stang, P. J.; Fan, J.; Olenyuk, B. Chem.

Commun. 1997, 1453.

(4) (a) Slagt, V. F.; Reek, J. N. H.; Kamer, P. C. J.; van Leeuwen, P. W. N. M. Angew. Chem. Int. Ed.

2001, 40, 4271. (b) Slagt, V. F.; Kamer, P. J. C.; van Leeuwen, P. W. N. M.; Reek, J. N. H. J. Am.

Chem. Soc. 2004, 126, 1526.

(5) (a) Kleij, A. W.; Lutz, M.; Spek, A. L.; van Leeuwen, P. W. N. M.; Reek, J. N. H. Chem. Commun.

2005, 3661. (b) Kleij, A. W.; Kuil, M.; Tooke, D. M.; Spek, A. L.; Reek, J. N. H. Inorg. Chem. 2005,

44, 7696.

(6) Reek, J. N. H.; Röder, M.; Goudriaan, E.; Kamer, P. C. J.; van Leeuwen, P. W. N. M.; Slagt, V. F. J.

Organomet. Chem. 2005, 690, 4505.

(7) (a) Breit, B.; Seiche, W. J. Am. Chem. Soc. 2003, 125, 6608. (b) Birkholz, M. –N.; Dubrovina, N. V.;

Jiao, H.; Michalik, D.; Holz, J.; Paciello, R.; Breit, B.; Börner, A. Chem. Eur. J. 2007, 13, 5896.



Chapter 5

170

(8) (a) Duckmanton, P. A.; Blake, A. J.; Love, J. B. Inorg. Chem. 2005, 44, 7709. (b) Knight, L. K.;

Freixa, Z.; van Leeuwen, P. W. N. M.; Reek, J. N. H. Organometallics 2006, 25, 954. (c) Sandee, A. J.;

van der Burg, A. M.; Reek, J. N. H. Chem. Commun. 2007, 864.

(9) Anderson, J. R.; Campi, E. M.; Jackson, W. R. Catal. Lett. 1991, 9, 55.

(10) (a) Monflier, E.; Tilloy, S.; Méliet, C.; Mortreux, A.; Fourmentin, S.; Landy, D.; Surpateanu, G. New

J. Chem. 1999, 23, 469. (b) Monflier, E.; Bricout, H.; Hapiot, F.; Tilloy, S.; Aghmiz, A.; Masdeu-

Bultó, A. M. Adv. Synth. Catal. 2004, 346, 425. (c) Tilloy, S.; Crowyn, G.; Monflier, E.; van Leeuwen,

P. W. N. M.; Reek, J. N. H. New J. Chem. 2006, 30, 377.

(11) (a) Reetz, M. T.; Li, X. Angew. Chem. Int. Ed. 2005, 44, 2962. (b) Reetz, M. T.; Sell, T.; Meiswinkel,

A.; Mehler, G. Angew. Chem. Int. Ed. 2003, 42, 790. (c) Duursma, A.; Hoen, R.; Schuppan, J.; Hulst,

R.; Minnaard, A. J.; Feringa, B. L. Org. Lett. 2003, 5, 3111. (c) Peña, D.; Minnaard, A. J.; Boogers, J.

A. F.; de Vries, A. H. M.; de Vries, J. G.; Feringa, B. L. Org. Biomol. Chem. 2003, 1, 1087.

(12) (a) Watson, J. D.; Crick, F. H. C. Nature 1953, 171, 964. (b) Sanger, W. Principles of Nucleic Acid

Structure. Springer-Verlag: New York, 1984.

(13) (a) Breit, B.; Seiche, W. Angew. Chem. Int. Ed. 2005, 44, 1640. (b) Weis, M.; Waloch, C.;

Seiche, W.; Breit, B. J. Am. Chem. Soc. 2006, 128, 4188.

(14) Waloch, C.; Wieland, J.; Keller, M.; Breit, B. Angew. Chem. Int. Ed. 2007, 46, 3037.

(15) Harriman, B. R.; Shelton, R. S.; van Campen, M.G.; Warren, M.R. J. Am. Chem. Soc. 1945, 67, 1481.

(16) Robison, M. M. J. Am. Chem. Soc. 1958, 80, 5481.

(17) For comprehensive review see: (a) Connors, K. A. Binding Constants. Wiley: New York, 1987.

(b) Otwinowski, Z.; Minor, W. Methods in Enzymology 1997, 276, 307.

(18) Schneider, H. J.; Kramer, R.; Simova, S.; Schneider, U. J. Am. Chem. Soc. 1998, 110, 6442.

(19) ORIGIN·08. OriginLab, Northampton, MA.

(20) Chen, J. S.; Shirts, R. B. J. Phys. Chem. 1985, 89, 1643.

(21) (a) Weber, G.; Anderson, S. R. Biochemistry 1965, 4, 1942. (b) Person, W. B. J. Am. Chem. Soc.

1965, 87, 167. (c) Deranleau, D. A. J. Am. Chem. Soc. 1969, 91, 4044.

(22) (a) [Rh(phen)2]
+ has a distorted square planar geometry. Caldaran, H.; de Armond, M. K.;

Hanck, K. W.; Sahini, V. E. J. Am. Chem. Soc. 1976, 98, 4455. (b) [Rh(PMe3)4]
+ has a tetrahedral

geometry. Jones, R. A. J. Chem. Soc., Dalton Trans. 1979, 489.

(23) Damoense, L.; Datt, M.; Green, M.; Steenkamp, C. Coord. Chem. Rev. 2004, 248, 2393.

(24) 1JRh-H < 2 Hz routinely observed for ee chelates. (a) Casey, C. P.; Whiteker, G. T.; Melville M. G.;

Petrovich, L. M.; Gavney, J. A.; Powell, D. R. J. Am. Chem. Soc. 1992, 114, 5535. (b) Kranenburg,

M.; van der Burgt, Y. E. M.; Kamer, P. C. J.; van Leeuwen, P. W. N. M.; Organometallics 1995, 14 ,

3081. (c) van der Veen, L. A.; Boele, M. D. K.; Bregman, F. R.; Kamer, P. C. J.; van Leeuwen, P. W.

N. M.; Goubitz, K.; Fraanje, J.; Schenk, H.; Bo, C. J. Am. Chem. Soc. 1998, 120, 11616. (d) Casey, C.

P.; Paulsen, E. L.; Beuttenmueller, E. W.; Proft, B. R.; Petrovich, L. M.; Matter, B. A.; Powell, D. R. J.

Am. Chem. Soc. 1997, 119, 11817. (e) Nettekoven, U.; Kamer, P. C. J.; Widhalm, M.; van Leeuwen,

P. W. N. M. Organometallics 2000, 19, 4596.

(25) Rossi, A. R.; Hoffmann, R. Inorg. Chem. 1975, 14, 365.



Hydroxymethylation Catalysis Mediated by the Rhodium Complexes of Self-Assembling Heterodimers Based ...

171

(26) van Leeuwen, P. W. N. M.; Claver, C. Rhodium Catalysed Hydroformylation. James, B. R.;

Ugo, R. (Eds). Kluwer Academic: Dordrecht, 2000.

(27) Desiraju, G. R.; Steiner, T. The Weak Hydrogen Bond in Structural Chemistry and Biology.

Oxford University Press: Oxford, 1999.

(28) Chapter 2, p. 44.

(29) Lomas, J. S. J. Phys. Org. Chem. 2005, 18, 1001.

(30) Chapter 4, p. 123.

(31) Preutt, R. L.; Smith, J. A. J. Org. Chem. 1969, 34, 327.

(32) A2.2, p. 180.

(33) (a) Allen, D. A.; Taylor, B. F. J. Chem. Soc., Dalton Trans. 1982, 51. (b) Holz, J.; Zayas, O.; Jiao, H.;

Baumann, W.; Spannenberg, A.; Monsees, A.; Riermeier, T. H.; Almena, J.; Kadyrov, R.; Börner, A.

Chem. Eur. J. 2006, 12, 5001.

(34) (a) DIOP, l/b = 7.4. White, D. F. S. PhD Thesis, University of St. Andrews, 2001. Chapter 2. (b)

XANTPHOS, l/b = 4.5; tBu-XANTPHOS, l/b = 6.2. White, D. F. S. PhD Thesis, University of St.

Andrews, 2001. Chapter 4.

(35) Chapter 3, p. 76.

(36) (a) Dewar, M. Bull. Soc. Chim. Fr. 1951, 18, 79. (b) Chatt, J.; Duncanson, L. M. J. Chem. Soc. 1953,

2939. (c) Chatt, J.; Duncanson, L. M.; Venanzi, L. M. J. Chem. Soc. 1955, 4456.

(37) da Silva, A. C.; de Oliveira, K. C. B.; Gusevskaya, E. V.; dos Santos, E. N. J. Mol. Catal. A

2002, 179, 133.

(38) Wilhelmsson, L. M.; Holmén, A.; Lincoln, P.; Nielsen, P. E.; Nordén, B. J. Am. Chem. Soc.

2001, 123, 2434.

(39) Chapter 2, p. 53.

(40) (a) Cheliatsidou, P.; White, D. F. S.; Slawin, A. M. Z.; Cole-Hamilton, D. J. Dalton Trans.

2008, 2389. (b) Cheliatsidou, P.; White, D. F. S.; Cole-Hamilton, D. J. Dalton Trans. 2004,

2425.

(41) K = 36.0. Handbook of Chemistry and Physics. Lide, D. R. (Ed). CRC Press: Boca Raton,

2000.

(42) Where the molar ratio could not be determined directly due to poor resolution in the 1H NMR

spectrum, the equilibrium concentrations of [RNH2] and [RNH3
+] were assumed to be equal to those of

[HL+] and [L] respectively on the basis of mass-balance arguments.

(43) (a) CF3-4- C6H4NH3BF4, C6H5NH3BF4. Naudin, E.; Gouérec, P.; Bélanger, D. J. Electoanal.

Chem. 1998, 459, 1. (b) O(CH2CH2)2NH3BF4. Nuttall, R. H.; Sharp, D. W. A.; Waddington, T. C. J.

Chem. Soc. 1960, 4965.

(44) (a) Abdur-Rashid, K.; Fong, T. P.; Greaves, B.; Gusev, D. G.; Hinman, J. G.; Landau, S. E.;

Lough, A. J.; Morris, R. H. J. Am. Chem. Soc. 2000, 122, 9155. (b) Coetzee, J. F.;

Padmanabhan, G. R. J. Am. Chem. Soc. 1965, 87, 5005.

(45) (a) den Hertog, H. J.; Wibaut, J. P. Recl. Trav. Chim. Pays 1932, 51, 381. (b) den Hertog, H. J.

Jouwersma, C. Ibid. 1936, 55, 122.

(46) Chapter 3, p. 97.



Chapter 5

172



Summary

173

Summary

Hydroxymethylation catalysis provides a valuable strategy for the high volume production of

alcohols from α-alkenes. Generally this involves a hydroformylation-hydrogenation sequence, but the 

capacity to optimise selectivity for each transformation is limited. Condensation reactions between

aldehyde products and alcohol products frustrate process economics. By an alternative scheme, all

relevant bond-forming reactions occur in a single mechanism. This thesis describes several

approaches to catalyst development and the application of derived systems for the

hydroxymethylation of allyl alcohol. A review of auto-tandem hydroxymethylation and domino

hydroxymethylation is presented in Chapter 1.

In Chapter 2 the synthesis of bis-(diethylphosphine) ligands based on a modular series of

chiral alicyclic scaffolds is described. High pressure NMR studies have shown that the catalytically

active complex [RhH(CO)2(L-L)] adopts preferentially ea geometry, with [Rh(CO)(L-L)(μ-CO)]2 as

the primary competing species. Catalyst performance can be correlated with the flexibility of the

chelating ring; this favoured a high monomer/dimer ratio which enhances activity, but could not

rigidify the configuration of the diethylphosphine groups which inhibits linear selectivity. Deuterium

labelling studies were suggestive of a domino hydroxymethylation scheme. From the rhodium-

hydroxyalkyl-hydride-carbonyl cation, a reductive elimination furnishes the diol derivatives and a β-

hydride abstraction furnishes the hydroxyaldehyde derivatives. Up to 53 mol% selectivity to 1, 4-

butanediol was attained. The catalysts could be recycled via biphasic separation, however poisoning

by methacrolein caused a decline of activity upon reuse of the solution.

An investigation of enhanced specific activity via the meta-effect is the subject of Chapter 3.

The effect of systematic meta-substitution in triphenylphosphine upon physicochemical properties

was investigated by IR spectroscopy and electrochemistry, both of which showed no significant

structural impact on the uncoordinated triarylphosphine. Variable temperature 1H NMR studies

however revealed a change in the solution dynamics of the corresponding Vaska complex. The

activation barrier to phosphorus-(ipso)carbon rotation increases as a function of meta-substitution,

with rotation of substituted aryl rings past each other being more strained. This should create a well-

defined coordination sphere around rhodium, and is proposed to account for the high linear selectivity
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observed in the hydroformylation of allylic alcohols with [RhH(CO){(3, 5-Me2Ph)P}3]. Linear-

selectivity reached 96 mol%. Catalyst recycling was executed via biphasic separation, retaining on

over twelve cycles an average of ~ 94 % efficiency. The kinetics of allyl alcohol hydroformylation

with [RhH(CO){(3, 5-Me2Ph)P}3] was found to be well represented by the model

� � � � =
� [� � ][ � � ]� . � [� ℎ]� . � [� � � � � 	� � � � ℎ� � ]

(1 + 	 � � [� � ])(1 + � � [� � � � � 	� � � � ℎ � � ])
.

A detailed analysis of how substrate-specific the influence of the meta-effect remains to be performed.

In Chapter 4 domino hydroxymethylation by multi-component L-L/PEt3/Rh systems is

described. The regioselective performance of a diphosphine rhodium catalyst in hydroformylation was

translated for hydroxymethylation upon introduction of triethylphosphine at a L-L/PEt3 molar ratio ≥ 

1. The highest observed selectivity to 1, 4-butanediol was 66 mol%. Competitive activity of

triethylphosphine-modified rhodium species presumably accounts for the reduced linear selectivity

observed when L-L/PEt3 molar ratio < 1. Despite aggravated catalyst decomposition at higher

triethylphosphine concentrations, heterogeneous hydrogenation does not appear to take place.

Deuterium labelling studies also discount a sequential homogeneous hydrogenation. There is evidence

for the activation of a tris-phosphine-modified rhodium-acyl-carbonyl complex, but such a species

could not be isolated from complexation reactions with a variety of precursors. It would be of interest

to determine alternative promotors and to establish whether it is preferential to employ a high

concentration of mildly acidic species or a low concentration of highly acidic species.

The self-assembly of DNA base pair analogues 2-N-pivaloylaminopyridyl phosphine and

isoquinolyl phosphine, each modified with diphenylphosphine, diethylphosphine,

dicyclohexylphosphine and bis(3, 5-dimethylphenyl)phosphine, is described in Chapter 5. In the

presence of a rhodium precursor, exclusive formation of the heteroleptic complex was observed.

Although the intramolecular hydrogen-bonding network is sensitive to temperature and free hydroxyl

functionalities, highly regioselective catalysts were generally afforded under the appropriate operating

conditions. Only the catalyst based on the bis(dicyclohexylphosphine)-heterodimer performed poorly,

presumably due to the formation of mono-phosphine complexes. High chemoselectivity was

correlated with the heterodimer acidity constant, however this is rendered non-linear by a trans

influence when electronic distinction between the platforms is high. Overall, complexes based on the

assembly of a dicyclohexylphosphine platform and a bis(3, 5-dimethylphenyl)phosphine platform

were found to be optimal; up to 73 mol% selectivity to 1, 4-butanediol was reached.

It has been demonstrated in this thesis that in order to effect linear-selective domino

hydroxymethylation of allyl alcohol, two distinct transition state structures must be optimised. High

regioselectivity demands an asymmetric rhodium-hydride-dicarbonyl complex, which can be



Summary

175

generated by an asymmetric chelate or by rigidifying the configuration of the substituents on

phosphorus. Interestingly, chelation geometry in this transition state has little impact on this

parameter. It has been shown that domino hydroxymethylation is activated by an electron-rich

rhodium-acyl-dicarbonyl. The state of electron density on rhodium can be controlled by the

substitution pattern on the phosphorus donors, but can also be changed by the inclusion of a suitable

promoter. The chelation geometry in this transition state is more significant; placing the acyl

functionality trans to a phosphorus donor concentrates the electronic effect in the rhodium-alkyldiol-

hydride-carbonyl cation to such an extent as to impede hydride migration and reductive elimination of

the diol, favouring β-hydride abstraction and reductive elimination of the hydroxyaldehyde.  
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Appendices

A 1. High Pressure Equipment

A 1. 1 High Pressure Spectroscopy

An understanding of how the auxiliaries govern the coordination chemistry of a rhodium

complex in solution is of fundamental importance in hydroformylation catalysis, as it allows tuning

for a specific transformation. Since the early 1970s, high pressure spectroscopic techniques have been

developed to facilitate the observation of rhodium species in solution under catalytic conditions. High

pressure NMR and high pressure IR spectroscopy are the most extensively applied today.

High pressure NMR cell. The 10 mm outer diameter × 8 mm inner diameter × 88 mm depth

sapphire tube was purchased from Saphikon (Milford, NH) and the titanium alloy pressure valve was

constructed at the SoCW (St. Andrews). The cell is pressurised via a spiral ⅛ inch ss316 high pressure 

connector. The assembly has been tested up to 80 bar at 100°C. The spinner was designed to give the

cell a low centre of gravity, allowing air flow adjustment in the spectrometer. Spectra are recorded on

a Bruker Advance 300 spectrometer fitted with a 10 mm txo probe.

High pressure IR cell. The cylindrical internal reflectance cell comprises a 35 mL internal

volume autoclave modified with a 45° conically angled cir crystal. The autoclave was purchased from

Parr Instruments (Moline, IL) and is fitted with a six-blade rotor, thermocouple pocket, pressure valve

and individually pressurised injection reservoir. Pressure connections are made with ¼ inch ss316

high-pressure tubing. The system has been tested up to 120 bar at 150°C. The polished cylindrical

windows are made of zinc selenide with an optical diameter of 10 mm and transparency up to 700 cm-

1, as supplied by Spectra-Tech (Shelton, CT). Spectra are recorded on a Nicolet Avatar 460 FT-IR

spectrometer with a cooled HgCdTe detector.

A 1. 2 Catalysis

CAT rig. Kinetic measurements were performed on the catalyst evaluation and optimisation

rig, constructed at SoCW (St. Andrews). Each component is isolatable by valves from Swagelok

(Solon, OH). The autoclave, injection port and ballast vessel were supplied by Baskerville

(Manchester). The autoclave is fitted with a three-blade rotor, thermocouple pocket and pressure
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valve. The ballast vessel is also fitted with a pressure valve, which allows the components to be

pressurised independently of each other via ¼ inch ss316 high-pressure tubing from the source. The

pressure of each component is monitored by a designated rdp E308 pressure transducer. As feed gas

becomes depleted during catalysis, the mass flow controller maintains the autoclave under constant

pressure by a feed stream from the ballast vessel. The mass flow controller was purchased from

Bronkhorst High-Tech (Ruurlo). Kinetics is measured as the pressure change in time, with data

collected from PICOMONITOR ADC16 hardware via a com port. PICOLOG (Version 5.04.2) is used to

monitor and log the relevant pressure data.

Hastelloy autoclave. The glass-lined Hastelloy autoclave is modified with a magnetic rotor,

thermocouple pocket, pressure valve and injection port. The system is pressurised via ¼ inch ss316

high-pressure tubing from the source. The limitations must be noted. Firstly, the diffusion of feed gas

across the gas-liquid interface is an important consideration in terms of reaction kinetics and

inadequate rotary turbulence may lead to a mass transport limitation. Secondly, condensation of the

reaction between the autoclave and the glass liner compromised quantification. On isolation of the

product mixture for analysis this condensate was added to the bulk recovered from the glass liner, but

inevitably small amounts were lost. Thus the products are effectively concentrated, which in some

cases let to an apparent > 100% conversion.

A 2. Catalytic Product Analyses

A 2.1 Qualification and Quantification

GC-MS. Qualitative analyses were performed on a Hewlett-Packard 6890 equipped with a

Hewlett-Packard 5973 mass selective detector. The product solution was injected directly. The gas

chromatograph is interfaced with AGILENT CHEMSTATION (Version B. 04.01) and NIST 08 MS LIBRARY

(Version ASCII) for analysis.

Method parameters:

sample volume 0.1 μL 

column Supelco™ mdn-35, 30 m × 0.25 mm

carrier gas helium

flow rate 2.5 mL min-1

split ratio 100:1

injector temperature 200°C

detector temperature 250°C

temperature program:

initial 30C/5 min/ramp 25C min-1/200C/ hold 5 min
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GC-FID. Quantitative analyses were performed on a Hewlett-Packard 6890 by the method of

internal standards. For each of 1-propanal, 1-propanol, 2-methylpropanal, methacro1ein, 2-

methylpropanol, 2, 3-dihydrofuran, 2-ethoxyfuranol, crotonaldehyde, 2-methylpentenal, 2-methyl-1,

3-propanediol, 1, 4-butanediol and γ-butyrolactone, a series of standard solutions was made up in 

ethanol. A 1 mL aliquot of each solution was treated with 50 μL diglyme, and this sample was 

injected as detailed. The gas chromatograph is interfaced with AGILENT CHEMSTATION (Version B.

04.01) for analysis. The stored base-line from a blank sample is subtracted from the chromatogram to

overcome any drift, although this assumes reproducibility.

Method parameters:

sample volume 0.1 μL    

column BP10™, 30 m × 0.32 mm

carrier gas N2

flow rate 3.2 mL min-1

split ratio 50:1

injector temperature 150°C

fid temperature 200°C

temperature program:

initial 40C/5 min/ramp 16C min-1/200C/ hold 5 min

Product solutions were analogously standardised and analysed. The calibration graph for each

component was used to calculate its concentration in the product solution. The calibration graphs are

available in the electronic appendix.

A different GC method was developed for the analyses in Chapter 3.6.

Method parameters:

sample volume 0.1 μL    

column BP10™, 30 m × 0.32 mm

carrier gas N2

flow rate 2.0 mL min-1

split ratio 100:1

injector temperature 150°C

fid temperature 200°C

temperature program:

initial 80C/7 min/ramp 20C min-1/180C/ hold 15 min
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