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Capturing norovirus transmissio
n
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Human norovirus is a leading cause of gastroenteritis and is

efficiently transmitted between humans and around the globe.

The burden of norovirus infections in the global community and

in health-care settings warrant the availability of outbreak

prevention strategies and control measures that are tailored to

the pathogen, outbreak setting and population at risk. A better

understanding of viral and host determinants of transmission

would aid in developing and fine-tuning such efforts. Here, we

describe mechanisms of transmission, available model

systems for studying norovirus transmission and their strengths

and weaknesses as well as future research strategies.
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Introduction
Human norovirus (HuNV) has been described as the

perfect human pathogen due to its ability to replicate to

high titers, its low infectious dose and high stability in the

environment [1]. HuNV belongs to the family Calicivir-

idae and is the most prevalent viral cause of gastroenteritis

cases and outbreaks worldwide, leading to significant

morbidity and mortality [2–4]. To be maintained in the

human population, it has to overcome environmental

barriers as well as structural, functional and immunological

barriers within the host, and undergo a full replication

cycle leading to the formation and release of new infec-

tious virus particles. Next, these newly formed virus

particles have to result in infection of additional cells

within the same host and/or shedding from the host.

Finally, the viral particles need to be transmitted to a

new host, which occurs through the fecal-oral or oral-oral

route. Transmission can be direct (person-to-person) or

indirect through fecal or vomit contamination of food,

water, fomites and the environment [5,6��,7–9].
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The norovirus (NV) genus can be subdivided in seven

genogroups, of which genogroups GI, GII and GIV have

been detected in humans, and can be further subdivided

into more than 40 genotypes [10]. These genotypes are

not equally prevalent as causes of disease in humans:

currently most gastroenteritis outbreaks are caused by the

GII.4 genotype, although in some parts of Asia GII.17

recently emerged as the predominant genotype [11–13].

While the dynamics of GII.4 circulation are thought to be

influenced by virus evolution and population immunity, it

is not clear why this particular genotype is more success-

ful than others in causing outbreaks and spreading around

the globe. This is partly because much of our knowledge

on NV transmission is based on epidemiological observa-

tions, rather than on controlled in vitro or in vivo experi-

ments. Similarly, many other questions have remained

unanswered. For example, what is the effect of antigenic

evolution or recombination on norovirus fitness and trans-

missibility. What is the size and nature of genetic bottle-

necks during transmission events? And what proportion of

viruses that we can detect in a clinical or environmental

setting are actually infectious and able to transmit? As

major advances have been made in recent years, we

review the currently available tools and models to study

norovirus transmission in vitro and in vivo.

Evidence from epidemiological studies and
outbreak investigations
Epidemiological studies have demonstrated that the con-

tributions of the individual genogroups and genotypes

can vary among outbreak settings and transmission routes

(Figure 1) [14]. For example, norovirus outbreaks caused

by the GII.4 genotype are more common in health-care

facilities than outbreaks caused by GI and non-GII.4

genotypes. Within health-care facilities GII.4 strains

are more often associated with outbreaks in adult wards

and GII.3 strains with outbreaks in children wards. In

hospitals the dominant transmission route is from patient-

to-patient followed by patient-to-health-care worker and

is related to level of dependency [15,16]. In community

outbreaks young children (<5 years) are more likely to

infect other people compared to older children, possibly

because they have relatively high rates of contact and low

levels of hygiene [17–19]. Persons can be infected with

HuNV without the presentation of symptoms [20], but

the relationship between shedding and disease is not clear

with some conflicting evidence in literature [4,21].

However, in health-care settings, symptomatic patients

were found to be responsible for the majority of trans-

mission events [22]. In all, epidemiological studies have

also provided some information on differences in trans-

mission efficiency between genotypes, but it is difficult to
www.sciencedirect.com
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Figure 1
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HuNV tropism and transmission. After shedding from the host via vomitus or feces HuNV is transmitted to the next host. Transmission can

occur through several routes, with differences in association between genogroup and transmission route [68]. During transmission, viruses

encounter multiple environmental barriers and as well as structural, functional and immunological barriers within the host that can potentially

restrict or prevent transmission. After infection of the new host HuNV replicates in the intestine. In immunocompromised patients HuNV antigens

can be detected in the ileum, jejunum and duodenum in enterocytes, macrophages, T cells and dendritic cells [25]. The inset shows the detection

of RdRp and VP1 (yellow arrows) in the same duodenal biopsy from a HuNV positive patient (adapted from [25]).
obtain conclusive evidence without the use of in vitro and

in vivo (transmission) model systems.

In vitro cell culture systems

Historically, norovirus transmission studies have been

hindered by the lack of cell culture models. Noroviruses

attach to human cells through the (co)-receptor histo-blood

group antigens (HBGA) and a recent study demonstrated

that HuNV productively infects B cells, in the presence of

exogenous HBGA or HBGA-like molecules on specific
www.sciencedirect.com
intestinal bacteria [23,24��]. In biopsies obtained from

HuNV infected immunocompromised persons, the major

capsid protein (VP1) was detected in enterocytes, macro-

phages, T cells and dendritic cells. HuNV replication was

investigated by the detection of the non-structural proteins

RNA-dependent RNA polymerase (RdRp) and the ge-

nome associated VPg. Both were detected alongside VP1

in duodenal and jejunal enterocytes [25��] (Figure 1). In

agreement with these findings successful cultivation

of multiple HuNV strains in human intestinal enteroid
Current Opinion in Virology 2017, 22:64–70
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monolayers was recently reported [26��]. Bile was required

for replication of some strains, while the lack of appropriate

HBGA restricted replication. Ex vivo inoculation of human

duodenal tissues with GII.4 isolates also resulted in an

increase of viral genomic RNA over time and expression of

both structural and non-structural proteins in glandular

epithelial cells [27]. These HuNV cell culture models can

be used study HuNV replication kinetics, virus–host inter-

actions and other aspects of NV biology and will finally

allow researches to address many of the unanswered

questions listed above.

But what are the minimal requirements for a cell culture

system to be a valuable tool for HuNV transmission

studies? The HuNV cell culture system has to support

attachment, internalization, replication and release of the

viral particles, but is it necessary to include the micro-

biome? To study the role of bacteria, transwell cultures

can be used where the viruses and bacteria are added to

the apical or basolateral sides of the cell culture [28].

However, these infection models are not suitable for co-

culturing with a living microbiome for prolonged periods

of time, because of rapid bacterial overgrowth, which is a

major limitation to their use. In the future, the gut-on-

chip system could potentially mimic the normal epithelial

differentiation in the gut ecosystem, in which peristalsis

and flow of intestinal content restrain microbial over-

growth in vivo [29].

Experimental transmission models
HuNV infection and transmission events can be studied in
vivo by the use of human volunteers, experimental ani-

mals or animal caliciviruses in their natural hosts. Several

experimental animal models support HuNV replication;

chimpanzees, immunocompromised mice, gnotobiotic

pigs and gnotobiotic calves [30–34]. Most of these animal

models can be infected with HuNV by oral inoculation.

Despite the apparent stability of NV in an acidic envi-

ronment [35], for most of these studies sodium bicarbonate

is orally administered prior to virus inoculation to neutral-

ize stomach acids and increase infection efficiency. The

immunocompromised BALB/c Rag-gc mice are an excep-

tion as they require an intraperitoneal route of infection,

which is not ideal for transmission studies [32].

Pigs are natural hosts for NV genotypes GII.11, GII.18

and GII.19 [10,36,37], while bovine species are natural

hosts for GIII strains [38]. One study reports the detection

of GII.4 in pigs and cattle from farms [37] and inoculation

of both gnotobiotic pigs and calves with GII.4 results in

replication [31]. However, these animal models are chal-

lenging due to size of the animals and costs. Replication

in the gnotobiotic pig model occurs in the small intestine

and results in virus shedding and diarrhea [39]. Contami-

nated oysters can be a source of foodborne HuNV infec-

tion in humans and this can be mimicked in gnotobiotic

pigs as they can be infected by feeding them HuNV
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seeded oyster homogenates [40]. In immunocompro-

mised patients, HuNV infection can result in prolonged

shedding and more severe disease, raising questions

about the role of such persons in the emergence and

transmission of HuNV [41]. Recently an immunocompro-

mised gnotobiotic pig model was developed; these

RAG2/IL2RG deficient pigs were characterized by de-

pletion of lymphocytes and either absence of or structur-

ally abnormal immune organs [42]. Similar to what was

observed for immunocompromised patients, infection

with GII.4 led to increased viral titers and prolonged

virus shedding compared to wild-type pigs. An intriguing

observation was that the use of a common treatment with

cholesterol lowering drugs affected severity in humans,

and HuNV replication in pigs [43,44]. These results

suggest that the gnotobiotic pig model is a suitable model

to study foodborne transmission and transmission events

involving immunocompromised patients. Co-infections

with HuNV and HBGA-expressing Enterobacter cloacae
were also investigated in the gnotobiotic pig model, but

surprisingly and in contrast to the in vitro observations

[45], co-inoculation with Enterobacter cloacae inhibited

HuNV infectivity in pigs [46].

Chimpanzees can be infected with GI.1 HuNV by the

intravenous and oral route [33,34]. Infection does not

result in diarrhea or histopathological changes of the

gut tissue, although the duration and titers of HuNV

shedding in feces resembles that in humans [34]. The

virus could be passaged from chimpanzee-to-chimpanzee

by feeding of fecal filtrate [33]. Notably, chimpanzees

that were not challenged but were located in the same and

adjacent rooms developed antibody responses, although

HuNV antigen could not be detected in their feces [33].

However, chimpanzees are no longer available for bio-

medical research due to ethical reasons. Human GII.4

strains also have been detected in dogs and, surprisingly,

canine seroprevalence to different HuNV genotypes

resembles the seroprevalence in the human population

[47,48]. However, to date experimental infections of dogs

with HuNV have not been documented.

The murine norovirus (MNV) model has been used to

study many aspects of the NV replication cycle [49]. MNV

belongs to genogroup GV and replicates to high titers in
vitro and in vivo in its natural host [49,50]. MNV and other

cultivable caliciviruses such as Tulane virus (genus Reco-

virus) and feline calicivirus (genus Vesivirus) have been

used as HuNV surrogates for inactivation studies, to either

prevent transmission and control outbreaks or to increase

food safety [51]. However, the value of these model

organisms needs to be assessed on a case by case basis,

depending on the question addressed as there can be

differences in, amongst others, receptor usage and trans-

mission routes [51]. These studies can also be performed

with HuNV; the degradation of virus particles can be

assessed by determining the change in viral RNA copies
www.sciencedirect.com
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Figure 2
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Mice model for contact transmission Mice, deficient in INF-a/b and IFN-g receptors were infected with MNV (green). Uninfected sentinel mice

(purple) were placed with the infected donor mice (a) or in a contaminated environment in absence of the infected donor animals (b), both settings

resulted in infection of the sentinel mice. Donor animals were treated with 2CMC (syringe) prior to inoculation with MNV and placed with sentinel

animals, seven days post inoculation (dpi) 2CMC treatment was discontinued and both groups were placed in separate cages (c). The 2CMC

treatment impacted on disease and transmission [53].
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or binding properties [52], but such assays do not always

accurately represent infectious titers. A transmission mod-

el for MNV was developed by Rocha-Pereia et al. [53��]
(Figure 2). Donor animals were inoculated with MNV and

placed into the same cage as uninfected sentinel animals.

Alternatively, the sentinel animals were placed in a con-

taminated environment in absence of the infected donor

animals (Figure 2a and b). In the absence of antivirals,

both strategies resulted in infection of the sentinel ani-

mals. Using this model, it was demonstrated that treat-

ment of the donor or sentinel animals with the antiviral 2’-

C-methylcytidine (2CMC) prevented transmission and

reduced disease severity (Figure 2c). Thus, the mice

model provides a valuable tool for future transmission

studies and could be useful to address many of the current

‘unknowns’ of NV transmission, such as the relation

between replication kinetics and transmission or the size

and nature of genetic bottlenecks during NV transmission.

Clinical symptoms and transmission
It is likely that in the absence of clinical symptoms such as

vomiting and diarrhea, transmission events are infrequent

due to the lack of environmental contamination. Vomit-

ing and toilet flushing can result in the formation of

droplets and aerosols [54], and several studies have been

dedicated to elucidate the role of vomiting in transmis-

sion through the airborne route and by environmental

contamination. Initial indication for the possible role of

vomiting in transmission came from outbreak investiga-

tions where the secondary attack rate of NV was inversely

correlated to the distance of the contact to a person

vomiting inside a confined space [55]. Human challenge

studies with GI.1, GII.2 and GII.1 strains demonstrated

that 40–100% of the infected subjects vomited at least

once. Most of the emesis samples contained detectable

virus titers with mean titers of 8.0 � 105 and 3.9 � 104

genomic equivalent copies/ml for GI and GII viruses,

respectively. A second factor is the severity of vomiting,

described as projectile vomiting with abrupt onset. The

force of emesis may affect the dispersal of droplets and

aerosols and thereby the severity of environmental con-

tamination. To assess the extent to which an episode of

projectile vomiting can contaminate the environment a

simulated vomiting system named Vomiting Larry was

developed [56�]. The model is based on the intragastric

pressures, that reaches on average 10.93 kPa and can be as

high as 38.66 kPa during vomiting, as measured during

episodes of vomiting induced in volunteers by drinking

Ipecac syrup [57]. Simulation studies with Vomiting

Larry indicated that during an episode of projectile

vomiting splashes and droplets can spread >3 m forward

and 2.6 m lateral and that an area of at least 7.8 m2 should

be decontaminated [56]. Others were able to generate

aerosols with the HuNV surrogate bacteriophage MS2

[58]. More importantly aerosolized HuNV genomes could

be detected during outbreaks in health-care facilities

with concentrations ranging from 1.4 � 101 to 2.4 � 103
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genome copies per m3 of air. That infectivity and integrity

of NV particles can be preserved during aerosolization

was shown with MNV [59]. Considering the low infec-

tious dose needed to infect volunteers [3], these concen-

trations would likely be high enough to infect new hosts

after inhalation and swallowing of the viral particles.

Stability in the environment
After shedding from the host NV particles have to remain

stable in the environment prior to infecting a new host.

The presence of bacteria can affect viral stability, for

example binding of poliovirus to bacterial surface poly-

saccharides enhances virion stability [45,60]. In the pres-

ence of bacteria MNV was more stable to electrical

breakdown in water [61�], while HuNV was found to

be more stable to acute heat stress. Thus, the presence of

bacteria might facilitate transmission owing to an increase

in stability in the environment.

GII.4 strains have the highest prevalence in the winter

season in temperate regions. For influenza it is thought

that seasonality is related to stability and humidity as

humidity can negatively affect transmission efficiency in
vivo [62]. High humidity also resulted in a decrease of

infectivity and binding capacity of MNV and HuNV,

respectively [63], while low humidity, like observed

during the winter, was beneficial to NV survival. Although

it should be noted that for non-GII.4 genotypes and in

non-temperate regions seasonality is less clear [64]. De-

spite its sensitivity to humidity, HuNV is very stable in

water. It was demonstrated that ground water spiked to a

final concentration of �6.5 � 107 GI.1 HuNV genomic

equivalent copies/ml remained infectious to humans for

at least 61 days. Remarkably, HuNV genome copies

remained detectable in groundwater for over three years,

although it was not assessed whether these represented

infectious virus [65]. In this study the infectivity was

evaluated using human volunteers. The availability of the

HuNV cell culture system will make it easier to deter-

mine what proportion of viruses that we can detect in the

environment are infectious. Of interest, GI noroviruses

have a higher association with waterborne infections

compared to GII viruses and it is hypothesized that this

is the result of a higher stability in water [8,66], and

limited removal efficiency during sewage treatment [67].

Conclusion
Despite major hurdles in culturing HuNV and the devel-

opment of animal models, considerable progress has been

made in understanding NV transmission. However, it is

anticipated that the recent availability of cell culture

systems and animal models will uncover many of the

current ‘unknowns’ and will boost the development of

vaccines, antivirals and treatment strategies. A better un-

derstanding of HuNV transmission and the development

of outbreak control protocols and HuNV inactivation tech-

niques will likely improve food safety and health-care.
www.sciencedirect.com
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