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Abstract

Drug-related sinusoidal dilatation (SD) is a common form of hepatotoxicity associated with

oxaliplatin-based chemotherapy used prior to resection of colorectal liver metastases

(CRLM). Recently, hepatic SD has also been associated with anti-delta like 4 (DLL4) cancer

therapies targeting the NOTCH pathway. To investigate the hypothesis that NOTCH signal-

ing plays an important role in drug-induced SD, gene expression changes were examined in

livers from anti-DLL4 and oxaliplatin-induced SD in non-human primate (NHP) and patients,

respectively. Putative mechanistic biomarkers of bevacizumab (bev)-mediated protection

against oxaliplatin-induced SD were also investigated. RNA was extracted from whole liver

sections or centrilobular regions by laser-capture microdissection (LCM) obtained from NHP

administered anti-DLL4 fragment antigen-binding (F(ab’)2 or patients with CRLM receiving

oxaliplatin-based chemotherapy with or without bev. mRNA expression was quantified

using high-throughput real-time quantitative PCR. Significance analysis was used to identify

genes with differential expression patterns (false discovery rate (FDR) < 0.05). Eleven

(CCL2, CCND1, EFNB2, ERG, ICAM1, IL16, LFNG, NOTCH1, NOTCH4, PRDX1, and

TGFB1) and six (CDH5, EFNB2, HES1, IL16, MIK67, HES1 and VWF) candidate genes

were differentially expressed in the liver of anti-DLL4- and oxaliplatin-induced SD, respec-

tively. Addition of bev to oxaliplatin-based chemotherapy resulted in differential changes in

hepatic CDH5, HEY1, IL16, JAG1, MMP9, NOTCH4 and TIMP1 expression. This work

implicates NOTCH and IL16 pathways in the pathogenesis of drug-induced SD and further

explains the hepato-protective effect of bev in oxaliplatin-induced SD observed in CRLM

patients.
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Introduction

SD is an expansion of centrilobular hepatic sinusoids that can progress to sinusoidal obstruc-

tive syndrome (veno-occlusive disease (SOS/VOD)), a potentially life-threatening complica-

tion, which may also include peri-sinusoidal fibrosis and nodular regenerative hyperplasia.

Sinusoidal dilation may be clinically silent [1] with diagnosis requiring at least two symptoms

of jaundice, tender hepatomegaly and right-upper quadrant pain, ascites and/or unexplained

weight gain [2]. SOS/VOD was responsible for the U.S. market withdrawal of gemtuzumab

ozogamicin (Mylotarg1), an antibody-drug-conjugate of anti-CD33 and a calicheamicins

cytotoxin for the treatment of patients with acute myeloid leukemia [3]. The presence of SOS/

VOD in patients treated by partial hepatectomy for CRLM has been linked to higher risk of

morbitidity, including increased peri-operative risk of bleeding, post-hepatectomy liver failure,

lower long-term disease specific survival, intra-hepatic tumor recurrence and death due to

multi-organ failure [4]. As yet, there are no accurate, non-invasive tests to confirm SOS/VOD

diagnosis [2].

SOS/VOD is associated with exposure to pyrrolizidine alkaloid-containing herbal remedies

[5], chemotherapy prior to hematopoietic stem cell transplantation [2] and oxaliplatin-based

adjuvant or neo-adjuvant chemotherapy for CRLM [6, 7], DLL4 (an endothelium-specific

NOTCH ligand) represents an attractive target in cancer therapy due to its role in tumor

angiogenesis and its contribution to the maintenance and proliferation of cancer stem cells [8]

with several anti-DLL4 antibodies having been developed and tested both in pre-clinical and

clinical settings [9–11]. Unfortunately, pre-clinical studies in mice, rats and NHP have also

reported anti-DLL4-associated hepatotoxicity characterized by SD and induction of vascular

neoplasms in the liver [11, 12].

SD resulting from long-term exposure to anti-DLL4 suggests a role for DLL4/NOTCH sig-

naling in maintaining the hepatic endothelium in a quiescent state. Moreover, it has been

shown that chronic DLL4 blockade causes pathological activation of endothelial cells, disrupts

normal organ homeostasis and induces vascular tumours raising important safety concerns

[12]. Nevertheless, as yet there are no accurate, non-invasive tests to confirm SOS/VOD diag-

nosis [2]. Interestingly, while the molecular mechanisms underpinning hepatotoxicity associ-

ated with drug-induced SD and/or SOS/VOD remains unclear, clinical observations suggest

that bev (a monoclonal humanized antibody against vascular endothelial growth factor

(VEGF-A) has a protective effect against oxaliplatin-related sinusoidal damage in the pre-oper-

ative CRLM setting [7, 13]. However, the underlying mechanism of action has not been fully

elucidated.

Herein, to interrogate the molecular pathogenesis of SD, we implemented a targeted tran-

scriptomics approach to interrogate gene expression changes associated with drug-induced

hepatic SD. We employed a robust anti-DLL4-induced NHP model that provided strong,

direct evidence that blockade of DLL4/NOTCH1 signaling causes liver toxicity. Liver tissues

from our NHP model treated with anti-DLL4 or CRLM patients treated with oxaliplatin were

used to identify key genes involved in the pathogenesis of hepatic SD. We further investigated

the protective effect of bev to counteract oxaliplatin-induced hepatic SD.

Materials and methods

Pre-clinical NHP study design

Twenty-four, 3–6 year old, naïve male and female cynomolgus monkeys (Chinese origin

Macaca fascicularis) with weight range of 2.3–4.7 kg (mean weight of 3.4 kg and 3.0 kg, for

males and females, respectively) sourced from Covance Research Products Inc. (Alice, Texas,
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US) were randomised using a computerized procedure designed to achieve body weight bal-

ance, into 4 terminal treatment groups (n = 3/sex/group). NHP were administered either vehi-

cle (20mM sodium succinate, pH5.5; 240mM sucrose; and 0.02% polysorbate20) or anti-DLL4

F(ab’)2 formulated in vehicle diluent at concentrations 5, 15, or 50 mg/kg/week, by intravenous

injection via the saphenous vein once weekly for 8 weeks (9 doses in total) at a dose volume of

5 mL/kg. Dosing occurred in the morning and was performed outside of the home cage. Dose

levels were selected to approximate and provide multiples over the anticipated human clinical

exposures. The intravenous route of administration was the intended clinical route. NHP pro-

cedures including blood collection and necropsy were performed in randomized approach

(generated by a computer) although the staff were not blinded to the dose group allocation.

The NHP were individually housed in stainless steel cages (height of 89 cm, enclosure size

of 0.42 m2 except during periods of commingling) and were offered Certified Primate Diet (PMI

#5048) one to two times daily. Water was offered ad libitum. Environmental controls were set to

maintain the following animal room conditions: temperature range of 20˚C to 26˚C, relative

humidity range of 30% to 70%, 10 or greater air changes/hour, and a 12-hour light/12-hour dark

cycle. The light/dark cycle was interrupted for study-related activities. Various cage-enrichment

devices and fruits, vegetables, or dietary enrichment were provided. NHP were also commingled

in accordance with standard operating procedures of the facility to provide psychological enrich-

ment unless precluded for study procedures, behaviour, or health reasons. Veterinary care

including medical treatment necessary to prevent unacceptable pain and suffering, including

euthanasia was the responsibility of the attending laboratory animal veterinarian.

The total number of NHP used in this study, as well as the group sizes and number of

groups, was the minimum number required to properly characterize the safety profile of the

test article, which was the primary reason for conducting the study. This determination was

based on previous regulatory experience for safety assessment studies in NHP submitted to

health authorities and in adherence to the 3R’s principles to reduce and refine animal use.

The anti-DLL4 F(ab’)2 therapeutic binds and blocks human, NHP, and rodent DLL4. Phar-

macologic activity of the parental anti-DLL4 mAb (YW152F) and F(ab’)2 have been character-

ized [14, 15].

At terminal necropsy, NHP were anesthetized with sodium pentobarbital, exsanguinated,

and necropsied. Animals were fasted overnight prior to necropsy. Liver tissue was collected in

10% neutral buffered formalin and fixed samples were then embedded in paraffin, sectioned

and stained with hematoxylin and eosin (H&E) for evaluation. Two pathologists conducted

independent microscopic examination of the liver sections and findings were verified by con-

sensus. Each SD lesion was assigned a severity score on a four-point [16].

The NHP study was conducted at Covance Laboratories (Madison, WI) under Good Labo-

ratory Practices. All in vivo protocols were approved by the Covance Institutional Animal Care

and Use Committee (11–684) and complied with their guidelines. All procedures were in com-

pliance with the Animal Welfare Act, the Guide for the Care and Use of Laboratory Animals,

and the Office of Laboratory Animal Welfare. Covance Laboratories holds an approved Ani-

mal Welfare Assurance in compliance with Public Health Service Policy on Humane Care and

Use of Laboratory Animals (#A3218-01), is accredited with the Association for Assessment

and Accreditation of Laboratory Animal Care (AAALAC) and is registered with the United

States Department of Agriculture (USDA) #35-R-0030.

Clinical study design

Liver samples were acquired from 65 patients, who had partial hepatic resection for CRLM

between the years 2009 and 2012. Formalin-fixed, paraffin-embedded (FFPE) samples were
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sectioned and stained with H&E for routine histopatological review. Of the 65 consecutive

cases, 40 received neo-adjuvant oxaliplatin-based chemotherapy and 25 received oxaliplatin

and bev prior to liver resection. The median number of courses of oxaliplatin and bev was 4

and 3 respectively. Mcroscopic evaluation was conducted by a pathologist scoring the presence

of SD in the non-tumoral liver distant from the peri-tumoral area. An internally consistent

4-point scale of SD extent was used [7]. Informed consent was obtained to use residual tissue

for research. The data and tissue used in the current study was anonymized according to Good

Clinical Practice Guidelines. As prescribed by national regulations, the current study was not

subject to the “Medical Research Involving Human Subjects Act”. The institutional ethics

committee, Medical Ethical Committee Erasmus Medical Centre, approved the study.

LCM and processing of NHP tissue

Livers with SD present or absent were derived from NHPs treated with 15 mg/kg of anti-DLL4

or vehicle, respectively. The centrilobular hepatic zones were microdissected using a Leica

LMD6000 laser microdissector (Leica Microsystems, Buffalo Grove, IL) (S1 Fig). The total vol-

ume of tissue dissected from each sample was 6.86±0.52 mm3 (approximately 50 dissected

hepatic zones). Microdissected tissue was incubated overnight at 37˚C with proteinase K solu-

tion (ARCTURUS1 Paradise1 PLUS WT-RT Kit, Life Technologies, Carlsbad, CA). RNA

isolation, DNase treatment, and WT-RT were performed according to the manufacturer’s pro-

tocol. cDNA generated from RNA samples using random primers was then pre-amplified with

a pool of TaqMan assays using the Invitrogen SuperScript1 III Platinum1 One-Step qRT-

PCR Kit (Life Technologies, Carlsbad, CA) as per the manufacturer’s protocol. Alternatively,

five FFPE whole liver sections with SD present or absent derived from anti-DLL4 or vehicle-

treated NHPs had RNA extracted using the High Pure FFPE RNA Micro Kit (Roche Applied

Sciences, Indianapolis, IN) according to the manufacturer’s protocol. All RNA samples were

stored at -80˚C. 100 ng/ul of RNA was pre-amplified with a pool of TaqMan gene expression

assays pre-validated for NHP species and tissue specificity (S2 and S5 Figs) then stored at 4˚C.

Processing of clinical tissue

RNA was isolated from five FFPE whole liver sections per patient using the High Pure FFPE

RNA Micro Kit (Roche Applied Sciences, Indianapolis, IN) according to the manufacturer’s

protocol.

High-throughput real-time quantitative PCR of NHP and clinical samples

Pre-amplified cDNA samples were diluted with TE buffer and amplified using Taqman Uni-

versal PCR Master Mix (Applied Biosystems, Foster City, CA) on the BioMarkTM HD system

(Fluidigm, South San Francisco, CA) according to the manufacturer’s protocol (further details

provided in S1 File). An average of the Ct values of the reference genes (ARF5, ARFGAP2,

ARL1, SP2, TMEM55B and VPS33B for NHP samples and ACTB, ARF5, B2M and GAPDH

for clinical samples) were calculated and expression levels of liver target genes were deter-

mined by -ΔCt = -(mean Ct(target gene)–mean Ct(reference genes)).

Statistical analysis

Statistical analysis of gene expression levels in NHP and clinical liver samples was performed

in the SAS/STAT software (SAS Institute Inc., Cary, NC, USA) using ANOVA/two sample t-

test or two-way ANOVA respectively. P-values were corrected for multiple comparisons errors

using the FDR (Benjamini-Hochberg) method [17]. Gene sets with FDR<0.25 [18], were used
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for hierarchical clustering and principal component analysis (PCA) that were performed in

MultiExperiment Viewer software [19]. The FDR significance level was set at 0.05.

Results

Identification of differentially expressed genes in zonal regions of NHP

livers with anti-DLL4-induced SD

Treatment of NHP with anti-DLL4 F(ab’)2 reliably induced sinusoidal dilation in the centri-

lobular zone of the liver (Fig 1A) [12, 15, 16]. To identify differentially expressed genes present

in centrilobular hepatic areas affected with SD, we dissected these regions using LCM (S1 Fig).

NHP liver samples without SD (vehicle, SD severity score 0, n = 6) and with moderate SD (15

mg/kg anti-DLL4, SD severity score 2, n = 6) were used. Sixteen differentially expressed he-

patic genes were identified with FDR<0.25, of which none reached significance (FDR<0.05)

(Table 1). PCA on the identified gene-set (FDR<0.25) revealed the total contribution rate of

the first 3 principal components reached 75.48% of the total data variability and partitioned

samples into distinct domains based on presence of SD (Fig 2A). A set of 16 genes also sepa-

rated liver samples into two clusters based on the presence of SD in hierarchical clustering (15

mg/kg anti-DLL4- or vehicle-treated) (Fig 2B).

Identification of differentially expressed genes in NHP livers with anti-

DLL4-induced SD

Hepatic gene expression patterns were also evaluated in entire sections of liver from NHP liv-

ers with or without SD following treatment with 5, 15 and 50 mg/kg of anti-DLL4 or vehicle

control. The sample set comprised NHP liver samples without SD (vehicle, n = 6, and 5 mg/kg

anti-DLL4, n = 1), and with SD (5, 15 or 50 mg/kg anti-DLL4, n = 17). Twenty-six differen-

tially expressed hepatic genes were identified with FDR<0.25, of which 11 genes reached sig-

nificance (FDR<0.05) (Table 2). PCA separated samples according to the expression profiles

of the identified 26 hepatic genes (FDR<0.25) and revealed a total contribution rate of the first

3 principal components that reached 48.73% of the total data variability and partitioned sam-

ples into distinct domains of 3-D space based on presence and absence of SD (Fig 2C). The

identified gene-set (FDR<0.25) also separated liver samples into 2 clusters based on presence

and absence of SD in hierarchical clustering (Fig 2D). Of the significant genes (FDR<0.05),

Fig 1. Liver sinusoidal dilation. (A) NHP administered 50 mg/kg anti-DLL4 and (B) CRLM patient treated with oxaliplatin both have sinusoidal

dilatation in the centrilobular area near the central vein with a severity grade of 3. Thin arrows point to dilated sinusoids, and thick arrows to the central

veins. The human liver (B) has blood retained within the dilated sinusoids that imparts a pink color. Scale bar = 90 μm.

https://doi.org/10.1371/journal.pone.0198099.g001

Drug-induced hepatic sinusoidal dilatation

PLOS ONE | https://doi.org/10.1371/journal.pone.0198099 June 7, 2018 5 / 20

https://doi.org/10.1371/journal.pone.0198099.g001
https://doi.org/10.1371/journal.pone.0198099


EFNB2 was down-regulated, whereas remaining genes were up-regulated in livers with SD.

The NHP liver sample from a 5 mg/kg animal (ID I00694) did not have SD, despite similar

drug exposure to others in the dose group (data not shown) and was clearly discriminated

from samples with SD by PCA and clustered according to SD status with vehicle group (Fig 2C

and 2D). Therefore, hierarchical analysis and PCA of the hepatic gene expression profiles for

all animals suggested that the presence of SD could be differentiated in NHPs treated with

anti-DLL4.

Association between bev treatment and SD in CRLM patients

Among 40 patients studied that received oxaliplatin treatment, 13 (32.5%) had moderate or

severe (grade 2 or 3) SD, and 27 (67.5%) had either a mild lesion or absence of SD (grade 0 or

1). In contrast, among 25 patients studied that received oxaliplatin and bev treatment, 24

(96%) had either no or mild (grade 0 or 1) SD, and only 1 (4%) patient had severe (grade 3)

lesions. In this group, there were no patients who developed moderate SD (Table 3). These dif-

ferences were statistically significant (P = 0.02). All patients within these respective groups

were comparable for age, gender, body mass index and time between the end of treatment and

surgery.

Identification of differentially expressed genes in patient livers with

oxaliplatin-induced SD

To study the overall effect of moderate/severe SD on hepatic gene expression in CRLM

patients, a comparison was made between CRLM patients with moderate/severe SD (n = 13)

and CRLM patients with absent/mild SD (n = 48). The similarity between microscopic changes

in livers of CRLM patients and the NHP model are shown Fig 1. Only VWF expression was

significantly up-regulated (FDR = 0.048) (Fig 3).

Table 1. List of differentially expressed genes in LCM hepatic regions-derived from NHPs with moderate anti-DLL4-associated SD (severity score 2, SD 2) (n = 6)

compared to LCM hepatic regions-derived from NHPs without anti-DLL4-associated SD (severity score 0, SD 0) (n = 6).

Gene symbol Gene name Direction p-value (SD 2 vs. SD 0) FDR (SD 2 vs. SD 0)

FGF2 Fibroblast growth factor 2 ➔ 0.0033 0.0651

NOTCH4 Notch 4 ➔ 0.0019 0.0651

PDGFB Platelet derived growth factor subunit B ➔ 0.0029 0.0651

RGS5 Regulator of G-protein signaling 5

➔

0.0009 0.0651

ERG ERG, ETS transcription factor ➔ 0.0055 0.0869

JAG1 Jagged 1

➔

0.0073 0.0956

IL16 Interleukin 16 0.009 0.1020

TGFB1 Transforming growth factor beta 1 ➔ 0.0104 0.1024

ANGPTL6 Angiopoietin like 6

➔

0.0118 0.1037

PRDX1 Peroxiredoxin 1 ➔ 0.0186 0.1468

PLG Plasminogen

➔

0.022 0.1581

PLAU Plasminogen activator, urokinase ➔ 0.0264 0.1738

UPB1 Beta-ureidopropionase 1

➔

0.0317 0.1925

PECAM1 Platelet and endothelial cell adhesion molecule 1

➔

0.0355 0.2006

HIF1A Hypoxia inducible factor 1 alpha subunit ➔ 0.0453 0.2236

SERPINA7 Serpin family A member 7
➔

0.0443 0.2236

P values and FDRs are indicated (FDR cut off at 0.25).

https://doi.org/10.1371/journal.pone.0198099.t001
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The differential effect of the presence of moderate/severe SD on hepatic gene expression in

comparison to absent/mild SD was investigated by controlling for treatment effect in CRLM

patients, limiting to subjects with oxaliplatin-only treatment. The sample set included n = 12

CRLM patients with moderate/severe SD and n = 26 CRLM patients with absent/mild SD. Six-

teen differentially expressed hepatic genes were identified with FDR<0.25 (Table 4), of which

6 genes reached significance (FDR<0.05) (Fig 4).

Fig 2. PCA and hierarchical clustering of NHP FFPE LCM hepatic regions and whole liver samples with or without anti-DLL4-associated SD

based on their gene expression with FDR cut off at 0.25. Results from microfluidic high-throughput RT-qPCR were normalized by calculating–ΔCt

using the average of reference genes. PCA (A) and hierarchical clustering based on Pearson correlation (B) were undertaken using genes with

differential expression (FDR<0.25) between the LCM hepatic regions derived from liver samples of NHPs with SD present (moderate SD severity

score 2 (anti-DLL4 15 mg/kg) n = 6)) and absent (SD severity score 0 (vehicle) (n = 6)) LCM hepatic regions. PCA (C) and hierarchical clustering

based on Pearson correlation (D) were undertaken using genes with differential expression (FDR<0.25) between whole liver samples of NHPs with SD

present (mild to severe SD severity scores 1–3 (anti-DLL4 5–50 mg/kg) (n = 17)) and absent (SD severity score 0 (vehicle or anti-DLL4 5 mg/kg)

(n = 7)). PCA data are presented as spheres in PC1, PC2 and PC3 3 dimensional (3-D) space. The axes have been rotated to highlight the separation of

the distinct clusters. The blue spheres surrounded with blue line represent the samples without SD and the red spheres surrounded with red line

represent the samples with SD. The silver, blue, and pink axes represent principal components 1, 2 and 3 respectively (A and C). In hierarchical

clustering, each row represents a gene and each column represents a sample. Red squares indicate high gene expression; green squares indicate low

gene expression (B and D).

https://doi.org/10.1371/journal.pone.0198099.g002

Table 2. List of differentially expressed genes in whole liver samples-derived from NHPs with any anti-DLL4-associated SD (severity score 1–3, SD 1–3) (n = 17)

compared to whole liver samples-derived from NHPs without anti-DLL4-associated SD (severity score 0, SD 0) (n = 7).

Gene symbol Gene name Direction p-value (SD 1–3 vs. SD 0) FDR (SD 1–3 vs. SD 0)

EFNB2 Ephrin B2

➔

0.0002 0.0087

NOTCH4 Notch 4 ➔ 0.0002 0.0087

LFNG LFNG O-fucosylpeptide 3-beta-N-acetylglucosaminyltransferase ➔ 0.0005 0.0133

ERG ERG, ETS transcription factor ➔ 0.0007 0.0155

NOTCH1 Notch 1 ➔ 0.0009 0.0155

CCND1 Cyclin D1 ➔ 0.0016 0.0234

CCL2 C-C motif chemokine ligand 2 ➔ 0.0022 0.0268

ICAM1 Intercellular adhesion molecule 1 ➔ 0.0030 0.0291

TGFB1 Transforming growth factor beta 1 ➔ 0.0029 0.0291

IL16 Interleukin 16 ➔ 0.0049 0.0401

PRDX1 Peroxiredoxin 1 ➔ 0.0051 0.0401

MMP9 Matrix metallopeptidase 9 ➔ 0.0085 0.0604

PDGFB Platelet derived growth factor subunit B ➔ 0.0090 0.0604

PTGS2 Prostaglandin-endoperoxide synthase 2 ➔ 0.0105 0.0655

CDH5 Cadherin 5 ➔ 0.0123 0.0667

EGFL7 EGF like domain multiple 7 0.0122 0.0667

HEY1 Hes related family bHLH transcription factor with YRPW motif 1

➔

0.0194 0.0937

STAB2 Stabilin 2 ➔ 0.0190 0.0937

ANGPTL6 Angiopoietin like 6

➔

0.0366 0.1676

RGS5 Regulator of G-protein signaling 5

➔

0.0475 0.2066

SERPINE1 Serpin family E member 1 ➔ 0.0515 0.2134

CD163 CD163 molecule

➔

0.0596 0.2141

COX4I1 Cytochrome c oxidase subunit 4I1

➔

0.0593 0.2141

CXCL6 C-X-C motif chemokine ligand 6 ➔ 0.0608 0.2141

MKI67 Marker of proliferation Ki-67 ➔ 0.0640 0.2141

NOS3 Nitric oxide synthase 3 ➔ 0.0627 0.2141

P values and FDRs are indicated (FDR cut off at 0.25).

https://doi.org/10.1371/journal.pone.0198099.t002
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Interrogation of the protective mechanisms of bev in oxaliplatin-induced

SD

To study the overall effect of bev addition to an oxaliplatin regimen on hepatic gene expres-

sion, a comparison was made between patients that were treated with oxaliplatin and bev (SD

severity scores 0–3; n = 23) and patients that were treated with oxaliplatin only (SD severity

scores 0–3; n = 38). Seven differentially expressed hepatic genes were identified with

FDR<0.25 (Table 5), of which 3 genes reached significance FDR<0.05 (Fig 5).

The differential effect of bev on hepatic gene expression in comparison to oxaliplatin was

investigated by controlling for liver SD, limiting to subjects with absent/mild SD. The sample

set included 22 CRLM patients treated with oxaliplatin and bev and 26 CRLM patients treated

with oxaliplatin only. Seven differentially expressed hepatic genes were identified with a

FDR<0.25 (Table 5), of which 5 genes reached significance (FDR<0.05) (Fig 6).

Discussion

To date, several lines of evidence have implicated NOTCH dysregulation in a variety of phar-

macologic, genetic, and toxicologic models of SD [20–22]. In the current study, we investi-

gated transcriptomic changes associated with anti-cancer drug-induced hepatic SD. We

reasoned that the development of this uncommon hepatotoxicity following treatment with

either oxaliplatin or anti-DLL4 was related to a similar pathological mechanism involving

NOTCH signaling. Here, we have employed a NHP model of anti-DLL4 induced SD, which

reliably recapitulates the clinical pathology [12, 15]. We have further investigated the

Table 3. Patient characteristics.

Oxaliplatin

(N = 40)

Oxaliplatin+bev

(N = 25)

P-value

Value % or IQR Value % or IQR

Patient Characteristics
Male 25 63% 15 60% 0.84

Age (Median) 62 55–67 62 54–70 0.98

Primary Tumor
Rectal cancer 18 45% 8 32% 0.29

T3/T4 26 77% 16 76% 0.98

Lymph node 24 67% 10 48% 0.16

Adjuvant CTx 2 5% 2 8% 0.64

Neoadjuvant Rtx 17 43% 6 24% 0.13

Liver Metastases
Synchronous (�12 months) 38 95% 23 92% 0.62

Bilobar distribution 24 60% 15 60% 1

Number >1 34 85% 21 84% 0.91

Largest metastasis >5cm 8 21% 7 29% 0.47

CEA>200 ng/ml 6 22% 2 12% 0.47

Clinical risk score 3–5 25 63% 16 67% 0.74

R1 resection 13 33% 6 25% 0.53

SD
Absent 19 48% 21 84% 0.02

Mild 8 20% 3 12%

Moderate 6 15% 0 0%

Severe 7 18% 1 4%

https://doi.org/10.1371/journal.pone.0198099.t003
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Fig 3. Box-plot indicating gene affected by an overall SD effect among oxaliplatin (+/- bev) treated CRLM patients

(SD severity score 0–1 (n = 48) vs. SD severity score 2–3 (n = 13)). Two-way ANOVA with treatment and SD status

as factors was used. P value and FDR<0.05 are indicated in each box plot graph. OX = oxaliplatin, Bev = bevacizumab.

https://doi.org/10.1371/journal.pone.0198099.g003

Table 4. List of differentially expressed genes in CRLM patients with moderate to severe oxaliplatin (+/- bev)-associated SD (severity score 2–3, SD 2–3) compared

to CRLM patients without or mild oxaliplatin (+/- bev)-associated SD (severity score 0–1, SD 0–1).

Gene

symbol

Gene name Direction p-value (SD 2–3 vs. SD 0–1) FDR (SD 2–3 vs. SD 0–1)

Overall comparison (all subjects) (SD 2–3 (n = 13) vs. SD 0–1 (n = 48))

VWF Von Willebrand factor ➔ 0.0021 0.0477

Comparison limited to subjects with oxaliplatin-only treatment (SD 2–3 (n = 12) vs. SD 0–1 (n = 26))

VWF Von Willebrand factor ➔ <0.0001 5.93E-06

EFNB2 Ephrin B2 ➔ 0.0052 0.0451

HES1 Hes family bHLH transcription factor 1 ➔ 0.0028 0.0451

IL16 Interleukin 16 ➔ 0.0057 0.0451

MKI67 Marker of proliferation Ki-67 ➔ 0.0044 0.0451

CDH5 Cadherin 5 ➔ 0.0083 0.0484

CCL2 C-C motif chemokine ligand 2 ➔ 0.0130 0.0649

PODXL Podocalyxin like ➔ 0.0132 0.0649

MMP2 Matrix metallopeptidase 2 ➔ 0.0157 0.0718

NOTCH4 Notch 4 ➔ 0.0257 0.1029

ICAM1 Intercellular adhesion molecule 1 ➔ 0.0285 0.1074

LFNG LFNG O-fucosylpeptide 3-beta-N-acetylglucosaminyltransferase ➔ 0.0351 0.1248

ERG ERG, ETS transcription factor ➔ 0.0475 0.1601

IL6 Interleukin 6 ➔ 0.0593 0.1872

JAG1 Jagged 1 ➔ 0.0614 0.1872

FLT1 Fms related tyrosine kinase 1 ➔ 0.0732 0.2131

P values and FDRs are indicated (FDR cut off at 0.25).

https://doi.org/10.1371/journal.pone.0198099.t004
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molecular pathogenesis oxaliplatin-induced SD in CRLM patient samples. The protective

effect of bev against oxaliplatin-induced SD was interrogated by comparing cases from patients

who received oxaliplatin treatment with or without anti-VEGF therapy. Using robust targeted

transcriptomics analyses we observed important overlap in the genes altered in both the NHP

anti-DLL4- and CRLM oxaliplatin-induced SD models. Genes with expression changes com-

mon to both anti-DLL4 and oxaliplatin contexts included EFNB2 (downregulated and upregu-

lated respectively) and IL16 (upregulated in both settings) FDR < 0.05), with CCL2, ERG,

ICAM1, LFNG and NOTCH4 (upregulated in both settings; FDR<0.05 in NHP and< 0.25 in

oxaliplatin-SD). We also observed significantly higher CDH5 and lower HEY1, IL16, JAG1,

MMP9, NOTCH4 and TIMP1 in bev-treated patients ((FDR<0.05). Notably, CDH5, IL16,

MMP9, NOTCH4 (upregulated) and HEY1 (down-regulated) (FDR<0.25) were also impli-

cated in the anti-DLL4-induced SD NHP model. Collectively, these findings support the

hypothesis that NOTCH signaling pathway plays an important role in the maintenance of

sinusoidal homeostasis and further implicates NOTCH in the pathogenesis of anti-cancer

drug-induced SD. Moreover, IL16 is identified as a putative novel disease marker.

Four NOTCH receptors (NOTCH1 to NOTCH4) and trans-membrane ligands in the

Delta-like (DLL1 to DLL4) and Jagged (JAG1 and JAG2) protein families comprise the core

components of the NOTCH pathway which influences many developmental and homeostatic

processes [23]. NOTCH signaling can regulate endothelial cell homeostasis, however to date, it

Fig 4. Box-plots indicating genes affected by SD effect among oxaliplatin only-treated CRML patients (SD severity score 0–1 (n = 26) vs. SD

severity score 2–3 (n = 12)). Two-way ANOVA with treatment and SD status as factors was used. P value and FDR<0.05 are indicated in each

box plot graph (A-F). OX = oxaliplatin, Bev = bevacizumab.

https://doi.org/10.1371/journal.pone.0198099.g004
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has not been directly associated with drug-induced SD [24]. Over-expression of active

NOTCH4 results in abnormally dilated hepatic vascular structures [25]. Similarly, inhibition

of NOTCH1 has been shown to cause disturbance of hepatic sinusoidal vascular homeostasis

implicating the NOTCH signaling pathway in maintenance of a quiescent liver endothelium

[12, 20]. A direct NOTCH target, EFNB2 receptor tyrosine kinase is involved in endothelial

cell angiogenesis and the regulation of vessel morphology [26]. Moreover, it has previously

been reported that deletion of EFNB2 results in vascular remodeling defects [27]. We observed

significant down-regulation of EFNB2 (FDR<0.05) in our NHP model. Down-regulation of

this gene was previously observed with down-regulation of DLL4 in liver sinusoidal endothe-

lial cells (LSECs) isolated from constitutive NOTCH1 knockout mice. Patients with nodular

regenerative hyperplasia further display involvement of DLL4/NOTCH1 and EFNB2/EPHB4

Table 5. List of differentially expressed genes in CRLM patients receiving oxaliplatin and bev treatment compared to CRLM patients receiving oxaliplatin alone

treatment.

Gene symbol Gene name Direction p-value (OX + Bev vs. OX) FDR (OX + Bev vs. OX)

Overall comparison (all subjects) (OX + Bev (n = 38) vs. OX (n = 23))

NOTCH4 Notch 4

➔

0.0003 0.0214

IL16 Interleukin 16

➔

0.0028 0.0477

MMP9 Matrix metallopeptidase 9

➔

0.0030 0.0477

EFNB2 Ephrin B2

➔

0.0117 0.1494

JAG1 Jagged 1

➔

0.0289 0.2313

NOTCH1 Notch 1

➔

0.0278 0.2313

PODXL Podocalyxin like

➔

0.0257 0.2313

Comparison limited to subjects with no or mild SD (OX (n = 26) + Bev vs. OX (n = 22))

CDH5 Cadherin 5 ➔ 0.0046 0.0451

HEY1 Hes related family bHLH transcription factor with YRPW motif 1

➔

0.0068 0.0451

JAG1 Jagged 1

➔

0.0036 0.0451

MMP9 Matrix metallopeptidase 9

➔

0.0018 0.0451

TIMP1 TIMP metallopeptidase inhibitor 1
➔

0.0070 0.0451

NOTCH4 Notch 4

➔
0.0184 0.0784

VWF Von Willebrand factor

➔

0.0822 0.2287

P values and FDRs are indicated (FDR cut off at 0.25).

https://doi.org/10.1371/journal.pone.0198099.t005

Fig 5. Box-plots indicating genes affected by an overall treatment effect (oxaliplatin (n = 38) vs. oxaliplatin + bev (n = 23)). Two-way ANOVA

with treatment and SD status as factors was used. P-value and FDR< 0.05 are indicated in each box plot graph (A-C). OX = oxaliplatin,

Bev = bevacizumab.

https://doi.org/10.1371/journal.pone.0198099.g005
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pathways in hepatic vascular homeostasis and remodeling [21]. Interestingly, we observed up-

regulation of EFNB2 in CRLM patients with oxaliplatin-associated SD. In this context, the

increase of EFNB2 expression could be driven by NOTCH4, as shown in vitro with pre-

eclamptic endothelial progenitor cells [28]. Therefore, disruption of EFNB2 homeostasis in

either direction (increase or decrease) could potentially disturb vascular homeostasis and

result in SD. Alternatively, as perisinusoidal fibrosis was evident as a feature of oxaliplatin-

induced SD in our human case series [13] and not in anti-DLL4 SD [12, 15, 16], increased

EFNB2 expression could be related to active fibrogenesis. Involvement of EphB2 receptor in

liver fibrosis has been demonstrated in mouse models where expression was upregulated in

activated hepatic stellate cells which promoted fibrogenesis [29].

Previous studies have further proposed an association between the NOTCH pathway and

inflammation [22, 30]. Indeed, in both drug–induced SD models presented, we have observed

an up-regulation of genes involved in inflammation and repair, including IL16 (FDR<0.05 in

both models) and CCL2 (FDR<0.05 in anti-DLL4 model and with higher FDR in oxaliplatin

model). Up-regulation of TGFB1 was also evident in our anti-DLl4-induced SD NHP model

(FDR<0.05). IL16 is an immunomodulatory cytokine that is a chemoattractant for CD4

+ immune cells [31] though not previously associated with drug-induced SD. Recently, novel

Fig 6. Box-plots indicating genes affected by treatment effect among CRML patients with no or mild SD only (oxaliplatin (n = 26) vs.

oxaliplatin + bev (n = 22)). Two-way ANOVA with treatment and SD status as factors was used. P-value and FDR< 0.05 are indicated in each

box plot graph (A-E). OX = oxaliplatin, Bev = bevacizumab.

https://doi.org/10.1371/journal.pone.0198099.g006
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physiological functions of IL16 in vascular smooth muscle cells, including IL16-induced

MMP9 expression, have been described [32]. IL16 has also been shown to be an inflammatory

mediator involved in cardiotoxicity; increased IL16 expression in the heart of transgenic

mice was shown to result in cardiac fibrosis, left ventricle myocardial stiffening, and increased

macrophage infiltration [33]. CCL2, on the other hand, is NOTCH pathway dependent [30].

Shen et al. have recently demonstrated the importance of DLL4 in liver disease and its role in

the modulation of liver inflammatory response by down-regulation of CCL2 chemokine

expression [30]. A trend towards up-regulation of CCL2 in CRLM patients with oxaliplatin-

induced SD (FDR<0.25) and up-regulation of CCL2 in NHPs with anti-DLL4-induced SD

(FDR<0.05), further suggest involvement of the NOTCH pathway in the pathogenesis of

drug-induced SD. Finally, CCL2 has previously been shown to be up-regulated in CRLM

patients with oxaliplatin-induced SD [34].

Interestingly, we have further observed increased ERG expression in anti-DLL4 induced

SD (FDR<0.05) with trend towards up-regulation in CRLM patients with oxaliplatin-induced

SD (FDR<0.25). ERG has been implicated in vascular development and angiogenesis and

maintenance of vascular quiescence and stability. ERG has also been shown to control Wnt/B-

catenin pathway by driving expression VE-cadherin (CDH5), an adhesion molecule that con-

trols the integrity of endothelial junctions [35]. Consistent with this pathway, we observed

CDH5 up-regulation in oxaliplatin-induced SD. Perturbations in expression of a marker of

vascular integrity (ICAM1) and a cell cycle regulatory gene (CCND1) were also observed and

may further indicate loss of vascular homeostasis. In agreement with previous reports, our

study further underlines the importance of vWF in oxaliplatin-induced SD [6, 34].

By studying bev’s protective effect against oxaliplatin-induced SD, we further confirmed

the importance of the NOTCH signaling pathway in SD pathogenesis. A subset of patients

used in these analyses were previously included in a larger published study by van der Pool

et al. that noted a similar amelioration of SD attributed to bev [13]. Our smaller sample set is

also consistent with a larger CRLM patient cohort where Rubbia-Brandt et al. provided a

detailed assessment of hepatic lesions associated with oxaliplatin-induced hepatotoxicity [7].

We observed down-regulation of NOTCH4, HEY1, JAG1 (all NOTCH related) (FDR<0.05)

and a trend towards down-regulation of NOTCH1 (FDR<0.25) in CRLM patients treated

with bev and oxaliplatin. The addition of bev to oxaliplatin treatment also resulted in down-

regulated MMP9 (FDR<0.05). Activation of matrix metalloproteinases (MMP2 and MMP9)

was shown to be involved in the pathogenesis of SD following exposure to monocrotaline (a

pyrrolizidine alkaloid) [36] and oxaliplatin [34]. A trend towards increased MMP9 expression

was also observed in NHPs with anti-DLL4-induced SD and MMP2 in CRLM patients with

oxaliplatin-induced SD (FDR<0.25).

Our study provides novel evidence that NOTCH signaling pathway plays a key role in anti-

cancer drug-induced SD. We demonstrated that both drugs (anti-DLL4 and oxaliplatin) lead

to NOTCH/VEGF pathway perturbations and alter vascular homeostasis. As a consequence,

LSECs dysfunction, ECM remodeling, inflammation and LSECs injury collectively lead to SD

that may progress to SOS/VOD (Fig 7). Expression of genes involved in the protective effect of

bev further confirms our hypothesis that the NOTCH pathway is primarily involved in SD

pathogenesis.

Study limitations and future directions

Regrettably for several reasons it has not been possible to conduct causal studies and robust

follow-up immunohistochemistry (IHC) or immunofluorescence (IF) analyses in NHP or

patient samples. Specifically, the clinical cohort assessed was not a matched set of pre- and
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post-chemotherapy biopsies, but rather a cross-sectional study of consecutive material from 65

clinical cases collected between 2009 and 2012 [13]. Further limitations were underpinned by

a combination of sample exhaustion, variable sample integrity and biomarker epitope stability.

Moreover, while IF studies were attempted in archived NHP samples (inconclusive data not

shown) these efforts were beset with difficulties including variability in staining across a sec-

tion (independent of pathology and expected anatomic localization of the marker). These

problems were further complicated by high background signal resulting in the loss of IF detec-

tion sensitivity. This phenomenon has previously been observed by others; for example Agos-

tini et al showed up-regulation of thymidylate synthetase RNA in sinusoidal dilation liver

cases but did not show a difference in protein levels employing IHC [6]. Future studies to con-

firm mechanisms of drug-induced SD pathogenesis will benefit from larger sets of recently

collected case material to facilitate validation of key candidate targets (IL16, NOTCH1,

NOTCH4, JAGGED1, CCL2, ERG, MMP9 and EFNB2) using robust proteomic approaches

including IF and/or western blotting.

Notwithstanding these limitations, we nevertheless posit that our data provides important

clues as to the molecular events involved in CRC drug-induced SD which are important not

only in the ambit of standard of care chemotherapy-induced toxicities, but may also be rele-

vant in the emerging field of anti-DLL4 cancer immunotherapies. For example, monoclonal

Fig 7. Schematic summary of findings on drug-induced SD based on current analyses in anti-DLL4-induced SD in

NHP model and oxaliplatin +/- bev in CRLM patients. Anti-DLL4 and oxaliplatin can lead to dysregulation of

NOTCH/VEGF signaling pathways genes in the LSECs. These changes in hepatic gene expression lead to alterations in

vascular homeostasis and subsequently to LSEC dysfunction. LSEC dysfunction leads to ECM remodeling,

inflammation and eventually to LSEC injury. In response to this SD is developed and may progress to SOS/VOD. Bev

hepato-protective effect against OX-induced SD acts through inhibition of NOTCH/VEGF signaling pathways that

leads to inhibition of vascular remodeling and inflammation.

https://doi.org/10.1371/journal.pone.0198099.g007
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antibodies against NOTCH have been shown to reduce the cancer stem cell (CSC) population

in CRC tumors [37], with clinical trials of therapeutic antibodies against DLL4 in combination

with FOLFIRI (irinotecan, folic acid, leucovorin, and fluorouracil), ongoing in the metastatic

CRC setting (NCT01189942). Another clinical trial employs the anti-DLL4 antibody demcizu-

mab, in combination with the anti-PD-1 antibody pembrolizumab (immune checkpoint

inhibitor) in metastatic solid tumors (NCT02722954) [38]. Understanding pathophysiologic

mechanisms of potential hepato-toxicities in these settings thus continues to hold significant

clinical relevance.

In conclusion, our data contributes to an improved understanding of the pathophysiologic

molecular mechanisms underpinning drug induced SD and SOS/VOD. Going forward, these

data may ultimately impact patient care by providing insight into key mechanistic pathways,

aid the discovery of safety biomarkers for drug-induced SD and support the development of

improved ‘precision’ therapeutics for application in CRC and other tumours. These refined

agents would better target specific therapeutic pathways of cancer vulnerability, thereby reduc-

ing the incidence and severity of SOS/VOD without reducing drug efficacy. Ultimately, surgi-

cal morbidity after hepatic metastasectomy may thus be reduced.

Supporting information

S1 Fig. LCM of NHP liver tissues. NHP liver FFPE sections were stained with ARCTURUS1

Paradise1 PLUS FFPE LCM Staining Kit and dried before LCM capture. The SD-affected and

non-affected hepatic regions (zone 2–3) were identified, cut with laser and captured in caps of

PCR test tube. Representative images of each step of LCM for hepatic tissue without SD (SD

severity score 0) and with SD (SD severity score 2) are presented (scale bar = 400 μm, top row;

or 200 μm, bottom two rows).

(EPS)

S2 Fig. Development of a high-throughput microfluidic TaqMan gene expression assay for

analysis of FFPE hepatic samples derived from NHPs. Representative six-point standard

curves of NHP (rhesus and cynomolgus monkey) normal tissues universal RNA (uRNA)

(slope and R-squared values are indicated). Mean ± S.E.M. of technical replicates (n = 3) are

presented (A-C).

(TIF)

S3 Fig. Development of a high-throughput microfluidic TaqMan gene expression assay for

analysis of FFPE hepatic samples derived from NHPs. Representative Ct values of cynomol-

gus monkey liver total RNA (tRNA), rhesus monkey liver tRNA, human liver tRNA and cyno-

molgus monkey liver genomic DNA (gDNA) (all at 100 ng input) and no template control

(NTC). Mean ± S.E.M. of technical replicates (n = 3) are presented (A-C).

(TIF)

S4 Fig. Development of a high-throughput microfluidic TaqMan gene expression assay for

analysis of FFPE hepatic samples derived from NHPs. Representative Ct values of RNA

extracted from FFPE cynomolgus monkey liver samples that underwent LCM (different cap-

tured areas 1, 2, 4, 10 mm2) and RNA extracted from FFPE cynomolgus monkey total liver

samples (no LCM). Mean ± S.E.M. of biological replicates (n = 2–4) are presented (A-C).

(TIF)

S5 Fig. Development of a high-throughput microfluidic TaqMan gene expression assay for

analysis of FFPE hepatic samples derived from NHPs. Intra-chip reproducibility of NHP

(cynomolgus and rhesus monkey) uRNA samples (100 ng input) run on the same 96.96
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Dynamic Array (R-squared values are indicated). Mean of technical replicates (n = 3) are pre-

sented (A-C). Inter-chip reproducibility of the TaqMan gene expression assay assessed by

comparing Ct values of NHP (cynomolgus and rhesus monkey) uRNA (100 ng input) across

three independent assay runs using three different 96.96 Dynamic Arrays (R-squared values

are indicated). Mean of technical replicates (n = 3) are presented (D-F).

(TIF)
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