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2 Xavier Bu�, Christian Henriksen1. Introdu
tion.In this arti
le, we study the one parameter family of 
ubi
 polynomialsfb(z) = �z + bz2 + z3; b 2 C ;where � = e2i�� is a �xed 
omplex number of modulus 1. We 
allK(fb) the �lled-in Julia set of the polynomial fb, J(fb) its Julia set, and M� the 
onne
tednesslo
us of the family:K(fb) = �z 2 C �� �fÆnb (z)�n2N is bounded	J(fb) = �K(fb); andM� = �b 2 C �� J(fb) is 
onne
ted	:The notations Kb and Jb are kept for other purposes.In se
tions 2 and 3, we re
all some 
lassi
al results related to the studyof the dynami
s of 
ubi
 polynomials. Those results 
an be found in [BH1℄.In parti
ular, we prove that the 
onne
tedness lo
us M� is 
onne
ted and we
onstru
t dynami
ally a 
onformal representation �� : C nM� ! C nD (
omparewith [Z1℄). This enables us to de�ne the parameter rays R�(�), � 2 R=Z.In se
tion 4, we prove that the parameter rays R�(1=6) and R�(1=3) land ata 
ommon parameter b0. The te
hniques we use are not new. They are similarto those developed by Douady and Hubbard in [DH1℄ to study the landingproperties of parameter rays in the quadrati
 family fz 7! z2 + 
g
2C . We thende�ne the wake W0 as the 
onne
ted 
omponent of C n �R�(1=6) [ R�(1=3)�that 
ontains the parameter ray R�(1=4) (see �gure 5). In se
tion 5, we studythe dynami
al features of the polynomials fb when the parameter b ranges inthe wake W0.Matters get interesting in se
tion 6. Let us de�ne � � R=Z (respe
tively�0 � R=Z) to be the Cantor set of angles that 
an be written in base 3 withonly 0's and 1's (respe
tively with only 1's and 2's). We denote by Xb the set ofdynami
al rays whose arguments belong to �. In se
tion 6, we prove that the setXb moves holomorphi
ally as long as the parameter b remains in the wake W0.As a 
onsequen
e, we show that for any parameter b 2 W0, the �lled-in Julia setK(fb) 
ontains a quasi-
onformal 
opy of the �lled-in Julia set K(�z + z2) (see�gure 11).Theorem A. For any parameter b 2 W0 and for any � 2 �, the dynami
al rayRb(�) does not bifur
ate. We de�ne Xb to be the setXb = [�2�Rb(�):We also de�ne Jb to be the set Jb = Xb nXb and Kb to be the 
omplement of theunbounded 
onne
ted 
omponent of C n Jb . Then, Kb is 
ontained in the �lled-inJulia set K(fb), its boundary Jb is 
ontained in the Julia set J(fb) and Kb isquasi-
onformally homeomorphi
 to the �lled-in Julia set K(�z + z2).In the wake W0, one 
an see a 
opy M 0 of a Mandelbrot set (see Figure1). We give a pre
ise de�nition of the set M 0, but we do not prove that it is
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es. 3
M�

K(�z + z2)Fig. 1. Zooms in M� for � = ei�(p5�1).homeomorphi
 to the Mandelbrot set. This has been done in [EY℄ in the 
ase� 6= 1, and is not known in the 
ase � = 1. However, we show that the boundaryof M 0 is equal to the a

umulation set of the parameter rays R�(�=3), � 2 �0(see �gure 12): �M 0 = X 0 n X 0; where X 0 = [�2�0R�(�=3):At the same time, we show that the 
onne
ted 
omponents of W0 n X 0 
an beindexed by dyadi
 angles # 2 R=Z. The 
onne
ted 
omponent W# is boundedby two parameter rays R�(#�) and R�(#+) landing at a 
ommon parameterb# 2 M 0. The angles #� and #+ are two 
onse
utive endpoints of the Cantorset �0. We prove that given any dyadi
 angle # = (2p + 1)=2k, we have #+ =#� + 1=(2 � 3k+1). We then de�ne the sets X#, J# and K# in the following way:X# = [�2�R� �#�3 + �3k+1� ;



4 Xavier Bu�, Christian HenriksenJ# = X# nX#, where the 
losure is taken in C , and K# is the 
omplement of theunbounded 
onne
ted 
omponent of C n J#. Our main results are the following(see Figure 1).Main Theorem. Let � 2 S1 be a 
omplex number of modulus 1 and # 2 R=Zbe a dyadi
 angle. The set K# is 
ontained in M� \ W#, its boundary J# is
ontained in the boundary of M� and the parameter b# belongs to J#. Besides,there exists a quasi-
onformal homeomorphism de�ned in a neighborhood of K#,sending K# to K(�z + z2).Corollary A. For ea
h 
omplex number � of modulus 1, the bifur
ation lo
us ofthe one parameter family fb(z) = �z+ bz2+ z3, b 2 C , 
ontains quasi-
onformal
opies of the quadrati
 Julia set J(�z + z2).Corollary B. If the Julia J(�z+z2) is not lo
ally 
onne
ted, then the bifur
ationlo
us �M� is not lo
ally 
onne
ted.We would like to mention that one has to be 
areful. Indeed, in the 
ontextof Newton's method of 
ubi
 polynomials, Pas
ale Roes
h [R℄ has an exampleof a lo
ally 
onne
ted Julia set 
ontaining a 
opy of a quadrati
 Julia set whi
his not lo
ally 
onne
ted. In our 
ase, this does not o

ur be
ause the set M� isfull.Observe that when t 2 R n Q does not satisfy the Bruno 
ondition, thequadrati
 Julia set J(e2i�tz + z2) is known to be non-lo
ally 
onne
ted. Hen
e,the set of values of � 2 S1 for whi
hM� is not lo
ally 
onne
ted 
ontains a denseGÆ subset of S1. Lavaurs [La℄ proved that the 
onne
tedness lo
us of the wholefamily of 
ubi
 polynomials is not lo
ally 
onne
ted. In the parameter spa
eof real 
ubi
 polynomials, the bifur
ation lo
us is also known to be non-lo
ally
onne
ted (see [EY℄). To our knowledge, we give the �rst example of 
omplexparameter spa
e of dimension 1 with 
onne
ted but non-lo
ally 
onne
ted bifur-
ation lo
us.Shizuo Nakane brought to our attention that we 
ould prove the existen
e ofparameter rays with a non-trivial a

umulation set. He has already proved thisresult in the family of real 
ubi
 polynomials in a joint work with Y. Komori(see [NK℄). To state the next 
orollary, we need to introdu
e some notations.Given any 
omplex number � of modulus 1, we de�ne P� to be the quadrati
polynomial P�(z) = �z + z2. For any angle � 2 R=Z, we de�ne RP�(�) to bethe dynami
al ray of the polynomial P� of angle �. We also 
onsider the Cantormap (or devil stair
ase) �� : R=Z ! R=Z whi
h is 
onstant on the 
losure ofea
h 
onne
ted 
omponent of R=Z n� and is de�ned on � by:��0�Xi�1 "i3i1A =Xi�1 "i2i ; where "i 2 f0; 1g:Corollary C. Given any 
omplex number � of modulus 1, any dyadi
 angle# = (2p+1)=2k and any angle � 2 �, the a

umulation set of the parameter ray
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es. 5R�(#�=3 + �=3k+1) is redu
ed to a point if and only if the a

umulation set ofthe quadrati
 ray RP�(��(�)) is redu
ed to a point.Using an a

umulation theorem due to Douady (see [S�℄), we then provethat the set of 
omplex numbers � of modulus 1, for whi
h at least one of theparameter rays R�(�) � C nM� has a non-trivial a

umulation set, 
ontains adense GÆ subset of S1.We would like to make some 
omments about the 
hoi
e of the family fb.We wanted to work with a family of 
ubi
 polynomials having a persistentlyindi�erent �xed point. We de
ided to put this �xed point at the origin. This
ondition is a
hieved, sin
e the map fb has an indi�erent �xed point at 0 withmultiplier �. The reason why we have 
hosen this parametrization is that thepolynomial fb is moni
 and thus, has a preferred B�ott
her 
oordinate. Thiswill be useful to de�ne a 
onformal representation �� : C nM� ! C n D in adynami
al way. This is important sin
e we want to be able to transfer resultsfrom the dynami
al plane to the parameter plane. However, one should observethat the maps fb and f�b are always 
onjugate by the aÆne map z 7! �z.Indeed, �fb(�z) = �(��z + bz2 � z3) = f�b(z):This explains why parameter pi
tures are symmetri
 with respe
t to the origin.The 
entral argument we use is inspired from te
hniques developed by Tan Leiin [TL℄. There, she proves that there are similarities between the Mandelbrot setand 
ertain Julia sets. We would also like to mention that Pia Willumsen provedthe existen
e of 
opies of the quadrati
 Julia set J(z2�1) in the parameter spa
eof a well-
hosen family of 
ubi
 polynomials.Hubbard made the suggestion that the two dimensional 
onne
tedness lo
usof the spa
e of 
ubi
 polynomials may 
ontain homeomorphi
 
opies of the setn(
; z) j K(z2 + 
) is 
onne
ted and z 2 K(z2 + 
)o:After we exposed our results in Crete 1, Lyubi
h and M
Mullen made the ob-servation that pushing further our arguments, we should be able to prove thisresult. This would show the existen
e of 
ubi
 polynomials being in the same
ombinatorial 
lass, but not being topologi
ally 
onjugate. Su
h a result hasbeen 
onje
tured by Kiwi in his thesis [K℄.2. Conformal representation of C nM�.In this se
tion, we will use results by Branner and Hubbard [BH1℄ to prove thatM� is full, 
onne
ted and has 
apa
ity 3= 3p4. We will 
onstru
t, in a dynami
alway, the Riemann mapping �� : C nM� ! C nD , that is tangent to b 7! b � 3p4=3at in�nity. A similar study has already been done by Zakeri [Z1℄. Working withthe es
aping 
riti
al value, he de�nes an analyti
 map from C nM� to C n Dwhi
h turns out to be a 
overing map of degree 3. We will instead work with thees
aping 
o-
riti
al point. We will need this approa
h later, to transfer dynami
alresults to the parameter plane. In [Z2℄, Zakeri also gives an interesting proof ofthe 
onne
tivity of M� based on Tei
hm�uller theory of rational maps.1 Euro
onferen
e in Mathemati
s on Crete; Holomorphi
 Dynami
s; Anogia, June 26 { July2, 1999.



6 Xavier Bu�, Christian Henriksen2.1. Potential fun
tions.. Re
all that Fatou proved that the Julia set of anypolynomial is 
onne
ted if and only if the orbit of ea
h 
riti
al point is bounded.In our 
ase, the map fb has two 
riti
al points. However, fb has an indi�erent�xed point at 0. Hen
e, there is always one 
riti
al point with a bounded orbit.Indeed, there are only three possible 
ases:� the �xed point is paraboli
 (� 2 Q), and there is at least one 
riti
al point offb in its basin of attra
tion;� the �xed point is linearizable (it 
ould be the 
ase even if � is not a Brunonumber), and the boundary of the Siegel disk is a

umulated by the orbit ofat least one 
riti
al point of fb;� the �xed point is a Cremer point and is 
ontained in the limit set of at leastone 
riti
al point of fb.Remark. We will say that this 
riti
al point is \
aptured" by 0.In parti
ular, when J(fb) is dis
onne
ted, there is exa
tly one 
riti
al point!1 with bounded orbit, and one es
aping 
riti
al point !2.Let us now re
all some 
lassi
al results that 
an be found in [DH1℄ and [BH1℄.De�nition 1 (Potential fun
tions). For any b 2 C , de�ne gb : C ! [0;+1[by gb(z) = limn!1 13n log+ ��fÆnb (z)��;where log+ is the supremum of log and 0. Also de�ne the fun
tion G : C ! R+by G(b) = supf! j f 0b(!)=0g gb(!):Remark. When the Julia set J(fb) is 
onne
ted, G(b) = 0. Otherwise, G(b) =gb(!2).Proposition 1. We have the following properties:1. gb is 
ontinuous and subharmoni
 on all of C ;2. gb(fb(z)) = 3gb(z);3. gb vanishes exa
tly on K(fb) and is harmoni
 on C nK(fb);4. the 
riti
al points of gb in C nK(fb ) are the preimages of the es
aping 
riti
alpoint !2 by an iterate fÆnb , n � 0;5. the mapping (b; z) 7! gb(z) is a 
ontinuous plurisubharmoni
 fun
tion;6. the fun
tion G is 
ontinuous and subharmoni
.Remark. We will see that G vanishes exa
tly on the set M� and is harmoni
outside M�.De�nition 2 (Equipotentials). The level 
urve g�1b f�g is 
alled the dynami
alequipotential of level �. The level 
urve G�1f�g is 
alled the parameter equipo-tential of level �.When the Julia set is 
onne
ted, the two 
riti
al points are 
ontained inK(fb), and the harmoni
 map gb : C nK(fb)! R+ has no 
riti
al point. Hen
e,every dynami
al equipotential of fb is a real-analyti
 simple 
losed 
urve. Moregenerally, observe that gb has no 
riti
al point in the region fz 2 C j gb(z) >
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es. 7G(b)g, and every dynami
al equipotential of level � > G(b) is a real-analyti
simple 
losed 
urve.The orthogonal 
urves to dynami
al (respe
tively parameter) equipotentialswill be 
alled dynami
al (respe
tively parameter) rays. We will be more pre
iseabout the de�nition of rays below.Figure 2 shows a �lled-in Julia set with two dynami
al equipotentials of level1=3 and 1, together with four segments of dynami
al rays.
fbfb

4� 4i�4� 4i Rb(9=12)
!2 !02

4 + 4iRb(1=12)Rb(1=4)�4 + 4i
Rb(5=12)

UbU 0b fbFig. 2. A dis
onne
ted Julia set; ��(b) = 'b(!02) = e1=3+2i�=12.2.2. The B�ott
her 
oordinate at in�nity.. The ve
tor �eld�b = 12grad(gb)=jgrad(gb)j2is a meromorphi
 ve
tor �eld on C nK(fb), having poles exa
tly at the 
riti
alpoints of gb in C nK(fb).De�nition 3. We de�ne Sb to be the union of the 
riti
al points of gb in C nK(fb) and their stable manifolds for the ve
tor �eld �b. For any b 2 C , we de�neVb to be the open set C n (K(fb) [ Sb).We have normalized our 
ubi
 polynomials so that they are moni
. Hen
e,there exists a unique B�ott
her 
oordinate 'b de�ned in a neighborhood of in�nity,



8 Xavier Bu�, Christian Henriksenand tangent to the identity at in�nity. Consider the 
ow (z; �) 7! Fb(z; �) of theve
tor �eld �b, where � 2 R is a real time. For any point z 2 Vb, we 
an extend'b at z using the formula 'b(z) = e��'b(Fb(z; �)); where � 2 [0;+1[ is 
hosenlarge enough so that Fb(z; �) 2 Ub. The following proposition is then easilyderived from the analyti
ity of �b and its analyti
 dependen
e on b.Proposition 2 (B�ott
her 
oordinate). There exists a unique analyti
 iso-morphism 'b de�ned in a neighborhood of in�nity, tangent to the identity atin�nity, and satisfying 'b Æ fb Æ '�1b (z) = z3:The mapping 'b extends to an analyti
 isomorphism 'b : Vb ! C and satis�eslog j'bj = gb on this set. Furthermore, 'b depends analyti
ally on b, i.e., the setV = [b2Cfbg � Vbis open and the mapping � : V! C 2 de�ned by �(b; z) = (b; 'b(z)) is an analyti
isomorphism from V onto its image.Remark. An easy 
omputation shows that near in�nity, we have 'b(z) = z +b=3 +O(1=jzj):When J(fb) is 
onne
ted, Vb = C nK(fb) and the B�ott
her 
oordinate 'b isa univalent mapping 'b : C nK(fb)! C n D ;and on C nK(fb), we have gb = log j'bj. In parti
ular, the dynami
al equipotentialof level � is the set '�1b ne�+2i�� j � 2 R=Zo;i.e., the preimage by 'b of the 
ir
le of radius e� 
entered at 0.When J(fb) is dis
onne
ted this property still holds for equipotentials of level� > G(b), i.e., in the region fz 2 C j gb(z) > G(b)g.In both 
ases, the push-forward ('b)�(�b) is the radial ve
tor �eld w�=�w. Inparti
ular, 'b maps every traje
tory of the ve
tor �eld �b to a segment of linewith 
onstant argument. Hen
e, 'b(Vb) is a star-shaped domain with respe
tto in�nity, i.e., for every angle � 2 R=Z, there exists a radius r(b; �) � 1 su
hthat w 2 'b(Vb) and arg(w) = 2�� if and only if jwj > r(b; �). Finally, along atraje
tory z(�) of the ve
tor �eld �b, we have gb(z(�)) = gb(z(0)) + � .De�nition 4 (Dynami
al Rays). For any b 2 C , the dynami
al ray Rb(�) isde�ned as Rb(�) = '�1b nre2i�� j r > r(b; �)o:Remark. The ve
tor �eld �b = 12grad(gb)=jgrad(gb)j2 
an be extended holomor-phi
ally to C nK(fb). Then, it has a sink at in�nity and the dynami
al rays areexa
tly the stable manifolds of in�nity for the ve
tor �eld �b.When r(b; �) = 1, the a

umulation set of a dynami
al ray is 
ontained in theJulia set J(fb). This is true for any angle � 2 R=Z when J(fb) is 
onne
ted. Ifthe limit z0 = limr&1'�1b (re2i��)
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es. 9exists, we will say that the dynami
al ray Rb(�) lands at z0. When J(fb) isdis
onne
ted and when r(b; �) > 1, then the limitz0 = limr&r(b;�)'�1b (re2i��)exists and is a 
riti
al point ! of gb. In this 
ase, we will say that the dynami
alray Rb(�) bifur
ates on !.If b2 = 3�, then there is unique 
riti
al point. This 
riti
al point 
annotes
ape (be
ause 0 \
aptures" a 
riti
al point), and b 2M�. On the other hand,if b2 6= 3� and b =2M�, then fb(!2) has a preimage !02 6= !2. Following Brannerand Hubbard, we 
all it the 
o-
riti
al point to !2.Let us observe that 'b is well de�ned at the 
o-
riti
al point !02. Indeed, !02
annot be a 
riti
al point of gb sin
e it is not an inverse image of !2. Let us
onsider the traje
tory z(�) de�ned by the initial 
ondition z(0) = !02. We havegb(z(�)) = gb(!02) + � . In parti
ular, sin
e the region fz 2 C j gb(z) > gb(!02)gdoes not 
ontain 
riti
al points of gb we see that the traje
tory z(�) is de�nedon [0;+1[. Hen
e, !02 belongs to Vb, and 'b(!02) is well de�ned.De�nition 5. Given b 2 C nM�, the es
aping 
riti
al point is 
alled !2 and the
o-
riti
al point to !2 is 
alled !02 . We de�ne the mapping �� : C nM� ! C by��(b) = 'b(!02):Proposition 3 (Branner-Hubbard [BH1℄ and Zakeri [Z1℄ [Z2℄). The setM� is full and 
onne
ted. Besides, the map �� : C nM� ! C nD is the 
onformalisomorphism whi
h is tangent to b 7! b � 3p4=3 at in�nity.Proof. We have seen that if b2 = 3�, then b 2 M�. Now, if b2 6= 3�, the two
riti
al points are the two distin
t roots of the equation f 0b(z) = 0, and bythe impli
it fun
tion theorem, we 
an follow them lo
ally. Hen
e, we 
an followholomorphi
ally the two 
riti
al points lo
ally outside M�. For the same reason,we 
an follow holomorphi
ally the two distin
t 
o-
riti
al points lo
ally outsideM�.Lemma 1. The mapping �� : C nM� ! C n D is analyti
.Proof. Fix a parameter b0 =2 M�, let !2 be the es
aping 
riti
al point and !02be the 
o-
riti
al point to !2. There exist two holomorphi
 maps de�ned in aneighborhood U of b0 that follow the two 
o-
riti
al points. Let !0 : U ! C bethe one whi
h 
oin
ide with !02 at b0. The setW = f(b; z) 2 C 2 j z 2 C nK(fb)gis the preimage of ℄0;+1[ by the map g(b; z) = gb(z) whi
h is 
ontinuous by 5)of proposition 1. Hen
e, W is open. Thus, by restri
ting U if ne
essary, we mayassume that for any b 2 U , the 
o-
riti
al point !0(b) belongs to C nK(fb). Thisshows that, for any b 2 U , the es
aping 
o-
riti
al point is !0(b).Furthermore, the mapping (b; z) 7! 'b(z) is analyti
 in a neighborhood ofany point (b0; z0) su
h that z0 2 Vb0 . Hen
e, it is analyti
 in a neighborhood of(b0; !02). It follows immediately that ��(b) = 'b(!02(b)) is analyti
 in a neighbor-hood of b0. �



10 Xavier Bu�, Christian HenriksenThe proof that �� is an isomorphism between C nM� and C n D is an appli-
ation of the prin
iple: an analyti
 mapping is an isomorphism if it is proper ofdegree 1. We shall use a similar argument for quasi-regular mappings in se
tion8.Lemma 2. Outside M�, we have G(b) = log j��(b)j. Besides, the fun
tion Gvanishes exa
tly on M�.Proof. If b 62M�, we 
an write:log �����(b)��� = 13n log ���'b�fÆn(!02)����= 13n log ����fÆn(!02) +O� 1jfÆn(!02)j����� = G(b):Sin
e 'b takes values outside D , so does ��. Hen
e, G is positive outside M�.Besides, if b 2 M�, both 
riti
al points are in the �lled-in Julia set K(fb). So,their orbits are bounded and G(b) = 0. �We 
an now see that M� is full. This is an immediate 
onsequen
e of the fa
tthat sub-harmoni
 fun
tions satisfy the maximum prin
iple. Thus, level sets arefull.By Pi
ard's theorem, the mapping �� : C nM� ! C n D has a removablesingularity at in�nity. Hen
e, we 
an extend it to in�nity. We ne
essarily have��(1) = 1 sin
e otherwise G would be a non-
onstant bounded subharmoni
fun
tion on P1.More pre
isely, a simple 
omputation shows that when jbj tends to in�nity,!2 = �2b3 + o(1); and !02 = �b� 2!2 = b3 + o(1):Then, fb(!02)(!02)3 = 4 +O� 1jbj� ;and for any integer n � 1, we havefÆ(n+1)b (!02)(fÆnb (!02))3 = 1 +O� 1jbj� :Hen
e, we obtain��(b) = !02Y fÆ(n+1)b (!02)(fÆnb (!02))3 !1=3n+1 = 3p43 b+O� 1jbj� :We will now show that �� : C nM� ! C n D is a proper mapping. Sin
e Gis 
ontinuous, G(b) tends to 0 as b tends to the boundary of M�. Hen
e, ��(b)tends to �D when b tends to �M� from outside M�. Sin
e �� is analyti
, it is aproper mapping.We 
an �nally see that it has degree 1 sin
e in�nity has only one preimage
ounted with multipli
ity. Hen
e, it is an isomorphism between C nM� and C nD .In parti
ular, M� is 
onne
ted.



Julia sets in parameter spa
es. 11We have de�ned parameter equipotentials. We 
an now de�ne parameter rays(see Figure 5).De�nition 6 (Parameter Rays). The parameter ray R�(�) is de�ned asR�(�) = ��1� ne�+2i�� j � > 0o:If the limit b0 = limr&1��1� (re2i��)exists, we will say that the parameter ray R�(�) lands at b0.3. Copies of quadrati
 Julia sets in the dynami
al plane.In this se
tion, we will �rst re
all a result whi
h is essentially due to Brannerand Hubbard [BH2℄ (see also [Br℄): when the parameter b is not in M�, thereexists a restri
tion of fb whi
h is a quadrati
-like mapping. The reader will �ndinformation on polynomial-like mappings and related results in [DH2℄.De�nition 7 (Polynomial-like mappings). A polynomial-like mapping f :U 0 ! U of degree d is a rami�ed 
overing of degree d between two topologi
aldisks U 0 and U , with U 0 relatively 
ompa
t in U . One 
an de�ne its �lled-inJulia set K(f) and its Julia set J(f) as follows:K(f) = fz 2 U 0 j (8n 2 N) fÆn(z) 2 U 0g; and J(f) = �K(f):A polynomial-like mapping of degree 2 will be 
alled a quadrati
-like mapping.Let us re
all the so-
alled Straightening Theorem due to Douady and Hub-bard.Proposition 4 (Straightening Theorem). If f : U 0 ! U is a polynomial-likemapping of degree d. Then there exists� a polynomial P : C ! C of degree d,� a neighborhood V of the �lled-in Julia set K(P ) su
h that the mapping P :P�1(V ) = V 0 ! V is a polynomial-like map, and� a quasi
onformal homeomorphism ' : U ! V with '(U 0) = V 0, su
h that�' = 0 almost everywhere on K(f) and su
h that on U 0' Æ P = f Æ ':Moreover, if K(f) is 
onne
ted, then P is unique up to 
onformal 
onjuga
y.De�nition 8. Two polynomial-like mappings f and g are said to be hybrid equiv-alent if there is a quasi-
onformal h that 
onjugates f and g, with �h = 0 almosteverywhere on the �lled-in Julia set K(f).Proposition 5. For any b 2 C nM�, let us denote by Ub the open set fz 2C j gb(z) < 3G(b)g and U 0b the 
onne
ted 
omponent of f�1(Ub) that 
ontainsthe non-es
aping 
riti
al point !1. Then, the restri
tion fb : U 0b ! Ub is aquadrati
-like mapping and its hybrid 
lass 
ontains the polynomial z 7! �z+z2.



12 Xavier Bu�, Christian HenriksenFigure 2 shows the domains U 0b and Ub for the parameter ��1� (e1=3+2i�=12).Proof. We have seen that any dynami
al equipotential of level � > G(b) is areal-analyti
 simple 
losed 
urve. This applies to the dynami
al equipotentialof level 3G(b). Thus, the set Ub is a topologi
al disk. Besides, it only 
on-tains one 
riti
al value of fb (the non-es
aping one). The set f�1(Ub) is theset fz 2 C j gb(z) < G(b)g whi
h is bounded by a lemnis
ate pin
hing at thees
aping 
riti
al point !2. Ea
h 
onne
ted 
omponent of f�1(Ub) is a topologi
aldisk 
ompa
tly 
ontained in Ub. Besides, the restri
tion of fb to the 
onne
ted
omponent of f�1(Ub) 
ontaining the non-es
aping 
riti
al point !1 is a ram-i�ed 
overing of degree 2, rami�ed at !1. This is pre
isely the de�nition of aquadrati
-like mapping.Next, to see that the hybrid 
lass of this quadrati
-like mapping 
ontainsz 7! �z + z2, we will use the following result.Lemma 3. The multiplier of an indi�erent �xed point is a quasi-
onformal in-variant.Remark. Naish�ul [Nai℄ shows a mu
h better result sin
e he proves that the mul-tiplier of an indi�erent �xed point is a topologi
al invariant. P�erez-Mar
o [PM℄gave a new proof of this result whi
h is mu
h simpler. The 
ase of quasi-
onformal
onjuga
y is easier to handle. R. Douady gave an easy proof based on the 
om-pa
ity of the spa
e of quasi-
onformal mappings with bounded dilatation (see[Y℄). We will present a new proof based on holomorphi
 motions and the Ahlfors-Bers theorem. Those tools are more 
ompli
ated than the ones used by Douady,but the idea of the proof �ts very well within this arti
le.Proof. Assume that two germs f0 : U0 ! C and f1 : U1 ! C are quasi-
onformally 
onjugate. Call  the quasi-
onformal 
onjuga
y. Then � = � =� is a Beltrami form invariant by f0. Integrating the Beltrami form �" = "�," 2 D (0; 1=jj�jj1), we get a family of quasi-
onformal homeomorphisms  " de-pending analyti
ally on ", and a family of analyti
 germsf" =  " Æ f0 Æ  �1" :We 
laim that this family of germs depend analyti
ally on " (this is not imme-diate sin
e  �1" does not need to depend analyti
ally on "; Douady explainedus a geometri
 proof, and Lyubi
h explained us an analyti
 proof whi
h we givehere). Sin
e f" Æ  " =  " Æ f0, for any z 2 U we 
an write�f"�" ��� "(z) + �f"�z � � "�" ���z + �f"�z � � "�" ���z = � "�" ���f0(z):Sin
e both �f"=�z and � "=�" vanish, we see that �f"=�" vanishes.In parti
ular, the multiplier �(") of the �xed point depends analyti
ally on". Sin
e it 
annot be
ome repelling or attra
ting (all the germs are 
onjugate tof0 whi
h has an indi�erent �xed point), the modulus of �(") is 
onstant. Hen
e,�(") is a 
onstant fun
tion, and �(1) = �(0). �The hybrid 
lass of the quadrati
-like map fb : U 0b ! Ub 
ontains a quadrati
polynomial having an indi�erent �xed point with multiplier �. Su
h a polynomialis always analyti
ally 
onjugate to the polynomial z 7! �z + z2.



Julia sets in parameter spa
es. 13De�nition 9. For any parameter b 2 C n M�, the �lled-in Julia set of thequadrati
-like map fb : U 0b ! Ub is 
alled Kb and its Julia set is 
alled Jb.We will now give more informations about the dynami
s of fb1 for the param-eter b1 with potential � = 1=3 and external argument � = 1=4 (we 
ould havepi
ked any parameter with potential � > 0 and external argument � 2℄1=6; 1=3[).Proposition 6. Let b1 be the parameter b1 = ��1� (e1=3+2i�=4). If � 6= 1, the twodynami
al rays Rb1(0=1) and Rb1(1=2) both land at a 
ommon �xed point � 6= 0whi
h is repelling. If � = 1, the rays Rb1(0=1) and Rb1(1=2) both land at theparaboli
 �xed point � = 0.

Rb1 (7=12)

Rb1(1=4)
g�1b1 f1=3gRb1 (1=2)

�4� 5i

�4 + 3i 4 + 3i

4� 5iRb1 (�1=12)
Rb1 (0=1)

g�1b1 f1g!02��!2U 00b1
Ub1U 0b1

Fig. 3. The rays Rb1 (0=1) and Rb1 (1=2) both land at a 
ommon �xed point �.Proof. We still denote by Ub1 the set Ub1 = fz 2 C j gb1(z) < 3G(b1)g. Itspreimage f�1b1 (Ub1) has two 
onne
ted 
omponents. Note that U 0b1 is the one
ontaining !02 in its boundary. Denote by U 00b1 the other 
omponent (see �gure3). Remember that, fb1 : U 0b1 ! Ub1 is a degree 2 proper mapping. Similarlyfb1 : U 00b1 ! Ub1 is a degree 1 proper mapping and sin
e U 00b1 is 
ompa
tly
ontained in Ub1 , fb1 has exa
tly one �xed point in U 00b1 . This �xed point isrepelling. We will denote it by �.Next, observe that the rays Rb1(�1=12) and Rb1(7=12) bifur
ate on !2, andsin
e �1=12 < 0 < 1=2 < 7=12, they separate � from the rays Rb1(0=1) andRb1(1=2).



14 Xavier Bu�, Christian HenriksenSin
e fb1 : U 0b1 ! Ub1 is a degree 2 proper mapping, and sin
e U 0b1 is 
ompa
tly
ontained in Ub1 , Rou
h�e's Theorem shows that fb1 has exa
tly two �xed pointsin U 0b1 , 
ounted with multipli
ity. If � 6= 1, those two �xed points are distin
t.One is 0 whi
h is indi�erent, and has multiplier �, the other one will be denotedby �. A theorem due to Douady-Hubbard [DH1℄ and to Sullivan asserts thatevery �xed dynami
al ray that does not bifur
ate, lands at a �xed point whi
his either repelling, or paraboli
 with multiplier 1. Sin
e the two �xed dynami
alrays Rb1(0=1) and Rb1(1=2) 
annot land at 0 (sin
e the multiplier is neitherrepelling nor equal to 1), they must both land at the �xed point �. Sin
e � isthe landing point of a ray, either it is repelling or it is a multiple �xed point. Butsin
e there are only two �xed point in U 0b1 
ounted with multipli
ity the former
ase o

urs.On the other hand, if � = 1, there is only one �xed point in U 0b1 : the �xedpoint at 0 whi
h is paraboli
 with multiplier 1. Hen
e the two �xed rays Rb1(0=1)and Rb1(1=2) must both land at 0.We will now des
ribe the set of rays that a

umulate on the Julia set Jb1 ofthe quadrati
-like map fb1 : U 0b1 ! Ub1 .De�nition 10. We de�ne � � R=Z to be the set of angles � su
h that for anyn � 0, 3n� 2 [0; 1=2℄ mod 1:Remark. The set � is the set of angles � that 
an be written in base 3 with only0's and 1's. It is a Cantor set and is forward invariant under multipli
ation by3. Figure 4 shows the dynami
al rays Rb1(�) for � 2 �. The following proposi-tion shows that those rays a

umulate on the Julia set Jb1 of the quadrati
-likerestri
tion of fb1 .
!2Rb1 (1=2) Rb1 (0=1)

Rb1 (1=3) Rb1 (1=6)Rb1 (4=9) Rb1 (1=18)
Fig. 4. The dynami
al rays Rb1 (�), � 2 �, a

umulate on the Julia set Jb1 of the quadrati
-like restri
tion of fb1 .



Julia sets in parameter spa
es. 15Proposition 7. Let b1 be the parameter b1 = ��1� (e1=3+2i�=4) and Jb1 be theJulia set of the quadrati
-like mapping fb1 : U 0b1 ! Ub1 . Then, for any � 2 �,the dynami
al ray Rb1(�) does not bifur
ate. Besides, if we de�neXb1 = [�2�Rb1(�);then Xb1 nXb1 = Jb1 :Proof. Let us �rst re
all that the rays Rb1(0=1) and Rb1(1=2) do not bifur
ateand land at the same �xed point �. Hen
e, the 
urve f�g [Rb1(0=1)[Rb1(1=2)
uts the plane in two 
onne
ted 
omponents V1 and V2. We 
all V2 the one
ontaining the es
aping 
riti
al point !2. Observe that for any � 2 [0; 1=2℄, thedynami
al ray Rb1(�) is 
ontained in C n V2. Now, assume that there exists anangle � 2 � su
h that the dynami
al ray Rb1(�) bifur
ates. Then, it bifur
ateson a preimage of the es
aping 
riti
al point !2 and one of its forward imagebifur
ates on !2. But sin
e by de�nition of �, we have 3k� 2 [0; 1=2℄ mod 1, forany k � 0, the forward orbit of the ray Rb1(�) is 
ontained in C n V2. Hen
e noforward image of Rb1(�) 
an bifur
ate on the es
aping 
riti
al point !2 2 V2.Sin
e the set � is 
losed (it is an interse
tion of 
losed sets), Xb1 is 
losed inC nK(fb1). Hen
e, Xb1 nXb1 � J(fb1):We will now show that for any angle � 2 �, the a

umulation set I of the rayRb1(�) is 
ontained in the Julia set Jb1 of the quadrati
-like mapping fb1 : U 0b1 !Ub1 . Indeed, the a

umulation set I is 
ontained in the Julia set J(fb1) of fb1 ,and its forward orbit is 
ontained in C n V2. In parti
ular, it 
annot enter theregion U 00b1 , and the forward orbit of I is entirely 
ontained in U 0b1 . This showsthat I � Kb1 . Sin
e I is 
ontained in the boundary of K(fb1), we see thatI � Jb1 , and Xb1 nXb1 � Jb1 :To prove the reverse in
lusion, we will use the fa
t that the ba
kward orbitof the �xed point � by the quadrati
-like map fb1 : U 0b1 ! Ub1 is dense in Jb1 .Let us show by indu
tion on n that if z 2 Jb1 satis�es fÆnb1 (z) = �, then thereis an angle � 2 � su
h that Rb1(�) lands at z. This is true for n = 0 sin
e therays Rb1(0=1) and Rb1(1=2) land at �. Now, if the indu
tion property holds forsome n, let us show that it is true for n + 1. Given a point z 2 Jb1 satisfyingfÆ(n+1)b1 (z) = �, its image fb1(z) satis�es the indu
tion hypothesis. Thus, thereis an angle � 2 � su
h that the ray Rb1(�) lands at fb1(z). Observe that, onone hand, this ray 
annot 
ontain the es
aping 
riti
al value (indeed, the ray
ontaining the es
aping 
riti
al value has argument 3=4 =2 �), and its threepreimages land at the three preimages of fb1(z). On the other hand, there arethree angles �1, �2 and �3 su
h that 3�i = �, i = 1; 2; 3. Two of them, let's say �1and �2, are in �, and the third one, �3, is 
ontained in ℄2=3; 5=6[ mod 1. Hen
e,the ray Rb1(�3) lands at the preimage of fb1(z) whi
h is 
ontained in U 00b1 . Thisshows that one of the two rays Rb1(�1) or Rb1(�2) lands at z.Remark. It is easy to see that no other dynami
al ray 
an a

umulate on Jb1sin
e their forward orbits eventually enter V2.



16 Xavier Bu�, Christian Henriksen4. De�nition of the wake W0.We will now restri
t our study to a parti
ular region in the parameter plane: thewake W0.De�nition 11. The wake W0 is de�ned to be the 
onne
ted 
omponent ofC n R�(1=6) [R�(1=3) [ R�(2=3) [ R�(5=6)that 
ontains the parameter ray R�(1=4).Remark. In fa
t, we will show that the parameter rays R�(1=6) and R�(1=3)land at a 
ommon parameter b0 whi
h satis�es the equation b20 = 4(�� 1). Thewake W0 is the region 
ontained between those two rays (see Figure 5).There are several ways of proving the landing property of the parameter raysR�(1=6) and R�(1=3). We will use an argument similar to the one used byDouady and Hubbard in [DH1℄. We will need to modify it slightly in the 
ase� = 1.
R�(1=2)

R�(1=3) R�(1=6)W0
R�(0=1)

R�(2=3) R�(5=6)
M�

Fig. 5. The parameter rays R�(1=6) and R�(1=3) land at b0, whereas the rays R�(2=3) andR�(5=6) land at �b0.Proposition 8. The parameter rays R�(1=6) and R�(1=3) land at the sameparameter b0 satisfying b20 = 4(��1). The parameter rays R�(2=3) and R�(5=6)land at �b0.
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�3� 3i 3� 3i

3 + 3i�3 + 3i R�(1=3)

R�(2=3) R�(5=6)

R�(1=6)

Fig. 6. The parameter spa
e for � = 1. The four rays R�(1=6), R�(1=3), R�(2=3) andR�(5=6) land at 0.Remark. When � = 1, we have b0 = 0 and the four rays land at 0 (see Figure 6).Proof. In the 
ase � 6= 1, we will show that for any parameter b0 
ontained inthe a

umulation set of the ray R�(1=6), fb0 has a paraboli
 �xed point withmultiplier 1. The set of su
h parameters is dis
rete { in fa
t b20 = 4(� � 1).Sin
e the a

umulation set of any ray is 
onne
ted, this will prove that the rayR�(1=6) lands. A similar argument shows that the rays R�(1=3), R�(2=3) andR�(5=6) land at b0 or �b0. We will then have to show that the rays R�(1=6)and R�(1=3) land at the same parameter.In the 
ase � = 1, we will show that the only parameter in the a

umulationset of the rays R�(1=6), R�(1=3), R�(2=3) and R�(5=6) is b0 = 0. This will
on
lude the proof of the proposition.Lemma 4. For any parameter b0 
ontained in the a

umulation set of the rayR�(1=6), R�(1=3), R�(2=3) or R�(5=6), the polynomial fb0 has a paraboli
 �xedpoint with multiplier 1.Proof. Let us prove this lemma for the ray R�(1=6). We will pro
eed by 
ontra-di
tion. Assume that fb0 has no paraboli
 �xed point with multiplier 1. Sin
eb0 2M�, the dynami
al ray Rb0(1=2) does not bifur
ate. It is a �xed dynami
alray. Hen
e, it lands at a �xed point �, whi
h is either repelling, or paraboli
with multiplier 1. By hypothesis on b0, the se
ond 
ase is not possible.



18 Xavier Bu�, Christian HenriksenWe 
laim that for b suÆ
iently 
lose to b0, the ray Rb(1=2) still lands on arepelling �xed point of fb. The proof is 
lassi
al and 
an be found in the OrsayNotes [DH1℄.Thus, for any b 2 U1, the ray Rb(1=2) does not bifur
ate on a 
riti
al point. Inparti
ular, the dynami
al ray Rb(1=6) 
annot 
ontain the 
o-
riti
al point. Butthis pre
isely shows that the parameter ray R�(1=6) omits the neighborhood U1of b0 whi
h gives the 
ontradi
tion. �The �xed points of the polynomial fb are 0 and the roots of the equation� � 1 + bz + z2 = 0. If � 6= 1, there is a multiple root (i.e., a paraboli
 �xedpoint with multiplier 1) if and only if the dis
riminant is zero: b2� 4(�� 1) = 0.Hen
e, when � 6= 1, we see that the parameter rays R�(1=6), R�(1=3), R�(2=3)and R�(5=6) 
an only a

umulate on b0 or �b0, where b20 = 4(�� 1). Sin
e thea

umulation set of a ray is 
onne
ted, we have proved that those rays land atb0 or �b0.When � = 1, the origin is a persistently paraboli
 �xed point with multiplier1. Hen
e, to be able to 
on
lude that the parameter rays land, we must improveour lemma. The following lemma 
ompletes the proof of the proposition in the
ase � = 1.Lemma 5. When � = 1 the parameter rays R�(1=6), R�(1=3), R�(2=3) andR�(5=6) land at b0 = 0.Proof. Let us prove this lemma for the parameter ray R�(1=6). The proof isessentially the same as in lemma 4. We pro
eed by 
ontradi
tion, assuming thatthe parameter ray R�(1=6) a

umulates on b0 6= 0.On the one hand, the dynami
al ray Rb0(1=2) 
annot land at a repelling �xedpoint, sin
e otherwise there would be a neighborhood U1 of b0 in whi
h thedynami
al ray Rb(1=2) would not bifur
ate (as in lemma 4).On the other hand, if the dynami
al ray Rb0(1=2) were landing at a paraboli
�xed point with multiplier 1 (i.e., the �xed point 0) then we 
ould still showthat there exists a neighborhood U1 in whi
h the dynami
al ray Rb(1=2) wouldnot bifur
ate. The idea of the proof is the following.Sin
e b0 6= 0, the paraboli
 �xed point 0 is simple, i.e., f 00b0(0) 6= 0. We willshow that we 
an follow 
ontinuously a repelling petal Prep(b) in a neighborhoodU0 of b0. On this repelling petal, the inverse bran
hes f�1b : Prep(b) ! Prep(b)are well de�ned and iterates of this inverse bran
hes 
onverge to 0. We willalso show that the dynami
al ray Rb0(1=2) enters the repelling petal Prep(b0).Consequently, there exists a neighborhood U1 of b0 su
h that for any b 2 U1, thedynami
al ray Rb(1=2) enters the repelling petal Prep(b), and thus land at theparaboli
 �xed point 0.Let us �ll in the details. Sin
e we assume b0 6= 0, there exists a neighbor-hood U0 of b0 and a radius " > 0 su
h that for any b 2 U0, fb restri
ts toan isomorphism between the disk V (b) 
entered at 0 with radius "=jbj andfb(V (b)). Now, observe that the 
hange of 
oordinates z 7! Z = �1=bz 
on-jugates fb : V (b)! fb(V (b)) to an isomorphism Fb : bV ! Fb(bV ), wherebV = fZ 2 P1 j 1=" < jZjg and Fb(Z) = Z + 1 +O� 1jZj� :
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�1� i

1 + iRb(1=2) Rb(0=1)Prep(b)Patt(b)
Fig. 7. An attra
ting petal Patt(b) and a repelling petal Prep(b). The attra
ting petal Patt(b)is 
ontained in K(fb) and the ray Rb(1=2) eventually enters and stays in Prep(b).Let us 
hoose " suÆ
iently small, so that jFb(Z)�Z� 1j < p2=2 for any b 2 U0and any Z 2 bV . Then, denote by bPatt and bPrep the se
torsbPatt = fZ 2 C �� p2="�Re(Z) < jIm(Z)jg;and bPrep = fZ 2 C �� p2="+Re(Z) < jIm(Z)jg:Besides, denote by Patt(b) and Prep(b) the setsPatt(b) = fz 2 C � j � 1=bz 2 bPattg;and Prep(b) = fz 2 C � j � 1=bz 2 bPrepg:The set Patt(b) is 
alled an attra
ting petal and the set Prep(b) is 
alled arepelling petal (see Figure 7). One 
an easily 
he
k that the assumptions on "implies that for any b 2 U0, we have(1) fb(Patt(b)) � Patt(b);(2) fÆnb 
onverges uniformly on 
ompa
t subsets of Patt(b) to 0;(3) there exists an inverse bran
h f�1b : Prep(b)! Prep(b);(4) [f�1b ℄Æn 
onverges uniformly on 
ompa
t subsets of Prep(b) to 0.



20 Xavier Bu�, Christian HenriksenLet us express the ray Rb0(1=2) as a 
ountable union of segmentsSj = '�1b0 n� et j 3j � t � 3j+1o; j 2 Z;so that fb0(Sj) = Sj+1. Clearly, we wee that Patt(b0) is 
ontained in the �lled-inJulia set K(fb0). Thus, Rb0(1=2) does not interse
t Patt(b0). Sin
e we assumedthat the ray Rb0(1=2) lands at 0, there exists an integer j0 su
h that Sj0 is
ontained in Prep(b0). Again, by shrinking U0 if ne
essary, we may assume thatU0 � fb 2 C j G(b) < 3j0g. This 
ondition implies that for any b 2 U0, the rayRb(1=2) is de�ned up to potential at least 3j0 , andSj(b) = '�1b n� et j 3j � t � 3j+1o; j � j0is well de�ned. Finally, sin
e f(z; b) j b 2 U0; z 2 Prep(b)g is open and sin
e'�1b depends 
ontinuously (even analyti
ally) on b, we see that there exists aneighborhood U1 � U0 of b0, su
h that for any b 2 U1 the segment Sj0(b) is
ontained in Prep(b). Hen
e, Sj0+k(b) = [f�1b ℄Æk(Sj0(b)) is well de�ned for anyk � 0, and the ray Rb(1=2) lands at 0. However, this implies that the parameterray R(1=6) does not interse
t U1. �We still need to prove that when � 6= 1, the parameter rays R�(1=6) andR�(1=3) land at the same parameter. Remember that we de�ned the wake W0as the 
onne
ted 
omponent ofC n R�(1=6) [R�(1=3) [ R�(2=3) [ R�(5=6)that 
ontains the parameter ray R�(1=4).Let us 
all b0 the landing point of the parameter rayR�(1=6). We will use thefa
t that the 
onne
tedness lo
us M� is symmetri
 with respe
t to 0 (rememberthat fb and f�b are 
onjugate by z 7! �z). The symmetry of M� shows thattwo of the four rays R�(1=6), R�(1=3), R�(2=3) or R�(5=6) land at b0 and theother two land at �b0. Moreover, the parameter rays R�(1=6) and R�(2=3) aresymmetri
, so that R�(2=3) 
annot land at b0 (6= �b0). Hen
e, if the parameterray R�(1=3) were not landing at b0, then the ray R�(5=6) would. In that 
ase,the wake W0 would 
ontain the parameter b = 0 (see Figure 8). We will get a
ontradi
tion by proving that for any parameter b 2 W0, the dynami
al raysRb(0=1) and Rb(1=2) land at the same point, whereas this is not the 
ase forb = 0.Lemma 6. For any parameter b 2 W0, the two dynami
al rays Rb(0=1) andRb(1=2) do not bifur
ate.Remark. This lemma and the following one are in fa
t true as soon as b does notbelong to one of the parameter rays R�(1=6), R�(1=3), R�(2=3) or R�(5=6).Proof. If b =2 R�(1=3) [ R�(2=3); the dynami
al ray Rb(0=1) does not bifur-
ate. Indeed, if Rb(0=1) were bifur
ating, it would bifur
ate on a preimage ofthe es
aping 
riti
al point !2, i.e., there would be a non-negative n, su
h thatf�nb (!2) belongs to the ray Rb(0=1). Sin
e this is a �xed ray, !2 would belongto the ray Rb(0=1) and 
onsequently !02 would lie on either Rb(1=3) or Rb(2=3)whi
h 
ontradi
ts that b =2 R�(1=3)[R�(2=3). A similar argument shows that ifb =2 R�(1=6) [ R�(5=6); the dynami
al ray Rb(1=2) does not bifur
ate and alsolands at a �xed point whi
h is either repelling or paraboli
 with multiplier 1. �
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Fig. 8. If the parameter rays R�(1=6) and R�(1=3) were not landing at the same parameter,the wake W0 would 
ontain the parameter b = 0.Lemma 7. If � 6= 1, then given any b 2 W0, the rays Rb(0=1) and Rb(1=2) bothland at the same repelling �xed point �(b) 6= 0. If � = 1, then given any b 2 W0,the rays Rb(0=1) and Rb(1=2) both land at the paraboli
 �xed point �(b) = 0.Proof. To prove this lemma, we will use an idea due to Peter Ha��ssinsky whi
hhas been explained to us by Carsten Petersen. We have seen that in the domainW0, the dynami
al rays Rb(0=1) and Rb(1=2) do not bifur
ate. It follows that theset X = Rb(0=1)[Rb(1=2) moves holomorphi
ally with respe
t to the parameterb. Hen
e, the �-Lemma by Ma~ne, Sad and Sullivan [MSS℄ shows that the 
losureof X in P1 moves holomorphi
ally. In parti
ular, if for some parameter b1 2 W0the two dynami
al rays Rb(0=1) and Rb(1=2) land at the same �xed point, theydo so everywhere in W0, i.e., there exists a holomorphi
 fun
tion �(b) su
h that�(b) is a �xed point of fb and is the landing point of the two rays Rb(0=1) andRb(1=2). Besides, the multiplier at �(b) is a univalent fun
tion, that takes valuesin C nD . Hen
e, either the multiplier is 
onstantly equal to 1 (whi
h 
orrespondsto a persistently paraboli
 landing point) or it takes values in C n D (and thelanding point remains repelling in all W0).Thus, we just need to show that there is a parameter b 2 W0 for whi
h thetwo raysRb(0=1) and Rb(1=2) land at a 
ommon �xed point, and that this pointis repelling when � 6= 1, whereas it is paraboli
 with multiplier 1 when � = 1.This is pre
isely given by proposition 6 for the parameter b1 = ��1� (e1=3+2i�=4).� To 
on
lude the proof of the proposition, it is enough to see that when b = 0and � 6= 1, the two dynami
al rays R0(0=1) and R0(1=2) 
annot land at thesame point. The polynomial f0(z) = �z + z3 is an odd polynomial. Thus, the�lled-in Julia set is symmetri
 with respe
t to the origin. In parti
ular, thedynami
al rays R0(0=1) and R0(1=2) are symmetri
. Thus, if they land (in fa
t,
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riti
al orbits are symmetri
, the Julia set is 
onne
ted, and the raysland) the landing points are symmetri
 with respe
t to the origin. However, theorigin 
annot be the landing point of those rays be
ause it is indi�erent withmultiplier � 6= 1. Hen
e, the two dynami
al rays R0(0=1) and R0(1=2) land attwo symmetri
, distin
t �xed points.We have proved that in the wake W0, the two dynami
al rays Rb(0=1) andRb(1=2) both land at a 
ommon �xed point �(b) whi
h depends holomorphi
allyon b. If � = 1, we have seen that �(b) = 0 is a double �xed point, and the 
ubi
polynomial fb has only one other �xed point: �(b) = �b. If � 6= 1, the map fbhas three distin
t �xed points: 0, �(b) and �(b) = �b� �(b).De�nition 12. For any b 2 W0, we 
all �(b) the landing point of the dynami
alrays Rb(0=1) and Rb(1=2), and we 
all �(b) = �b � �(b) the �xed point of fbwhi
h is neither 0 nor �(b).Remark. Sin
e the fun
tion � is holomorphi
 in W0, the fun
tion � is also holo-morphi
 in W0. In fa
t, sin
e W0 is simply 
onne
ted and does not 
ontain theparameters �b0, it is 
lear that the three �xed points of fb depend holomorphi-
ally on b in W0, without using the fa
t that �(b) is the landing parameter ofthe rays Rb(0=1) and Rb(1=2).5. Dynami
s of fb in the wake W0.We will now improve our des
ription of the dynami
al behaviour of the polyno-mial fb, when b 2 W0 (see Figure 9).Proposition 9. For any b 2 W0, the dynami
s of the map fb is as follows:1. the two 
riti
al points of fb are distin
t and there exist two holomorphi
fun
tions !1(b) and !2(b) de�ned in W0, su
h that for any b 2 W0, !1(b) and!2(b) are the two 
riti
al points of fb, !2(b) being the es
aping 
riti
al pointwhenever b 2 W0 nM�; the 
o-
riti
al points are !0i(b) = �b� 2!i(b);2. the dynami
al rays Rb(1=6) and Rb(1=3) do not bifur
ate and both land at apreimage �1(b) 6= �(b) of �(b); the rays Rb(2=3) and Rb(5=6) do not bifur
ateand land at the other preimage �2(b) =2 f�(b); �1(b)g; we de�ne Vi to be the
onne
ted 
omponent of C nRb(0=1) [ Rb(1=2) that 
ontains �i(b);3. ea
h of the four 
onne
ted 
omponents of C nSf�j6�2ZgRb(�) 
ontains ex-a
tly one of the four points !1(b), !2(b), !01(b) or !02(b); we 
all Ui, i = 1; 2,the one 
ontaining !i(b) and U 0i , i = 1; 2, the one 
ontaining !0i(b);4. the map fb : U 0i ! Vi, i = 1; 2, is an isomorphism and the map fb : Ui ! Vi,i = 1; 2, is a rami�ed 
overing of degree 2 rami�ed at !i(b).Proof. We will �rst show that we 
an follow the two 
riti
al points holomorphi-
ally when b 2 W0.Lemma 8. For any b 2 W0, the two 
riti
al points of fb are distin
t. Moreover,there exist two holomorphi
 fun
tions !1(b) and !2(b) de�ned in W0, su
h thatfor any b 2 W0, !1(b) and !2(b) are the two 
riti
al points of fb.
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Fig. 9. The dynami
al pi
ture of the polynomial fb when the parameter b belongs to W0.Proof. When the two 
riti
al points of fb are distin
t, i.e., b2 6= 3�, we 
anlo
ally follow them. Sin
e W0 is simply 
onne
ted, the proof of the lemma willbe 
ompleted on
e we have proved that for any b 2 W0, the two 
riti
al pointsof fb are distin
t.We will pro
eed by 
ontradi
tion and assume that for some parameter b 2 W0,the polynomial fb has a unique 
riti
al point !. The polynomial fb is then
onjugate by the aÆne 
hange of 
oordinate z 7! w = z � ! to a polynomialof the form w 7! w3 + 
. The Julia set of su
h a polynomial is invariant underthe rotation w 7! e2i�=3w. This shows that the Julia set of fb is invariant underthe rotation of angle 1=3 around !. In parti
ular, the dynami
al ray Rb(1=3)(respe
tively Rb(2=3)) is the image of the dynami
al ray Rb(0=1) by the rotationof angle 1=3 (respe
tively 2=3) of 
enter ! (see Figure 10). For the same reason,the dynami
al ray Rb(5=6) (respe
tively Rb(1=6)) is obtained from Rb(1=2) byrotating with angle 1=3 (respe
tively 2=3) around !. We will show that thedynami
al rays Rb(0=1) and Rb(1=2) 
annot land at the same point �(b).Indeed, when b 2 W0, the two dynami
al rays Rb(0=1) and Rb(1=2) land at�(b). By rotating with angle 1=3, we see that the two rays Rb(1=3) and Rb(5=6)land at e2i�=3�(b). Sin
e those two rays are separated by the 
urve f�(b)g [Rb(0=1)[Rb(1=2), they 
an only meet at �(b). Hen
e, �(b) = e2i�=3(�(b)�!)+! = !. But this would imply that ! is a super-attra
ting �xed point, and no ray
ould land at !. This gives the 
ontradi
tion. �
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2� 2iRb(5=6)Rb(2=3)
Rb(1=2) ! Rb(0=1)

Rb(1=6)Rb(1=3)

Fig. 10. The Julia set of fb for b2 = 3�. There is a unique 
riti
al point ! and the Julia setis invariant by rotation of angle 1=3 around !.Then, it is not diÆ
ult to 
he
k that the 
o-
riti
al points !0i(b) are de�nedby !0i(b) = �b � 2!i(b), i = 1; 2. We still have a 
hoi
e on whi
h 
riti
al pointwill be labelled !1 and whi
h one will be labelled !2. To 
omplete the proofof (1), we need to prove that we 
an 
hoose !2 su
h that !2(b) is the es
aping
riti
al point of fb for any b 2 W0 nM�. This will be done later and we will nowfo
us on the proof of (2).Lemma 9. For any b 2 W0 the dynami
al rays Rb(1=6) and Rb(1=3) do notbifur
ate. They both land at a preimage �1(b) 2 f�1b f�(b)g n f�(b)g of �(b).The rays Rb(2=3) and Rb(5=6) do not bifur
ate and land at the other preimage�2(b) 2 f�1b f�(b)g n f�(b); �1(b)g.Proof. Let us assume that Rb(1=6) bifur
ates for some parameter b 2 W0. Then itbifur
ates on a preimage of the es
aping 
riti
al point !2, and one of its forwardimage bifur
ates on !2. Sin
e fb(Rb(1=6)) = Rb(1=2) is �xed, this means that !2belongs to the rayRb(1=6) or to the ray Rb(1=2). On the one hand, the latter 
aseis not possible sin
e the ray Rb(1=2) does not bifur
ate. On the other hand, sin
eb 2 W0, the es
aping 
o-
riti
al point !02 belongs to a dynami
al ray Rb(�), with� 2℄1=6; 1=3[. Hen
e, the rays bifur
ating on !2 have angle � � 1=3 2℄ � 1=6; 0[and � + 1=3 2℄1=2; 2=3[. Thus, the ray Rb(1=6) 
annot bifur
ate on !2.A similar argument shows that the rays Rb(1=3), Rb(2=3) and Rb(5=6) do notbifur
ate.To 
omplete the proof of the lemma, it is enough to prove that �(b) has threedistin
t preimages: �(b), �1(b) and �2(b). In other words, we need to show that
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es. 25�(b) is not a 
riti
al value of fb. Indeed, we 
an then argue that sin
e fb is alo
al isomorphism in a neighborhood of �i(b) and sin
e the rays Rb(0=1) andRb(1=2) land at �(b), two of the rays Rb(1=6), Rb(1=3), Rb(2=3) and Rb(5=6)land at �1(b) and two of them land at �2(b). The only possibility is that Rb(1=6)and Rb(1=3) land at the same preimage, let us say �1(b), and the rays Rb(2=3)and Rb(5=6) land at the other preimage �(b).To see that �(b) is not a 
riti
al value of fb, we will pro
eed by 
ontradi
tion.Hen
e, we assume that for some parameter b 2 W0, one 
riti
al point ! is mappedby fb to �(b). Then, sin
e �(b) is either repelling or paraboli
 with multiplier 1,we see that ! 6= �(b). Besides, we have seen that the two 
riti
al points of fbare distin
t. Hen
e, in a neighborhood of !, the map fb is a two-to-one rami�ed
overing, and the four rays Rb(1=6), Rb(1=3), Rb(2=3) and Rb(5=6) have to landat !. But this is not possible sin
e the rays Rb(1=6), Rb(2=3) are separated byRb(0=1) and Rb(1=2). �We will now prove (3) using a holomorphi
 motion argument.Lemma 10. The setXb = f!1(b); !2(b); !01(b); !02(b)g [0� [f�j6�2ZgRb(�)1Aundergoes a holomorphi
 motion as b moves in W0.Proof. The fun
tions !i(b) and !0i(b), i = 1; 2, are holomorphi
 when b 2 W0.Besides, we have seen that the dynami
al rays Rb(�), 6� 2 Z, do not bifur
atewhen b 2 W0, and thus, move holomorphi
ally when b 2 W0. To prove thelemma, we need to prove the inje
tivity 
ondition of holomorphi
 motions. Sin
ewe already know that the 
riti
al points are distin
t, we only need to show thatfor any b 2 W0, the 
riti
al points and 
o-
riti
al points 
annot belong to any ofthe rays Rb(�), 6� 2 Z. But this is 
lear sin
e otherwise, one of those rays wouldhave to bifur
ate on a 
riti
al point. �The dynami
al pi
ture for the polynomial fb1 has been studied in se
tion 3,and it is not diÆ
ult to 
he
k that ea
h 
onne
ted 
omponent ofC n [f�j6�2ZgRb1(�)
ontains exa
tly one of the four points !1(b1), !2(b1), !01(b1) or !02(b1). None ofthe four points are 
ontained in the set Sf�j6�2ZgRb1(�) for any b 2 W0: Sin
ethe four points and Sf�j6�2ZgRb1 (�) moves 
ontinuously when b 
hanges andW0 is 
onne
ted, statement (3) follows.We 
an now 
omplete the proof of (1). We 
hoose the fun
tions !1(b) and!2(b) so that !2(b1) is the es
aping 
riti
al point of fb1 . Then, the boundary ofU 02(b1) is the union of the two dynami
al rays Rb1(1=6), Rb1(1=3) and their land-ing point �1(b1). Using the holomorphi
 motion, we see that the same propertyholds for U 02(b), i.e., the boundary of U 02(b) is the union of the two dynami
alrays Rb(1=6), Rb(1=3) and their landing point �1(b). In parti
ular, the regionU 02(b) 
ontains the dynami
al rays Rb(�), � 2℄1=6; 1=3[. On the other hand, we



26 Xavier Bu�, Christian Henriksenknow that when b 2 W0 nM�, the es
aping 
o-
riti
al point belongs to one ofthose rays. Hen
e, for any b 2 W0 nM� the es
aping 
o-
riti
al point belongsto the region U 02(b). Thus the es
aping 
o-
riti
al point is !02(b) and for anyb 2 W0 nM�, the es
aping 
riti
al point is !2(b).We �nally prove (4). We have 
alled V1(b) and V2(b) the two 
onne
ted 
om-ponents of C n Rb(0=1) [ Rb(1=2). Sin
e the preimages of the rays Rb(0=1) andRb(1=2) are the rays Rb(�), 6� 2 Z, the 
onne
ted 
omponents of f�1b (Vi),i = 1; 2, are the 
onne
ted 
omponents of C nSf�j6�2ZgRb(�). Let U be one ofthem. Sin
e the polynomial fb : C ! C is a rami�ed 
overing, the restri
tion offb to U is a rami�ed 
overing onto its image. Sin
e U is simply 
onne
ted, theRiemann-Hurwitz formula shows that the degree of the restri
tion of fb to U isn + 1 where n is the number of 
riti
al points of fb in U , 
ounted with multi-pli
ity. Hen
e, to �nish the proof of (4), we only need to show that fb(Ui) = Viand fb(U 0i ) = Vi for i = 1; 2.Lemma 11. For any b 2 W0, the 
omponent U 02 
ontains the two dynami
alrays Rb(2=9) and Rb(5=18) that both land at a preimage of �2(b).Proof. We have seen previously that for any b 2 W0, the region U 02 
ontains thedynami
al rays Rb(�), � 2℄1=6; 1=3[. Sin
e 2=9 2℄1=6; 1=3[ and 5=18 2℄1=6; 1=3[,the �rst part of the lemma is proved.Next, we have seen that fb is an isomorphism between U 02 and its image. Sin
eU 02 
ontains the two dynami
al rays Rb(2=9) and Rb(5=18), its image 
ontainsthe two dynami
al rays fb(Rb(2=9)) = Rb(2=3) and fb(Rb(5=18)) = Rb(5=6) thatboth land at �2(b) 2 V2 and the lemma is proved. �Sin
e fb maps the rays Rb(2=9) and Rb(5=18) whi
h are in U 02 to the raysRb(2=3) and Rb(5=6) whi
h land at �2(b) 2 V2, we see that fb(U 02) = V2. Sin
e!2(b) and !02(b) have the same image, we immediately obtain that fb(U2) = V2.Hen
e, fb : U 02 ! V2 is an isomorphism and fb : U2 ! V2 is a rami�ed 
overingof degree 2, rami�ed at !2. Sin
e the polynomial fb has degree 3, the 
omponentV2 has no other preimage, and fb(U1) = fb(U 01) = V1. This �nishes the proof ofthe proposition.6. Holomorphi
 motion of rays.In the rest of this arti
le, we will work in the wake W0. We will 
onstantly haveto deal with the 
riti
al point !2(b), b 2 W0. Thus, the reader must keep in mindthat the fun
tion !2 is a holomorphi
 fun
tion de�ned throughout all the wakeW0, and that for any parameter b 2 W0 nM�, the point !2(b) is the es
aping
riti
al point.Theorem A. For any parameter b 2 W0 and for any � 2 �, the dynami
al rayRb(�) does not bifur
ate. We de�ne Xb to the setXb = [�2�Rb(�):We also de�ne Jb to be the set Jb = Xb nXb and Kb to be the 
omplement of theunbounded 
onne
ted 
omponent of C n Jb . Then, Kb is 
ontained in the �lled-in
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es. 27Julia set K(fb), its boundary Jb is 
ontained in the Julia set J(fb) and Kb isquasi-
onformally homeomorphi
 to the �lled-in Julia set K(�z + z2).Figure 11 shows the set Kb and the set of dynami
al rays Xb for a parameterb 2M� \W0.
Rb(1=18)
Rb(0=1)Rb(1=2)

Rb(4=9)

Fig. 11. The set Kb and the set of set of dynami
al rays Xb for a parameter b 2M� \W0.Proof. Let us �rst prove that for any parameter b 2 W0 and any � 2 �, thedynami
al ray Rb(�) does not bifur
ate. We will mimi
 the proof of proposition7. For any b 2 W0, we have de�ned V2(b) to be the 
onne
ted 
omponent ofC nRb(0=1)[Rb(1=2) that 
ontains �2(b). Sin
e the two dynami
al rays Rb(2=3)and Rb(5=6) land at �2(b), they are 
ontained in V2(b), and for any � 2 [0; 1=2℄,the dynami
al ray Rb(�) is 
ontained in C n V2(b). Sin
e for any � 2 �, wehave 3k� 2 [0; 1=2℄ mod 1, for any k � 0, the forward orbit of the ray Rb(�) is
ontained in C n V2(b). Next, for any b 2 W0, we 
laim that the 
riti
al point!2(b) { whi
h is the es
aping 
riti
al point when b 2 W0 nM� { belongs to theregion V2(b). Indeed, we have seen that �(b) 
annot be a 
riti
al value of fb.Hen
e, the set f!2(b); �2(b)g [ Rb(0=1) [ Rb(1=2) moves holomorphi
ally whenb 2 W0. Hen
e, !2(b) and �2(b) are always in the same 
onne
ted 
omponentof C n Rb(0=1) [ Rb(1=2). Now, assume that there exists an angle � 2 � su
hthat the dynami
al ray Rb(�) bifur
ates. Then, it bifur
ates on a preimage of thees
aping 
riti
al point !2(b) and one of its forward image bifur
ates on !2(b).
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ontradi
ts the fa
t that the forward orbit of the ray Rb(�) is 
ontainedin C n V2(b) whi
h does not 
ontain !2(b).Next, observe that the mapping h : W0 � Xb1 ! Xb de�ned by h(b; z) ='�1b Æ 'b1 (z) is a holomorphi
 motion of Xb1 parametrized by b 2 W0. The �-Lemma by Ma~ne, Sad and Sullivan [MSS℄ shows that h extends to a holomorphi
motion of the 
losure Xb1 of Xb1 in C . Sin
e W0 is a simply 
onne
ted Riemannsurfa
e, S`odkowski's Theorem (see [Sl℄ [D2℄) shows that one 
an in fa
t extendh to a holomorphi
 motion of the whole 
omplex plane C , still parametrizedby b 2 W0. We will keep the notation h for this extension. The mapping z 7!hb(z) = h(b; z) is a K(b)-quasi-
onformal homeomorphism, where K(b) is theexponential of the hyperboli
 distan
e between b1 and b in W0. It maps the setof dynami
al rays Xb1 to the set of dynami
al rays Xb, and hb �Xb1 nXb1� =Xb nXb: Sin
e � is 
losed, the set Jb is 
ontained in the Julia set J(fb). Sin
eK(fb) is full, the set Kb is 
ontained in the �lled-in Julia set K(fb) Finally, hbprovides a quasi-
onformal homeomorphism between Kb and Kb1 , and sin
e Kb1is quasi-
onformally homeomorphi
 to the quadrati
 Julia set K(�z + z2) (seepropositions 5 and 7), Theorem A is proved.Observe that the mapping hb 
onjugates the polynomials fb1 and fb on theset of rays Xb1 , i.e., for any z 2 Xb1 we have hb Æ fb1 = fb Æ hb. By 
ontinuity ofhb, this property holds on the 
losure Xb1 and in parti
ular on Jb1 .Observe also that the �xed point 0 never belong to the set Xb so that theset Xb [ f0g moves holomorphi
ally when b moves in W0. In parti
ular, we 
an
hoose the extension h so that h(b; 0) = 0 for any b 2 W0. Sin
e 0 2 Kb1 , thisshows that for any b 2 W0, 0 belongs to Kb.We �nally would like to mention that we 
ould 
hoose the extension of h sothat hb 
onjugates the polynomials fb1 and fb on the whole set Kb1 , and su
hthat the distributional derivative �hb=�z vanishes onKb1 . But this would requireextra work and we will just mention the idea of the proof. We 
ould �rst provethat for any b 2 W0, there is a restri
tion of fb : U 0b ! Ub to a neighborhoodof Kb whi
h is a quadrati
-like map. We 
ould then prove as in proposition 5that the hybrid 
lass of this quadrati
-like restri
tion 
ontains the quadrati
polynomial z 7! �z+z2. In parti
ular, for any b 2 W0, the polynomial-like mapsfb : U 0b ! Ub and fb1 : U 0b1 ! Ub1 would be hybrid 
onjugate, i.e., there wouldexist a quasi-
onformal homeomorphism hb : Ub1 ! Ub su
h that hbÆfb1 = fbÆhbon U 0b1 and su
h that the distributional derivative �hb=�z vanishes on Kb1 . Wewould �nally have to prove that the restri
tion of the mapping (b; z) 7! hb(z) toW0 �Kb1 gives a holomorphi
 motion Kb1 extending h.7. The dyadi
 wakes W#.Observe that in the wake W0 we see a 
opy M 0 of a Mandelbrot set, with rootpoint at b0. In this se
tion, we will explain why we see su
h a 
opy, and we willdetermine a Cantor set �0 su
h that the boundary of M 0 is the a

umulationset of the parameter rays R�(�), � 2 �0.The reason why su
h a 
opy appears is that for any b 2 W0, the mappingfb : U2 ! V2 is a rami�ed 
overing of degree 2, rami�ed at !2. The sets U2and V2 are topologi
al disks and U2 � V2, and the family (fb : U2 ! V2)b2W0is almost a Mandelbrot-like family (see [DH2℄). The problem is that U2 is not
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es. 29relatively 
ompa
t in V2. If � 6= 1, one 
an 
ut along equipotentials and thi
kendomains (see [M℄) to 
onstru
t quadrati
-like mappings. Su
h an approa
h hasalready been developed by Epstein and Yampolsky [EY℄ who proved that thereexists a homeomorphism � : M 0 n fb0g ! M n f1=4g su
h that for any b 2 M 0,there exists a quadrati
-like restri
tion fb : V 0b ! Vb whi
h is hybrid 
onjugateto z 7! z2 + �(b).The 
ase � = 1 is di�erent and less understood. Indeed, when � = 1, the�xed point �(b) is paraboli
 with multiplier 1. In this 
ase, no more thi
keningis possible. We would like to mention that in [Ha℄, Ha��ssinsky has made a majorstep in the dire
tion of proving that in the 
ase � = 1, the setM 0 is neverthelesshomeomorphi
 to the Mandelbrot set. Sin
e the thi
kening is not possible when� = 1, we need to adopt an approa
h that is not based on surgery.De�nition 13.K 0b = nz 2 K(fb) j (8n � 0) fÆnb (z) 2 U2o; J 0b = �K 0b andM 0 = fb0g [ �b 2 W0 j K 0b is 
onne
ted	:Proposition 10. The sets K 0b and M 0 have the following properties:1. for any b 2 W0, K 0b is a 
ompa
t set, K 0b � K(fb) and J 0b � J(fb);2. a parameter b 2 W0 belongs to M 0 if and only if !2(b) belongs to K 0b;3. M 0 is a 
ompa
t subset of M� and �M 0 � �M�.4. if b 2 W0 nM 0, then any 
y
le of fb whi
h entirely lies in U2 is repelling.Proof.1. For any b in W0, we haveK 0b = \n�0Kn; where K0 = K(fb) \ U2 and Kn+1 = �fb��U2��1(Kn):Ea
h Kn is 
ompa
t. Hen
e, K 0b is also 
ompa
t. By de�nition, K 0b � K(fb).Given any point z in a 
onne
ted 
omponent U of the interior of K(fb), iffÆnb (z) =2 U2, for some integer n � 0, then fÆnb (U) entirely lies in C nU2. Hen
e,�K 0b � �K(fb), i.e., J 0b � J(fb).2. Let us now 
onsider a parameter b 2 W0. If !2(b) 2 K 0b, then !2(b) 2 K(fb),and K0 = K(fb)\U2 is 
onne
ted. By indu
tion, assume Kn is 
onne
ted. Then,sin
e !2(b) 2 K 0b, we see that fb(!2(b)) 2 Kn, andKn+1 is also 
onne
ted. Hen
e,K 0b is the interse
tion of a nested sequen
e of 
onne
ted 
losed sets. Thus, K 0b is
onne
ted and b 2 M 0. Conversely, if !2(b) =2 K 0b, there exists an integer n � 1su
h that fÆnb (!2(b)) =2 U2. Sin
e K0 2 U2, we see that Kn has at least two
onne
ted 
omponents. This shows that K 0b is not 
onne
ted and b =2M 0.3. If b belongs to M 0, then !2(b) 2 K 0b � K(fb). Hen
e, M 0 � M�. We haveseen that b 2 W0 nM 0 if and only if there exists an integer n � 1 su
h thatfÆnb (!2(b) =2 U2. Sin
e U2 moves holomorphi
ally, hen
e 
ontinuously, when bmoves inW0, we see that this is an open 
ondition. Hen
e,W0nM 0 is open inW0.Sin
e the 
losure ofM 0 is 
ontained in the 
losure ofM�, sin
eM�\�W0 = fb0g,and sin
e by de�nition M 0 \ �W0 = fb0g, we see that M 0 is 
losed, hen
e
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ompa
t. Let us now show that �M 0 � �M�. Take a parameter b 6= b0 inthe boundary of M 0. Then in any neighborhood U � W0 of b, we 
an �nd aparameter b0 2 UnM 0 so that there exists an integer n � 1 with fÆnb0 (!2(b0)) =2 U2.Sin
e fÆnb (!2(b)) 2 U2, and sin
e the boundary of U2 moves holomorphi
allywhen the parameter moves in U , we 
an �nd a parameter b00 2 U su
h thatfÆnb00 (!2(b00)) 2 �U2. There are two possibilities:either fÆnb00 (!2(b00)) belongs to a dynami
al ray; in that 
ase b00 =2M�;or fÆnb00 (!2(b00)) is one of the two points �(b00) or �1(b00); in that 
ase the
riti
al point !2(b) is eventually mapped to a repelling �xed point, and it iswell-known that b00 2 �M�.4. Assume that b 2 W0nM 0. Then there exists a smallest integer n � 1 su
h thatfÆnb (!2(b)) =2 U2. De�ne U 00 to be the n-th preimage of U2 by fbjU2 and de�ne U 0to be the image of U 00 by fb. The, fb : U 00 ! U 0 is a non-rami�ed 
overing mapof degree 2. Hen
e, there are two well-de�ned inverse bran
hes g1 : U 0 ! U 00and g2 : U 0 ! U 00. By S
hwarz's lemma, those two bran
hes are 
ontra
ting forthe Poin
ar�e metri
 of U 00 and thus, every periodi
 orbit of fb 
ontained in U 0is repelling (there may be periodi
 orbit 
ontained in the 
losure of U 0, but weare only 
on
erned by the ones 
ontained inside U 0).De�nition 14. We de�ne �0 � R=Z to be the set of angles � su
h that for anyn � 0, 3n� 2 [1=2; 1℄ mod 1: We also de�ne X 0 to be the set of parameter raysX 0 = [�2�0R�(�=3);and for any b 2M 0, we de�ne X 0b to be the set of dynami
al raysX 0b = [�2�0Rb(�):Remark. The set �0 is the set of angles �0 that 
an be written in base 3 withonly 1's and 2's. It is a Cantor set, invariant under multipli
ation by 3. In fa
t,� 2 �0 if and only if � � 1=2 2 �. Observe also that for any � 2 �0, the twoangles �=3 + 1=3 and �=3 + 2=3 also belong to �0.De�nition 15. We will say that b 2 M 0 is a tip of M 0 if and only if the orbitof !2(b) is eventually mapped to �(b), i.e., if there exists an integer k � 1 su
hthat fÆk(!2(b)) = �(b).Proposition 11. We have the following dynami
al result:1. for any parameter b 2M 0, we have J 0b = X 0b nX 0b, where the 
losure is takenin C ;2. for any b 2M 0, any z 2 J 0b whi
h is eventually mapped to �(b) is the landingpoint of at least two rays Rb(��) and Rb(�+), where �� 2 �0. Moreover, iffÆk(z) = � and (fÆk)0(z) 6= 0, then, there are exa
tly two dynami
al rayslanding at z.The parameter 
ounterpart of this statement is the following:3. the boundary of M 0 is the a

umulation set of X 0: �M 0 = X 0 n X 0;



Julia sets in parameter spa
es. 314. for any tip b 2 M 0, there are exa
tly two angles �� 2 �0 and �+ 2 �0su
h that !02(b) is the landing point of the two dynami
al rays Rb(��=3) andRb(�+=3). Furthermore, the parameter rays R�(��=3) and R�(�+=3) land atb 2M 0.Figure 12 shows the set X 0 of parameter rays and the set M 0.

X 0
W3=4 W1=2

W1=4M 0
Fig. 12. The set X 0 of parameter rays and the set M 0.Proof.1. Let us �x a parameter b 2 M 0. Then, the dynami
al rays Rb(�), � 2 �0, donot bifur
ate and the set X 0b is exa
tly the set of rays in U2(b) whose forwardorbit remains in U2(b). Take any point z0 in the a

umulation set of X 0b. Sin
e�0 is 
losed, z0 2 J(fb). Then, sin
e �0 is forward invariant by multipli
ationby 3, for any integer n � 0, the point zn = fÆnb (z0) is in the a

umulation setof X 0b. Sin
e X 0b � U2(b), we obtain zn 2 U2(b). But this pre
isely shows thatz0 2 J 0b. Hen
e X 0b nX 0b � J 0b.Conversely, given any point z0 2 J 0b and any 
onne
ted neighborhood W0of z0, we must show that W0 
ontains points of X 0b. Sin
e z0 2 J 0b, for anyinteger n � 0, the point zn = fÆnb (z0) belongs to U2(b). Sin
e J 0b � J(fb) (seeproposition 10), the family of iterates fÆnb : W0 ! C is not normal. Hen
e, thereexists a �rst integer n � 0 su
h that Wn = fÆnb (W0) interse
ts C n U2. Sin
eWn is 
onne
ted and 
ontains the point zn 2 U2(b), we see that Wn interse
tsat least one of the rays Rb(0=1), Rb(1=2), Rb(2=3), or Rb(5=6). Besides, for any
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ontained in U2(b). Hen
e, W0 interse
t a ray whi
his eventually mapped to one of the rays Rb(0=1), Rb(1=2), Rb(2=3), or Rb(5=6)and whose forward orbit remains in U2. Su
h a ray ne
essarily belongs to theset X 0b.2. We only need to observe that for any z 2 J 0b, if there exists an integer k � 0su
h that fÆkb (z) = �(b), then there exists a neighborhood U of z su
h thatfÆkb : U ! fÆkb (U) is a 
overing. This 
overing may be rami�ed if z is a preimageof !2(b). However, by restri
ting U if ne
essary, we may assume that z is the onlyrami�
ation point. Sin
e the two rays Rb(0=1) and Rb(1=2) land at �(b), thereare at least two rays Rb(��) and Rb(�+) that land at z, satisfying fÆkb (Rb(��)) =Rb(0=1) and fÆkb (Rb(�+)) = Rb(1=2). Finally, sin
e the forward orbit of z remainsin V2, we immediately see that the forward orbit of Rb(��) also remains in V2.Thus, �� 2 �0. Furthermore, if (fÆkb )0(z) 6= 0, we have to show that there areexa
tly two dynami
al rays landing at z. Sin
e Rb(0=1) is landing at �(b), everydynami
al ray landing at � must have 
ombinatorial rotation number 0=1. Hen
e,the dynami
al rays landing at �(b) are exa
tly the rays Rb(0=1) and Rb(1=2).Sin
e fÆkb is a lo
al isomorphism at z, mapping z to �(b), there are exa
tly twodynami
al rays landing at z.3. Sin
e �0 is 
losed, the a

umulation set X 0 nX 0 is 
ontained in the boundaryof M�. Given any parameter b0 in this a

umulation set, we want to show thatb0 2 M 0. Sin
e, by de�nition of M 0, the parameter b0 belongs to M 0, we mayassume that b0 6= b0. In this 
ase, b0 2 W0. Given any parameter b 2 X 0, andany integer n � 1, the point fÆnb (!2(b)) belongs to a dynami
al ray Rb(3n�), forsome � 2 �0. Hen
e, the whole orbit ffÆnb (!2(b))gn�0 belongs to U2(b). Then,by 
ontinuity of U2(b) at b0 2 W0, the whole orbit ffÆnb0 (!2(b0))gn�0 belongsto U2(b0). But sin
e b0 2 M�, we know that !2(b0) 2 K(fb0). This shows thatb0 2M 0. Hen
e X 0 n X 0 � �M 0.Conversely, we want to prove that �M 0 � X 0 n X 0. We know that b0 is thelanding point of the rays R�(1=6) and R�(1=3). Hen
e b0 2 X 0 n X 0. Given anyparameter b� 2 �M 0 n fb0g � �M� \ W0, and any neighborhood U � W0 ofb�, we want to show that there exists a parameter b 2 U su
h that one of therays Rb(�); � 2 �0 bifur
ates on !2(b): Assume this is not the 
ase. Then, theset X 0b = S�2�0 Rb(�) moves holomorphi
ally when b 2 U ; and therefore X 0bremains 
onne
ted for all b 2 U and X 0b nX 0b � J(fb). By proposition 10 we have�M 0 � �M�; so there exists a parameter b0 2 U su
h that !2(b0) =2 K(fb0). Sin
ethe rays Rb0(�); � 2 �0 do not bifur
ate on !2(b0) and sin
e X 0b0 nX 0b0 � J(fb),we see that !2(b0) does not belong to X 0b0 . Besides, sin
e b0 is in the wake W0,the 
riti
al point !2(b0) is in the region U2(b0) Hen
e, there exists an angle�1 2 ℄1=2; 2=3[ su
h that the dynami
al rays Rb0(�1) and Rb0(�1+1=3); bifur
ateon !2(b0): Sin
e the set Rb0(�1)[Rb0(�1+1=3)[f!2(b0)g does not interse
t anddoes not dis
onne
t X 0b, and sin
e it separates �(b0) 2 X 0b0 and �2(b0) 2 X 0b0 , weget a 
ontradi
tion.4. Let us now 
onsider a tip b� 2 M 0. Then, fb�(!2(b�)) 2 J 0b� , there exists asmallest integer k � 1 su
h that fÆkb� (!2(b�)) = �2(b�) and fÆ(k�1)b� is a lo
al



Julia sets in parameter spa
es. 33isomorphism at fb�(!2(b�)). Hen
e, the dynami
al statement shows that thereare exa
tly two dynami
al rays landing at fb�(!2(b�)). Those rays are of theform Rb�(�+) and Rb�(��), �� 2 �0.We will now show that the parameter rayR�(�+=3) land at the parameter b�.A similar proof 
an be 
arried out for the parameter rayR�(��=3). Observe thatthe two dynami
al rays Rb�(��=3) and Rb�(�+=3) land at !02(b�). Besides, sin
ethe k� 1 �rst iterates of !2(b�) omit the rays Rb�(0=1) and Rb�(1=2), and sin
ethe rays Rb(0=1) and Rb(1=2) move holomorphi
ally when b 2 W0, it followsthat there exist a neighborhood U � W0 of b� su
h that for any b 2 U and anyi � k � 1, fÆib (!2(b)) omits the two rays Rb(0=1) and Rb(1=2). In parti
ular, forany b 2 U , the two dynami
al rays Rb(��) and Rb(�+) do not bifur
ate. Pulling-ba
k on
e more, we see that for any b 2 U , the dynami
al rays Rb(��=3) andRb(�+=3) do not bifur
ate when b 2 U , and so, move holomorphi
ally when bmoves in U . Next, for every � 2 [0;+1[, de�ne h� : U ! C to be the holomorphi
fun
tion h�(b) = '�1b (e�+2i��+=3):When � tends to 0, one 
an show that h� 
onverges uniformly on U to a fun
tionh0 (this is in fa
t the way one proves that the holomorphi
 motion of the rayextends to its 
losure). For any b 2 U , h0(b) is the landing point of the dynami
alray Rb(�+). Moreover, the fun
tion h0 � !02 vanishes at b�. Besides, it does notvanish on UnM� sin
e for any b 2 UnM�, !02(b) =2 K(fb), whereas h0(b) 2 K(fb).Let us assume that the parameter ray R�(�+=3) does not land at b�. Then thereexist a neighborhood U and a sequen
e �k & 0 su
h that ��1� (e�k+2i��+=3) =2 U ,i.e., the fun
tion h�k �!02 does not vanish on U . Then, Hurwitz's theorem showsthat h0�!02 either does not vanish on U , or vanishes everywhere on U . This is in
ontradi
tion to the previous observation. Hen
e, the parameter ray R�(�+=3)lands at b�.Remark. We don't 
laim that the only rays a

umulating on J 0b are rays of theform Rb(�), � 2 �0, or that the only rays a

umulating on M 0 are rays of theform R�(�=3), � 2 �0. This would be of the same order of diÆ
ulty as provingthat for a quadrati
 polynomial, the only dynami
al ray a

umulating the �-�xed point is the ray of angle 0=1. In the 
ase of Cremer polynomials, this is notknown.We will now 
onsider the unbounded 
onne
ted 
omponents ofW0 n [�2�0R�(�=3):We will show that those 
onne
ted 
omponents are naturally indexed by thedyadi
 angles # = (2p+ 1)=2k, k � 1 and 2p+ 1 < 2k, and we will denote thembyW#. We will also show that the boundary of a 
omponent W# is the union oftwo parameter rays R�(#�=3) and R�(#+=3), #� 2 �0, that land at a 
ommonparameter b# 2M 0.In the next se
tion, we will show that for every dyadi
 angle #, M� \ W#
ontains a quasi-
onformal 
opy K# of the �lled-in Julia set K(�z + z2), su
hthat b# 2 �K# � �M�.



34 Xavier Bu�, Christian HenriksenDe�nition 16. Any dyadi
 angle # = (2p+ 1)=2k, k � 1 and 0 < 2p+ 1 < 2k,
an be expressed in a unique way as a �nite sum2p+ 12k = kXi=1 "i2i ;where ea
h "i, i = 1; : : : k, takes the value 0 or 1. We de�ne #� and #+ by theformulae: #� = kXi=1 "i + 13i ; and #+ = #� + 12 � 3k :Remark. There are two ways of writing a dyadi
 number # in base 2:# = 0:"1"2 : : : "k�101111 : : : = 0:"1"2 : : : "k�110000 : : : :Read those two numbers in base 3 and add 1=2. You will obtain #� and #+.Proposition 12. Given any dyadi
 angle # = (2p+1)=2k, k � 1, 0 < 2p+ 1 <2k, the two parameter rays R�(#�=3) and R�(#+=3) land at a 
ommon tipb# 2M 0. More pre
isely, fÆ(k+1)b# (!2(b#)) = �(b#);and the two dynami
al rays Rb#(#�=3) and Rb#(#+=3) land at !02(b#).Proof.Step 1. Let us �rst prove that the parameter ray R�(#�=3) land either at b0or at a tip b# 2 M 0 (a similar proof works for the parameter ray R�(#+=3)).The argument we use is very similar to the one written in the Orsay notes[DH1℄. Let us 
hoose any parameter b# in the a

umulation set of the parameterray R�(#�=3) and assume b# 6= b0. Then, b# belongs to the wake W0 andproposition 11 shows that b# 2 M 0. Moreover, observe that 3k#� � 0 mod 1.Hen
e, if b is the point of the parameter ray R�(#�=3) of potential �, thenfÆ(k+1)b (!2(b)) is the point of the dynami
al ray Rb(0=1) of potential 3k+1�.Sin
e b# is in the wake W0, the dynami
al ray Rb(0=1) moves holomorphi
allyin a neighborhood of b# and lands at �(b). Hen
e, by 
ontinuity as � tends to0, we obtain that fÆ(k+1)b# (!2(b#)) = �(b#). This shows that b# is a tip of M 0.Furthermore, the set of parameters b su
h that fÆ(k+1)b (!2(b)) = �(b) is dis
reteand the a

umulation set of the parameter ray R�(#�=3) is 
onne
ted. Hen
e,the parameter ray R�(#�=3) land either at b0 or at a tip b# 2M 0.Let us now show that if the parameter ray R�(#�=3) lands at a tip b# 2M 0,then the dynami
al ray Rb#(#�=3) lands at !02(b#). For this purpose we needthe following lemma:Lemma 12. Let � be any angle su
h that 3k� = 0 mod 1 or 3k� = 1=2 mod 1for some integer k, and let b� be any parameter in M�\W0. Then the dynami
alray Rb�(�) lands at a preimage z� of �(b�). Assume z� is not a preimage of the
riti
al point !2(b�). Then, when b moves in a suÆ
iently small neighborhood ofb�, the ray Rb(�) does not bifur
ate, and thus, moves holomorphi
ally.
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ase 3k� = 1=2 mod 1. The other 
ase is similar. Sin
eb� 2M�, the dynami
al ray Rb�(�) does not bifur
ate. Besides, 3k� = 1=2 mod 1,we have fÆkb� (Rb�(�)) = Rb�(1=2):Sin
e the ray Rb�(1=2) lands at �(b�), we see that the ray Rb�(�) lands at apreimage z� of �(b�). The lemma now follows dire
tly from [DH1℄, Proposition3, expos�e 8. �We 
an apply the above lemma to the angle #�=3 and the parameter b#. Itshows that the ray Rb#(#�=3) lands at a preimage z# of �(b#).If z# is not a preimage of the 
riti
al point !2(b#) then the ray moves holo-morphi
ally in a neighborhood of b#. We de�ne b� to be the point of potential� on the parameter ray R�(#�=3). Then !02(b�) is the point of potential � onthe dynami
al ray Rb� (#�=3). When � tends to 0, b� tends to b# and !02(b�)
onverges to the landing point of the dynami
al ray Rb#(#�=3). By 
ontinuityof the fun
tion !02, it proves that the dynami
al ray Rb#(#�=3) lands at !02(b#).Hen
e, the only remaining diÆ
ulty is proving that z# is not a preimageof the 
riti
al point !2(b#). If this were the 
ase, one 
ould �nd an integer k1su
h that fÆk1b# (z#) = !2(b#). Note that k1 � 1 sin
e !2(b#) and the dynami
alray Rb#(#�=3) are separated by Rb#(0=1) [Rb#(1=2)[ f�(b#)g. Sin
e !2(b#) isstri
tly preperiodi
 (this is our assumption that b# 6= b0), iterating on
e more,we know that fÆ(k1+1)b# (z#) = fb#(!2(b#)) is not a preimage of !2(b#) and is thelanding point of the dynami
al ray Rb#(3k1#�). Hen
e, we 
an apply lemma12. It shows that the ray Rb(3k1#�) moves holomorphi
ally in a neighborhoodof b#. Then again, de�ning b� to be the point of potential � on the parameterray R�(#�=3), we get by 
ontinuity that fÆ(k1+1)b# (!2(b#)) = fb#(!2(b#)). Hen
e,either fÆk1b# (!2(b#)) = !2(b#) or fÆk1b# (!2(b#)) = !02(b#). The �rst 
ase is notpossible sin
e !2(b#) is not periodi
. The se
ond 
ase is also impossible sin
e b# 2M 0 and thus !2(b#) and !02(b#) are separated by Rb#(0=1)[Rb#(1=2)[f�(b#)g.Step 2. Let us now show that the parameter raysR�(#+=3) andR�(#�=3) landat the same parameter. Either, both of them land at b0, or one of them land ata tip b# 6= b0 of M 0. Without loss of generality, assume that R�(#�=3) landsat b# 6= b0. We just proved in step 1 that the dynami
al ray Rb#(#�=3) landsat !02(b#). Proposition 11 (4) shows that there are exa
tly two rays landing at!02(b#). It is not diÆ
ult to 
he
k that the other dynami
al ray landing at !02(b#)is Rb#(#+=3). Proposition 11 (4) then shows that the parameter ray R�(#+=3)lands at b#.Step 3.We now need to prove that the parameter raysR�(#+=3) andR�(#�=3)do not land at b0. The usual te
hniques to prove this kind of result is based ona 
areful study of paraboli
 implosion (see for example the Orsay notes [DH1℄).We will use a di�erent approa
h based on Yo

oz inequality (see [Hu℄ or [P℄).Let us �rst de�ne W# to be the 
onne
ted 
omponent of W0 n R�(#�=3) [R�(#+=3) that 
ontains the parameter rays R�(�), with � 2 ℄#�=3; #+=3[. We
laim that the 
omponentW# 
annot interse
tM 0. Indeed, proposition 10 showsthat if W# interse
tM 0, there is a parameter b0 2 W# su
h that b0 is a tip of M 0



36 Xavier Bu�, Christian Henriksen(tips ofM 0 are dense in �M 0). But proposition 11 then shows that there are twoparameter rays landing at b0 whose angles are in �0. However, no angle between#� and #+ 
an be written with only 1's and 2's.Let us now assume that the parameter rays R�(#�=3) and R�(#+=3) landat b0. Sin
e W# \ M 0 = ;, proposition 10 shows that for any b 2 M� \ W#,the �xed point �(b) is repelling and thus, has a rotation number. This rotationnumber is 
onstant on any 
onne
ted 
omponent L of M� \W#. Besides, sin
eM� is 
onne
ted, we ne
essarily have b0 2 L. Sin
e at b0 the �xed point �(b)
ollapses with �(b) and be
omes a multiple �xed point, the multiplier at �(b)tends to 1 as b tends to b0, and the Yo

oz inequality shows that the rotationnumber of �(b) is 0=1 for any b 2 L. But in this 
ase, for any b 2 L one of thetwo dynami
al rays Rb(0=1) or Rb(1=2) has to land at �(b), whi
h is impossiblesin
e they both land at �(b) 6= �(b). This gives the required 
ontradi
tion.De�nition 17. For any dyadi
 angle #, we de�ne the wake W# to be the 
on-ne
ted 
omponent of C n R�(#�=3) [ R�(#+=3)that 
ontains the parameter rays R�(�), with � 2 ℄#�=3; #+=3[.Proposition 13. Given any dyadi
 angle # = (2p+1)=2k, k � 1, 0 < 2p+ 1 <2k, and any parameter b 2 W#, the dynami
al rays Rb(#�=3) and Rb(#+=3) donot bifur
ate and land at a 
ommon preimage of �(b).Proof. Let us assume that b belongs to the parameter ray R�(�) and that thedynami
al ray Rb(#�=3) bifur
ates. Then, note that the dynami
al ray Rb(�) bi-fur
ates on !02(b). Hen
e, Rb(3�) 
ontains the 
riti
al value fb(!2(b)). Moreover,the dynami
al ray Rb(#�=3) bifur
ates on a preimage of !2(b). Hen
e, thereexists an integer n � 0 su
h that fÆnb (Rb(#�=3)) = Rb(3n�1#�) bifur
ates on!2(b). Sin
e Rb(#�=3) � U 02, we ne
essarily have n � 1, and Rb(3n#�) 
ontainsthe 
riti
al value fb(!2(b)). This shows that the set of parameters b 2 W0 wherethe dynami
al ray Rb(#�=3) bifur
ates is pre
isely the union of parameter raysR�(�) where � 2 ℄1=6; 2=3[ and 3� = 3n#� mod 1 for some integer n � 1.It is not diÆ
ult to 
he
k that for any n � 1, the angle 3n#� mod 1 doesnot belong to the interval [#�; #+℄. Besides, the parameter ray R�(3n#�) landsat a tip of M 0 and this tip 
annot be b# (see proposition 12). Hen
e, the setof parameter b 2 W0 for whi
h the dynami
al ray Rb(#�=3) do not bifur
ateis a neighborhood of W#. A similar argument shows that the set of parameterb 2 W0 for whi
h the dynami
al rayRb(#+=3) do not bifur
ate is a neighborhoodof W#. Sin
e at b# the two dynami
al rays Rb(#�=3) and Rb(#+=3) land at the
ommon point b#, we see that this property holds for any parameter b in W#.Finally, sin
e fÆ(k+1)b (Rb(#�=3)) = Rb(0=1) lands at �(b), the landing point ofthe rays Rb(#�=3) and Rb(#+=3) is a preimage of �(b).De�nition 18. Given any dyadi
 angle # = (2p+1)=2k, k � 1, 0 < 2p+1 < 2k,and any parameter b 2 W#, we de�ne W# to be the 
onne
ted 
omponent ofC n �Rb(#�=3) [ Rb(#+=3)�that 
ontains the dynami
al rays Rb(�), � 2 ℄#�=3; #+=3[.
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es. 37Proposition 14. Given any dyadi
 angle # = (2p+1)=2k, k � 1, 0 < 2p+ 1 <2k, and any parameter b 2 W#, the 
o-
riti
al point !02(b) belongs to the regionW#(b) and the mapping fÆ(k+1)b : W#(b)! V1(b) is an isomorphism.Proof. We have seen (proposition 13) that the boundary of the region W#(b)move holomorphi
ally when bmoves in the wakeW#. Furthermore, the 
o-
riti
alpoint !02(b) 
annot belong to this boundary sin
e this would mean that b is inthe boundary of the wake W#. Hen
e, to see that for any to parameter b 2 W#,the 
o-
riti
al point !02(b) belongs to the region W#(b), it is enough to 
he
k itat one parti
ular parameter b 2 W#. This is 
lear as soon as b is outside M�.Indeed, in this 
ase b belongs to a parameter ray R�(�) with � 2 ℄#�=3; #+=3[.Thus, !02(b) belongs to the dynami
al ray Rb(�) �W#(b).Sin
e fÆ(k+1)b : C ! C is a rami�ed 
overing, we know that for any 
onne
ted
omponent W of �fÆ(k+1)b ��1 (V1(b)), the restri
tion fÆ(k+1)b : W ! V1(b) isalso a rami�ed 
overing. Those 
omponents are the 
onne
ted 
omponents of Cminus the 
losure of the dynami
al rays Rb(�) where 3k+1� mod 1 is equal to 0 or1=2. It is not diÆ
ult to 
he
k that the regionW#(b) 
ontains no su
h ray. Thus,fÆ(k+1)b : W#(b) ! V1(b) is a rami�ed 
overing. Sin
e the boundary of W#(b) ismapped to the boundary of V1(b) with degree 1, fÆ(k+1)b : W#(b) ! V1(b) is anisomorphism.8. Copies of quadrati
 Julia sets in the parameter plane.In se
tion 6, we have de�ned the setXb = [�2�Rb(�)and we have proved that the mapping h : W0 �Xb1 ! Xb de�ned by h(b; z) ='�1b Æ 'b1(z) gives a holomorphi
 motion of the set Xb1 . In this se
tion we �xon
e and for all a holomorphi
 motion h : W0 � C ! C that 
oin
ide with theprevious holomorphi
 motion onW0�Xb1 . This 
an be done using S`odkowski'stheorem (see [Sl℄ or [D2℄), be
ause W0 is a simply 
onne
ted Riemann surfa
e.We will also �x on
e and for all a dyadi
 angle # = (2p + 1)=2k, k � 1,0 < 2p+1 < 2k, and we will de�ne #�, #+, b#,W# andW#(b) as in the previousse
tion.De�nition 19. We de�ne X# to be the set of parameter raysX# = [�2�R� �#�3 + �3k+1� :Besides, we de�ne J# to be the set J# = X# n X#, where the 
losure is takenin C . Finally, we de�ne K# to be the 
omplement of the unbounded 
onne
ted
omponent of C n J#.
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�1 + i f�1b (�)0�f�1b (0)
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1 + i

�1� 3i
:2 + 3:4i

bW0b0

K(fb)
�:3 + 3:4i

:3 + 2:7i Fig. 13. The holomorphi
 motion for � = �1.Main Theorem. Let � 2 S1 be a 
omplex number of modulus 1 and # 2 R=Zbe a dyadi
 angle. The set K# is 
ontained in M� \ W#, its boundary J# is
ontained in the boundary of M� and the parameter b# belongs to J#. Besides,there exist a quasi-
onformal homeomorphism de�ned in a neighborhood of K#,sending K# to K(�z + z2).Figure 13 suggests the main idea of the proof in the 
ase � = �1, p = 0 andk = 1, i.e., for # = 1=2.Proof. By de�nition of X# and J#, we see that X# � W# and J# � �M�. Sin
eM� is full, we also have K# � M�. Finally, sin
e b# is the landing point ofthe parameter ray R�(#�=3), we see that b# 2 J#. Hen
e, the only diÆ
ulty isproving that K# is quasi-
onformally homeomorphi
 to K(�z + z2).



Julia sets in parameter spa
es. 39Lemma 13. The mapping H# :W0 ! C de�ned byH#(b) = h�1b hfÆ(k+1)b (!2(b))i ;is lo
ally quasi-regular. Its restri
tion to the dyadi
 wake W#, is a homeomor-phism whi
h is lo
ally quasi-
onformal.Proof. The argument we use is essentially due to Douady and Hubbard [DH2℄(with some modi�
ations). Let us �rst show that the restri
tion of H# to anyopen subset ofW0 whi
h is relatively 
ompa
t inW0 is a quasi-regular mapping.It is enough to prove that there exists a � 2 [0; 1[ su
h that the distributionalderivatives of H with respe
t to b and b are lo
ally in L2 and satisfy�������� �H#=�b�H#=�b ��������1 � � < 1:Let us take the derivative with respe
t to b of the equation hbÆH# = fÆ(k+1)b Æ!2:Sin
e �hb=�b and �(fÆ(k+1)b Æ !2)=�b identi
ally vanish, we get�hb�z ���H#(b) �H#�b ���b + �hb�z ���H#(b) �H#�b ���b = 0Thus, ���� �H#=�b�H#=�b ���b ���� = ���� �H#=�b�H#=�b ���b ���� = ���� �hb=�z�hb=�z ���H#(b) ���� :The result follows by quasi-
onformality of hb.Now, at every point b 2 W0, the mapping H# has a lo
al degree whi
h ispositive. To see that the restri
tion of H# to the wakeW# is proper, let us showthat H# mapsW# (respe
tively �W#) to V1(b1) (respe
tively �V1(b1)). Indeed, ifb 2 W#, then !02(b) belongs to the regionW#(b) whi
h is mapped isomorphi
allyby fÆ(k+1)b to V1(b) (see proposition 14). This shows that for any b 2 W#,fÆ(k+1)(!2(b)) = fÆ(k+1)(!02(b)) 2 V1(b):Moreover, by 
onstru
tion, for any b 2 W0, we have hb(V1(b1)) = V1(b). Sin
ehb is a homeomorphism, we see thatH#(b) = h�1b hfÆ(k+1)b (!2(b))i 2 h�1b (V1(b)) = V1(b1):Furthermore, the map H# is 
ontinuous in the whole wakeW0 and in parti
ularon the boundary of W#, i.e., on R�(#�) [ R�(#+). Sin
e hb maps Rb1(0=1)(respe
tively Rb1(1=2)) to Rb(0=1) (respe
tively Rb(1=2)), we see that whenb 2 �W#, i.e., !02(b) 2 Rb(#�) [ Rb(#+), we haveH#(b) 2 h�1b �fÆ2b �Rb(#�) [ Rb(#+)�� = h�1b �Rb(0=1) [ Rb(1=2)�= Rb1(0=1) [ Rb1(1=2) = �V1(b1):Hen
e, the mapping H# :W# ! V1(b1) is a proper mapping.



40 Xavier Bu�, Christian HenriksenLet us now show that the topologi
al degree of the restri
tion of H# toW# is1. Sin
e H# is lo
ally quasi-regular, the topologi
al degree of H# at any point b 2W# is positive. Hen
e, it is enough to show that when b turns on
e around W#,H#(b) turns on
e around V1(b1). But this is straight forward sin
e the point ofpotential � on the parameter ray R�(#�)=3 (respe
tively R�(#+)=3) is mappedto the point of potential 3k+1� on the dynami
al ray Rb1(0=1) (respe
tivelyRb1(1=2)). �To 
on
lude the proof of the main theorem, observe that H# (X#) = Xb1 :Indeed, for any � 2 �,H#�R� �#�3 + �3k+1�� = Rb1(3k#� + �) = Rb1(�):Hen
e, H#(J#) = H#(X# n X#) = Xb1 nXb1 = Jb1 ;and H#(K#) = Kb1 . Sin
e we know that Kb1 is quasi-
onformally homeomorphi
to K(�z + z2), the main theorem is proved.We say that the family fb is stable at a parameter b0 if and only if the Juliaset J(fb) moves holomorphi
ally in a neighborhood of b0. The bifur
ation lo
usof the family fb is de�ned to be the set of parameters where the family is notstable. Using the results obtained by Ma~ne, Sad and Sullivan in [MSS℄, one 
anprove that the bifur
ation of the family fb, b 2 C , is pre
isely the boundary of the
onne
tedness lo
us M�. The following 
orollary is an immediate 
onsequen
eof the previous theorem.Corollary A. For ea
h � = e2i��, the bifur
ation lo
us of the one parameterfamily fb(z) = �z + bz2 + z3, b 2 C , 
ontains quasi-
onformal 
opies of thequadrati
 Julia set J(�z + z2).9. Non lo
al 
onne
tivity in the parameter plane.We will now prove that when the Julia set J(�z + z2) is not lo
ally 
onne
tedM� is not lo
ally 
onne
ted.Corollary B. If the Julia J(�z + z2) is not lo
ally 
onne
ted, M� is not lo
ally
onne
ted.Proof. The proof we will give here was explained to us by Lyubi
h and M
Mullen.Let us re
all that if the 
ontinuous image of a lo
ally 
onne
ted 
ompa
t set isHausdor�, then it is lo
ally 
onne
ted. Thus, it is enough for our purposes to
onstru
t a 
ontinuous retra
tion from M� to the set K#.Let us �rst plough in the dynami
al plane of fb1 . Observe that the unbounded
onne
ted 
omponents of C nXb1 are preimages of V2(b1) by iterates of fb1 . Sin
eV2(b1) is bounded by the dynami
al rays Rb1(0=1) and Rb1(1=2) whi
h both landat �(b), we see that ea
h unbounded 
onne
ted 
omponent of C nXb1 is boundedby two dynami
al rays belonging to X 0b1 whi
h land at a 
ommon preimage of�(b1).
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es. 41Harvesting in the parameter plane using H#, we see that ea
h unbounded
onne
ted 
omponents of C n X# is bounded by two parameter rays belongingto X# whi
h land at a 
ommon parameter whi
h belong to J#. We 
an thende�ne a retra
tion  : C nX# ! K# whi
h is the identity on K# and sends everyunbounded 
onne
ted 
omponent W of C n X# to the landing point of the twoparameter rays bounding W .This retra
tion is 
ontinuous. Indeed, every open set in K# 
an be writtenU \K# with U open in C n X#. Then, the preimage of this open set is the unionof U and the unbounded 
onne
ted 
omponents of C n X# interse
ting U . Thisis 
learly open.The restri
tion of  to M� � C n X# gives the required retra
tion.Let us �nally prove that there exist values of � for whi
h 
ertain parameterrays have a non-trivial impression. In order to state our third 
orollary, we needto introdu
e some notations.De�nition 20. Given any 
omplex number � of modulus 1, we de�ne P� to bethe quadrati
 polynomial P�(z) = �z+z2. We de�ne gP� : C ! [0;+1[ to be itsGreen fun
tion and 'P� : C nK(P�)! C n D to be its B�ott
her 
oordinate. Forany angle � 2 R=Z, we de�ne RP�(�) to be the dynami
al ray of the polynomialP� of angle �.De�nition 21. Let �� : R=Z ! R=Z be the Cantor map (or devil stair
ase)whi
h is 
onstant on ea
h 
onne
ted 
omponent of R=Z n� and is de�ned on �by: ��0�Xi�1 "i3i1A =Xi�1 "i2i ; where "i 2 f0; 1g:Corollary C. Given any 
omplex number � of modulus 1 and dyadi
 angle# = (2p+1)=2k and any angle � 2 �, the a

umulation set of the parameter rayR�(#�=3 + �=3k+1) is redu
ed to a point if and only if the a

umulation set ofthe quadrati
 ray RP�(��(�)) is redu
ed to a point.The following proof was explained to us by Douady.Proof. The proof of the main theorem provides a homeomorphismH# :W# ! V1(b1)whi
h maps ea
h parameter ray R�(#�=3 + �=3k+1), � 2 �, to the dynami
alray Rb1(�). Hen
e, it is enough to prove that for any � 2 �, the a

umulation setof the dynami
al ray Rb1(�) is redu
ed to a point if and only if the a

umulationset of the quadrati
 ray RP�(��(�)) is redu
ed to a point.Let us re
all that the mapping fb1 : U 0b1 ! Ub1 is a quadrati
-like mappinghybrid 
onjugate to the quadrati
 polynomial P� (see proposition 5 and �gure 3).To �x the ideas, we 
hoose a potential �0 > 0, we set UP� = fz 2 C j gP�(z) <2�0g and U 0P� = fz 2 C j gP�(z) < �0g. Then, we 
hoose a quasi-
onformalhomeomorphism  : Ub1 ! UP� that 
onjugates fb1 : U 0b1 ! Ub1 to P� : U 0P� !UP� and that sends the segment of dynami
al ray Ub1 \ Rb1(0=1) onto UP� \
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onstru
t a 
ontinuous mapping  � : Ub1 nKb1 ! UP� nK(P�)whi
h semi-
onjugates fb1 : U 0b1 ! Ub1 to P� : U 0P� ! UP� and whi
h mapsRb1(�)\Ub1 , � 2 �, to RP�(��(�)). We will then prove that the distan
e, for thehyperboli
 metri
 on C nK(P�), between  (z) and  �(z), is uniformly boundedindependently on z 2 UP� nK(P�). It easily follows that the a

umulation setsof  (Rb1(�)) and  �(Rb1(�)) = RP�(��(�)) are equal. Sin
e  : Ub1 ! UP� is ahomeomorphism, this will 
omplete the proof of 
orollary C.Let us now �ll in the details. We will need to work with the universal 
overingsof Vb1 = C nKb1 and VP� = C nK(P�). To write things 
orre
tly and to avoidnasty traps, we need to 
hoose basepoints. We 
hoose z0 (respe
tively z1) tobe the point of potential G(b1) (respe
tively G(b1)=3) on the dynami
al rayRb1(0=1). We then de�ne �b1 : eVb1 ! Vb1 to be the universal 
overing of Vb1with basepoint at z0. We 
hoose eR to be a lift of Rb1(0=1) and we de�ne ez0(respe
tively ez1) to be the point of eR whi
h is in the �ber of z0 (respe
tively z1).Next, we de�ne eUb1 = ��1b1 (Ub1 nKb1) and eU 0b1 = ��1b1 (U 0b1 nKb1). Then, we 
allefb1 : eU 0b1 ! eUb1 the lift of fb1 : U 0b1 ! Ub1 that sends ez1 to ez0:(eU 0b1 ; ez1) efb1
//�b1

��

(eUb1 ; ez0)�b1
��(U 0b1 ; z1) fb1 // (Ub1 ; z0):Finally, observe that the fundamental group of Vb1 is a 
y
li
 group that a
tson eVb1 . We 
all 
b1 : eVb1 ! eVb1 the automorphism of eVb1 that 
orresponds toturning on
e around Kb1 
ounter-
lo
kwise. Sin
e fb1 : U 0b1 ! Ub1 maps a loopthat turns on
e around Kb1 
ounter-
lo
kwise to a loop that turns twi
e aroundKb1 
ounter-
lo
kwise, we see that efb1 Æ 
b1 = 
Æ2b1 Æ efb1 .Similarly, we de�ne w0 (respe
tively w1) to be the point of potential �0 (re-spe
tively �0=2) on the quadrati
 rayRP�(0=1). We de�ne �P� : eVP� ! VP� to bethe universal 
overing with basepoint at w0. In this 
ase, we 
an give an expli
itformula. We identify eVP� with the right half-plane H = fz 2 C j Re(z) > 0g andwe set �P� = '�1P� Æ exp. The real axis proje
ts to the quadrati
 ray RP�(0=1).Thus, we de�ne ew0 = �0 and ew1 = �0=2, so that �P�( ew0) = w0 and �P�( ew1) =w1. We de�neeUP� = ��1P��UP� nK(P�)� = nz 2 H j Re(z) < 2�0oand eU 0P� = ��1P��U 0P� nK(P�)� = nz 2 H j Re(z) < �0o:The lift of P� : VP� ! VP� that sends ew1 to ew0 is the map ew 7! 2 ew. Finally, theautomorphism of H that 
orresponds to turning on
e around K(P�) 
ounter-
lo
kwise is the translation z 7! z + 2i�.Next, a quasi-
onformal homeomorphism  : Ub1 ! UP� , that 
onjugatesfb1 : U 0b1 ! Ub1 to P� : U 0P� ! UP� and that sends the segment of dynami
alray Ub1 \ Rb1(0=1) onto UP� \ RP�(0=1), 
an be lifted to a quasi-
onformal
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es. 43homeomorphism e : eUb1 ! eUP� that sends ez0 to ew0. Then e sends eR \ eUb1to R \ eUP� . Hen
e, it also sends ez1 to ew1, and it is not diÆ
ult to see that it
onjugates efb1 to multipli
ation by 2: e Æ efb1 = 2 e :We now 
ome to the 
onstru
tion of the semi-
onjuga
y  �. First, 
onsiderthe in
reasing homeomorphism h : [G(b1); 3G(b1)℄! [�0; 2�0℄ de�ned byh = gP� Æ  Æ '�1b1 Æ exp(h(�) is the potential in C nK(P�) of the image by  of the point of potential� on the dynami
al ray Rb1(0=1)). Then, de�ne the 
ontinuous mapping  � :Ub1 n U 0b1 ! UP� n U 0P� in the following way:� on U 00b1 , the map  � is 
onstantly equal to '�1P� (e�0), i.e., the point of potential�0 on the dynami
al ray RP�(0=1);� on Ub1 n (U 0b1 [ U 00b1) the map  � sends the point '�1b1 (e�+2i��) to the point'�1P� (eh(�)+2i���(�)).Observe that on the boundary of U 0b1 , we have  � Æfb1 = P� Æ �. Now, 
onsiderthe lift e � : eUb1 n eU 0b1 ! eUP� n U 0P� that sends ez0 to ew0. The map e � semi-
onjugates efb1 to multipli
ation by 2 on the boundary of eU 0b1 . Thus, we 
anextend it 
ontinuously to eUb1 using the formula:e �(ez) = 12n e �� efÆnb1 (ez)�;where n is 
hosen so that efÆnb1 (ez) belongs to eUb1 n eU 0b1 . An easy indu
tion showsthat e �Æ
1 = e �+2i�. Hen
e, e � proje
ts to a 
ontinuous map  � : Ub1nKb1 !UP� nK(P�) that semi-
onjugates fb1 : U 0b1 ! Ub1 to P� : U 0P� ! UP� .We 
laim that for any � 2 �,  � maps Rb1(�) \ Ub1 homeomorphi
ally ontoRP�(��(�) \ UP�). Indeed, set A0 = Ub1 n U 0b1 and for n � 0 de�ne re
ursivelyAn+1 = f�1b1 (An). Similarly, de�ne Bn to be the annulusBn = nz 2 C nK(P�) j �0=2n � gP�(z) � �0=2n�1o:By 
onstru
tion, for every � 2 �, we have  �(Rb1(�) \A0) = RP�(��(�)) \B0.Besides, sin
e  � semi-
onjugates fb1 and P�, we see that for every n � 0 andevery � 2 �,  �(Rb1(�) \ An) is 
ontained in the interse
tion of the annulusBn with a ray of P�. Sin
e  � is 
ontinuous, the whole set  �(Rb1(�) \ Ub1) is
ontained in a single ray of P�, i.e., the ray RP�(��(�)). The point of potential� is mapped to the point of potential h(3n�)=2n, where n is 
hosen so thatG(b1) � 3n� � 3G(b1). This shows that  � : Rb1(�) \ Ub1 ! RP�(��(�) \ UP�)is a homeomorphism.Let us �nally show that the distan
e, for the hyperboli
 metri
 on C nK(P� ),between  (z) and  �(z), is uniformly bounded independently on z 2 Ub1 nKb1 .It is enough to prove that for any ez 2 eUb1 , the hyperboli
 distan
e in H betweene (ez) and e �(ez) is uniformly bounded. Sin
e e Æ efb1 = 2 e and e � Æ efb1 = 2 e �,and sin
e multipli
ation by 2 is an isometry for the hyperboli
 metri
 on H , it isenough to prove the statement on the interse
tion of eUb1n eU 0b1 with a fundamental
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1. This is immediate sin
e the 
losure of su
h a set is 
ompa
t ineVb1 and the mappings e and e � are 
ontinuous on eVb1 .It now follows that we 
an extend  � 
ontinuously toKb1 by setting  �jKb1 = jKb1 . Given � 2 � 
onsider the restri
tion of  � to (Rb1(�)\Ub1)[Kb1 . Sin
ethis map is inje
tive 
ontinuous and the domain is 
ompa
t, it is ne
essarily ahomeomorphism. Noti
e that the 
losure of Rb1(�)\Ub1 in C equals the 
losuretaken in (Rb1(�) \ Ub1) [Kb1 . Similarly the 
losure of RP�(��(�)) \ UP� in Cequals the 
losure taken in (RP�(��(�))\UP� )[K(P�). In parti
ular  �jKb1 = jKb1 provides a homeomorphism, mapping the impression of Rb1(�) onto theimpression of RP�(��(�)).Let us now 
onsider the fun
tion �2 : (R n Q)=Z! (R n Q)=Z de�ned in thefollowing way: for any irrational angle, �rst 
hoose the representative t 2℄0; 1[,then de�ne �2(t) = X0<p=q<t 12q+1 :The sum is taken over all pairs (p; q) su
h that 0 < p=q < t, whether p andq are relatively prime or not. Douady proved that the set of 
omplex numbers� = e2i�t, t 2 (R n Q)=Z, for whi
h the a

umulation set of the quadrati
 rayRP�(�2(t)) is not redu
ed to a point, is a dense GÆ subset of S1. The proof 
anbe found in [S�℄.Next, observe that for ea
h t 2 R n Q, there is exa
tly one angle �3(t) 2 �whi
h is mapped to �2(t) by �� :�3(t) = X0<p=q<t 13q+1 :The previous 
orollary shows that when the a

umulation set of the quadrati
 rayRP�(�2(t)) is not redu
ed to a point, then the a

umulation set of the parameterray R�(2=9+ �3(t)=9) is also not redu
ed to a point. This shows that the set of
omplex numbers � of modulus 1 for whi
h at least one of the parameter raysR�(�) � C nM� has an a

umulation set not redu
ed to a point, 
ontains adense GÆ subset of S1.A
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