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Communiations in Mathematial Physis manusript No.(will be inserted by the editor)
Julia sets in parameter spaes. ?Xavier Bu�1, Christian Henriksen21 Universit�e Paul Sabatier, UFR MIG, Laboratoire E. Piard, 31062 Toulouse Cedex, Frane.E-mail: bu��piard.ups-tlse.fr2 Tehnial University of Denmark, Department of Mathematis, 2800 Lyngby, Denmark. E-mail: hris�mat.dtu.dkReeived: date / Aepted: dateAbstrat: Given a omplex number � of modulus 1, we show that the bifur-ation lous of the one parameter family ffb(z) = �z + bz2 + z3gb2C ontainsquasi-onformal opies of the quadrati Julia set J(�z + z2). As a orollary, weshow that when the Julia set J(�z + z2) is not loally onneted (for examplewhen z 7! �z + z2 has a Cremer point at 0), the bifuration lous is not lo-ally onneted. To our knowledge, this is the �rst example of omplex analytiparameter spae of dimension 1, with onneted but non-loally onneted bi-furation lous. We also show that the set of omplex numbers � of modulus 1,for whih at least one of the parameter rays has a non-trivial aumulation set,ontains a dense GÆ subset of S1.Contents1. Introdution. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22. Conformal representation of C nM�. . . . . . . . . . . . . . . . . . . . 53. Copies of quadrati Julia sets in the dynamial plane. . . . . . . . . . 114. De�nition of the wake W0. . . . . . . . . . . . . . . . . . . . . . . . . . 165. Dynamis of fb in the wake W0. . . . . . . . . . . . . . . . . . . . . . 226. Holomorphi motion of rays. . . . . . . . . . . . . . . . . . . . . . . . 267. The dyadi wakes W#. . . . . . . . . . . . . . . . . . . . . . . . . . . . 288. Copies of quadrati Julia sets in the parameter plane. . . . . . . . . . 379. Non loal onnetivity in the parameter plane. . . . . . . . . . . . . . 40? Researh partially supported by the frenh embassy in Denmark within the researh o-operation between Frane and Denmark: \Holomorphi Dynamis".



2 Xavier Bu�, Christian Henriksen1. Introdution.In this artile, we study the one parameter family of ubi polynomialsfb(z) = �z + bz2 + z3; b 2 C ;where � = e2i�� is a �xed omplex number of modulus 1. We allK(fb) the �lled-in Julia set of the polynomial fb, J(fb) its Julia set, and M� the onnetednesslous of the family:K(fb) = �z 2 C �� �fÆnb (z)�n2N is bounded	J(fb) = �K(fb); andM� = �b 2 C �� J(fb) is onneted	:The notations Kb and Jb are kept for other purposes.In setions 2 and 3, we reall some lassial results related to the studyof the dynamis of ubi polynomials. Those results an be found in [BH1℄.In partiular, we prove that the onnetedness lous M� is onneted and weonstrut dynamially a onformal representation �� : C nM� ! C nD (omparewith [Z1℄). This enables us to de�ne the parameter rays R�(�), � 2 R=Z.In setion 4, we prove that the parameter rays R�(1=6) and R�(1=3) land ata ommon parameter b0. The tehniques we use are not new. They are similarto those developed by Douady and Hubbard in [DH1℄ to study the landingproperties of parameter rays in the quadrati family fz 7! z2 + g2C . We thende�ne the wake W0 as the onneted omponent of C n �R�(1=6) [ R�(1=3)�that ontains the parameter ray R�(1=4) (see �gure 5). In setion 5, we studythe dynamial features of the polynomials fb when the parameter b ranges inthe wake W0.Matters get interesting in setion 6. Let us de�ne � � R=Z (respetively�0 � R=Z) to be the Cantor set of angles that an be written in base 3 withonly 0's and 1's (respetively with only 1's and 2's). We denote by Xb the set ofdynamial rays whose arguments belong to �. In setion 6, we prove that the setXb moves holomorphially as long as the parameter b remains in the wake W0.As a onsequene, we show that for any parameter b 2 W0, the �lled-in Julia setK(fb) ontains a quasi-onformal opy of the �lled-in Julia set K(�z + z2) (see�gure 11).Theorem A. For any parameter b 2 W0 and for any � 2 �, the dynamial rayRb(�) does not bifurate. We de�ne Xb to be the setXb = [�2�Rb(�):We also de�ne Jb to be the set Jb = Xb nXb and Kb to be the omplement of theunbounded onneted omponent of C n Jb . Then, Kb is ontained in the �lled-inJulia set K(fb), its boundary Jb is ontained in the Julia set J(fb) and Kb isquasi-onformally homeomorphi to the �lled-in Julia set K(�z + z2).In the wake W0, one an see a opy M 0 of a Mandelbrot set (see Figure1). We give a preise de�nition of the set M 0, but we do not prove that it is



Julia sets in parameter spaes. 3
M�

K(�z + z2)Fig. 1. Zooms in M� for � = ei�(p5�1).homeomorphi to the Mandelbrot set. This has been done in [EY℄ in the ase� 6= 1, and is not known in the ase � = 1. However, we show that the boundaryof M 0 is equal to the aumulation set of the parameter rays R�(�=3), � 2 �0(see �gure 12): �M 0 = X 0 n X 0; where X 0 = [�2�0R�(�=3):At the same time, we show that the onneted omponents of W0 n X 0 an beindexed by dyadi angles # 2 R=Z. The onneted omponent W# is boundedby two parameter rays R�(#�) and R�(#+) landing at a ommon parameterb# 2 M 0. The angles #� and #+ are two onseutive endpoints of the Cantorset �0. We prove that given any dyadi angle # = (2p + 1)=2k, we have #+ =#� + 1=(2 � 3k+1). We then de�ne the sets X#, J# and K# in the following way:X# = [�2�R� �#�3 + �3k+1� ;



4 Xavier Bu�, Christian HenriksenJ# = X# nX#, where the losure is taken in C , and K# is the omplement of theunbounded onneted omponent of C n J#. Our main results are the following(see Figure 1).Main Theorem. Let � 2 S1 be a omplex number of modulus 1 and # 2 R=Zbe a dyadi angle. The set K# is ontained in M� \ W#, its boundary J# isontained in the boundary of M� and the parameter b# belongs to J#. Besides,there exists a quasi-onformal homeomorphism de�ned in a neighborhood of K#,sending K# to K(�z + z2).Corollary A. For eah omplex number � of modulus 1, the bifuration lous ofthe one parameter family fb(z) = �z+ bz2+ z3, b 2 C , ontains quasi-onformalopies of the quadrati Julia set J(�z + z2).Corollary B. If the Julia J(�z+z2) is not loally onneted, then the bifurationlous �M� is not loally onneted.We would like to mention that one has to be areful. Indeed, in the ontextof Newton's method of ubi polynomials, Pasale Roesh [R℄ has an exampleof a loally onneted Julia set ontaining a opy of a quadrati Julia set whihis not loally onneted. In our ase, this does not our beause the set M� isfull.Observe that when t 2 R n Q does not satisfy the Bruno ondition, thequadrati Julia set J(e2i�tz + z2) is known to be non-loally onneted. Hene,the set of values of � 2 S1 for whihM� is not loally onneted ontains a denseGÆ subset of S1. Lavaurs [La℄ proved that the onnetedness lous of the wholefamily of ubi polynomials is not loally onneted. In the parameter spaeof real ubi polynomials, the bifuration lous is also known to be non-loallyonneted (see [EY℄). To our knowledge, we give the �rst example of omplexparameter spae of dimension 1 with onneted but non-loally onneted bifur-ation lous.Shizuo Nakane brought to our attention that we ould prove the existene ofparameter rays with a non-trivial aumulation set. He has already proved thisresult in the family of real ubi polynomials in a joint work with Y. Komori(see [NK℄). To state the next orollary, we need to introdue some notations.Given any omplex number � of modulus 1, we de�ne P� to be the quadratipolynomial P�(z) = �z + z2. For any angle � 2 R=Z, we de�ne RP�(�) to bethe dynamial ray of the polynomial P� of angle �. We also onsider the Cantormap (or devil stairase) �� : R=Z ! R=Z whih is onstant on the losure ofeah onneted omponent of R=Z n� and is de�ned on � by:��0�Xi�1 "i3i1A =Xi�1 "i2i ; where "i 2 f0; 1g:Corollary C. Given any omplex number � of modulus 1, any dyadi angle# = (2p+1)=2k and any angle � 2 �, the aumulation set of the parameter ray



Julia sets in parameter spaes. 5R�(#�=3 + �=3k+1) is redued to a point if and only if the aumulation set ofthe quadrati ray RP�(��(�)) is redued to a point.Using an aumulation theorem due to Douady (see [S�℄), we then provethat the set of omplex numbers � of modulus 1, for whih at least one of theparameter rays R�(�) � C nM� has a non-trivial aumulation set, ontains adense GÆ subset of S1.We would like to make some omments about the hoie of the family fb.We wanted to work with a family of ubi polynomials having a persistentlyindi�erent �xed point. We deided to put this �xed point at the origin. Thisondition is ahieved, sine the map fb has an indi�erent �xed point at 0 withmultiplier �. The reason why we have hosen this parametrization is that thepolynomial fb is moni and thus, has a preferred B�otther oordinate. Thiswill be useful to de�ne a onformal representation �� : C nM� ! C n D in adynamial way. This is important sine we want to be able to transfer resultsfrom the dynamial plane to the parameter plane. However, one should observethat the maps fb and f�b are always onjugate by the aÆne map z 7! �z.Indeed, �fb(�z) = �(��z + bz2 � z3) = f�b(z):This explains why parameter pitures are symmetri with respet to the origin.The entral argument we use is inspired from tehniques developed by Tan Leiin [TL℄. There, she proves that there are similarities between the Mandelbrot setand ertain Julia sets. We would also like to mention that Pia Willumsen provedthe existene of opies of the quadrati Julia set J(z2�1) in the parameter spaeof a well-hosen family of ubi polynomials.Hubbard made the suggestion that the two dimensional onnetedness lousof the spae of ubi polynomials may ontain homeomorphi opies of the setn(; z) j K(z2 + ) is onneted and z 2 K(z2 + )o:After we exposed our results in Crete 1, Lyubih and MMullen made the ob-servation that pushing further our arguments, we should be able to prove thisresult. This would show the existene of ubi polynomials being in the sameombinatorial lass, but not being topologially onjugate. Suh a result hasbeen onjetured by Kiwi in his thesis [K℄.2. Conformal representation of C nM�.In this setion, we will use results by Branner and Hubbard [BH1℄ to prove thatM� is full, onneted and has apaity 3= 3p4. We will onstrut, in a dynamialway, the Riemann mapping �� : C nM� ! C nD , that is tangent to b 7! b � 3p4=3at in�nity. A similar study has already been done by Zakeri [Z1℄. Working withthe esaping ritial value, he de�nes an analyti map from C nM� to C n Dwhih turns out to be a overing map of degree 3. We will instead work with theesaping o-ritial point. We will need this approah later, to transfer dynamialresults to the parameter plane. In [Z2℄, Zakeri also gives an interesting proof ofthe onnetivity of M� based on Teihm�uller theory of rational maps.1 Euroonferene in Mathematis on Crete; Holomorphi Dynamis; Anogia, June 26 { July2, 1999.



6 Xavier Bu�, Christian Henriksen2.1. Potential funtions.. Reall that Fatou proved that the Julia set of anypolynomial is onneted if and only if the orbit of eah ritial point is bounded.In our ase, the map fb has two ritial points. However, fb has an indi�erent�xed point at 0. Hene, there is always one ritial point with a bounded orbit.Indeed, there are only three possible ases:� the �xed point is paraboli (� 2 Q), and there is at least one ritial point offb in its basin of attration;� the �xed point is linearizable (it ould be the ase even if � is not a Brunonumber), and the boundary of the Siegel disk is aumulated by the orbit ofat least one ritial point of fb;� the �xed point is a Cremer point and is ontained in the limit set of at leastone ritial point of fb.Remark. We will say that this ritial point is \aptured" by 0.In partiular, when J(fb) is disonneted, there is exatly one ritial point!1 with bounded orbit, and one esaping ritial point !2.Let us now reall some lassial results that an be found in [DH1℄ and [BH1℄.De�nition 1 (Potential funtions). For any b 2 C , de�ne gb : C ! [0;+1[by gb(z) = limn!1 13n log+ ��fÆnb (z)��;where log+ is the supremum of log and 0. Also de�ne the funtion G : C ! R+by G(b) = supf! j f 0b(!)=0g gb(!):Remark. When the Julia set J(fb) is onneted, G(b) = 0. Otherwise, G(b) =gb(!2).Proposition 1. We have the following properties:1. gb is ontinuous and subharmoni on all of C ;2. gb(fb(z)) = 3gb(z);3. gb vanishes exatly on K(fb) and is harmoni on C nK(fb);4. the ritial points of gb in C nK(fb ) are the preimages of the esaping ritialpoint !2 by an iterate fÆnb , n � 0;5. the mapping (b; z) 7! gb(z) is a ontinuous plurisubharmoni funtion;6. the funtion G is ontinuous and subharmoni.Remark. We will see that G vanishes exatly on the set M� and is harmonioutside M�.De�nition 2 (Equipotentials). The level urve g�1b f�g is alled the dynamialequipotential of level �. The level urve G�1f�g is alled the parameter equipo-tential of level �.When the Julia set is onneted, the two ritial points are ontained inK(fb), and the harmoni map gb : C nK(fb)! R+ has no ritial point. Hene,every dynamial equipotential of fb is a real-analyti simple losed urve. Moregenerally, observe that gb has no ritial point in the region fz 2 C j gb(z) >



Julia sets in parameter spaes. 7G(b)g, and every dynamial equipotential of level � > G(b) is a real-analytisimple losed urve.The orthogonal urves to dynamial (respetively parameter) equipotentialswill be alled dynamial (respetively parameter) rays. We will be more preiseabout the de�nition of rays below.Figure 2 shows a �lled-in Julia set with two dynamial equipotentials of level1=3 and 1, together with four segments of dynamial rays.
fbfb

4� 4i�4� 4i Rb(9=12)
!2 !02

4 + 4iRb(1=12)Rb(1=4)�4 + 4i
Rb(5=12)

UbU 0b fbFig. 2. A disonneted Julia set; ��(b) = 'b(!02) = e1=3+2i�=12.2.2. The B�otther oordinate at in�nity.. The vetor �eld�b = 12grad(gb)=jgrad(gb)j2is a meromorphi vetor �eld on C nK(fb), having poles exatly at the ritialpoints of gb in C nK(fb).De�nition 3. We de�ne Sb to be the union of the ritial points of gb in C nK(fb) and their stable manifolds for the vetor �eld �b. For any b 2 C , we de�neVb to be the open set C n (K(fb) [ Sb).We have normalized our ubi polynomials so that they are moni. Hene,there exists a unique B�otther oordinate 'b de�ned in a neighborhood of in�nity,



8 Xavier Bu�, Christian Henriksenand tangent to the identity at in�nity. Consider the ow (z; �) 7! Fb(z; �) of thevetor �eld �b, where � 2 R is a real time. For any point z 2 Vb, we an extend'b at z using the formula 'b(z) = e��'b(Fb(z; �)); where � 2 [0;+1[ is hosenlarge enough so that Fb(z; �) 2 Ub. The following proposition is then easilyderived from the analytiity of �b and its analyti dependene on b.Proposition 2 (B�otther oordinate). There exists a unique analyti iso-morphism 'b de�ned in a neighborhood of in�nity, tangent to the identity atin�nity, and satisfying 'b Æ fb Æ '�1b (z) = z3:The mapping 'b extends to an analyti isomorphism 'b : Vb ! C and satis�eslog j'bj = gb on this set. Furthermore, 'b depends analytially on b, i.e., the setV = [b2Cfbg � Vbis open and the mapping � : V! C 2 de�ned by �(b; z) = (b; 'b(z)) is an analytiisomorphism from V onto its image.Remark. An easy omputation shows that near in�nity, we have 'b(z) = z +b=3 +O(1=jzj):When J(fb) is onneted, Vb = C nK(fb) and the B�otther oordinate 'b isa univalent mapping 'b : C nK(fb)! C n D ;and on C nK(fb), we have gb = log j'bj. In partiular, the dynamial equipotentialof level � is the set '�1b ne�+2i�� j � 2 R=Zo;i.e., the preimage by 'b of the irle of radius e� entered at 0.When J(fb) is disonneted this property still holds for equipotentials of level� > G(b), i.e., in the region fz 2 C j gb(z) > G(b)g.In both ases, the push-forward ('b)�(�b) is the radial vetor �eld w�=�w. Inpartiular, 'b maps every trajetory of the vetor �eld �b to a segment of linewith onstant argument. Hene, 'b(Vb) is a star-shaped domain with respetto in�nity, i.e., for every angle � 2 R=Z, there exists a radius r(b; �) � 1 suhthat w 2 'b(Vb) and arg(w) = 2�� if and only if jwj > r(b; �). Finally, along atrajetory z(�) of the vetor �eld �b, we have gb(z(�)) = gb(z(0)) + � .De�nition 4 (Dynamial Rays). For any b 2 C , the dynamial ray Rb(�) isde�ned as Rb(�) = '�1b nre2i�� j r > r(b; �)o:Remark. The vetor �eld �b = 12grad(gb)=jgrad(gb)j2 an be extended holomor-phially to C nK(fb). Then, it has a sink at in�nity and the dynamial rays areexatly the stable manifolds of in�nity for the vetor �eld �b.When r(b; �) = 1, the aumulation set of a dynamial ray is ontained in theJulia set J(fb). This is true for any angle � 2 R=Z when J(fb) is onneted. Ifthe limit z0 = limr&1'�1b (re2i��)



Julia sets in parameter spaes. 9exists, we will say that the dynamial ray Rb(�) lands at z0. When J(fb) isdisonneted and when r(b; �) > 1, then the limitz0 = limr&r(b;�)'�1b (re2i��)exists and is a ritial point ! of gb. In this ase, we will say that the dynamialray Rb(�) bifurates on !.If b2 = 3�, then there is unique ritial point. This ritial point annotesape (beause 0 \aptures" a ritial point), and b 2M�. On the other hand,if b2 6= 3� and b =2M�, then fb(!2) has a preimage !02 6= !2. Following Brannerand Hubbard, we all it the o-ritial point to !2.Let us observe that 'b is well de�ned at the o-ritial point !02. Indeed, !02annot be a ritial point of gb sine it is not an inverse image of !2. Let usonsider the trajetory z(�) de�ned by the initial ondition z(0) = !02. We havegb(z(�)) = gb(!02) + � . In partiular, sine the region fz 2 C j gb(z) > gb(!02)gdoes not ontain ritial points of gb we see that the trajetory z(�) is de�nedon [0;+1[. Hene, !02 belongs to Vb, and 'b(!02) is well de�ned.De�nition 5. Given b 2 C nM�, the esaping ritial point is alled !2 and theo-ritial point to !2 is alled !02 . We de�ne the mapping �� : C nM� ! C by��(b) = 'b(!02):Proposition 3 (Branner-Hubbard [BH1℄ and Zakeri [Z1℄ [Z2℄). The setM� is full and onneted. Besides, the map �� : C nM� ! C nD is the onformalisomorphism whih is tangent to b 7! b � 3p4=3 at in�nity.Proof. We have seen that if b2 = 3�, then b 2 M�. Now, if b2 6= 3�, the tworitial points are the two distint roots of the equation f 0b(z) = 0, and bythe impliit funtion theorem, we an follow them loally. Hene, we an followholomorphially the two ritial points loally outside M�. For the same reason,we an follow holomorphially the two distint o-ritial points loally outsideM�.Lemma 1. The mapping �� : C nM� ! C n D is analyti.Proof. Fix a parameter b0 =2 M�, let !2 be the esaping ritial point and !02be the o-ritial point to !2. There exist two holomorphi maps de�ned in aneighborhood U of b0 that follow the two o-ritial points. Let !0 : U ! C bethe one whih oinide with !02 at b0. The setW = f(b; z) 2 C 2 j z 2 C nK(fb)gis the preimage of ℄0;+1[ by the map g(b; z) = gb(z) whih is ontinuous by 5)of proposition 1. Hene, W is open. Thus, by restriting U if neessary, we mayassume that for any b 2 U , the o-ritial point !0(b) belongs to C nK(fb). Thisshows that, for any b 2 U , the esaping o-ritial point is !0(b).Furthermore, the mapping (b; z) 7! 'b(z) is analyti in a neighborhood ofany point (b0; z0) suh that z0 2 Vb0 . Hene, it is analyti in a neighborhood of(b0; !02). It follows immediately that ��(b) = 'b(!02(b)) is analyti in a neighbor-hood of b0. �



10 Xavier Bu�, Christian HenriksenThe proof that �� is an isomorphism between C nM� and C n D is an appli-ation of the priniple: an analyti mapping is an isomorphism if it is proper ofdegree 1. We shall use a similar argument for quasi-regular mappings in setion8.Lemma 2. Outside M�, we have G(b) = log j��(b)j. Besides, the funtion Gvanishes exatly on M�.Proof. If b 62M�, we an write:log �����(b)��� = 13n log ���'b�fÆn(!02)����= 13n log ����fÆn(!02) +O� 1jfÆn(!02)j����� = G(b):Sine 'b takes values outside D , so does ��. Hene, G is positive outside M�.Besides, if b 2 M�, both ritial points are in the �lled-in Julia set K(fb). So,their orbits are bounded and G(b) = 0. �We an now see that M� is full. This is an immediate onsequene of the fatthat sub-harmoni funtions satisfy the maximum priniple. Thus, level sets arefull.By Piard's theorem, the mapping �� : C nM� ! C n D has a removablesingularity at in�nity. Hene, we an extend it to in�nity. We neessarily have��(1) = 1 sine otherwise G would be a non-onstant bounded subharmonifuntion on P1.More preisely, a simple omputation shows that when jbj tends to in�nity,!2 = �2b3 + o(1); and !02 = �b� 2!2 = b3 + o(1):Then, fb(!02)(!02)3 = 4 +O� 1jbj� ;and for any integer n � 1, we havefÆ(n+1)b (!02)(fÆnb (!02))3 = 1 +O� 1jbj� :Hene, we obtain��(b) = !02Y fÆ(n+1)b (!02)(fÆnb (!02))3 !1=3n+1 = 3p43 b+O� 1jbj� :We will now show that �� : C nM� ! C n D is a proper mapping. Sine Gis ontinuous, G(b) tends to 0 as b tends to the boundary of M�. Hene, ��(b)tends to �D when b tends to �M� from outside M�. Sine �� is analyti, it is aproper mapping.We an �nally see that it has degree 1 sine in�nity has only one preimageounted with multipliity. Hene, it is an isomorphism between C nM� and C nD .In partiular, M� is onneted.



Julia sets in parameter spaes. 11We have de�ned parameter equipotentials. We an now de�ne parameter rays(see Figure 5).De�nition 6 (Parameter Rays). The parameter ray R�(�) is de�ned asR�(�) = ��1� ne�+2i�� j � > 0o:If the limit b0 = limr&1��1� (re2i��)exists, we will say that the parameter ray R�(�) lands at b0.3. Copies of quadrati Julia sets in the dynamial plane.In this setion, we will �rst reall a result whih is essentially due to Brannerand Hubbard [BH2℄ (see also [Br℄): when the parameter b is not in M�, thereexists a restrition of fb whih is a quadrati-like mapping. The reader will �ndinformation on polynomial-like mappings and related results in [DH2℄.De�nition 7 (Polynomial-like mappings). A polynomial-like mapping f :U 0 ! U of degree d is a rami�ed overing of degree d between two topologialdisks U 0 and U , with U 0 relatively ompat in U . One an de�ne its �lled-inJulia set K(f) and its Julia set J(f) as follows:K(f) = fz 2 U 0 j (8n 2 N) fÆn(z) 2 U 0g; and J(f) = �K(f):A polynomial-like mapping of degree 2 will be alled a quadrati-like mapping.Let us reall the so-alled Straightening Theorem due to Douady and Hub-bard.Proposition 4 (Straightening Theorem). If f : U 0 ! U is a polynomial-likemapping of degree d. Then there exists� a polynomial P : C ! C of degree d,� a neighborhood V of the �lled-in Julia set K(P ) suh that the mapping P :P�1(V ) = V 0 ! V is a polynomial-like map, and� a quasionformal homeomorphism ' : U ! V with '(U 0) = V 0, suh that�' = 0 almost everywhere on K(f) and suh that on U 0' Æ P = f Æ ':Moreover, if K(f) is onneted, then P is unique up to onformal onjugay.De�nition 8. Two polynomial-like mappings f and g are said to be hybrid equiv-alent if there is a quasi-onformal h that onjugates f and g, with �h = 0 almosteverywhere on the �lled-in Julia set K(f).Proposition 5. For any b 2 C nM�, let us denote by Ub the open set fz 2C j gb(z) < 3G(b)g and U 0b the onneted omponent of f�1(Ub) that ontainsthe non-esaping ritial point !1. Then, the restrition fb : U 0b ! Ub is aquadrati-like mapping and its hybrid lass ontains the polynomial z 7! �z+z2.



12 Xavier Bu�, Christian HenriksenFigure 2 shows the domains U 0b and Ub for the parameter ��1� (e1=3+2i�=12).Proof. We have seen that any dynamial equipotential of level � > G(b) is areal-analyti simple losed urve. This applies to the dynamial equipotentialof level 3G(b). Thus, the set Ub is a topologial disk. Besides, it only on-tains one ritial value of fb (the non-esaping one). The set f�1(Ub) is theset fz 2 C j gb(z) < G(b)g whih is bounded by a lemnisate pinhing at theesaping ritial point !2. Eah onneted omponent of f�1(Ub) is a topologialdisk ompatly ontained in Ub. Besides, the restrition of fb to the onnetedomponent of f�1(Ub) ontaining the non-esaping ritial point !1 is a ram-i�ed overing of degree 2, rami�ed at !1. This is preisely the de�nition of aquadrati-like mapping.Next, to see that the hybrid lass of this quadrati-like mapping ontainsz 7! �z + z2, we will use the following result.Lemma 3. The multiplier of an indi�erent �xed point is a quasi-onformal in-variant.Remark. Naish�ul [Nai℄ shows a muh better result sine he proves that the mul-tiplier of an indi�erent �xed point is a topologial invariant. P�erez-Maro [PM℄gave a new proof of this result whih is muh simpler. The ase of quasi-onformalonjugay is easier to handle. R. Douady gave an easy proof based on the om-paity of the spae of quasi-onformal mappings with bounded dilatation (see[Y℄). We will present a new proof based on holomorphi motions and the Ahlfors-Bers theorem. Those tools are more ompliated than the ones used by Douady,but the idea of the proof �ts very well within this artile.Proof. Assume that two germs f0 : U0 ! C and f1 : U1 ! C are quasi-onformally onjugate. Call  the quasi-onformal onjugay. Then � = � =� is a Beltrami form invariant by f0. Integrating the Beltrami form �" = "�," 2 D (0; 1=jj�jj1), we get a family of quasi-onformal homeomorphisms  " de-pending analytially on ", and a family of analyti germsf" =  " Æ f0 Æ  �1" :We laim that this family of germs depend analytially on " (this is not imme-diate sine  �1" does not need to depend analytially on "; Douady explainedus a geometri proof, and Lyubih explained us an analyti proof whih we givehere). Sine f" Æ  " =  " Æ f0, for any z 2 U we an write�f"�" ��� "(z) + �f"�z � � "�" ���z + �f"�z � � "�" ���z = � "�" ���f0(z):Sine both �f"=�z and � "=�" vanish, we see that �f"=�" vanishes.In partiular, the multiplier �(") of the �xed point depends analytially on". Sine it annot beome repelling or attrating (all the germs are onjugate tof0 whih has an indi�erent �xed point), the modulus of �(") is onstant. Hene,�(") is a onstant funtion, and �(1) = �(0). �The hybrid lass of the quadrati-like map fb : U 0b ! Ub ontains a quadratipolynomial having an indi�erent �xed point with multiplier �. Suh a polynomialis always analytially onjugate to the polynomial z 7! �z + z2.



Julia sets in parameter spaes. 13De�nition 9. For any parameter b 2 C n M�, the �lled-in Julia set of thequadrati-like map fb : U 0b ! Ub is alled Kb and its Julia set is alled Jb.We will now give more informations about the dynamis of fb1 for the param-eter b1 with potential � = 1=3 and external argument � = 1=4 (we ould havepiked any parameter with potential � > 0 and external argument � 2℄1=6; 1=3[).Proposition 6. Let b1 be the parameter b1 = ��1� (e1=3+2i�=4). If � 6= 1, the twodynamial rays Rb1(0=1) and Rb1(1=2) both land at a ommon �xed point � 6= 0whih is repelling. If � = 1, the rays Rb1(0=1) and Rb1(1=2) both land at theparaboli �xed point � = 0.

Rb1 (7=12)

Rb1(1=4)
g�1b1 f1=3gRb1 (1=2)

�4� 5i

�4 + 3i 4 + 3i

4� 5iRb1 (�1=12)
Rb1 (0=1)

g�1b1 f1g!02��!2U 00b1
Ub1U 0b1

Fig. 3. The rays Rb1 (0=1) and Rb1 (1=2) both land at a ommon �xed point �.Proof. We still denote by Ub1 the set Ub1 = fz 2 C j gb1(z) < 3G(b1)g. Itspreimage f�1b1 (Ub1) has two onneted omponents. Note that U 0b1 is the oneontaining !02 in its boundary. Denote by U 00b1 the other omponent (see �gure3). Remember that, fb1 : U 0b1 ! Ub1 is a degree 2 proper mapping. Similarlyfb1 : U 00b1 ! Ub1 is a degree 1 proper mapping and sine U 00b1 is ompatlyontained in Ub1 , fb1 has exatly one �xed point in U 00b1 . This �xed point isrepelling. We will denote it by �.Next, observe that the rays Rb1(�1=12) and Rb1(7=12) bifurate on !2, andsine �1=12 < 0 < 1=2 < 7=12, they separate � from the rays Rb1(0=1) andRb1(1=2).



14 Xavier Bu�, Christian HenriksenSine fb1 : U 0b1 ! Ub1 is a degree 2 proper mapping, and sine U 0b1 is ompatlyontained in Ub1 , Rouh�e's Theorem shows that fb1 has exatly two �xed pointsin U 0b1 , ounted with multipliity. If � 6= 1, those two �xed points are distint.One is 0 whih is indi�erent, and has multiplier �, the other one will be denotedby �. A theorem due to Douady-Hubbard [DH1℄ and to Sullivan asserts thatevery �xed dynamial ray that does not bifurate, lands at a �xed point whihis either repelling, or paraboli with multiplier 1. Sine the two �xed dynamialrays Rb1(0=1) and Rb1(1=2) annot land at 0 (sine the multiplier is neitherrepelling nor equal to 1), they must both land at the �xed point �. Sine � isthe landing point of a ray, either it is repelling or it is a multiple �xed point. Butsine there are only two �xed point in U 0b1 ounted with multipliity the formerase ours.On the other hand, if � = 1, there is only one �xed point in U 0b1 : the �xedpoint at 0 whih is paraboli with multiplier 1. Hene the two �xed rays Rb1(0=1)and Rb1(1=2) must both land at 0.We will now desribe the set of rays that aumulate on the Julia set Jb1 ofthe quadrati-like map fb1 : U 0b1 ! Ub1 .De�nition 10. We de�ne � � R=Z to be the set of angles � suh that for anyn � 0, 3n� 2 [0; 1=2℄ mod 1:Remark. The set � is the set of angles � that an be written in base 3 with only0's and 1's. It is a Cantor set and is forward invariant under multipliation by3. Figure 4 shows the dynamial rays Rb1(�) for � 2 �. The following proposi-tion shows that those rays aumulate on the Julia set Jb1 of the quadrati-likerestrition of fb1 .
!2Rb1 (1=2) Rb1 (0=1)

Rb1 (1=3) Rb1 (1=6)Rb1 (4=9) Rb1 (1=18)
Fig. 4. The dynamial rays Rb1 (�), � 2 �, aumulate on the Julia set Jb1 of the quadrati-like restrition of fb1 .



Julia sets in parameter spaes. 15Proposition 7. Let b1 be the parameter b1 = ��1� (e1=3+2i�=4) and Jb1 be theJulia set of the quadrati-like mapping fb1 : U 0b1 ! Ub1 . Then, for any � 2 �,the dynamial ray Rb1(�) does not bifurate. Besides, if we de�neXb1 = [�2�Rb1(�);then Xb1 nXb1 = Jb1 :Proof. Let us �rst reall that the rays Rb1(0=1) and Rb1(1=2) do not bifurateand land at the same �xed point �. Hene, the urve f�g [Rb1(0=1)[Rb1(1=2)uts the plane in two onneted omponents V1 and V2. We all V2 the oneontaining the esaping ritial point !2. Observe that for any � 2 [0; 1=2℄, thedynamial ray Rb1(�) is ontained in C n V2. Now, assume that there exists anangle � 2 � suh that the dynamial ray Rb1(�) bifurates. Then, it bifurateson a preimage of the esaping ritial point !2 and one of its forward imagebifurates on !2. But sine by de�nition of �, we have 3k� 2 [0; 1=2℄ mod 1, forany k � 0, the forward orbit of the ray Rb1(�) is ontained in C n V2. Hene noforward image of Rb1(�) an bifurate on the esaping ritial point !2 2 V2.Sine the set � is losed (it is an intersetion of losed sets), Xb1 is losed inC nK(fb1). Hene, Xb1 nXb1 � J(fb1):We will now show that for any angle � 2 �, the aumulation set I of the rayRb1(�) is ontained in the Julia set Jb1 of the quadrati-like mapping fb1 : U 0b1 !Ub1 . Indeed, the aumulation set I is ontained in the Julia set J(fb1) of fb1 ,and its forward orbit is ontained in C n V2. In partiular, it annot enter theregion U 00b1 , and the forward orbit of I is entirely ontained in U 0b1 . This showsthat I � Kb1 . Sine I is ontained in the boundary of K(fb1), we see thatI � Jb1 , and Xb1 nXb1 � Jb1 :To prove the reverse inlusion, we will use the fat that the bakward orbitof the �xed point � by the quadrati-like map fb1 : U 0b1 ! Ub1 is dense in Jb1 .Let us show by indution on n that if z 2 Jb1 satis�es fÆnb1 (z) = �, then thereis an angle � 2 � suh that Rb1(�) lands at z. This is true for n = 0 sine therays Rb1(0=1) and Rb1(1=2) land at �. Now, if the indution property holds forsome n, let us show that it is true for n + 1. Given a point z 2 Jb1 satisfyingfÆ(n+1)b1 (z) = �, its image fb1(z) satis�es the indution hypothesis. Thus, thereis an angle � 2 � suh that the ray Rb1(�) lands at fb1(z). Observe that, onone hand, this ray annot ontain the esaping ritial value (indeed, the rayontaining the esaping ritial value has argument 3=4 =2 �), and its threepreimages land at the three preimages of fb1(z). On the other hand, there arethree angles �1, �2 and �3 suh that 3�i = �, i = 1; 2; 3. Two of them, let's say �1and �2, are in �, and the third one, �3, is ontained in ℄2=3; 5=6[ mod 1. Hene,the ray Rb1(�3) lands at the preimage of fb1(z) whih is ontained in U 00b1 . Thisshows that one of the two rays Rb1(�1) or Rb1(�2) lands at z.Remark. It is easy to see that no other dynamial ray an aumulate on Jb1sine their forward orbits eventually enter V2.



16 Xavier Bu�, Christian Henriksen4. De�nition of the wake W0.We will now restrit our study to a partiular region in the parameter plane: thewake W0.De�nition 11. The wake W0 is de�ned to be the onneted omponent ofC n R�(1=6) [R�(1=3) [ R�(2=3) [ R�(5=6)that ontains the parameter ray R�(1=4).Remark. In fat, we will show that the parameter rays R�(1=6) and R�(1=3)land at a ommon parameter b0 whih satis�es the equation b20 = 4(�� 1). Thewake W0 is the region ontained between those two rays (see Figure 5).There are several ways of proving the landing property of the parameter raysR�(1=6) and R�(1=3). We will use an argument similar to the one used byDouady and Hubbard in [DH1℄. We will need to modify it slightly in the ase� = 1.
R�(1=2)

R�(1=3) R�(1=6)W0
R�(0=1)

R�(2=3) R�(5=6)
M�

Fig. 5. The parameter rays R�(1=6) and R�(1=3) land at b0, whereas the rays R�(2=3) andR�(5=6) land at �b0.Proposition 8. The parameter rays R�(1=6) and R�(1=3) land at the sameparameter b0 satisfying b20 = 4(��1). The parameter rays R�(2=3) and R�(5=6)land at �b0.
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�3� 3i 3� 3i

3 + 3i�3 + 3i R�(1=3)

R�(2=3) R�(5=6)

R�(1=6)

Fig. 6. The parameter spae for � = 1. The four rays R�(1=6), R�(1=3), R�(2=3) andR�(5=6) land at 0.Remark. When � = 1, we have b0 = 0 and the four rays land at 0 (see Figure 6).Proof. In the ase � 6= 1, we will show that for any parameter b0 ontained inthe aumulation set of the ray R�(1=6), fb0 has a paraboli �xed point withmultiplier 1. The set of suh parameters is disrete { in fat b20 = 4(� � 1).Sine the aumulation set of any ray is onneted, this will prove that the rayR�(1=6) lands. A similar argument shows that the rays R�(1=3), R�(2=3) andR�(5=6) land at b0 or �b0. We will then have to show that the rays R�(1=6)and R�(1=3) land at the same parameter.In the ase � = 1, we will show that the only parameter in the aumulationset of the rays R�(1=6), R�(1=3), R�(2=3) and R�(5=6) is b0 = 0. This willonlude the proof of the proposition.Lemma 4. For any parameter b0 ontained in the aumulation set of the rayR�(1=6), R�(1=3), R�(2=3) or R�(5=6), the polynomial fb0 has a paraboli �xedpoint with multiplier 1.Proof. Let us prove this lemma for the ray R�(1=6). We will proeed by ontra-dition. Assume that fb0 has no paraboli �xed point with multiplier 1. Sineb0 2M�, the dynamial ray Rb0(1=2) does not bifurate. It is a �xed dynamialray. Hene, it lands at a �xed point �, whih is either repelling, or paraboliwith multiplier 1. By hypothesis on b0, the seond ase is not possible.



18 Xavier Bu�, Christian HenriksenWe laim that for b suÆiently lose to b0, the ray Rb(1=2) still lands on arepelling �xed point of fb. The proof is lassial and an be found in the OrsayNotes [DH1℄.Thus, for any b 2 U1, the ray Rb(1=2) does not bifurate on a ritial point. Inpartiular, the dynamial ray Rb(1=6) annot ontain the o-ritial point. Butthis preisely shows that the parameter ray R�(1=6) omits the neighborhood U1of b0 whih gives the ontradition. �The �xed points of the polynomial fb are 0 and the roots of the equation� � 1 + bz + z2 = 0. If � 6= 1, there is a multiple root (i.e., a paraboli �xedpoint with multiplier 1) if and only if the disriminant is zero: b2� 4(�� 1) = 0.Hene, when � 6= 1, we see that the parameter rays R�(1=6), R�(1=3), R�(2=3)and R�(5=6) an only aumulate on b0 or �b0, where b20 = 4(�� 1). Sine theaumulation set of a ray is onneted, we have proved that those rays land atb0 or �b0.When � = 1, the origin is a persistently paraboli �xed point with multiplier1. Hene, to be able to onlude that the parameter rays land, we must improveour lemma. The following lemma ompletes the proof of the proposition in thease � = 1.Lemma 5. When � = 1 the parameter rays R�(1=6), R�(1=3), R�(2=3) andR�(5=6) land at b0 = 0.Proof. Let us prove this lemma for the parameter ray R�(1=6). The proof isessentially the same as in lemma 4. We proeed by ontradition, assuming thatthe parameter ray R�(1=6) aumulates on b0 6= 0.On the one hand, the dynamial ray Rb0(1=2) annot land at a repelling �xedpoint, sine otherwise there would be a neighborhood U1 of b0 in whih thedynamial ray Rb(1=2) would not bifurate (as in lemma 4).On the other hand, if the dynamial ray Rb0(1=2) were landing at a paraboli�xed point with multiplier 1 (i.e., the �xed point 0) then we ould still showthat there exists a neighborhood U1 in whih the dynamial ray Rb(1=2) wouldnot bifurate. The idea of the proof is the following.Sine b0 6= 0, the paraboli �xed point 0 is simple, i.e., f 00b0(0) 6= 0. We willshow that we an follow ontinuously a repelling petal Prep(b) in a neighborhoodU0 of b0. On this repelling petal, the inverse branhes f�1b : Prep(b) ! Prep(b)are well de�ned and iterates of this inverse branhes onverge to 0. We willalso show that the dynamial ray Rb0(1=2) enters the repelling petal Prep(b0).Consequently, there exists a neighborhood U1 of b0 suh that for any b 2 U1, thedynamial ray Rb(1=2) enters the repelling petal Prep(b), and thus land at theparaboli �xed point 0.Let us �ll in the details. Sine we assume b0 6= 0, there exists a neighbor-hood U0 of b0 and a radius " > 0 suh that for any b 2 U0, fb restrits toan isomorphism between the disk V (b) entered at 0 with radius "=jbj andfb(V (b)). Now, observe that the hange of oordinates z 7! Z = �1=bz on-jugates fb : V (b)! fb(V (b)) to an isomorphism Fb : bV ! Fb(bV ), wherebV = fZ 2 P1 j 1=" < jZjg and Fb(Z) = Z + 1 +O� 1jZj� :
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1 + iRb(1=2) Rb(0=1)Prep(b)Patt(b)
Fig. 7. An attrating petal Patt(b) and a repelling petal Prep(b). The attrating petal Patt(b)is ontained in K(fb) and the ray Rb(1=2) eventually enters and stays in Prep(b).Let us hoose " suÆiently small, so that jFb(Z)�Z� 1j < p2=2 for any b 2 U0and any Z 2 bV . Then, denote by bPatt and bPrep the setorsbPatt = fZ 2 C �� p2="�Re(Z) < jIm(Z)jg;and bPrep = fZ 2 C �� p2="+Re(Z) < jIm(Z)jg:Besides, denote by Patt(b) and Prep(b) the setsPatt(b) = fz 2 C � j � 1=bz 2 bPattg;and Prep(b) = fz 2 C � j � 1=bz 2 bPrepg:The set Patt(b) is alled an attrating petal and the set Prep(b) is alled arepelling petal (see Figure 7). One an easily hek that the assumptions on "implies that for any b 2 U0, we have(1) fb(Patt(b)) � Patt(b);(2) fÆnb onverges uniformly on ompat subsets of Patt(b) to 0;(3) there exists an inverse branh f�1b : Prep(b)! Prep(b);(4) [f�1b ℄Æn onverges uniformly on ompat subsets of Prep(b) to 0.



20 Xavier Bu�, Christian HenriksenLet us express the ray Rb0(1=2) as a ountable union of segmentsSj = '�1b0 n� et j 3j � t � 3j+1o; j 2 Z;so that fb0(Sj) = Sj+1. Clearly, we wee that Patt(b0) is ontained in the �lled-inJulia set K(fb0). Thus, Rb0(1=2) does not interset Patt(b0). Sine we assumedthat the ray Rb0(1=2) lands at 0, there exists an integer j0 suh that Sj0 isontained in Prep(b0). Again, by shrinking U0 if neessary, we may assume thatU0 � fb 2 C j G(b) < 3j0g. This ondition implies that for any b 2 U0, the rayRb(1=2) is de�ned up to potential at least 3j0 , andSj(b) = '�1b n� et j 3j � t � 3j+1o; j � j0is well de�ned. Finally, sine f(z; b) j b 2 U0; z 2 Prep(b)g is open and sine'�1b depends ontinuously (even analytially) on b, we see that there exists aneighborhood U1 � U0 of b0, suh that for any b 2 U1 the segment Sj0(b) isontained in Prep(b). Hene, Sj0+k(b) = [f�1b ℄Æk(Sj0(b)) is well de�ned for anyk � 0, and the ray Rb(1=2) lands at 0. However, this implies that the parameterray R(1=6) does not interset U1. �We still need to prove that when � 6= 1, the parameter rays R�(1=6) andR�(1=3) land at the same parameter. Remember that we de�ned the wake W0as the onneted omponent ofC n R�(1=6) [R�(1=3) [ R�(2=3) [ R�(5=6)that ontains the parameter ray R�(1=4).Let us all b0 the landing point of the parameter rayR�(1=6). We will use thefat that the onnetedness lous M� is symmetri with respet to 0 (rememberthat fb and f�b are onjugate by z 7! �z). The symmetry of M� shows thattwo of the four rays R�(1=6), R�(1=3), R�(2=3) or R�(5=6) land at b0 and theother two land at �b0. Moreover, the parameter rays R�(1=6) and R�(2=3) aresymmetri, so that R�(2=3) annot land at b0 (6= �b0). Hene, if the parameterray R�(1=3) were not landing at b0, then the ray R�(5=6) would. In that ase,the wake W0 would ontain the parameter b = 0 (see Figure 8). We will get aontradition by proving that for any parameter b 2 W0, the dynamial raysRb(0=1) and Rb(1=2) land at the same point, whereas this is not the ase forb = 0.Lemma 6. For any parameter b 2 W0, the two dynamial rays Rb(0=1) andRb(1=2) do not bifurate.Remark. This lemma and the following one are in fat true as soon as b does notbelong to one of the parameter rays R�(1=6), R�(1=3), R�(2=3) or R�(5=6).Proof. If b =2 R�(1=3) [ R�(2=3); the dynamial ray Rb(0=1) does not bifur-ate. Indeed, if Rb(0=1) were bifurating, it would bifurate on a preimage ofthe esaping ritial point !2, i.e., there would be a non-negative n, suh thatf�nb (!2) belongs to the ray Rb(0=1). Sine this is a �xed ray, !2 would belongto the ray Rb(0=1) and onsequently !02 would lie on either Rb(1=3) or Rb(2=3)whih ontradits that b =2 R�(1=3)[R�(2=3). A similar argument shows that ifb =2 R�(1=6) [ R�(5=6); the dynamial ray Rb(1=2) does not bifurate and alsolands at a �xed point whih is either repelling or paraboli with multiplier 1. �
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Fig. 8. If the parameter rays R�(1=6) and R�(1=3) were not landing at the same parameter,the wake W0 would ontain the parameter b = 0.Lemma 7. If � 6= 1, then given any b 2 W0, the rays Rb(0=1) and Rb(1=2) bothland at the same repelling �xed point �(b) 6= 0. If � = 1, then given any b 2 W0,the rays Rb(0=1) and Rb(1=2) both land at the paraboli �xed point �(b) = 0.Proof. To prove this lemma, we will use an idea due to Peter Ha��ssinsky whihhas been explained to us by Carsten Petersen. We have seen that in the domainW0, the dynamial rays Rb(0=1) and Rb(1=2) do not bifurate. It follows that theset X = Rb(0=1)[Rb(1=2) moves holomorphially with respet to the parameterb. Hene, the �-Lemma by Ma~ne, Sad and Sullivan [MSS℄ shows that the losureof X in P1 moves holomorphially. In partiular, if for some parameter b1 2 W0the two dynamial rays Rb(0=1) and Rb(1=2) land at the same �xed point, theydo so everywhere in W0, i.e., there exists a holomorphi funtion �(b) suh that�(b) is a �xed point of fb and is the landing point of the two rays Rb(0=1) andRb(1=2). Besides, the multiplier at �(b) is a univalent funtion, that takes valuesin C nD . Hene, either the multiplier is onstantly equal to 1 (whih orrespondsto a persistently paraboli landing point) or it takes values in C n D (and thelanding point remains repelling in all W0).Thus, we just need to show that there is a parameter b 2 W0 for whih thetwo raysRb(0=1) and Rb(1=2) land at a ommon �xed point, and that this pointis repelling when � 6= 1, whereas it is paraboli with multiplier 1 when � = 1.This is preisely given by proposition 6 for the parameter b1 = ��1� (e1=3+2i�=4).� To onlude the proof of the proposition, it is enough to see that when b = 0and � 6= 1, the two dynamial rays R0(0=1) and R0(1=2) annot land at thesame point. The polynomial f0(z) = �z + z3 is an odd polynomial. Thus, the�lled-in Julia set is symmetri with respet to the origin. In partiular, thedynamial rays R0(0=1) and R0(1=2) are symmetri. Thus, if they land (in fat,



22 Xavier Bu�, Christian Henriksenthe two ritial orbits are symmetri, the Julia set is onneted, and the raysland) the landing points are symmetri with respet to the origin. However, theorigin annot be the landing point of those rays beause it is indi�erent withmultiplier � 6= 1. Hene, the two dynamial rays R0(0=1) and R0(1=2) land attwo symmetri, distint �xed points.We have proved that in the wake W0, the two dynamial rays Rb(0=1) andRb(1=2) both land at a ommon �xed point �(b) whih depends holomorphiallyon b. If � = 1, we have seen that �(b) = 0 is a double �xed point, and the ubipolynomial fb has only one other �xed point: �(b) = �b. If � 6= 1, the map fbhas three distint �xed points: 0, �(b) and �(b) = �b� �(b).De�nition 12. For any b 2 W0, we all �(b) the landing point of the dynamialrays Rb(0=1) and Rb(1=2), and we all �(b) = �b � �(b) the �xed point of fbwhih is neither 0 nor �(b).Remark. Sine the funtion � is holomorphi in W0, the funtion � is also holo-morphi in W0. In fat, sine W0 is simply onneted and does not ontain theparameters �b0, it is lear that the three �xed points of fb depend holomorphi-ally on b in W0, without using the fat that �(b) is the landing parameter ofthe rays Rb(0=1) and Rb(1=2).5. Dynamis of fb in the wake W0.We will now improve our desription of the dynamial behaviour of the polyno-mial fb, when b 2 W0 (see Figure 9).Proposition 9. For any b 2 W0, the dynamis of the map fb is as follows:1. the two ritial points of fb are distint and there exist two holomorphifuntions !1(b) and !2(b) de�ned in W0, suh that for any b 2 W0, !1(b) and!2(b) are the two ritial points of fb, !2(b) being the esaping ritial pointwhenever b 2 W0 nM�; the o-ritial points are !0i(b) = �b� 2!i(b);2. the dynamial rays Rb(1=6) and Rb(1=3) do not bifurate and both land at apreimage �1(b) 6= �(b) of �(b); the rays Rb(2=3) and Rb(5=6) do not bifurateand land at the other preimage �2(b) =2 f�(b); �1(b)g; we de�ne Vi to be theonneted omponent of C nRb(0=1) [ Rb(1=2) that ontains �i(b);3. eah of the four onneted omponents of C nSf�j6�2ZgRb(�) ontains ex-atly one of the four points !1(b), !2(b), !01(b) or !02(b); we all Ui, i = 1; 2,the one ontaining !i(b) and U 0i , i = 1; 2, the one ontaining !0i(b);4. the map fb : U 0i ! Vi, i = 1; 2, is an isomorphism and the map fb : Ui ! Vi,i = 1; 2, is a rami�ed overing of degree 2 rami�ed at !i(b).Proof. We will �rst show that we an follow the two ritial points holomorphi-ally when b 2 W0.Lemma 8. For any b 2 W0, the two ritial points of fb are distint. Moreover,there exist two holomorphi funtions !1(b) and !2(b) de�ned in W0, suh thatfor any b 2 W0, !1(b) and !2(b) are the two ritial points of fb.
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�1(b)

Rb(1=2) Rb(0=1)
Rb(1=3) Rb(1=6)

Rb(5=6)Rb(2=3)

!02(b)!1(b) 0�(b)!2(b)!01(b)�2(b)�(b)U 01
U1U2

U 02

Fig. 9. The dynamial piture of the polynomial fb when the parameter b belongs to W0.Proof. When the two ritial points of fb are distint, i.e., b2 6= 3�, we anloally follow them. Sine W0 is simply onneted, the proof of the lemma willbe ompleted one we have proved that for any b 2 W0, the two ritial pointsof fb are distint.We will proeed by ontradition and assume that for some parameter b 2 W0,the polynomial fb has a unique ritial point !. The polynomial fb is thenonjugate by the aÆne hange of oordinate z 7! w = z � ! to a polynomialof the form w 7! w3 + . The Julia set of suh a polynomial is invariant underthe rotation w 7! e2i�=3w. This shows that the Julia set of fb is invariant underthe rotation of angle 1=3 around !. In partiular, the dynamial ray Rb(1=3)(respetively Rb(2=3)) is the image of the dynamial ray Rb(0=1) by the rotationof angle 1=3 (respetively 2=3) of enter ! (see Figure 10). For the same reason,the dynamial ray Rb(5=6) (respetively Rb(1=6)) is obtained from Rb(1=2) byrotating with angle 1=3 (respetively 2=3) around !. We will show that thedynamial rays Rb(0=1) and Rb(1=2) annot land at the same point �(b).Indeed, when b 2 W0, the two dynamial rays Rb(0=1) and Rb(1=2) land at�(b). By rotating with angle 1=3, we see that the two rays Rb(1=3) and Rb(5=6)land at e2i�=3�(b). Sine those two rays are separated by the urve f�(b)g [Rb(0=1)[Rb(1=2), they an only meet at �(b). Hene, �(b) = e2i�=3(�(b)�!)+! = !. But this would imply that ! is a super-attrating �xed point, and no rayould land at !. This gives the ontradition. �
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2� 2iRb(5=6)Rb(2=3)
Rb(1=2) ! Rb(0=1)

Rb(1=6)Rb(1=3)

Fig. 10. The Julia set of fb for b2 = 3�. There is a unique ritial point ! and the Julia setis invariant by rotation of angle 1=3 around !.Then, it is not diÆult to hek that the o-ritial points !0i(b) are de�nedby !0i(b) = �b � 2!i(b), i = 1; 2. We still have a hoie on whih ritial pointwill be labelled !1 and whih one will be labelled !2. To omplete the proofof (1), we need to prove that we an hoose !2 suh that !2(b) is the esapingritial point of fb for any b 2 W0 nM�. This will be done later and we will nowfous on the proof of (2).Lemma 9. For any b 2 W0 the dynamial rays Rb(1=6) and Rb(1=3) do notbifurate. They both land at a preimage �1(b) 2 f�1b f�(b)g n f�(b)g of �(b).The rays Rb(2=3) and Rb(5=6) do not bifurate and land at the other preimage�2(b) 2 f�1b f�(b)g n f�(b); �1(b)g.Proof. Let us assume that Rb(1=6) bifurates for some parameter b 2 W0. Then itbifurates on a preimage of the esaping ritial point !2, and one of its forwardimage bifurates on !2. Sine fb(Rb(1=6)) = Rb(1=2) is �xed, this means that !2belongs to the rayRb(1=6) or to the ray Rb(1=2). On the one hand, the latter aseis not possible sine the ray Rb(1=2) does not bifurate. On the other hand, sineb 2 W0, the esaping o-ritial point !02 belongs to a dynamial ray Rb(�), with� 2℄1=6; 1=3[. Hene, the rays bifurating on !2 have angle � � 1=3 2℄ � 1=6; 0[and � + 1=3 2℄1=2; 2=3[. Thus, the ray Rb(1=6) annot bifurate on !2.A similar argument shows that the rays Rb(1=3), Rb(2=3) and Rb(5=6) do notbifurate.To omplete the proof of the lemma, it is enough to prove that �(b) has threedistint preimages: �(b), �1(b) and �2(b). In other words, we need to show that



Julia sets in parameter spaes. 25�(b) is not a ritial value of fb. Indeed, we an then argue that sine fb is aloal isomorphism in a neighborhood of �i(b) and sine the rays Rb(0=1) andRb(1=2) land at �(b), two of the rays Rb(1=6), Rb(1=3), Rb(2=3) and Rb(5=6)land at �1(b) and two of them land at �2(b). The only possibility is that Rb(1=6)and Rb(1=3) land at the same preimage, let us say �1(b), and the rays Rb(2=3)and Rb(5=6) land at the other preimage �(b).To see that �(b) is not a ritial value of fb, we will proeed by ontradition.Hene, we assume that for some parameter b 2 W0, one ritial point ! is mappedby fb to �(b). Then, sine �(b) is either repelling or paraboli with multiplier 1,we see that ! 6= �(b). Besides, we have seen that the two ritial points of fbare distint. Hene, in a neighborhood of !, the map fb is a two-to-one rami�edovering, and the four rays Rb(1=6), Rb(1=3), Rb(2=3) and Rb(5=6) have to landat !. But this is not possible sine the rays Rb(1=6), Rb(2=3) are separated byRb(0=1) and Rb(1=2). �We will now prove (3) using a holomorphi motion argument.Lemma 10. The setXb = f!1(b); !2(b); !01(b); !02(b)g [0� [f�j6�2ZgRb(�)1Aundergoes a holomorphi motion as b moves in W0.Proof. The funtions !i(b) and !0i(b), i = 1; 2, are holomorphi when b 2 W0.Besides, we have seen that the dynamial rays Rb(�), 6� 2 Z, do not bifuratewhen b 2 W0, and thus, move holomorphially when b 2 W0. To prove thelemma, we need to prove the injetivity ondition of holomorphi motions. Sinewe already know that the ritial points are distint, we only need to show thatfor any b 2 W0, the ritial points and o-ritial points annot belong to any ofthe rays Rb(�), 6� 2 Z. But this is lear sine otherwise, one of those rays wouldhave to bifurate on a ritial point. �The dynamial piture for the polynomial fb1 has been studied in setion 3,and it is not diÆult to hek that eah onneted omponent ofC n [f�j6�2ZgRb1(�)ontains exatly one of the four points !1(b1), !2(b1), !01(b1) or !02(b1). None ofthe four points are ontained in the set Sf�j6�2ZgRb1(�) for any b 2 W0: Sinethe four points and Sf�j6�2ZgRb1 (�) moves ontinuously when b hanges andW0 is onneted, statement (3) follows.We an now omplete the proof of (1). We hoose the funtions !1(b) and!2(b) so that !2(b1) is the esaping ritial point of fb1 . Then, the boundary ofU 02(b1) is the union of the two dynamial rays Rb1(1=6), Rb1(1=3) and their land-ing point �1(b1). Using the holomorphi motion, we see that the same propertyholds for U 02(b), i.e., the boundary of U 02(b) is the union of the two dynamialrays Rb(1=6), Rb(1=3) and their landing point �1(b). In partiular, the regionU 02(b) ontains the dynamial rays Rb(�), � 2℄1=6; 1=3[. On the other hand, we



26 Xavier Bu�, Christian Henriksenknow that when b 2 W0 nM�, the esaping o-ritial point belongs to one ofthose rays. Hene, for any b 2 W0 nM� the esaping o-ritial point belongsto the region U 02(b). Thus the esaping o-ritial point is !02(b) and for anyb 2 W0 nM�, the esaping ritial point is !2(b).We �nally prove (4). We have alled V1(b) and V2(b) the two onneted om-ponents of C n Rb(0=1) [ Rb(1=2). Sine the preimages of the rays Rb(0=1) andRb(1=2) are the rays Rb(�), 6� 2 Z, the onneted omponents of f�1b (Vi),i = 1; 2, are the onneted omponents of C nSf�j6�2ZgRb(�). Let U be one ofthem. Sine the polynomial fb : C ! C is a rami�ed overing, the restrition offb to U is a rami�ed overing onto its image. Sine U is simply onneted, theRiemann-Hurwitz formula shows that the degree of the restrition of fb to U isn + 1 where n is the number of ritial points of fb in U , ounted with multi-pliity. Hene, to �nish the proof of (4), we only need to show that fb(Ui) = Viand fb(U 0i ) = Vi for i = 1; 2.Lemma 11. For any b 2 W0, the omponent U 02 ontains the two dynamialrays Rb(2=9) and Rb(5=18) that both land at a preimage of �2(b).Proof. We have seen previously that for any b 2 W0, the region U 02 ontains thedynamial rays Rb(�), � 2℄1=6; 1=3[. Sine 2=9 2℄1=6; 1=3[ and 5=18 2℄1=6; 1=3[,the �rst part of the lemma is proved.Next, we have seen that fb is an isomorphism between U 02 and its image. SineU 02 ontains the two dynamial rays Rb(2=9) and Rb(5=18), its image ontainsthe two dynamial rays fb(Rb(2=9)) = Rb(2=3) and fb(Rb(5=18)) = Rb(5=6) thatboth land at �2(b) 2 V2 and the lemma is proved. �Sine fb maps the rays Rb(2=9) and Rb(5=18) whih are in U 02 to the raysRb(2=3) and Rb(5=6) whih land at �2(b) 2 V2, we see that fb(U 02) = V2. Sine!2(b) and !02(b) have the same image, we immediately obtain that fb(U2) = V2.Hene, fb : U 02 ! V2 is an isomorphism and fb : U2 ! V2 is a rami�ed overingof degree 2, rami�ed at !2. Sine the polynomial fb has degree 3, the omponentV2 has no other preimage, and fb(U1) = fb(U 01) = V1. This �nishes the proof ofthe proposition.6. Holomorphi motion of rays.In the rest of this artile, we will work in the wake W0. We will onstantly haveto deal with the ritial point !2(b), b 2 W0. Thus, the reader must keep in mindthat the funtion !2 is a holomorphi funtion de�ned throughout all the wakeW0, and that for any parameter b 2 W0 nM�, the point !2(b) is the esapingritial point.Theorem A. For any parameter b 2 W0 and for any � 2 �, the dynamial rayRb(�) does not bifurate. We de�ne Xb to the setXb = [�2�Rb(�):We also de�ne Jb to be the set Jb = Xb nXb and Kb to be the omplement of theunbounded onneted omponent of C n Jb . Then, Kb is ontained in the �lled-in



Julia sets in parameter spaes. 27Julia set K(fb), its boundary Jb is ontained in the Julia set J(fb) and Kb isquasi-onformally homeomorphi to the �lled-in Julia set K(�z + z2).Figure 11 shows the set Kb and the set of dynamial rays Xb for a parameterb 2M� \W0.
Rb(1=18)
Rb(0=1)Rb(1=2)

Rb(4=9)

Fig. 11. The set Kb and the set of set of dynamial rays Xb for a parameter b 2M� \W0.Proof. Let us �rst prove that for any parameter b 2 W0 and any � 2 �, thedynamial ray Rb(�) does not bifurate. We will mimi the proof of proposition7. For any b 2 W0, we have de�ned V2(b) to be the onneted omponent ofC nRb(0=1)[Rb(1=2) that ontains �2(b). Sine the two dynamial rays Rb(2=3)and Rb(5=6) land at �2(b), they are ontained in V2(b), and for any � 2 [0; 1=2℄,the dynamial ray Rb(�) is ontained in C n V2(b). Sine for any � 2 �, wehave 3k� 2 [0; 1=2℄ mod 1, for any k � 0, the forward orbit of the ray Rb(�) isontained in C n V2(b). Next, for any b 2 W0, we laim that the ritial point!2(b) { whih is the esaping ritial point when b 2 W0 nM� { belongs to theregion V2(b). Indeed, we have seen that �(b) annot be a ritial value of fb.Hene, the set f!2(b); �2(b)g [ Rb(0=1) [ Rb(1=2) moves holomorphially whenb 2 W0. Hene, !2(b) and �2(b) are always in the same onneted omponentof C n Rb(0=1) [ Rb(1=2). Now, assume that there exists an angle � 2 � suhthat the dynamial ray Rb(�) bifurates. Then, it bifurates on a preimage of theesaping ritial point !2(b) and one of its forward image bifurates on !2(b).



28 Xavier Bu�, Christian HenriksenBut this ontradits the fat that the forward orbit of the ray Rb(�) is ontainedin C n V2(b) whih does not ontain !2(b).Next, observe that the mapping h : W0 � Xb1 ! Xb de�ned by h(b; z) ='�1b Æ 'b1 (z) is a holomorphi motion of Xb1 parametrized by b 2 W0. The �-Lemma by Ma~ne, Sad and Sullivan [MSS℄ shows that h extends to a holomorphimotion of the losure Xb1 of Xb1 in C . Sine W0 is a simply onneted Riemannsurfae, S`odkowski's Theorem (see [Sl℄ [D2℄) shows that one an in fat extendh to a holomorphi motion of the whole omplex plane C , still parametrizedby b 2 W0. We will keep the notation h for this extension. The mapping z 7!hb(z) = h(b; z) is a K(b)-quasi-onformal homeomorphism, where K(b) is theexponential of the hyperboli distane between b1 and b in W0. It maps the setof dynamial rays Xb1 to the set of dynamial rays Xb, and hb �Xb1 nXb1� =Xb nXb: Sine � is losed, the set Jb is ontained in the Julia set J(fb). SineK(fb) is full, the set Kb is ontained in the �lled-in Julia set K(fb) Finally, hbprovides a quasi-onformal homeomorphism between Kb and Kb1 , and sine Kb1is quasi-onformally homeomorphi to the quadrati Julia set K(�z + z2) (seepropositions 5 and 7), Theorem A is proved.Observe that the mapping hb onjugates the polynomials fb1 and fb on theset of rays Xb1 , i.e., for any z 2 Xb1 we have hb Æ fb1 = fb Æ hb. By ontinuity ofhb, this property holds on the losure Xb1 and in partiular on Jb1 .Observe also that the �xed point 0 never belong to the set Xb so that theset Xb [ f0g moves holomorphially when b moves in W0. In partiular, we anhoose the extension h so that h(b; 0) = 0 for any b 2 W0. Sine 0 2 Kb1 , thisshows that for any b 2 W0, 0 belongs to Kb.We �nally would like to mention that we ould hoose the extension of h sothat hb onjugates the polynomials fb1 and fb on the whole set Kb1 , and suhthat the distributional derivative �hb=�z vanishes onKb1 . But this would requireextra work and we will just mention the idea of the proof. We ould �rst provethat for any b 2 W0, there is a restrition of fb : U 0b ! Ub to a neighborhoodof Kb whih is a quadrati-like map. We ould then prove as in proposition 5that the hybrid lass of this quadrati-like restrition ontains the quadratipolynomial z 7! �z+z2. In partiular, for any b 2 W0, the polynomial-like mapsfb : U 0b ! Ub and fb1 : U 0b1 ! Ub1 would be hybrid onjugate, i.e., there wouldexist a quasi-onformal homeomorphism hb : Ub1 ! Ub suh that hbÆfb1 = fbÆhbon U 0b1 and suh that the distributional derivative �hb=�z vanishes on Kb1 . Wewould �nally have to prove that the restrition of the mapping (b; z) 7! hb(z) toW0 �Kb1 gives a holomorphi motion Kb1 extending h.7. The dyadi wakes W#.Observe that in the wake W0 we see a opy M 0 of a Mandelbrot set, with rootpoint at b0. In this setion, we will explain why we see suh a opy, and we willdetermine a Cantor set �0 suh that the boundary of M 0 is the aumulationset of the parameter rays R�(�), � 2 �0.The reason why suh a opy appears is that for any b 2 W0, the mappingfb : U2 ! V2 is a rami�ed overing of degree 2, rami�ed at !2. The sets U2and V2 are topologial disks and U2 � V2, and the family (fb : U2 ! V2)b2W0is almost a Mandelbrot-like family (see [DH2℄). The problem is that U2 is not



Julia sets in parameter spaes. 29relatively ompat in V2. If � 6= 1, one an ut along equipotentials and thikendomains (see [M℄) to onstrut quadrati-like mappings. Suh an approah hasalready been developed by Epstein and Yampolsky [EY℄ who proved that thereexists a homeomorphism � : M 0 n fb0g ! M n f1=4g suh that for any b 2 M 0,there exists a quadrati-like restrition fb : V 0b ! Vb whih is hybrid onjugateto z 7! z2 + �(b).The ase � = 1 is di�erent and less understood. Indeed, when � = 1, the�xed point �(b) is paraboli with multiplier 1. In this ase, no more thikeningis possible. We would like to mention that in [Ha℄, Ha��ssinsky has made a majorstep in the diretion of proving that in the ase � = 1, the setM 0 is neverthelesshomeomorphi to the Mandelbrot set. Sine the thikening is not possible when� = 1, we need to adopt an approah that is not based on surgery.De�nition 13.K 0b = nz 2 K(fb) j (8n � 0) fÆnb (z) 2 U2o; J 0b = �K 0b andM 0 = fb0g [ �b 2 W0 j K 0b is onneted	:Proposition 10. The sets K 0b and M 0 have the following properties:1. for any b 2 W0, K 0b is a ompat set, K 0b � K(fb) and J 0b � J(fb);2. a parameter b 2 W0 belongs to M 0 if and only if !2(b) belongs to K 0b;3. M 0 is a ompat subset of M� and �M 0 � �M�.4. if b 2 W0 nM 0, then any yle of fb whih entirely lies in U2 is repelling.Proof.1. For any b in W0, we haveK 0b = \n�0Kn; where K0 = K(fb) \ U2 and Kn+1 = �fb��U2��1(Kn):Eah Kn is ompat. Hene, K 0b is also ompat. By de�nition, K 0b � K(fb).Given any point z in a onneted omponent U of the interior of K(fb), iffÆnb (z) =2 U2, for some integer n � 0, then fÆnb (U) entirely lies in C nU2. Hene,�K 0b � �K(fb), i.e., J 0b � J(fb).2. Let us now onsider a parameter b 2 W0. If !2(b) 2 K 0b, then !2(b) 2 K(fb),and K0 = K(fb)\U2 is onneted. By indution, assume Kn is onneted. Then,sine !2(b) 2 K 0b, we see that fb(!2(b)) 2 Kn, andKn+1 is also onneted. Hene,K 0b is the intersetion of a nested sequene of onneted losed sets. Thus, K 0b isonneted and b 2 M 0. Conversely, if !2(b) =2 K 0b, there exists an integer n � 1suh that fÆnb (!2(b)) =2 U2. Sine K0 2 U2, we see that Kn has at least twoonneted omponents. This shows that K 0b is not onneted and b =2M 0.3. If b belongs to M 0, then !2(b) 2 K 0b � K(fb). Hene, M 0 � M�. We haveseen that b 2 W0 nM 0 if and only if there exists an integer n � 1 suh thatfÆnb (!2(b) =2 U2. Sine U2 moves holomorphially, hene ontinuously, when bmoves inW0, we see that this is an open ondition. Hene,W0nM 0 is open inW0.Sine the losure ofM 0 is ontained in the losure ofM�, sineM�\�W0 = fb0g,and sine by de�nition M 0 \ �W0 = fb0g, we see that M 0 is losed, hene



30 Xavier Bu�, Christian Henriksenompat. Let us now show that �M 0 � �M�. Take a parameter b 6= b0 inthe boundary of M 0. Then in any neighborhood U � W0 of b, we an �nd aparameter b0 2 UnM 0 so that there exists an integer n � 1 with fÆnb0 (!2(b0)) =2 U2.Sine fÆnb (!2(b)) 2 U2, and sine the boundary of U2 moves holomorphiallywhen the parameter moves in U , we an �nd a parameter b00 2 U suh thatfÆnb00 (!2(b00)) 2 �U2. There are two possibilities:either fÆnb00 (!2(b00)) belongs to a dynamial ray; in that ase b00 =2M�;or fÆnb00 (!2(b00)) is one of the two points �(b00) or �1(b00); in that ase theritial point !2(b) is eventually mapped to a repelling �xed point, and it iswell-known that b00 2 �M�.4. Assume that b 2 W0nM 0. Then there exists a smallest integer n � 1 suh thatfÆnb (!2(b)) =2 U2. De�ne U 00 to be the n-th preimage of U2 by fbjU2 and de�ne U 0to be the image of U 00 by fb. The, fb : U 00 ! U 0 is a non-rami�ed overing mapof degree 2. Hene, there are two well-de�ned inverse branhes g1 : U 0 ! U 00and g2 : U 0 ! U 00. By Shwarz's lemma, those two branhes are ontrating forthe Poinar�e metri of U 00 and thus, every periodi orbit of fb ontained in U 0is repelling (there may be periodi orbit ontained in the losure of U 0, but weare only onerned by the ones ontained inside U 0).De�nition 14. We de�ne �0 � R=Z to be the set of angles � suh that for anyn � 0, 3n� 2 [1=2; 1℄ mod 1: We also de�ne X 0 to be the set of parameter raysX 0 = [�2�0R�(�=3);and for any b 2M 0, we de�ne X 0b to be the set of dynamial raysX 0b = [�2�0Rb(�):Remark. The set �0 is the set of angles �0 that an be written in base 3 withonly 1's and 2's. It is a Cantor set, invariant under multipliation by 3. In fat,� 2 �0 if and only if � � 1=2 2 �. Observe also that for any � 2 �0, the twoangles �=3 + 1=3 and �=3 + 2=3 also belong to �0.De�nition 15. We will say that b 2 M 0 is a tip of M 0 if and only if the orbitof !2(b) is eventually mapped to �(b), i.e., if there exists an integer k � 1 suhthat fÆk(!2(b)) = �(b).Proposition 11. We have the following dynamial result:1. for any parameter b 2M 0, we have J 0b = X 0b nX 0b, where the losure is takenin C ;2. for any b 2M 0, any z 2 J 0b whih is eventually mapped to �(b) is the landingpoint of at least two rays Rb(��) and Rb(�+), where �� 2 �0. Moreover, iffÆk(z) = � and (fÆk)0(z) 6= 0, then, there are exatly two dynamial rayslanding at z.The parameter ounterpart of this statement is the following:3. the boundary of M 0 is the aumulation set of X 0: �M 0 = X 0 n X 0;



Julia sets in parameter spaes. 314. for any tip b 2 M 0, there are exatly two angles �� 2 �0 and �+ 2 �0suh that !02(b) is the landing point of the two dynamial rays Rb(��=3) andRb(�+=3). Furthermore, the parameter rays R�(��=3) and R�(�+=3) land atb 2M 0.Figure 12 shows the set X 0 of parameter rays and the set M 0.

X 0
W3=4 W1=2

W1=4M 0
Fig. 12. The set X 0 of parameter rays and the set M 0.Proof.1. Let us �x a parameter b 2 M 0. Then, the dynamial rays Rb(�), � 2 �0, donot bifurate and the set X 0b is exatly the set of rays in U2(b) whose forwardorbit remains in U2(b). Take any point z0 in the aumulation set of X 0b. Sine�0 is losed, z0 2 J(fb). Then, sine �0 is forward invariant by multipliationby 3, for any integer n � 0, the point zn = fÆnb (z0) is in the aumulation setof X 0b. Sine X 0b � U2(b), we obtain zn 2 U2(b). But this preisely shows thatz0 2 J 0b. Hene X 0b nX 0b � J 0b.Conversely, given any point z0 2 J 0b and any onneted neighborhood W0of z0, we must show that W0 ontains points of X 0b. Sine z0 2 J 0b, for anyinteger n � 0, the point zn = fÆnb (z0) belongs to U2(b). Sine J 0b � J(fb) (seeproposition 10), the family of iterates fÆnb : W0 ! C is not normal. Hene, thereexists a �rst integer n � 0 suh that Wn = fÆnb (W0) intersets C n U2. SineWn is onneted and ontains the point zn 2 U2(b), we see that Wn intersetsat least one of the rays Rb(0=1), Rb(1=2), Rb(2=3), or Rb(5=6). Besides, for any



32 Xavier Bu�, Christian Henrikseninteger k 2 [0; n� 1℄, Wk is ontained in U2(b). Hene, W0 interset a ray whihis eventually mapped to one of the rays Rb(0=1), Rb(1=2), Rb(2=3), or Rb(5=6)and whose forward orbit remains in U2. Suh a ray neessarily belongs to theset X 0b.2. We only need to observe that for any z 2 J 0b, if there exists an integer k � 0suh that fÆkb (z) = �(b), then there exists a neighborhood U of z suh thatfÆkb : U ! fÆkb (U) is a overing. This overing may be rami�ed if z is a preimageof !2(b). However, by restriting U if neessary, we may assume that z is the onlyrami�ation point. Sine the two rays Rb(0=1) and Rb(1=2) land at �(b), thereare at least two rays Rb(��) and Rb(�+) that land at z, satisfying fÆkb (Rb(��)) =Rb(0=1) and fÆkb (Rb(�+)) = Rb(1=2). Finally, sine the forward orbit of z remainsin V2, we immediately see that the forward orbit of Rb(��) also remains in V2.Thus, �� 2 �0. Furthermore, if (fÆkb )0(z) 6= 0, we have to show that there areexatly two dynamial rays landing at z. Sine Rb(0=1) is landing at �(b), everydynamial ray landing at � must have ombinatorial rotation number 0=1. Hene,the dynamial rays landing at �(b) are exatly the rays Rb(0=1) and Rb(1=2).Sine fÆkb is a loal isomorphism at z, mapping z to �(b), there are exatly twodynamial rays landing at z.3. Sine �0 is losed, the aumulation set X 0 nX 0 is ontained in the boundaryof M�. Given any parameter b0 in this aumulation set, we want to show thatb0 2 M 0. Sine, by de�nition of M 0, the parameter b0 belongs to M 0, we mayassume that b0 6= b0. In this ase, b0 2 W0. Given any parameter b 2 X 0, andany integer n � 1, the point fÆnb (!2(b)) belongs to a dynamial ray Rb(3n�), forsome � 2 �0. Hene, the whole orbit ffÆnb (!2(b))gn�0 belongs to U2(b). Then,by ontinuity of U2(b) at b0 2 W0, the whole orbit ffÆnb0 (!2(b0))gn�0 belongsto U2(b0). But sine b0 2 M�, we know that !2(b0) 2 K(fb0). This shows thatb0 2M 0. Hene X 0 n X 0 � �M 0.Conversely, we want to prove that �M 0 � X 0 n X 0. We know that b0 is thelanding point of the rays R�(1=6) and R�(1=3). Hene b0 2 X 0 n X 0. Given anyparameter b� 2 �M 0 n fb0g � �M� \ W0, and any neighborhood U � W0 ofb�, we want to show that there exists a parameter b 2 U suh that one of therays Rb(�); � 2 �0 bifurates on !2(b): Assume this is not the ase. Then, theset X 0b = S�2�0 Rb(�) moves holomorphially when b 2 U ; and therefore X 0bremains onneted for all b 2 U and X 0b nX 0b � J(fb). By proposition 10 we have�M 0 � �M�; so there exists a parameter b0 2 U suh that !2(b0) =2 K(fb0). Sinethe rays Rb0(�); � 2 �0 do not bifurate on !2(b0) and sine X 0b0 nX 0b0 � J(fb),we see that !2(b0) does not belong to X 0b0 . Besides, sine b0 is in the wake W0,the ritial point !2(b0) is in the region U2(b0) Hene, there exists an angle�1 2 ℄1=2; 2=3[ suh that the dynamial rays Rb0(�1) and Rb0(�1+1=3); bifurateon !2(b0): Sine the set Rb0(�1)[Rb0(�1+1=3)[f!2(b0)g does not interset anddoes not disonnet X 0b, and sine it separates �(b0) 2 X 0b0 and �2(b0) 2 X 0b0 , weget a ontradition.4. Let us now onsider a tip b� 2 M 0. Then, fb�(!2(b�)) 2 J 0b� , there exists asmallest integer k � 1 suh that fÆkb� (!2(b�)) = �2(b�) and fÆ(k�1)b� is a loal



Julia sets in parameter spaes. 33isomorphism at fb�(!2(b�)). Hene, the dynamial statement shows that thereare exatly two dynamial rays landing at fb�(!2(b�)). Those rays are of theform Rb�(�+) and Rb�(��), �� 2 �0.We will now show that the parameter rayR�(�+=3) land at the parameter b�.A similar proof an be arried out for the parameter rayR�(��=3). Observe thatthe two dynamial rays Rb�(��=3) and Rb�(�+=3) land at !02(b�). Besides, sinethe k� 1 �rst iterates of !2(b�) omit the rays Rb�(0=1) and Rb�(1=2), and sinethe rays Rb(0=1) and Rb(1=2) move holomorphially when b 2 W0, it followsthat there exist a neighborhood U � W0 of b� suh that for any b 2 U and anyi � k � 1, fÆib (!2(b)) omits the two rays Rb(0=1) and Rb(1=2). In partiular, forany b 2 U , the two dynamial rays Rb(��) and Rb(�+) do not bifurate. Pulling-bak one more, we see that for any b 2 U , the dynamial rays Rb(��=3) andRb(�+=3) do not bifurate when b 2 U , and so, move holomorphially when bmoves in U . Next, for every � 2 [0;+1[, de�ne h� : U ! C to be the holomorphifuntion h�(b) = '�1b (e�+2i��+=3):When � tends to 0, one an show that h� onverges uniformly on U to a funtionh0 (this is in fat the way one proves that the holomorphi motion of the rayextends to its losure). For any b 2 U , h0(b) is the landing point of the dynamialray Rb(�+). Moreover, the funtion h0 � !02 vanishes at b�. Besides, it does notvanish on UnM� sine for any b 2 UnM�, !02(b) =2 K(fb), whereas h0(b) 2 K(fb).Let us assume that the parameter ray R�(�+=3) does not land at b�. Then thereexist a neighborhood U and a sequene �k & 0 suh that ��1� (e�k+2i��+=3) =2 U ,i.e., the funtion h�k �!02 does not vanish on U . Then, Hurwitz's theorem showsthat h0�!02 either does not vanish on U , or vanishes everywhere on U . This is inontradition to the previous observation. Hene, the parameter ray R�(�+=3)lands at b�.Remark. We don't laim that the only rays aumulating on J 0b are rays of theform Rb(�), � 2 �0, or that the only rays aumulating on M 0 are rays of theform R�(�=3), � 2 �0. This would be of the same order of diÆulty as provingthat for a quadrati polynomial, the only dynamial ray aumulating the �-�xed point is the ray of angle 0=1. In the ase of Cremer polynomials, this is notknown.We will now onsider the unbounded onneted omponents ofW0 n [�2�0R�(�=3):We will show that those onneted omponents are naturally indexed by thedyadi angles # = (2p+ 1)=2k, k � 1 and 2p+ 1 < 2k, and we will denote thembyW#. We will also show that the boundary of a omponent W# is the union oftwo parameter rays R�(#�=3) and R�(#+=3), #� 2 �0, that land at a ommonparameter b# 2M 0.In the next setion, we will show that for every dyadi angle #, M� \ W#ontains a quasi-onformal opy K# of the �lled-in Julia set K(�z + z2), suhthat b# 2 �K# � �M�.



34 Xavier Bu�, Christian HenriksenDe�nition 16. Any dyadi angle # = (2p+ 1)=2k, k � 1 and 0 < 2p+ 1 < 2k,an be expressed in a unique way as a �nite sum2p+ 12k = kXi=1 "i2i ;where eah "i, i = 1; : : : k, takes the value 0 or 1. We de�ne #� and #+ by theformulae: #� = kXi=1 "i + 13i ; and #+ = #� + 12 � 3k :Remark. There are two ways of writing a dyadi number # in base 2:# = 0:"1"2 : : : "k�101111 : : : = 0:"1"2 : : : "k�110000 : : : :Read those two numbers in base 3 and add 1=2. You will obtain #� and #+.Proposition 12. Given any dyadi angle # = (2p+1)=2k, k � 1, 0 < 2p+ 1 <2k, the two parameter rays R�(#�=3) and R�(#+=3) land at a ommon tipb# 2M 0. More preisely, fÆ(k+1)b# (!2(b#)) = �(b#);and the two dynamial rays Rb#(#�=3) and Rb#(#+=3) land at !02(b#).Proof.Step 1. Let us �rst prove that the parameter ray R�(#�=3) land either at b0or at a tip b# 2 M 0 (a similar proof works for the parameter ray R�(#+=3)).The argument we use is very similar to the one written in the Orsay notes[DH1℄. Let us hoose any parameter b# in the aumulation set of the parameterray R�(#�=3) and assume b# 6= b0. Then, b# belongs to the wake W0 andproposition 11 shows that b# 2 M 0. Moreover, observe that 3k#� � 0 mod 1.Hene, if b is the point of the parameter ray R�(#�=3) of potential �, thenfÆ(k+1)b (!2(b)) is the point of the dynamial ray Rb(0=1) of potential 3k+1�.Sine b# is in the wake W0, the dynamial ray Rb(0=1) moves holomorphiallyin a neighborhood of b# and lands at �(b). Hene, by ontinuity as � tends to0, we obtain that fÆ(k+1)b# (!2(b#)) = �(b#). This shows that b# is a tip of M 0.Furthermore, the set of parameters b suh that fÆ(k+1)b (!2(b)) = �(b) is disreteand the aumulation set of the parameter ray R�(#�=3) is onneted. Hene,the parameter ray R�(#�=3) land either at b0 or at a tip b# 2M 0.Let us now show that if the parameter ray R�(#�=3) lands at a tip b# 2M 0,then the dynamial ray Rb#(#�=3) lands at !02(b#). For this purpose we needthe following lemma:Lemma 12. Let � be any angle suh that 3k� = 0 mod 1 or 3k� = 1=2 mod 1for some integer k, and let b� be any parameter in M�\W0. Then the dynamialray Rb�(�) lands at a preimage z� of �(b�). Assume z� is not a preimage of theritial point !2(b�). Then, when b moves in a suÆiently small neighborhood ofb�, the ray Rb(�) does not bifurate, and thus, moves holomorphially.



Julia sets in parameter spaes. 35Proof.We will treat the ase 3k� = 1=2 mod 1. The other ase is similar. Sineb� 2M�, the dynamial ray Rb�(�) does not bifurate. Besides, 3k� = 1=2 mod 1,we have fÆkb� (Rb�(�)) = Rb�(1=2):Sine the ray Rb�(1=2) lands at �(b�), we see that the ray Rb�(�) lands at apreimage z� of �(b�). The lemma now follows diretly from [DH1℄, Proposition3, expos�e 8. �We an apply the above lemma to the angle #�=3 and the parameter b#. Itshows that the ray Rb#(#�=3) lands at a preimage z# of �(b#).If z# is not a preimage of the ritial point !2(b#) then the ray moves holo-morphially in a neighborhood of b#. We de�ne b� to be the point of potential� on the parameter ray R�(#�=3). Then !02(b�) is the point of potential � onthe dynamial ray Rb� (#�=3). When � tends to 0, b� tends to b# and !02(b�)onverges to the landing point of the dynamial ray Rb#(#�=3). By ontinuityof the funtion !02, it proves that the dynamial ray Rb#(#�=3) lands at !02(b#).Hene, the only remaining diÆulty is proving that z# is not a preimageof the ritial point !2(b#). If this were the ase, one ould �nd an integer k1suh that fÆk1b# (z#) = !2(b#). Note that k1 � 1 sine !2(b#) and the dynamialray Rb#(#�=3) are separated by Rb#(0=1) [Rb#(1=2)[ f�(b#)g. Sine !2(b#) isstritly preperiodi (this is our assumption that b# 6= b0), iterating one more,we know that fÆ(k1+1)b# (z#) = fb#(!2(b#)) is not a preimage of !2(b#) and is thelanding point of the dynamial ray Rb#(3k1#�). Hene, we an apply lemma12. It shows that the ray Rb(3k1#�) moves holomorphially in a neighborhoodof b#. Then again, de�ning b� to be the point of potential � on the parameterray R�(#�=3), we get by ontinuity that fÆ(k1+1)b# (!2(b#)) = fb#(!2(b#)). Hene,either fÆk1b# (!2(b#)) = !2(b#) or fÆk1b# (!2(b#)) = !02(b#). The �rst ase is notpossible sine !2(b#) is not periodi. The seond ase is also impossible sine b# 2M 0 and thus !2(b#) and !02(b#) are separated by Rb#(0=1)[Rb#(1=2)[f�(b#)g.Step 2. Let us now show that the parameter raysR�(#+=3) andR�(#�=3) landat the same parameter. Either, both of them land at b0, or one of them land ata tip b# 6= b0 of M 0. Without loss of generality, assume that R�(#�=3) landsat b# 6= b0. We just proved in step 1 that the dynamial ray Rb#(#�=3) landsat !02(b#). Proposition 11 (4) shows that there are exatly two rays landing at!02(b#). It is not diÆult to hek that the other dynamial ray landing at !02(b#)is Rb#(#+=3). Proposition 11 (4) then shows that the parameter ray R�(#+=3)lands at b#.Step 3.We now need to prove that the parameter raysR�(#+=3) andR�(#�=3)do not land at b0. The usual tehniques to prove this kind of result is based ona areful study of paraboli implosion (see for example the Orsay notes [DH1℄).We will use a di�erent approah based on Yooz inequality (see [Hu℄ or [P℄).Let us �rst de�ne W# to be the onneted omponent of W0 n R�(#�=3) [R�(#+=3) that ontains the parameter rays R�(�), with � 2 ℄#�=3; #+=3[. Welaim that the omponentW# annot intersetM 0. Indeed, proposition 10 showsthat if W# intersetM 0, there is a parameter b0 2 W# suh that b0 is a tip of M 0



36 Xavier Bu�, Christian Henriksen(tips ofM 0 are dense in �M 0). But proposition 11 then shows that there are twoparameter rays landing at b0 whose angles are in �0. However, no angle between#� and #+ an be written with only 1's and 2's.Let us now assume that the parameter rays R�(#�=3) and R�(#+=3) landat b0. Sine W# \ M 0 = ;, proposition 10 shows that for any b 2 M� \ W#,the �xed point �(b) is repelling and thus, has a rotation number. This rotationnumber is onstant on any onneted omponent L of M� \W#. Besides, sineM� is onneted, we neessarily have b0 2 L. Sine at b0 the �xed point �(b)ollapses with �(b) and beomes a multiple �xed point, the multiplier at �(b)tends to 1 as b tends to b0, and the Yooz inequality shows that the rotationnumber of �(b) is 0=1 for any b 2 L. But in this ase, for any b 2 L one of thetwo dynamial rays Rb(0=1) or Rb(1=2) has to land at �(b), whih is impossiblesine they both land at �(b) 6= �(b). This gives the required ontradition.De�nition 17. For any dyadi angle #, we de�ne the wake W# to be the on-neted omponent of C n R�(#�=3) [ R�(#+=3)that ontains the parameter rays R�(�), with � 2 ℄#�=3; #+=3[.Proposition 13. Given any dyadi angle # = (2p+1)=2k, k � 1, 0 < 2p+ 1 <2k, and any parameter b 2 W#, the dynamial rays Rb(#�=3) and Rb(#+=3) donot bifurate and land at a ommon preimage of �(b).Proof. Let us assume that b belongs to the parameter ray R�(�) and that thedynamial ray Rb(#�=3) bifurates. Then, note that the dynamial ray Rb(�) bi-furates on !02(b). Hene, Rb(3�) ontains the ritial value fb(!2(b)). Moreover,the dynamial ray Rb(#�=3) bifurates on a preimage of !2(b). Hene, thereexists an integer n � 0 suh that fÆnb (Rb(#�=3)) = Rb(3n�1#�) bifurates on!2(b). Sine Rb(#�=3) � U 02, we neessarily have n � 1, and Rb(3n#�) ontainsthe ritial value fb(!2(b)). This shows that the set of parameters b 2 W0 wherethe dynamial ray Rb(#�=3) bifurates is preisely the union of parameter raysR�(�) where � 2 ℄1=6; 2=3[ and 3� = 3n#� mod 1 for some integer n � 1.It is not diÆult to hek that for any n � 1, the angle 3n#� mod 1 doesnot belong to the interval [#�; #+℄. Besides, the parameter ray R�(3n#�) landsat a tip of M 0 and this tip annot be b# (see proposition 12). Hene, the setof parameter b 2 W0 for whih the dynamial ray Rb(#�=3) do not bifurateis a neighborhood of W#. A similar argument shows that the set of parameterb 2 W0 for whih the dynamial rayRb(#+=3) do not bifurate is a neighborhoodof W#. Sine at b# the two dynamial rays Rb(#�=3) and Rb(#+=3) land at theommon point b#, we see that this property holds for any parameter b in W#.Finally, sine fÆ(k+1)b (Rb(#�=3)) = Rb(0=1) lands at �(b), the landing point ofthe rays Rb(#�=3) and Rb(#+=3) is a preimage of �(b).De�nition 18. Given any dyadi angle # = (2p+1)=2k, k � 1, 0 < 2p+1 < 2k,and any parameter b 2 W#, we de�ne W# to be the onneted omponent ofC n �Rb(#�=3) [ Rb(#+=3)�that ontains the dynamial rays Rb(�), � 2 ℄#�=3; #+=3[.



Julia sets in parameter spaes. 37Proposition 14. Given any dyadi angle # = (2p+1)=2k, k � 1, 0 < 2p+ 1 <2k, and any parameter b 2 W#, the o-ritial point !02(b) belongs to the regionW#(b) and the mapping fÆ(k+1)b : W#(b)! V1(b) is an isomorphism.Proof. We have seen (proposition 13) that the boundary of the region W#(b)move holomorphially when bmoves in the wakeW#. Furthermore, the o-ritialpoint !02(b) annot belong to this boundary sine this would mean that b is inthe boundary of the wake W#. Hene, to see that for any to parameter b 2 W#,the o-ritial point !02(b) belongs to the region W#(b), it is enough to hek itat one partiular parameter b 2 W#. This is lear as soon as b is outside M�.Indeed, in this ase b belongs to a parameter ray R�(�) with � 2 ℄#�=3; #+=3[.Thus, !02(b) belongs to the dynamial ray Rb(�) �W#(b).Sine fÆ(k+1)b : C ! C is a rami�ed overing, we know that for any onnetedomponent W of �fÆ(k+1)b ��1 (V1(b)), the restrition fÆ(k+1)b : W ! V1(b) isalso a rami�ed overing. Those omponents are the onneted omponents of Cminus the losure of the dynamial rays Rb(�) where 3k+1� mod 1 is equal to 0 or1=2. It is not diÆult to hek that the regionW#(b) ontains no suh ray. Thus,fÆ(k+1)b : W#(b) ! V1(b) is a rami�ed overing. Sine the boundary of W#(b) ismapped to the boundary of V1(b) with degree 1, fÆ(k+1)b : W#(b) ! V1(b) is anisomorphism.8. Copies of quadrati Julia sets in the parameter plane.In setion 6, we have de�ned the setXb = [�2�Rb(�)and we have proved that the mapping h : W0 �Xb1 ! Xb de�ned by h(b; z) ='�1b Æ 'b1(z) gives a holomorphi motion of the set Xb1 . In this setion we �xone and for all a holomorphi motion h : W0 � C ! C that oinide with theprevious holomorphi motion onW0�Xb1 . This an be done using S`odkowski'stheorem (see [Sl℄ or [D2℄), beause W0 is a simply onneted Riemann surfae.We will also �x one and for all a dyadi angle # = (2p + 1)=2k, k � 1,0 < 2p+1 < 2k, and we will de�ne #�, #+, b#,W# andW#(b) as in the previoussetion.De�nition 19. We de�ne X# to be the set of parameter raysX# = [�2�R� �#�3 + �3k+1� :Besides, we de�ne J# to be the set J# = X# n X#, where the losure is takenin C . Finally, we de�ne K# to be the omplement of the unbounded onnetedomponent of C n J#.
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:3 + 2:7i Fig. 13. The holomorphi motion for � = �1.Main Theorem. Let � 2 S1 be a omplex number of modulus 1 and # 2 R=Zbe a dyadi angle. The set K# is ontained in M� \ W#, its boundary J# isontained in the boundary of M� and the parameter b# belongs to J#. Besides,there exist a quasi-onformal homeomorphism de�ned in a neighborhood of K#,sending K# to K(�z + z2).Figure 13 suggests the main idea of the proof in the ase � = �1, p = 0 andk = 1, i.e., for # = 1=2.Proof. By de�nition of X# and J#, we see that X# � W# and J# � �M�. SineM� is full, we also have K# � M�. Finally, sine b# is the landing point ofthe parameter ray R�(#�=3), we see that b# 2 J#. Hene, the only diÆulty isproving that K# is quasi-onformally homeomorphi to K(�z + z2).



Julia sets in parameter spaes. 39Lemma 13. The mapping H# :W0 ! C de�ned byH#(b) = h�1b hfÆ(k+1)b (!2(b))i ;is loally quasi-regular. Its restrition to the dyadi wake W#, is a homeomor-phism whih is loally quasi-onformal.Proof. The argument we use is essentially due to Douady and Hubbard [DH2℄(with some modi�ations). Let us �rst show that the restrition of H# to anyopen subset ofW0 whih is relatively ompat inW0 is a quasi-regular mapping.It is enough to prove that there exists a � 2 [0; 1[ suh that the distributionalderivatives of H with respet to b and b are loally in L2 and satisfy�������� �H#=�b�H#=�b ��������1 � � < 1:Let us take the derivative with respet to b of the equation hbÆH# = fÆ(k+1)b Æ!2:Sine �hb=�b and �(fÆ(k+1)b Æ !2)=�b identially vanish, we get�hb�z ���H#(b) �H#�b ���b + �hb�z ���H#(b) �H#�b ���b = 0Thus, ���� �H#=�b�H#=�b ���b ���� = ���� �H#=�b�H#=�b ���b ���� = ���� �hb=�z�hb=�z ���H#(b) ���� :The result follows by quasi-onformality of hb.Now, at every point b 2 W0, the mapping H# has a loal degree whih ispositive. To see that the restrition of H# to the wakeW# is proper, let us showthat H# mapsW# (respetively �W#) to V1(b1) (respetively �V1(b1)). Indeed, ifb 2 W#, then !02(b) belongs to the regionW#(b) whih is mapped isomorphiallyby fÆ(k+1)b to V1(b) (see proposition 14). This shows that for any b 2 W#,fÆ(k+1)(!2(b)) = fÆ(k+1)(!02(b)) 2 V1(b):Moreover, by onstrution, for any b 2 W0, we have hb(V1(b1)) = V1(b). Sinehb is a homeomorphism, we see thatH#(b) = h�1b hfÆ(k+1)b (!2(b))i 2 h�1b (V1(b)) = V1(b1):Furthermore, the map H# is ontinuous in the whole wakeW0 and in partiularon the boundary of W#, i.e., on R�(#�) [ R�(#+). Sine hb maps Rb1(0=1)(respetively Rb1(1=2)) to Rb(0=1) (respetively Rb(1=2)), we see that whenb 2 �W#, i.e., !02(b) 2 Rb(#�) [ Rb(#+), we haveH#(b) 2 h�1b �fÆ2b �Rb(#�) [ Rb(#+)�� = h�1b �Rb(0=1) [ Rb(1=2)�= Rb1(0=1) [ Rb1(1=2) = �V1(b1):Hene, the mapping H# :W# ! V1(b1) is a proper mapping.



40 Xavier Bu�, Christian HenriksenLet us now show that the topologial degree of the restrition of H# toW# is1. Sine H# is loally quasi-regular, the topologial degree of H# at any point b 2W# is positive. Hene, it is enough to show that when b turns one around W#,H#(b) turns one around V1(b1). But this is straight forward sine the point ofpotential � on the parameter ray R�(#�)=3 (respetively R�(#+)=3) is mappedto the point of potential 3k+1� on the dynamial ray Rb1(0=1) (respetivelyRb1(1=2)). �To onlude the proof of the main theorem, observe that H# (X#) = Xb1 :Indeed, for any � 2 �,H#�R� �#�3 + �3k+1�� = Rb1(3k#� + �) = Rb1(�):Hene, H#(J#) = H#(X# n X#) = Xb1 nXb1 = Jb1 ;and H#(K#) = Kb1 . Sine we know that Kb1 is quasi-onformally homeomorphito K(�z + z2), the main theorem is proved.We say that the family fb is stable at a parameter b0 if and only if the Juliaset J(fb) moves holomorphially in a neighborhood of b0. The bifuration lousof the family fb is de�ned to be the set of parameters where the family is notstable. Using the results obtained by Ma~ne, Sad and Sullivan in [MSS℄, one anprove that the bifuration of the family fb, b 2 C , is preisely the boundary of theonnetedness lous M�. The following orollary is an immediate onsequeneof the previous theorem.Corollary A. For eah � = e2i��, the bifuration lous of the one parameterfamily fb(z) = �z + bz2 + z3, b 2 C , ontains quasi-onformal opies of thequadrati Julia set J(�z + z2).9. Non loal onnetivity in the parameter plane.We will now prove that when the Julia set J(�z + z2) is not loally onnetedM� is not loally onneted.Corollary B. If the Julia J(�z + z2) is not loally onneted, M� is not loallyonneted.Proof. The proof we will give here was explained to us by Lyubih and MMullen.Let us reall that if the ontinuous image of a loally onneted ompat set isHausdor�, then it is loally onneted. Thus, it is enough for our purposes toonstrut a ontinuous retration from M� to the set K#.Let us �rst plough in the dynamial plane of fb1 . Observe that the unboundedonneted omponents of C nXb1 are preimages of V2(b1) by iterates of fb1 . SineV2(b1) is bounded by the dynamial rays Rb1(0=1) and Rb1(1=2) whih both landat �(b), we see that eah unbounded onneted omponent of C nXb1 is boundedby two dynamial rays belonging to X 0b1 whih land at a ommon preimage of�(b1).



Julia sets in parameter spaes. 41Harvesting in the parameter plane using H#, we see that eah unboundedonneted omponents of C n X# is bounded by two parameter rays belongingto X# whih land at a ommon parameter whih belong to J#. We an thende�ne a retration  : C nX# ! K# whih is the identity on K# and sends everyunbounded onneted omponent W of C n X# to the landing point of the twoparameter rays bounding W .This retration is ontinuous. Indeed, every open set in K# an be writtenU \K# with U open in C n X#. Then, the preimage of this open set is the unionof U and the unbounded onneted omponents of C n X# interseting U . Thisis learly open.The restrition of  to M� � C n X# gives the required retration.Let us �nally prove that there exist values of � for whih ertain parameterrays have a non-trivial impression. In order to state our third orollary, we needto introdue some notations.De�nition 20. Given any omplex number � of modulus 1, we de�ne P� to bethe quadrati polynomial P�(z) = �z+z2. We de�ne gP� : C ! [0;+1[ to be itsGreen funtion and 'P� : C nK(P�)! C n D to be its B�otther oordinate. Forany angle � 2 R=Z, we de�ne RP�(�) to be the dynamial ray of the polynomialP� of angle �.De�nition 21. Let �� : R=Z ! R=Z be the Cantor map (or devil stairase)whih is onstant on eah onneted omponent of R=Z n� and is de�ned on �by: ��0�Xi�1 "i3i1A =Xi�1 "i2i ; where "i 2 f0; 1g:Corollary C. Given any omplex number � of modulus 1 and dyadi angle# = (2p+1)=2k and any angle � 2 �, the aumulation set of the parameter rayR�(#�=3 + �=3k+1) is redued to a point if and only if the aumulation set ofthe quadrati ray RP�(��(�)) is redued to a point.The following proof was explained to us by Douady.Proof. The proof of the main theorem provides a homeomorphismH# :W# ! V1(b1)whih maps eah parameter ray R�(#�=3 + �=3k+1), � 2 �, to the dynamialray Rb1(�). Hene, it is enough to prove that for any � 2 �, the aumulation setof the dynamial ray Rb1(�) is redued to a point if and only if the aumulationset of the quadrati ray RP�(��(�)) is redued to a point.Let us reall that the mapping fb1 : U 0b1 ! Ub1 is a quadrati-like mappinghybrid onjugate to the quadrati polynomial P� (see proposition 5 and �gure 3).To �x the ideas, we hoose a potential �0 > 0, we set UP� = fz 2 C j gP�(z) <2�0g and U 0P� = fz 2 C j gP�(z) < �0g. Then, we hoose a quasi-onformalhomeomorphism  : Ub1 ! UP� that onjugates fb1 : U 0b1 ! Ub1 to P� : U 0P� !UP� and that sends the segment of dynamial ray Ub1 \ Rb1(0=1) onto UP� \



42 Xavier Bu�, Christian HenriksenRP�(0=1). We will onstrut a ontinuous mapping  � : Ub1 nKb1 ! UP� nK(P�)whih semi-onjugates fb1 : U 0b1 ! Ub1 to P� : U 0P� ! UP� and whih mapsRb1(�)\Ub1 , � 2 �, to RP�(��(�)). We will then prove that the distane, for thehyperboli metri on C nK(P�), between  (z) and  �(z), is uniformly boundedindependently on z 2 UP� nK(P�). It easily follows that the aumulation setsof  (Rb1(�)) and  �(Rb1(�)) = RP�(��(�)) are equal. Sine  : Ub1 ! UP� is ahomeomorphism, this will omplete the proof of orollary C.Let us now �ll in the details. We will need to work with the universal overingsof Vb1 = C nKb1 and VP� = C nK(P�). To write things orretly and to avoidnasty traps, we need to hoose basepoints. We hoose z0 (respetively z1) tobe the point of potential G(b1) (respetively G(b1)=3) on the dynamial rayRb1(0=1). We then de�ne �b1 : eVb1 ! Vb1 to be the universal overing of Vb1with basepoint at z0. We hoose eR to be a lift of Rb1(0=1) and we de�ne ez0(respetively ez1) to be the point of eR whih is in the �ber of z0 (respetively z1).Next, we de�ne eUb1 = ��1b1 (Ub1 nKb1) and eU 0b1 = ��1b1 (U 0b1 nKb1). Then, we allefb1 : eU 0b1 ! eUb1 the lift of fb1 : U 0b1 ! Ub1 that sends ez1 to ez0:(eU 0b1 ; ez1) efb1
//�b1

��

(eUb1 ; ez0)�b1
��(U 0b1 ; z1) fb1 // (Ub1 ; z0):Finally, observe that the fundamental group of Vb1 is a yli group that atson eVb1 . We all b1 : eVb1 ! eVb1 the automorphism of eVb1 that orresponds toturning one around Kb1 ounter-lokwise. Sine fb1 : U 0b1 ! Ub1 maps a loopthat turns one around Kb1 ounter-lokwise to a loop that turns twie aroundKb1 ounter-lokwise, we see that efb1 Æ b1 = Æ2b1 Æ efb1 .Similarly, we de�ne w0 (respetively w1) to be the point of potential �0 (re-spetively �0=2) on the quadrati rayRP�(0=1). We de�ne �P� : eVP� ! VP� to bethe universal overing with basepoint at w0. In this ase, we an give an expliitformula. We identify eVP� with the right half-plane H = fz 2 C j Re(z) > 0g andwe set �P� = '�1P� Æ exp. The real axis projets to the quadrati ray RP�(0=1).Thus, we de�ne ew0 = �0 and ew1 = �0=2, so that �P�( ew0) = w0 and �P�( ew1) =w1. We de�neeUP� = ��1P��UP� nK(P�)� = nz 2 H j Re(z) < 2�0oand eU 0P� = ��1P��U 0P� nK(P�)� = nz 2 H j Re(z) < �0o:The lift of P� : VP� ! VP� that sends ew1 to ew0 is the map ew 7! 2 ew. Finally, theautomorphism of H that orresponds to turning one around K(P�) ounter-lokwise is the translation z 7! z + 2i�.Next, a quasi-onformal homeomorphism  : Ub1 ! UP� , that onjugatesfb1 : U 0b1 ! Ub1 to P� : U 0P� ! UP� and that sends the segment of dynamialray Ub1 \ Rb1(0=1) onto UP� \ RP�(0=1), an be lifted to a quasi-onformal



Julia sets in parameter spaes. 43homeomorphism e : eUb1 ! eUP� that sends ez0 to ew0. Then e sends eR \ eUb1to R \ eUP� . Hene, it also sends ez1 to ew1, and it is not diÆult to see that itonjugates efb1 to multipliation by 2: e Æ efb1 = 2 e :We now ome to the onstrution of the semi-onjugay  �. First, onsiderthe inreasing homeomorphism h : [G(b1); 3G(b1)℄! [�0; 2�0℄ de�ned byh = gP� Æ  Æ '�1b1 Æ exp(h(�) is the potential in C nK(P�) of the image by  of the point of potential� on the dynamial ray Rb1(0=1)). Then, de�ne the ontinuous mapping  � :Ub1 n U 0b1 ! UP� n U 0P� in the following way:� on U 00b1 , the map  � is onstantly equal to '�1P� (e�0), i.e., the point of potential�0 on the dynamial ray RP�(0=1);� on Ub1 n (U 0b1 [ U 00b1) the map  � sends the point '�1b1 (e�+2i��) to the point'�1P� (eh(�)+2i���(�)).Observe that on the boundary of U 0b1 , we have  � Æfb1 = P� Æ �. Now, onsiderthe lift e � : eUb1 n eU 0b1 ! eUP� n U 0P� that sends ez0 to ew0. The map e � semi-onjugates efb1 to multipliation by 2 on the boundary of eU 0b1 . Thus, we anextend it ontinuously to eUb1 using the formula:e �(ez) = 12n e �� efÆnb1 (ez)�;where n is hosen so that efÆnb1 (ez) belongs to eUb1 n eU 0b1 . An easy indution showsthat e �Æ1 = e �+2i�. Hene, e � projets to a ontinuous map  � : Ub1nKb1 !UP� nK(P�) that semi-onjugates fb1 : U 0b1 ! Ub1 to P� : U 0P� ! UP� .We laim that for any � 2 �,  � maps Rb1(�) \ Ub1 homeomorphially ontoRP�(��(�) \ UP�). Indeed, set A0 = Ub1 n U 0b1 and for n � 0 de�ne reursivelyAn+1 = f�1b1 (An). Similarly, de�ne Bn to be the annulusBn = nz 2 C nK(P�) j �0=2n � gP�(z) � �0=2n�1o:By onstrution, for every � 2 �, we have  �(Rb1(�) \A0) = RP�(��(�)) \B0.Besides, sine  � semi-onjugates fb1 and P�, we see that for every n � 0 andevery � 2 �,  �(Rb1(�) \ An) is ontained in the intersetion of the annulusBn with a ray of P�. Sine  � is ontinuous, the whole set  �(Rb1(�) \ Ub1) isontained in a single ray of P�, i.e., the ray RP�(��(�)). The point of potential� is mapped to the point of potential h(3n�)=2n, where n is hosen so thatG(b1) � 3n� � 3G(b1). This shows that  � : Rb1(�) \ Ub1 ! RP�(��(�) \ UP�)is a homeomorphism.Let us �nally show that the distane, for the hyperboli metri on C nK(P� ),between  (z) and  �(z), is uniformly bounded independently on z 2 Ub1 nKb1 .It is enough to prove that for any ez 2 eUb1 , the hyperboli distane in H betweene (ez) and e �(ez) is uniformly bounded. Sine e Æ efb1 = 2 e and e � Æ efb1 = 2 e �,and sine multipliation by 2 is an isometry for the hyperboli metri on H , it isenough to prove the statement on the intersetion of eUb1n eU 0b1 with a fundamental



44 Xavier Bu�, Christian Henriksendomain for 1. This is immediate sine the losure of suh a set is ompat ineVb1 and the mappings e and e � are ontinuous on eVb1 .It now follows that we an extend  � ontinuously toKb1 by setting  �jKb1 = jKb1 . Given � 2 � onsider the restrition of  � to (Rb1(�)\Ub1)[Kb1 . Sinethis map is injetive ontinuous and the domain is ompat, it is neessarily ahomeomorphism. Notie that the losure of Rb1(�)\Ub1 in C equals the losuretaken in (Rb1(�) \ Ub1) [Kb1 . Similarly the losure of RP�(��(�)) \ UP� in Cequals the losure taken in (RP�(��(�))\UP� )[K(P�). In partiular  �jKb1 = jKb1 provides a homeomorphism, mapping the impression of Rb1(�) onto theimpression of RP�(��(�)).Let us now onsider the funtion �2 : (R n Q)=Z! (R n Q)=Z de�ned in thefollowing way: for any irrational angle, �rst hoose the representative t 2℄0; 1[,then de�ne �2(t) = X0<p=q<t 12q+1 :The sum is taken over all pairs (p; q) suh that 0 < p=q < t, whether p andq are relatively prime or not. Douady proved that the set of omplex numbers� = e2i�t, t 2 (R n Q)=Z, for whih the aumulation set of the quadrati rayRP�(�2(t)) is not redued to a point, is a dense GÆ subset of S1. The proof anbe found in [S�℄.Next, observe that for eah t 2 R n Q, there is exatly one angle �3(t) 2 �whih is mapped to �2(t) by �� :�3(t) = X0<p=q<t 13q+1 :The previous orollary shows that when the aumulation set of the quadrati rayRP�(�2(t)) is not redued to a point, then the aumulation set of the parameterray R�(2=9+ �3(t)=9) is also not redued to a point. This shows that the set ofomplex numbers � of modulus 1 for whih at least one of the parameter raysR�(�) � C nM� has an aumulation set not redued to a point, ontains adense GÆ subset of S1.Aknowledgements. We are very grateful to Bodil Branner, Adrien Douady, John Hubbard andCarsten Petersen for enouraging us. We would like to thank the department of mathematis ofthe University at Cornell for its hospitality during the aademi year 1997-1998. There, we drewthe �rst pitures showing evidene of the existene of Julia sets in parameter spaes. We wouldalso like to thank the departments of mathematis of Tehnial University of Denmark and ofUniversit�e Paul Sabatier. This researh was supported by the frenh embassy in Denmark: itmade possible the exhanges that took plae at the time this artile was written.Referenes[Br℄ Branner, B.: Puzzles and Parapuzzles of quadrati and Cubi Polynomials. Proeed-ings of Symposia in Applied Math. 49, 31-69 (1994)[BH1℄ Branner, B. and Hubbard, J.: The iteration of ubi polynomials, Part I: The globaltopology of parameter spae. Ata Math. 160, 143{206 (1988)[BH2℄ Branner, B. and Hubbard, J.: The iteration of ubi polynomials, Part II: Patternsand parapatterns. Ata Math. 169, 229{325 (1992)
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