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Abstract

Due to the rapid emergence of resistance to classical antibiotics, novel antimicrobial com-

pounds are needed. It is desirable to selectively kill pathogenic bacteria without targeting

other beneficial bacteria in order to prevent the negative clinical consequences caused by

many broad-spectrum antibiotics as well as reducing the development of antibiotic resis-

tance. Antimicrobial peptides (AMPs) represent an alternative to classical antibiotics and it

has been previously demonstrated that Cap18 has high antimicrobial activity against a

broad range of bacterial species. In this study we report the design of a positional scanning

library consisting of 696 Cap18 derivatives and the subsequent screening for antimicrobial

activity against Y. ruckeri, A. salmonicida, S. Typhimurium and L. lactis as well as for hemo-

lytic activity measuring the hemoglobin release of horse erythrocytes. We show that the

hydrophobic face of Cap18, in particular I13, L17 and I24, is essential for its antimicrobial

activity against S. Typhimurium, Y. ruckeri, A. salmonicida, E. coli, P. aeruginosa, L. lactis,

L. monocytogenes and E. faecalis. In particular, Cap18 derivatives harboring a I13D, L17D,

L17P, I24D or I24N substitution lost their antimicrobial activity against any of the tested bac-

terial strains. In addition, we were able to generate species-specific Cap18 derivatives by

particular amino acid substitutions either in the hydrophobic face at positions L6, L17, I20,

and I27, or in the hydrophilic face at positions K16 and K18. Finally, our data showed the

proline residue at position 29 to be essential for the inherent low hemolytic activity of Cap18

and that substitution of the residues K16, K23, or G21 by any hydrophobic residues

enhances the hemolytic activity. This study demonstrates the potential of generating spe-

cies-specific AMPs for the selective elimination of bacterial pathogens.

Introduction

In recent years, the widespread use of antibiotics has contributed to the selection for microor-

ganisms with antibiotic resistance and to the selection for transmission of antibiotic resistance

mechanisms between quite distantly related organisms. The number of resistant superbugs is
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increasing and new anti-infective solutions are urgently needed. However, the time for devel-

opment of a new antimicrobial drug is quite lengthy compared to the current dissemination of

novel antibiotic resistance mechanisms among commensal and pathogenic microorganisms

[1–4]. We are therefore in a state of extreme vulnerability with a risk for reappearance of epi-

demics of infectious diseases.

The use of traditional antibiotics not only select for resistance in a broad range of patho-

gens, but also disturbs and alters the natural flora, which plays an important role in human

and animal health [5–8]. This is one reason behind major health problems/antibiotics-associ-

ated infections such as Clostridium difficile infections in humans and animals resulting in

severe and sometimes fatal enteric diseases [9]. More recent studies have shown that tradi-

tional antibiotic treatment can perhaps have lifelong negative consequences due to the perma-

nent disturbance of the microbiota. Therefore, much of the current research in infection

therapy is aiming at identifying alternatives which are safer, more specific for a given bacteria

target to reduce or eliminate such deleterious side effects on the microbiota and are more sus-

tainable than the traditional antibiotics. New and non-conventional antimicrobials with spe-

cies-specific killing capability are needed to prevent posttreatment complications and to

overcome a future “post-antibiotic era”.

Antimicrobial peptides (AMPs) captured attention and might present an attractive alterna-

tive to classical antibiotics. AMPs have been found in all kingdoms of life and are part of the

innate immunity and represent the first line of defense in an infection [10,11]. Despite their

diversity in origin and sequence, they generally have a substantial proportion of hydrophobic

amino acids (=>30%), an overall positive charge (+2 to +11) and are relatively short consist-

ing of 10–50 amino acids [12]. Based on these properties, AMPs are able to fold into amphi-

philic three-dimensional structures and are often based on their secondary structure

categorized into α-helical, β-sheet or peptides with extended/random coil structure. Most of

the so far characterized AMPs belong to the family of the α-helical or β-sheet peptides [13,14].

It is widely accepted that the bacterial membrane is the key component for the antimicro-

bial activity of AMPs. Based on a considerable amount of in vitro data showing the disruption

of lipid bilayers by AMPs, it has been suggested that the bactericidal effect of AMPs is mainly

due the formation of pores in the cytoplasmic membrane disrupting the physical integrity of

bacterial membrane which finally leads to cell death [12,14,15]. However, the exact mechanism

of pore formation in bacterial membrane is less certain. It is widely believed that electrostatic

forces between the positively charged amino acids of the AMPs and the negatively charged

bacterial surface are the initial step and critical determinants for interactions between AMPs

and the bacterial membrane. In addition to the negatively charged phospholipids such as phos-

phatidylglycerol, cardiolipin and phosphatidylserine present in the bacterial cytoplasmic mem-

brane, lipopolysaccharides (LPS) in the outer membrane of Gram-negative bacteria and

teichoic acids in the peptidoglycan layer of Gram-positive bacteria are contributing to the

overall negative charge of the bacterial cell envelope [16]. The positively charged AMP is

expected to accumulate on the surface of the membrane and upon reaching a certain threshold

the AMP might self-assemble and incorporate into the membrane by creating a pore. Several

models for pore formation of AMPs have been suggested including the barrel-stave model, the

carpet mechanism and the toroidal pore model [17]. Besides membrane dysfunction and dis-

ruption caused by the leakage of ions and metabolites and depolarization of the transmem-

brane potential, membrane permeabilization is crucial for the translocation of certain AMPs

into the cytoplasm acting on key cellular mechanisms such as DNA, RNA and protein synthe-

sis, enzymatic activity, protein folding and cell wall synthesis [14,15].

Since the interaction of the AMP with the membrane is the key step for the mechanism of

most AMPs, discrimination between eukaryotic and prokaryotic membrane is crucial for
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potential successful drug candidate. The difference between bacterial and mammalian

membranes enables as selective action of the AMPs. In contrast to bacteria, the cytoplasmic

membrane of mammalian cells has neutral net charge consisting of mainly zwitterionic phos-

pholipids such as phosphatidylcholine, sphingomyelin and phosphatidylethanolamine [18,19].

In addition, mammalian cell membranes have a high content of cholesterol which is supposed

to reduce the antimicrobial activity of AMPs by stabilizing the membrane [10,18,20]. Despite

those fundamental differences between mammalian and bacterial membranes, many AMPs

are hemolytic and able to lyse mammalian cells. Minimizing cell toxicity, while at the same

time maximizing antimicrobial activity is a major challenge in the development of AMPs for

clinical applications.

It must be expected that AMPs during evolution have evolved towards a high general activ-

ity against multiple microorganisms. In this study, we address the issues of species specificity,

hemolytic activity and antimicrobial activity of Cap18, a α-helical peptide of the cathelicidin

family. Our previous study demonstrated that Cap18, originally isolated from rabbit neutro-

phils, has high antimicrobial activity against a broad range of pathogenic bacteria, is highly

thermostable and showed no hemolytic activity in vitro [21]. In addition, a recent study evalu-

ated a potential therapeutic effect of Cap 18 against the red mouth disease in juvenile rainbow

trout caused by Y. ruckeri either by oral administration or intraperitoneal injection. It was con-

cluded that, injection of Cap18 into juvenile rainbow trout before exposure to Y. ruckeri was

associated with lower mortality compared to non-treated fish [22]. Based on those properties,

Cap18 has the potential to act as lead peptide for further development and optimization. Here,

we report the design of a Cap18 peptide library consisting of 696 Cap18 derivatives which was

screened for antimicrobial and hemolytic activity and analyzed for species specific killing. In

particular, the Cap18 library was screened for antimicrobial activity against S. Typhimurium,

an important foodborne pathogen and Y. ruckeri and A. salmonicida, two important fish path-

ogens accounting for substantial economic losses in aquaculture. We successfully identified

Cap18 variants with changed target specificity and species-specific killing properties and

amino acid residues important for antimicrobial and hemolytic activity. Based on our results,

we show that changing one single amino acid of Cap18 can lead to changed species specificity

of Cap18.

Materials and methods

Bacterial strains and growth conditions

The strains used in this study are listed in Table 1. The Y. ruckeri strain was kindly provided by

Prof. Kurt Buchmann, University of Copenhagen, Faculty of Health and Medical Sciences,

Denmark.

All strains were grown in Mueller-Hinton-II medium, except L. monocytogenes which was

grown in BHI medium and L. lactis which was grown in MRS medium. Incubation took place

aerobically at 37˚C, except for Y. ruckeri and A. salmonicida, which were grown aerobically at

RT (20 ˚C), and L. lactis grown aerobically at 30˚C. All plates were incubated for 16–21 hours.

Antimicrobial peptides

All peptides used in this study were purchased as chemically synthesized peptides with either

crude purity for the peptide library peptides from Genscript or with high purity from Gen-

script or Peptide 2.0. The purity of each peptide was determined by the supplier by HPLC and

MS analysis. Peptide purity values are given in S1 Table. All peptides were dissolved in 100%

DMSO at a stock concentration of 10 mg/ml and stored at -20˚C.
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Antimicrobial susceptibility testing (MIC testing)

The minimum inhibitory concentrations (MICs) of the AMPs were measured in 96-well

microtiter plates according the Clinical and Laboratory Standards Institute (CLSI, formerly

National Committee for Clinical Laboratory Standards [NCCLS]) [26]. Briefly, liquid Mueller-

Hinton-II medium containing increasing concentrations of AMPs is inoculated with a defined

number of cells (approx. 105 CFUs/ml) in 96-well microtiter plates (polypropylene), whereas

each plate also includes a positive growth control and a negative control (sterile control). The

range of peptide concentrations analyzed was 0.125–64 μg/ml for the high purity peptides and

0.06–32 μg/ml for peptides of the variant library. After incubation, the MIC is determined by

the lowest concentration showing no visible growth. All plates were incubated for 16–20

hours. The MIC of the reference antibiotics was determined by the use of Sensititre panels

(Trek Diagnostic Systems Ltd, East Grinstead, UK).

Cytotoxicity assay

The cytotoxicity for each AMP was determined spectrophotometrically by measuring the

haemoglobin release from horse erythrocytes. Briefly, fresh defibrinated horse blood was

washed three times with PBS, centrifuged for 15 minutes at 1000g and resuspended at

10% (v/v) in PBS. Samples of the washed horse erythrocytes (100 μl) were transferred to a

96 well microtiter plate and mixed with 100 μl AMP solution. The final AMP concentra-

tion in the assay was (32 μg/ml). PBS was used as a negative control, and 0.2% TritonX-

100 was used as a positive control. The microtiter plates were incubated for 60 minutes at

37˚C and then centrifuged for 10 minutes at 1300g. The supernatants were transferred to

a flat-bottom 96 well polystyrene mircotiter plate and the haemoglobin release was moni-

tored by measuring the absorbance at 540 nm. The percentage of haemolysis was calcu-

lated as 100 �(Asample−APBS)/(ATritonX-100 –APBS), where Asample is the experimental

absorbance of the peptide sample, APBS is the control absorbance of untreated erythro-

cytes, and ATritonX-100 is the absorbance of 0.2% TritonX-100 lysed cells.

Results

Broad antimicrobial activity of Cap18

Cap18 is highly active in particular against Gram-negative bacteria including the foodborne

pathogens Salmonella Typhimurium and Campylobacter jejuni and the fish pathogens Yersina
ruckeri and Aeromonas salmonicida, which are a major problem in fish farming (Table 2). The

antimicrobial activity of Cap18 against Y. ruckeri is similar to the well-known antibiotics

Table 1. Strains used in this study.

Strain Relevant characteristics /genotype Reference(s)

Aeromonas salmonicida ATCC33658 Type strain ATCC strain collection

Yersinia ruckeri 392/2003 [23]

Salmonella enterica serovar Typhimurium LT2 sequenced

Lactococcus lactis IL1403 [24]

Escherichia coli ATCC25922 Clinical isolate, Serotype O6, Biotype 1, reference strain ATCC strain collection

Staphylococcus aureus ATCC29213 reference strain for antimicrobial susceptibility testing ATCC strain collection

Enterococcus faecalis ATCC29212 reference strain for antimicrobial susceptibility testing ATCC strain collection

Pseudomonas aeruginosa ATCC27853 reference strain for antimicrobial susceptibility testing ATCC strain collection

Listeria monocytogenes N22-2 Isolate from fish processing industry [25]

Escherichia coli ATCC25922 Clinical isolate, Serotype O6, Biotype 1, reference strain ATCC strain collection

https://doi.org/10.1371/journal.pone.0197742.t001
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ampicillin, gentamicin and polymyxin E and even more active than nalidixic acid. However,

Cap18 is not only active against pathogenic organisms, but shows a broader range of antimi-

crobial activity including high antimicrobial activity against beneficial organisms such as Lac-
tococcus lactis (Table 2)

Design of a Cap18 positional scanning library consisting of 703 peptide

variants

In order to optimize the antimicrobial properties of Cap18 and to identify specific residues

crucial for the antimicrobial activity, a positional scanning library of Cap18 was designed (S1

Fig). By sequentially substituting each amino acid of the wild-type Cap18 peptide by all other

natural amino acids, a peptide library consisting of 703 chemically synthesized peptides was

generated. Each individual peptide of this positional scanning library harbors one single

amino acid change compared to the Cap18 wild-type peptide. The library peptides were pur-

chased from Genscript as chemically synthesized peptides with crude purity. The purity of the

individual peptides varied from 15.8% to 81% purity, whereas most of the peptides showed a

purity between 30%-60% (S1 Table). After correcting for the different purity of each peptide,

only 7 peptides were not soluble in 100% DMSO, including the peptides with the following

amino acid changes: K4F, P33K, P33N, P33S, R34C, T35V and D36F. Those peptides were dis-

carded and therefore not used for further screening. To validate the quality of the peptide

library, the MIC values were measured for the high purity Cap18 peptide (�89.5% purity) and

for the library Cap18 peptide (47.5% purity) and compared (Table 2).

Antimicrobial activity screening of 696 Cap18 derivatives against Yersinia
ruckeri, Aeromonas salmonicida and Salmonella Typhimurium

The 696 Cap18 derivatives were screened for antimicrobial activity against Salmonella Typhi-

murium, Aeromonas salmonicida and Yersinia ruckeri, all important Gram-negative pathogens

either in human health or animal production. The antimicrobial activity was recorded for each

individual peptide by measuring the MIC values against all three pathogens. The screening

results are summarized (Figs 1–3). For A. salmonicida, 55.2% of all the tested peptides showed

the same antimicrobial activity as the original Cap18 (Table 3). 53 derivatives (7.6%) showed a

0.5–2 fold increase and 4 derivatives (0.4%) exhibited a 2–4 fold increase compared to the

Table 2. Antimicrobial activity of Cap18 and selected antibiotics.

Antimicrobial Activity MIC [μg/ml]

Cap18—

Pure

(� 89.5%

purity)

Cap18—Library

(47.5% purity)

Ampicillin Gentamicin Nalidixic acid Polymyxin E

Yersinia ruckeri 392/2003 2–4 2 2 1–2 32 1–2

Aermononas salmonicida ATCC33658 4 2 �1 1 �4 2

Salmonella Typhimurium LT2 4–8 2–4 �1 0.5–1 �4 2

Lactococcus lactis IL1403 1–2 2–4 n.d. n.d. n.d. n.d.

Data are collected as minimal inhibitory concentrations (MICs) according to the Clinical and Laboratory Standards Institute (CLSI) and expressed in μg/ml. All MIC

determinations were carried out in triplicates for Cap18—pure and in duplicates for Cap18 –library. MIC determination for the standard antibiotics were carried out in

triplicates. n.d = not determined. MIC values are given as a single value when replicates gave identical results whereas two values are given when replicates differed by

one well. For standard antibiotics the symbol� is used to indicate sensitivity to the lowest concentration for this antibiotic in the Sensititre plate.

https://doi.org/10.1371/journal.pone.0197742.t002
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original Cap18 peptide. A major loss in antimicrobial activity was measured for 25 (3.6%)

Cap18 peptides with an 8 fold decrease and 11 (1.6%) variants with a decrease of at least 16

fold compared to the original peptide (Table 3). Similar results were obtained for the screening

against Y. ruckeri (Table 3). For Y. ruckeri, 53.9% of the derivatives showed unchanged activity;

only 7 peptides had a 2–4 fold increased activity while 26 derivatives showed a major reduction

of activity of at least 16-fold. For S. Typhimurium, 82.7% of all the tested Cap18 derivatives

unchanged antimicrobial activity. 5 Cap18 derivatives with a 2–4 fold increased and 14 vari-

ants with�8-fold reduced antimicrobial activity were identified (Table 3).

An intact hydrophobic face is crucial for the antimicrobial activity of

Cap18

The screening data of 696 Cap18 derivatives allowed identifying key residues of Cap18 which

are important for the antimicrobial activity specifically against A. salmonicida, Y. ruckeri or S.

Typhimurium. The analysis of the antimicrobial activity of Cap18 against A. salmonicidia
revealed that the hydrophobic residues I13, L17, I24 and L28 are important for the antimicro-

bial activity of Cap18. In particular, Cap18 derivatives with amino acids changes at position

I13 either by D, F, P or R show a major loss of activity compared to the original Cap18 peptide.

The MIC values are more than 16 times higher than the original Cap18 (Table 4). Similarly,

substituting amino acid L17 by D or P, amino acid I24 by D, E, N, Q, R and amino acid L28 by

K led to a major loss of antimicrobial activity (Table 4).

Fig 1. Complete Substitution Analysis of Cap18 measuring the antimicrobial activity against Aeromonas salmonicida. The

original Cap18 sequence (GLRKRLRKFRNKIKEKLKKIGQKIQGLLPKLAPRTDY) and amino acid assignments are presented in the

first two rows. The second column identifies the amino acid substitution at each position (A-Y). Each box in the matrix represents a

Cap18 peptide harboring one single amino acid substitution compared to the original Cap18 sequence. For example, the amino acid

sequence of the peptide in column 1/row 1 is ALRKRLRKFRNKIKEKLKKIGQKIQGLLPKLAPRTDY, the sequence of the peptide in

column 1/row 2 is CLRKRLRKFRNKIKEKLKKIGQKIQGLLPKLAPRTDY, the sequence of peptide in column 2/row 1 is

GARKRLRKFRNKIKEKLKKIGQKIQGLLPKLAPRTDY etc.; the values within each box represent a MIC value (μg/ml) against

Aeromonas salmonicida. Grey boxes represent the original Cap18 sequence. NS = no MIC value determination possible due to the

insolubility of the peptide in DMSO.

https://doi.org/10.1371/journal.pone.0197742.g001
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Similar results were found for the specific activity of Cap18 against Y. ruckeri. The hydro-

phobic positions L6, I13, L17, I20, I24 are important for the antimicrobial activity of Cap18. In

particular, substituting residue L6 by D or P, residue I13 by D, F, K, Q or S, residue I20 by D,

K, P, residue I24 by D, E, H, N or Q led to major loss of antimicrobial activity. In addition,

exchanging the charged residue K18 by P reduced the efficacy of Cap18 against Y. ruckeri by a

factor of�16 (Table 4).

Against S. Typhimurium the antimicrobial activity was abolished by introducing D, F, or P

at the hydrophobic position I13; D, E, or P at position L17; or D, E, N at position I24. In addi-

tion, the Cap18 peptide harboring a L31C mutation lost the antimicrobial activity with a MIC

�32. However, not only changing hydrophobic residues of Cap18 will lead to a reduced anti-

microbial activity against S. Typhimurium. Cap18 T35H and Cap18 Y37D have a MIC MIC

�32, and are therefore ineffective against S. Typhimurium (Table 4). To conclude, these data

suggest that an intact hydrophobic interface of Cap18 consisting of the residues I13, L17 and

I24 is required for the antimicrobial activity of Cap18 against all the tested pathogens Y. ruck-
eri, A. salmonicida and S. Typhimurium.

Screening for Cap18 derivatives with changed species-specificity

The use of traditional antibiotics not only selects for resistance, but also disturbs and alters

the microbiota, which plays an important role in human and animal health. Therefore it

would be desirable to design AMPs with both, high antimicrobial activity and high species

selectivity. To identify and design Cap18 derivatives, which are both, highly active and

Fig 2. Complete Substitution Analysis of Cap18 measuring the antimicrobial activity against Yersinia ruckeri. The original Cap18

sequence (GLRKRLRKFRNKIKEKLKKIGQKIQGLLPKLAPRTDY) and amino acid assignments are presented in the first two rows.

The second column identifies the amino acid substitution at each position (A-Y). Each box in the matrix represents a Cap18 peptide

harboring one single amino acid substitution compared to the original Cap18 sequence. For example, the amino acid sequence of the

peptide in column 1/row 1 is ALRKRLRKFRNKIKEKLKKIGQKIQGLLPKLAPRTDY, the sequence of the peptide in column 1/row 2

is CLRKRLRKFRNKIKEKLKKIGQKIQGLLPKLAPRTDY, the sequence of peptide in column 2/row 1 is GARKRLRKFRNKIKEKL
KKIGQKIQGLLPKLAPRTDY etc.; the values within each box represent a MIC value (μg/ml) against Yersinia ruckeri. Grey boxes

represent the original Cap18 sequence. NS = no MIC value determination possible due to the insolubility of the peptide in DMSO.

https://doi.org/10.1371/journal.pone.0197742.g002
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Fig 3. Complete substitution Analysis of Cap18 measuring the antimicrobial activity against Salmonella Typhimurium. The

original Cap18 sequence (GLRKRLRKFRNKIKEKLKKIGQKIQGLLPKLAPRTDY) and amino acid assignments are presented in the

first two rows. The second column identifies the amino acid substitution at each position (A-Y). Each box in the matrix represents a

Cap18 peptide harboring one single amino acid substitution compared to the original Cap18 sequence. For example, the amino acid

sequence of the peptide in column 1/row 1 is ALRKRLRKFRNKIKEKLKKIGQKIQGLLPKLAPRTDY, the sequence of the peptide in

column 1/row 2 is CLRKRLRKFRNKIKEKLKKIGQKIQGLLPKLAPRTDY, the sequence of peptide in column 2/row 1 is

GARKRLRKFRNKIKEKLKKIGQKIQGLLPKLAPRTDY etc.; the values within each box represent a MIC value (μg/ml) against

Salmonella Typhimurium. Grey boxes represent the original Cap18 sequence. NS = no MIC value determination possible due to the

insolubility of the peptide in DMSO.

https://doi.org/10.1371/journal.pone.0197742.g003

Table 3. Overview of the antimicrobial activity of 696 Cap18 derivatives.

MIC [μg/ml]

>32 32 16 8 4 2 1–2 1 0.5–1 0.5

A. salmonicida
ATCC33658

Number of

variants

3 9 13 40 186 388 23 30 3 1

% 0.4% 1.3% 1.9% 5.7% 26.7% 55.7% 3.3% 4.3% 0.4% 0.1%

Y. ruckeri 392/2003

Number of

variants

10 13 24 52 127 375 26 62 6 1

% 1.4% 1.9% 3.4% 7.5% 18.2% 53.9% 3.7% 8.9% 0.9% 0.1%

S. Typhimurium LT2

Number of

variants

5 9 11 63 342 234 27 5 0 0

% 0.7% 1.3% 1.6% 9.1% 49.1% 33.6% 3.9% 0.7% 0% 0%

L. lactis IL1403

Number of

variants

36 11 42 177 269 145 - 14 - 2

% 5.2% 1.6% 6.0% 25.4% 38.7% 20.8% - 2% - 0.3%

Cap18 variants with unchanged MIC value compared to the original Cap18 are highlighted in grey

https://doi.org/10.1371/journal.pone.0197742.t003
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exhibit a targeted species specificity by only killing one specific target pathogen, the Cap18

library was screened for antimicrobial activity against both, pathogenic and beneficial bac-

teria. In addition to the screened pathogens Y. ruckeri, A. salmonicida and S. Typhimurium,

the Cap18 peptide library was screened for the loss of antimicrobial activity against the ben-

eficial organism Lactococcus lactis. The MIC values representing the antimicrobial activity

against L. lactis are summarized in Fig 4 and Table 3. 59.5% of the Cap18 variant peptides

had a MIC value of 2–4 μg/ml which corresponds to wild-type activity. 5.2% of the tested

Cap18 derivatives showed a MIC of �32 μg/ml which corresponds to loss of antimicrobial

activity of more than 8 fold, whereas only 2.3% were slightly more active the original Cap18

peptide (Table 3).

To identify Cap18 variant peptides with changed species specificity, the antimicrobial

screening data of Y. ruckeri, A. salmonicida, S. Typhimurium and L. lactis was compared.

Cap18 peptides with a changed antimicrobial spectrum were identified and classified into two

different groups (class I and II) according to the following selection criteria (Table 5): Class I

peptides have lost the antimicrobial activity against all the screened test strains (MIC�32 μg/

ml) and class II peptides show a species specific loss of antimicrobial activity (targeted antimi-

crobial activity). More detailed, peptides from class II exhibit wild-type antimicrobial activity

(Table 2) against at least one test strain while at the same time having completely lost the anti-

microbial activity against at least another screening strain (MIC�32 μg/ml). To summarize,

out of 696 tested Cap18 derivatives, 34 peptides showed a changed species specificity (Class II

peptides). Those peptides kept unchanged antimicrobial activity against at least one screening

strain, while at the same time being ineffective against at least another screening strain. Inter-

estingly, only 7 derivatives (class I) lost the antimicrobial activity completely and had no anti-

microbial effect against all the tested organisms.

Generating Cap18 peptides with engineered species specificity by

introducing one single amino acid exchange

To validate and confirm the screening results, 6 peptides from class I and 22 Cap18 peptides

from class II were ordered as highly pure peptides (purity >95%). In addition, three Cap18

derivatives harboring either a I13F, I13M or G26T substitution were ordered as positive

controls. These three derivatives showed unchanged antimicrobial activity compared to the

original Cap18 peptide in the initial screening (S1 Table). The antimicrobial activity of the

highly pure peptides was determined by measuring the MIC value of each derivative against

the four test strains Y. ruckeri, A. salmonicida, S.Typhimurium and L. lactis (Table 6). By

comparing the MIC data, Cap18 derivatives from class II with changed species-specificity

could be identified. Cap18 derivatives with a changed antimicrobial profile being ineffective

against at least one tested organism (MIC �32 μg/ml), while at the same time retained full

antimicrobial activity against another species exhibit species-specific antimicrobial activity.

All Cap18 derivatives with changed species-specificity and their antimicrobial activity pat-

tern are summarized in Fig 5. In addition to the additional screening strains, a wider range

of relevant pathogens including Gram-positive and Gram-negative bacteria was analyzed

for targeted antimicrobial activity. The MIC values were determined using highly pure pep-

tides against E. coli, P. aeruginosa, L. monocytogenes and E. faecalis and the results are sum-

marized in Table 6.

Based on all the collected MIC data using highly pure Cap18 peptides, we can conclude that

13 derivatives of Cap18 were identified with changed species-specificity by introducing one

single amino acid substitution compared to the original Cap18 peptide (Fig 5). In addition,

introducing the following substitutions I13D, L17D, L17P, I24D or I24N leads to a complete
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loss in antimicrobial activity (MIC values� 32 μg/ml) against all the tested bacterial species

including Gram-positive and Gram-negative bacteria. Amino acids I13, L17, and I24 of Cap18

seem to be of specific importance for general antimicrobial activity of Cap18 against both,

Gram-negative and Gram-positive bacteria. These findings are in agreement with the initial

screening data (Table 4).

Table 4. Unfavorable amino acid substitutions in Cap18 based on MIC values of Cap18 derivatives for A. salmonicida, Y. ruckeri, L. lactis and S. Typhimurium lead-

ing to a reduced antimicrobial activity.

Position Parent Amino Acid Not Favored Substitution–Reduction of Antimicrobial Activity

(MIC� 32 μg/ml)

A. salmonicida Y. ruckeri S. Typhimurium L. lactis
1 G

2 L

3 R

4 K

5 R

6 L D,P R

7 R

8 K

9 F

10 R L

11 N

12 K

13 I D,F,P,R D,F,K,Q,S D,F,P D,E,F,H,K,N,P,Q,R

14 K

15 E

16 K C,F,I,L,M,Y

17 L D,P D,E,H,K,N,P,Q D,E,P C,D,E,H,K,N,P,Q

18 K P P

19 K

20 I D,K,P D,E,H,K,N,P,Q,R,

21 G C,I,L,

22 Q

23 K

24 I D,E,N,Q,R D,E,H,N,Q D,E,N, C,D,E,G,H,N,Q,R,S

25 Q

26 G

27 L P

28 L K

29 P

30 K

31 L C

32 A

33 P

34 R

35 T H

36 D

37 Y D

https://doi.org/10.1371/journal.pone.0197742.t004
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The proline residue at position 29 is essential for the differentiation

between prokaryotic and eukaryotic cells

Not only a high antimicrobial activity, but also the ability to differentiate between bacterial

and mammalian cells is an important characteristic for a successful antimicrobial peptide. The

cytotoxicity was determined using a hemolytic assay based on the lysis of washed horse eryth-

rocytes. The Cap18 peptide with high purity (�89.5%) had at the peptide concentration of

64 μg/ml a very minimal hemolytic activity (1% compared to the triton X-100 control)

(Table 7) which is in agreement with previously published data [21]. To validate the original

Cap18 peptide from the positional scanning library, which has a lower purity of only 47.5%

purity, the hemolytic activity was determined to 2% ± 1% (32 μg/ml final peptide concentra-

tion in the assays), which was very similar to the measured hemolytic activity of the pure

Cap18 peptide (Table 7). Summarizing, both the highly pure Cap18 peptide and the library

Cap18 peptide showed minimal hemolytic activity at the measured concentrations. The sol-

vent DMSO alone had no hemolytic activity in the concentration range used in the assay (data

not shown).

To identify which residues of Cap18 play a central role in generating specificity between

eukaryotic and prokaryotic cells, the hemolytic activity of all the 696 Cap18 derivatives was

therefore determined measuring the hemoglobin release of horse erythrocytes at a peptide

concentration of 32 μg/ml (Fig 5). Out of the 696 tested Cap18 derivatives, 550 peptides

(79.1%) had no or minimal hemolytic activity similar to the original Cap18 peptide. 60 Cap18

derivatives showed an hemolytic activity of 4–5% which is a slight increase compared to the

Fig 4. Complete Substitution Analysis of Cap18 measuring the antimicrobial activity against Lactococcus lactis. The original Cap

sequence is (GLRKRLRKFRNKIKEKLKKIGQKIQGLLPKLAPRTDY) and amino acid assignments are presented in the first two rows.

The second column identifies the amino acid substitution at each position (A-Y). Each box in the matrix represents a Cap18 peptide

harboring one single amino acid substitution compared to the original Cap18 sequence. For example, the amino acid sequence of the

peptide in column 1/row 1 is ALRKRLRKFRNKIKEKLKKIGQKIQGLLPKLAPRTDY, the sequence of the peptide in column 1/row 2 is

CLRKRLRKFRNKIKEKLKKIGQKIQGLLPKLAPRTDY, the sequence of peptide in column 2/row 1 is GARKRLRKFRNKIKEKLKKIG
QKIQGLLPKLAPRTDY etc.; the values within each box represent a MIC value (μg/ml) against Lactococcus lactis. Grey boxes represent

the original Cap18 sequence. NS = no MIC value determination possible due to the insolubility of the peptide in DMSO.

https://doi.org/10.1371/journal.pone.0197742.g004
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original Cap18 peptide. 64 derivatives displayed a hemolytic activity of 6–10% compared to

the original Cap18 peptide, 16 derivatives had a hemolytic activity of 11–15% and 6 derivatives

Table 5. Cap18 derivatives identified in the screening with lost antimicrobial activity or changed species-specificity.

Cap18 variant peptides Antimicrobial Activity–MIC in μg/ml

Amino Acid Position Peptide Class Mutation L. lactis S. Typhimurium Y. ruckeri A. salmonicida
L 6 II L6D 16 8 �32 16

II L6P� 8 4 �32 8

II L6R �32 8 16 16

R 10 II R10L� �32 4 8 4

I 13 I I13D� �32 �32 �32 �32

I I13F� �32 �32 �32 �32

II I13H� �32 8 8 4

II I13N �32 8 - 8

II I13Q� �32 4 �32 4

II I13S� 8 4 �32 2

K 16 II K16C� �32 8 2 4

II K16F� �32 8 4 4

II K16I� �32 4 4 4

II K16L� �32 4 4 4

II K16M� �32 4 4 4

II K16Y� �32 8 8 4

L 17 II L17C �32 8 ? 8

I L17D� �32 �32 �32 �32

II L17H �32 8 �32 8

II L17K� �32 4 �32 4

I L17P� �32 �32 �32 �32

K 18 II K18P� �32 4 �32 2

I 20 II I20E� �32 4 16 8

II I20H� �32 2 8 2

II I20N� �32 4 16 4

II I20Q �32 8 8 8

II I20R �32 8 16 16

G 21 II G21C� �32 8 4 4

II G21I �32 8 8 8

II G21L� �32 8 4 4

I 24 II I24C� �32 4 4 4

I I24D� �32 �32 �32 �32

I I24E �32 �32 �32 �32

II I24G� �32 4 16 8

II I24H �32 8 �32 8

I I24N� �32 �32 �32 �32

II I24S� �32 4 16 8

L 27 II L27P� �32 4 16 16

L 31 II L31C 8 �32 4 4

T 35 II T35H 8 �32 2 2

Y 37 II Y37D 8 �32 2 2

Class I peptides are highlighted in light grey and class II peptides are shown in dark grey. Cap18 variant peptides chosen for further analysis using pure peptides (purity

>95%) are marked with �.

https://doi.org/10.1371/journal.pone.0197742.t005
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exhibited a hemolytic activity of�16% (Fig 6, Table 8). Exchanging proline 29 by any other

amino acid led to increased hemolytic activity compared to the non-hemolytic Cap18 original

peptide. Substituting residues K16, G21 and K23 by any hydrophobic amino acid (A, F, I, L, M

V or W) raises the hemolytic activity of the derivatives compared to the original Cap18 pep-

tide. In addition, substituting negatively charged residues at position R5, R10, K12, K4, K16,

K23, K30 and R34 leads to higher hemolytic activity (Fig 6, Table 8). To validate the screening

data, the hemolytic activity of the pure Cap18 derivatives Peptide 1–31 which were previously

selected based on changed antimicrobial activity pattern (Table 6), was determined. In

Table 6. Antimicrobial activity of purified Cap18 derivatives against Gram-negative and Gram-positive bacteria.

Antimicrobial Activity [μg/ml]

Gram-negative bacteria Gram-positive bacteria

Cap18 peptides Substitution S. Typhimurium

LT2

Y. ruckeri
392/2003

A. salmonicida
ATCC33658

E. coli
ATCC25922

P. aeruginosa
ATCC27853

L. lactis
IL1403

L. monocytogenes
N22-2

E. faecalis
ATCC29212

Cap18—pure Original sequence 4–8 2–4 4 4–8 4–8 1–2 4 8

Peptide 1 L6P 8 64 8–16 8 �64 �64 32 32

Peptide 2 R10L 16 32 32 32 32 �64 8–16 16–32

Peptide 3 I13D �64 �64 �64 �64 �64 �64 32–64 �64

Peptide 4 I13F 4 2 4 4–8 4–8 2 4 8–16

Peptide 5 I13H 4 8–16 2–4 4 8–16 �64 32 �64

Peptide 6 I13M 8 4 4 8–16 8–16 2 4 8–16

Peptide 7 I13Q 4–8 8 8 16–32 8 �64 16 32

Peptide 8 I13S 8 8–16 4 16 8–16 �64 32 �64

Peptide 9 K16C 8–16 8–16 8 8 16–32 �64 16 32

Peptide 10 K16D 4 4 2–4 4–8 16–32 2 4–8 32

Peptide 11 K16F 16 16–32 16–32 16 32 �64 16 16

Peptide 12 K16I 16 16 8–16 16 16 �64 8–16 16

Peptide 13 K16L 16 16 16 16 16–32 �64 8–16 16

Peptide 14 K16M 16 8–16 8–16 16 16–32 �64 16 32

Peptide 15 K16Y 16 8–16 16 16 16 �64 8–16 16

Peptide 16 L17D �64 �64 �64 �64 �64 �64 �64 �64

Peptide 17 L17K 16 �64 16–32 �64 8 �64 16–32 �64

Peptide 18 L17P �64 �64 �64 �64 �64 �64 �64 �64

Peptide 19 K18P 4 32 2–4 8–16 16 32 32–64 �64

Peptide 20 I20E 8 32 16 �64 16 32 32 �64

Peptide 21 I20H 8 16 4 32 8 32 16 �64

Peptide 22 I20N 8–16 �64 16 �64 8–16 �64 16–32 �64

Peptide 23 G21C 16 16 16–32 16 32 �64 16 32

Peptide 24 G21L 16 16 16 16 16 �64 16 16

Peptide 25 I24C 8–16 16 4–8 16 16 �64 16 64

Peptide 26 I24D �64 �64 �64 �64 �64 �64 �64 �64

Peptide 27 I24G 8–16 32 8 �64 16 �64 32 �64

Peptide 28 I24N 32 �64 �64 �64 64/16 �64 32 �64

Peptide 29 I24S 8 16 8 32–64 8–16 32 16–32 �64

Peptide 30 G26T 4–8 2–4 4 4–8 8 2 4 8

Peptide 31 L27P 8 32 16 �64 8 32 32 �64

Data are collected as minimal inhibitory concentrations (MICs) according to the Clinical and Laboratory Standards Institute (CLSI) and expressed in μg/ml. All MIC

determinations were carried out in triplicate. MIC values are given as a single value when replicates gave identical results whereas two values are given when replicates

differed by one well.

https://doi.org/10.1371/journal.pone.0197742.t006
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addition, five Cap18 derivatives harboring a substitution at P29 were ordered as peptides with

high purity (Peptide 32–36) and the hemolytic activity was determined. Results of the hemo-

lytic assay are presented in Table 7. In summary, the screening data and the dataset using puri-

fied peptides provide evidence that residue P29, K16, G21 and L23 plays the central role in the

hemolytic activity of Cap18 and are involved in generating specificity between eukaryotic and

prokaryotic cells.

Discussion

The number of antimicrobials entering the market is significantly decreasing since the golden

age of the antibiotic discovery in the mid-1900s and simultaneously, the levels of antimicrobial

resistance amongst bacterial pathogens are rising which calls for alternative solutions control-

ling bacterial infections [27]. The majority of the currently used antimicrobials have a broad

killing spectrum. This has the advantage that they can be used without precise diagnosis, but

they also disrupt the normal microbiota by killing the beneficial commensal bacteria which

can lead to severe side-effects. Antimicrobial peptides are an attractive alternative to create

novel, target-specific antimicrobials. The aim of this study was to design and identify antimi-

crobial peptides with greater specificity and more targeted antimicrobial activity based on the

cathelicidin Cap18, a cationic AMP originally isolated from rabbit neutrophils.

Combinatorial libraries, prepared through chemical synthesis, or biological libraries such as

phage display, represent powerful tools to optimize existing antimicrobial peptides [28]. By

designing and screening a positional scanning library of Cap18, we successfully designed

Cap18 peptide derivatives with changed species specificity and the potential to be used in tar-

get-specific antimicrobial therapy by introducing single amino acid substitutions in the origi-

nal Cap18 sequence. Generally, by screening the positional scanning library of Cap18, we were

able to analyze the antimicrobial and hemolytic properties of Cap18 and to identify specific

residues within the amino acid sequence of Cap18 which are crucial for antimicrobial activity

and required for the inherent low hemolytic activity of Cap18. Peptide libraries are a powerful

tool to optimize the properties of antimicrobial peptides. However, the quality and purity of

the peptides is important for the subsequent screening applications and the accuracy of the

obtained results. Since we used a peptide library consisting of crude purity peptides, positive

hits identified in the screening needed further confirmation and verification using purified

peptides (purity�95%). Comparing the MIC values recorded for crude and highly pure pep-

tides, we can suggest that the quality of a crude peptide library allows the discrimination

between active and non-active Cap18 derivatives. More subtle changes in the antimicrobial

activity are difficult to measure using crude peptides due to impurities even after adjusting for

the different purities of the individual Cap18 derivatives. The impurities in the crude peptides

of low yield are likely to be peptides of related sequences with premature termination or other

Fig 5. Cap18 derivatives with changed species-specificity. Unchanged antimicrobial activity compared to the

original Cap18 is indicated by +, whereas the loss of antimicrobial activity (MIC�32 μg/ml) is illustrated by -. Gram-

negative bacteria are highlighted in light blue, Gram-positive bacteria are presented in light brown.

https://doi.org/10.1371/journal.pone.0197742.g005
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mistakes in the synthesis. Such peptides might have similar antimicrobial activity to the pep-

tide of desired sequence and if considered as a mere diluent the antimicrobial activity might be

overestimated. Crude peptide libraries will therefore be more efficient in detecting loss of func-

tion than in detecting modest increase in activity In order to be able to measure smaller

changes in the antimicrobial activity, peptide libraries with high purity are needed. This might

only be applicable and a valid alternative for shorter peptides due to the high synthesis costs.

Table 7. Unfavorable amino acid substitutions of Cap18 leading to increased hemolytic activity against horse

erythrocytes.

Position Parent Amino Acid Hemolytic activity

6% -10% 11%-15% �16%

1 G

2 L I

3 R

4 K

5 R W

6 L

7 R

8 K

9 F

10 R F,L,W

11 N

12 K W

13 I

14 K W

15 E

16 K A,C,F,I,L,M,V,W S

17 L I

18 K A,H Q,Y

19 K G

20 I

21 G F,L,Y W

22 Q K S

23 K A,I,N,V,W,Y C,F,L,M

24 I

25 Q C,I,L,V,W,Y F

26 G E,W L,R

27 L C,I

28 L F,H M

29 P E,F,H,I,K,L,M,N,R,V,W C D

30 K C,Q,W Y

31 L

32 A F,I C

33 P W

34 R K,R

35 T I C

36 D C,W,Y F

37 Y I,M,Q

https://doi.org/10.1371/journal.pone.0197742.t007
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Physiochemical and structural parameters such as hydrophobicity, cationicity, amphipathi-

city and amino acid composition are important determinants for the antimicrobial activity of

α-helical AMPs (reviewed [13]). By screening the positional scanning library of Cap18, fol-

lowed by the validation of potential hits using peptides with high purity, specific residues

within the Cap18 amino acid sequence were identified which are strictly required for antimi-

crobial activity against Gram-positive as well as Gram-negative bacteria. Peptides 3, 16, 18, 26

and 28 harboring either a I13D, L17D, L17P, I24D or I24N substitution lost their antimicrobial

activity and are completely ineffective against all tested bacterial species. Residues I13, L17 and

I24 are all part of the hydrophobic face highlighted in the predicted structure or illustrated by

the helical wheel projection of Cap18 (Figs 7 and 8). The introduction of non-hydrophobic

amino acids in particular the negatively charged residue D at position 13, 17 or 24 will disrupt

the hydrophobic interface (Fig 8). The disruption of the hydrophobic patch will most likely

prevent optimal interaction with the bacterial membrane and therefore interfere with the

insertion of the peptide in to the lipid bilayer. This reduced antimicrobial efficacy of peptides

3, 16, 18, 26 and 28 nicely correlates with a reduction in the mean hydrophobicity <H> and

the mean hydrophobic moment <μH> calculated by HeliQuest (http://heliquest.ipmc.cnrs.

fr). The mean hydrophobic moment <μH> is a measure of the amphiphilicity of the α-helix,

in which the length and direction of the<μH> vector are depending on the hydrophobicity

and the position of the side chains along the helix axis. Large <μH> value implies that the

helix is amphipathic perpendicular to its axis [29]. Apart from peptides 3, 16, 18, 26 and 28,

additional derivatives with substitutions at positions 13, 17 or 24 displayed a changed antimi-

crobial activity pattern. In contrast to peptides 3, 16, 18, 26 and 28, peptides 5, 7 and 8

Fig 6. Complete Substitution Analysis of Cap18 measuring the hemolytic activity of Cap18 peptides against horse erythrocytes.

The original Cap18 sequence (GLRKRLRKFRNKIKEKLKKIGQKIQGLLPKLAPRTDY) and amino acid assignments are presented in

the first two rows. The second column identifies the amino acid substitution at each position (A-Y). Each box in the matrix represents

a Cap18 peptide harboring one single amino acid substitution compared to the original Cap18 sequence. For example, the amino acid

sequence of the peptide in column 1/row 1 is ALRKRLRKFRNKIKEKLKKIGQKIQGLLPKLAPRTDY, the sequence of the peptide in

column 1/row 2 is CLRKRLRKFRNKIKEKLKKIGQKIQGLLPKLAPRTDY, the sequence of peptide in column 2/row 1 is

GARKRLRKFRNKIKEKLKKIGQKIQGLLPKLAPRTDY etc.; the values within each box represent the hemolytic activity measured

relative to full lysis by 0.2% Trition X-100. The final peptide concentration in the assay is 32 μg/ml. Grey boxes with X represent the

original Cap18 sequence. NS = no MIC value determination possible due to the insolubility of the peptide in DMSO.

https://doi.org/10.1371/journal.pone.0197742.g006
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retained full antimicrobial activity against some bacterial species and at the same time became

ineffective against other bacteria. Those variants are acting in a species-specific manner com-

pared to the original Cap18 peptide having a broad antimicrobial activity. In more detail,

Table 8. Hemolytic activity against horse erythrocytes, calculated hydrophobicity, hydrophobic moment and net charge of Cap18 and Cap18 derivatives.

Peptide Substitution Peptide concentration [μg/ml] Haemolytic Activity [%] Hydrophobicity <H> Hydrophobic Moment <μH> Net Charge

Cap18 –pure1) original 64 1% ± 1% 0.107 0.471 +12

Cap18 –library2) original 32 2% ± 1% 0.107 0.471 +12

Peptide 1 L6P 64 1% 0.080 0.445 +12

Peptide 2 R10L 64 6% 0.180 0.518 +11

Peptide 3 I13D 64 1% 0.037 0.402 +11

Peptide 4 I13F 64 2% 0.106 0.471 +12

Peptide 5 I13H 64 1% 0.062 0.426 +12

Peptide 6 I13M 64 2% 0.091 0.456 +12

Peptide 7 I13Q 64 1% 0.052 0.417 +12

Peptide 8 I13S 64 1% 0.057 0.421 +12

Peptide 9 K16C 64 4% 0.175 0.502 +11

Peptide 10 K16D 64 1% 0.113 0.473 +10

Peptide 11 K16F 64 9% 0.182 0.505 +11

Peptide 12 K16I 64 10% 0.182 0.505 +11

Peptide 13 K16L 64 14% 0.179 0.504 +11

Peptide 14 K16M 64 8% 0.167 0.497 +11

Peptide 15 K16Y 64 9% 0.159 0.494 +11

Peptide 16 L17D 64 0% 0.040 0.417 +11

Peptide 17 L17K 64 1% 0.034 0.412 +13

Peptide 18 L17P 64 0% 0.080 0.449 +12

Peptide 19 K18P 64 1% 0.153 0.441 +11

Peptide 20 I20E 64 1% 0.041 0.413 +11

Peptide 21 I20H 64 1% 0.062 0.431 +12

Peptide 22 I20N 64 0% 0.042 0.414 +12

Peptide 23 G21C 64 4% 0.148 0.485 +12

Peptide 24 G21L 64 7% 0.153 0.486 +12

Peptide 25 I24C 64 2% 0.100 0.464 +12

Peptide 26 I24D 64 0% 0.037 0.403 +11

Peptide 27 I24G 64 1% 0.058 0.424 +12

Peptide 28 I24N 64 1% 0.042 0.408 +12

Peptide 29 I24S 64 1% 0.057 0.423 +12

Peptide 30 G26T 64 2% 0.114 0.465 +12

Peptide 31 L27P 64 1% 0.080 0.453 +12

Peptide 32 P29A 64 4% 0.096 0.481 +12

Peptide 33 P29D 64 3% 0.066 0.507 +11

Peptide 34 P29F 64 7% 0.136 0.445 +12

Peptide 35 P29H 64 3% 0.091 0.485 +12

Peptide 36 P29S 64 4% 0.086 0.489 +12

1) Purity�89.5%
2) Purity 47.5%

The hemolytic activity is measured in duplicates and given as the average ± SD in % relative to full lysis by 0.2% triton X-100. Mean hydrophobicity <H>, hydrophobic

moment <μH>, and net charge are calculated using heliquest (http://heliquest.ipmc.cnrs.fr).

https://doi.org/10.1371/journal.pone.0197742.t008
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Peptide 5 harboring a I13H substitution retained full antimicrobial activity against S. Typhi-

murium LT2, reduced activity against the other Gram-negative bacteria tested and completely

lost efficacy against the three tested Gram-positive species. Similarly, peptides 7 and 8 showed

changed species-specificity. Peptide 7 (I13Q) was completely ineffective against L. lactis, how-

ever fully active against S. Typhimurium LT2 and P. aeruginosa ATCC27853, whereas peptide

8 (I13S) was active against S. Typhimurium LT2 and A. salmonicida ATCC33658 and ineffec-

tive against all three Gram-positive species tested. Even though the values of the calculated

hydrophobicity and hydrophobic moment are lower for peptides 5, 7 and 8 compared to the

original Cap18 peptides, peptides 5, 7 and 8 retained full antimicrobial activity against some

selected species. In addition, selected substitutions at the hydrophobic residues L6, I20 and

L27, all part of the hydrophobic face highlighted in predicted structure and illustrated by the

helical wheel projection, exhibit a changed antimicrobial activity spectrum (Fig 5). The calcu-

lated hydrophobicity and hydrophobic moment values of those derivatives, peptide 2 (L6P),

peptide 20 (I20E), peptide 21 (I20H) and peptide 31 (I27P), are lowered compared to the origi-

nal Cap18 peptide. Summarizing, we suggest that the hydrophobic residues in the hydrophobic

face might be promising targets to change the antimicrobial activity spectrum of Cap18 and to

generate Cap18 derivatives which are killing in species-specific manner. However, our data

also suggest that not only residues in the hydrophobic face might be targets for the generation

of species-specificity. Peptides 9 and 10 have cysteine or aspartic acid substitution at position

K16, which is part of the hydrophilic side of Cap18, highlighted in the structure and helical

wheel projection (Figs 7 and 8). In contrast to the derivatives having substitutions in the

hydrophobic face, peptides 9 (K16C) and 10 (K16D) are more hydrophobic than the original

Cap18 peptide displaying an increased hydrophobicity and hydrophobic moment. Based on

our results, we argue that there exists an optimal hydrophobicity of Cap18 depending on the

target organisms. A threshold hydrophobicity at which optimal antimicrobial activity can be

obtained is highly dependent on the target organism. Fine-tuning of the hydrophobicity and

hydrophobic moment of Cap18 might be a promising possibility to adjust the antimicrobial

activity dependent on the target organism and to generate Cap18 derivatives with a very nar-

row killing spectrum.

However, hydrophobicity and amphipathicity are not the only parameters determining the

antimicrobial activity of the individual Cap18 derivatives. Even though e.g. peptide 18 (L17P)

is less hydrophobic than peptide 17 (L17K) based on the calculations of<H> and<μH>,

peptide 18 has completely lost its antimicrobial activity being ineffective against all the tested

strains, whereas peptide 17 retained full antimicrobial activity against P. aeruginosa. A reduced

hydrophobicity or hydrophobic moment value alone are not sufficient to abolish the antimi-

crobial activity of Cap18 arguing that the amino acid composition plays an important role.

Proline is a well-known helix-breaker causing a kink in the helix. This is caused by proline

being unable to complete the H-bonding chain and by steric effects preventing proline from

adapting the preferred helical geometry [33]. Glycine has poor helix forming properties and

tends to disrupt α-helices due to its high conformational flexibility. Therefore, the presence of

glycine and proline could have a critical effect on the antimicrobial and hemolytic activity of

α-helical AMPs. Proline residues are often found within the amphipathic a-helix of AMPs and

therefore the importance of proline residues in AMPs has been investigated. Previous studies

investigating the effect of proline on the biological activity of α-helical AMPs revealed that sub-

stitution of proline decreased the antimicrobial activity. Substitution of the central proline by

alanine in gaegurin [34] or by leucine or alanine in the hybrid analog P18 resulted in a reduc-

tion of antimicrobial activity [35]. Further, it was shown that the proline hinge in buforin II is

responsible for its cell-penetrating ability [36] and the central PXXP hinge of PMAP-23 is

important for its antimicrobial activity [37]. Our data on Cap18 shows that the introduction of
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proline at specific sites of Cap18 changes the antimicrobial activity as well as the species-speci-

ficity depending on the site of introduction. Replacing the central leucine at position 17 by a

proline causes a complete loss of antimicrobial activity (peptide 18). This finding is in agree-

ment with previous studies which showed that the introduction of proline in α-helical AMPs

decreased the ability of the peptide to penetrate the cytoplasmic membrane of E. coli which

was concomitant with a reduction in the antimicrobial activity [38,39]. However, introducing

a proline residue at position L6, K18 or L27 does not abolish antimicrobial activity completely,

but generates Cap18 derivatives with a changed antimicrobial activity spectrum. The antimi-

crobial activity pattern of peptide 1, peptide 19 and peptide 31, all harboring a proline inser-

tion, are different depending on the target species as well as on the insertion site of the proline

residue. All three derivatives kept unchanged antimicrobial activity against S. Typhimurium

LT2, whereas all three were completely ineffective against Y. ruckeri, L. lactis and L. monocyto-
genes. Analyzing the remaining results of those three derivatives harboring a proline insertion,

we can argue that the antimicrobial activity depends on both the position of proline insertion

and the target organism itself (Table 5). Summarizing, we can suggest that the dramatic effect

of introducing a proline at residue L17 resulting in complete loss of antimicrobial activity

might be due to a structural change in the helix preventing optimal interaction with the mem-

brane which is crucial for antimicrobial activity of Cap18. However, the positioning of proline

residues determines how the antimicrobial activity is affected–positively or negatively

Fig 7. Predicted structure of Cap18. The structure of Cap18 was predicted using I-Tasser [30] and visualized by

CCP4 software [31]. The predicted α-helix is highlighted in red. Hydrophobic residues of the α-helix are shown in

green. Specific residues are highlighted the following: K16, K18 and K23 in blue and P29 in black. A: view along helix

axis B: view from N- to C-terminal C: view form C- to N-terminal.

https://doi.org/10.1371/journal.pone.0197742.g007
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depending on the target organism. This is in agreement with a previous study demonstrating

that the properties conferred on AMPs by proline residues strongly depends on the properties

of the proline-free template peptide as well as the positioning of the proline residue in the pri-

mary sequence [40].

Fig 8. Helical wheel projection of the original Cap18 peptide and Cap18 derivatives. Hydrophobic amino acids are

yellow, negatively charged amino acids are red and positively charged amino acids are in dark blue. Particular polar

residues are violet (threonine, serine) or pink (asparagine, glutamine). Glycine and alanine are grey and proline

residues are shown in green. The helices were created using http://heliquest.ipmc.cnrs.fr/ [32]. A: helical wheel

projection of the original Cap18 peptide. Residues important for the hemolytic activity and antimicrobial activity of

Cap18 are highlighted. B-E: helical wheel projections of Cap18 derivatives that lost the antimicrobial activity against all

the tested organisms. Peptide 3 harboring the I13D amino acid substitution (B), Peptide 16 harboring the L17D

substitution (C), Peptide 18 harboring the L17P substitution (D) and Peptide 26 harboring the I24D substitution (E).

Corresponding substitutions are highlighted.

https://doi.org/10.1371/journal.pone.0197742.g008
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Apart from high antimicrobial activity, low cytotoxicity is a very desirable characteristic for

antimicrobial peptides used as potential drug candidates. The original Cap18 peptide displays

low hemolytic activity in vitro measuring the hemoglobin release of horse and trout erythro-

cytes [22][21]. In order to design AMPs with optimized characteristics for potential therapeu-

tic use, it is crucial to understand how cell selectivity is generated and which residues are

responsible for the inherent low hemolytic activity of Cap18. Analysis of the screening data

investigating the hemolytic effect of Cap18 derivatives reveals a crucial role of proline at posi-

tion 29 for the differentiation between mammalian and bacterial membrane. Substituting P29

by any other amino acid will lead to increased hemolytic activity concluding that the presence

of P29 in the original Cap18 is crucial for its inherent low hemolytic activity. Looking at the

predicted structure of Cap18, P29 is situated at the very end of the predicted a-helix. The pres-

ence of proline residues in AMPs which might cause kinks in the α-helix, not only affects the

antimicrobial activity, but also the hemolytic activity. Previous studies have found that the

elimination of proline at position 7 in the α-helical pardaxin, substituting proline at position

14 in melittin by alanine or replacing the glycine residues at position 13 or 17 in pleurocidin

are resulting in increased hemolytic activity[41–43]. Similarly, incorporating a proline kink in

the α-helical AMP Anal 3 by replacing glutamic acid by proline in the middle of the peptide

sequence had positive effect on hemolytic activity showing reduced membrane damaging

activity of Anal 3-Pro compared to the original Anal 3 peptide [44]. Introducing a proline resi-

due at any other position of Cap18 has no negative effect on the hemolytic activity. Interest-

ingly, the substitution of P29 had no or only very minor effect on the antimicrobial activity

regardless of the target organism. This suggests that P29 is crucial for the specificity between

prokaryotes and eukaryotes and plays a minor role for the antimicrobial activity of Cap18.

Hydrophobicity (H), hydrophobic moment (μH) and net charge are important physiochemical

parameters controlling cell selectivity. The initial screening shows that the substitution of the

positive charged residues K16 and K23 as well as G21 by any hydrophobic residues (not pro-

line) enhance the hemolytic activity (Fig 6, Table 7). K16, G21, and K23 all being part of the

hydrophilic interface are situated right next to the hydrophobic face which illustrated by the

helical wheel projection (Fig 8). Peptide 23 and peptide 24 harboring a G21C or G21L substi-

tution are more hydrophobic and more hemolytic active compared to the original Cap18 pep-

tide. Similarly, replacing K16 with hydrophobic amino acids (peptide 9, peptide 11, peptide

12, peptide 13, peptide 14 and peptide 15) leads to a higher mean hydrophobicity and hydro-

phobic moment than the original Cap18 peptide which is consistent with enhanced hemolytic

activity (Fig 8). Concluding, we can suggest that enhanced hemolytic activity is correlated with

increased hydrophobicity which is in agreement with previous studies [45,46]. In addition,

position K16, G21, K23 and P29 play a crucial role in generating selectivity between mamma-

lian and bacterial cells. In particular, the absence of P29 negatively affects the hemolytic activ-

ity, there is no or minor effects on the antimicrobial activity and therefore crucial for the

selectivity. In contrast, position K16 is not only important for the selectivity between bacterial

and mammalian cells, but also for the selectivity between different bacterial species. Peptide 9

(K16C) not only exhibit increased hemolytic activity, but also a changed antimicrobial activity

pattern (Fig 5). In contrast, Peptide 10 displays a changed antimicrobial activity pattern,

whereas the hemolytic activity is unchanged compared to the original Cap18 peptide. This

argues that the substitution K16D only contributes to the specificity between different bacterial

strains, but not to a more general specificity distinguishing mammalian and bacterial cells in

general.

Based on a very thorough dissection of Cap18 analyzing 696 derivatives of Cap18, we can

conclude that specific single amino acid substitution of Cap18 can alter the antimicrobial

activity pattern. We were able to generate Cap18 derivatives with target-specific activity. So
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far, only Cap18 derivatives harboring single amino acid substitutions were analyzed, however,

it would be highly interesting to see if further improvement can be achieved by combining sin-

gle substitutions and to generate derivatives with double or triple substitutions. By screening

further organisms and careful analysis of the results, as well determining the structure of

selected derivatives investigating the mode of action, it might be possible to predict Cap18

derivatives with targeted activity against any organism. However, it might be challenging to hit

the optimal window which is a delicate balance between maximum antimicrobial activity and

minimum toxicity to the host cells.

Supporting information

S1 Fig. Positional scanning library of Cap18. The original Cap18 sequence is (GLRKRLRKF
RNKIKEKLKKIGQKIQGLLPKLAPRTDY) is presented in the first row. The second column

identifies the amino acid substitution at each position (A-Y). Each box in the matrix represents

a Cap18 derivative harboring one single amino acid substitution compared to the original

Cap18 sequence. For example, the amino acid sequence of the peptide in column 1/row 1 is

ALRKRLRKFRNKIKEKLKKIGQKIQGLLPKLAPRTDY, the sequence of the peptide in column

1/row 2 is CLRKRLRKFRNKIKEKLKKIGQKIQGLLPKLAPRTDY, the sequence of peptide in

column 2/row 1 is GARKRLRKFRNKIKEKLKKIGQKIQGLLPKLAPRTDY.
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S1 Table. Antimicrobial peptides used in this study.

(DOCX)

Author Contributions

Conceptualization: Anna Ebbensgaard, Egon Bech Hansen.

Data curation: Anna Ebbensgaard.

Formal analysis: Anna Ebbensgaard, Hanne Mordhorst, Egon Bech Hansen.

Funding acquisition: Egon Bech Hansen.

Investigation: Anna Ebbensgaard, Hanne Mordhorst, Michael Toft Overgaard, Egon Bech

Hansen.

Methodology: Anna Ebbensgaard, Egon Bech Hansen.

Project administration: Egon Bech Hansen.

Resources: Michael Toft Overgaard, Frank Møller Aarestrup.

Supervision: Frank Møller Aarestrup, Egon Bech Hansen.

Writing – original draft: Anna Ebbensgaard.

Writing – review & editing: Anna Ebbensgaard.

References
1. French GL. The continuing crisis in antibiotic resistance. Int J Antimicrob Agents. 2010; 36 Suppl 3: S3–

7. https://doi.org/10.1016/S0924-8579(10)70003-0

2. Goff DA. Antimicrobial stewardship: bridging the gap between quality care and cost. Curr Opin Infect

Dis. 2011; 24 Suppl 1: S11–20. https://doi.org/10.1097/01.qco.0000393484.17894.05 PMID: 21200180

3. Gould IM. Coping with antibiotic resistance: the impending crisis. Int J Antimicrob Agents. 2010; 36

Suppl 3: S1–2. https://doi.org/10.1016/S0924-8579(10)00497-8

Enhanced specificity of antimicrobial peptide Cap18

PLOS ONE | https://doi.org/10.1371/journal.pone.0197742 May 31, 2018 22 / 25

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0197742.s001
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0197742.s002
https://doi.org/10.1016/S0924-8579(10)70003-0
https://doi.org/10.1097/01.qco.0000393484.17894.05
http://www.ncbi.nlm.nih.gov/pubmed/21200180
https://doi.org/10.1016/S0924-8579(10)00497-8
https://doi.org/10.1371/journal.pone.0197742


4. Tamma PD, Cosgrove SE. Antimicrobial stewardship. Infect Dis Clin North Am. 2011; 25: 245–260.

https://doi.org/10.1016/j.idc.2010.11.011 PMID: 21316003

5. Guarner F, Malagelada J-R. Gut flora in health and disease. Lancet. 2003; 361: 512–519. https://doi.

org/10.1016/S0140-6736(03)12489-0 PMID: 12583961

6. Kau AL, Ahern PP, Griffin NW, Goodman AL, Gordon JI. Human nutrition, the gut microbiome and the

immune system. Nature. 2011; 474: 327–336. https://doi.org/10.1038/nature10213 PMID: 21677749

7. Rashid MU, Weintraub A, Nord CE. Effect of new antimicrobial agents on the ecological balance of

human microflora. Anaerobe. 2012; 18: 249–253. https://doi.org/10.1016/j.anaerobe.2011.11.005

PMID: 22155131

8. Buffie CG, Pamer EG. Microbiota-mediated colonization resistance against intestinal pathogens. Nat

Rev Immunol. 2013; 13: 790–801. https://doi.org/10.1038/nri3535 PMID: 24096337

9. Wren SM, Ahmed N, Jamal A, Safadi BY. Preoperative oral antibiotics in colorectal surgery increase

the rate of Clostridium difficile colitis. Arch Surg. 2005; 140: 752–756. https://doi.org/10.1001/archsurg.

140.8.752 PMID: 16103284

10. Zasloff M. Antimicrobial peptides of multicellular organisms. Nature. 2002; 415: 389–95. https://doi.org/

10.1038/415389a PMID: 11807545
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