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Abstract 
 

The heart of biotechnology and the bio-based economy is microbial conversion of substrates to desired 

products in fermentation processes. The physiological machinery within the microorganism is able to 

synthesise a range of valuable molecules spanning the product portfolio from bulk chemicals, such as 

alcohols and organic acids to fine chemicals, such as vitamins and finally to complex molecules such as 

industrial enzymes and monoclonal antibodies. Common for the processes developed to produce the 

desired products is the need for large production tanks that compensate for the low productivity of 

fermentation processes compared to conventional chemical processes. The scale of the production 

tanks is generally in the range of ten cubic meters to several hundred cubic meters.  

Maintaining optimal production conditions in these large vessels is often achieved by a configuration 

of several agitators inside the vessel. The agitation is not only responsible for maintaining 

homogeneous conditions inside the production vessels but also for providing a sufficient distribution 

of air in aerobic fermentation processes. In order to understand the performance and troubleshoot 

problems of the large-scale fermenters fundamental understanding of the mixing and mass transfer 

capabilities of these reactors is required. Computational fluid dynamics and spatial measurements of 

process variables are the most common theoretical and empirical ways to investigate the process 

gradients in large-scale fermenters resulting from insufficient homogenisation. The improvement of 

computational capabilities over the past few years has enabled simulations of these complex 

phenomena at full scale, but the modelling choices and assumptions required are yet to be thoroughly 

analysed. 

In this thesis, the role of mixing and mass transfer in relation to performance of large scale 

fermentation processes is outlined. The application of computational fluid dynamics in industrial 

fermentation processes is described at pilot and full scale for a Trichoderma reesei fermentation. A key 

input parameter in the numerical simulation of the aerobic fermentations is the size of air bubbles, 

which has been investigated at pilot scale using an endoscopic method. The oxygen concentration 

gradients of three impeller configurations of a full-scale fermenter have been characterised and 

compared with experimental data. Finally, a methodology for simplifying the complex mathematical 

models resulting from applying the finite element method to compartment models is described and 

applied to a pilot scale fermenter. The reduction of the model complexity enables a broader application 



of mathematical models for process optimization and control, but also introduces the possibility of 

including the understanding of hydrodynamics in process research and development at an early stage. 

 



 



 



Resumé 
 

I hjertet af industriel bioteknologi og en økonomi baseret på biologiske produkter sidder 

mikroorganismer, som omdanner råvarer til ønskede produkter i fermenteringsprocesser. Fysiologien 

af mikroorganismerne gør dem i stand til at skabe en række af værdifulde molekyler, som spænder 

over en bred vifte af produkter fra bulk kemikalier som alkoholer og organiske syrer til vitaminer, og 

endda komplekse molekyler som industrielle enzymer og antistoffer. Alle disse processer har det til 

fælles, at de er afhængige af at foregå i store produktionstanke, der kan kompensere for den lave 

produktivitet i fermenteringsprocessor i forhold til konventionelle kemiske processer. Disse 

produktionstanke er generelt i størrelsesordenen fra ti kubikmeter til flere hunderede kubikmeter 

For at sikre optimale procesbetingelser i de store produktionstanke er der ofte installeret op til flere 

omrører i tanken. Omrøringen er ikke kun ansvarlig for sikring af homogene betingelser i tanken, men 

også for at sikre det nødvendige fordeling af luft under de aerobe fermenteringsprocesser. 

Fundamental forståelse af opblanding og massetransport er nødvendig, hvis ydeevnen af fermentering 

på så stor skala skal forbedres og hvis årsagen til problemer skal identificeres. Computational Fluid 

Dynamics (CFD) og målinger forskellige steder i produktionstankene er de mest benyttede metoder til 

at undersøge gradienter i procesbetingelser, der opstår ved utilstrækkelig opblanding i fermenterer på 

stor skala. Forøgelsen af regnekraft over det seneste årti har muliggjort simulering af disse komplekse 

fænomener i industriel skala, men der er endnu ikke tydeligt redegjort for hvordan modelantagelser 

påvirker resultaterne. 

I denne afhandling er effekten af opblanding og massetransport i forhold til ydeevnen af stor skala 

fermenterer undersøgt. CFD har været benyttet til at beskrive opblanding og massetransport i en 

industriel fermentering af Trichoderma reesei på både pilot og fuld skala. En nøgleparameter i 

numeriske simuleringer af aerobe fermenteringsprocesser er størrelsen af luftbobler, hvilket er blevet 

karakteriseret ved brug af et endoskop på pilot skala. Iltkoncentrationerne ved tre forskellige omrører 

konfigurationer under en fuld skala Trichoderma reesei fermentering er endvidere undersøgt og 

sammenlignet med eksperimentelle data. En procedure til simplificering af de numeriske simuleringer 

med CFD modellerne til et mindre antal kontrol voluminer er ligeledes beskrevet og anvendt på en 

pilot skala fermenter. Reduktionen af modelkompleksitet gør det muligt at benytte matematiske 

modeller til proceskontrol og optimering, men introducerer også muligheden for at benytte viden om 

hydrodynamikken som en del af forskning og procesudvikling. 
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Chapter 1 

Introduction 

1.1  Background 

The list of products produced industrially from fermentation processes is vast and diverse, covering 

small molecules such as alcohols and organic acids to large complex molecules such as industrial 

enzymes and insulin [1]. Additionally certain processes are geared towards the production of cellular 

biomass, which is the case for lactic acid bacteria and single cell protein [2]. The products derived from 

fermentation processes play a key role in many industrial sectors and economic markets from bulk 

chemicals and commodities to polymers and complex fine chemicals. This diversification is even more 

pronounced if processes and products that are made up partly or fully by compounds derived from 

fermentation processes are included in the list. A few examples worth mentioning in this context are 

butane-diol produced as a building block for plastics, recombinant therapeutic proteins as active 

pharmaceutical ingredient in medicine and industrial enzymes used as catalysts in a range of industries 

from household care to food and second generation ethanol among others [3–5]. These few examples 

support the statement that industrial fermentation processes and products derived from them play a 

key role in the global economy, and this role is projected to grow with the further development of 

biorefineries [6,7]. 

1.1.1  The development from discovery to production 

At the center of all industrial fermentation processes sits the microbial host that is responsible for the 

desired conversion of substrate to product. The efficiency and productivity of the microorganisms have 

improved through strain development and optimization where high throughput screening methods 

assist in determining the optimal conditions for the microorganisms [8]. The operational optimum is 

generally very specific and determines the optimal temperature, pH, carbon source, nitrogen source 

and possibly also requirements for oxygen transfer and carbon dioxide removal. Automated parallel 
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single-use bioreactors, such as the AmbR 15TM and Ambr 250TM from Sartorius AG, are a common 

platform for the screening of optimal conditions for the fermentation process. The parallel platform 

combined with design of experimental methods enables a fast and thorough development phase of 

new fermentation processes. With the operational optimum identified the process is moved to pilot 

scale testing, where a thorough operational procedure is developed. This step in the development 

identifies the specific operational configuration in terms of feeding profiles of carbon source, process 

set-points and control strategies. The expected productivity and process yield is confirmed in pilot 

scale and compared with the results from the screening to ensure that the process metrics are met. 

After successful pilot testing, the process is introduced to the production facility, which concludes the 

testing and iterative phase of the process development and where focus is moved towards risk 

mitigation and quality control. Common for all steps in the development process is a substantial 

increase in fermenter volume, from 15- 250 mL in the screening phase to hundreds of liters in the pilot 

phase and finally potentially hundreds of cubic meters in the production facility. The increase in scale 

is inversely proportional to the number of tests that are conducted and the number of potential 

failures accepted for each step in the process. The challenges arise when the optimal operating 

conditions identified in the experimental screening cannot be maintained in the large production 

facility because of certain process phenomena being sensitive to the size of the equipment. A classic 

example of such phenomena is convectional transport of components in the liquid phase of 

fermenters, which generally is neglected in small and pilot scale, but in production scale it plays a 

substantial role [9]. The efficacy of the convectional flow of liquid, also referred to as liquid mixing, is 

dependent on the width of the fermentation vessel to the power of 2/3 [10]. This means that the liquid 

mixing is dependent on the volume of the fermentation vessel to the power of 2/9, which at first glance 

is a relative weak dependency, but the increase in fermentation volume during the scale-up of 

production processes from 250 mL to 100 m3 makes it significant. Following this relationship, a 

geometrically identical fermenter at production scale will encounter a mixing efficacy that is 

approximately 18 times worse than at the screening stage. This decrease in mixing efficacy during 

scale-up makes it difficult to ensure optimal process conditions in the fermentation vessel at 

production scale.  

Understanding the liquid convection at production scale is essential in order to avoid problems during 

scale-up, but detailed understanding of the hydrodynamics at this scale is not well understood. 

Mathematical modeling can be a useful tool in order to realize this fundamental understanding by 

comparing a hypothesis with experimental findings [11]. In this thesis, Computational fluid dynamics 
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is assessed as a tool to facilitate reaching a more fundamental understanding of the hydrodynamics in 

aerated fermentation vessels at pilot and large scale. 

1.2  Scope 

The overall research objective of this project has been to address the challenges of modeling the 

process gradients in large scale bioreactors using computational fluid dynamics. The research focus 

has been on addressing the challenges in modeling industrial fermentation processes and test whether 

the models are applicable to these systems. A large part of this thesis has been focused on investigating 

the mixing and mass transfer in a Trichoderma reesei fermentation process as a case study. The 

applicability of CFD for industrial fermentations was illustrated at pilot scale, where the bubble size of 

the gas phase was identified as a crucial parameter. This finding lead to an empirical investigation of 

the bubble size distributions in these processes. The lessons learned from these findings were applied 

to an industrial scale investigation of a Trichoderma reesei fermentation process. Finally, methods for 

simplifying the complex mathematical models of the hydrodynamics were developed and tested at 

pilot scale.  

1.3  Thesis structure 

The general structure of the thesis is presented below as a brief overview: 

Chapter 1 serves as an introduction to industrial fermentation and the challenges of scale-up. 

Furthermore, the chapter introduces the scope of the thesis. 

Chapter 2 illustrates the role of mixing and mass transfer in industrial scale fermentation vessels, and 

how mathematical models are an essential tool in understanding the hydrodynamics. 

Chapter 3 describes an application of computational fluid dynamics to a Trichoderma reesei 

fermentation at pilot scale. The mixing and mass transfer capabilities has been simulated and 

compared with empirical data. 

Chapter 4 highlights the use of a custom-made equipment able to determine the bubble size 

distribution in industrial pilot scale aerated fermenters. The technology is applied to the Trichoderma 

reesei process investigated in Chapter 3. 

Chapter 5 illustrates the prediction of oxygen gradients using computational fluid dynamics in an 

industrial scale Trichoderma reesei fermentation. The predictions are compared with measured values 

from the industrial process.  
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Chapter 6 describes a hypothesis driven method of downscaling the numerical simulations based on 

computation fluid dynamics. The method was applied to an industrial pilot scale fermenter.  

Chapter 7 provides the major conclusions of the thesis and suggests perspectives for future work. 

Each chapter documenting the research work performed (i.e. chapters 2-6) serves as an individual 

research piece with description of nomenclature, a discussion and conclusion. The thesis should 

therefore be seen as a collection of research manuscripts and not a monograph. 
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Chapter 2 

The influence of mixing and mass transfer 
in aerated bioreactors 
 

In this chapter, the effect of hydrodynamics and mixing in fermentation processes at industrial scale is 

highlighted and certain counter intuitive dynamics are explained in case studies. 

 

2.1 Abstract 

The majority of biobased-derived products are fully or partially dependent on fermentation processes 

that can convert a given substrate to the target product. Fermentation processes are either aerobic or 

anaerobic referring to the requirement of oxygen as part of the conversion of substrate. Industrial 

aerobic fermentation processes, which is the focus of this work, occur on a massive scale with two 

dominant vessel configurations the stirred tank and the bubble column. Optimal process conditions 

can be difficult to maintain at this scale and in particular carbon source feeding in fed-batch 

fermentations is challenging, which is highly dependent on the mixing characteristic of the fermenter 

at scale. Mathematical models can assist in understanding the relationship between liquid mixing and 

process performance, and highlight some of the counter intuitive dynamics occurring in large scale 

fermenters. This is illustrated in two case studies where the effect of oxygen concentration controlled 

substrate feeding on glucose gradients is investigated for a 100 m3 stirred tank fermenter and a bubble 

column. Simple correlations of the hydrodynamics enables insight into why the process gradients 

increase when the agitation intensity is increased during oxygen controlled substrate feeding. The case 

studies highlight the importance of mathematical modelling in the context of large scale fermentation 

processes, but also illustrates the need for more advance hydrodynamics models such as 

Computational Fluid Dynamic methods.   
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2.2 Nomenclature 

Roman Description Unit 

𝐶𝐶𝑂𝑂2 Dissolved oxygen concentration [g/L] 

𝐶𝐶𝑂𝑂2
∗  Dissolved oxygen concentration at saturation [g/L] 

𝐶𝐶𝑆𝑆 Concentration of carbon source [g/L] 

𝐶𝐶𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔,𝑖𝑖 Concentration of glucose in compartment i in the stirred 

tank 

[g/L] 

𝐶𝐶𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔,𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 Glucose concentration in feed zone [g/L] 

𝐷𝐷 Impeller diameter [m] 

𝐹𝐹 Feed flow rate [g/h] 

𝐹𝐹𝑔𝑔  Impeller flow number [-] 

𝑔𝑔 Gravity constant [m/s2] 

𝐻𝐻 Tank height [m] 

𝐻𝐻
𝑇𝑇

 Tank aspect ratio [-] 

𝐾𝐾 Constant in 𝑘𝑘𝐿𝐿𝑎𝑎 correlation [h-1] 

𝐾𝐾𝑆𝑆 Half saturation concentration of limiting substrate [g/L] 

𝐾𝐾𝐻𝐻 Henry’s constant for oxygen [g/L/bar] 

𝑘𝑘𝐿𝐿𝑎𝑎 Volumetric mass transfer coefficient [h-1] 

𝑙𝑙𝐵𝐵𝐵𝐵  Circulation loop length in bubble column [m] 

𝑁𝑁 Impeller rotational speed [min-1] 

𝑁𝑁𝑖𝑖  Number of impellers [#] 

𝑂𝑂𝑇𝑇𝑂𝑂 Oxygen transfer rate [g/L/h] 

𝑂𝑂𝑂𝑂𝑂𝑂 Oxygen uptake rate [g/L/h] 

𝑃𝑃 Pressure [bar] 

𝑃𝑃𝑜𝑜 Impeller power number [-] 

𝑃𝑃
𝑉𝑉

 Power input per volume [kW/m3] 

𝑄𝑄 Volumetric flow rate discharged by the impeller [L/h] 

𝑉𝑉 Tank volume [m3] 

VVM Volumetric air flowrate per tank volume [m3/m3/min] 

𝑣𝑣 Liquid velocity vector [m/s] 

𝑣𝑣𝐿𝐿 Liquid circulation velocity [m/s] 
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𝑣𝑣𝑆𝑆 Superficial gas velocity [m/s] 

𝑣𝑣𝑥𝑥 Velocity in x direction [m/s] 

𝑣𝑣𝑦𝑦 Velocity in y direction [m/s] 

𝑣𝑣𝑧𝑧 Velocity in z direction [m/s] 

𝑋𝑋 Biomass concentration [g/L] 

𝑌𝑌𝑠𝑠𝑥𝑥 Yield of biomass on substrate [g/g] 

𝑌𝑌𝑥𝑥𝑜𝑜 Yield of oxygen on biomass [g/g] 

𝑦𝑦𝑂𝑂2  Mole fraction of oxygen in gas phase [-] 

 

Greek Description Unit 

𝛼𝛼 Exponent in 𝑘𝑘𝐿𝐿𝑎𝑎 correlation [-] 

𝛽𝛽 Exponent in 𝑘𝑘𝐿𝐿𝑎𝑎 correlation [-] 

𝜇𝜇 Microbial growth rate [h-1] 

𝜇𝜇𝑚𝑚𝑚𝑚𝑥𝑥 Maximum microbial growth rate [h-1] 

𝜏𝜏𝐵𝐵𝐵𝐵  Residence time of the substrate in bubble column [s] 

𝜏𝜏𝑚𝑚𝑖𝑖𝑥𝑥 Mixing time  [s] 

𝜏𝜏𝑟𝑟𝑓𝑓𝑠𝑠 Residence time in recirculation loop in stirred tank [s] 
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2.3 Introduction 

Fermentation processes can be divided into two fundamental categories: aerobic and anaerobic 

processes, indicating the need for oxygen in order to perform the bioconversion at the desired rate. 

Whether a process is aerobic or anaerobic depends on the desired product, the productivity and the 

microbial host used to facilitate the bioconversion. The oxygen demand in a microorganism comes 

from respiration in the cell, which allows for full oxidation of the carbon source to carbon dioxide. 

Complete oxidation of one glucose molecule in for instance S. cerevisiae results in a total production 

of 12 ATP molecules to be used as energy for growth of cells, maintenance and product formation [1]. 

This amount of energy produced per glucose molecule under aerobic conditions is in sharp contrast 

with anaerobic catabolism, which only yields two ATP molecules per glucose molecule [2]. Anaerobic 

catabolism is unable to oxidise the produced NADH from the glycolysis, which limits the energy 

utilization of glucose. Ethanol or lactate ends up as the cellular product of the anaerobic catabolism 

due to the shortage of oxidation potential. 

Anaerobic processes can theoretically utilize the carbon source more efficiently and result in process 

yields close to the fundamental limit if the product is a metabolite in glycolysis.  A classic example of 

an industrial anaerobic fermentation is the conversion of glucose to ethanol. Ethanol production is 

carried out on a massive scale from sugar cane particularly in Brazil without the need of oxygen as co-

substrate. The ethanol produced by fermentations accounts for 80 % of the total production of ethanol 

in the world [3]. Another anaerobic process that is frequently mentioned is the lactic acid bacteria 

fermentation, which is used in the food and ingredient industry in particular as starter cultures for 

fermented foods [4]. 

Aerobic fermentation processes require the presence of oxygen because of the energy needed to 

perform a conversion of the given substrate to the desired product. The need of additional ATP arises 

mainly from the metabolic pathway used for the synthesis of the product or biomass. The availability 

of oxygen is crucial for successful operation of aerobic processes, and is also challenging because of 

the low solubility of oxygen in water. Production of industrial enzymes is mainly carried out aerobically 

because the energy requirement in producing large amounts of amino acids at high productivity makes 

it unfeasible to produce the enzymes anaerobically. The possibility of producing enzymes anaerobically 

has been suggested in the 80’s, but has not been realized to this day [5]. Aerobic fermentation 

processes are carried out on an industrial scale in fermentation vessels that vary considerably in size, 

all depending on the product formed in the process. In Table 2.1, a partial list of known industrial scale 

aerobic fermentation vessels is shown. 
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Table 2.1 - List of industrial aerobic fermentation vessels above 180 m3 [6] 

Company Location Reactor type Volume [m3] 

Fermic Mexico Stirred tank 190 
Novozymes Canada Bubble column 220 
Tate & Lyle USA Bubble column 227 
ADM USA Stirred tank 500 
Cargill USA Bubble column 500 
Nutrasweet Brazil Bubble column 520 
Dupont-Tate & Lyle USA Bubble column 600 
Solazyme Brazil Stirred tank 600 
Evonik Brazil Stirred tank 700 
Jungbunzlauer Canada Bubble column 750 
ADM USA Bubble column 1000 

 

Table 2.1 illustrates the typical size range of industrial aerobic fermentations vessels, and the two 

common types of reactors utilized. The scale of the industrial production vessels gives rise to 

challenges in controlling the process and maintaining the optimal conditions to perform the 

bioconversion of interest. The addition of nutrients to the fermenter becomes particularly challenging 

at these production volumes. Besides the need for oxygen, anaerobic and aerobic fermentations have 

similar characteristics, e.g., the need for a source of carbon, nitrogen and other nutrients. These 

nutrients are usually either fed to the fermenter during the process or available in the beginning of the 

process, or a combination of both. The addition of nutrients depends on the operational mode of the 

fermentation process, whether it is batch, fed-batch or continuous. The operational mode of industrial 

fermentation processes is generally continuous or fed-batch because of the increased productivity 

compared to standard batch operation. The choice between fed-batch or continuous process is 

dependent on the productivity requirements and the expression systems employed to facilitate the 

bioconversion. A stable host without risk of mutating or losing its plasmid(s) is necessary to leverage 

the increased productivity of a continuous process [7]. Such guarantees can be difficult to provide for 

a highly mutated organism which is why the common practice for industrial fermentations, where the 

cost is not only associated with carbon yield, is to operate the process as a fed-batch fermentation. 

Fed-batch fermentations rely on a continuous feeding of carbon source throughout the process, which 

results in an increasing liquid volume inside the fermenter as illustrated in Figure 2.1. 
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Figure 2.1 - Schematic illustration of a fed batch fermentation process from start fill to harvest.  

The prolonged fermentation process caused by the continuous feeding in a fed-batch enables an 

optimal use of the formed biomass in the initial batch phase. In particular for industrial enzyme 

secretion and other processes where product formation is induced as a starvation response, fed-batch 

operation is ideal [2,8]. The depletion of the carbon source in the initial batch phase induces the 

secretion of enzymes and with meticulous carbon source addition, this can be continued throughout 

the course of the fed-batch thus yielding high product titer and avoiding substrate inhibition related 

phenomena.  

2.4 The effect of mixing on fermentation performance 

Industrial fed-batch processes rely upon constant addition of nutrients that need to be available for 

the microorganism to allow uptake and utilization. The availability of nutrients in large bioreactors, in 

the order of 100 m3 in production volume, depends on the convectional motion of the liquid in the 

fermentation vessel. The convectional motion inside the reactor vessel is caused by physical motion of 

an impeller for a stirred tank reactor or by buoyancy differences between gas and liquid phase in 

bubble columns. Depending on the efficacy of these phenomena, the nutrients and gas phase inside 
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the fermenter will be dispersed homogeneously or heterogeneously. In this context, the fermentation 

performance is defined as the carbon and oxygen utilization by the microorganism in homogeneous 

conditions.  

2.4.1 Gradients in carbon source in large scale fermenters 

The hypothesis of insufficient mixing in bioreactors has been the research topic for numerous 

researchers over the last three decades [9–14]. Classic examples of the effect of insufficient mixing on 

aerobic fermentation are the Crabtree and Pasteur effects in yeast [15]. The Crabtree effect is a 

sensitivity to high glucose concentration in the yeast, which causes a production of ethanol in order to 

maintain a suitable ATP concentration in the cell under aerobic conditions. Under oxygen-depleted 

conditions, the yeast produces ethanol to scavenge energy to be used in anabolic reactions in the cell. 

These phenomena and other ones that are closely related (e.g. acetate production in E. coli due to the 

presence of excess glucose in the media) can be triggered by insufficient convectional flow in large 

scale fermenters.  

The inhomogeneity of glucose concentrations in a large scale fermenter has been reported for a 22 m3 

fermentation process utilizing S. cerevisiae [11]. Glucose levels in the reactor were measured using 

several sampling ports during glucose addition to either the top or bottom of the reactor. The reported 

differences in glucose concentrations when comparing the feeding point to the bottom of the vessels 

were between 4 mg/L and 40 mg/L. Another example of glucose gradients in large scale bioreactors 

was reported for a 215 m3 bubble column cultivating baker’s yeast [16]. The industrial bubble column 

was equipped with two sample ports at different levels of the reactor, which enables an assessment 

of the axial glucose gradients during the fermentation. Molasses was used as carbon source for the 

fermentation, and was fed one meter above the bottom of the bioreactor. The resulting fructose 

concentration was 115 mg/L at 2.1 meters above the bottom and 150 mg/L at 6.3 meters above the 

bottom during the fermentation. The fructose gradient increases during the fed-batch fermentation 

indicating that the gradient could be caused by insufficient convectional flow for increased filling of 

the fermenter. A 7 % reduction in biomass yield was observed when comparing the production scale 

fermentation and a small well-mixed stirred tank operating under the same conditions and applying 

the same feeding profile. The adverse effect on biomass yield due to carbon source gradients is not 

limited to S. cerevisiae. A 12 m3 fermentation process cultivating E. coli was reported to suffer a 20 % 

reduction in biomass yield compared with an identical bench scale fermentation [17]. Furthermore, 

the production of by-products was more severe at large scale, which was materialized in an 

accumulation of acetate during the process. Interestingly, the reduced biomass yield and increased by-
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product formation due to the spatial heterogeneity of the carbon source did not affect product 

formation, which was indeed demonstrated not to be affected during scale up [17].  

2.5 Oxygen gradients in large scale fermentation processes 

The occurrence and understanding of oxygen gradients is more complex than carbon source and other 

nutrients because of the interdependency of gas and liquid phase behaviour. From first principles, the 

oxygen concentration in a given region of a bioreactor is a result of the equilibrium between liquid 

convection, oxygen transfer from the gas phase to the liquid phase and the oxygen uptake by the 

microorganisms. This can be represented mathematically as the following mass balance:  

 𝑑𝑑𝐶𝐶𝑂𝑂2
𝑑𝑑𝑑𝑑

= 𝛻𝛻 ⋅ 𝒗𝒗 𝐶𝐶𝑂𝑂2 + 𝑂𝑂𝑇𝑇𝑂𝑂 − 𝑂𝑂𝑂𝑂𝑂𝑂 (2.1)  

where 𝐶𝐶𝑂𝑂2 is the oxygen concentration in the liquid phase, ∇ ⋅ 𝒗𝒗 𝐶𝐶𝑂𝑂2 is the convectional flow leaving 

and entering the region, OTR is the oxygen transfer rate from gas phase to liquid phase and OUR 

represents the microbial uptake rate of oxygen. The complexity of understanding the oxygen 

concentration behaviour in an aerated bioreactor can be explained because each of the three 

phenomena is dependent on multiple system states. The convectional flow, for example, is highly 

dependent on the energy dissipated by the impeller in the given region in the reactor. 

 
∇ ⋅ 𝐯𝐯 𝐶𝐶𝑂𝑂2 = 𝑣𝑣𝑥𝑥

𝑑𝑑𝐶𝐶𝑂𝑂2
𝑑𝑑𝑑𝑑

+ 𝑣𝑣𝑦𝑦
𝑑𝑑𝐶𝐶𝑂𝑂2
𝑑𝑑𝑦𝑦

+
𝑣𝑣𝑧𝑧𝑑𝑑𝐶𝐶𝑂𝑂2
𝑑𝑑𝑑𝑑

 (2.2) 

where 𝑣𝑣𝑖𝑖 is the velocity component of the 𝑖𝑖 coordinate. The oxygen transfer from gas to liquid phase 

depends on the interfacial area and liquid film resistance, as well as the driving force for mass transfer 

between the two phases [18]. The driving force is dependent on the solubility of oxygen, which is 

related to the partial pressure of oxygen in the gas phase.    

 𝑂𝑂𝑇𝑇𝑂𝑂 = 𝑘𝑘𝐿𝐿𝑎𝑎 ⋅ �𝐶𝐶𝑂𝑂2∗ − 𝐶𝐶𝑂𝑂2�, 𝐶𝐶𝑂𝑂2
∗ = 𝐾𝐾𝐻𝐻 ⋅  𝑦𝑦𝑂𝑂2 ⋅ 𝑃𝑃 (2.3) 

where 𝑘𝑘𝐿𝐿𝑎𝑎 is the volumetric mass transfer coefficient, 𝐶𝐶𝑂𝑂2
∗  is the oxygen solubility in the liquid, 𝐾𝐾𝐻𝐻 is 

Henry’s constant for oxygen in the liquid phase, 𝑦𝑦𝑂𝑂2 is the mole fraction of oxygen in the gas phase and 

P is the pressure at the given position in the reactor. The different factors affecting the rate of oxygen 

transfer are also not constant throughout a large scale fermenter, which further complicates the task 

of gaining a proper understanding of the occurrence of gradients in a large scale fermenter. Due to the 

action of the impellers in a stirred tank, the volumetric mass transfer coefficient is generally larger 

close to the impeller blades and smaller in between the impellers. The molar fraction of oxygen in the 

gas phase will decrease towards the top of the fermenter because of the consumption of oxygen by 
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the microorganisms, assuming that air sparging is done in the bottom of the fermenter. Additionally, 

the pressure is dependent on the liquid level resulting in higher pressure at the bottom of the 

fermenter compared to the top. The local pressure will also change due to changes in the liquid level 

that result from a fed batch operation. The pressure differences caused by the hydrostatic pressure in 

large scale fermenters are in the order of 1-3 bars depending on the height and the degree of filling of 

the fermenter.  

The consumption of oxygen by the microorganisms depends on the local environment surrounding the 

organisms. The simplest and most common representation of the oxygen uptake rate is the growth 

associated Monod kinetic expression [19]. 

 𝑂𝑂𝑂𝑂𝑂𝑂 = 𝑌𝑌𝑋𝑋𝑂𝑂 ⋅ 𝜇𝜇 ⋅ 𝑋𝑋, 𝜇𝜇 =
𝜇𝜇𝑚𝑚𝑚𝑚𝑥𝑥 ⋅ 𝐶𝐶𝑠𝑠
𝐶𝐶𝑠𝑠 + 𝐾𝐾𝑠𝑠

 (2.4) 

where 𝑌𝑌𝑋𝑋𝑂𝑂 is  the yield of oxygen on biomass, 𝜇𝜇 is the microbial growth rate, 𝑋𝑋 is the biomass 

concentration, 𝜇𝜇𝑚𝑚𝑚𝑚𝑥𝑥 is the maximum growth rate, 𝐶𝐶𝑠𝑠 is the substrate concentration and 𝐾𝐾𝑠𝑠 is the half 

saturation concentration of the given substrate. Assuming that the oxygen uptake rate follows the 

dependency described above, it is apparent that the spatial heterogeneity of the carbon source will 

dictate the local oxygen uptake rate. The evidence of glucose gradients in large scale bioreactors 

illustrated above would then infer proportional gradients in the uptake rate of oxygen if the glucose 

concentration is below the saturation concentration of the microorganism. 

The dependency on different local conditions of the three governing phenomena responsible for 

changes in the oxygen concentration in the fermenter makes it nearly impossible to understand the 

fundamental causes for oxygen gradients. Evidence of the occurrence of oxygen gradients in large scale 

bioreactors has been available since the 80’s, where the oxygen concentration was measured during 

aerobic fermentation by moving a sensor vertically [20,21]. The oxygen concentration differences were 

measured in a 112 m3 fermenter cultivating Streptomyces aureofaciens equipped with four Rushton 

turbines resulting in a power input of 2.5 kW/m3 [21]. A top to bottom gradient was identified at 

various conditions and viscosities with decreasing oxygen concentration towards the top of the 

reactor. The oxygen concentration was independent on radial position. Assuming that the mixing was 

sufficient to avoid spatial differences in carbon source concentrations, the reported oxygen 

concentration profiles can be explained by an increase in the solubility of oxygen at the bottom of the 

fermenter. Alternatively, the oxygen profile could be caused by a vertical gradient in carbon source 

due to feeding in the top of the fermenter, and limited axial convection that would suggest the 

observed gradient.  Oosterhuis et al. (1984) [20] reported a severe change in oxygen concentration – 
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from 5 % to 25 % air saturation – around the impeller in a 19 m3 fermenter equipped with two Rushton 

turbines. Contrary to the findings of Manfredini et al. (1983) [21], the vertical oxygen gradient was not 

dominant compared to the effect of the impeller action. Even though both fermenters had similar 

impeller configuration the measured oxygen gradient is fundamentally different in the two cases, 

which exemplifies the complexity of understanding the equilibria between convection, oxygen transfer 

and oxygen uptake rate.  

2.6 The bottleneck of industrial aerobic fermentation 
processes 

Mass transfer of oxygen from the gas phase to the liquid phase is for most aerobic fermentation 

processes the rate-limiting step [22]. The oxygen supply rate is thermodynamically limited due to the 

low oxygen solubility in water compared to the other substrates. In order to overcome this solubility 

bottleneck a large interfacial surface area between the phases inside the fermenter is achieved by 

sparging gas in the bottom of the fermenter. Process conditions, such as power draw from the agitator 

and aeration rate, and bioreactor configuration are known to affect the available surface area and 

mass transfer resistance. The understanding of how fermentation conditions affect this interfacial area 

and the mass transfer resistance, 𝑘𝑘𝐿𝐿𝑎𝑎, have therefore been the subject of numerous research projects 

during the last four decades [23–26]. The mass transfer capabilities of bioreactors at lab scale, pilot 

scale and industrial scale have been investigated empirically and theoretically. Measuring the mass 

transfer capabilities of bioreactors is in itself a challenging task, but essentially relies upon measuring 

the rate of oxygen transfer at a known concentration of oxygen inside the bioreactor. A multitude of 

methods exist which facilitates the determination of the oxygen transfer rate, and it is considered 

beyond the scope of this work to illustrate the benefits and drawback of each approach. A comparison 

of the different empirical methods is available in in reviews such as [24,27–29]. The fundamentally 

different approaches to determine the correlation between 𝑘𝑘𝐿𝐿𝑎𝑎 and fermentation conditions always 

converge to the following empirical correlation: 

 
𝑘𝑘𝐿𝐿𝑎𝑎 = 𝐾𝐾 ⋅ �

𝑃𝑃
𝑉𝑉
�
𝛼𝛼
⋅ 𝑣𝑣𝑠𝑠

𝛽𝛽 (2.5) 

where K, 𝛼𝛼, 𝛽𝛽 are  constants, 𝑃𝑃
𝑉𝑉

 is the power draw per volume, 𝑣𝑣𝑠𝑠 is the superficial gas velocity. Garcia-

Ochoa et al. (2004) derived a theoretical correlation between power draw by the impeller, the gas flow 

rate and the mass transfer coefficient based on Kolmogorov’s theory of isotropic turbulence [30], 

which proved to be comparable with the empirical findings. Similar for all studies and subsequent 

developed correlations is that they consider the power draw as the most important parameter 
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influencing the mass transfer coefficient. Increasing the power input to the fermenter will increase the 

oxygen transfer rate and subsequently the productivity of the fermentation process. The improved 

productivity per kWh is because the exponent 𝛼𝛼 in Equation (2.5) is not linear, which results in a trade-

off between productivity and cost of power input to the fermenter. Furthermore, the trade-off 

between energy efficiency of oxygen transfer and the rate of oxygen mass transfer is important to 

consider in particular at large scale [31]. 

2.7 Relationship between OTR and substrate gradients with 
oxygen controlled substrate feeding 

Oxygen depletion in aerobic fermentation processes is a possible cause for by-product formation, and 

can lead to other suboptimal process scenarios. In order to avoid oxygen depletion in the fermenter 

the rate of substrate feeding can be manipulated. The substrate feeding can prevent oxygen depletion 

since it is directly coupled to the oxygen uptake rate as shown in Equation (2.4). If the oxygen 

concentration goes below the set-point the substrate feeding can be reduced whereas the feed rate is 

increased if the oxygen concentration exceeds the set-point. Employing oxygen dependent substrate 

feeding results in a direct coupling between the oxygen transfer capabilities and the oxygen uptake 

rate, and has been employed in bioreactors at different scale [32,33]. The manipulation of the feed 

rate in order to maintain the oxygen concentration can be achieved by different control strategies and 

methods, such as standard PID control, feedforward control or model predictive control. The efficacy 

of the different methods and their complexity is considered outside the scope of this work. The oxygen 

controlled substrate feeding does however also pose certain challenges in relation to controlling 

process heterogeneities. Due to the direct coupling between substrate addition and oxygen 

concentration, an increase in oxygen transfer rates will consequently increase the substrate feed rate. 

The increase in oxygen transfer can be justified by a need of achieving increased productivity, or even 

in order to mitigate concentration gradients by increasing mixing. The increase in substrate addition 

rate, due to the OTR increase, is not proportional to the increase in mixing efficiency at large scale, 

which can lead to further process heterogeneity. 

2.7.1 Case study: 100 m3 aerobic E. coli fermentation with oxygen dependent 

substrate addition 

In order to illustrate the interdependency of oxygen transfer capacity and substrate feeding in aerobic 

fermentation processes a 100 m3 E. coli fermentation is analyzed. The bioreactor configuration and 

culture conditions are summarized in Table 2.2. 
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Table 2.2 - Summary of geometrical parameters of the investigated fermenter, as well as microbial and thermodynamic 

conditions. 

Fermenter conditions Variable Value Unit 

Figure 2.2 - Expected overall liquid 
flow profile in the stirred 
bioreactor with four Rushton 
turbines. 

Filling volume 𝑉𝑉 100 𝑚𝑚3 

Aspect ratio 𝐻𝐻/𝑇𝑇 2.5 - 

Width 𝑇𝑇 3.49 𝑚𝑚 

Height 𝐻𝐻 10.46 𝑚𝑚 

Impeller diameter 𝐷𝐷 1.16 𝑚𝑚 

Number of impellers 𝑁𝑁𝐼𝐼 4 - 

Power number 𝑃𝑃𝑃𝑃 5.5 - 

Flow number 𝐹𝐹𝑔𝑔  0.74 - 

Superficial gas velocity 𝑣𝑣𝑠𝑠 0.174 𝑚𝑚/𝑠𝑠 

Volumetric flow rate 𝑉𝑉𝑉𝑉𝑉𝑉 1 𝑚𝑚3/𝑚𝑚3/𝑚𝑚𝑖𝑖𝑚𝑚 

Fermentation conditions 
Biomass concentration (E. coli) 𝑋𝑋 40 𝑔𝑔/𝐿𝐿 

Maximum growth rate 𝜇𝜇𝑚𝑚𝑚𝑚𝑥𝑥 0.6 ℎ−1 

Saturation concentration 𝐾𝐾𝑠𝑠 0.05 𝑔𝑔/𝐿𝐿 

Yield of biomass on substrate 𝑌𝑌𝑆𝑆𝑋𝑋 1.89 𝑔𝑔/𝑔𝑔 

Yield of oxygen on biomass 𝑌𝑌𝑂𝑂𝑋𝑋 1 𝑔𝑔/𝑔𝑔 

Thermodynamics 
Pressure 𝑃𝑃 1.01 𝑏𝑏𝑎𝑎𝑏𝑏 

Oxygen set point 𝐶𝐶𝑂𝑂2 40 % 𝑠𝑠𝑎𝑎𝑑𝑑𝑠𝑠𝑏𝑏𝑎𝑎𝑑𝑑𝑖𝑖𝑃𝑃𝑚𝑚1 

Inlet molar fraction of oxygen in the 
gas phase 

𝑦𝑦𝑂𝑂2,𝑖𝑖 0.21 - 

Outlet molar fraction of oxygen in 
the gas phase 

𝑦𝑦𝑂𝑂2,𝑜𝑜 0.15 - 

Henry's constant for oxygen 𝐾𝐾𝐻𝐻 0.04 𝑔𝑔/𝐿𝐿/𝑏𝑏𝑎𝑎𝑏𝑏 

1 The saturation concentration is based upon ambient 
conditions at 25 °𝑪𝑪

As explained above the mass transfer capacity of a bioreactor is generally the rate limiting step in 

aerobic fermentation processes, which means that an increase in mass transfer capacity will increase 

the productivity of the bioreactor. Achieving the desired increase in productivity is possible by 

increasing the agitation speed of the impeller and hence the overall mass transfer coefficient. The 

substrate feed rate and average glucose concentration as a function of the power input to the 

bioreactor can be determined from the mass balance of oxygen and glucose. This relationship is 

depicted in Figure 2.3. 
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Figure 2.3 - Substrate feed rate, kLa and average glucose concentration as function of power input during 
oxygen dependent substrate feed in a 100 m3 stirred bioreactor. 

Figure 2.3 shows how an increase in productivity directly affects the feed rate and subsequently the 

average glucose concentration, when operating at a constant oxygen concentration. Figure 2.3 clearly 

indicates the direct correlation between glucose feed rate and 𝑘𝑘𝐿𝐿𝑎𝑎. 

In order to estimate the substrate concentration in the bottom of the reactor, some assumptions about 

the hydrodynamics inside the fermenter are necessary. In the configuration studied, in this case 

employing four Rushton turbines, an assumption of four stirred tanks in series would be reasonable, 

and has been showed valid in tracer experiments in stirred reactors with multiple Rushton turbines. 

The substrate concentrations in the reactor as a function of power input can then be determined from 

the mass balance in each of the compartments. The mass balance of each compartment becomes: 
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where the indexes 1,2,3 and 4 refer to the compartments from top to bottom of the fermenter, 

𝐶𝐶𝐺𝐺𝑔𝑔𝑔𝑔𝑔𝑔,𝐹𝐹𝑓𝑓𝑓𝑓𝑓𝑓 is the approximate feed concentration and 𝜏𝜏𝑟𝑟𝑓𝑓𝑠𝑠 is the residence time in each recirculation 

loop. The increase in power input to the fermenter results in increased fluid convection asserted by 

the impeller. The fluid convection, as mentioned previously, dictates the homogeneity of the 

substrates and can be quantified using a dimensionless group, the flow number. 

 𝐹𝐹𝑙𝑙 =
𝑄𝑄

𝐷𝐷3 ⋅ 𝑁𝑁
 (2.10) 

where Q is the volumetric flow rate discharged by the impeller, D is the width of the impeller and N is 

the agitation speed.  The flow number has been studied for a number of different impellers and for a 

standard 6 blade Rushton turbine it is found to be 0.74 [34]. The discharge flow from the impeller 

combined with the feed rate can approximate the feed concentration by: 

 𝐶𝐶𝐺𝐺𝑔𝑔𝑔𝑔𝑔𝑔,𝐹𝐹𝑓𝑓𝑓𝑓𝑓𝑓 =
𝐹𝐹

1
2 ⋅ 𝑄𝑄

 (2.11) 

The discharge flow is divided by two since only half the flow moves towards the top of the fermenter 

and influences the feed concentration as shown in Figure 2.2. The residence time in each stirred tank 

was assumed to be a fourth of the circulation time (𝜏𝜏𝑟𝑟𝑓𝑓𝑠𝑠 = 1
4
⋅ 𝜏𝜏𝑔𝑔𝑖𝑖𝑟𝑟𝑔𝑔), which is defined as the average 

time a molecule spend being transported from the top of the vessel to the bottom and back again. The 

circulation time in industrial bioreactors has been showed to be approximately a fourth of the mixing 

time [33], which means that the residence time in each stirred tank becomes: 𝜏𝜏𝑟𝑟𝑓𝑓𝑠𝑠 = 1
16
𝜏𝜏𝑚𝑚𝑖𝑖𝑥𝑥. The 

mixing time in stirred reactors with multiple Rushton turbines can be correlated to the impeller speed 

and geometrical features [34]. 

 
𝜏𝜏𝑚𝑚𝑖𝑖𝑥𝑥 = 3.3 ⋅

1
𝑁𝑁
⋅ �

1
𝑃𝑃𝑜𝑜
�
1
3
⋅ �
𝐷𝐷
𝐻𝐻
�
−2.43

 (2.12) 

where 𝑃𝑃𝑜𝑜is the power number of the impeller configuration. As shown in Figure 2.3 an increase in 

power input results in a higher feed rate in order to maintain the desired oxygen concentration in the 

fermenter. Increasing the power input also decreases the residence time in each of the compartments 

generated by the Rushton turbines, which affects the gradients observed in the reactor. The combined 

effect of these consequences is depicted in Figure 2.4 and compared with constant glucose feeding. 
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(a) (b) 

Figure 2.4 - Feed, average and bottom concentration of glucose in a 100 m3 fermenter equipped with four 
Rushton turbines cultivating E. coli at 40 g/L of biomass as a function of power input generated by the impeller. 
(a) shows the predicted gradients at constant feed rate and (b) shows the gradients when substrate addition 
is coupled to oxygen concentration. 

The concentration difference between the feeding point and the bottom of the fermenter decreases 

as a function of dissipated power at constant feed rate as shown in Figure 2.4 (a). The improved mixing 

(higher P/V) lowers the residence time in the compartments formed by the impellers, which results in 

more homogeneous conditions. The correlation between concentration gradients and power input 

shown in Figure 2.4 (a) is intuitive and in agreement with what would be expected in a stirred 

bioreactor. If the substrate addition is coupled to the oxygen concentration, however, the correlation 

changes dramatically. Counterintuitively, the increase in agitation speed and thus power input does 

not result in increased homogenization inside the fermenter as shown by the constant concentration 

difference from top to bottom shown in Figure 2.4 (b). The increase in power draw of the impellers in 

the industrial size fermenter results in a substantial increase in the feed rate which scales with kLa, 

but the mixing time scales with the inverse cubic root of the power. The case study examined shows 

that an increase in power input to the fermenter from one to four kw/m3 does not change the 

concentration gradient from top to bottom. Figure 2.4 clearly indicates that process control can affect 

the heterogeneities observed in an industrial scale stirred fermenter, which is an effect that is difficult 

to determine without the application of hydrodynamic models. The understanding of the 

hydrodynamics inside the fermenter and how it is affected by process manipulation should therefore 

be included when evaluating different control strategies of a fermentation process. 
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2.7.2 Gradients in bubble column fermenters 

The relationship between process conditions and operational choices in aerobic bioreactors is not 

limited to stirred tanks, but also applies to bubble columns, airlift reactors etc. The analysis carried out 

for the industrial size stirred bioreactor in the previous section would be similar for a bubble column 

where only the relationship between kLa, mixing time and power input would change. The 

hydrodynamics inside a bubble column is generally defined as heterogeneous or homogeneous, which 

refers to the gas dispersion and behaviour [35]. For industrially relevant process conditions, which 

mainly refer to the oxygen transfer rate, the heterogeneous flow regime is dominant. The flow 

behaviour in the bubble column fermenter operating in the heterogeneous regime is characterized by 

a series of connected recirculation loops as seen in Figure 2.5. The process conditions of the 

investigated bubble column similar to the stirred fermenter described above are summarized in Table 

2.3. 
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Table 2.3 - Summary of process parameters of the investigated bubble column fermenter. 

Fermenter conditions Variable Value Unit 

Figure 2.5 - Schematic drawing of 
the governing flow pattern in 
heterogeneous bubble columns. 
The arrows indicate the liquid flow 
recirculation and the solid line is 
the projected trajectory of 
substrate fed in the top of the 
fermenter. 

Filling volume 𝑉𝑉 100 𝑚𝑚3 

Aspect ratio 𝐻𝐻/𝑇𝑇 5 - 

Width 𝑇𝑇 2.9 𝑚𝑚 

Height 𝐻𝐻 14.7 𝑚𝑚 

Fermentation conditions 

Biomass concentration 
(E. coli) 

𝑋𝑋 40 𝑔𝑔/𝐿𝐿 

Maximum growth rate 𝜇𝜇𝑚𝑚𝑚𝑚𝑥𝑥 0.6 ℎ−1 

Saturation concentration 𝐾𝐾𝑠𝑠 0.05 𝑔𝑔/𝐿𝐿 

Yield of substrate on 
biomass 

𝑌𝑌𝑆𝑆𝑋𝑋 1.89 𝑔𝑔/𝑔𝑔 

Yield of oxygen on 
biomass 

𝑌𝑌𝑂𝑂𝑋𝑋 1 𝑔𝑔/𝑔𝑔 

Thermodynamics 

Pressure 𝑃𝑃 1.01 𝑏𝑏𝑎𝑎𝑏𝑏 

Oxygen set point 𝐶𝐶𝑂𝑂2 40 % 𝑠𝑠𝑎𝑎𝑑𝑑𝑠𝑠𝑏𝑏𝑎𝑎𝑑𝑑𝑖𝑖𝑃𝑃𝑚𝑚1 

Inlet molar fraction of 
oxygen in gas phase 

𝑦𝑦𝑂𝑂2,𝑖𝑖 0.21 - 

Outlet molar fraction of 
oxygen in gas phase 

𝑦𝑦𝑂𝑂2,𝑜𝑜 0.15 - 

Henry's constant of 
oxygen 

𝐾𝐾𝐻𝐻 0.04 𝑔𝑔/𝐿𝐿/𝑏𝑏𝑎𝑎𝑏𝑏 

1 The saturation concentration is based 
upon  
ambient conditions at 25 °𝑪𝑪

In terms of fluid convection, the hydrodynamic behaviour in a bubble column fermenter similar to the 

one shown in Figure 2.5 is fundamentally different compared to a stirred tank. Since the convection in 

the bubble column is only generated from a density difference between gas and liquid, the convection 

becomes more unidirectional with larger recirculation loops. This orderly sequence of recirculation 

loops inside the heterogeneous bubble column has suggested that an assumption of plug flow 

behaviour could be a viable hydrodynamic model [36].  

𝑑𝑑𝐶𝐶𝐺𝐺𝑔𝑔𝑔𝑔𝑔𝑔
𝑑𝑑𝑑𝑑

= −𝜇𝜇𝑚𝑚𝑚𝑚𝑥𝑥 ⋅
𝑋𝑋
𝑌𝑌𝑠𝑠𝑥𝑥

⋅ �
𝐶𝐶𝐺𝐺𝑔𝑔𝑔𝑔𝑔𝑔

𝐶𝐶𝐵𝐵𝑔𝑔𝑔𝑔𝑔𝑔 + 𝐾𝐾𝑠𝑠
� (2.13)

The plug flow assumption is a simplification of the flow pattern, since bubble induced turbulence and 

micromixing are ignored, but is useful for qualitative reasoning [37]. Determination of the 

concentration at the bottom of the bubble column fermenter is possible if the transport time from top 

to bottom is known. From the flow pattern sketched in Figure 2.5 it is apparent that the number of 
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consecutive recirculation loops is correlated with the aspect ratio. The distance that the added 

substrate will travel before reaching the bottom of the fermenter is approximately equal to: 

 𝐿𝐿𝐵𝐵𝐵𝐵 =
1
2
⋅ 𝜋𝜋 ⋅ 𝑇𝑇 ⋅ �

𝐻𝐻
𝑇𝑇
� (2.14) 

The transport time from top to bottom of the bubble column depends on the fluid velocity and the 

transport distance explained in Equation (2.14). Heijnen et al. (1984) [35] showed that the liquid 

velocity, 𝑣𝑣𝐿𝐿 can be correlated to the superficial gas velocity and column diameter. 

 𝑣𝑣𝐿𝐿 = 0.9 ⋅ (𝑔𝑔 ⋅ 𝑇𝑇 ⋅ 𝑣𝑣𝑠𝑠)
1
3 (2.15) 

where g is the gravitational acceleration constant. The residence time of the substrate is determined 

by combining Equation (2.14) and (2.15):  

 𝜏𝜏𝐵𝐵𝐵𝐵 =
𝐿𝐿𝐵𝐵𝐵𝐵
𝑣𝑣𝐿𝐿

=
𝜋𝜋 ⋅ 𝐻𝐻

1.8 ⋅ (𝑔𝑔 ⋅ 𝑇𝑇 ⋅ 𝑣𝑣𝑠𝑠)
1
3 

 (2.16) 

The residence time, 𝜏𝜏𝐵𝐵𝐵𝐵, depends on the geometrical features, and the operating conditions in the 

bubble column. Compared with the multi-impeller stirred tank, it is interesting that in spite of the 

difference between the two bioreactors the residence time scales with the inverse cubic root of the 

dissipated power. This relationship has previously been referred to as the universal mixing relation 

[36].  

Applying the correlation of the residence time as boundary conditions to Equation (2.13) it is possible 

to investigate the relationship between glucose concentration and dissipated power in the bubble 

column. The concentration at the feed point, in the bottom and the average concentration over the 

column are shown as a function of dissipated power in Figure 2.6.  
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Figure 2.6 - Concentration profiles as a function of dispersed power input in a 100 m3 industrial bubble column 
reactor cultivating E. coli. The bubble column was fed in the top and is summarized in detail in Table 2.3. 

The concentration profiles shown in Figure 2.6 indicate that as the power input to the bubble column 

is increased the concentration in the feed point and in the bottom of the column increase. The 

concentration gradient in the bubble column is increasing as the superficial gas velocity increases. This 

is due to the different proportionalities of the feed rate and the mixing time, respectively, to the power 

input. The feed rate scales with power input to the power of 0.7, whereas the residence time scales 

with power input to the power of -1/3, which means that the mixing cannot keep up with the feeding 

as the power input increases.  

2.8 Strategies for identifying and mitigating potential 
gradients at large scale 

The investigated cases show that concentration differences in the primary carbon source 

concentration are to be expected for an aerobic fermentation at high cell density. Furthermore, the 

desired control strategy has a direct influence on how the heterogeneities develop with increasing 

productivity. The simple correlations applied to both the agitated fermenter and the bubble column 

both indicate that faster processes do not lead to less process heterogeneities, if the substrate feeding 

is used as manipulated variable in order to maintain a certain oxygen concentration in the fermenter. 

The assumptions associated with the case studies presented here introduce some uncertainty about 

the quantitative results, but the conclusions are considered valid qualitatively.  
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Alternatively, to a correlation based model experimental methods can be used to illustrate possible 

scale-up issues in fermentation processes. Pilot scale testing as an intermediary step between 

development and production is a standard procedure in most biotechnological companies. In order to 

reduce cost and resources required in pilot scale testing a lot of research focus has been directed 

towards developing high throughput scale down systems with a working volume a thousand times 

smaller than pilot scale. Strategies for how the scaled down experiments can recollect large scale 

conditions have been illustrated with feeding strategies or connection of multiple reactors [38]. The 

challenge in designing the conditions and configurations of the scale down systems is that it implies 

detailed knowledge of large scale spatial distribution of process variables. This information is difficult 

to measure, and as illustrated above the measurements can be challenging to interpret with certainty. 

Advanced modeling approaches such as computational fluid dynamics (CFD) could be an alternative 

source of this detailed information, and CFD has proven to be a valuable tool to assess the 

hydrodynamics in stirred vessels at different scales [13,39–41]. The finite volume approach employed 

by commercial CFD software enables an assessment of the convectional flow in a fine spatial resolution 

in a fermentation vessel. This detailed information can be coupled with models of microbial kinetics 

and the spatial heterogeneities can be assessed in geometries identical to the production facility. The 

information obtained from the numerical simulation can then be used a guideline for scaled down 

operation and configuration [13]. Beside the potential assist in scale down simulator design CFD is a 

viable tool for improved process understanding and trouble shooting. The possibility to visualize large 

complex problems with high spatial resolution is a very useful tool in communications between 

laboratory development and production professionals.  

2.9 Conclusion 

Aerobic fed-batch fermentation is a widely applied process for manufacturing a number of biochemical 

intermediates, fine chemicals and pharmaceuticals. Industrial aerobic processes occur on a massive 

scale and in large fermentation vessels easily reaching several hundred cubic meters. The large size of 

the production vessels is beneficial for productivity since it reduces the number of batches per year 

and hence the time spent on cleaning between batches. The massive scale of the production 

fermenters poses a challenge in terms of process homogeneity and stability. This is particularly the 

case when carbon source feeding is used to maintain a certain concentration of oxygen in the 

fermenter, which ensures aerobic conditions. The coupling of substrate addition and oxygen 

concentration introduces a complex, and at certain conditions counterintuitive, correlation between 

power draw of the agitator on the one hand and top to bottom substrate gradients on the other hand. 



2.9 Conclusion 27 
 

 
 

As shown in the case study of a 100 m3 stirred fermenter, an increase in the dissipated power results 

in the same concentration gradient from top to bottom. In a similar size bubble column the increase 

in dissipated power leads to an increase in the concentration difference. The two examples display 

how hydrodynamics play a key role in fermentation performance, and that understanding the 

relationship between hydrodynamics and microbial kinetics is essential in order to avoid unwanted 

process heterogeneities.  

If process knowledge and understanding should be leveraged to improve the process performance of 

large scale aerobic fermentations, mathematical modelling has to be applied. Mathematical models of 

the microbial kinetics are available in the literature for numerous host organisms and mutants. 

Coupling the microbial kinetics to the hydrodynamics requires advanced models of the fluid 

mechanical behaviour inside large scale fermenters. CFD is a viable tool for the characterization of the 

fluid behaviour at large scale since it is able to account for geometrical features and fluid properties at 

scale. The combination of CFD and microbial kinetics has massive potential in both optimization of 

current processes and introduction of new processes with challenging traits.   
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Chapter 3 

Mixing and mass transfer in pilot scale 
fermentation vessel 
 

The application of computational fluid dynamic models in fermentation systems is rarely based on 

industrially relevant conditions. This chapter showcases how CFD can be used to understand mixing 

and mass transfer in a pilot scale Trichoderma reesei fermentation at industrial relevant conditions. 

The chapter is based on the following published article: 

Evaluation of mixing and mass transfer in a stirred pilot scale bioreactor utilizing CFD 

Christian Bach, Jifeng Yang, Hilde Larsson, Stuart M. Stocks, Krist V. Gernaey, Mads O. Albaek & Ulrich 

Krühne 

Chemical engineering science 171, 19-26, 2017 

The following chapter is an exact reproduction of the article, but the formatting is adapted to that of 

the thesis. 
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3.1 Abstract 

Knowledge and prediction of mixing and mass transfer in agitated bioreactors is fundamental for 

process development and scale up. In particular key process parameters such as mixing time and 

volumetric mass transfer coefficient are essential for bioprocess development. In this work the mixing 

and mass transfer performance of a high power agitated pilot scale bioreactor has been characterised 

using a novel combination of computational fluid dynamics (CFD) and experimental investigations. The 

effect of turbulence inside the vessel was predicted using a standard RANS k-ε model. Mixing time was 

investigated by carrying out sodium chloride tracer experiments for both Newtonian and non-

Newtonian fluids at various viscosities and agitation speeds, while tracking the conductivity. The mixing 

performance was simulated with CFD and the results showed good agreement with the experimental 

data. The mass transfer coefficients were determined from six Trichoderma reesei fermentations at 

different well-defined process conditions. Similarly the mass transfer was predicted by Higbie’s 

penetration model from two-phase CFD simulations using a correlation of bubble size and power input, 

and the overall mass transfer coefficients were in accordance with the experimental data. This work 

illustrates the possibility of predicting the two phase fluid dynamic performance of an agitated pilot 

scale bioreactor using validated CFD models. These models can be applied to illustrate the effect of 

changing the physical process conditions.  
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3.2 Nomenclature 

Roman  Description Unit 

𝑎𝑎 Specific surface area [𝑚𝑚−1] 

𝐶𝐶 Impeller clearance [𝑚𝑚] 

𝐶𝐶𝑂𝑂2 Liquid oxygen concentration [mol m−3] 

𝐶𝐶𝑂𝑂2
∗  Saturation concentration of oxygen [mol m−3] 

𝑑𝑑𝑏𝑏 Bubble size [𝑚𝑚] 

𝐷𝐷 Diameter of the impeller [𝑚𝑚] 

𝐻𝐻 Height of the bioreactor [𝑚𝑚] 

𝑘𝑘𝐿𝐿 Mass transfer resistance [𝑚𝑚 𝑠𝑠−1] 

𝐾𝐾 Consistency index [𝑃𝑃𝑎𝑎 ∙ 𝑠𝑠𝑛𝑛] 

𝑛𝑛 Flow index [-] 

𝑃𝑃 Power input [𝑘𝑘𝑘𝑘] 

𝑃𝑃𝑔𝑔 Gassed power input [𝑘𝑘𝑘𝑘] 

𝑆𝑆𝑆𝑆𝑃𝑃 Sensitivity measure [-] 

𝑇𝑇 Diameter of the bioreactor [𝑚𝑚] 

𝑂𝑂𝑇𝑇𝑂𝑂 Oxygen transfer rate [𝑚𝑚𝑚𝑚𝑚𝑚 𝑚𝑚−3𝑠𝑠−1] 

𝑣𝑣𝑔𝑔 Gas superficial velocity [𝑚𝑚 𝑠𝑠−1] 

𝑉𝑉 Tank volume [𝑚𝑚3] 

𝒟𝒟 Diffusion coefficient [𝑚𝑚2𝑠𝑠−1] 

𝑖𝑖 Inlet index [-] 

𝑚𝑚 Outlet index [-] 

Greek Description Unit 

𝛼𝛼 Gas volume fraction  [-] 

�̇�𝛾 Shear rate [𝑠𝑠−1] 

𝜀𝜀 Eddy dissipation rate  [𝑘𝑘 𝑘𝑘𝑔𝑔−1] 

𝜃𝜃95 Mixing time [𝑠𝑠] 

𝜇𝜇𝐿𝐿 Liquid dynamic viscosity  [𝑘𝑘𝑔𝑔 𝑚𝑚−1𝑠𝑠−1] 

𝜌𝜌𝐿𝐿 Liquid density  [kg m−3] 

𝜎𝜎𝑀𝑀 The change for model output [-] 

𝜎𝜎𝑃𝑃 The change in parameter value [-] 

𝜏𝜏 Shear stress [𝑃𝑃𝑎𝑎] 
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3.3 Introduction 

Production of cellulases for lignocellulose degradation can be carried out in submerged fermentations 

in stirred bioreactors [1]. Trichoderma reesei is known to use a highly efficient protein secretion 

mechanism, and is hence an excellent host for the production of cellulases and hemicelullases [2]. The 

growth of this filamentous fungus increases the viscosity of the medium, which can hinder the mixing 

and mass transfer capabilities of the fermenter. Mixing and mass transfer govern the spatial conditions 

in stirred fermenters, which emphasises the need for reliable models to predict these phenomena. 

Empirical models have successfully been used to facilitate this task, where process parameters have 

been correlated with process variables under certain conditions [3]. In particular the volumetric oxygen 

transfer coefficient and mixing time have received most attention in these studies as they are 

measures of the bioreactor performance [4–6]. In spite of the usefulness of empirical correlations, they 

often rely on certain geometrical constraints, and extrapolation of such models is often uncertain. In 

particular, the evolving conditions during fed-batch fermentations are difficult to capture in empirical 

correlations that are restricted by geometrical constants. 

Models based on computational fluid dynamics (CFD) offer a route to become independent of 

empirical correlations, at the cost of computational effort. Compared to correlations based on global 

conditions CFD has the advantage of offering local conditions in the fermenter, which can be used to 

understand fluid flows and identify possible causes of insufficient mixing or mass transfer [7]. The 

mixing of Newtonian and non-Newtonian fluids has been successfully modelled using CFD for 

numerous geometries and bioreactor configurations [8–10]. Mass transfer predictions in gas-liquid 

systems using CFD have been reported previously for systems in which bubble size is a key parameter 

[11,12]. A few investigations have focused on aerobic fermentation systems in terms of mass transfer 

and mixing [7,13]. These studies revolve around a single operating point with regards to power input 

and in particular a fixed filling of the reactor which for fed-batch processes is known to have an impact 

on process performance [5]. Furthermore the continuous feeding can result in partly covered or just 

submerged impellers, which is difficult to investigate without CFD.  

This work shows the applicability of CFD tools to represent one phase mixing at high power input in 

pilot scale fermenters. Furthermore a method to use a two phase CFD model to determine the mass 

transfer coefficient in high power agitated fermentation processes is described, which is validated with 

pilot process data. 
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3.4 Material and Methods 

3.4.1 Tank geometry  

The agitated bioreactor consisted of a baffled, torispherical-bottomed cylindrical vessel with a liquid 

height range of H=0.7-1.65T, leading to a loading volume range of 150-350 liters. A single impeller was 

employed in an up-pumping configuration. The geometry is similar to previous studies [14]. 

3.4.2 Mixing time experiments 

The one phase mixing time was determined experimentally for both water (Newtonian) and Xanthan 

solutions (non-Newtonian) with varying concentrations. The Xanthan gum (Ziboxan®F80-Food grade, 

Deosen Biochemical Ltd.) solutions were prepared containing 0.125 and 0.25 % w/w along with 0.21 

% w/w potassium hydrogen phosphate, which showed similar rheological behaviour as commonly used 

fermentation broth [15,16]. The agitation speeds applied during experiments were 150 RPM, 320 RPM 

and 400 RPM.  

The mixing time was measured by injecting 300 mL of a 25 % w/w sodium chloride solution at the top 

of the reactor. The injection was achieved using three 100 mL syringes containing the tracer solution, 

and it was injected above the liquid level resulting in an even distribution of tracer at the top of the 

liquid. A conductivity sensor (Conducell 4 USF ARC 425 probe, Hamilton, Bonaduz, Switzerland) was 

mounted close to the bottom of the vessel. The response time of the conductivity sensor, fitted directly 

to a True RMS Digital Multimeter (Fluke, Everett, USA), was found to be less than 0.5 seconds. This 

enabled sufficiently fast signal response to capture the dynamics of the tracer injection. The mixing 

time in this work is defined as the time required to reach 95 % of the steady state conductivity, 𝜃𝜃95.  

3.4.3 Rheological measurements 

The rheology of Xanthan solutions and fermentation broths was characterized at 25 °𝐶𝐶 using a 

controlled strain and stress rheometer (ARG2, TA Instrument, DE) with a 1° gap angle cone-and-plate 

of 30 mm radius. The shear stress was evaluated at shear rates ranging from 1 𝑠𝑠−1 to 500 𝑠𝑠−1. 

3.4.4 Fermentation conditions 

The Trichoderma reesei fermentations investigated in this work were previously described by Albaek 

et al. (2012). Feeding was employed with a controller to keep the oxygen concentration inside the tank 

at a given profile throughout the course of the fermentation. The fermentations were carried out at 

an impeller speed of 400 rpm and gas flow rates of 96 NL/min, 200 NL/min and 400 NL/min. 
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3.4.5 Measuring kLa 

The direct method for kLa measurements was adopted by using a mass spectrometer (VG Prima dB, 

Thermo, Waltham, MA), and a flowmeter (Thermal mass flow meter, Endress & Hauser) to determine 

the overall mass transfer rate in the fermenter [6]. The mass transfer coefficient, kLa, is estimated by: 

 
𝑂𝑂𝑇𝑇𝑂𝑂 = 𝑘𝑘𝐿𝐿𝑎𝑎 �

�𝐶𝐶𝑂𝑂2,𝑖𝑖
∗ − 𝐶𝐶𝑂𝑂2� − (𝐶𝐶𝑂𝑂2,𝑜𝑜

∗ − 𝐶𝐶𝑂𝑂2)
ln(𝐶𝐶𝑂𝑂2,𝑖𝑖

∗ − 𝐶𝐶𝑂𝑂2)− ln�𝐶𝐶𝑂𝑂2,𝑜𝑜
∗ − 𝐶𝐶𝑂𝑂2�

  � (3.1) 

The saturation concentration of oxygen was calculated with help of Henry’s law and was assumed to 

be constant throughout the fermentation. The liquid concentration of oxygen was measured using a 

commercial electrode mounted in the bottom of the vessel. The mass transfer coefficients were 

obtained by evaluating process data as the average over one hour time periods in order to eliminate 

fluctuations.  

3.4.6 Model setup 

One half volume of the reactor with 180o revolution was simulated by introducing symmetry, in order 

to reduce the number of mesh elements and computational time. Two computational domains were 

allocated for the rotational impeller and the stationary tank, respectively [17]. The simulated geometry 

is shown in Figure 3.1 
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Figure 3.1 - Three dimensional drawing of half of the investigated geometry. The structured 
hexahedral mesh is shown for the tank region and the transparent region is the impeller zone. The 
cut plane in the geometry is used as a symmetrical boundary condition. 

A structured hexahedral mesh for the stationary domain and an unstructured tetrahedral mesh for the 

rotary domain were separately established using ANSYS ICEM CFD 16. The interface of the two domains 

was designed to have matching element size in order to avoid numerical instability over the interface. 

In order to account for the changing volume caused by the continuous feeding in the fed batch 

fermentation a total number of six meshes were designed consisting of 2000 to 2500 elements per 

litre. The mesh density was comparable to other similar research [10]. A mesh sensitivity study was 

carried out to ensure mesh independent results. The details of this study can be found in the 

supplementary material of this manuscript.  

The CFD simulations were performed using an average Navier-Stokes Euler-Euler approach in ANSYS 

CFX 16. The standard RANS k−𝜀𝜀 model was employed with a multiple reference frame interface 

approach for steady state runs and the Transient Rotor-Stator interface approach for unsteady state 

runs. A complete description of the boundary conditions can be found in the supplementary material 

section.  
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The non-Newtonian behaviour of the investigated fluids was simulated using the Ostwald de Waele 

correlation to determine the shear stress 𝜏𝜏: 

 𝜏𝜏 = 𝐾𝐾�̇�𝛾𝑛𝑛 (3.2) 

where �̇�𝛾 is the shear rate, K is the consistency index and n is the flow index.  

The interaction of gas and liquid was accounted for using the Grace drag model [18] and a constant 

average bubble size was assumed. Experimental measurements were not available for the bubble size 

in the investigated system, and it was decided to adjust the bubble size according to the experimental 

mass transfer data. For this purpose a bubble size correlation considering the agitation speed was 

developed, which will be explained in a later section. 

3.4.7 Mixing  simulations 

Transient simulations were carried out for the determination of the tracer distribution in the agitation 

vessel representing the mixing time experiments. This approach has been successfully applied in 

similar agitated vessels [9]. The tracer was simulated as an additional scalar variable without impact 

on the flow in the vessel with a diffusion coefficient of 2∙10-9 m2 s-1. Dosing of the tracer was carried 

out using a source point just below the surface of the liquid to represent the surface dosing applied in 

the experimental investigation. 

3.4.8 Mass transfer simulations 

The mass transfer resistance, kL, multiplied with the specific surface area of the gas phase, a, yields the 

mass transfer coefficient, kLa. Higbie’s penetration theory [19] was used to describe the mass transfer 

resistance throughout the vessel as 

 kL=
2√𝒟𝒟
√𝜋𝜋

�𝜌𝜌𝐿𝐿𝜀𝜀
𝜇𝜇𝐿𝐿
�
0.25

 (3.3) 

where 𝒟𝒟 is the diffusion coefficient of oxygen in water, 𝜌𝜌𝐿𝐿 is the liquid density, 𝜇𝜇𝐿𝐿 is the viscosity of 

the liquid and 𝜀𝜀 is the eddy dissipation rate. The specific surface area of the air is, assuming spherical 

bubbles, determined as 

 a = 6𝛼𝛼
𝑑𝑑𝑏𝑏

 (3.4) 

where α is the volume fraction of air and 𝑑𝑑𝑏𝑏 is the bubble size in the vessel. The spatial determination 

of mass transfer is therewith available from CFD simulations using these correlations as shown by 

[20,21].   
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3.5 Results and discussion 

3.5.1 Rheology 

The rheological behaviour of the investigated model fluids and the samples from the 23 fermentation 

conditions, shown in Figure 3.2, indicate the wide range of fluid properties encountered in 

fermentation processes. 

 

Figure 3.2 - Rheological behaviour of the investigated model fluids and fermentation broth samples 
approximated with the Ostwald de Waele model. The grey area indicates the ranges from the least 
to the most viscous samples of fermentation broth 

The reasoning that Xanthan gum solutions are a viable model fluid for fungal fermentation broths is 

apparent in Figure 3.2, and the obtained rheological behaviour is comparable to previously reported 

findings [15,22]. Xanthan gum solutions are shear thinning, as the viscosity decreases with increasing 

shear rate. Correlated by the Ostwald de Waele model in Equation (3.2), the consistency and flow index 

for all investigated fluids are summarized in Table 3.1. 
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Table 3.1 - Consistency and flow index of the investigated model fluids and fermentation broths. 
 

0.125% Xanthan 0.25 % Xanthan Fermentation broths 

K [Pa sn] 0.10 0.39 0.1-1.1 

n [-] 0.56 0.41 0.28-6.3 

 

3.5.2 Mixing 

The effect of power input or agitation speed on the mixing time in a stirred tank has been shown to 

follow a hyperbolic trend for multiple stirrer configurations [3,5]. The experimentally determined 

mixing time of water and the xanthan solutions for the investigated power inputs is shown in Figure 

3.3. The figure shows a decrease of the mixing time from 13 s to approximately 8 s when varying the 

power input from 0.5 to 9.4 kW m-3, which follows the reported hyperbolic dependence of mixing time 

on power input. Power inputs above 2 kW m-3 result in a limited decrease of mixing time in the 

investigated range.  

The accuracy of the mixing time prediction is shown in Figure 3.3, where it is apparent that the overall 

mixing dynamics are readily captured using the CFD model developed in this work. Multiple interesting 

traits of the hydrodynamics are apparent from Figure 3.3 such as the diminishing reduction in mixing 

time as the power input is increased. This indicates that the effect of increasing the power input in 

high power stirred tanks, with regards to the mixing time, is very dependent on the existing power 

input [5,23].  

Another significant result is the effect of the working fluid on the mixing time, which generally shows 

little impact on the mixing time for all investigated conditions [5]. This effect is captured both in 

experimental and simulated results, which show the potential of using CFD as a tool to determine 

mixing performance in high power input agitated tanks. 
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Figure 3.3 - Comparison of experimental and simulated mixing time for water, 0.125 % Xanthan and 
0.25 % Xanthan. The error bars indicate one standard deviation obtained from triplicates. 

3.5.3 Tracer experiments 

Additionally to mixing time, the dynamic profile of tracer addition is an interesting characteristic of a 

bioreactor. A dynamic response of a tracer pulse indicates the dynamic characteristics of substrate or 

nutrient dispersion in the bioreactor, which is important to capture. The tracer profiles for water and 

0.125 % xanthan at varying power input and the three model fluids at constant power input are shown 

in Figure 3.4. 
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The dimensionless tracer profiles shown in Figure 3.4 share the same sigmoidal shaped curve, with 

only slight overshoot at power inputs of 9.2 kW m-3. The power input to the system has a significant 

effect on the behaviour of the tracer, as clearly indicated in Figure 3.4 (a) and (b). The tracer profiles 

shown in Figure 3.4 (c) show that the type of fluid has little influence on the mixing of tracer. The 

uncertainty associated with the tracer profiles is likely caused by entrained air bubbles from surface 

aeration, which comes in contact with the conductivity sensor.   

(a) (b) 

(c) 

Figure 3.4 – Dimensionless tracer response to pulse injection for water at varying power input (a), 0.125 % 
Xanthan at varying power input (b) and the three fluids at 0.5 kw/m3 (c). The error bars indicate one 
standard deviation obtained from triplicate experiments. 
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The simulated power input was compared to the measured value in terms of the resulting power 

number for relevant Reynolds numbers. This comparison is described in the supplementary material.  

Comparing the experimental and simulated tracer profiles, for all investigated conditions and fluids, 

illustrates that the model is able to capture the dynamics of tracer addition. The ability to predict the 

tracer profile at process relevant conditions is an essential part in establishing confidence in CFD 

simulations in fermentation processes, as this exemplifies that substrate dispersion can be represented 

using such models.  

3.5.4 Mass transfer 

The prediction of mass transfer in stirred bioreactors using various simulation tools is extensively 

reported in literature [4,14,24–26]. Predicting the mass transfer in fed batch fermentation requires 

incorporation of the changing volume into the simulations. This was achieved by simulating multiple 

geometries corresponding to the conditions in a fed-batch fermentation. The rheology of the broth 

was altered for each simulation due to the growth of the Trichoderma reesei, which was taken into 

account in the model. The average bubble size was determined through an indirect method assuming 

that the mass transfer resistance 𝑘𝑘𝐿𝐿 could be determined by Higbie’s penetration theory [19]. This 

enabled an iterative approach to identify the required interfacial area that would give rise to the 

measured mass transfer coefficient. The iteration is carried out by changing the bubble size in the 

simulation, and after simulation convergence the predicted mass transfer coefficient is compared with 

the experimental data. The overall scheme is illustrated in Figure 3.5. 
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Figure 3.5 - Schematic illustration of the iterative process of determining the bubble size using CFD 
simulations and process data. 

The indirect approach to determine the bubble size is attractive since it does not rely on experimental 

data of the bubble size. This is beneficial for industrial systems such as filamentous fermentation 

broths where such measurements are difficult and thus rare. However the computational demand of 

this method is substantial as it will require iterations of large two-phase simulations, which in cases 

with large geometries or a fine mesh will become time consuming. The method presented in Figure 

3.5 was applied to 13 different conditions covering the three aeration rates and filling volumes of the 

fermenter. The comparability measure of the mass transfer coefficient was set to be 5% between 

experimental and simulated value. Figure 3.6 shows the resulting bubble size dependency of power 

input in the fermenter. 
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Figure 3.6 - Determined bubble size dependency on power input at different gas flow rates; 400 
NL/min ●, 200 NL/min ■, 96 NL/min ♦. The solid lines indicate the respective correlation fit for the 
different conditions. 

According to Figure 3.6 the bubble size varies from approximately 1 to 15 mm, which is similar to 

findings in studies where the bubble size was measured [27]. The bubble size is heavily correlated to 

the power input for the conditions investigated, and the correlation can be represented as: 

 
𝑑𝑑𝑏𝑏 = 𝐶𝐶�𝑣𝑣𝑔𝑔� ⋅ �

𝑃𝑃𝑔𝑔
𝑉𝑉
�
−2.95

 (3.5) 

where 𝐶𝐶 is a constant dependent on the gas flow rate and 
𝑃𝑃𝑔𝑔
𝑉𝑉

 is the gassed power per volume ratio. 

Other literature correlations on bubble size include several effects such as viscosity, gas holdup and 

power dissipation [28]. The effect of power input is more severe in the correlation presented here 

compared to previous studies [28,29]. The previous correlations were developed considering the 

overall process parameters and not the hydrodynamics of the process, which is taken into 

consideration in the presented methodology. Furthermore the investigated fermentation broths in this 

study are non-Newtonian and shear thinning, which has not been investigated in the mentioned 

correlations.  
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In order to ensure that the simulations represent experimental data the model was validated with 

average kLa measurements gathered from three separate batches at identical conditions to the batches 

used for correlation development in terms of agitation and aeration. The validation result is evaluated 

in terms of a parity plot shown in Figure 3.7.  

 

 

Figure 3.7 - Parity plot of experimentally obtained and simulated average kLa values for 10 
fermentation conditions along with prediction from empirical correlations [4,30]. The dashed line 
indicates the ± 30 % deviation.  

The model predicts the mass transfer coefficient to be within 30 % of the experimental value for 8 of 

the 10 conditions investigated as shown in Figure 3.7. Compared with other studies in the scientific 

literature the presented work achieves similar accuracy [4,5,31] without requiring complex 

measurements of bubble size. The assumption of an average bubble size, as well as using this bubble 

size correlation to fit the simulations to the experimental data within reasonable limits, is a viable 

approach to develop validated models. The variation in the parity plot data can also be associated with 

the uncertainty in kLa determination from fermentations. 
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The validated model can be used to identify spatial distribution of the mass transfer coefficient which 

is shown in Figure 3.8.  

Figure 3.8 – Predicted distribution of kLa values for constant agitation and aeration with increasing 
volume and viscosity due to continuous feeding and subsequent growth. 

The distribution of the mass transfer coefficient during the fermentation changes dramatically due to 

the increase in volume from the continuous feeding. Understanding the change in mass transfer 

coefficient during fed-batch fermentations enables better process control and optimization. The effect 

of the development in kLa distribution on microbial performance can be established by implementing 

fermentation stoichiometry and kinetics into the developed model. In this way, the CFD model can be 

converted to a tool that can be used for studying the effect of substrate gradients in larger tanks on 

the process performance. 

3.5.5 Model Sensitivity 

In order to address the applicability of the model, a sensitivity analysis was performed on the error 

propagation from the bubble size correlation to the mass transfer prediction. Previous studies revealed 

high sensitivity towards bubble size in two phase CFD simulations for bioreactors [32]. The uncertainty 

of the correlation fit to the data shown in Figure 3.6 is used as basis for estimating the model sensitivity. 

The error propagation was quantified by the least squares method described in [33]. The sensitivity of 

the CFD estimation of mass transfer was evaluated for a range of power inputs by determining the 

variation in model output from the bubble size correlation. The sensitivity measure, SMP, is in this work 

defined as 

1000 

0

[h-1]
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 𝑆𝑆𝑀𝑀𝑃𝑃 =
𝜎𝜎𝑀𝑀
𝜎𝜎𝑝𝑝

 (3.6) 

where 𝜎𝜎𝑀𝑀 is the change in model output and 𝜎𝜎𝑝𝑝 is the change in the parameter value. This measure is 

able to represent the scaled sensitivity of the model with regards to the input parameters [34]. The 

model sensitivity was evaluated in Figure 3.9.  

 

Figure 3.9 - Uncertainty of bubble size correlation at 200 NL/min (a) and subsequent impact on mass 
transfer prediction (b). 

Figure 3.9 (a) shows that the relative uncertainty of the bubble size correlation is increasing with an 

increase in power input to the system from 30.4 % to 51.4 % at 8.2 kW m-3 and 13 kW m-3 respectively. 

Furthermore from Figure 3.9 (b) is it apparent that the sensitivity of the bubble size on the average kLa 

is largest at large power inputs with a value of 0.7 at a power input of 13 kW m-3. The increased 

sensitivity can be explained by the small bubble size at high power input which causes a severe change 

in the kLa prediction.  

The model sensitivity to bubble size is lower than one for all investigated cases indicating a dampening 

propagation of uncertainty in the developed CFD model. The sensitivity of the CFD model to changes 

in bubble size facilitates understanding of how certain a given correlation should be in order to obtain 

accurate predictions of mass transfer coefficients.  

This sensitivity on bubble size is reassuring in the sense that an error in estimating the bubble size does 

not amplify through the mass transfer coefficient calculation. Such amplification would otherwise 

require a very high accuracy in the bubble size. 
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3.6 Conclusion 

The performance in terms of mixing and mass transfer of a pilot scale fermenter with high power input 

has been experimentally investigated and simulated using commercial CFD software. The mixing 

characteristics of water and non-Newtonian xanthan gum solutions have been successfully 

represented by the developed model in terms of tracer profile and mixing time 𝜃𝜃95 for power inputs 

from 0.5 to 9.2 kW m-3. An indirect scheme has been developed to determine the bubble size in the 

fermenter using process data. The bubble size was shown to be dependent on the gas flow rate and 

power input for the investigated conditions, but independent on viscosity. The method was validated 

with independent data and proved to be as accurate as empirical correlations. Model sensitivity was 

assessed using linear error propagation and showed that the model has a dampening effect on 

uncertainty with regards to bubble size correlations. The method developed has shown a way to use 

and develop CFD simulations based on process data from industrial fed-batch fermentations. The 

derived CFD models and correlations can be used as a basis to also implement biological models to 

assess substrate dispersion and uptake rates. 
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Bubble size distributions in a fed-batch 
Trichoderma reesei fermentation identified 
using an in situ optical measurement 
method  
 

In this chapter, the bubble size distribution of a pilot scale fermenter is investigated using an 

endoscopic experimental approach. The purpose is to map the influence of process parameters on 

bubble size in industrial fermentations.  
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4.1 Abstract 

A custom-made endoscopic measurement method able to detect bubble size distributions in industrial 

fermentation processes has been developed and tested in an aerobic Trichoderma reesei 

fermentation. The bubble size distributions were detected without altering the standard operating 

procedure. An image analysis algorithm was applied to specifically detect spherical and elliptical 

patterns in the viscous and turbid fermentation broth, which allowed a minimum of 70000 objects to 

be detected per sample. The number, area and volume based distribution were evaluated at eight 

different operating conditions during the fed-batch process. The Sauter mean diameter was found to 

depend on the power input to the power of -0.4 with a proportionality constant of 0.084 m. 

Investigations of the spread of the bubble size distributions showed that an increased power input 

resulted in more deterministic distributions, but the log-normal shape of the distributions was 

identified at all conditions. The method applied in this work is limited to detect bubbles between 0.1 

and 10 mm in diameter due to the physical constraints of the measuring cell. The application of the 

technology in fermentation processes can lead to improved fundamental process understanding, 

relevant for complex numerical simulations, and process monitoring as an online assessment of the 

mass transfer potential. 
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4.2 Nomenclature 

Roman  Description Unit 

𝑎𝑎  Interfacial surface area [m-1] 

𝑑𝑑𝐵𝐵 Bubble diameter,  [m] 

𝑑𝑑32 Sauter mean diameter [mm] 

𝐶𝐶  Proportionality constant in bubble size correlation [m] 

𝐷𝐷𝑂𝑂2 Diffusion coefficient of oxygen in fermentation broth [m2/s] 

𝐹𝐹𝐴𝐴 Area based cumulative distribution function [-] 

𝐹𝐹𝑁𝑁 Number based cumulative distribution function [-] 

𝐹𝐹𝑉𝑉 Volume based cumulative distribution function [-] 

𝑖𝑖 Index of bin number [-] 

𝑘𝑘𝐿𝐿 Mass transfer coefficient [m/s] 

𝑘𝑘𝐿𝐿𝑎𝑎 Volumetric mass transfer coefficient [1/s] 

𝑃𝑃𝐺𝐺
𝑉𝑉

  Gassed power input  [W/m3] 

𝑃𝑃𝐴𝐴  Area based probability density function [-] 

𝑃𝑃𝑁𝑁   Number based probability density function [-] 

𝑃𝑃𝑉𝑉   Volume based probability density function  [-] 

𝑁𝑁 Number of bubbles in discrete bin [#] 

𝑣𝑣𝑠𝑠 Superficial gas velocity  [m/s] 

𝑣𝑣𝑔𝑔 Gas flow rate  [NL/min] 

 

Greek  Description Unit 

𝛼𝛼 gas hold-up [-] 

𝛽𝛽 exponent in bubble size correlation in Equation (4.2) [-] 

𝜖𝜖 Turbulent eddy dissipation rate [m2/s3] 

𝜇𝜇𝑎𝑎𝑎𝑎𝑎𝑎 Apparent viscosity [Pa s] 

𝜈𝜈 Kinematic viscosity [m2/s] 
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Abbreviation Description 

BSD Bubble size distribution 

CFD Computational fluid dynamics 
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4.3 Introduction 

Production of cellulase from submerged cultivations is an important part of the production of second-

generation bioethanol [1]. Filamentous fungi, in particular Trichoderma reesei , have shown the ability 

to produce a cocktail of cellulases that efficiently degrade cellulose to fermentable sugars [2]. The 

industrial cultivation of Trichoderma reesei is carried out in large-scale aerobic fermenters, which is 

challenging because of the filamentous nature of the fungus [3]. Severe rheological changes during the 

fermentation become a limitation to the oxygen mass transfer capabilities and ultimately process 

productivity [3]. The oxygen transport is dependent on the mass transfer resistance and the available 

interfacial area between the gas phase and the liquid broth according to the classic film theory [4]. The 

overall rate coefficient of mass transfer 𝑘𝑘𝐿𝐿𝑎𝑎 has been investigated for numerous processes and 

fermentation configurations, and the governing dependency on process conditions is known [5–7]. It 

is however not straightforward to deduct the effect of process conditions on the mass transfer 

resistance 𝑘𝑘𝐿𝐿 or interfacial surface area 𝑎𝑎 independently in industrial fermentation processes. In order 

to characterize the individual dependency of these parameters on process conditions, the mass 

transfer resistance or surface area must be known. Obtaining a predefined mass transfer resistance or 

interfacial surface area in a complex non-Newtonian fermentation broth with gas sparging is not 

feasible, because both variables depend on similar process characteristics [8]. In order to understand 

the effect of process conditions on the interfacial surface area, the bubble size and gas hold-up need 

to be measured. The interfacial area for dispersed spherical bubbles is dependent on gas hold-up and 

bubble size. 

 𝑎𝑎 =
6 ⋅ 𝛼𝛼
𝑑𝑑𝐵𝐵

 (4.1)  

where 𝛼𝛼 is the gas hold up and 𝑑𝑑𝐵𝐵 is the bubble diameter. This relation between interfacial area, gas 

hold-up, and bubble size is useful if empirical data of the gas hold-up and bubble size is available. 

Measuring the average gas hold-up in aerated fermentation processes is possible through a number 

of technologies, where visual inspection in a transparent vessel is the simplest [9]. Local gas hold-up 

measurements are much more challenging even in transparent vessels, where tomographic methods 

or multiple conductivity sensors remain the most viable options [10,11]. The determination of the size 

of gas bubbles is somewhat more challenging than measuring the gas hold-up, because it requires 

knowledge of the single bubbles contrary to the swarm of bubbles for gas hold-up measurements. 

Determination of bubble sizes in gas-liquid systems has been a subject of research for the past three 

decades, where new technologies have been assessed and compared with existing methods [12]. The 
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measurement of bubble sizes can generally be grouped into two distinctive groups namely: optical 

techniques or sensory techniques.  

The sensory techniques rely upon measuring a change in signal as the gas bubbles reach one part of 

the sensor and then comparing it to the signal change when they reach another part of the sensor. 

Alignment and positioning of the two parts of the sensor is of upmost importance when converting the 

signals into bubble sizes [13]. The sensory techniques have been applied to many different gas-liquid 

systems, including bubble columns and stirred vessels [11,14,15].  

Visual techniques rely upon capturing the size of the gas bubbles in a certain time span using 

conventional or high-speed camera equipment. Subsequently, the images are analysed to convert the 

detected objects from pixels in an image to a physical length scale. The acquisition of images can be 

carried out from outside the vessel looking through a transparent vessel or from inside the vessel using 

endoscopic techniques. External image capturing is technically straightforward except for avoiding 

image distortion, which can be mitigated by submerging the cylindrical reactor in a square transparent 

box [16]. The external visual technologies are limited to transparent vessels, which limits the industrial 

applicability of the technology to non-pressurized glass vessels [17]. Endoscopic techniques capture 

the bubble dynamics inside the reactor volume, and an endoscope is usually mounted through a 

process fitting. Different gas-liquid systems have been investigated using endoscopes as the primary 

source of size estimations or as a reference to benchmark sensory techniques [11,18]. Raimundo et al. 

2016 [11] reported the bubble dynamics in a pilot scale bubble column using an 8 mm endoscope with 

illumination directly into the lens. However successful in determining the distribution of bubble sizes 

using this technique, a manual image analysis method had to be employed, which was inefficient and 

limited the sample size severely. Junker et al. (2007) [18] used a commercial setup (EnviroCamTM) to 

investigate the bubble size distribution (BSD) in agitated fermentation vessels of different sizes. The 

setup consisted of an endoscope mounted with a LED housing to supply the required illumination. The 

setup was tested in a model liquid with different surfactant concentrations, and indicated the 

constraints of the technology at high gas hold-ups, where overlapping bubbles made it impossible to 

obtain a statistical distribution.  

The correlation of process conditions and measured bubble sizes is generally described by the 

following equation: 

 
𝑑𝑑32 = 𝐶𝐶 ⋅ �

𝑃𝑃𝑔𝑔
𝑉𝑉
�
𝛽𝛽

 (4.2)  
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where  𝑑𝑑32 is the Sauter mean diameter, 
𝑃𝑃𝑔𝑔
𝑉𝑉

 is the gassed power input to the vessel, and 𝐶𝐶 and 𝛽𝛽 are 

empirical constants. 𝛽𝛽 has been found to depend mainly on the coalescence dynamics of the broth, 

being approximately -0.4 for non-coalescing and -0.14 for coalescing systems [12]. 𝐶𝐶 reportedly 

depends mainly on the geometry of the system and is found by numerical fitting to experimental data 

[12]. 

The scope of this manuscript is to display the feasibility of a custom-made endoscopic setup to assess 

the BSD in a pilot-scale fermentation process with non-Newtonian culture broth. Furthermore, the 

application of a dedicated image analysing algorithm, which automates the detection and size 

estimation of bubbles, is explained. The effect of process conditions, such as agitation rate and 

aeration, is evaluated. 

4.4 Materials and methods 

4.4.1 Bioreactor configuration  

The investigated Trichoderma reesei was cultivated in fed-batch operation in a 550 liter pilot scale 

fermenter with a single up-pumping impeller. Details of the fermenter are explained elsewhere 

[19,20]. The endoscope was installed in the bottom of the fermenter. In order to test the effect of 

power input on the bubble size, the agitation speed and aeration rate were altered from the 

operational set point for a ten minute period before acquiring the images. Between monitoring, the 

process was kept at constant agitation and aeration rate in order to avoid oxygen limitations. The 

images were collected over the course of 3 hours on average, and it is assumed that the viscosity of 

the fermentation media was not changing over the time course of the sampling.  

4.4.2 Endoscope and high-speed camera 

The endoscopic setup consisted of three separate parts: the high-speed camera, the endoscope and 

the fitting with illuminations.  

4.4.2.1 High- speed camera 

The high-speed camera used in this work was a Phantom Miro C110 from Vision Research, enabled to 

capture 800 frames per second at a resolution of 1280 x 1024 pixels. The camera was equipped with  

8 GB of RAMs enabling a recording of approximately 4000 images per sample. An Ethernet cable 

connected the high-speed camera to a laptop PC for data transfer. 
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4.4.2.2 Endoscope 

A C-mount was employed to connect the camera with a 10 mm HD Laparoscope from Olympus. The 

endoscope was thermostable, which allowed for a normal sterilization procedure with the endoscope 

installed. An O-ring and a nylon ferule ensured a leak-proof seal between the endoscope and the 

fitting.  

4.4.2.3 Fitting with LED 

In order to install the endoscope in the fermenter, a custom fitting was fabricated. The stainless-steel 

mount was fabricated with a housing for a 9 mm LED matrix from Cree, which delivers up to 49 W at 

6400 lm. The fitting and housing of the LED are shown in Figure 4.1. The power supply to the LED was 

controlled externally, enabling tuning of the illumination of the gas bubbles in different process 

conditions. 

 
 

 

Figure 4.1 - Stainless steel fitting with LED housing (left). CAD drawing of LED housing (right) showing 
the Cree LED matrix and the complex design of the wiring. 

The electrical wiring of the power supply to the LED was placed inside the support structure connecting 

the LED housing with the remainder of the fitting. This design enabled a relatively large LED to be 

included in the design, which is required to illuminate the investigated highly turbid fermentation 

broth.  

 

4.5 Data acquisition and analysis Sample size 

Image processing algorithms were implemented, in order to estimate the number of bubbles visible in 

each image frame.  The criterion for counting a bubble is to observe a sufficient large arc of an ellipse 

being present in the image. Successively, the primary axis of the detected ellipse was used to estimate 

the size of the bubble. The essential part of the processing was based on an elliptical arc detector 
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published by V. Pătrăucean et al. 2012 [21]. This algorithm has been designed to minimize the number 

of false positive detections, by applying the so-called Helmholtz principle first stated by D. Lowe (1985) 

[22]. Furthermore, the algorithm is developed to avoid the need of image-dependent parameter 

tuning.  

The algorithm operated on the spatial image gradients occurring in the grey scale images given by the 

video frames. The gradient changes across the borders of the recorded bubbles  were sometimes too 

blurry for the algorithm to detect them robustly. This issue was solved by pre-processing the image 

frames with a contrast enhancement [23] followed by downscaling the images in order to assure 

steeper change in colour gradient [24]. Furthermore, the algorithm would occasionally detect a double 

border of the bubbles leading to double detection. This issue was solved by checking whether a 

detected ellipse contains another ellipse in its interior. In such cases the smaller one was neglected.  

 

Figure 4.2 – A typical frame from the setup under varying stages in the image processing with the 
red lines indicating detected objects characterized by having an elliptic shape. (a) is the original 
image, (b) is the image after contrast enhancement, (c) is with additional downscaling and (d) shows 
the result of eliminating double detection. 

Figure 4.2 shows the detected ellipses on the original image (a), after contrast enhancement (b), and 

after contrast enhancement combined with downscaling (c). The result after removal of double 
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detections is depicted in (d). The arc-segments whose angular extent was below 120 degrees were 

neglected. The selected scaling factor and contrast setting were chosen by applying scaling factors 

from 0.1 to one with step 0.1 and a contrast factor from one to eight with a step size of one and 

manually deciding which parameters gave the best performance from a given number of image frames.  

The developed algorithm resulted in at least 70000 objects being captured for each process condition 

investigated, which formed the basis of the size distribution. The validation of the algorithm was done 

using 1 mm glass beads and is explained in detail in Appendix A1.  
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4.6 Results 

4.6.1 Number, area and volume distributions 

The output of the image detection algorithm is a vector containing the diameter of all detected objects 

at the given experimental condition. From the detected images, a size histogram can be calculated by 

indexing the particle sizes into a given number of bins/size intervals: 

 𝑃𝑃�𝑑𝑑𝐵𝐵𝚤𝚤������ =
𝑁𝑁𝑖𝑖
∑ 𝑁𝑁𝑖𝑖𝑖𝑖

 

�𝑃𝑃�𝑑𝑑𝐵𝐵𝚤𝚤������
𝑖𝑖

= 1 
(4.3)  

where  𝑑𝑑𝐵𝐵𝚤𝚤����� is the average diameter of the i-th bin. Evaluating the distribution of the bubble sizes in the 

process only based on the number of bubbles is not representative for processes where the area or 

volume of the bubbles has an important impact. In the study of gas liquid mass transfer the area and 

volume distributions are equally important to evaluate. The area and volume probability density 

function are defined as:  

 
𝑃𝑃𝐴𝐴�𝑑𝑑𝐵𝐵𝚤𝚤������ =

𝑁𝑁𝑖𝑖 ⋅ 𝑑𝑑𝐵𝐵𝚤𝚤�����2

∑(𝑁𝑁𝑖𝑖 ⋅ 𝑑𝑑𝐵𝐵𝚤𝚤�����2) 
 (4.4)  

 
𝑃𝑃𝑉𝑉�𝑑𝑑𝐵𝐵𝚤𝚤������ =

𝑁𝑁𝑖𝑖 ⋅ 𝑑𝑑𝐵𝐵𝚤𝚤�����3

∑(𝑁𝑁𝑖𝑖 ⋅ 𝑑𝑑𝐵𝐵𝚤𝚤�����3) 
 (4.5)  

where 𝑃𝑃𝐴𝐴 and 𝑃𝑃𝑉𝑉 are the discrete area and volume based probability density function respectively. The 

different weights of the three probability density functions enable a thorough assessment of the 

distribution and the impact it has on process phenomena sensitive to the different weights. It is 

apparent that smaller bubbles at the investigated conditions dominate the number based distribution. 

The area and volume weighted probability density function are more dependent on large bubbles.  The 

number, area and volume probability density functions for a gas flowrate of 200 NL/min and power 

input of 8.5kW/m3 are shown in Figure 4.3.  
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Figure 4.3 - Comparison of the discrete number, area and volume probability density functions of 
the bubble sizes at a power input of 8.5 kW/m3 and gas flow rate of 200 NL/min. The distribution is 
discretized into two hundred bins. 

Figure 4.3 shows that the mode of the distributions shifts as the weight is changed from number to 

volume. The number based probability density function has the same unimodal shape as previously 

reported for non-coalescing gas-liquid systems [25], even though the power input is almost an order 

of magnitude larger in this work. This analysis is based on an assumption of spherical bubbles, which 

from the collected images shown in Figure 4.2 is valid at the power inputs investigated. The comparison 

of the distributions can furthermore be based on the cumulative distribution function, which is 

expressed as: 
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𝐹𝐹𝑁𝑁(𝑑𝑑𝐵𝐵 = 𝑘𝑘) = �𝑃𝑃𝑁𝑁(

𝑘𝑘

𝑖𝑖=0

𝑑𝑑𝐵𝐵 = 𝑖𝑖) (4.6)  

where 𝐹𝐹𝑁𝑁(𝑑𝑑 = 𝑘𝑘) is the probability of the bubble being smaller than the discrete size 𝑘𝑘. The same 

relation between F and P is valid for the area and volume distributions. The cumulative distribution 

function for number, area and volume weighing is shown in Figure 4.4. 

  

Figure 4.4 - Cumulative distribution function of number, area and volume weighted distribution of 
the bubble sizes at a power input of 8.5 kW/m3 and gas flowrate of 200 NL/min.  

The cumulative distribution functions shown in Figure 4.4 indicate the difference in weighing the 

distributions by number, area and volume. Similar to Figure 4.3 it is apparent that a large part of the 

volume is accounted for by bubbles much larger than the median of a number based distribution. For 

instance, 25 percent of the volume of the distributions is made up by bubbles that are above 4 mm as 

seen by the red curve in Figure 4.4, which is approximately four times the number based median. The 

median of the different cumulative density functions are different, which supports the notion that the 

median of a distribution should be chosen with care. 
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4.6.2 Influence of gas flowrate and power input 

The influence of power input on the bubble size in stirred gas-liquid systems has been studied in detail 

in numerous studies [12,18,26,27]. A comparison of the cumulative distribution function of the volume 

based distributions at different power inputs is shown in Figure 4.5.  

Figure 4.5 - An illustration of the effect of power input on the cumulative distribution function of a 
volume based BSD. The solid and dashed lines represents a gas flow rate of 400 and 200 NL/min 
repsectively.  

Figure 4.5 shows how the volume based cumulative size distribution is affected by the gassed power 

input at different gas flow rates. The decrease in gassed power input infers an increase in the volume 

based median bubble size from approximately 1 to 1.5 mm in the investigated power input range at a 

gas flowrate of 400 NL/min. It is apparent that the increase in gassed power input decreased the 

bubble size in all investigated conditions, and that an increase in gas flow rate generally increases the 

volume based bubble size. The tendencies reported in Figure 4.5 confirm the findings of Junker et al. 

(2007) [18], who employed a similar technique to determine the bubble size.  
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Another commonly used metric to report the bubble size in gas-liquid systems is the Sauter mean 

diameter, which weighs the volume-based mean size with the area-based mean size [28]. The Sauter 

mean diameter is for a discrete size distribution determined by: 

𝑑𝑑32 =
∑𝑁𝑁𝑖𝑖 ⋅ 𝑑𝑑𝐵𝐵𝑖𝑖

3

∑𝑁𝑁𝑖𝑖 ⋅ 𝑑𝑑𝐵𝐵𝑖𝑖
2 (4.7) 

The Sauter mean diameter represents a bubble with the same volume to surface area as the entire 

population. A comparison of the estimated and measured Sauter mean diameter at the investigated 

conditions is shown in Figure 4.6. 

Figure 4.6 - Sauter mean diameter as a function of gassed power input at a gas flowrate of 200 
NL/min (diamonds) and 400 NL/min (circles). The line indicates a predicted bubble size following 
Kolmogorov's theory of isotropic turbulence [29] with a proportionality constant of 𝑪𝑪 = 𝟎𝟎.𝟎𝟎𝟎𝟎𝟎𝟎 𝒎𝒎. 

The Sauter mean diameter of the eight investigated process conditions are shown in Figure 4.6, and 

indicate that the power input is the major contributor to the change in bubble size. The effect of the 

gas flowrate is negligible, similar to the results shown in Figure 4.5 , which confirms that the dominating 

effect is power draw of the impeller at least in the investigated range of conditions. A simple 

correlation between the Sauter mean diameter and the gassed power input similar to Equation (4.2) 
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has been fitted for the investigated conditions with an exponent of -0.4 and a proportionality constant 

of 0.084 m. This correlation is shown in Equation (4.8).  

 
𝑑𝑑32 = 0.084 ⋅ �

𝑃𝑃𝑔𝑔
𝑉𝑉
�
−0.4

 (4.8)  

It should be noted that the proportionality constant and exponent on power input are sensitive and 

correlated, which means that the correlation should be used with care and only considered valid in the 

investigated range of power input. The expected dependency on power input from Kolmogorov’s 

isotropic turbulence theory is confirmed by the correlation, which follows the data well [12]. The 

proportionality constant presented here is higher than previously reported by others [12], who found 

a proportionality constant of 0.016 m for a water-air mixture. The deviation might be because of the 

complex composition of the non-Newtonian fermentation broth.  The mass transfer capabilities of the 

fermentation process investigated in this work has previously been characterized using Computational 

Fluid Dynamics and a correlation of the Sauter mean bubble diameter was developed [20]. The 

developed correlation based on numerical simulations suggested a stronger dependency of power 

input and a substantial influence of gas flowrate compared to the findings in this work. The Sauter 

mean diameter at different power inputs and 200 NL/min of gas flowrate does however correspond 

well with the numerical findings, where the measured Sauter mean diameters at 400 NL/min are 

smaller than the numerical findings. The numerical simulations were based on data from a full fed-

batch, where the broth composition and reactor filling volume change, which could explain the 

difference in the two approaches. The broth rheology has been proposed to affect the coalescence 

frequency in gas liquid systems [30], and the filling volume will change the ratio between liquid height 

and impeller diameter, which will change the liquid flow inside the fermenter. In order to fully 

understand and compare the numerical finding with measured values more experiments or 

simulations must be carried out at identical process conditions.  

4.6.3 Spread of the BSDs under different process conditions 

Supplementary to the median and the Sauter mean diameter, the spread of the BSD is an interesting 

aspect to investigate. For a gas-liquid bubble column, the spread and shape of the BSD have shown to 

be highly affected by process conditions such as gas flowrate [31]. Besagni et al 2017 [31] showed for 

a 240 L bubble column that an increase of the superficial gas velocity from 0.0037 m/s to 0.018 m/s 

changed the median of the distribution severely but also shifted the BSD from a log-normal to a normal 

distribution in an air-water system. Laakkonen et al. (2005) [32] investigated the effect of stirred speed 

on the BSD in a 14 L stirred vessel equipped with a Rushton turbine. They found that the volume based 
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BSD shifted to smaller bubbles when increasing the stirred speed, and that the spread of the 

distribution decreased. The volume based BSDs are shown as boxplots in Figure 4.7 to assess the 

spread of the distributions across different process conditions.  

(a) (b) 

Figure 4.7 – Boxplot of the volume based BSD at different power inputs at a gas flowrate of 200 
NL/min (a) and 400 NL/min (b). The top and bottom line of the box indicate the 75th and 25th 
percentile respectively, where the horizontal line in the box represents the median. The whiskers 
indicate the extremes of the distributions, and outliers are not shown in these plots for simplicity.  

Figure 4.7 shows the effect of increasing the power input on the spread and median of the BSD for a 

gas flowrate of 200 NL/min and 400 NL/min. The spread of the distribution are for both investigated 

gas flow rates higher at lower power input agreeing with literature findings in lab scale experiments. 

The spread, median and percentiles of the gas flowrates and power inputs are summarize in Table 4.1. 

Table 4.1 - Summary of spread, median, 25th and 75th percentile for 8.5 and 13.5 kw/m2 and 200 and 
400 NL/min. The spread is determined as the difference between the 75th and 25th percentile. 

Gas flow rate, 𝒗𝒗𝒈𝒈 200 [NL/min] 400 [NL/min] 

Power input, 
𝑷𝑷𝒈𝒈
𝑽𝑽

8.5 [kW/m3] 13.5 [kW/m3] 8.5 [kW/m3] 13.5 [kW/m3] 

Median [mm] 2.5 2 2.8 2.3 

25th percentile [mm] 1.5 1.3 1.6 1.4 

75th percentile [mm] 5.6 3.2 6.5 4.1 

Spread (75th-25th)  [mm] 4.1 1.9 4.9 2.6 
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The median of the distribution does not vary significantly, whereas spread changes drastically at the 

different power inputs. The spread is reduced by almost 50 percent when the power input is increased 

from 8.5 to 13.5 for both gas flow rates, whereas the median is reduced by approximately 20 percent. 

The effect of the increased power input is for both investigated gas flowrates mainly in the fraction of 

large gas bubbles in each distribution Furthermore, Figure 4.7 shows that the shape of the BSD under 

varying conditions is similar, namely log normal in behaviour. Understanding how the spread of the 

distribution along with the median and 25 and 75 percentiles changes under different process 

conditions can be valuable both in fundamental understanding of the gas-liquid interaction and in 

numerical simulations of gas-liquid mass transfer in fermentation processes. The impact of the spread 

of the BSD in numerical simulation of fermentation processes is discussed in detail below.  
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4.7 Discussion 

4.7.1 Effect of power input on bubble size in the context of mass transfer 

The established dependency of power input on the Sauter mean diameter has interesting effects on 

mass transfer correlations. The bubble size is however only one of the variables that affect 𝑘𝑘𝐿𝐿𝑎𝑎, and in 

order to investigate the effect of the bubble size on mass transfer, assumptions regarding the mass 

transfer coefficient and the gas hold-up are required. Combining the measured bubble sizes with a 

correlation for the gas hold-up the interfacial area, 𝑎𝑎, can be determined. In literature the dependency 

on power of the gas hold-up has been reported to be between 0.15 and 0.63 [8,9].  In this comparison 

two empirical correlations are used in order to illustrate the spread of the predictions obtained from 

empirical correlations of gas hold-up. The first correlation is from a 600 L fermenter equipped with a 

flat bladed turbine, and was derived at power inputs slightly lower than this work [36]. Their proposed 

correlation is shown in Equation (4.9). 

 
𝛼𝛼 = 32 ⋅ �

𝑃𝑃𝑔𝑔
𝑉𝑉
�
0.25

⋅ 𝑣𝑣𝑠𝑠0.75  (4.9)  

where 𝑣𝑣𝑠𝑠 is the superficial gas velocity. The second correlation is derived from experiments with an 

up-pumping hydrofoil impeller in a reactor with an inner diameter of 0.29 m, where the power input 

was somewhat lower than investigated in this work [9]. The proposed correlation is shown in Equation 

(4.10). 

 
𝛼𝛼 = 0.2489 ⋅ �

𝑃𝑃𝑔𝑔
𝑉𝑉
�
0.6332

⋅ 𝑣𝑣𝑠𝑠0.5168  (4.10)  

The mass transfer coefficient has been showed by Kolmogorov’s theory of isotropic turbulence to be 

dependent on the power input to the exponent of 0.25 [33], or by other authors been assumed 

independent of power input with a value of 4 ⋅ 10−4  m/s [34]. The mass transfer coefficient can be 

expressed based on Kolmogorov’s theory of turbulence as: 

 
𝑘𝑘𝐿𝐿 = 0.4 ⋅ �𝐷𝐷𝑂𝑂2 ⋅ �

𝜖𝜖
𝜈𝜈
�
0.25

  (4.11)  

where 𝜖𝜖 is the eddy dissipation rate, 𝐷𝐷𝑂𝑂2 is the diffusion coefficient of oxygen in the broth and 𝜈𝜈 is the 

dynamic viscosity of the broth. The eddy dissipation rate was determined from the power input and 

fermenter geometry as suggested by Garcia-Ochoa et al. (2004) [8] and the diffusion coefficient of 

oxygen in the broth was assumed to be 0.91 ⋅ 10−9 m2/s [35].  

 



76 In situ bubble size distributions in fed-batch fermentations 

The impact of the bubble size measurements on the volumetric mass transfer coefficient is tested in 

four scenarios in Figure 4.8, where different correlations of gas hold-up and mass transfer coefficient 

are combined. The scenarios are compared with a proven data driven correlation for 𝑘𝑘𝐿𝐿𝑎𝑎 published 

previously [37]: 

𝑘𝑘𝐿𝐿𝑎𝑎 = 32 ⋅ �
𝑃𝑃𝑔𝑔
𝑉𝑉
�
0.53

⋅ 𝑣𝑣𝑠𝑠0.15 ⋅ 𝜇𝜇𝑎𝑎𝑎𝑎𝑎𝑎−0.5 (4.12) 

where 𝜇𝜇𝑎𝑎𝑎𝑎𝑎𝑎 is the apparent viscosity. Both superficial gas velocity and apparent viscosity were 

determined from process data (data not shown). The correlation in Equation (4.12) is derived for the 

same process and in the same equipment as in this work making it a reasonable benchmark.  

Figure 4.8- Scaled volumetric mass transfer coefficient assuming exponents of 0.25 and 0.63 on 
power input for gas hold-up and assuming expoennts of 0 and 0.25 on power input for the mass 
transfer coefficient. The predictions are compared with with the 𝒌𝒌𝑳𝑳𝒂𝒂 correlation of Albaek et al. 
(2012) [37]. The 𝒌𝒌𝑳𝑳𝒂𝒂 values are scaled for proprirytary reasons. 

Figure 4.8 shows how the different correlations of gas hold-up and the mass transfer coefficient affect 

the predictions of the volumetric mass transfer coefficeint using the bubble size data identified in this 

work. It is apparent that the predictions are quite diffirent to the correlation of Albaek et al. (2012) 
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[37], and that depending on how the gas hold-up and mass tranfer coefficent depend on the power 

input to the fermenter the 𝑘𝑘𝐿𝐿𝑎𝑎 values deviate from the data driven correlation. From Figure 4.8 it 

appaers that an assumption of power input independent 𝑘𝑘𝐿𝐿 values and a low dependency of gas hold-

up is most comparible with the correlation, whereas the 𝑘𝑘𝐿𝐿 predictions based on turbulence theory 

give rise to an overpredction compared to the correlation.  

The correlations reported in literature of 𝑘𝑘𝐿𝐿 and 𝑎𝑎 do not all comply with the findings in the pilot scale 

fermentation investigated in this work. The cause of this deviation is impossible to determine with 

certainty without measuring the gas hold-up and 𝑘𝑘𝐿𝐿𝑎𝑎 simultaneously. It is important to note that the 

exponents in the correlations 𝑘𝑘𝐿𝐿𝑎𝑎 and gas hold-up are heavily correlated making these derivations 

uncertain in different geometries.  A thorough study of the BSD and the gas hold-up under the 

industrial conditions in this work would be highly interesting, and could shed light on to whether the 

theoretical correlations of the parameters accounting for 𝑘𝑘𝐿𝐿𝑎𝑎 are applicable in complex fermentation 

media.  

4.7.2 Potential applications of in situ measurements of BSDs 

A reliable tool able to assess the BSD in industrial fermentation vessels holds the potential to 

contribute to various parts of fermentation process development besides the fundamental insights 

illustrated in this work. Two potential applications are outlined in the following sections. 

4.7.2.1 Bioprocess monitoring 

Monitoring of bioprocesses revolves around retrieving information about process variables in real time 

in order to improve process stability and control. The variables available for monitoring are categorized 

as physical variables (Temperature, viscosity, pressure etc.), process variables (Oxygen, carbon dioxide, 

carbon source, pH etc.) and biological variables (Biomass, cell morphology, cell metabolism etc.) [38]. 

The range of physical variables available for monitoring could be extended to BSD if the endoscopic 

technique presented in this work was applied in a monitoring strategy. In order to use the equipment 

for monitoring purposes the data collection and analysis would have to be incorporated, but since the 

high-speed camera is compatible with MATLAB it should be realizable. On-line information of the BSD 

could serve as a valuable tool to understand the cause of insufficient oxygen supply during the process, 

in particular maintaining a stable oxygen concentration during anti-foam addition is an area of research 

interest. Similar visual techniques using an endoscope have been developed for biomass monitoring 

on-line, providing information of the microbial population in real time [39].   
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4.7.3 Clarification of assumptions used in Computational Fluid Dynamic 

simulations 

Computational Fluid Dynamic (CFD) simulations of gas-liquid systems is greatly affected by the 

assumptions applied regarding the size and distribution of gas-bubbles [40]. The bubble size affects 

the fluid behavior in stirred vessels mainly through the drag coefficient responsible for momentum 

transport between the two phases. Current practice involves employing a population balance model 

approach in order to account for the breakup and coalescence of gas bubbles in the fermenter or the 

simplification of assuming a single bubble size [20,41,42].  The knowledge obtained from the 

measurement of the BSD can serve as a guideline for whether a full population balance modeling 

approach is required under the investigated conditions with CFD or whether the simplification of a 

deterministic BSD is sufficient. In particular, the ability to ascertain the effect of process conditions in 

an industrial setting can prove valuable in setting up CFD simulations. In some gas-liquid processes, 

the spread of the BSD could be small enough for the distribution to be assumed deterministic without 

a substantial simplification of the true distribution. Figure 4.7 showed that the spread of the 

distribution decreases with increasing power input, which would also indicate that in processes with a 

large power input the assumption of a single bubble size, is more valid. 
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4.8 Conclusion 

The effect of power input and gas flowrate on BSDs in a Trichoderma reesei fermentation process has 

been showed to follow Kolmogorov’s theory of isotropic turbulence. The measured Sauter mean 

diameter could be represented applying a proportionality constant of 0.084 m between 8.5 and 13.5 

kw/m3. The spread of the BSD was shown to decrease as a function of the power input to the 

fermenter, supported previous finding in lab scale systems. The findings presented show that the 

Sauter mean bubble diameter in a complex fermentation broth can be predicted by standard 

correlations, and that at constant gas hold-up the interfacial area is proportional with the power input 

to the power of -0.4.   

The ability to determine the correlation between bubble size and power input in industrial 

fermentation systems empirically sheds light into the underlying mechanisms of gas-liquid mass 

transfer. The information obtained by this methodology can be combined with literature correlations 

and provide similar predictions of 𝑘𝑘𝐿𝐿𝑎𝑎 as more classical approaches. It is however still required to study 

the gas hold-up and bubble size simultaneously under varying process conditions to characterize the 

mass transfer phenomena fully during industrial fermentations.  

The presented technology can furthermore assist with increased process understanding and display 

fundamental relationships between process conditions and gas-liquid interactions. Additionally the 

sensor can also serve as an advanced tool in process monitoring to enable online assessment of the 

gas-liquid mass transfer. The fundamental understanding of the relationship between the BSD and 

process conditions can assist in developing models for CFD simulations of aerobic fermentation 

processes, which rely greatly on the assumptions regarding the size of gas bubbles. Employing the 

developed technology on a routine basis in industrial systems will inevitably give rise to additional 

applications of the developed optical measurement method. 
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Chapter 5 

Measurement and prediction of oxygen 
gradients in an industrial scale 
Trichoderma reesei fermentation process 
using computational fluid dynamics 
 

The prediction of oxygen concentrations in an industrial scale fermenter using CFD is illustrated in this 

chapter. The predicted oxygen concentrations is compared with measurements from an industrial 

fermentation process. The following chapter is prepared for later publication. 

 

5.1 Abstract 

Predicting oxygen gradients require models that account for liquid convection, oxygen mass transfer 

from the gas phase and kinetic expressions for oxygen uptake. This manuscript utilizes computational 

fluid dynamics (CFD) in order to account for convection and interfacial mass transfer. The gas-liquid 

hydrodynamics have been predicted for three 89 m3 aerobic fermenters operating at the same power 

input and gas flow rate with varying impeller configuration. The oxygen gradients in the fermenters 

were simulated assuming an isotropic oxygen uptake rate in the fermenter volume reasoned from a 

regime analysis. The predicted oxygen concentrations were compared with oxygen concentrations 

measured in an industrial process with multiple oxygen sensors (but with a slightly different and 

confidential geometry). The predicted values were in the same range as the measured ones, which 

implies that CFD is a reasonable tool in assessing oxygen gradients in large scale fermentation 

processes. The simulations illustrate the importance of convectional flow in bioreactors in order to 

achieve homogeneous oxygen concentrations, and how different impeller geometries operating at the 

same power input and gas flow rate affects the observed gradients.  
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5.2 Nomenclature 

Roman Description Unit 

𝑞𝑞𝑝𝑝𝑖𝑖 Rate of change of parameter 𝑝𝑝𝑖𝑖  [-] 

𝑝𝑝𝑖𝑖  Process parameter  [-] 

𝐻𝐻 Height of fermenter [m] 

𝐻𝐻𝑇𝑇 Total height of fermenter [m] 

𝐷𝐷 Impeller diameter [m] 

𝑇𝑇 Fermenter diameter [m] 

𝑑𝑑𝐵𝐵 Bubble diameter [m] 

𝑃𝑃/𝑉𝑉 Power per volume [w/m3] 

𝑘𝑘𝐿𝐿 Mass transfer coefficient [m/s] 

𝐷𝐷𝑂𝑂2 Diffusion coefficient of oxygen [m2/s] 

𝑌𝑌𝑥𝑥𝑥𝑥 Yield of oxygen on biomass [g/g] 

𝑌𝑌𝑥𝑥𝑥𝑥 Yield of substrate on biomass [g/g] 

𝐶𝐶𝑥𝑥 Concentration of limiting carbon source [g/L] 

𝐾𝐾𝑥𝑥 Half saturation concentration of limiting carbon source [g/L] 

𝑋𝑋 Concentration of biomass [g/L] 

𝑘𝑘𝐿𝐿𝑎𝑎 Volumetric mass transfer coefficient [1/h] 

Greek Description Unit 

𝜏𝜏𝑖𝑖 Characteristic time of parameter 𝑖𝑖 [s] 

𝜎𝜎 Surface tension [N/m] 

𝜌𝜌𝐿𝐿 Density of fermentation broth [kg/m3] 

𝜇𝜇𝐺𝐺  Viscosity of gas [Pa s] 

𝜇𝜇𝑎𝑎 Apparent viscosity of fermentation broth [Pa s] 

𝜖𝜖𝐿𝐿 Turbulence eddy dissipation rate [m2/s3] 

𝜈𝜈𝑙𝑙 Kinematic viscosity of fermentation broth [m2/s] 

𝜇𝜇𝑚𝑚𝑎𝑎𝑥𝑥 Maximum growth rate [1/h] 

𝛼𝛼 Gas hold-up [-] 

 

Abbreviation Description 

CFD Computational fluid dynamics 

CPU Central processing unit 
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DP Down-pumping impeller 

RDT Rushton disc turbine 

PBT Pitch blade turbine 

OUR Oxygen uptake rate 

OTR Oxygen transfer rate 

UP Up-pumping impeller 
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5.3 Introduction 

A major bottleneck in fermentation process development is a lack of understanding of the changes in 

hydrodynamics at scale compared to laboratories [1]. This is true for technology transfer to new 

manufacturing plants, as well as when trying to retrofit existing equipment to new processes. In order 

to bridge this gap the conditions at scale needs to be described and understood in detail. Sweere et al. 

(1983) [2] first suggested the concept of trying to keep the end in mind and developing the processes 

focused on the manufacturing scale. The resulting regime analysis focuses on identifying the rate 

limiting phenomena occurring at scale. In order to quantify these phenomena a range of characteristic 

times were established based on the time required to alter a given process parameter beyond a 

specified threshold. The characteristic time of a given phenomenon is defined as: 

𝜏𝜏𝑖𝑖 =
Δ𝑝𝑝𝑖𝑖
𝑞𝑞𝑝𝑝𝑖𝑖

(5.1) 

where Δ𝑝𝑝𝑖𝑖 is the specified threshold of process parameter 𝑝𝑝𝑖𝑖  and 𝑞𝑞𝑝𝑝𝑖𝑖 is the rate of change of the 

parameter 𝑝𝑝𝑖𝑖. This concept is applicable to a range of phenomena in a fermentation process at scale 

such as glucose uptake, oxygen uptake, heat production and removal and others. The resulting 

characteristic time is then compared with the mixing time in the fermenter, and if the characteristic 

time is larger than the mixing time by an order of magnitude one should expect gradients of that 

process parameter. Screening for rate limiting phenomena in a simple matter is a valuable tool during 

early process development, but also relies greatly on the assumptions made in determining the rate 

of change for the process parameter. In order to assess the implication of process gradients on process 

performance higher level models that are able to reproduce the process gradients are required. This 

has historically been achieved by discretizing the fermenter volume into a number of well-defined 

compartments in which the process conditions were considered constant [3]. Compartment based 

models have been successfully applied to a multitude of fermentation processes at different scales, 

where convection and hydrodynamics were expected to play a role [4]. Calibrated and validated 

compartment models are applicable in multiple aspects in bioprocess development such as monitoring 

and process control. Tuning of inter-compartmental flows is however a complex matter and requires 

transient tracer response data.  

Computational fluid dynamics (CFD) is an often used tool in describing hydrodynamic conditions of 

bioreactors at different scales and different processes [5–9], avoiding the need for empirical tuning. 
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The spatial glucose concentration in a pilot scale bubble column has been illustrated for Saccharomyces 

cerevisiae utilizing CFD [8]. Feeding position showcased severe impact on the distribution of glucose in 

the bubble column, which had a substantial impact on the predicted glucose yield decreasing by 25 % 

compared to perfect dispersed glucose. Haringa et al. (2017) [6] investigated a 22 m3 stirred bioreactor 

using an Euler-Euler approach for the gas-liquid interaction and an Euler-Lagrangian approach for 

understanding the microorganism behaviour. Similar for both these studies is that they suggest a 

complex interconnection between gas-liquid hydrodynamics and microbial nutrient uptake.  

Measuring oxygen concentrations in multiple positions in industrial scale bioreactors has previously 

been achieved by moving a sensor vertically up and down during the process [10,11].  This work aims 

to show how Euler-Euler two-phase CFD simulations can be used in understanding the complex 

behaviour of industrial fermentation processes. This is achieved by investigating the oxygen gradients 

in an 89 m3 agitated fermenter equipped with different impellers. The predicted oxygen gradients are 

compared with measurements carried out in an industrial fermenter using multiple optical sensors. 

5.4 Material and methods 

5.4.1 Experimental work 

The oxygen gradients were studied in an industrial fed-batch Trichoderma reesei fermentation process. 

The actual operational conditions and real fermenter geometry are not included in this manuscript for 

proprietary reasons. The oxygen concentration was measured at four locations in the vessel. The 

measurements were obtained by optical fibres placed at different heights of the fermenter by 

mounting a custom-made stainless steel bracket on the baffle that allowed the fibres to be fixed in a 

certain position. The installation on the baffle is shown in Figure 5.1. 
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Figure 5.1 - Optical fibres installed along the baffle inside the industrial fermenter. The fibres were 
protected using a plastic cover when fixed in the bracket. 

The optical fibres were chosen because they are flexible and can withstand sterilization, and multiple 

fibres can be installed in every fitting. A Microx 4 transmitter (PreSens) was used for each optical fibre 

to log the recorded data with ten second intervals. The sensors were calibrated in water under aeration 

at 37°𝐶𝐶 and intense agitation prior to the sterilization.  The location of the four optical sensors is given 

in Table 5.1. 

Table 5.1 - Location of optical fibre sensors compared to the liquid height 𝑯𝑯𝑻𝑻 

Sensor 1 2 3 4 

Height � 𝑯𝑯
𝑯𝑯𝑻𝑻
� 0.1 0.375 0.75 0.94 

 

The viscosity of the fermentation broth was sampled in the fermenter and characterized at 25 °𝐶𝐶 using 

a controlled strain and stress rheometer (ARG2, TA Instrument, DE) with a 1° gap angle cone-and-plate 

of 30 mm radius. The shear stress was evaluated at shear rates ranging from 1 1/s to 500 1/s similar to 

other studies at pilot scale [7,12,13] 
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5.4.2 Numerical work 

5.4.2.1 Fermenter case studies 

The numerical simulations in this work are based on three separate cases that resemble the industrial 

fermenter where the oxygen concentration was measured. The three cases are identical in terms of 

operational conditions with respect to power input and gas flowrate matching the conditions of the 

experimental work. The impeller geometry and configuration are different in the three cases in order 

to demonstrate how the fermenter design affects the oxygen concentration predicted by the CFD 

simulations. Cooling coils are included in the geometries as stacked tori to simplify the structural 

meshing surrounding the coils. The geometrical features and impeller configuration of the three cases 

are summarized in Table 5.2 

Table 5.2 - Geometrical features and impeller configuration of the simulated fermenters 

Common geometrical features 

HT 10.4 m 

D/T 1/3 

HT/T 3 

Sparger Ring 

Liquid volume 89 m3 

Impeller configuration 

Case 1 4 x RDT 

Case 2 1 x RDT + 3 x DP-PBT 

Case 3 1 x RDT + 3 x UP-A310 

 

The investigated fermenters are geometrically similar to the industrial fermenter, but for proprietary 

reason not identical. The three geometries are shown in a 3-D rendering in Figure 5.2. 
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Case 1 Case 2 Case 3 

Figure 5.2 – 3-D rendering of the three investigated geometries: Case 1 (Rushton turbines), Case 2 
(Down-pumping PBTs) and Case 3 (Up-pumping hydrofoils) 

5.4.2.2 Model considerations 

Gas-liquid modelling 

The CFD simulations were carried out using the commercial code ANSYS CFX 16.1 and meshing of the 

geometries was done using ANSYS ICEM. The meshing was done predominately as structured mesh 

and only for the hydrofoils in Case 3, an unstructured mesh was employed. The mesh details are 

available in the supplementary material. The domain was divided into a rotating domain accounting 

for the impeller and shaft and a stationary domain containing the baffles and cooling coils. The rotating 

domain accounted for 27 percent of the total fermenter volume for all cases. A transient frozen rotor 

or sliding mesh boundary condition was assumed for the rotating domain similar to previous studies 

[7,14]. A no-slip condition was assumed for the liquid phase and a free slip condition was assumed for 

the gas phase on all surfaces in the fermenters, and an Euler-Euler approach was applied for the gas 
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and liquid interactions. The fermenter top was modelled assuming degassing conditions, allowing only 

the gas phase to escape the flat surface boundary. Turbulence was accounted for using the standard 

𝑘𝑘 − 𝜖𝜖 model. The shear thinning rheology of the fermentation broth was included by applying a power 

law correlation between viscosity and shear rate, and the consistency and flow index were based on 

the measured viscosity. The surface tension was assumed to be similar to water and air with a value of 

72 mN/m, and was considered to be constant during the fermentation despite of the viscosity increase 

[15]. A single bubble diameter was assumed in the fermenter, which was chosen based on the 

correlation of Calderbank (1958) [16]. 

 
𝑑𝑑𝐵𝐵 = 2.25 ⋅

𝜎𝜎0.6

𝑃𝑃
𝑉𝑉
0.4
⋅ 𝜌𝜌𝐿𝐿0.2

⋅ 𝛼𝛼0.5 ⋅ �
𝜇𝜇𝐺𝐺
𝜇𝜇𝑎𝑎
�
0.25

 (5.2)  

 where 𝜎𝜎 is the surface tension, 𝛼𝛼 is the gas hold-up, 𝜇𝜇𝑔𝑔 and 𝜇𝜇𝑎𝑎 are the gas and liquid viscosity 

respectively and 𝜌𝜌𝐿𝐿 is the broth density. The interfacial area was determined from the local gas hold-

up and the bubble size according to Equation (5.2) , and the mass transfer coefficient was calculated 

according to Lamont and Scott (1970) [17]. 

 
𝑘𝑘𝐿𝐿 = 0.4 ⋅ 𝒟𝒟𝑂𝑂2

0.5 ⋅ �
𝜖𝜖𝐿𝐿
𝜈𝜈𝐿𝐿
�
0.25

 (5.3)  

where 𝒟𝒟𝑂𝑂2is the diffusion constant of oxygen in the broth, 𝜖𝜖𝐿𝐿 is the turbulence eddy dissipation rate 

in the broth and 𝜈𝜈𝐿𝐿 is the dynamic viscosity of the broth. The diffusion constant of oxygen in the 

fermentation broth has been shown to depend on the medium composition and microbial host [18], 

which for a filamentous fungus was found to be 𝒟𝒟𝑂𝑂2 = 0.91 ⋅ 10−9 m2/s.  

5.4.2.3 Microbial kinetics 

The spatial oxygen concentration in the fermenter is the result of an equilibrium between the 

convectional flow of oxygen, oxygen transfer from the gas to the liquid phase and uptake by microbial 

consumption [11]. The consumption of oxygen by the microorganism is generally taken into account 

by using the kinetic expressions of microbial growth, which consumes oxygen depending on the growth 

rate. The saturation based Monod kinetics are the simplest and most widely used model to account 

for the growth rate dependency on the carbon source [19]. Assuming that the oxygen uptake rate 

(OUR) is only dependent on growth, it can be expressed as shown in Equation (5.4) . 

 𝑂𝑂𝑂𝑂𝑂𝑂 = 𝑌𝑌𝑥𝑥𝑥𝑥 ⋅ 𝑋𝑋 ⋅
𝜇𝜇𝑚𝑚𝑎𝑎𝑥𝑥 ⋅ 𝐶𝐶𝑥𝑥
𝐾𝐾𝑥𝑥 + 𝐶𝐶𝑥𝑥

 (5.4)  
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where 𝑌𝑌𝑋𝑋𝑂𝑂 is the yield of oxygen on biomass, 𝑋𝑋 is the concentration of biomass, 𝜇𝜇𝑚𝑚𝑎𝑎𝑥𝑥 is the maximum 

growth rate, 𝐾𝐾𝑥𝑥 is the half saturation constant, and 𝐶𝐶𝑥𝑥 is the concentration of the limiting substrate. 

Monod kinetics have been coupled with CFD simulations at large scale previously for both bubble 

columns and stirred fermenters [6,8]. The growth kinetics of a given organism is important to 

determine whether the carbon source gradients are of interest in the process, and in particular when 

the organism has high maximum growth rates.   

5.5 Regime analysis 

The growth kinetics are determined from steady state or accelerated steady state fermentations, 

which can be time consuming and complicated. Prior to carrying out a full characterization of the 

growth kinetics it can be beneficial to investigate whether carbon source concentration gradients are 

to be expected in the fermenter by performing a regime analysis [20]. Assuming the process is limited 

by the carbon source, the characteristic time of the carbon source consumption can be determined by 

the biomass growth rate and the average carbon source concentration in the fermenter, as stated in 

Equation (5.1). 

 𝜏𝜏𝑥𝑥 =
𝐶𝐶𝑥𝑥,𝑎𝑎𝑎𝑎𝑎𝑎

𝑋𝑋 ⋅ 𝑌𝑌𝑥𝑥𝑥𝑥 ⋅ 𝜇𝜇𝑚𝑚𝑎𝑎𝑥𝑥 ⋅
𝐶𝐶𝑥𝑥,𝑎𝑎𝑎𝑎𝑎𝑎

𝐾𝐾𝑥𝑥 + 𝐶𝐶𝑥𝑥,𝑎𝑎𝑎𝑎𝑎𝑎

 (5.5)  

where 𝐶𝐶𝑥𝑥,𝑎𝑎𝑎𝑎𝑎𝑎 is the average concentration of the carbon source. The regime analysis allows a 

comparison of different microorganisms with different growth kinetics in a simple manner. The 

microbial growth kinetics from literature for four common industrial microbial hosts are summarized 

in Table 5.3. 

Table 5.3 - Growth kinetics of four relevant industrial microorganisms  

Organism Type Substrate 𝝁𝝁𝒎𝒎𝒎𝒎𝒎𝒎 [1/h] 𝑲𝑲𝒔𝒔 [g/L] 𝒀𝒀𝒎𝒎𝒔𝒔 [g/g] Reference 

Saccharomyces cerevisiae  Yeast Glucose 0.49 0.02 0.51 [21] 

E. coli Bacteria Glucose 0.55 0.05 0.5 [22] 

Trichoderma reesei Fungi Xylose 0.11 0.48 0.60 [23] 

Penicillium chrysogenum Fungi Glucose 0.33 0.15 0.56 [24] 

 

Table 5.3 shows how different the key characteristics of the growth kinetics are for different microbial 

hosts found in literature. The growth kinetics of the different strains vary significantly across the four 

examples shown in Table 5.3, which means that the rate at which the microbial species will consume 
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substrate will be very different depending on the strain used in the fermenter. In order to understand 

the process implication of the differences in growth kinetics a comparison of the characteristic time of 

carbon source consumption of different microorganisms is shown in Figure 5.3. 

Figure 5.3 – Contour plot of the characteristic time, in seconds, of the carbon source consumption as 
a function of the maximum substrate uptake rate (𝝁𝝁𝒎𝒎𝒎𝒎𝒎𝒎 ⋅ 𝑿𝑿 ⋅ 𝒀𝒀𝑿𝑿𝑿𝑿) divided with the half saturation 
constant and average carbon source concentration divided by the half saturation concentration for 
five different microbial hosts with 𝑿𝑿 = 𝟐𝟐𝟐𝟐 g/L. *The growth kinetics of Trichoderma reesei is based 
on xylose while the rest of the data is based on glucose as carbon source. 

Figure 5.3 shows the characteristic time of carbon source consumption of four different microbial hosts 

used in industrial processes at a biomass concentration of 25 g/L. The characteristic time of carbon 

source consumption is dramatically different for the different organisms shown and ranges over many 

orders of magnitude, from 25 to >1000 seconds (Saccharomyces cerevisiae to Trichoderma reesei) at a 

carbon source concentration equal to the half saturation concentration (𝐶𝐶𝑆𝑆 = 𝐾𝐾𝑆𝑆). This massive 

difference between the various microorganisms reveals, why certain bioprocesses can suffer from 

carbon source gradients and others will be unaffected at the same operational conditions, just because 

of their difference in growth kinetics.  

Comparing the characteristic times in Figure 5.3 with the expected mixing time in industrial 

fermenters, in the range of 30 to 200 seconds [26], it is apparent that for E. coli, S. cerevisiae the 
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characteristic time of carbon source consumption is similar or smaller than the mixing time. This could 

lead to carbon source gradients [2]. It is also apparent that the two fungi and in particular T. reesei 

consumes the carbon source slower than the bacteria and yeast, and compared with industrial scale 

mixing time it should not be expected that carbon source gradients will occur for these organisms 

assuming a biomass concentration of 25 g/L.  

Gradients in carbon source have previously been shown both experimentally and with numerical 

simulations for S. cerevisiae in a 22 m3 fermenter with glucose measurements at multiple locations 

operating at 10 g/L of biomass and with a mixing time of approximately 150 seconds [6,27]. E. coli is 

also known to suffer from carbon source gradients at industrial scale (12 m3) leading to by-product 

formation and reduced biomass yield [28].  Haringa et al. (2016)  [29] investigated P. chrysogenum in 

a 54 m3 stirred fermenter and showed severe glucose gradients in the fermenter with a mixing time of 

approximately 308 seconds. The simulated conditions were late in the fermentation resulting in a 

biomass concentration of 55 g/L, which would correspond to a characteristic time of carbons source 

consumption of approximately 100 seconds according to Figure 5.3 at 𝐶𝐶𝑆𝑆 = 𝐾𝐾𝑆𝑆, which is less than the 

mixing time confirming the findings of the regime analysis.   

Understanding the characteristic time of carbon source consumption can guide the assumptions made 

in the CFD simulations regarding the microbial kinetics. For instance for T. reesei the characteristic time 

of carbon consumption is much higher than the expected mixing time, which would allow deducing 

that the concentration of the carbon source is homogenous in the fermenter. This is in part due to the 

low maximum growth rate of T. reesei, but also the high half saturation constant of this microorganism, 

which corresponds to a generally slow consumption of carbon source. A constant concentration of 

carbon source would lead to a constant oxygen uptake rate following Equation (5.4), which excludes 

the need for kinetic models in order to investigate the oxygen concentration in the fermenter. In view 

of the latter, the oxygen rate is considered isotropic in the T. reesei process in this work.  
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5.6 Results 

5.6.1 Gas – liquid hydrodynamics and mass transfer 

The flow patterns of stirred reactors are, besides the operating conditions, affected by the impeller 

size and configuration as well as internal installations inside the reactor. The liquid flow patterns of 

large-scale fermenters have been described under non-aerated and aerated conditions based on visual 

observations [26]. The volumetric mass transfer coefficient is a key process parameter in aerobic 

fermentations and in particular for viscous fermentation processes [30]. Spatial distribution of the 

mass transfer coefficient has previously been investigated in stirred systems at pilot scale using 

compartment models and CFD simulations [7,31,32], and compared with volume average 

measurements of 𝑘𝑘𝐿𝐿𝑎𝑎. Local measurements of 𝑘𝑘𝐿𝐿𝑎𝑎 are very complex and rely on assumptions for the 

hydrodynamics in the liquid phase because the methodology is based on a measurement of the oxygen 

concentration [33]. The predicted spatial distribution of 𝑘𝑘𝐿𝐿𝑎𝑎 and the flow pattern of the three 

investigated cases is shown in Figure 5.4. 
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𝒌𝒌𝑳𝑳𝒎𝒎 Liquid flow 𝒌𝒌𝑳𝑳𝒎𝒎 Liquid flow 𝒌𝒌𝑳𝑳𝒎𝒎 Liquid flow 

Case 1 Case 2 Case 3 

Figure 5.4 – Contour of the volumetric mass transfer (left) and the liquid flow pattern (right) under 
aerated conditions for the three investigated cases. The same power input and aeration rate is 
considered for each case. 

The flow pattern of the investigated geometries is remarkably different in each case revealing the 

impact of the impeller geometry. The axial dispersion with recirculation loops from the four Rushton 

turbines in Case 1 is as expected in such a configuration, but the aeration distorts the recirculation 

loops corresponding with previously reported numerical predictions in similar geometries [6]. In 

particular, the flow profile around the bottom impeller in Case 1 differs severely from the expected 

behavior, which is due to a flooded state as can be seen in Figure 5.4. The flooding predicted by the 

simulations is in line with empirical correlations for RDTs [34]. The down-pumping PBTs in Case 2 result 

in strong recirculation loops between the top of the impeller and the walls as a result of the opposite 

motion of the down-pumping impeller and the upwards moving gas phase. In order to have a 

reasonable comparison of the three cases the power input was kept constant, which meant that Case 
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1, because of the larger power number of Rushton turbines, was operated at lower impeller speed 

causing the flooding in that case. The Rushton turbine in the bottom disperses the air effectively for 

both Case 2 and 3 because of the higher impeller speed at these conditions. The up-pumping A310 

impellers in Case 3 lead to an even flow from the bottom to the top in one large loop. The single loop 

of liquid motion in Case 3 is contradicting the observations of Vrabel et al. (2000) [26], who suggested 

that multiple circulation loops should exist in this configuration. The reason for this difference could 

be that they studied larger up-pumping impellers (0.61 ⋅ 𝑇𝑇) than the ones considered in this work, 

which could explain the difference in flow pattern.  

The spatial distribution of 𝑘𝑘𝐿𝐿𝑎𝑎 apparent in Figure 5.4 is highly dependent on the configuration of the 

impellers in the large scale fermenter. The up-pumping motion of the A310 impellers in Case 3 gives 

rise to an even distribution of the spatial volumetric mass transfer coefficient, and is in great contrast 

to the down-pumping PBT investigated in Case 2. The flooded condition of the bottom impeller in Case 

1 leads to a situation where a large part of the volume is without any gas and subsequently without 

interfacial surface area, which greatly affects the 𝑘𝑘𝐿𝐿𝑎𝑎 in the bottom of the fermenter. The gas hold-up 

values are not included for proprietary reasons, but were found to be similar to previously reported 

values for large scale bioreactors [6,35]. 

5.6.1.1 Mixing time 

The mixing time has been considered a valuable process metric over the past decades in relation to 

the quantification of mixing performance of bioreactors of different size and configuration [34]. The 

mixing time of stirred bioreactors is dependent on the flow pattern inside the bioreactor and the scale 

of the bioreactor, making it an important metric for process scale-up. The mixing time is in this work 

defined as the time required to reach 95 % of the homogeneous concentration following a pulse 

addition of tracer. The predicted mixing time values for the three cases are shown in Table 5.4. 

Table 5.4 - Predicted mixing time of each investigated cases. The mixing time is defined, as the time 
required for achieving 95 % homogeneity.  

Case  𝝉𝝉𝒎𝒎𝒎𝒎𝒎𝒎 [s] 

1 191 

2 172 

3 30.1 
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Table 5.4 illustrates the impact of impeller geometry at constant power input and gas flow rate in large 

scale aerated bioreactors. The compartmentalizing configuration of Case 1 and Case 2 results in mixing 

times around 3 minutes, which is 6 times the mixing time of the up-pumping A310 configuration of 

Case 3. This severe difference is previously described by Vrabel et al. (2000) [26], who investigated 

mixing times in 12 and 30 m3 bioreactors experimentally and found similar trends.  

5.6.2 Oxygen gradients 

In order to evaluate the performance of each geometry, the mass transfer capabilities and 

hydrodynamics should be combined with oxygen uptake and oxygen transfer, enabling the prediction 

of the oxygen gradients. This approach is similar to recent studies in industrial bubble columns [8]. The 

oxygen transfer rate and resulting oxygen concentration are shown in Figure 5.5 

𝑂𝑂𝑇𝑇𝑂𝑂𝑥𝑥  𝑂𝑂2,𝑥𝑥 𝑂𝑂𝑇𝑇𝑂𝑂𝑥𝑥  𝑂𝑂2,𝑥𝑥 𝑂𝑂𝑇𝑇𝑂𝑂𝑥𝑥  𝑂𝑂2,𝑥𝑥 

Case 1 Case 2 Case 3 

Figure 5.5 - Normalized oxygen transfer rate (𝑶𝑶𝑻𝑻𝑹𝑹𝒔𝒔) and normalized oxygen concentration (O2,S) 
contour plot for each geometry working at identical power input and gas flow rate. The oxygen 
transfer rate and oxygen concentration are scaled by their volumetric average for properitary 
reasons. The black dots indicate the location of the optical oxygen sensors.  

Figure 5.5 displays the clear influence of convection in the oxygen concentration profiles when 

assuming an isotropic oxygen uptake rate. Omitting the convectional flow in the liquid phase would 
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result in a concentration profile proportional to the OTR profile, which is far from the predicted 

scenario in Figure 5.5. The oxygen concentration profile of Case 1 illustrates the compartmentalization 

produced by multiple Rushton turbines in particular for the top three impellers. This 

compartmentalization from multiple Rushton turbines confirms the results of numerical simulations 

of similar reactors [6]. The flow patterns predicted by the down-pumping PBT’s in Case 2 gives rise to 

some compartmentalization as well, but not to the same extent as found in Case 1. The expected 

convectional performance of Case 3 from Table 5.4 is confirmed in Figure 5.5 resulting in small 

gradients in oxygen concentration compared to the other cases, and indicates that the up-pumping 

configuration has substantial benefits in terms of liquid blending. The oxygen concentration generally 

decreases towards the top of the reactor for all cases, which is caused by the decrease in saturation 

concentration resulting from a change in hydrostatic pressure towards the top of the fermenter. The 

drastic changes in oxygen concentration near the RDT predicted for Case 1 are similar to the empirical 

findings of Oosterhuis et al. (1983) [36] in a 25 m3 bioreactor with RDT turbines.   
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5.6.3 Comparison of experimental and simulated oxygen concentrations 

In order to evaluate the assumptions associated with the gas-liquid hydrodynamics and microbial 

kinetics the predicted oxygen concentrations are evaluated along the baffle in the three simulated 

geometries and compared with the findings from the measurements in the industrial bioreactor. The 

normalized oxygen concentrations of the three simulated cases and the normalized measurements are 

shown in Figure 5.6. 

Figure 5.6 - Normalized oxygen concentration evaluated along the baffle inside the fermenter for 
the three simulated cases (solid line) and the range of oxygen concentration (±𝟎𝟎.𝟎𝟎𝟑𝟑𝟏𝟏 𝒎𝒎𝒎𝒎) 
measured at full scale (dashed lines). The grey bars indicate the location of the impellers in the 
simulated fermenters. 

Figure 5.6 shows the effect of impeller configuration on the oxygen concentration from top to bottom 

of the fermenter evaluated along the baffle. The oxygen concentration in Case 1 is -0.07 mM below 

the average concentration in the bottom of the tank, and reaches the highest concentration of 0.055 

mM above the average oxygen concentration between 30 % and 50 % of the total height. The highest 

oxygen concentration, 0.055 mM higher than the average concentration, in Case 2 is observed in the 

bottom of the fermenter between 0.05 and 0.2 of the total height and the lowest concentration is 

calculated to be a the very top of the fermenter. The oxygen concentration steadily decreases from 
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the 20 % of the fermenter height towards the top. The oxygen concentration in Case 3 has a maximum, 

similar to Case 2, around 20 % of the fermenter height with a value of 0.015 mM above the average 

concentration and the lowest concentration is observed at 80 % of the fermenter height. The range of 

measured oxygen concentration was found to be ± 0.031 mM of the average oxygen concentration in 

the fermenter. The measured data is reported as the span of oxygen concentrations because of the 

geometrical differences between the simulated geometry and the geometry of the industrial 

fermenter. The geometrical differences makes a comparison of the spatial concentration of oxygen in 

the simulated and measured case misleading. In order to make a comparison of spatial oxygen 

concentrations the geometries must be the same. The range of measured oxygen concentrations is 

similar to the predicted range, and indicates that the complex CFD simulations are able to reproduce 

the expected range of oxygen gradients. Additionally, the three investigated cases show how 

important liquid convection is in mitigating gradients in a large scale fermenter operating at the same 

power input and gas flow rate. The concentration gradient of the up-pumping A310 configuration of 

Case 3 is minor in comparison with the other cases, which supports the conclusions of the mixing time 

study of Table 5.4. The steep increase of the oxygen concentration close to the second Rushton turbine 

in Case 1 and the bottom RDT in Case 2 is comparable with findings of Oosterhuis et al (1983) [36], 

which further supports the confidence in the CFD simulations. In the three investigated cases, the 

oxygen gradient is merely a result of difference in the oxygen transfer rate, due to hydrostatic pressure 

and spatial 𝑘𝑘𝐿𝐿𝑎𝑎 distribution, and liquid convection, due to the assumption a of spatially constant 

oxygen uptake rate. This assumption appears to be valid for the T. reesei process, since the measured 

oxygen concentration is similar to the predicted values. 

The simulation study presented in Figure 5.5 and Figure 5.6 illustrates that the blending capabilities of 

a bioreactor are equally important as the oxygen transfer capabilities if oxygen gradients are a concern. 

In particular the axial convection is important, which can be improved considerably by introducing an 

up-pumping impeller above the bottom RDT following previous experimental findings in large scale 

bioreactors [26]. 

Two-phase CFD simulations on the scale of industrial size fermenters remain a computationally heavy 

effort even with improvements in parallel computing and CPU efficiency. Simplifications in the 

mechanisms involved in the simulations can hence be highly valuable and enable characterization of 

problems that would otherwise be unfeasible to solve in a time frame of weeks or even months. In this 

context, regime analysis plays an important role in enabling the numerical simulation of industrial 

processes. This has been shown by Haringa et al (2017) [6], who omitted the influence of oxygen from 
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simulations of an aerobic S. cerevisiae fermentation because it would not play a role under the 

investigated process conditions, and only focused on the hydrodynamics of the gas-liquid system and 

the effect of glucose.  

An evaluation of the required complexity of the involved phenomena is essential if numerical analysis 

of industrial scale processes is to become a standard procedure. In this context, a simple regime 

analysis could serve as of part of a systematic investigation of the required complexity required to 

reproduce a given process behaviour. 
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5.7 Conclusion 

The gas-liquid hydrodynamics of three 89 m3 fermenters have been investigated using computational 

fluid dynamics. The simulated flow profile and spatial 𝑘𝑘𝐿𝐿𝑎𝑎 distribution revealed that the impeller 

configurations influence the bioreactor hydrodynamics significantly when operating at the same 

power input and gas flow rate. Flooding was observed for Case 1 (4 x RDTs) due to the lower impeller 

speed in order to obtain the same power input as the other cases. A study of the mixing time revealed 

large variation between Case 3 (RDT + 3 x UP-A310)  and the other cases, which is explained by the 

difference in flow profile of the up-pumping impellers in Case 3 and the down-pumping or radial 

impellers of Case 2 (RDT + 3 x DP-PBT) and Case 1 respectively.  

The oxygen gradient in the three fermenters was predicted assuming an isotropic oxygen uptake rate, 

and revealed a large influence of liquid convection inside the fermenter. Comparing the oxygen 

gradient with measured values of a geometrically similar industrial fermenter confirmed that the 

predicted oxygen gradient was in the same range as the measured values.  

The presented study in this manuscript indicates that commercial CFD software is able to predict the 

range of oxygen gradients in a viscous T. reesei fermentation at industrial conditions. Regime analysis 

can be utilized as a simplification tool in order to avoid implementation of the unnecessary additional 

complexity of microbial growth kinetics, which is not relevant if the mixing intensity is sufficient 

compared to the carbon uptake rate.  

5.8 Acknowledgements 

The authors would like to acknowledge Lisa Mears and Daniela Quintanilla for their work regarding 

sampling of the fermentations and analysis of in particular broth viscosity. This project has received 

funding from Novozymes A/S, the Technical University of Denmark (DTU) and Innovation Fund 

Denmark in the frame of the Strategic Research Center BIOPRO2 (BIObased PROduction: TOwards the 

next generation of optimized and sustainable processes). 

 



108  Prediction of oxygen gradients in an industrial scale Trichoderma reesei fermentation  

5.9 References 

[1] H. Noorman, An industrial perspective on bioreactor scale-down: What we can learn from 
combined large-scale bioprocess and model fluid studies, Biotechnol. J. 6 (2011) 934–943. 
doi:10.1002/biot.201000406. 

[2] A.P.J. Sweere, Regime analysis and scale-down: tools to investigate the performance of 
bioreactors, 9 (1987) 386–398. 

[3] J. Zahradník, R. Mann, M. Fialová, D. Vlaev, S.D. Vlaev, V. Lossev, P. Seichter, A networks-of-
zones analysis of mixing and mass transfer in three industrial bioreactors, Chem. Eng. Sci. 56 
(2001) 485–492. doi:10.1016/S0009-2509(00)00252-9. 

[4] P. Vrábel, R.G.J.M. Van der Lans, F.N. Van der Schot, K.C. a M. Luyben, B. Xu, S.O. Enfors, CMA: 
Integration of fluid dynamics and microbial kinetics in modelling of large-scale fermentations, 
Chem. Eng. J. 84 (2001) 463–474. doi:10.1016/S1385-8947(00)00271-0. 

[5] J. Morchain, J.C. Gabelle, A. Cockx, A coupled population balance model and CFD approach for 
the simulation of mixing issues in lab-scale and industrial bioreactors, AIChE J. 60 (2014) 27–40. 
doi:10.1002/aic.14238. 

[6] C. Haringa, A.T. Deshmukh, R.F. Mudde, H.J. Noorman, Euler-Lagrange analysis towards 
representative down-scaling of a 22 m3 aerobic S. cerevisiae fermentation, Chem. Eng. Sci. 170 
(2017) 653–669. doi:10.1016/j.ces.2017.01.014. 

[7] C. Bach, J. Yang, H. Larsson, S.M. Stocks, K. V Gernaey, M.O. Albaek, U. Krühne, Evaluation of 
mixing and mass transfer in a stirred pilot scale bioreactor utilizing CFD, Chem. Eng. Sci. 171 
(2017) 19–26. doi:10.1016/j.ces.2017.05.001. 

[8] D.D. McClure, J.M. Kavanagh, D.F. Fletcher, G.W. Barton, Characterizing bubble column 
bioreactor performance using computational fluid dynamics, Chem. Eng. Sci. 144 (2016) 58–74. 
doi:10.1016/j.ces.2016.01.016. 

[9]  a Lapin, C. Maul, K. Junghans,  a Lu, Industrial-scale bubble column reactors: gas}liquid #ow 
and chemical reaction, Chem. Eng. Sci. 56 (2001) 239–246. 

[10] R. Manfredini, V. Cavallera, L. Marini, G. Donati, Mixing and oxygen-transfer in conventional 
stirred fermenters, Biotechnol. Bioeng. 25 (1983) 3115–3131. doi:10.1002/bit.260251224. 

[11] N.M. Oosterhuis, N.W. Kossen, Dissolved oxygen concentration profiles in a production-scale 
bioreactor., Biotechnol. Bioeng. 26 (1984) 546–550. doi:10.1002/bit.260260522. 

[12] M.O. Albæk, Evaluation of the efficiency of alternative enzyme production technologies, (2012). 

[13] L. Mears, S.M. Stocks, M.O. Albaek, G. Sin, K. V. Gernaey, Mechanistic Fermentation Models for 
Process Design, Monitoring, and Control, Trends Biotechnol. 35 (2017) 914–924. 
doi:10.1016/J.TIBTECH.2017.07.002. 

[14] J.C. Gabelle, F. Augier,  a. Carvalho, R. Rousset, J. Morchain, Effect of tank size on k                    La 
and mixing time in aerated stirred reactors with non-newtonian fluids, Can. J. Chem. Eng. 89 
(2011) 1139–1153. doi:10.1002/cjce.20571. 

[15] F.H. Deindoerfer, E.L. Gaden, Effects of liquid physical properties on oxygen transfer in penicillin 



5.9 References 109 
 
 

 
 

fermentation., Appl. Microbiol. 3 (1955) 253–7. 
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=1057115&tool=pmcentrez&rend
ertype=abstract. 

[16] P.H. Calderbank, Physical rate processes in industrial fermentation Part I: The interfacial area in 
gas-liquid contacting with mechanical agitation, Chem. Eng. Res. Des. (1958). 

[17] J.C. Lamont, D.S. Scott, An eddy cell model of mass transfer into the surface of a turbulent liquid, 
AIChE J. 16 (1970) 513–519. doi:10.1002/aic.690160403. 

[18] C.S. Ho, L. -K Ju, Effects of microorganisms on effective oxygen diffusion coefficients and 
solubilities in fermentation media, Biotechnol. Bioeng. 32 (1988) 313–325. 
doi:10.1002/bit.260320308. 

[19] J. Monod, The Growth of Bacterial Cultures, Annu. Rev. Microbiol. 3 (1949) 371–394. 
doi:10.1146/annurev.mi.03.100149.002103. 

[20] A.P.J. Sweere, K.C.A.M. Luyben, N.W.F. Kossen, Regime analysis and scale-down: Tools to 
investigate the performance of bioreactors, Enzyme Microb. Technol. 9 (1987) 386–398. 
doi:10.1016/0141-0229(87)90133-5. 

[21] E. Postma, W. Alexander Scheffers, J.P. Van Dijken, Kinetics of growth and glucose transport in 
glucose-limited chemostat cultures ofSaccharomyces cerevisiae CBS 8066, Yeast. 5 (1989) 159–
165. doi:10.1002/yea.320050305. 

[22] B. Xu, M. Jahic, S.-O. Enfors, Modeling of Overflow Metabolism in Batch and Fed-Batch Cultures 
of Escherichia coli, Biotechnol. Prog. 15 (1999) 81–90. doi:10.1021/bp9801087. 

[23] D.W. Schafner, R.T. Toledo, Cellulase production in continuous culture byTrichoderma reesei 
on xylose-based media, Biotechnol. Bioeng. 39 (1992) 865–869. doi:10.1002/bit.260390808. 

[24] R.D. Douma, P.J.T. Verheijen, W.T.A.M. de Laat, J.J. Heijnen, W.M. van Gulik, Dynamic gene 
expression regulation model for growth and penicillin production in Penicillium chrysogenum, 
Biotechnol. Bioeng. 106 (2010) 608–618. doi:10.1002/bit.22689. 

[25] J. Villadsen, J. Nielsen, G. Lidén, Bioreaction Engineering Principles, 3rd ed., Springer, 2011. 
doi:10.1007/978-1-4419-9688-6. 

[26] P. Vrábel, R.G.J.M. Van Der Lans, K.C.A.M. Luyben, L. Boon, A.W. Nienow, Mixing in large-scale 
vessels stirred with multiple radial or radial and axial up-pumping impellers: Modelling and 
measurements, Chem. Eng. Sci. 55 (2000) 5881–5896. doi:10.1016/S0009-2509(00)00175-5. 

[27] G. Larsson, M. Törnkvist, E. Ståhl Wernersson, C. Trägårdh, H. Noorman, S.O. Enfors, Substrate 
gradients in bioreactors: Origin and consequences, Bioprocess Eng. 14 (1996) 281–289. 
doi:10.1007/s004490050218. 

[28] F. Bylund, E. Collet, S.-O. Enfors, G. Larsson, Substrate gradient formation in the large-scale 
bioreactor lowers cell yield and increases by-product formation, Bioprocess Eng. 18 (1998) 171–
180. doi:10.1007/s004490050427. 

[29] C. Haringa, W. Tang, A.T. Deshmukh, J. Xia, M. Reuss, J.J. Heijnen, R.F. Mudde, H.J. Noorman, 
Euler-Lagrange computational fluid dynamics for (bio)reactor scale down: An analysis of 
organism lifelines, Eng. Life Sci. 16 (2016) 652–663. doi:10.1002/elsc.201600061. 



110  Prediction of oxygen gradients in an industrial scale Trichoderma reesei fermentation  

[30] S.M. Stocks, Industrial enzyme production for the food and beverage industries : process scale 
up and scale down, in: Microb. Prod. Food Ingredients, Enzym. Nutraceuticals, 2013: p. 656. 
doi:10.1533/9780857093547.1.144. 

[31] M. Laakkonen, P. Moilanen, V. Alopaeus, J. Aittamaa, Modelling Local Gas–Liquid Mass Transfer 
in Agitated Vessels, Chem. Eng. Res. Des. 85 (2007) 665–675. doi:10.1205/cherd06171. 

[32] P. Moilanen, M. Laakkonen, J. Aittamaa, Modelling fermenters with CFD, Comput. Aided Chem. 
Eng. 20 (2005) 709–714. doi:10.1016/S1570-7946(05)80240-8. 

[33] M. Fujasová, V. Linek, T. Moucha, Mass transfer correlations for multiple-impeller gas-liquid 
contactors. Analysis of the effect of axial dispersion in gas and liquid phases on “local” kL a 
values measured by the dynamic pressure method in individual stages of the vessel, Chem. Eng. 
Sci. 62 (2007) 1650–1669. doi:10.1016/j.ces.2006.12.003. 

[34] A.W. Nienow, Hydrodynamics of Stirred Bioreactors, Appl. Mech. Rev. 51 (1998) 3. 
doi:10.1115/1.3098990. 

[35] P. Vrábel, R.G.J.M. Van der Lans, Y.Q. Cui, K.C.A.M. Luyben, Compartment Model Approach: 
Mixing in Large Scale Aerated Reactors with Multiple Impellers, Chem. Eng. Res. Des. 77 (1999) 
291–302. doi:10.1205/026387699526223. 

[36] N.M.G. Oosterhuis, N.W.F. Kossen, Oxygen transfer in a production scale bioreactor, Chem. Eng. 
Res. Des. 61 (1983) 308–312. 

 



 



 



  

Chapter 6 

Hypothesis driven compartment model for 
stirred bioreactors utilizing computational 
fluid dynamics and multiple pH sensors 

 

In this chapter, a novel methodology of scaling down numerical models of hydrodynamics in 

bioreactors is presented. The methodology is applied to a pilot fermenter as a case study. 
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6.1 Abstract 

The ability to understand and predict mixing behaviour in stirred bioreactors by the use of 

mathematical models is an effective strategy to improve or ensure performance of the process. 

Historically compartment models have been developed to facilitate the prediction of the 

hydrodynamics and in the last decade, computational fluid dynamics (CFD) has become the standard 

tool to assess this in detail.  Despite the development of computational capacity CFD simulations of 

bioreactors remains a challenge at industrial scale where the need for simplified models is apparent 

due to scale and complex phenomena occurring at scale. The combination of CFD and compartment 

models has been investigated in this work using a pilot scale stirred bioreactor equipped with three 

Rushton disc turbines and multiple pH sensors as case study. A hypothesis driven 

compartmentalization strategy consisting of five subsequent steps has been developed and applied to 

the pilot scale stirred bioreactor. The compartmentalization resulted in 56 compartments with 

unidirectional flow between adjacent compartments. The performance of the methodology was 

evaluated against a data driven compartment approach and the full CFD simulation in the ability to 

recreate transient tracer profiles following top and bottom feeding of tracer. The data driven 

compartment model proved to be the most accurate of the three investigated methods, while the 

hypothesis driven compartment method had a 10-12 % higher error on prediction. The developed 

methodology should be considered a viable alternative to conventional CFD methods when complex 

phenomena such as multidimensional populations balance modelling is of interest.  
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6.2 Nomenclature 

Roman Description Unit 

𝐶𝐶 Scaled tracer concentration [-] 

𝐸𝐸𝐸𝐸 Exchange flow [kg/s] 

𝐸𝐸 Mass flow rate [kg/s] 

𝐸𝐸𝐶𝐶 Circumferential flow rate [kg/s] 

𝐸𝐸𝐹𝐹 Horizontal flow rate [kg/s] 

𝐸𝐸𝐹𝐹 Vertical mass flow rate [kg/s] 

𝐹𝐹 Vertical division [m] 

𝑅𝑅 Radial division [m] 

𝑡𝑡 Time [s] 

𝑣𝑣𝑝𝑝 Liquid velocity [m/s] 

𝐹𝐹 Compartment volume [m3] 

𝑊𝑊 Circumferential division [°] 

𝑥𝑥1 Dimension  [m] 

𝑥𝑥2 Dimension [m] 

𝜌𝜌 Liquid density [kg/m3] 

Indices   

𝑖𝑖 Vertical position  

𝑗𝑗 Horizontal position  

𝑘𝑘 Wedge position  

𝑓𝑓 Feed compartment  

 

Abbreviations Description 

CFD Computational fluid dynamics 

RDT Rushton disc turbine 

RANS Reynolds average Navier-Stoke 

RMSE Root mean square error 
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6.3 Introduction 

Mixing characteristics in stirred bioreactors is a topic that has been studied intensely for decades [1]. 

The knowledge of mixing in a biotechnological process can be useful in design, scaling and 

troubleshooting of the process. The mixing dynamics can also be coupled to the biochemical reactions 

in the vessel as well as gas-liquid mass transfer to simulate the effects of substrate gradients on the 

process [2]. Mixing is usually quantified through tracer experiments including but not limited to pulses 

of acid/base, salt, radioactive elements or liquids of different temperature. The pulses are measured 

with one or more sensors inside the vessel to quantify the distribution of the tracer over time [3]. In 

particular for investigation in smaller vessels (<1 m3) the response of the sensor becomes an important 

factor, since the measurement delay can be of the same order of magnitude as the tracer dynamics 

[4,5]. Design and completion of these experimental investigations is time consuming and requires a 

meticulous choice of sensors and equipment. Mathematical models can be applied to facilitate the 

understanding of the phenomena involved in mixing of stirred bioreactors, which leverages the 

experimental efforts to increase their impact. 

Compartment models, sometimes named Network of Zones models, are based on well mixed tanks in 

series have been used as a model framework for modelling hydrodynamics [6,7]. These methods are 

suitable when multiple sensors are used in the vessel to determine the tracer concentration profiles 

at different locations in the vessel, but when the number of compartments in the models starts to 

increase to a number higher than the number of sensors, a problem of parameter identifiability can 

arise. Computational fluid dynamics (CFD) is an alternative model approach used to simulate 

hydrodynamic flows in bioreactors [8,9]. These models show an interesting potential, but are 

complicated and require considerable computational resources to work, especially when the CFD 

model is coupled to reaction and mass transfer. In the last decade mixing studies have started 

integrating the knowledge acquired from CFD simulations with the limited computational effort of 

compartment models[10–12].  

The scope of this article is to compare a CFD model with experimental data acquired in a pilot scale 

bioreactor at Novo Nordisk A/S. The results from the CFD model are then used to produce a hypothesis 

driven compartment model. Finally, the investigated models are benchmarked against experimental 

data.    
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6.4 Materials and methods 

Mixing behaviour was quantified using acid and base tracer experiments in a linear pH buffer solution. 

The medium is composed of 2 mM succinic acid and 2 mM malonic acid as proposed by Poulsen and 

Iversen [13], which produces a linear pH response in a range from 3 to 6 pH units. All experiments were 

conducted within the linear pH range. Alternating pulses of approximately 46 %wt H2SO4 or KOH 

solution were used to produce tracer response curves, measured with 5 pH electrodes of the model: 

CPS471D-7211 (Endress + Hauser). The pH sensors were installed on a steel beam attached to a cooling 

coil in the bioreactor. The sensors were positioned directly between two baffles. Acid and base pulses 

were in turn added at three different heights using a system of silicone tubes fastened to the baffle 

and entering the vessel through the top. The dosing and sensor positions are shown in Figure 1 b). A 

peristatic pump model: 323S (Watson Marlow) was used to pump pH tracer solution into the vessel 

over a period of approximately 3 seconds. pH was logged with  a central data logger model: MW100 

(Yokogawa) for all pH electrodes. All experiments were done in quadruplicates and were carried out 

at a single filling level covering all three Rushton disc turbines (RDTs) in the bioreactor. Three different 

agitation speeds were investigated. Even though the mixing models investigated in this work, are 

aimed at aerobic fermentation processes, this article only deals with non-aerated mixing. This is done 

to limit the complexity of the data set and the simulations. The combined experimental work entails 

36 tracer additions by combining three mixing intensity conditions with three dosing points and four 

repetitions for each condition. The individual mixing profiles are normalized from 0 to 1, where 0 

represents the start pH in the vessel before the pulse is added and 1 the final pH after homogenization.     

Figure 6.1 a) displays an example of 4 repeated mixing tracer profiles with top dosing.      
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a) b) 

Figure 6.1 - a) Example of a normalized mixing profile measured with 5 pH electrodes. The time axis 
is normalized due to confidentiality. b) Diagram of the bioreactor used as experimental basis for the 
work. The vessel is equipped with three Rushton disc turbine 

6.4.1 4+1 compartment model 

It has long been established that RDT impellers have a tendency of producing horizontal separation of 

the liquid flow in a bioreactor. Thus a 3 x RDT configuration can roughly be assumed to divide the vessel 

into four well mixed zones [14]. With this in mind, a four compartment model was used as the simplest 

reference model for this study. The model is highly data driven and thus requires large amounts of 

experimental data. It is also the model which requires the least amount of calculations and iteration 

to work properly, i.e. solution of this model is relatively straightforward. The model geometry was 

taken directly from the vessel dimensions and impeller positions, while four exchange flows between 

compartments are estimated with an optimization algorithm (fmincon, matlab R2015b) to fit the 

experimental data. A fifth pseudo compartment was added to the model to help simulate the addition 

of the tracer, and this is done to improve the model ability to mimic the process of the pH tracer being 

mixed into the bulk flow in the vessel. The feeding compartment is assumed to be small (0.1 litres) and 

coupled directly to the compartment closest to the dosing point with an exchange flow. The 4+1 

compartment model is described in detail in Appendix 1. The parameter estimation was carried out 

with a single set of exchange flows to fit both bottom and top dosing, in order to get a robust model. 

6.4.2 CFD flow characterization 

A CFD simulation was made for each of the different agitation speeds using the commercial CFD 

software ANSYS CFX version 16.1. The simulation was carried out as a single phase RANS simulation, 

where turbulence was accounted for using the standard 𝜅𝜅 − 𝜖𝜖 model. The impeller motion was 
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captured using a transient frozen rotor also known as sliding mesh boundary condition, which has 

proven applicable for mixing time determination in previous studies [11,15]. Discretization of the 

domain was done using a hexahedral mesh configured in ICEM CFD 16, and consisted of 734,000 

elements in total. The full geometry was simulated in order to capture the spatial effects of measuring 

and adding tracer in different locations in the vessel. A scalar was used to determine tracer dissipation 

and simulate the addition of acid or base in the solution.  The tracer addition was based on an 

assumption of an ideal pulse over three seconds.  

6.4.3 Hypothesis driven 56+1 model 

The novel hypothesis driven compartment model developed in this work relies on evaluating 

circumferential, axial and radial flow at different locations in the vessel. The compartments are defined 

as volumes with unidirectional flow on each surface in either the radial, axial or circumferential 

direction. This definition limits the degrees of freedom of the generated compartments because each 

compartment must have two surfaces in the axial, radial and circumferential direction. Expanding this 

definition to other coordinate systems is not covered in this work, and is subject to further research. 

The description of the methodology is carried out using the investigated pilot scale vessel as a case 

study, and every step of the method will be explained in more detail in relation to this case study. The 

general workflow of the methodology is shown in Figure 6.2. 
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Figure 6.2 - Schematic workflow of compartment methodology, which enables identification of 
individual compartments in a bioreactor 

6.4.3.1Step 1 – Vertical division 

The first step in the methodology entails the placement of multiple vertical lines in the geometry of 

the CFD model.  The vertical lines are placed in multiple locations as shown in Figure 6.3 a) to ensure 

that the vertical division is as global as possible. Furthermore having multiple sample points helps to 

determine the spatial uncertainty of the compartments. 
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a) b) 

Figure 6.3 - a) The top down look into the bioreactor. Blue stars indicate where vertical lines have 
been placed to determine horizontal flow profiles using evaluation of flows. b) The cross sectional 
view of the vertical and horizontal lines, which are used in the method to identify the location of 
each compartment. 

6.4.3.2 Step 2 - Vertical division 

The radial flow velocity is evaluated along the vertical lines in the bioreactor. The sign of the radial 

velocity will indicate whether the bulk flow is directed towards the wall of the bioreactor or towards 

the impeller shaft. Vertical division of the vessel is located at the height of every change in radial flow 

direction. Figure 6.4 depicts a common radial velocity profile resulting from this analysis. 
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Figure 6.4 - Radial flow profiles at medium agitation speed as a function of dimensionless height 
evaluated along the vertical lines identified in the first step of the methodology. The black lines 
indicate the location of vertical division and the grey area indicates the standard deviation from the 
mean division height. The dashed line indicates the turning point from flow towards the wall and 
towards the shaft. 

The collected flow profiles shown in Figure 4 indicate that despite the varying positions of the vertical 

lines from Step 1, general trends are observable. The effect of the impeller action is apparent in the 

peaks of radial velocity for all impeller positions and investigated flow lines. Determination of the axial 

compartment division is carried out by identifying the reactor height where radial flow alternates from 

moving towards the reactor wall to moving towards the impeller shaft or the other way around, as 

indicated by vertical black lines in Figure 6.4. This results in six vertical divisions for the investigated 

geometry yielding 7 compartments in the height of the vessel.  

6.4.3.3 Step 3 – Radial division 

Based on the axial divisions identified in Step 2 horizontal lines, as shown in Figure 6.3 b), are placed 

at each height from the centre of the reactor to the wall.  
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6.4.3.4 Step 4 – Radial division 

In a similar manner as in step 1 to 3, the radial division of compartments are identified by evaluating 

the axial flow velocity along the horizontal lines resulting from Step 3 in the methodology. The axial 

velocity profiles along the six horizontal lines are shown in Figure 6.5. 

 

Figure 6.5 - Axial velocity profiles as a function of scaled reactor radius for the six horizontal lines 
identified in Step 3. The vertical black line indicates the mean radius of flow direction change and 
the grey area indicates the standard deviation from the mean.   

The six velocity profiles shown in Figure 6.5 can be grouped in two, where the first group represents 

compartments with axial positive (upward) flow close to the impeller and the second group consists of 

axial negative (downward) flow close to the impeller. The mean intersection radius is used as the 

definition of the horizontal division of the vessel.  

6.4.3.5 Circumferential division 

In order to simulate the clockwise mixing of liquid when seen from above, the vessel is divided in four 

wedges separated by the planes made up of the two pairs of baffles. This is illustrated as the blue 

dotted cross in Figure 6.3 a). 

Combining the division from Step 2 and Step 4 the full compartmentalization is complete and the 

compartment structure can be visualized as seen in Figure 6.6 
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a) b) 

Figure 6.6 - a) Hypothesis driven compartment model structure. The vessel is divided into 7 
horizontal and 2 vertical zones as well as 4 “wedges” produced by the baffles. The resulting model 
has 56 compartments. b) 2D representation of flows in 14 compartments in one “wedge”. The figure 
is not to scale. 

The structure shown in Figure 6.6 is intuitive and similar to previous reported compartment structures 

for reactors containing multiple RDT’s [16]. Contrary to previous attempts, this model structure is 

deducted from numerical simulations of the hydrodynamics and the position of each compartment is 

chosen in order to make sure that the flow is indeed uniform at the interface. A detailed definition of 

each flow and compartment in the model is described in the supplementary material of this 

manuscript. 

6.4.3.6 Step 5 – flow quantification 

The fifth and final step of the methodology consists of determining the liquid flow between each of 

the identified compartments resulting from Step 1 to 4. The unidirectional flow on every surface in 

every compartment is determined as the area integral of the velocity perpendicular to the surface. 

 𝐸𝐸 = ∫ ∫ 𝑣𝑣𝑝𝑝 𝑑𝑑𝑥𝑥1 𝑑𝑑𝑥𝑥2 ⋅ 𝜌𝜌 (6.1)  
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Where 𝐸𝐸 is a unidirectional mass flow, 𝑣𝑣𝑝𝑝 is the velocity perpendicular to the given surface, 𝑥𝑥1 and 𝑥𝑥2 

are the dimensions suspending the surface and 𝜌𝜌 is the liquid density. The integration is carried out in 

ANSYS CFD-POST, where each interface is defined in the reactor. The data is exported as .csv files to 

be used in MATLAB for further analysis.  

The described methodology is in this work applied to a single-phase stirred tank equipped with 

Rushton turbines, but it is equally applicable to any geometry and also for multiphase systems. The 

circumferential division of the vessel is carried out assuming rotational symmetry in the investigated 

case. Other geometries might require an investigation of the uniformity of the fluid flow in the 

circumferential direction, which should be done along the lines used in Step 1 and 3.  
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6.5 Results 

The experimentally determined tracer profiles are in this section compared with the three model 

methods described in this work. The ability to predict mixing time has previously been used as a 

measure to benchmark hydrodynamic models, being it network-of-zones, CFD or tanks in series models 

[8]. However, if the aim of the models is to ultimately describe process kinetics, such as substrate 

addition or species mixing, a more rigorous measure should be adopted. In this work the models have 

been benchmarked by comparing the predicted and measured pH tracer profile from the time of 

injection to homogeneous mixing. This is a demanding measure for such models, and maximizes the 

utilization of the collected data.  

6.5.1 4+1 compartment model 

The interchange flows between the four main compartments were estimated through an optimization 

algorithm based on the tracer response for all agitation speeds and pulse positions. The experimental 

setup contained five pH sensors, but the model only contains four bulk compartments, which meant 

that the two top sensors (one and two) are combined in the top compartment. This is described in 

Table A2 in the supplementary materials. The resulting model outputs are summarized in Figure 6.7. 

 

a) 

 

b) 

Figure 6.7 -  Experimental and simulated tracer response curve for medium agitation using top (a) 
and bottom dosing (b). Solid lines indicate the model simulations and points depict experimental 
data.   Sensor 1,   sensor 2,  sensor 3,  sensor 4 and  sensor 5. The experimental data for the 
sensors is shown an average with error bars corresponding to one standard deviation. 
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Figure 6.7 a) shows that the 4+1 compartment model generally has the ability to recreate the tracer 

profiles of the sensors in the reactor following a three second tracer dose. The fact that the fitted 

model corresponds well to the experimental data confirms the hypothesis of compartmentalization in 

reactors with multiple Rushton disc turbines.  

6.5.2 Hypothesis driven compartment model 

The hypothesis based compartment method resulted in 56 bulk compartments and a feed 

compartment, where interchange flows between compartments were calculated from CFD 

simulations. The predictive ability of the model is evaluated in Figure 6.8, where the tracer response 

from a top and bottom pulse is compared with simulations.  

 

a) 

 

b) 

Figure 6.8 - Measured and simulated tracer response from a top a) and bottom b) pulse. The 
hypothesis driven compartment model output is shown as a solid line and the data are shown as 
points.  Sensor 1,   sensor 2,  sensor 3,  sensor 4 and  sensor 5. The experimental data for the 
sensors is shown an average with error bars corresponding to one standard deviation. 

Following a top pulse, the tracer trajectory of the sensors one, two, four and five is well represented 

by the model as shown in Figure 6.8a). Comparing to the 4+1 compartment model, the response of 

sensor one and two are in the hypothesis driven approach two separate outputs. The overshoots of 

the bottom two sensors as a consequence of dosing a pulse in the bottom of the reactor, as depicted 

in Figure 6.8b), are described well by the model. Generally, the developed model describes the 

transient behavior of tracer addition in both top and bottom of the reactor very well for all five sensors, 

and the deviations apparent in Figure 6.8 are mainly small parallel shifts of the response profiles. This 

indicates that the developed model is able to recreate the major trends of the hydrodynamics 

occurring in the bioreactors.  
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6.5.3 CFD model  

In order to benchmark the hypothesis driven methodology, the underlying CFD models ability to 

represent the dynamic tracer profile is evaluated against the measured values from a top and bottom 

pulse. The tracer profiles from the CFD simulations, shown in Figure 6.9, are evaluated in the node 

closest to the physical position of each sensor in the bioreactor. 

 

a) 

 

b) 

Figure 6.9 -  Measured and predicted values of tracer response following a three-second pulse in the 
top a) and bottom b) of the reactor. The simulations are shown as a solid line and points depict the 
measurements.   Sensor 1,   sensor 2,  sensor 3,  sensor 4 and  sensor 5. The experimental 
data for the sensors is shown an average with error bars corresponding to one standard deviation. 

The CFD simulations suggest a larger overshoot of the tracer concentration than observed 

experimentally for both top and bottom feeding as seen in Figure 6.9 a) and b).  The tracer response 

of sensor three is well described by the CFD simulations in the case of top and bottom dosing. The 

overshoot witnessed in the sensor response close to the feeding point is more pronounced than for 

the other methods investigated above. This is most likely caused by the fact that the dosing of tracer 

is assumed to be a perfect pulse. The 4+1 compartment method and the hypothesis driven approach 

both include a dosing compartment, which can mitigate the imperfections of the experimental pulse 

dosing, which took 3 seconds in total.  

6.5.4 Comparing the models 

In order to compare the performance of the different modelling methods across the different 

conditions investigated the root mean square error (RMSE) between measurements and predictions 

were calculated for all conditions. 
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𝑅𝑅𝑅𝑅𝑅𝑅𝐸𝐸 = ��𝐶𝐶𝐴𝐴,𝑗𝑗,𝑘𝑘

𝑒𝑒𝐴𝐴𝑝𝑝(𝑡𝑡) − 𝐶𝐶𝐴𝐴,𝑗𝑗,𝑘𝑘
𝑠𝑠𝐴𝐴𝑠𝑠(𝑡𝑡)�

2
 (6.2)  

 

where 𝐶𝐶𝐴𝐴,𝑗𝑗,𝑘𝑘(𝑡𝑡) is the simulated or experimental concentration of tracer measured in compartment 

𝑖𝑖, 𝑗𝑗,𝑘𝑘 at time 𝑡𝑡. This measure was scaled by the summated error from the 4+1 compartment model at 

medium agitation intensity. Furthermore, the RMSE for each condition is scaled by the associated 

mixing time to avoid bias of faster mixing conditions. A summary of this analysis is shown in Table 6.1. 

Table 6.1 - Comparison of compartment model performance based on summed RMSE of each model 
at different agitation intensities. The summed RMSE values are scaled based on the error of medium 
agitation of the 4+1 compartment model. 

 Low agitation Medium agitation High agitation 

4+1 Compartments 1.37 1.00 0.78 

56+1 Hypothesis driven 1.54 1.10 0.95 

CFD 3.96 2.96 1.91 

 

Table 6.1 reveals that the data driven 4+1 compartment model predicts the tracer profiles of the pH 

sensors more accurately than the hypothesis driven model and the CFD simulations for all investigated 

conditions. The models are generally more accurate with increasing agitation intensity, which is likely 

caused by a movement towards ideal mixing with increasing agitation intensity. The fact that the 

simple data driven 4+1 compartment model outperforms the other model strategies is not surprising 

given the fact that the data available is optimal for such model development. Due to the large data 

pool, the interchange flows between the four bulk compartments can be estimated with minimal 

correlation, which improves the predictive capabilities. Most bioreactors described in the literature 

contain only one or two sensors, and thus the collected data would not be sufficient to identify each 

flow individually, and as a consequence the predictive ability of the model would decrease.  

The hypothesis driven compartment model is 10-12 % worse than the 4+1 compartment model for the 

investigated conditions, which is impressive given the fact that all the interchange flows between the 

56 compartments were predicted. The hypothesis driven methodology performs on par with the data 

driven 4+1 compartment in the case study investigated in this work, but if the data available would be 
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less the data driven model would perform worse. The hypothesis driven method is on the contrary less 

dependent on data and it can be assumed that the accuracy showcased here should be expected in 

other case studies.  

It is apparent from Table 1 that the CFD simulation is association with a lower accuracy than the other 

two models shown in this work. This can seems surprising since the hypothesis driven model is based 

upon the results from the CFD simulations. The majority of the error associated with the CFD 

simulations is however observed in the beginning of the tracer profiles and originates from the sensor 

that is placed closest to the feeding locations. This can be explained by the sensitivity of the tracer 

dispersion, and the fact that the compartment models both have a dosing compartment to avoid these 

overestimations.  

A comparison of the tracer profiles of each of the models and the associated experimental data is 

shown in Figure 6.10. 

  

a) b) 

Figure 6.10 - Experimental data, shown as dots, for   Sensor 1,  sensor 3 and  sensor 5 is 
compared with the hypothesis driven model (−), the 4+1 compartment model (−−) and the CFD 
model (− ⋅ −) following a pulse in the bottom a) and top b) of the reactor. The experimental data 
for the sensors is shown an average with error bars corresponding to one standard deviation. 

The performance of the different models to recreate the tracer response is summarized in Figure 6.10, 

and it is apparent that the model performance in terms of tracking the tracer trajectory is rather 

similar, with model predictions that are close to the experimental values. As mentioned above, the 

CFD simulations suggest a slightly more pronounced peak in the bottom sensors overshoot, whereas 

the compartment models provide predictions which are closer to the experimental value. The accuracy 

of the CFD simulations is similar to previous findings in smaller systems, where CFD was used to predict 
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the tracer response [17]. The model predictions of the trajectory of sensor three in Figure 10 deviates 

between the different model approaches tested, where the CFD simulations predict a faster increase 

in concentration than the experimental values, and the compartment model predicts a slower 

approach towards reaching the homogeneous concentration. For all investigated conditions the sensor 

in the middle of the tank, sensor three, has been the most difficult to represent correctly in the model. 

This could be explained by the sensors position, which is in between the middle and top impeller, which 

also places it right between two recirculation loops, and hence small changes to the position of the 

loop will greatly affect the sensor response. The accuracy of the model prediction is also affected by 

the fact that each pH sensor is not located in the centre of each compartment, this affects how well 

each sensor represents the average concentration in its corresponding compartment.  In order to fully 

confirm this more experimental work would be required, in which the sensor could be moved slightly 

up or down.  

The dosing compartment introduced in the compartment models developed in this work is a necessary 

tool required to characterize the feeding of tracer, since the experimental dosing is not ideal. The 

measured signal by the five pH sensors is highly dependent on the exact feeding characteristic 

developed by the dosing pump and tubing, and since the model is required to recreate this pH signal 

in great detail the dosing compartment is relevant. Depending on the feeding system, the interchange 

flow between the dosing compartment and the compartment model will change, and this variable is 

therefore specific for the setup used, and requires tuning.   

Complex phenomena occurring in a stirred bioreactor, which is not feasible or reasonable with CFD 

simulations, can be investigated using the developed compartmentalization method. This has been 

showcased before with regards microbial population heterogeneity using population balance models 

[18,19]. A simplified compartment model that represents the hydrodynamics of the bioreactor can 

furthermore be used to study multidimensional populations balance models, which currently is not 

reasonable in combination with common CFD tools [20]. A particular interesting topic is the developing 

field of mechanistic fermentation models for monitoring and control of bioprocesses [21]. Correct 

representation of the hydrodynamics in the fermenter could eliminate the extended use of process 

time delays used in advanced controllers. In particular, if the manipulated variable is substrate or 

nutrient feeding the application of an advanced hydrodynamic model appears attractive. 

Constructing compartment models based on a hypothesis of the hydrodynamics in the process does 

not only apply for bioreactors. Processes that rely on complex phenomena and dynamics occurring at 

a large scale could also be subject to the methodology described in this work. 
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6.5.5 Experimental recommendations  

Placement of sensors in a mixing experiment is a balance between systematically positioning sensors 

with equal distance to avoid any bias on sensor placement on one hand, and placing sensors in critical 

positions where a bulk mixing zone is expected and thus avoiding incorrect assumptions when 

comparing sensors and compartments in the mathematical models on the other hand. In the 

experimental data used in this work, sensors were positioned systematically and sensors and tracer 

dosing points were placed on the same mounting bracket since this was a practical solution. The tracer 

dosing is highly dependent on location in the vessel, which is also the reason why a feeding 

compartment is used to simulate the addition of tracer to the bulk liquid. In future work, tracer 

addition will be designed to mimic the substrate addition point in the vessel, to make sure that any 

assumptions used for tracer feed addition will also apply to substrate addition to get a better 

agreement between the pure mixing model and the complete reactor model.  

6.6 Conclusion 

Pilot scale mixing data was benchmarked against a RANS CFD model and a data driven four 

compartment model, representing a highly theoretic and empirical modelling approach respectively. 

Both models were able to describe the mixing data satisfactory but the models rely on either large 

amounts of computational effort or experimental data to be executed. Based on the CFD model, a 

novel methodology for developing compartment models that describe the hydrodynamics in a pilot 

scale bioreactor has been proposed and evaluated. The methodology relies upon conventional CFD 

methods to determine the radial and axial placement of each compartment by evaluating the 

directional change in axial and radial flow in the bioreactor. 

The hypothesis driven methodology has proven to be within 15 % of the performance of a purely data 

driven four-compartment approach for the bioreactor equipped with three Rushton turbines and five 

pH sensors. 

The hypothesis driven model increases the number of compartments compared to the data driven 

model, which enables the model to simulate three dimensional hydrodynamic flow, while still limiting 

the computational requirements to include simulation of reaction- and mass transfer kinetics. The 

model only uses one empirically fitted parameter, which limits the required experimental data 

significantly.  

The methodology developed in this work is applicable to other bioreactor geometries, but also to other 

processes such as crystallization, wastewater treatment or combustion. The simplified hydrodynamic 
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model has the potential to serve as a platform for implementation of complex phenomena, which 

would not be computationally feasible in standard CFD software.  

6.7 Acknowledgements 

The authors would like to acknowledge Nanna Petersen Rønnest and Martin Peter Breil who have 

contributed directly to the project.  

This project has received funding from Novo Nordisk A/S, the Technical University of Denmark (DTU) 

and Innovation Fund Denmark in the frame of the Strategic Research Center BIOPRO2 (BIObased 

PROduction: TOwards the next generation of optimized and sustainable processes). 

  



134  Model Scale down  

6.8 References 

[1] A.W. Nienow, Hydrodynamics of Stirred Bioreactors, Appl. Mech. Rev. 51 (1998) 3. 

doi:10.1115/1.3098990. 

[2] N.M. Oosterhuis, N.W. Kossen, Dissolved oxygen concentration profiles in a production-scale 

bioreactor., Biotechnol. Bioeng. 26 (1984) 546–550. doi:10.1002/bit.260260522. 

[3] P. Vrábel, R.G.J.M. Van der Lans, F.N. Van der Schot, K.C. a M. Luyben, B. Xu, S.O. Enfors, CMA: 

Integration of fluid dynamics and microbial kinetics in modelling of large-scale fermentations, 

Chem. Eng. J. 84 (2001) 463–474. doi:10.1016/S1385-8947(00)00271-0. 

[4] A. Zhang, V.L. Tsang, R. Korke-Kshirsagar, T. Ryll, Effects of pH probe lag on bioreactor mixing 

time estimation, Process Biochem. 49 (2014) 913–916. doi:10.1016/j.procbio.2014.03.005. 

[5] P.A. Vanrolleghem, G. Sin, K. V. Gernaey, Transient response of aerobic and anoxic activated 

sludge activities to sudden substrate concentration changes, Biotechnol. Bioeng. 86 (2004) 

277–290. doi:10.1002/bit.20032. 

[6] M. Reuss, Oxygen Transfer and Mixing: Scale-Up Implications, Biotechnol. Set. (2001) 185–217. 

doi:10.1002/9783527620999.ch10b. 

[7] R. Mann, R.A. Williams, T. Dyakowski, F.J. Dickin, R.B. Edwards, Development of mixing models 

using electrical resistance tomography, Chem. Eng. Sci. 52 (1997) 2073–2085. 

doi:10.1016/S0009-2509(97)00035-3. 

[8] C. Bach, J. Yang, H. Larsson, S.M. Stocks, K. V Gernaey, M.O. Albaek, U. Krühne, Evaluation of 

mixing and mass transfer in a stirred pilot scale bioreactor utilizing CFD, Chem. Eng. Sci. 171 

(2017) 19–26. doi:10.1016/j.ces.2017.05.001. 

[9] P. Moilanen, M. Laakkonen, J. Aittamaa, Modelling fermenters with CFD, Comput. Aided Chem. 

Eng. 20 (2005) 709–714. doi:10.1016/S1570-7946(05)80240-8. 

[10] F. Bezzo, S. Macchietto, C.C. Pantelides, General hybrid multizonal/CFD approach for bioreactor 

modeling, AIChE J. 49 (2003) 2133–2148. doi:10.1002/aic.690490821. 

[11] A. Delafosse, M.L. Collignon, S. Calvo, F. Delvigne, M. Crine, P. Thonart, D. Toye, CFD-based 

compartment model for description of mixing in bioreactors, Chem. Eng. Sci. 106 (2014) 76–85. 

doi:10.1016/j.ces.2013.11.033. 



6.8 References 135 
 
 

135 
 

[12] F. Bezzo, S. Macchietto, A general methodology for hybrid multizonal/CFD models: Part II. 

Automatic zoning, Comput. Chem. Eng. 28 (2004) 513–525. 

doi:10.1016/j.compchemeng.2003.08.010. 

[13] B.R. Poulsen, J.J.L. Iversen, Mixing determinations in reactor vessels using linear buffers, Chem. 

Eng. Sci. 52 (1997) 979–984. doi:10.1016/S0009-2509(96)00466-6. 

[14] R. Manfredini, V. Cavallera, L. Marini, G. Donati, Mixing and oxygen-transfer in conventional 

stirred fermenters, Biotechnol. Bioeng. 25 (1983) 3115–3131. doi:10.1002/bit.260251224. 

[15] C. Haringa, A.T. Deshmukh, R.F. Mudde, H.J. Noorman, Euler-Lagrange analysis towards 

representative down-scaling of a 22 m^3 aerobic S. cerevisiae fermentation, Chem. Eng. Sci. 

(2017). doi:10.1016/j.ces.2017.01.014. 

[16] P. Vrábel, R.G.J.M. Van Der Lans, K.C.A.M. Luyben, L. Boon, A.W. Nienow, Mixing in large-scale 

vessels stirred with multiple radial or radial and axial up-pumping impellers: Modelling and 

measurements, Chem. Eng. Sci. 55 (2000) 5881–5896. doi:10.1016/S0009-2509(00)00175-5. 

[17] A. Delafosse, M.L. Collignon, S. Calvo, F. Delvigne, M. Crine, P. Thonart, D. Toye, CFD-based 

compartment model for description of mixing in bioreactors, Chem. Eng. Sci. 106 (2014) 76–85. 

doi:10.1016/j.ces.2013.11.033. 

[18] J. Morchain, J.C. Gabelle, A. Cockx, Coupling of biokinetic and population balance models to 

account for biological heterogeneity in bioreactors, AIChE J. 59 (2013) 369–379. 

doi:10.1002/aic.13820. 

[19] J. Morchain, J.C. Gabelle, A. Cockx, A coupled population balance model and CFD approach for 

the simulation of mixing issues in lab-scale and industrial bioreactors, AIChE J. 60 (2014) 27–40. 

doi:10.1002/aic.14238. 

[20] R.L. Fernandes, M. Carlquist, L. Lundin, A.-L. Heins, A. Dutta, S.J. Sørensen, A.D. Jensen, I. 

Nopens, A.E. Lantz, K. V. Gernaey, Cell mass and cell cycle dynamics of an asynchronous budding 

yeast population: Experimental observations, flow cytometry data analysis, and multi-scale 

modeling, Biotechnol. Bioeng. 110 (2013) 812–826. doi:10.1002/bit.24749. 

[21] L. Mears, S.M. Stocks, M.O. Albaek, G. Sin, K. V. Gernaey, Mechanistic Fermentation Models for 

Process Design, Monitoring, and Control, Trends Biotechnol. 35 (2017) 914–924. 

doi:10.1016/J.TIBTECH.2017.07.002. 



  

 



Chapter 7 

Conclusions and future perspectives 
 

Following each chapter in this thesis, the main conclusions have been presented in the context of that 

chapter. In this chapter, the conclusions are presented in a broader perspective together with 

suggestions for future work. 

7.1 Modelling  

Hydrodynamics play a key role in fermentation process performance, and understanding of the 

relationship between hydrodynamics and microbial kinetics is essential in order to avoid unwanted 

process heterogeneities. In terms of understanding and visualizing the hydrodynamics inside aerated 

fermentation processes, this thesis has shown that CFD is a valuable tool. The predicted 

hydrodynamics and mass transfer characteristics have been evaluated for an aerobic Trichoderma 

reesei fermentation process at pilot and full scale. The mass transfer predictions of the commercial 

CFD software combined with literature correlations have proven accurate and are comparable to data 

driven empirical correlations. The combination of CFD and microbial kinetics has massive potential in 

both optimization of current processes and introduction of new processes with challenging traits. 

The oxygen concentration prediction in this work is based upon a measurement of the oxygen uptake 

rate from the industrial scale fermentation. In order to avoid this dependency on measurements or 

assumptions of microbial uptake, models of microbial kinetics have to be developed. The improved 

modelling capabilities using various versions of CFD simulations demand greater insight into the 

microbial physiology and an improved understanding of how the microorganism adapts to changing 

environments. Some progress has been made for certain microorganisms [1,2], but in order to 

capitalize fully on the improved computational efforts more work should be carried out. The derived 

CFD models and correlations can be used as a basis to also implement biological models to assess 

substrate dispersion and uptake rates. Emphasis should however be put on using e.g. regime analysis 

as a simplification tool to maintain only the necessary complexity of the microbial growth kinetics in 
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the models, because the computational cost of introducing additional complexity in a full- scale 

simulation is proportional to the number of nodes in the simulation. 

A hypothesis driven compartmentalisation method has been developed and applied to a pilot scale 

bioreactor with satisfactory results. This case study illustrates that in order to leverage the time and 

computational effort associated with simulations of production scale fermentation processes 

modelling scale-down should be considered. The understanding achieved from the detailed numerical 

simulations can be condensed to a reduced number of compartments with unidirectional flow that can 

serve as a simulation platform for process development. The reduced number of compartments 

enables the incorporation of other models against a reasonable computational cost. For example, a 

compartment model can be combined with an incorporation of a population balance models that can 

account for the population heterogeneity in the fermenter [3], or advanced process control strategies 

could be incorporated that could improve substrate feed addition [4]. Additionally, the simplification 

of the hydrodynamic model enables more users to apply the model: users without knowledge of CFD, 

but only basic MATLAB programming knowledge, can easily apply the compartment model, thereby 

increasing the impact of the CFD simulations significantly. 

7.2 Measurements 

Validation of the numerical methods remains a challenge because spatially resolved measurements of 

process variables are challenging and often unfeasible in industrial systems, such as a Trichoderma 

reesei fermentation. The application of multiple independent measurements such as, oxygen transfer 

rate, gas hold-up, gassed power draw and carbon evolution rate could, if available simultaneously, 

serve as an indirect validation of the simulations. These measurements are averaged over the volume 

of the fermenter and do not serve as true spatially resolved measurements of the system, which could 

be a problem at large scale. 

Technology exists that is able to capture the distribution of bubble size during an industrial 

fermentation as highlighted in this thesis. The presented technology can assist in acquiring increased 

process understanding and display fundamental relationships between process conditions and gas-

liquid interactions. Additionally, the sensor can also serve as an advanced tool in process monitoring 

to enable on-line assessment of the gas-liquid mass transfer. The fundamental understanding of the 

relationship between the bubble size distribution and process conditions can assist in developing 

models for CFD simulations of aerobic fermentation processes, which rely greatly on assumptions 

regarding the size of gas bubbles. Employing the developed technology on a routine basis in industrial 
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systems will inevitably give rise to additional applications of the developed optical measurement 

method. 

The impact of this information should be assessed by simultaneously measuring the gas hold-up and 

thereby determining the fundamental correlations between mass transfer coefficient 𝑘𝑘𝐿𝐿, the 

interfacial area 𝑎𝑎 and the process conditions such as power input, gas flow rate and viscosity. 

Furthermore, the knowledge of these phenomena and their dependency on process conditions could 

be compared with numerical predictions of the bubble break-up and coalescence in fermentation 

media.  

Experimental data of process gradients from industrial scale are scarce in the open literature, because 

of the concern about protecting intellectual property of companies on the one hand, and technical 

difficulties associated with obtaining the measurements on the other hand. Experimental data, and in 

particular spatially resolved experimental data, do not alone improve the understanding of the origin 

of process gradients, but merely identify whether they occur. In order to capitalise on empirical 

spatially resolved information of process variables, advanced models have to accompany the 

measurements, and this combination can determine the origin of the process gradients. Advanced 

sensor technologies, such as free-floating particles, enabling direct measurements of the flow pattern 

in the fermenters could reduce the requirements of advanced modelling to accompany measurements. 

Naturally, the data obtained from the measurements would require some modelling to interpret and 

analyse the data, but probably not to the extent of requiring advanced CFD simulations. The industrial 

viability of these technologies is still unknown, but the research potential for such investigations is 

obvious.  
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Appendix A 
 
Supporting information for Chapter 3 

This appendix contains information about the boundary conditions applied in the model described in 

the manuscript. Furthermore, the mesh sensitivity of the model and the prediction of turbulent 

impeller power number are described. 

Boundary conditions and solver settings 

The walls in the model were modeled with a no slip condition for liquid and a free slip condition for 

gas in order to distinguish between the interactions of the different fluids with the walls in the 

geometry. The baffles in the fermenter were simulated as 0-thickness walls which follows the 

guidelines from Gunyol and Mudde (2009) [1]. A rotational periodicity was applied to the symmetry 

plane in the geometry allowing the simulation of only half of the reactor. The top of vessel was 

modelled as an opening allowing only the liquid to reenter the domain in order to represent the 

dynamic fluid behavior at the top of the liquid surface. The rotation of the impeller was captured in 

the model using a multiple reference frame interface as shown in Figure 1 and similar to other previous 

studies [2]. The air was introduced in the sparger as mass flow rate normal to the sparger surface. The 

sparger was supplied with a no slip condition for the continuous phase. 

The solution was set up using a two stage scheme. Initially the solution was achieved using a first 

advection scheme followed by a high resolution scheme when the flow was fully developed. This 

decreased the computational time without losing the accuracy. The convergence was achieved using 

a time step of 0.001 s in order to avoid numerical instabilities.  

Mesh sensitivity 

In order to make sure that the simulations were independent on the mesh configuration a mesh 

sensitivity study was performed. A change less than 5 % in mixing time was used as the acceptable 

threshold for mesh independent results. Three different mesh densities were tested and the results 

are summarized in Table A.1 
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Table A.1 - Result of mesh sensitivity study covering a coarse, medium and fine mesh with varying 
element density. 

Mesh Element density [#/L] t95 [s] Difference [%] 

Coarse 914.6 9.1 17 

Medium 2017.3 8.15 4.5 

Fine 6475.8 7.8 - 

 

The simulations exhibit some mesh sensitivity in particular when the coarse mesh is compared with 

the fine mesh, which results in a 17 % difference in simulated mixing time. It is apparent from Table 

A.1 that the medium mesh density satisfies the threshold in the compromise between computational 

time and simulation accuracy. 

 Power number prediction 

The power input is a key performance indicator of stirred vessels. This is apparent from the correlations 

of performance parameters such as mixing time, kLa and bubble size, which all are dependent on the 

power supplied to the vessel. Hence it is essential that the developed model is able to predict the 

power input to the fermenter for a range of conditions. The power input was computed from the 

simulation by evaluating the torque delivered by the impeller for relevant Reynolds numbers. The 

measured and predicted power number are both shown in Figure A.1. 
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Figure A.1 - Comparison of measured and simulated power number in the turbulent regime. The 
measured power number is based on previously published results by [3]. 

The deviation for the investigated conditions in the turbulent region is less than 12.5 %. This difference 

shows that the developed model can predict the power input to the vessel to an extent similar to other 

literature on power input to bioreactors [4]. 
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Supporting information for Chapter 4 

 An important aspect of quantifying the size of detected objects from the captured images is a 

calibration method that can convert pixels into millimeters in a robust manner as well as validating 

that the method actually estimates the particle sizes of concern. A standard procedure of calibrating 

optical methods of size detection is using fixed size glass beads in a controlled environment [5]. The 

detection method employed in this work was calibrated using 1 mm glass bead from VWR. The 

calibration was carried out in a 250 mL stirred system operating at 1.9 kW/m3. The agitation in the lab 

scale system induced some gas entrainment from the surface introducing a fraction of small objects in 

the calibration. The resulting size distribution is shown in Figure B.1   

Figure B.1 – Probability density function of number, area and volume based distributions of 1 mm 
glass beads in a 250 mL stirred vessel.  

The entrained gas bubbles from the reactor surface dominates the number based BSD as seen in Figure 

B.1  resulting in a large number of objects with sizes between 0 and 10 pixels. The peak of the glass 
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beads is detectable when looking closer into the number distribution and clearly visible in the area and 

volume based size distributions.  The mode of the peak represents the average size of the detected 

glass beads, and the different modes are summarized in Table B.1. 

Table B.1 – Model of peak in number, area and volume based BSDs of 1 mm glass beads used for 
calibration of detection method. 

Distribution Mode [pixel] 

Number 40.7 

Area 41.35 

Volume 42.03 

From Table B.1 it is apparent that even though the number, area and volume distributions are 

weighted differently the mode of the peak representing the glass beads is approximately 41 pixels 

corresponding to a particle with 1 mm in diameter. The instrumental broadening, i.e. the spread of the 

peak around 41 pixels, is largely because the detected bubbles will distribute about the focus plan of 

the optical recording system.  This is of no major concern, as it is mainly interesting to observe how 

bubble size distributions compare for different process conditions that in estimating the exact 

numbers.  



Appendix C 
Supporting information for Chapter 5 

The discretisation of the fermenter volume used for the numerical simulations of the flow in Chapter 

5 was done in ICEM CFD 16.0. The geometry was divided into a rotating domain including all the 

impellers and a stationary domain comprised on the baffles, cooling coils and vessel wall. The 

stationary domain was meshed as a hexahedral mesh, and the same mesh was used for all simulations. 

Case 1 and Case 2 was discretised as a hexahedral mesh, where as Case 3 because of the complex 

impeller geometry had to be meshed using an unstructured tetrahedral routine. The mesh statistics 

are summarized in Table C.1.  

Table C.1 – Mesh density of the mesh used in the various cases investigated. 

Case Mesh density [#/m3] 

1 85 ⋅ 103 

2 130 ⋅ 103 

3 129 ⋅ 103 

The mesh densities shown in Table C.1 are comparable with other studies of industrial two-phase 

bioreactors. Haringa et al (2017) [6] simulated a 22 m3 aerobic fermenter with a mesh density of 163 ⋅

103 #/m3 and Morchain et al (2014) [7] simulated a 70 m3 aerobic fermenter with a mesh density of 

142 ⋅ 103 #/m3 similar to the cases studied in this work. The mesh density of Case 1 is lower than the 

other cases because of the simplicity of the four Rushton turbines investigated in that scenario.  
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Supporting information for Chapter 6 

4 + 1 Compartment model 

The compartment model is based on the assumption that the radial flow from each of the 3 RDTs 

divides the bulk liquid in the bioreactor into 4 compartments. Each compartment is assumed ideally 

mixed and is geometrically defined by the vessel dimensions as well as the position of the impellers. 

Neighboring compartments are connected by exchange flows (EFi), representing the liquid flow 

between the compartments. Each of the exchange flows are bidirectional. In addition to the 4 main 

compartments making up the bulk liquid in the vessel, a feed compartment is added to the model. The 

feed compartment is an attempt to simulate the initial mixing of liquid added to the vessel, accelerating 

the added plume of liquid into the bulk flow in the reactor. The feed compartment connected to the 

compartment where the tracer is added (compartment 1 for simulating top dosing and compartment 

4 for bottom dosing) with an exchange flow denominated feed flow (EFf). In or der to limit the number 

of parameters in the model, one value of the feed flow parameter is shared for simulating both top 

and bottom dosing.  

Figure D.1 – Diagram of bioreactor and associated compartment model. The dotted line represents 
the impeller zone division by Rushton disc turbines producing radial flow. Red arrows represent 
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exchange flows between compartments. Yellow stars represent pH sensors and green stars 
represent dosing points. Compartments are numbered (Ci) where i denominate compartment 
number or feed compartment with associated exchange flows (EFi).    

The complete list of parameters is shown in Table C.1. In the model the three exchange flows and one 

feed flow is determined empirically with the matlab function fmincon (matlab 2015b). Compartment 

volumes are calculated from vessel geometry. 

Table D.1 - Model parameters of the 4+1 compartment model 

Parameter 
name 

Description Unit Calculation method Number of 
parameter 
values in 
model 

𝑬𝑬𝑭𝑭𝒊𝒊 Exchange flow between 
compartments i and i + 1. 

[m3/s] Empirically fitted to 
experimental data 

4 

𝑽𝑽𝒊𝒊 Volume of compartment i [m3] Vessel geometry 4 
𝑽𝑽𝒇𝒇 Volume of feed compartment  [m3] Small pseudo value 1 
𝑪𝑪𝒊𝒊 Normalized tracer 

concentration in compartment 
i 

[U/m3] Simulated value 4 

𝑪𝑪𝒇𝒇 Normalized tracer 
concentration in feed 
compartment 

[U/m3] Simulated value 1 

When comparing model simulations to experimental data, each sensor reading in the dataset are 

compared to the compartment corresponding to the physical location of the sensor. This is described 

in Table D2. Since the sensors are arranged systematically with even spacing in the vessel. The sensors 

are not all positioned in the center of their corresponding compartment which is indicated in Figure 

D.1. This is a cause of error in the model since the sensors are assumed to represents the average pH 

in their corresponding compartment. 
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Table D.2 - Sensor compartment coupling 

Sensor # Compartment # 

1 1 

2 1 

3 2 

4 3 

5 4 

Table D.3 shows the mass balances that make up the 4+1 compartment model with bottom dosing. 

The system of equations is solved with the ode15s solver (matlab 2015b). The model is solved in two 

parts with and without the addition of tracer to the feed compartment. The set of equations in Table 

D.3 represents the model after the simulated addition of tracer. The tracer is added to the mass 

balance for cf as a linear flow over three seconds.    

TableD.3 - 4+1 model mass balance equations 

𝒅𝒅𝒄𝒄𝟏𝟏
𝒅𝒅𝒅𝒅

= (𝑬𝑬𝑭𝑭𝟏𝟏 · 𝒄𝒄𝟏𝟏 − 𝑬𝑬𝑭𝑭𝟏𝟏 · 𝒄𝒄𝟐𝟐)/𝑽𝑽𝟏𝟏 

𝒅𝒅𝒄𝒄𝟐𝟐
𝒅𝒅𝒅𝒅

= (𝑬𝑬𝑭𝑭𝟏𝟏 · 𝒄𝒄𝟏𝟏 + 𝑬𝑬𝑭𝑭𝟐𝟐 · 𝒄𝒄𝟑𝟑 −  𝑬𝑬𝑭𝑭𝟏𝟏 · 𝒄𝒄𝟐𝟐 − 𝑬𝑬𝑭𝑭𝟐𝟐

· 𝒄𝒄𝟐𝟐)/𝑽𝑽𝟐𝟐
𝒅𝒅𝒄𝒄𝟑𝟑
𝒅𝒅𝒅𝒅

=  (𝑬𝑬𝑭𝑭𝟐𝟐 · 𝒄𝒄𝟐𝟐 + 𝑬𝑬𝑭𝑭𝟑𝟑 · 𝒄𝒄𝟒𝟒 −  𝑬𝑬𝑭𝑭𝟐𝟐 · 𝒄𝒄𝟑𝟑 − 𝑬𝑬𝑭𝑭𝟑𝟑

· 𝒄𝒄𝟑𝟑)/𝑽𝑽𝟑𝟑
𝒅𝒅𝒄𝒄𝟒𝟒
𝒅𝒅𝒅𝒅

=  (𝑬𝑬𝑭𝑭𝟑𝟑 · 𝒄𝒄𝟑𝟑 + 𝑭𝑭𝑭𝑭𝟏𝟏 · 𝒄𝒄𝐟𝐟 −  𝑬𝑬𝑭𝑭𝟑𝟑 · 𝒄𝒄𝟒𝟒 − 𝑭𝑭𝑭𝑭𝟏𝟏

· 𝒄𝒄𝟒𝟒)/𝑽𝑽𝟒𝟒
𝒅𝒅𝒄𝒄𝐟𝐟
𝒅𝒅𝒅𝒅

=  (𝑭𝑭𝑭𝑭𝟏𝟏 · 𝒄𝒄𝐟𝐟 −  𝑭𝑭𝑭𝑭𝟏𝟏 · 𝒄𝒄𝟒𝟒)/𝑽𝑽𝒇𝒇 

Hypothesis driven compartment model  

The hypothesis driven model consists of 56 main compartments representing the bulk liquid in the 

vessel, as well as one feed compartment representing the plume formed by liquid added to the vessel. 

The number of main compartments and geometric position of each compartment division is based on 



156 In situ bubble size distributions in fed-batch fermentations 

the hypothesis driven model methodology as described in the materials and methods section. The 

model describes the liquid flow in the vessel in three dimensions.   

As described in the hybrid model methodology, the model consists of two parts. 

1) A systematic division of the bulk liquid into 56 individual compartments consisting of:

a. 6 horizontal divisions creating 7 compartments in the height of the vessel

b. 1 radial division creating an inner and an outer cylinder

c. 4 circumferential divisions creating 4 wedges.

2) The unidirectional flow of liquid going to and from each compartment and its neighboring

compartments.

a. 14 circumferential flows (FCi,j)

b. 6 inner vertical and 6 outer vertical flows that are averaged to 6 vertical flows (FVi)

c. 7 Horizontal flows (FHi) based on the vertical flows.

d. 1 Feed flow from feed compartment.

Figure 6.2 a) displays a three dimensional rendering of the model compartmentalization. Figure D.2 

displays a schematic illustration of the compartments and parameters in the hypothesis driven model. 
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a) b) 

Figure D.2: a) Upside-down view of the four wedges in the model compartments are denominated 
(Ci,j,k) where i specify vertical position, j specify horizontal position and k specify wedge number. Red 
arrows indicate the outer circumferential flow (FCi,1). Green arrows indicate inner circumferential 
flow (FCi,2). Figure A2 b) cut-through view of one wedge in the model. Orange arrows indicate vertical 
flows calculated with the CFD software (FVi). Blue arrows indicate horizontal flows (FHi).     

The CFD software is only able to calculate flow over flat compartment interphases. These include 

vertical and circumferential flows. The value of each vertical flow is calculated by the CFD software as 

inner and outer components. Since these values are almost identical, FVj is treated as one average 

value for the inner and outer component of the vertical flow (𝐹𝐹𝐹𝐹𝑖𝑖 = �𝐹𝐹𝐹𝐹𝑖𝑖,𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 +  𝐹𝐹𝐹𝐹𝑖𝑖,𝑖𝑖𝑖𝑖𝑖𝑖𝑜𝑜𝑜𝑜�/2). This 

is done in order to avoid numerical errors in the model. 

Since horizontal flows pass through a curved compartment interphase, these are not calculated 

directly by the CFD software. The horizontal flows are instead calculated manually, based on the flow 

assumptions show in Figure D.2 b). The horizontal flows are calculated as shown in Table D.4.  

FCi,1 

FCi,2 

Ci,j,1 Ci,j,2 

Ci,j,4 Ci,j,3 

FH1 

FH2 

FH3 

FH4 

FH5 

FH6 

FH7 

FV1 FV1 
C1,j,k

C2,j,k

C3,j,k

C4,j,k

C5,j,k

C6,j,k

C7,j,k

Ci,2,kCi,1,k

FV2 FV2 
FV3 FV3 

FV4 FV4 
FV5 FV5 

FV6 FV6 
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Table D.4 - Calculation of horizontal flows. 

𝑭𝑭𝑭𝑭𝟏𝟏 =  𝑭𝑭𝑽𝑽𝟏𝟏 

𝑭𝑭𝑭𝑭𝟐𝟐 =  𝑭𝑭𝑽𝑽𝟏𝟏 + 𝑭𝑭𝑽𝑽𝟐𝟐 

𝑭𝑭𝑭𝑭𝟑𝟑 =  𝑭𝑭𝑽𝑽𝟐𝟐 + 𝑭𝑭𝑽𝑽𝟑𝟑 

𝑭𝑭𝑭𝑭𝟒𝟒 =  𝑭𝑭𝑽𝑽𝟑𝟑 + 𝑭𝑭𝑽𝑽𝟒𝟒 

𝑭𝑭𝑭𝑭𝟓𝟓 =  𝑭𝑭𝑽𝑽𝟒𝟒 + 𝑭𝑭𝑽𝑽𝟓𝟓 

𝑭𝑭𝑭𝑭𝟔𝟔 =  𝑭𝑭𝑽𝑽𝟓𝟓 + 𝑭𝑭𝑽𝑽𝟔𝟔 

𝑭𝑭𝑭𝑭𝟕𝟕 =  𝑭𝑭𝑽𝑽𝟔𝟔 

In a similar fashion as used in the 4+1 compartment model. A feed compartment and corresponding 

feed flow are introduced to the model in order to simulate the delay between a tracer is added to the 

liquid and the tracer plume is accelerated into the bulk liquid flow in the vessel. The volume of the 

feed compartment is assumed small and the feed flow is empirically fitted to the experimental data 

using the function fmincon (matlab 2015b)   

Sensor compartment coupling 

As with the 4+1 compartment model, pH sensors are coupled to the compartment closest to its 

physical location in the vessel. Sensor data is compared to compartments as shown in Table D5. Tracer 

dosing is added to the wedge 90° downstream of the sensor location. In the experimental set up, 

sensors where located in the same wedge as the tracer addition, but this was altered in the model 

since it turned out that the a sensor located 180° downstream from the tracer addition point (data not 

included in this work) responded to a pulse addition before the sensor located in the same wedge as 

the tracer addition point. It was thus shown experimentally that a pulse mixes into the compartment 

downstream of the pulse addition point, instead of the immediate vicinity of the addition point. This 

is an important point in further experimental designs. Table D.6 shows the tracer addition 

compartments.  
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Table D.5 - Sensor/compartment coupling 

Sensor # Compartment # 

1 C1,1,1 

2 C2,1,1 

3 C3,1,1 

4 C5,1,1 

5 C6,1,1 

Table D.6 - Dosing/compartment coupling 

 Dosing point Compartment # 

Top C1,1,2 

Bot C6,1,2 

Table D.7 displays the complete list of parameters in the hypothesis driven model. Only the feed flow 

in this model is empirically fitted to experimental data. The rest of the parameters are calculated with 

the CFD software and from vessel geometry. 
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Table D.7 - Total number of parameters in the hypothesis driven compartment model. 

Parameter 

name 

Description Unit Calculation method Number of 

parameter values 

in model 

𝑭𝑭𝒊𝒊 Vertical division [m] Step 2 in methodology 6 

𝑹𝑹 Radial division [m] Step 4 in methodology 1 

𝑾𝑾𝒋𝒋 Circumferential 

division 

[degree] Geometrical assumption 4 

𝑭𝑭𝑽𝑽𝒊𝒊 Vertical flow rate [kg/s] Step 5 in methodology 6 

𝑭𝑭𝑪𝑪𝒊𝒊,𝒋𝒋 Circumferential 

flow rate 

[kg/s] Step 5 in methodology 14 

𝑭𝑭𝑭𝑭𝒊𝒊 Horizontal flow rate [kg/s] Calculated in table A4 7 

𝑪𝑪𝒊𝒊,𝒋𝒋,𝒌𝒌 Compartment 

tracer 

concentration 

[kg/m3] Ode15s (matlab 2015b) 56 

𝒄𝒄𝒇𝒇𝒇𝒇𝒇𝒇𝒅𝒅 Feed compartment 

concentration 

[kg/m3] Ode15s (matlab 2015b) 1 

𝑽𝑽𝒊𝒊,𝒋𝒋,𝒌𝒌 Compartment 

volume 

[m3] 56 

The final set of mass balance equations is solved in the same manner as the 4+1 compartment model 

using ode15s function (matlab 2015b). 
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	Resumé_final
	Resumé

	Preface_Final
	Preface

	Introduction_final
	Chapter 1
	1.1  Background
	1.1.1  The development from discovery to production

	1.2  Scope
	1.3  Thesis structure
	1.4  References


	Chapter2_final
	Chapter 2
	2.1  Abstract
	2.2  Nomenclature
	2.3  Introduction
	2.4  The effect of mixing on fermentation performance
	2.4.1  Gradients in carbon source in large scale fermenters

	2.5  Oxygen gradients in large scale fermentation processes
	2.6  The bottleneck of industrial aerobic fermentation processes
	2.7  Relationship between OTR and substrate gradients with oxygen controlled substrate feeding
	2.7.1  Case study: 100 m3 aerobic E. coli fermentation with oxygen dependent substrate addition
	2.7.2  Gradients in bubble column fermenters

	2.8  Strategies for identifying and mitigating potential gradients at large scale
	2.9  Conclusion
	2.10  References


	Chapter3_Final
	Chapter 3
	3.1 Abstract
	3.2 Nomenclature
	3.3 Introduction
	3.4 Material and Methods
	3.4.1 Tank geometry
	3.4.2 Mixing time experiments
	3.4.3 Rheological measurements
	3.4.4 Fermentation conditions
	3.4.5 Measuring kLa
	3.4.6 Model setup
	3.4.7 Mixing  simulations
	3.4.8 Mass transfer simulations

	3.5 Results and discussion
	3.5.1 Rheology
	3.5.2 Mixing
	3.5.3 Tracer experiments
	3.5.4 Mass transfer
	3.5.5 Model Sensitivity

	3.6 Conclusion
	3.7 Acknowledgments
	3.8 References


	Chapter4_Final
	Chapter 4
	4.1 Abstract
	4.2  Nomenclature
	4.3 Introduction
	4.4 Materials and methods
	4.4.1 Bioreactor configuration
	4.4.2 Endoscope and high-speed camera
	4.4.2.1 High- speed camera
	4.4.2.2 Endoscope
	4.4.2.3 Fitting with LED


	4.5 Data acquisition and analysis Sample size
	4.6 Results
	4.6.1 Number, area and volume distributions
	4.6.2 Influence of gas flowrate and power input
	4.6.3 Spread of the BSDs under different process conditions

	4.7 Discussion
	4.7.1 Effect of power input on bubble size in the context of mass transfer
	4.7.2 Potential applications of in situ measurements of BSDs
	4.7.2.1 Bioprocess monitoring

	4.7.3 Clarification of assumptions used in Computational Fluid Dynamic simulations

	4.8 Conclusion
	4.9 Acknowledgements
	4.10 References


	Chapter5_Final
	Chapter 5
	5.1 Abstract
	5.2 Nomenclature
	5.3 Introduction
	5.4 Material and methods
	5.4.1 Experimental work
	5.4.2 Numerical work
	5.4.2.1 Fermenter case studies
	5.4.2.2 Model considerations
	5.4.2.3 Microbial kinetics


	5.5 Regime analysis
	5.6  Results
	5.6.1 Gas – liquid hydrodynamics and mass transfer
	5.6.1.1 Mixing time

	5.6.2 Oxygen gradients
	5.6.3 Comparison of experimental and simulated oxygen concentrations

	5.7  Conclusion
	5.8 Acknowledgements
	5.9  References


	Chapter6_final
	Chapter 6
	6.1  Abstract
	6.2  Nomenclature
	6.3  Introduction
	6.4  Materials and methods
	6.4.1  4+1 compartment model
	6.4.2  CFD flow characterization
	6.4.3  Hypothesis driven 56+1 model
	6.4.3.1 Step 1 – Vertical division
	6.4.3.2  Step 2 - Vertical division
	6.4.3.3  Step 3 – Radial division
	6.4.3.4  Step 4 – Radial division
	6.4.3.5  Circumferential division
	6.4.3.6  Step 5 – flow quantification


	6.5  Results
	6.5.1  4+1 compartment model
	6.5.2  Hypothesis driven compartment model
	6.5.3  CFD model
	6.5.4  Comparing the models
	6.5.5  Experimental recommendations

	6.6  Conclusion
	6.7  Acknowledgements
	6.8  References


	Conclusion_Final
	Chapter 7
	7.1  Modelling
	7.2  Measurements
	7.3  References


	List of publications_Final
	List of publications
	Articles
	Conference abstracts


	Appendix_final
	Appendix A
	Supporting information for Chapter 3
	Boundary conditions and solver settings
	Mesh sensitivity
	Power number prediction


	Appendix B
	Supporting information for Chapter 4

	Appendix C
	Supporting information for Chapter 5

	Appendix D
	Supporting information for Chapter 6
	4 + 1 Compartment model
	Hypothesis driven compartment model
	References




