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With its recent re-introduction on the World Health Organization’s list of Neglected Tropical 4 

Diseases (Chippaux, 2017), snakebite envenoming is gaining increased international attention. Not 5 

only does this create hope that new policies and guidelines may help healthcare systems to 6 

implement better preventive strategies, but it may also create incentive for research and 7 

development efforts aiming at delivering new antivenom products for treatment of snakebite 8 

envenoming. New products may fall into two categories: 1) Plasma-derived antivenoms based on 9 

conventional immunization approaches (Gutiérrez et al., 2011; World Health Organisation, 2010) 10 

and 2) next-generation antivenoms based on specific therapeutic molecules that are selected on their 11 

ability to neutralize key toxins (Knudsen and Laustsen, 2018), and which are manufactured without 12 

the need to procure snake venoms. The benefit of the first type of antivenom products is that their 13 

therapeutic benefits have been historically documented (Gutiérrez et al., 2011). However, they 14 

suffer from the drawback of not being compatible with the human immune system due to their 15 

heterologous nature (Laustsen et al., 2016a), and from having a low content of therapeutically 16 

active antibodies, particularly against small venom components with low immunogenicity and high 17 

toxicity (Laustsen et al., 2017; Leong et al., 2015; Tan et al., 2015, 2016). In recent time, venomics 18 

and antivenomics approaches have helped build a greater understanding of the antigenicity of 19 

different venom components, which may provide guidance on how to design immunization 20 

mixtures that give rise to venom-paraspecific antibody responses in production animals (Calvete et 21 

al., 2014, 2009; Lomonte and Calvete, 2017). Such knowledge creates a foundation for improving 22 

the neutralization potential of antivenoms against toxin subfamilies with low immunogenicity, such 23 
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as small neurotoxins from the three-finger toxin family (Calvete et al., 2018; Tan et al., 2017). In 24 

contrast to plasma-derived antivenoms, the development of next-generation antivenoms is 25 

unaffected by any discrepancy between toxicity and immunogenicity, as monoclonal antibodies and 26 

small molecule inhibitors can be discovered even for non-immunogenic toxins. 27 

Independent on the particular molecular scaffold (small molecule, antibody, antibody 28 

fragment etc.) employed in a next-generation antivenom, a fundamental change in our 29 

understanding of snake venoms as drug targets will have to occur. Conventional antivenom 30 

manufacture involves the use of whole venoms during the immunization process. For this approach, 31 

it is important to optimize the immunization mixture to ensure that the venoms employed are 32 

representative of the venoms in the geographic region the antivenom is to be deployed (Gutiérrez, 33 

2007). This necessitates the collection of snakes with venom compositions that are representative of 34 

the given region, as such venom compositions have been shown to vary quite dramatically across 35 

geographic ranges (Chippaux et al., 1991). Among other things, this possibly creates an incentive 36 

for establishing serpentaria in different regions of the world. 37 

In contrast to conventional antivenom manufacture, the manufacture of next-38 

generation antivenoms installs a very different demand, as these antivenoms are not dependent on 39 

snake venoms for their manufacture (Laustsen et al., 2016b). A thorough understanding of venom 40 

compositions in relation to geographic region is still essential to guide the compositional 41 

formulation of next-generation antivenoms (Laustsen, In press), but the need to procure snake 42 

venoms in large quantities becomes irrelevant. In fact, the development of specific molecular 43 

antitoxins is not even reliant on ‘representative’ whole venoms, if the key toxins can be isolated 44 

from a given venom in sufficient quantities for antitoxin discovery purposes (Figure 1). 45 

 46 
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 47 

Figure 1. Schematic representation of chromatograms for two different venoms from the same 48 

snake species (one venom that is representative of the venom compositions of snakes in a given 49 

geographic region and one venom that is not). For antivenom manufacture, it is important that the 50 

venoms employed in the immunization mixture are representative of the venoms in the geographic 51 

region that the antivenom is to be deployed. In comparison, a venom does not need to be 52 

representative when used for next-generation antivenom development purposes, as the key toxins 53 

typically are to be isolated and used in pure form. An unrepresentative venom with high 54 

proportions of key toxins will even be more useful than a representative venom with lower 55 

proportions. 56 

 57 

The exact timing of when next-generation antivenoms will be introduced in the clinic 58 

is unknown. However, the transition from plasma-derived antivenoms to antivenoms based on 59 

defined mixtures of synthetic and/or recombinant components seems unlikely not to happen in the 60 

future (Laustsen et al., 2016a). With this transition, the need remains for studying snake venom 61 

compositions and identifying all toxins that are medically relevant to neutralize (Lomonte and 62 

Calvete, 2017), but the focus in antivenom development will indeed change from obtainment of 63 
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whole venoms that are representative of certain habitats, age groups, and geographical regions to a 64 

more toxin-centric focus, where it is more important to obtain key snake toxins in isolated form 65 

than it is to procure representative venoms. With the toxin-centric focus in antivenom development, 66 

antitoxin discovery efforts should not aim to identify molecular antitoxins that can target a group of 67 

toxins within only one whole venom, but rather focus on neutralization of toxin subfamilies across 68 

multiple species and identification of which (conserved) toxin epitopes should be targeted 69 

(Engmark et al., 2016, 2017b; Laustsen, In press). This will allow for a mix-and-match approach, 70 

where polyvalent next-generation antivenoms can be built up by mixing individual toxin subfamily-71 

specific antitoxins that combined may neutralize all the key toxin subfamilies in several target 72 

venoms (Figure 2). It may therefore become more relevant to identify key toxins from different 73 

toxin subfamilies that are essential to be neutralized than to identify whole venoms that are 74 

representative for a given species (in a given geographic region). In this context, it may also be 75 

relevant to explore how broad target specificity can be obtained for different antitoxins, as it will 76 

likely be difficult to identify single antitoxins that can cross-neutralize an entire subfamily of toxins 77 

(Engmark et al., 2017a), although promising results have been reported for certain inhibitors against 78 

enzymatic toxins (Arias et al., 2017; Knudsen and Laustsen, 2018; Lewin et al., 2016). 79 

 80 
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 81 

Figure 2: Schematic overview of how polyvalent next-generation antivenoms can be designed by 82 

combining antitoxins (illustrated with IgG antibodies) that can cross-neutralize toxins from the 83 

same subfamily across different snake species. This approach requires that focus in antivenom 84 

development is shifted from representative whole venoms from specific snake species to becoming 85 

more toxin-centric. 86 

 87 

If these predictions hold true, the implications may firstly become significant for 88 

governments and healthcare systems that are considering the establishment of new serpentaria to 89 

obtain collections of snake specimens with venom compositions that are representative for their 90 

geographical region, as such serpentaria risk becoming redundant. Secondly, antivenom researchers 91 

may have to re-evaluate how they understand the interplay between toxins and venoms and switch 92 

from a currently strong focus on neutralizing whole venoms towards a focus on neutralization of 93 

toxin subfamilies across multiple snake species. 94 

 95 
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