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Abstract 

Medium- and long-chain methyl ketones are fatty acid-derived compounds that can be used as 

biofuel blending agents, flavors and fragrances. However, their large-scale production from 

sustainable feedstocks is currently limited due to the lack of robust microbial biocatalysts. The 

oleaginous yeast Yarrowia lipolytica is a promising biorefinery platform strain for the production of 

methyl ketones from renewable lignocellulosic biomass due to its natively high flux towards fatty 

acid biosynthesis. In this study, we report the metabolic engineering of Y. lipolytica to produce long- 

and very long-chain methyl ketones. Truncation of peroxisomal β-oxidation by chromosomal deletion 

of pot1 resulted in the biosynthesis of saturated, mono-, and diunsaturated methyl ketones in the 

C13-C23 range. Additional overexpression and peroxisomal targeting of a heterologous bacterial 

methyl ketone biosynthesis pathway yielded an initial titer of 151.5 mg/L of saturated methyl 

ketones. Dissolved oxygen concentrations in the cultures were found to substantially impact cell 

morphology and methyl ketone biosynthesis. Bioreactor cultivation under optimized conditions 

resulted in a titer of 314.8 mg/L of total methyl ketones, representing more than a 6,000-fold 

increase over the parental strain. This work highlights the potential of Y. lipolytica to serve as chassis 

organism for the biosynthesis of acyl-thioester derived long- and very long-chain methyl ketones. 

 

Keywords 

Methyl ketones, Yarrowia lipolytica, Metabolic engineering, Beta-oxidation, Peroxisome, Fatty acid 

metabolism 
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1. Introduction 

In recent years, fatty acid-derived biofuels have gained increasing interest as an alternative to 

petroleum-based fuels (Li et al., 2008; Xu et al., 2016). Every mole of carbon that is emitted when 

burning as a fuel was originally captured from the atmosphere by the biofuel crop, whereas 

combustion of petroleum-derived fuel results in a net gain of atmospheric carbon contributing to 

global warming. The most common commercially available fatty acid-derived biofuel today is 

biodiesel, which is composed of fatty acid alkyl esters. When combusted, less greenhouse gases and 

air pollutants such as particulate matter, carbon monoxide, or sulfur oxides are emitted compared to 

petroleum-derived diesel (Hill et al., 2006; Liu et al., 2012; Sheehan et al., 1998). The physical 

properties of fatty acid-derived biofuels are similar to petroleum-based diesel, which makes biodiesel 

compatible with existing storage and transportation infrastructure (Peralta‐Yahya and Keasling, 

2010). However, the main drawback of biodiesel is that mainly food-based crops are employed as 

raw material for its production. To overcome the dependency on petroleum supplies and to reduce 

impact on food prices, substantial research efforts have been directed towards developing microbial 

platforms, such as oleaginous yeasts, for overproduction of fatty acids from non-edible lignocellulosic 

feedstocks (Angerbauer et al., 2008; Chi et al., 2011; Galafassi et al., 2012), which can ultimately be 

turned into sustainable biofuel by chemical- or microbial processes (Pfleger et al., 2015). Apart from 

fatty acid alkyl esters, several acyl thioester-derived compounds including fatty alcohols, methyl 

ketones, or dicarboxylic acids were reported to have desirable fuel properties (Clomburg et al., 2015; 

d’Espaux et al., 2015; Feng et al., 2015; Goh et al., 2012).  

 One of the most extensively studied non-conventional yeasts is Yarrowia lipolytica. It is 

considered an oleaginous microorganism due to its ability to accumulate lipids at levels of more than 

20% of its biomass (Ratledge and Wynn, 2002). As it name implies, Y. lipolytica is capable of growing 

on hydrophobic substrates as sole source of carbon by secreting extracellular lipases and can often 

be found in lipid-rich environments such as dairy products or oil (Barth and Gaillardin, 1997; Fickers 

et al., 2005; Pignède et al., 2000). A main focus of Y. lipolytica research to date has been the 
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elucidation of the mechanisms of fatty acid biosynthesis, hydrophobic substrate utilization, and lipid 

degradation, also referred to as β-oxidation.  

In Y. lipolytica, medium- and long-chain acyl-CoAs are degraded in peroxisomes to produce 

energy through β-oxidation (Fig. 1). Both acyl-CoAs formed in the cytoplasm and fatty acids are 

transported across the peroxisomal membrane (Dulermo et al., 2015). The first reaction of the native 

Y. lipolytica β-oxidation pathway is catalyzed by an acyl-CoA oxidase complex (Titorenko et al., 2002). 

Six genes, POX1 to POX6, are involved in FAD-dependent oxidation of acyl-CoA to trans-2,3-

dehydroacyl-CoA. Both the hydration to β-hydroxyacyl-CoA and the subsequent dehydrogenation to 

β-ketoacyl-CoA are catalyzed by the multifunctional enzyme MFE. The thiolytic cleavage of β-

ketoacyl-CoA results in an acetyl-CoA and an acyl-CoA with two fewer carbons, completing one cycle 

of β-oxidation. This final step is catalyzed by the acetyl-CoA acyltransferase POT1 (Beopoulos et al., 

2009). Our understanding of these processes in Yarrowia was greatly facilitated by similar 

mechanisms in the well-characterized model organism S. cerevisiae. However, Y. lipolytica natively 

has higher flux towards lipid synthesis and storage within lipid bodies and therefore may serve as a 

more suitable chassis for production of lipid-derived biofuels (Beopoulos et al., 2009). This 

oleaginous yeast has been engineered so far to produce fatty acid methyl esters at titers of 

approximately 99 g/L (Qiao et al., 2017). Furthermore, it has been employed for the production of γ-

lactone and hexanal, which find broad application in the flavor and fragrance industry (Bourel et al., 

2004; Schrader et al., 2004), as well as the food supplements β-carotene and omega-3 and omega-6 

fatty acids (Gao et al., 2017; Xue et al., 2013).  

 Aliphatic methyl ketones, another group of fatty acid-derived compounds, are commonly 

found as constituents of essential oils of various plant species (Thoms, 1903; Walbaum and Hüthig, 

1902; Williams, 1858) and used as volatile and non-volatile pheromones by mammals or reptiles 

(Mason et al., 1989). Medium-chain methyl ketones are employed in the flavor and fragrance 

industry, and have desirable properties for use as diesel fuel blending agents (Goh et al., 2012; Longo 

and Sanromán, 2006). They have the potential to be better biofuel product targets than other fatty 
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acid-derived compounds such as fatty alcohols, which require additional downstream processing 

steps to be extracted. Methyl ketones, on the other hand, permeate the plasma membrane via 

passive diffusion and can be captured by overlaying the culture with an organic solvent. The highest 

titer reported so far was achieved by fed-batch glucose fermentation (2.2% w/v) of engineered E. coli 

DH1 resulting in 3.4 g/L of C11 to C15 methyl ketones (Goh et al., 2014). This engineered strain 

comprised the following features: (i) overproduction of β-ketoacyl-CoAs through a re-engineered β-

oxidation pathway, (ii) overexpression of the native thioesterase FadM, and (iii) balanced 

overexpression of the fatty acyl-CoA synthetase, FadD, and the fatty acid-responsive transcription 

factor FadR (Goh et al., 2014). Another approach to obtain methyl ketones in E. coli MG1655 was 

pursued by Park and co-workers (Park et al., 2012). Their engineering strategy was based on 

overexpressing a 3-ketoacyl-acyl carrier protein (ACP) thioesterase and a β-decarboxylase from the 

wild tomato Solanum habrochaites. Under optimal levels of oxygen, glucose batch incubation (5% 

w/v) of the best performing strain led to a methyl ketone titer of approximately 500 mg/L (Park et al., 

2012). Moreover, the methyl ketone biosynthesis pathway developed by Goh and co-workers was 

transferred to the facultative chemolithoautotrophic bacterium Ralstonia eutropha H16 (Müller et 

al., 2013). Under autotrophic growth conditions with CO2 and H2 as sole source of carbon and energy, 

it was able to accumulate diesel-range methyl ketones up to 180 mg/L (Müller et al., 2013). Due to its 

physiology, Y. lipolytica may be a more robust chassis for an industrial-scale production of diesel-

range methyl ketones. Further advantages include (i) a well-studied fatty acid metabolism, (ii) a 

natively high flux towards lipid biosynthesis, (iii) the availability of a broad range of genetic tools that 

allow metabolic engineering for the production of acyl thioester-based compounds, and (iv), its 

ability to grow on biomass hydrolysates derived from sustainable lignocellulosic feedstocks (Chi et al., 

2011; Patel et al., 2016; Yu et al., 2011).  

 In this study, we engineered the oleaginous yeast Y. lipolytica to produce diesel-range methyl 

ketones for use as biofuel blending agents and as flavors and fragrances. Batch fermentation of the 
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best strain, which comprised a truncated β-oxidation pathway and an integrated heterologous 

bacterial methyl ketone biosynthesis pathway, resulted in a final methyl ketone titer of 314.8 mg/L. 

 

Fig. 1. The engineered β-oxidation pathway in Y. lipolytica for production of methyl ketones. Native 

enzymes involved in β-oxidation are italicized. Heterologously expressed enzymes of the bacterial 

methyl ketone biosynthesis pathway are highlighted in grey boxes. The chromosomal deletion of the 

gene encoding the acetyl-CoA acyltransferase, POT1, is illustrated as a cross. The ultimate methyl 

ketone (MK) product is highlighted as a circle. 
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2. Materials and methods 

2.1. Base strains and media 

Escherichia coli HST08 (Clontech Laboratories, Inc.) was used for cloning and plasmid propagation. E. 

coli was grown at 37°C in LB medium (EMD Millipore) supplemented with the appropriate antibiotic 

at the following final concentration: 100 µg/mL of carbenicillin, 25 µg/mL of chloramphenicol, and 50 

µg/mL of kanamycin. The Y. lipolytica derivatives were engineered from the base strain PO1f (ATCC 

MYA-2613) and were cultivated at 30°C unless indicated otherwise (Madzak et al., 2000). When 

necessary, hygromycin B was added to a concentration of 200 µg/mL.  

YPD medium consisted of 10 g/L yeast extract (Becton, Dickinson and Company), 20 g/L 

peptone (Becton, Dickinson and Company), and 20 g/L glucose. YSC medium was prepared from 6.7 

g/L Yeast Nitrogen Base w/o amino acids (Becton, Dickinson and Company), 2.37 g/L CSM (Sunrise 

Science Products), and 20 g/L glucose. To prepare YSC-LEU or YSC-URA medium, CSM was replaced 

by 2.07 g/L CSM-LEU or 2.31 g/L CSM-URA (Sunrise Science Products), respectively. For solid media, 

15 g/L agar was added. 

2.2. Cloning and transformation 

E. coli plasmid DNA minipreps were performed using the QIAGEN QIAprep Spin Miniprep Kit. Y. 

lipolytica genomic DNA was extracted employing the Promega Wizard Genomic DNA Purification Kit. 

For cloning, DNA was amplified by PCR using the PhusionTM Hot Start II High-Fidelity Polymerase 

(Thermo Fisher Scientific) in 50 µL reactions under the recommended conditions. Restriction 

enzymes were purchased from New England Biolabs or Thermo Fisher Scientific, and digestions were 

set up according to the manufacturer’s protocol. The ZymocleanTM Gel DNA Recovery Kit was 

employed to extract gel-purified linearized DNA, which was subsequently used for transformation or 

cloning.  

 Transformation of E. coli HST08 was performed using heat shock as recommended by the 

manufacturer. Transformation of Y. lipolytica with episomal overexpression plasmids or linearized 
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integration cassettes was done as described previously (Chen et al., 1997). Briefly, the strain that was 

to be transformed was spread on YPD agar and incubated at 30°C for 18 hours. Cells from the plate 

were resuspended in liquid YPD. 0.75 OD600 × mL cells were transferred to a microfuge tube and 

centrifuged at 2,000 × g for 30 s. The cells were resuspended in 100 µL one-step buffer and 

transferred to another tube that contained the DNA. One-step buffer was freshly prepared and 

consisted of 45% (w/v) PEG 3350, 100 mM dithiothreitol, 100 mM lithium acetate (pH 6.0), and 250 

µg/mL salmon sperm single-stranded carrier DNA. Usually, 100 ng of uncut plasmid DNA or 300 ng of 

linearized DNA were transformed. The transformation mix was vortexed and incubated at 39°C for 1 

hour. The entire mixture was subsequently spread on the appropriate well-dried pre-warmed 

selective plate and incubated at 30°C for 36-48 hours. 

2.3. Plasmid construction 

Oligonucleotide primers were designed using the DNA assembly automation software j5 (Hillson et 

al., 2011) and synthesized by Integrated DNA Technologies. Primer sequences are listed in Table S1. 

E. coli fadM (EcDH1_3166) was codon-optimized using the Y. lipolytica codon usage and the E. coli 

fadB (EcDH1_4135), and the Micrococcus luteus aco (Mlut_11700) were codon-optimized for S. 

cerevisiae codon usage. The genes were synthesized by Integrated DNA Technologies. For Golden 

Gate Assembly, BsaI, BsmBI, and NotI restriction sites were manually removed by nucleotide 

exchange. Plasmids were assembled either by Gibson or Golden Gate (Gibson et al., 2009; Lee et al., 

2015).  

 The Gibson Assembly Master Mix (New England Biolabs) was used for Gibson assembly and 

employed according to the manufacturer’s protocol. The Golden Gate toolkit (AddGene), that was 

developed for DNA assembly in S. cerevisiae (Lee et al., 2015), was employed for Golden Gate 

assembly. For the toolkit to be also applied in Y. lipolytica, part plasmids were constructed that 

contain Y. lipolytica promoters, terminators, a selection marker, and homologous regions that allow 

for chromosomal integration. The structure of each element and the Golden Gate Assembly protocol 

were described previously (Lee et al., 2015). Y. lipolytica promoters and terminators that were 
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employed for assembly of gene constructs are listed in Table S2. All antibiotic or auxotrophic 

selection markers that were utilized to screen for successful integration into the Y. lipolytica genome 

were flanked with loxP sites to enable marker retrieval (Fickers et al., 2003). Cloned coding 

sequences and Golden Gate part plasmids were verified by DNA sequencing, which was performed 

by Quintara Biosciences (Berkeley, CA). A detailed assembly description for each plasmid is given in 

the Supplementary Materials. Key features of all plasmids used and generated in this study are 

summarized in Table S3. Maps of plasmids constructed in this study are available from the public 

version of the JBEI Registry (https://public-registry.jbei.org: entries JPUB_009513 to JPUB_009536). 

2.4. Strain construction 

Chromosomal deletions of pot1 and TEc1 were performed by transforming deletion cassettes into Y. 

lipolytica, which allow for homologous recombination. They consist of the ura3 gene from 

Kluyveromyces lactis driven by the Y. lipolytica exp1 promoter and flanked by loxP sites to enable 

marker retrieval (Damude et al., 2011; Fickers et al., 2003). This inner part of the cassette in turn is 

flanked by at least 1 Kb upstream and downstream homologous regions of the gene to be deleted. 

For deletion of pot1 or TEc1, plasmids pEHYl018 or pEHYl090 were employed, respectively. Prior to 

transformation, plasmids were linearized by restriction digest with AlwNI and gel-purified.  

 Integration of overexpression cassettes was also performed by homologous recombination. 

The E. coli fadM-SKL integrative plasmid, pEHYl062, was constructed by Gibson cloning (Gibson et al., 

2009) the UAS1B1-TEF-fadM-SKL-cyc1t cassette from pEHYl051 between the loxP site upstream of 

ura3 and the E. coli origin of replication of plasmid pEHYl018. The fadB-SKL and aco-SKL integrative 

plasmid, pEHYl087, was assembled by Golden Gate reaction of plasmids pEHYl074, pEHYl085, and 

pEHYl086. Prior to transformation, the plasmids pEHYl062 or pEHYl087 were linearized by restriction 

digest with ScaI or NotI, respectively, and gel-purified.  

Successful integration of deletion and overexpression cassettes was confirmed by colony PCR 

using the oligonucleotide primers listed in Table S4. Colony PCR was performed using the GoTaq® 

Green Master Mix (Promega) according to the manufacturer’s instructions.  
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Markerless strains were obtained as described previously by transformation and subsequent 

removal of plasmid pMCS-UAS1B16-TEF-Cre (Blazeck et al., 2014; Fickers et al., 2003). This plasmid 

constitutively expresses a recombinase that recognizes the loxP sites flanking a selection marker to 

excise the marker gene. Successful marker retrieval and plasmid removal was confirmed by replica 

plating the strain on the appropriate dropout plate.  

 Expression of heterologous enzymes was confirmed by protein extraction, quantification, 

digestion, and electrospray ionization liquid chromatography-tandem mass spectrometry as 

described previously (Batth et al., 2012). All strains used and constructed in this study are listed in 

Table 1. 

2.5. Microbial growth 

E. coli and Y. lipolytica were grown in 60-mL culture tubes at 200 rpm unless indicated otherwise. For 

analysis of heterologous gene expression in Y. lipolytica, 10 mL of YPD were directly inoculated from 

glycerol stocks and grown for 24 hours before the cells were centrifuged for protein preparation.  

 For methyl ketone production in cells containing episomal expression cassettes, 5 mL of YSC 

without the appropriate amino acid were directly inoculated with a single colony from the freshly 

transformed yeast cells and cultivated for 18 hours. Ten mL of the same medium was inoculated with 

the previously-described culture to an OD600 of 0.05. Eighteen hours after inoculation, 1 mL of 

dodecane amended with 0.1 mg/mL of 3-tetradecanone (as an internal standard) was added to the 

culture. The cells were cultivated for another 48 hours before the dodecane overlay was sampled for 

direct gas chromatography-mass spectrometry (GC/MS) analysis.  

 The same protocol was employed for strains that were analyzed for the effect of 

chromosomal deletions and integrative expression cassettes on methyl ketone production with the 

following modifications: yeast cells were streaked onto a YPD plate from the glycerol stock and 

grown for 24 hours. To ensure optimal viability of cells, a single colony was taken, spread onto a fresh 

YPD plate, and grown for another 24 hours. The preculture was inoculated with a single colony from 

this plate. 
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 The influence of dissolved oxygen concentration on methyl ketone production in EHYL01 

(Δpot1) was tested in baffled and non-baffled shake flasks. Five mL of YPD were directly inoculated 

from a glycerol stock and grown for 24 hours in culture tubes. Fifty mL of fresh YPD in 250 mL shake 

flasks was inoculated with the previously-described culture to an OD600 of 0.05. After 24 hours (200 

rpm), cells were harvested and stained with Nile red for fluorescence microscopy. 

2.6. Gas chromatography-mass spectrometry (GC/MS) analysis 

Methyl ketones were analyzed by GC/MS. Samples (0.2 mL) of the dodecane overlay were removed 

from each culture and clarified by centrifugation at 15,000 × g and room temperature for 1 min. 

When necessary, the dodecane overlay was diluted with ethyl acetate. Culture tube samples were 

analyzed using an Agilent 6890 series GC equipped with a DB-5ms column (30 m length, 250 µm 

diameter, 0.25 µm film thickness, J & W 122-5532G) coupled to an Agilent 5973 mass selective 

detector (MSD). Samples and standards from the bioreactor cultivations were analyzed by an Agilent 

7890A GC equipped with a CP-Sil 8 CB capillary column (30 m length, 250 µm diameter, 0.25 µm film 

thickness, Agilent J & W Scientific) coupled to an Agilent 5975C MSD with a triple axis detector. 

Samples of 1 µL were injected by an autosampler. The GC oven program was as follows: 40°C for 3 

min, a ramp of 15°C/min to 240°C and a hold for 3 min, a ramp of 20°C/min to 300°C and a hold for 2 

min. Carrier gas of high-purity helium was kept at a constant flow rate of 0.8 mL/min. The MS was 

operated in SCAN mode and molecular ions were typically scanned from 35 to 575 atomic mass units. 

Authentic standards of 2-tridecanone (Sigma-Aldrich), 2-pentadecanone (Sigma-Aldrich), 2-

heptadecanone (Sigma-Aldrich), and 2-nonadecanone (Santa Cruz Biotechnology) were used for 

external standard quantification of saturated methyl ketones (m/z 58) from culture tube samples. 

Samples and standards from the bioreactor cultivations were spiked with o-terphenyl (AccuStandard) 

as internal standard to a final concentration of 0.04 g/L, to allow for internal quantification, and 

adjusted for any detector response shift. Since no authentic standards were available for unsaturated 

methyl ketones, they were quantified by employing the total ion chromatogram and the standards of 

the saturated species with the same carbon chain length. The Agilent MSD ChemStation software 
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was employed for data analysis. The reported methyl ketone titers refer back to the aqueous phase 

(Caq) at a given time (i) using a V/V correction factor of Caq,i = Corg,i × (Vorg,i / Vaq,i). 

2.7. Nile red staining and microscopy 

Nile red, 9-diethylamino-5H-benzo-α-phenoxazine-5-one, was employed for the visualization of cell 

morphology by fluorescence microscopy (Greenspan et al., 1985). Nile red staining was performed as 

described previously (Blazeck et al., 2014). One OD600 × mL cultures were harvested by centrifugation 

for 3 min at 1,000 × g. The supernatant was removed and cells were resuspended in 500 µL 

phosphate-buffered saline solution. To the cells, 6 µL of 1 mM Nile red was added. The Nile red was 

evenly distributed by flipping the tube and the cells were incubated for 15 min at room temperature 

in the dark. After incubation, the stained cells were centrifuged for 3 min at 1,000 × g and washed 

twice with ice cold water prior to fluorescence microscopic analysis. Micrographs were acquired on a 

Zeiss LSM 710 scanning confocal microscope with an oil immersion lens (100 × magnification, 1.4 

numerical aperture) using ZEN 2009 software (Zeiss). 

2.8. Bioreactor cultivations 

The wild type strain PO1f and the optimal producing strain EHYL12 were analyzed for methyl ketone 

biosynthesis in bioreactors. Strains were streaked from glycerol stocks onto YPD agar plates and 

incubated at 28°C for 38 hours. Fifteen-mL glass tubes containing five mL of YPD were inoculated 

with a single colony, and cells were cultivated in a roller drum (New Brunswick Scientific TC-7, 

Eppendorf) at 28°C for 15 hours. Seed cultures were subsequently used to inoculate 0.5-L BIOSTAT® 

Qplus bioreactors (Sartorius) containing 300 mL of YPD to an initial OD600 of 0.1. The temperature 

was maintained at 28°C, and the pH was maintained at 5.2 by addition of 1 M KOH. Agitation was 

maintained constant at 100 rpm, and the dissolved oxygen level was set at 5% by adjusting the air 

supply (from 0.3 mL/min to 1 mL/min). When the OD600 of the cultivation exceeded 1.0, 60 mL 

dodecane, amended with 0.1 mg/mL 3-tetradecanone as a surrogate, was added to the bioreactor. 

Upon sugar depletion after around 101 hours, 33 mL of 200 g/L sterile glucose were pulsed into the 

bioreactors with cultures of strain EHYL12. Samples for OD600 measurements and metabolite analysis 
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in the cultivation medium and the dodecane overlay were taken regularly until sugar depletion. Cells 

in the cultivation broth were separated by centrifugation; the supernatant was filtered through a 0.2 

µm membrane filter and stored at -20°C until analysis. 

2.9. Metabolite analysis from bioreactor cultivations 

Glucose, pyruvate, acetate, succinate, glycerol, ethanol and mannitol concentrations were 

determined by high-performance liquid chromatography (HPLC). The analysis was performed using 

an Agilent 1100 LC system equipped with an Aminex HPX-87H 300 mm × 7.8 mm × 9 µm column 

(BioRad), a G1362A refractive index detector and a G1365B multiple wavelength detector (Agilent 

Technologies). The column was operated at 55°C with an isocratic flow rate of 0.6 mL/min 0.01 M 

H2SO4 and a sample injection volume of 20 µL. Glucose, acetate, succinate, glycerol, ethanol, and 

mannitol were quantified using the refractive index detector and pyruvate using the multiple 

wavelength detector set at 210 nm. 
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3. Results 

3.1. Truncation of peroxisomal β-oxidation results in accumulation of methyl ketones 

For more than ninety years, fungi have been known to produce methyl ketones (Stärkle, 1924). The 

pathway by which they are formed has been elucidated as an abortive β-oxidation of fatty acids 

followed by a decarboxylation of β-keto acids (Forney and Markovetz, 1971) (Fig. 1). In E. coli, the 

native thioesterase FadM converts β-ketoacyl-CoAs to β-keto acids (Goh et al., 2012). The 

subsequent decarboxylation of β-keto acids to methyl ketones occurs spontaneously (Goh et al., 

2014). In yeast, no thioesterases have been reported that catalyze this reaction. However, the fact 

that small amounts of 2-heptadecanone (C17:0 methyl ketone) were detected in the Y. lipolytica 

base strain PO1f led to the hypothesis that a yet unknown native thioesterase may convert β-

ketoacyl-CoAs to β-keto acids.  

To test this hypothesis, the gene encoding the peroxisomal acetyl-CoA acyltransferase, pot1 

(YALI0E18568g), was deleted by homologous recombination. We anticipated that deletion of pot1 

would remove the thiolytic cleavage activity required for the terminal step of β-oxidation, resulting in 

the hydrolysis of β-ketoacyl-CoAs by an as of yet unknown native thioesterase.  

The strains were initially grown in aqueous rich media. After cultures achieved a high density, 

a dodecane overlay was added to partition methyl ketones (Goh et al., 2012). Analysis of the culture 

overlay of strain EHYL01 (Δpot1) by GC/MS resulted in 62.6 mg/L total methyl ketones, 

demonstrating a 1,250-fold increase in methyl ketones compared to the parent strain PO1f. This 

finding supports the hypothesis that Y. lipolytica encodes at least one thioesterase that is capable of 

hydrolyzing β-ketoacyl-CoAs. 

3.2. Detection of saturated, mono- and diunsaturated methyl ketones in the C13-C23 range 

Deletion of pot1 resulted in accumulation of a broad range of saturated and unsaturated methyl 

ketones with different chain lengths (Fig. 2). Mainly odd-chain saturated methyl ketones ranging 

from 2-tridecanone (C13:0) to 2-tricosanone (C23:0), with 2-heptadecanone (C17:0) as the 



16 
 

predominant species, were detected. Surprisingly, even-chain saturated methyl ketones in the range 

from 2-tetradecanone (C14:0) to 2-docosanone (C22:0) were also identified. For compound 

verification, the observed mass spectra were matched to the mass spectra of the corresponding 

putative methyl ketones listed in the database of the National Institute of Standards and Technology 

(NIST) (Linstrom and Mallard, 2001). Even though no NIST mass spectra were available for 2-

eicosanone (C20:0), 2-heneicosanone (C21:0), and 2-tricosanone (C23:0) (Fig. S1-S3), several factors 

indicate that the observed mass spectra belong to the putative compounds: (i) their mass spectral 

fragmentation pattern is highly similar to the ones of the annotated long-chain methyl ketones, (ii) 

their chromatographic retention time increases in a logical magnitude of a CH2-group, and (iii) the 

molecular ion peaks of m/z 296, m/z 310 and m/z 338, respectively, correspond to their relative 

molecular mass.  

In addition to saturated methyl ketones, monounsaturated 2-pentadecenone (C15:1) and 2-

heptadecenone (C17:1) were detected. The mass spectrum of 2-pentadecenone was reported 

previously (Goh et al., 2012). 2-heptadecenone shows a highly similar mass spectral fragmentation 

pattern (Fig. S4). Its molecular ion peak of m/z 252 corresponds to the relative molecular mass of 2-

heptadecanone lacking two protons resulting from the formation of one double bond. It can be 

concluded that the C17:1 peak is (Z)-8-heptadecen-2-one derived from oleic acid (18:1 fatty acid), the 

most abundant fatty acid in the PO1f base strain (Blazeck et al., 2014). Furthermore, in the total ion 

chromatogram small amounts of diunsaturated 2-trididecenone (C13:2), 2-pentadidecenone (C15:2), 

and 2-heptadidecenone (C17:2) were observed (Fig. S5-S7). 
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Fig. 2. Methyl ketone production in strain EHYL01 (Δpot1). The GC extracted-ion chromatogram (m/z 

58) of the dodecane overlay from a culture of strain EHYL01 (Δpot1). Methyl ketones were assigned 

to their according peaks. The carbon chain length X and the degree of unsaturation Y are indicated 

for each X:Y methyl ketone (MK). *, internal standard 3-tetradecanone. 

3.3. Peroxisomal targeting of heterologous methyl ketone pathway enzymes improves production 

To increase the metabolic flux towards methyl ketone biosynthesis, we integrated a bacterial 

heterologous pathway developed by Goh and co-workers (Goh et al., 2012). It consists of the acyl-

CoA oxidase ACO from Micrococcus luteus (Mlut_11700), the multifunctional enzyme FadB 

(EcDH1_4135), and the thioesterase FadM (EcDH1_3166), both from E. coli (Fig. 1). Yarrowia 

lipolytica contains six acyl-CoA oxidases, encoded by genes POX1 to POX6, exhibiting different 

substrate specificities and activity levels (Fickers et al., 2005; Wang et al., 1999a; Wang et al., 1999b). 

The global acyl-CoA oxidase enzyme is imported as a heteropentameric complex into the peroxisome 

(Titorenko et al., 2002). M. luteus ACO, on the other hand, is encoded by a single gene and was 

reported to be highly soluble (Goh et al., 2012). By overexpressing ACO and FadB, we anticipated an 

increase in the intracellular pool of β-ketoacyl-CoAs, which can subsequently be hydrolyzed to β-keto 

acids by FadM.  

 In contrast to prokaryotes where fatty acids are broken down in the cytoplasm, in yeast and 

other eukaryotic cells, β-oxidation of long-chain fatty acids occurs exclusively in peroxisomes. 

Incorporating the bacterial pathway would require targeting the involved heterologous enzymes to 
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the peroxisomal matrix. In fact, engineering the cell to produce methyl ketones in peroxisomes, in 

lieu of the cytoplasm as it has been done in E. coli and R. eutropha (Goh et al., 2012; Müller et al., 

2013), may reduce the detrimental effect of reactive oxygen species (ROS) that arise from 

peroxidation and lipid oxidation. Hydrogen peroxide is formed during the FAD-dependent oxidation 

of acyl-CoA to trans-2,3-dehydroacyl-CoA by both the native and the heterologous acyl-CoA oxidase 

(Fig. 1). Furthermore, lipid peroxides are generated by oxidation of unsaturated fatty acids and 

facilitate the formation of highly reactive electrophilic aldehydes (Li et al., 2011; Xu et al., 2017). 

These molecules impair cell viability by promoting cell aging and disabling enzymes (Grimsrud et al., 

2008; Xu et al., 2017; Zimniak, 2011). However, compartmentalization of the methyl ketone 

biosynthesis pathway would shield the cell from elevated oxidative stress, which may be caused by 

pulling the metabolic flux towards β-oxidation and facilitate detoxification of hydrogen peroxide by 

naturally occurring peroxidases.  

Targeting heterologous enzymes to peroxisomes typically requires a peroxisome targeting 

signal (PTS) to be added to their peptide sequence. The C-terminal tripeptide Ala-Lys-Leu (AKL) has 

been identified to be crucial for import of the Y. lipolytica MFE into peroxisomes and has been 

considered a consensus PTS for Y. lipolytica (Madzak, 2015; Smith et al., 2000). It was employed to 

target a bacterial polyhydroxyalkanoate (PHA) synthase to the peroxisomal matrix for PHA 

production (Haddouche et al., 2010). We decided to employ an alternative PTS for peroxisomal 

import of the heterologous methyl ketone pathway enzymes – the C-terminal tripeptide Ser-Lys-Leu 

(SKL) – which has previously been demonstrated to efficiently localize green fluorescent protein 

(GFP) and RedStar2 fluorescent protein to the peroxisome in Y. lipolytica (Dulermo et al., 2015; Xue 

et al., 2013). 

 Since the first three reactions of β-oxidation can be catalyzed by the native Y. lipolytica 

enzymes POX1-POX6 and MFE (Fig. 1), providing a peroxisomal pool of β-ketoacyl-CoAs, we chose 

FadM to be the first heterologous enzyme to be introduced to pull the metabolic flux towards 

production of β-keto acids. The effect of peroxisomal targeting was tested by individually 
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overexpressing two different versions of FadM. The fadM coding sequences were cloned into the 

vector pMCS-UAS1B16-TEF-Cre (Blazeck et al., 2013). The first version contains the unaltered codon-

optimized fadM, the translational product of which localizes to the cytoplasm. The second version 

harbors the codon-optimized fadM and nine additional nucleotides encoding the SKL tripeptide 

immediately preceding the stop codon. Plasmids were transformed into the Δpot1 strain EHYL01 and 

analyzed for methyl ketone production. The strain overexpressing FadM-SKL demonstrated a 6.5-fold 

increase in methyl ketone accumulation compared to the parent strain EHYL01 harboring the control 

plasmid pSL16-CEN1-1(227) in minimal medium (Fig. 3A). Surprisingly, overexpression of FadM 

lacking the PTS reduced methyl ketone biosynthesis 10-fold. This finding suggests that adding the 

tripeptide SKL targets FadM for import into the peroxisomal matrix and that inefficient localization 

would result in a significant decrease in methyl ketone titers. Subsequently, fadM-SKL was integrated 

into the genome of EHYL01 (Δpot1) by homologous recombination yielding strain EHYL10 (Δpot1, 

fadM-SKL). Heterologous methyl ketone pathway genes were integrated into the genome to allow 

for iterative strain development and reuse of the marker. Furthermore, it allows to cultivate strains 

in non-selective media. Growing EHYL10 in YPD rich medium improved methyl ketone production 

1.8-fold compared to EHYL01 (Fig. 3B).  

 After integrating fadM-SKL into strain EHYL01, we sought to push the metabolic flux towards 

biosynthesis of β-keto acids by increasing the pool of available β-ketoacyl-CoAs. This was achieved by 

overexpressing and targeting ACO and FadB to the peroxisome using the same PTS that had been 

employed to import FadM into the peroxisomal matrix (Fig. 1). The genes aco-SKL and fadB-SKL were 

integrated into the genome of strain EHYL10 as a single DNA construct yielding strain EHYL12 (Δpot1, 

fadM-SKL, fadB-SKL, aco-SKL). Unlike fadM-SKL, which was cloned downstream of a constitutive 

hybrid promoter (Blazeck et al., 2014), fadB-SKL and aco-SKL are driven by strong native constitutive 

promoters containing expression-enhancing introns (Damude et al., 2011; Tai and Stephanopoulos, 

2013). Integration of these two genes into strain EHYL10 (Δpot1, fadM-SKL) further increased the 

methyl ketone titer by 1.34-fold in YPD rich medium. The ultimate strain, EHYL12 (Δpot1, fadM-SKL, 
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fadB-SKL, aco-SKL), accumulated methyl ketones to a titer of 151.5 mg/L (± 4.2 mg/L), which 

represents a 3,000-fold improvement compared to the Y. lipolytica base strain PO1f (Fig. 3B). 

 

Fig. 3. Methyl ketone titers of strains with an engineered β-oxidation pathway. (A) Methyl ketone 

accumulation of strain EHYL01 (Δpot1) overexpressing FadM-SKL or FadM in selective minimal 

medium from an episomal vector. pSL16-CEN1-1(227) was employed as a control plasmid. (B) Total 

methyl ketone titers of strains EHYL01 (Δpot1), EHYL10 (Δpot1, fadM-SKL), and EHYL12 (Δpot1, fadM-

SKL, fadB-SKL, aco-SKL) cultivated in YPD rich medium. (C) The concentrations of the individual 

saturated methyl ketone species 2-tridecanone, 2-pentadecanone, 2-heptadecanone, and 2-

nonadecanone in the three engineered strains. Error bars represent standard deviations of at least 

three biological replicates. 

3.4. Methyl ketone composition in strains with an engineered β-oxidation pathway 

The methyl ketone composition of the best producing strain EHYL12 (∆pot1, fadM-SKL, fadB-SKL, 

aco-SKL) comprises: 2-tridecanone (15%), 2-pentadecanone (49%), 2-heptadecanone (32%), and 2-

nonadecanone (4%) (Fig. 3C). For quantification of total methyl ketones produced in culture tubes, 

only the four most abundant saturated species were taken into account.  

 A shift in methyl ketone composition was observed when fadM-SKL was integrated into 

EHYL01 (Δpot1) (Fig. 3C). Two-heptadecanone is the predominant methyl ketone produced by 

EHYL01. In strains EHYL10 and EHYL12, however, which both express FadM-SKL, 2-pentadecanone is 

the most abundantly produced species. Noticeably, the titers of methyl ketones with chain lengths of 
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less than or equal to 17 carbons were highest in EHYL12 and lowest in EHYL01, whereas the titers of 

methyl ketones with a chain length of more than 18 carbons were lowest in EHYL12 and highest in 

EHYL01. This may reflect the chain length preference of the E. coli thioesterase FadM for acyl-CoA 

substrates between C12 and C18 (Nie et al., 2008). Alternatively, this could result from simply 

increasing flux towards methyl ketones.  

The shift in methyl ketone composition from mainly 2-heptadecanone (C17:0) in EHYL01 

towards predominantly 2-pentadecanone (C15:0) in EHYL10 and EHYL12 is beneficial for the mixture 

of methyl ketones to be applied as biofuel blending agent. Most important, the melting point of a 

compound is lowered with decreasing chain length. 

3.5. Influence of oxygen on biosynthesis of methyl ketones 

Attempts to scale up cultures of strain EHYL01 (Δpot1) to assess methyl ketone production in larger 

volumes resulted in the discovery that the dissolved oxygen (DO) level in a culture substantially 

influences methyl ketone biosynthesis. Initially, the dependence on available oxygen was evaluated 

for 50-mL cultures of EHYL01 in baffled and non-baffled shake flasks. Baffles generate additional 

turbulence increasing the overall oxygen transfer rate and therefore enhancing the DO level. GC/MS 

analysis of the dodecane overlays demonstrated that in baffled shake flasks, methyl ketone 

production was completely abolished. This is in contrast to the methyl ketone accumulation of 

cultures grown in non-baffled shake flasks, which was similar to the 10-mL cultures cultivated in 

tubes.  

The reduction in methyl ketone titers was hypothesized to be caused by an increase in ROS 

due to over-oxygenation of the culture. Elevated levels of ROS have been reported to negatively 

impact the accumulation of fatty acids as well as to lead to a transition in cell morphology (Xu et al., 

2017). Xu and co-workers engineered a Y. lipolytica strain to harbor several oxidative stress defense 

mechanisms. When exposed to higher levels of ROS, this strain exhibited round and singular cell 

morphology, whereas the non-engineered strain developed pseudohyphal and mycelial structures 

(Xu et al., 2017). To illustrate the influence of over-oxygenation on lipid formation and cell 
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morphology in the pot1-deficient strain EHYL01, we evaluated cultures grown in non-baffled and 

baffled shake flasks by microscopy after staining the cells with Nile red. Nile red is commonly used 

for visualization of lipid bodies (Greenspan et al., 1985). It was observed that the different conditions 

do not seem to have an effect on lipid abundance and distribution (Fig. 4). However, cells grown in 

baffled shake flasks (Fig. 4A) appeared to develop larger vacuoles compared to a culture in non-

baffled shake flasks (Fig. 4B). 

 

Fig. 4. Change of cell morphology caused by different levels of dissolved oxygen. Y. lipolytica EHYL01 

was stained with Nile red after cultivation in (A) baffled shake flasks allowing higher dissolved oxygen 

concentrations and (B) non-baffled shake flasks. Vacuoles (V) and lipid bodies (LB) are indicated. 

3.6. Bioreactor cultivation of the optimal producing strain 

Bioreactor growth studies of the wild type strain PO1f and the optimal producing strain EHYL12 

(∆pot1, fadM-SKL, fadB-SKL, aco-SKL) were performed to monitor production of methyl ketones in 

fully controlled bioreactors. Cultivations were carried out in 0.5-L vessels containing 0.3 L of YPD 

medium. Different levels of DO and control parameters were initially tested before settling on the 

final cultivation conditions. No methyl ketones were detected at 40% DO, supporting our findings 

from the shake flask experiments. The highest methyl ketone levels were obtained at 5% DO. 

Another optimization iteration was required to maintain the desired yeast cell morphology, since 

transition from single cells to hyphal growth was observed when the control cascade was set as a 

function of agitation speed. Only when agitation was maintained constant over the cultivation and 

the inlet air was chosen as the variable in the DO cascade, the strain EHYL12 remained as single cell 

over the course of the cultivation.  
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Consumption of glucose, cellular growth, production of methyl ketones, and other 

metabolites including succinate, pyruvate, acetate, and mannitol were monitored for both strains. 

Compared to the wild type strain (Fig. 5A), EHYL12 demonstrates no difference in terms of cellular 

growth and consumption of glucose (0.22 g/L/h) (Fig. 5B). However, while the parent strain does not 

demonstrate accumulation of methyl ketones, their production in the engineered strain clearly 

correlates with glucose consumption (Fig. S8). After its depletion, a second feed of glucose was 

pulsed into the bioreactors with strain EHYL12 to further boost methyl ketone biosynthesis. The final 

titer of 314.8 mg/L with a process yield of 0.0073 g/g glucose represents more than a 6,000-fold titer 

improvement over parental strain grown in culture tubes. For calculation of the final titer, 

unsaturated methyl ketones were also taken into account (Fig. 5C). However, as for the test tube 

cultures of strain EHYL12, primarily saturated methyl ketones contribute to the overall titer. 

Interestingly, three additional species of methyl ketones could be identified to accumulate in the 

bioreactor cultivations (Fig. S9). C15:1a corresponds to (Z)-8-2-pentadecen-2-one, which has already 

been detected in the test tube cultures. C13:1a was not observed in the test tube cultures, however, 

its mass spectral fragmentation pattern has been reported previously (Goh et al., 2012). The 

fragmentation patterns of C13:1b and C15:1b (Fig. S10 and S11) differ from the reported mass 

spectra of C13:1a and C15:1a. This suggests a variation in the location of the double bond.  

Succinate and pyruvate were the main by-products for both strains. Whereas no significant 

difference (p < 0.05) was observed in the case of pyruvate (1.02 g/L and 0.92 g/L in strains PO1f and 

EHYL12, respectively), a significant reduction (p < 0.05) of succinate levels was observed at the end of 

the first batch phase in strain EHYL12 (2.05 g/L) compared to the wild type strain PO1f (2.47 g/L) (Fig. 

6). Up to 1.80 g/L pyruvate and 4.86 g/L succinate were accumulated at the end of the cultivation of 

strain EHYL12. Acetate levels were found to remain constant at a low level, whereas mannitol titers 

increased throughout the cultivation (Fig. S12). Mannitol accumulation was demonstrated to 

decrease the levels of ROS and therefore, is an indicator for oxidative stress in Y. lipolytica (Xu et al., 

2017). However, the mannitol concentration of 8 mM at the end of cultivation is much lower than 
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the previously reported titers (Xu et al., 2017), suggesting that reducing the level of DO also 

minimizes oxidative stress. 

 

Fig. 5. Performance of the wild type strain PO1f (A) and the engineered strain EHYL12 (B) in 

bioreactor cultivations. (C) Distribution of methyl ketones produced by strain EHYL12 at the final time 

point. The chain length X and the degree of unsaturation Y is indicated for each X:Y methyl ketone. 

Error bars represent standard deviations of three biological replicates. 

3.7 Conversion of cytosolic acyl-CoAs into free fatty acids promotes methyl ketone biosynthesis 

An understanding of fatty acid transport and activation mechanisms is essential when the product of 

interest, such as methyl ketones, is interlinked with β-oxidation. In the cytosol, free fatty acids (FFA) 

are either bound by the fatty acid binding protein, activated by the acyl-CoA synthetase FAA1, or 

transported into the peroxisome for β-oxidation via an ANT1-dependent pathway. Activated fatty 

acids are also able to enter the peroxisome via the heterodimer PXA1/PXA2, or stored as TAGs in 
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lipid bodies (Dulermo et al., 2015). In contrast to S. cerevisiae, in Y. lipolytica activation of fatty acids 

targeted for β-oxidation occurs mainly in peroxisomes rather than in the cytosol (Dulermo et al., 

2015).  

The linear relationship between glucose consumption and methyl ketone production in strain 

EHYL12 (Fig. 5B, Fig. S8) suggests that under our growth conditions cytosolic FFAs rapidly enter 

peroxisomes to a greater degree than being directed toward the storage pathway. Therefore, it is 

worth investigating whether an increase in accessible FFAs, which can ultimately be targeted for β-

oxidation, results in improved methyl ketone biosynthesis. This was tested by overexpressing a 

number of acyl-CoA thioesterases that catalyze the conversion of acyl-CoAs into FFAs. 

Overexpression and cytosolic targeting of several thioesterases have previously been shown to 

increase FFA secretion in a strain being unable to produce lipid bodies, activate, or degrade FFAs 

(∆faa1 ∆mfe Q4) (Ledesma-Amaro et al., 2016). To assess the effect of localization, we overexpressed 

one cytosolic enzyme (YALI0E18876p; TEc1), two mitochondrial enzymes (YALI0C15230p; TEm2 and 

YALI0C22121p; TEm3), one peroxisomal enzyme (YALI0F14729p), and one thioesterase lacking a 

known targeting signal (YALI0D03597p) (Table 2). The thioesterase genes were individually cloned 

into the overexpression vector pMCS-UAS1B16-TEF-Cre (Blazeck et al., 2013) and separately 

transformed into the POT1-deficient strain EHYL01.  

GC/MS analysis of the dodecane overlay revealed that overexpression of TEc1 in strain 

EHYL01 resulted in a four-fold increase in methyl ketone titers as compared to EHYL01 transformed 

with the control plasmid pSL16-CEN1-1(227) (Yamane et al., 2008) (Fig. 6A). Individual 

overexpression of the other thioesterases did not contribute to a statistically significant (p < 0.05) 

increase in methyl ketone accumulation. To evaluate the contribution of TEc1 to overall methyl 

ketone biosynthesis, the chromosomal TEc1 was deleted in EHYL01 (Δpot1), yielding EHYL08 (Δpot1, 

ΔTEc1). The TEc1-deficient strain showed a two-fold decrease in methyl ketone titer compared to 

EHYL01 (Fig. 6B). It is noteworthy that the compositions of methyl ketones in EHYL01, EHYL08, and 

the TEc1 overexpressing strain (EHYL01 pEH047) are similar. Additionally no growth defects were 
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observed when TEc1 was overexpressed in EHYL01, suggesting that the toxicity associated with FFA 

accumulation (Dulermo et al., 2015) is efficiently bypassed.  

 

Fig. 6. The influence of endogenous acyl-CoA thioesterases on methyl ketone production in strain 

EHYL01. (A) Methyl ketone accumulation of strain EHYL01 overexpressing different endogenous acyl-

CoA thioesterases in selective minimal medium from an episomal vector. pSL16-CEN1-1(227) was 

employed as a control plasmid. Thioesterases are indicated by their protein identifier. (B) Methyl 

ketone production of strain EHYL01 (Δpot1) and EHYL08 (Δpot1, ΔTEc1) cultivated in YPD rich 

medium. Error bars represent standard deviations of at least four biological replicates. Asterisks 

indicate statistically significant differences in methyl ketone titers when compared to pSL16-CEN1-

1(227) for p < 0.05 (unpaired t test). 
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4. Discussion 

Fatty acid-derived biofuels from non-edible lignocellulosic feedstocks are sustainable alternatives to 

petroleum-based fuel. They emit less greenhouse gases and air pollutants, are compatible with 

current transportation infrastructure, and their production does not require land with high 

agricultural value (Hill et al., 2006). Y. lipolytica is an attractive microbial chassis for the industrial 

production of fatty acid-derived compounds. Here, we engineered Y. lipolytica β-oxidation to 

produce long- and very long-chain methyl ketones.  

Chromosomal deletion of the gene encoding the peroxisomal acetyl-CoA acyltransferase, 

POT1, led to a 1,250-fold increase in methyl ketone accumulation when compared to the parent 

strain PO1f. 2-Heptadecanone (C17:0) was found to be the prominent methyl ketone in strain 

EHYL01 (Δpot1). In addition to odd-chain methyl ketones, which derive from even-chain fatty acids, 

small amounts of even-chain methyl ketones were detected which ultimately derive from odd-chain 

fatty acids. Blazeck and co-workers hypothesized the synthesis of less-favored odd-chain fatty acids 

to result from a highly active lipogenesis (Blazeck et al., 2014). The chain lengths of the observed 

methyl ketones correlate with the fatty acid profile reported for Y. lipolytica PO1f (Blazeck et al., 

2014). The degree of unsaturation, however, is altered in the methyl ketone accumulating strain. 

Oleic acid (C18:1) is the most abundant fatty acid with eighteen carbons followed by stearic acid 

(C18:0) and linoleic acid (C18:2) in PO1f (Blazeck et al., 2014), whereas the resulting 

monounsaturated methyl ketone (C17:1) in strain EHYL01 only slightly contributes to the final methyl 

ketone titer. The observed divergence may be due to a higher availability of saturated free fatty 

acids. Monounsaturated acyl-CoAs are the preferred substrates for acylation reactions and are 

therefore the predominant species in membranes and lipid bodies (Qiao et al., 2015).  

Successful peroxisomal localization of heterologous bacterial methyl ketone pathway 

enzymes was found to be crucial for product formation. In selective minimal medium, episomal 

overexpression of FadM-SKL increased methyl ketone accumulation 6.5-fold, whereas overexpression 

of FadM, lacking a PTS, decreased methyl ketone synthesis 10-fold compared to EHYL01 (Δpot1). The 
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adverse effect of a cytosolic localized FadM may be explained by its promiscuous activity toward 

several acyl-CoA thioesters (Nie et al., 2008). These thioesters might be hydrolyzed into dead-end, 

free acid products (Goh et al., 2014). However, the strain expressing the cytosolic FadM did neither 

demonstrate an increased secretion of fatty acids, nor did it show growth defects which have been 

associated with high intracellular levels of FFAs (Dulermo et al., 2015). This might suggest that these 

fatty acids are either bound by sterol carrier proteins or transported into the mitochondria to escape 

toxicity (Dulermo et al., 2015; Ferreyra et al., 2006). The metabolic flux towards β-ketoacyl-CoAs was 

increased by integrating the genes fadB-SKL and aco-SKL. This is the first report of the bacterial 

methyl ketone biosynthesis pathway developed by Goh and co-workers (Goh et al., 2012) to be 

targeted to a cellular organelle and applied in a eukaryotic organism. Whereas E. coli and R. eutropha 

mainly produced medium-chain methyl ketones, a broad range of very long-chain methyl ketones up 

to 2-tricosanone (C23:0) were detected in Y. lipolytica, and these products may serve other 

commercial applications.  

Optimization of DO concentration was found to impact methyl ketone biosynthesis. In β-

oxidation, oxygen is utilized in the first reaction for the reduction of FAD (Fig. 1). Furthermore, it is 

required for the subsequent oxidation of FADH2 and NADH+H+ to prevent redox imbalance. 

Consequently, high levels of oxygen would be expected to improve the catabolism of fatty acids. 

However, shake flask experiments and batch bioreactor cultivations of the methyl ketone producing 

strains EHYL01 and EHYL12, respectively, demonstrated that the highest tested level of oxygenation 

resulted in reduced methyl ketone biosynthesis. The decrease in product titers may be explained by 

elevated levels of ROS generated in oxygen-rich environments. In particular, unsaturated fatty acids 

such as oleic acid (C18:1) or linoleic acid (C18:2) are highly susceptible to hydroxyl radical-induced 

oxidation (Xu et al., 2017). This correlates with our observation that vacuoles had increased in size 

when cells had been grown under oxygen-replete conditions (Fig. 4). Vacuoles play an important role 

in the cellular oxidative stress response (Nishikawa et al., 2016). Therefore, the presence of larger 

vacuoles may be a consequence of enhanced ROS detoxification activity. On the other hand, 
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insufficiently low levels of DO trigger the morphological transition from single cells to hyphal growth 

and methyl ketone production was also inhibited. As reported by Bellou and co-workers, DO levels 

should be considered the major factor affecting Y. lipolytica morphology (Bellou et al., 2014), and 

therefore any oxygen-dependent product. In conclusion, the oxygen level is a key parameter for 

methyl ketone biosynthesis, and optimizing titer will require balanced aeration to protect the cells 

from oxidative stress, to prevent mycelia formation, but also to guarantee an efficient regeneration 

of cofactors during β-oxidation.  

The cytosolic acyl-CoA thioesterase TEc1 supplied most of the FFAs that were targeted for β-

oxidation in EHYL01. This is in accordance with previously reported data where overexpression of 

TEc1 resulted in the highest intracellular FFA titer amongst several thioesterases tested (Ledesma-

Amaro et al., 2016). A similar concentration of FFAs was achieved overexpressing TEm2 in the 

cytosol. In our study, however, the mitochondrial targeting signal was not removed. Its mitochondrial 

localization might explain why overexpression of TEm2 did not translate into a similar methyl ketone 

titer as it was achieved using TEc1. Furthermore, it can be concluded that TEc1 has no preference for 

acyl-CoA chain length since the methyl ketone compositions produced by EHYL01 (Δpot1), the TEc1 

overexpressing strain (EHYL01 pEHYl047), and the TEc1-deficient strain, EHYL08 (Δpot1, ΔTEc1) are 

the same.  

 This study is the first attempt to produce acyl-thioester-derived methyl ketones in Y. 

lipolytica. Engineering methyl ketone biosynthesis in this yeast species is of particular importance in 

light of its robust performance in industrial fermentation and its history of use in commercial 

processes. Methyl ketone production was shown to linearly correlate with glucose consumption. We 

speculate that future engineering strategies directed towards uncoupling acetyl-CoA production from 

nitrogen starvation, overproduction and targeting cytosolic fatty acids to peroxisomes will allow for 

continuous biosynthesis of methyl ketones during controlled fed-batch fermentation to improve 

product titer and yield. Alternative pathways for the supply of cytosolic acetyl-CoA have successfully 

been implemented in Y. lipolytica and it was demonstrated that lipid biosynthesis could be 
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uncoupled from nitrogen starvation (Xu et al., 2016). Furthermore, engineering approaches that have 

previously been pursued to prevent lipid degradation may be reversed to facilitate methyl ketone 

biosynthesis. For example, deletion of pex10, encoding a protein essential for peroxisome biogenesis 

and proliferation, resulted in a significant increase in lipid accumulation due to dysfunctional 

peroxisomes (Xue et al., 2013). Overexpression of PEX10 in turn may result in more active 

peroxisomal β-oxidation.  

 The methyl ketones synthesized by EHYL12 are mainly saturated, unbranched, and of long 

chain-length. These structural features benefit biofuel properties such as cetane number, exhaust 

emission, or oxidative stability, whereas their melting points are less favorable (Knothe and Dunn, 

2003). The overall melting point could be lowered by increasing the proportion of monounsaturated 

methyl ketones, which may be realized by improving mobilization and activation of unsaturated fatty 

acids. Another approach would be to alter the chain length of fatty acids by introducing acyl-ACP or 

acyl-CoA thioesterases. Hybrid thioesterases, being composed of the fungal fatty acid synthase and a 

bacterial thioesterase, have been reported to significantly increase the portions of C12 and C14 fatty 

acids in Y. lipolytica (Xu et al., 2016). In combination with desaturation, the resulting methyl ketones 

would exhibit excellent biofuel properties (Goh et al., 2012). 
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5. Conclusion 

In this study, we engineered the oleaginous yeast Y. lipolytica to produce long- and very long-chain 

methyl ketones ranging from C13-C23. The constructed strain comprises a truncated peroxisomal β-

oxidation to facilitate the accumulation of β-ketoacyl-CoAs, and an integrated heterologous pathway 

composed of FadB, ACO and FadM. These enzymes were incorporated to improve the natural flux 

towards β-ketoacyl-CoAs and catalyze their hydrolysis to β-keto acids. Peroxisomal targeting of FadB, 

ACO and FadM was found to be crucial for efficient methyl ketone production. Furthermore, it was 

demonstrated that the level of available oxygen is an important factor that should be taken into 

account when engineering cellular β-oxidation. In our case, it had a significant effect on cell 

morphology and product formation. Overall, this work highlights the potential of peroxisomes to be 

employed as compartments for heterologous metabolic pathways. They give yeast a considerable 

advantage over bacteria such as E. coli or R. eutropha which lack these organelles. Bioreactor 

fermentations of our best producing strain resulted in 314.8 mg/L methyl ketones. We believe that Y. 

lipolytica will serve as a superior host for high-titer biosynthesis of methyl ketones. This research will 

serve as a foundation for future efforts towards commercial production of long-chain methyl ketones 

from non-food lignocellulosic feedstocks. 
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Table 1. Strains used and generated in this study. 

Strain Genotype Reference or source 

E. coli strains   
HST08 F- ara Δ(lac-proAB) [4Φ80d lacZΔM15] rpsL(str) thi 

Δ(mrr-hsdRMS-mcrBC) ΔmcrA dam dcm 
Clontech 
Laboratories Inc. 

Y. lipolytica strains   
PO1f matA, leu2-270, ura3-302, xpr2-322, axp1-2 (Madzak et al., 

2000) 
EHYL01 PO1f, Δpot1 This study 
EHYL08 EHYL01, ΔTEc1 This study 
EHYL10 EHYL01, UAS1B1-TEF-fadM-SKL This study 
EHYL12 EHYL10, GPDin-fadB-SKL, FBAin-aco-SKL This study 

 

Table 2. Y. lipolytica acyl-CoA thioesterase genes that were analyzed for their influence on methyl 

ketone biosynthesis. 

Gene identifier Uniprot ID Name Localization Reference 

YALI0E18876g Q6C5D9 TEc1 Cytosol (Dulermo et al., 2015) 
YALI0C15230g B5FVC4 TEm2 Mitochondria (Dulermo et al., 2015) 
YALI0F14729g Q6C1N6 N/A Peroxisome This study 
YALI0C22121g Q6CB40 TEm3 Mitochondria (Dulermo et al., 2015) 
YALI0D03597g Q6CAE2 N/A N/A This study 
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Highlights 

 Engineered Y. lipolytica β-oxidation to produce long- and very long-chain methyl ketones 

in the C13-C23 range. 

 Targeted a heterologous bacterial methyl ketone biosynthesis pathway to the 

peroxisome. 

 Level of dissolved oxygen has been found to substantially impact the biosynthesis of 

methyl ketones. 

 Best strain produced 314.8 mg/L of methyl ketones from glucose in bioreactor 

cultivations, representing more than a 6,000-fold improvement over the parental strain. 

 

 




