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A Holistic Approach for Collaborative Workload Execution
in Volunteer Clouds

STEFANO SEBASTIO, London Institute of Mathematical Sciences

MICHELE AMORETTI, Università degli Studi di Parma

ALBERTO LLUCH LAFUENTE, Technical University of Denmark

ANTONIO SCALA, Institute for Complex Systems-CNR

�e demand for provisioning, using and maintaining distributed computational resources is growing hand in

hand with the quest for ubiquitous services. Centralized infrastructures such as cloud computing systems

provide suitable solutions for many applications, but their scalability could be limited in some scenarios, e.g.,

in case of latency-dependent applications. �e volunteer cloud paradigm aims at overcoming this limitation

by encouraging clients to o�er their own spare, perhaps unused, computational resources. Volunteer clouds

are thus complex, large-scale, dynamic systems which demand for self-adaptive capabilities to o�er e�ective

services, as well as modeling and analysis techniques to predict their behavior. In this paper, we propose a

novel holistic approach for volunteer clouds supporting collaborative task execution services able to improve

the QoS of compute-intensive workloads. We instantiate our approach by extending a recently proposed ant

colony optimization algorithm for distributed task execution with a workload-based partitioning of the overlay

network of the volunteer cloud. Finally, we evaluate our approach using simulation-based statistical analysis

techniques on a workload benchmark provided by Google. Our results show that the proposed approach

outperforms some traditional distributed task scheduling algorithms in the presence of compute-intensive

workloads.

CCS Concepts: •�eory of computation → Scheduling algorithms; •Computing methodologies →
Multi-agent planning; Distributed arti�cial intelligence; •Computer systems organization → Dis-
tributed architectures; •So�ware and its engineering→ So�ware architectures;
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Computing, Task Scheduling, Cloud Computing, Ant Colony Optimization (ACO), Autonomic Computing,

Computational Fields, Peer-to-Peer (P2P).
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1 INTRODUCTION
�e increasing role of so�ware and the pervasiveness of computational devices have fostered the

interest and demand for storage and computing services. Cloud computing is a recent but already

well-established paradigm envisioning the use of computing as utility. �anks to the cloud, users do

not need to buy or maintain powerful computational devices, since they can use services remotely.

Such services are customized according to the users’ needs and requirements, and are provided

transparently from where the resources are physically hosted. Another bene�t of cloud systems is

their ability to dynamically scale whenever application requirements change. In order to properly

manage their resources, cloud providers o�er contract-based services whose terms are speci�ed in a

Service Level Agreement (SLA), containing the required �ality of Service (QoS) and the associated

penalty fees in case of their violation.

One of the greatest challenges in the cloud computing domain is the e�cient use of resources,

while guaranteeing the ful�llment of SLAs. To this aim, particular a�ention is given to autonomic

computing techniques, which support the development of clouds as self-managing systems. Cloud

features should automatically adapt to their internal status and the dynamically changing environ-

ment, without human intervention. Self-management may involve system maintenance, awareness,

evolution, con�guration, healing, tuning and optimization.

Along with the latest advancements in virtualization technologies, the last decade has also

witnessed a great leap forward in processing power, thanks to the advent of the multicore era. In

turn, this scenario has brought a surge of resources that are largely unused for great part of the day,

e.g., when desktop and laptop devices are used only for web-browsing or text-editing activities.

On the other hand, these personal devices have scarce resources for other activities such as large

scale simulations or graphic-editing. �e volunteer computing paradigm thrives in such a scenario,

as it foresees the willingness of some users to cooperate by sharing a fraction of their spare and

unused resources, while accessing some other users’ shared resources when the local ones are

scarce. By doing so, the limits in the scalability of clouds are overcome since now users themselves

may provide new computational resources.

�e volunteer cloud computing paradigm promises to enhance clouds in speci�c domains, by

exploiting peer-to-peer (P2P) networks of volunteers. �is paradigm is also referred to as social
cloud, P2P cloud computing and distributed cloud computing. A typical example of its use is given by

academic and industrial research institutions that share the spare resources of their labs (not used 24

hours a day or underused) with other sites, to run complex large-scale simulations. Volunteer clouds

support both computing- and storage-oriented cloud-based applications. For example, MapReduce

and streaming applications can be successfully implemented in a volunteer cloud fashion [12].

Instead, the volatile online presence of the volunteer nodes prevents its use for service-oriented

applications such as multi-tier web applications.

Several works [6, 24, 25, 34] have identi�ed domains suitable for standing out the volunteer cloud’s

bene�ts and opportunities. Exploiting the unused computational resources made available free of

charge reduces the cost to maintain private computational resources. Moreover, the requirements

for building and maintaining huge power-hungry and cooling-demanding data centers could be

reduced by going towards a green computing vision. Finally, the lack of a single controlling entity

make volunteer clouds convenient in case of natural catastrophes that would damage data centers or

communication infrastructures, or when governments place restrictions on the location of sensitive

data, as well as reducing the risk in the vendor lock-in problem.

�e participation of volunteers can be fostered by using incentives such as rewards for participants

that respect the SLAs associated to the assigned tasks. For example, the PlanetLab platform [57]

ACM Transactions on Modeling and Computer Simulation, Vol. -, No. -, Article 0. Publication date: 2017.



A Holistic Approach for Collaborative Workload Execution in Volunteer Clouds 0:3

fosters participation in its P2P network, requiring members to share a minimum number of machines

(with a speci�ed minimum system requirements) to gain access to all other shared machines.

�e increasing interest in the volunteer cloud paradigm [5] is also witnessed by the various

publicly funded projects. For example, in France at INRIA (Clouds@Home), in Italy at the uni-

versities of Bologna (Peer-to-Peer Cloud System) and Messina (Cloud@Home), and in general

within the European Community (NaDa — NanoDatacenter [36], EDGI — European Desktop Grid

initiative [17]), the CERN’s volunteer cloud [51], in the U.S. within the National Science Foundation

(NSF) which supports the BOINC project (to date with �ve research grants [60]), HTCondor (to

date with four grants [62]), Sea�le (to date with three grants [8]), SETI@home (with support from

NSF and NASA [61]) and the Federal University of Campina Grande in Brasil with the OurGrid

initiative. Other works have modeled resource discovery algorithms in volunteer clouds relying on

queueing theory [19, 20] and explored the opportunity for distributing Matlab simulations in a uni-

versity volunteer infrastructure [10]. Despite all those research and implementation e�orts, several

challenges posed by such a large-scale, distributed, heterogeneous and dynamic environment lie

ahead. �ere is a need to develop architectures and models to engineer volunteer cloud computing

systems and to predict their behavior.

Contribution. Our contribution to this �eld focuses on volunteer cloud computing systems

providing collaborative task execution services. In such systems, participants can join and leave at

any time, request the execution of tasks subject to certain QoS constraints and contribute with part

of their own computational resources to the collective task execution. We have been developing

autonomic computing architectures [3], adaptive arti�cial intelligence algorithms to build and

exploit distributed data structures called colored computational �elds using Ant-Colony Optimization

(ACO) [46], dynamic techniques to structure overlay networks and adapt them to the characteristics

of the tasks to be executed [49] and discrete event simulators to evaluate the proposed solutions

using simulation-based statistical analysis [45]. �is paper frames and extends our previous works

in a comprehensive manner. All in all, this paper provides the following contributions:

• We present a holistic approach to master the complexity of volunteer cloud systems. In this

context, holistic means that all (relevant) layers (namely, the application execution and the

overlay layer) of the architecture of all nodes cooperate to provide a collective service.

• We show the �exibility of the approach, which allows one to combine analysis and opti-

mization capabilities acting at di�erent layers in a variegated way, by framing the resource

discovery and task scheduling technique from [46] and the overlay network shaping tech-

nique from [49] in our approach, and we present their combination for the �rst time.

• We present simulation results showing that such a novel combination of techniques out-

performs their sole application, as well other collaboration strategies in the presence of

compute-intensive workloads.

One key point of our work lies in showing the bene�ts of using agents to collectively cooperate

for performance optimization at all the layers involved in a volunteer cloud, instead of focusing on

just one layer.

Synopsis. �e rest of the paper is structured as follows. Section 2 presents our holistic approach

to volunteer clouds supporting task execution services. Section 3 illustrates the instantiation of the

approach with the two adaptive optimization techniques taken from [46] and [49]. A performance

evaluation carried out through a simulation-based statistical analysis using workload data trace

from Google is presented in Section 4. Section 5 discusses related work, and �nally, Section 6

concludes the paper providing some �nal remarks and outlining our current and future research

e�orts.

ACM Transactions on Modeling and Computer Simulation, Vol. -, No. -, Article 0. Publication date: 2017.
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Fig. 1. Our architecture for volunteer clouds: main components and interactions.

2 A HOLISTIC APPROACH TO COLLABORATIVE VOLUNTEER CLOUDS
In accordance with the “cloud using agents” vision introduced by Talia [55], we proposed in [44] a

novel architecture for volunteer clouds. �e main components of the architecture and the main

interactions are illustrated in Figure 1. Each physical node (light grey rounded boxes) corresponds

to a physical machine and may support more than one logical node (dark grey rounded boxes), for

example in the case of powerful datacenters. �e three layers (square boxes) under consideration

are the Hardware Abstraction Layer (providing an abstraction of the underlying physical resources),

the Overlay Network Layer (in charge of basic P2P functionalities like node discovery) and the

Application Execution Layer (providing the task execution service through suitable scheduling

strategies). Notably, the architecture is able to accommodate a dynamic resource sharing paradigm

(in place of a persistent service-oriented provisioning provided by the typical cloud) with an on-

the-�y remote relocation and execution of tasks. Each layer is coordinated by an agent that acts

according to the MAPE-K model [26] and interacts with other agents in the same layer but on

di�erent logical nodes, and with the agents managing the upper and lower layer within the same

node. Such a layered and modular agent-based architecture enables the realization of the system’s

self-adaptive capabilities. �anks to this architecture, which decouples the overlay network layer

from the application execution layer, it has been possible to design a holistic approach in which all

the agents collaborate with the �nal goal of be�er supporting the task execution service.

�e overlay network in P2P systems is usually in charge of providing communication and

discovery services and ensuring its own resiliency (through health-checking and self-healing

operations i.e., the actions sustaining the network functionalities to ensure proper connectivity

and to restore the P2P overlay in case of abrupt node disconnections without prior noti�cation).

In autonomic volunteer clouds, the overlay network can provide additional functionalities thanks

to the use of intelligent agents. In our vision, the overlay network can tune itself to improve the

performance of the scheduling algorithms, according to the incoming workload characteristics and

the static a�ributes of the nodes (e.g., number of cores, CPU frequency, amount of memory and

storage, etc.). All in all, the collective intelligence of the overlay network: (i) evenly distributes the

number of data center and desktop/laptop nodes in the overlay network to increase the system

resiliency (assuming that the online presence for the desktop/laptop nodes cannot be guaranteed);

(ii) shapes the overlay network in a way that the neighborhood of hand-held devices is constituted

by physically close nodes (with the purpose of reducing the latency, particularly important in the

case of Virtual/Augmented Reality applications); or (iii) obtains information from the uppermost

ACM Transactions on Modeling and Computer Simulation, Vol. -, No. -, Article 0. Publication date: 2017.
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layer and performs workload-based partitioning to avoid tasks interference in the execution queues

of the nodes. In the presented instantiation of our approach, the overlay shaping technique in

Section 3.2 adopts the la�er approach (iii), which is then exploited to build a distributed data

structure (presented in Section 3.1) which improves the performance of distributed task executions.

Figure 2 shows an example of a volunteer cloud network, where supernodes are highlighted with

thick boxes, dashed lines represent the P2P connections and cloud shapes represent the partitioning

of the network into sites.
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Fig. 2. Volunteer cloud network.

Our holistic approach is based on the collaboration of nodes according to the work�ow depicted

in Figure 3, where we distinguish the agents at the application execution and overlay network

layers according to their role of analyzers (hexagons) or optimizers (square boxes). In MAPE-K

terminology, analyzers are in charge of the measure & analyze activities, while optimizers are in

charge of the plan & enact activities. �e information about the incoming workload and volunteer

nodes feed several modules. At the application execution layer, the QoS perceived by the tasks (1)

and information from volunteer nodes (8) is considered according to di�erent metrics, whereas at

the overlay network layer, the workload information (2) is analyzed for being classi�ed according

to its characteristics, e.g., frequency of the task execution requests, required parallelism, SLA.

�e results of such analysis (3,4) and incoming information (5) feed the agents’ knowledge, thus

allowing them to optimize the structure of the overlay network. At the same time, task scheduling

is optimized considered the perceived QoS (6) and the hardware characteristics of the volunteer

nodes (7). Such a work�ow is executed online and is kept active throughout the entire life of the

volunteer network.

Workload and performance analysis are realized through the nodes’ collective knowledge. As

a ma�er of fact, it takes place by enriching the periodic message exchange between nodes and

the corresponding P2P supernodes (used to keep the overlay network alive) with information

concerning the performance and task tra�c perceived locally by each node. P2P supernodes collect,

classify and analyze information about the workload generated/executed by each node, and the

overall system performance. �e runtime evaluation of system performance is a straightforward

process (once having collected the performance perceived by each node). �e online workload

ACM Transactions on Modeling and Computer Simulation, Vol. -, No. -, Article 0. Publication date: 2017.
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Fig. 3. Collective workflow of agent and layer interactions.

analysis and classi�cation is out of the scope of this work, but we refer the interested reader, e.g.,

to [15, 35].

Several analyzers and optimizers at the di�erent layers can be combined. For example, at the

application execution layer we can use the ACO-based approach to be presented in the following

(see Section 3.1), or any other task scheduling algorithm, like a random one or a round robin one.

At the overlay network layer, instead of the proposed workload-based partitioning (see Section 3.2),

we can choose a P2P structure according to the nodes’ geographical proximity [18] or any other

well-known P2P protocol, such as Kademlia [23], JXTA [21] or Chord [53]. As a ma�er of fact,

some of the algorithms used in the comparison of Section 4 are a combination of a scheduler with

a randomly arranged P2P network.

�anks to its high degree of �exibility, our holistic approach can be used even to enhance the

performance of the above mentioned standard P2P protocols. In case of workload-based partitioning,

the only requirement to seamlessly adopt our approach is that the P2P network will be arranged

in a semi-hierarchical manner. In this way, the supernodes can easily perform the analysis and

negotiate the required modi�cation to the overlay network, to optimize system performance.

3 OPTIMIZERS FOR APPLICATION EXECUTION AND OVERLAY LAYERS
In this section we present two optimization algorithms adopted, respectively, at the application

execution and overlay layers. We describe the application execution layer optimization (originally

presented in [46]) in Section 3.1 and the overlay layer optimization (originally presented in [49]) in

Section 3.2. �en, we describe the key aspects of their novel combination in Section 3.3.

3.1 ACO-based task scheduling
�e main idea of the approach we presented in [46] is to maintain and exploit a distributed data

structure, that we call colored computational �eld, which works as a sort of distributed routing table

where links are annotated with rates related to the likelihood to �nd computational resources by

following them. �e idea is inspired by ant colony optimization techniques, where “ant” agents

release pheromone tracks when resources are found. Such a pheromone is used by all other ants to

easily gather the resources. Our approach uses colored scout ants to discover computational resources

in the volunteer network and maintain the computational �eld. Scout ants are continuously spawned

to adapt to the variability of the volunteer cloud. It is worthwhile to remark that several algorithms

can be de�ned to exploit the �eld. Here we focus on a suggestive one where hunter ants help to

ACM Transactions on Modeling and Computer Simulation, Vol. -, No. -, Article 0. Publication date: 2017.



A Holistic Approach for Collaborative Workload Execution in Volunteer Clouds 0:7

Listing 1. Ant main cycle
1∀ color k ϵ K with per iodk : antk .coloredAntStep(sourceNode);
2

3when n ϵ N generates a task t :
4if (n cannot execute t ):
5while (an executing node n′ is not found) && (∃ hunterAnt attempts):
6ant .AntStep(n′);

accommodate task execution requests by exploiting the �eld. Such ant agents navigate the network

in search for a volunteer node that can serve a task execution request by choosing their next hop

with a probabilistic selection, weighted according to the level of pheromone of the links in the

�eld. Such an operation, called stigmergy, may eventually lead to optimality in static networks, but

may also su�er (as all ACO-based approaches) from stagnation [52], specially in dynamic networks.

Stagnation occurs when the ants converge to an apparently optimal decision, which may prevent

the system from adapting to the emergence of new, be�er solutions. Our ACO-based algorithm

features some standard techniques to prevent stagnation, such as evaporation (pheromones are

regularly decreased), as well as some novel ones, such as temperature regulation (the likelihood of

exploring new paths is increased when the network is updated), memory aging (in analogy with the

standard aging, releasing pheromone quantities in inverse proportion to the distance to resources)

and angry ants (a third kind of agents that remove pheromones along outdated links).

Colored scout ants (Listing 1 line 1) periodically explore the neighborhood of a node, to discover

computational resources and to update the �eld accordingly. Such ants are specialized by computa-

tional pheromones (set K ): each color k corresponds to one of them. Instead, hunter ants (Listing 1

lines 3-6) are spawned when a task execution request is issued. �ey exploit the pheromone �eld

to �nd a volunteer node, and update the �eld according to the received feedback.

3.1.1 Colored Scout Ants. Colored scout ants are periodically spawned in a process that is

independent from the request and execution of tasks (Listing 1 line 1). �eir goal is to explore the

network and update the pheromone �eld. Each ant releases and follows its own pheromone color

(k ∈ K). Listing 2 describes the behavior of scout ants by means of pseudo-code. Each scout ant

explores the network (line 7), probing the neighborhood goodness while going away from its home

node (the one that spawned the scout ant). Each ant has an associated time-to-live (TTL), which

establishes the number of hops an ant must try to perform during its exploration, before returning

home. �e TTL prevents endless and unnecessary exploration e�orts. When its TTL is exhausted,

the scout ant returns back to its source node (line 12), releasing the pheromone according to a

memory aging approach (line 23). Below, the main features of the algorithm are explained in detail.

Choosing the Next Hop: Temperature-dependent Exploration & Exploitation. �e ants behavior is

based on online Reinforcement Learning (RL) [41], where at each step the decision of which link to

explore next involves a choice between exploration (try to gather new information) and exploitation
(focus on the best decision, according to current information). Exploration may be considered as a

risk run by the node, with the hope to obtain be�er knowledge and thus make be�er decisions

in the future. A common approach to face the “exploration-exploitation dilemma” is the use of

a So�max method [41]. Each ant selects its next hop by taking into account both the past path

desirability (exploitation) and the exploration compliance, considering the rate πk (e ) assigned to

each outgoing edge e according to the following equation

πk (e ) = exp

(
Φk (e )

Ti

)
(1)
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Listing 2. Colored scout ant algorithm
1antk .coloredAntStep(Node n){
2antk .pathAdd(n);
3antk .saveNodeGoodness(n, k);
4antk .updateTtl ();
5

6if (antk .getTtl () >0)
7nextNode := choose with probability pk ((n, nextNode ), En \ {antk .path () });
8if (nextNode != null)
9antk .coloredAntStep(nextNode);
10return;
11previousNode := antk .getPreviousNode ();
12antk .coloredAntStepBack(previousNode , n);
13}
14

15antk .coloredAntStepBack(Node to, Node from){
16new_ϕk := antk .getMemoryAgingPheromone(to, from);
17if ( (new_ϕk > ϕk (to, f rom)) || (k != FINISHING_TIME ))
18ϕk (to, f rom) := new_ϕk ;
19previousNode := antk .getPreviousNode ();
20antk .coloredAntStepBack(previousNode , to);
21}
22

23antk .getMemoryAgingPheromone(Node to, Node from){

24memoryTrace := ~ϕ(subPath(to, from));
25best_ϕk := max(memoryTrace);
26return agingDiscount(pathLength(best_ϕk , to));
27}

where Φk (e ) is the amount of pheromone of type k in the edge e and Ti a temperature factor later

described. Given the rates, the probability pk (ej ,E
′) that the k-colored scout ant at node i chooses

the outgoing edge ej is then de�ned by:

pk (ej ,E
′) =

πk (ej )∑
eqϵE′ πk (eq )

(2)

Typically, E ′ is selected to contain all the outgoing edges at node i , excluding the one from which

the ant arrived (see Listing 2, line 7).

According to the So�max action selection method, we have chosen the Boltzmann/Gibbs distri-

bution, with a tunable temperature functionTi , to probabilistically choose the next hop from node i ,
while taking into account the expected reward, i.e., the probability to �nd a node willing to perform

a task. �e temperature function controls the exploitation/exploration tradeo�, i.e., if Ti → ∞ the

ant at node i tends to follow a more random approach (all paths have the same preference), while if

Ti → 0 the ant follows a greedy approach, which reduces the exploration component. Instead, if T
is close to 1, the choice tends to be proportional to the pheromone of each link.

One of the roles of the temperature is to prevent stagnation. Indeed, if we choose the temperature

to be a monotonically decreasing function with respect to time, then, as time goes by, it is possible

to reduce exploration and make a more sound use of the knowledge gathered so far. However, every

time a new neighbor connects to a node i , the corresponding function Ti should be re-initialized to

encourage the exploration of new resources.

Discounting the Distance: Memory Aging. Scout ants explore the network and record the node
goodness (or nest value, i.e., the resource value associated to the corresponding color) found during

their exploration. While returning home, a scout releases a pheromone value, depending on its

memory aging factor (to prevent stagnation) and the node goodness in that part of the network

(Listing 2, lines 23-27). We do not use the traditional concept of aging, where ants deposit less and

less pheromone as they move from node to node, because, in our se�ing, the information that the
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pheromone provides is useful not only for the node from which the scout has been spawned, but

also for scout ants spawned by other nodes.

However, to take into account the distance between a potential task execution requester and

the node holding the necessary resource, our memory aging mechanism releases an amount of

pheromone that is inversely proportional to the distance from the best resource found so far, rather

than to the distance from the node that spawned the ant (as in traditional aging). In other words,

our memory aging mechanism considers what the ant remembers from the goodness of the best

node, in the subsequent portions of the path it has followed. �is can be achieved, for instance,

by implementing the function agingDiscount(mem aging on best ϕ) (see Listing 2 line 26), as

best ϕ − mem aging · AgingFactor, where best ϕ is the best value found so far, mem aging is the

distance from it and AgingFactor is the discounting factor.

Discounting Information Age: Evaporation. In addition to the dynamic temperature and memory

aging mechanisms, we also use the evaporation technique to deal with stagnation in presence of

volatile resources.

�e �nishing time, for instance, is a volatile resource measure and its value should be updated

frequently. A higher amount of pheromone is assigned the more the declared �nishing time is

closer to the current time. Further pheromone is released only if the new value is higher than the

previously released one. Instead, if pheromone values would be updated regardless of the best

previously found values, they would be highly variable and thus would cause unstable information.

We consider resources such as the amount of RAM and CPU to be non-volatile, as they cannot

be allocated forever but only on a short-term basis (i.e., to execute tasks). �us, until the node

participates in the network, its resources are stable, and the corresponding deposited pheromone

does not need to be updated by means of evaporation. When a node perceives a new neighbor, the

former increases its temperature to update the �eld. Instead, when a node notices that one of its

neighbors has le�, it uses angry ants (described below) to update the �eld.

Dealing with Dynamic Networks: Angry Ants. Despite the non-volatile nature of resources, the

unstable nature of the network of participants [54] can lead to stagnation: when a node that caused

the update of the pheromone on several links goes o�ine, all subsequent task execution requests

on the nodes connected with those links may follow a wrong path, without �nding the desired

resources. As a remedy, we propose angry ants, which are spawned by scout ants when they �nd an

abrupt change in the �eld. Angry ants follow back the path of colored scout ants, and throw away a

certain amount of pheromone of the corresponding color, to force the update of the corresponding

pheromone color by future scout ants.

3.1.2 Hunter Ants. When a node has a task for which it cannot respect the deadline, it starts

spawning multiple hunter ants (Listing 1 lines 3-6). Every hunter ant tries to �nd a node ready to

satisfy the task execution request, by exploring the network according to the �eld and the task

characteristics. Task execution requests are sent to nodes that have been found by the hunter ants,

until one of them accepts, or the hunter ant a�empts are exhausted. �e hunter ant brings with it

only a task description with its functional and non-functional requirements, and not the task itself,

to minimize transmission overheads.

�e behavior of hunter ants is sketched in Listing 3. Each hunter ant tries to �nd a node willing

to execute the task (line 4), by following the Colored Computational Field (line 8) built according

to the overall pheromone (see the explanation of Eq. 5 below). If the hunter ant does not �nd any

node willing to collaborate a�er its TTL, it returns to its home node. In the following, we provide a

detailed explanation of the main features of the algorithm.
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Listing 3. Hunter ant algorithm
1ant .antStep(Node n, Task t){
2ant .pathAdd(n);
3ant .updateTtl ();
4if (askExecutionToNode(n, t))
5previousNode := ant .previousNode ();
6ant .antStepBack(previousNode , n);
7else if (ant .getTtl () >0)
8nextNode := antChooseContact(pk (En \ {ant .path () }), t);
9if (nextNode != null)
10ant.antStep(nextNode , t);
11return;
12ant.antStepBackHome(ant );
13}
14

15ant.antStepBack(Node to, Node from){
16ant.depositPheromone(to, from);
17previousNode := ant .getPreviousNode ();
18ant.antStepBack(previousNode , to);
19}
20

21depositPheromone(Ant ant , Node from){
22new_ϕf b := ant .agingPheromone(to);
23ϕf b (ef rom ) = new_ϕf b ;

24}

Combining and Minimizing Resources: Resource Allocation Heuristic. Choosing the next hop,

hunter ants take into account the pheromones of all colors deposited in the �eld, which may

o�er contradictory information. E.g., memory-colored and CPU-colored pheromones can promote

di�erent links. Our approach is based on a weighted sum of both �elds.

An additional issue is that, in an execution-oriented environment as turns out to be the volunteer

cloud, the main purpose is to maximize the overall number of tasks that meet their deadline. Such a

problem is clearly intractable in a global manner (for instance, even the problem of �nding the best

task-node match is well known to be NP-complete [59]) and would require perfect predictions of

future task arrival times and characteristics, which is totally unrealistic in the complex and dynamic

environment of the volunteer cloud, where tasks requests and nodes participating in the network

change over time. �erefore, hunter ants use local heuristics, based on the idea that minimizing

wasted resources (the ones that are reserved but not completely used) will increase the probability

to accommodate more requests in the future. �ese heuristics rely on two functions, namely the

single resource waste ratio (srwr) and the combined resource waste ratio (crwr), de�ned in Eq. 3 and

4, respectively:

srwr (xk ,yk ) =
min(xk ,yk )

max(xk ,yk )
(3)

crwr (x, y) =
∑

k ∈1.. |x |

ηksrwr (xk ,yk )∑
σ ∈1.. |x | ησ

(4)

where x and y represent, respectively, the task requirements and the node resources, while

the weight vector η of size |x| expresses the importance of each resource. Smaller values of crwr
suggest higher mismatch degree between requested and provided resources.

Weighting Links. Such heuristic functions are used to associate goodness values to links. �e

task-t ’s resource requirements tQ are expressed as a pheromones vector Φ(tQ ) applying, for each of

the requested resources, the same functions used by the scout ants. �en, the goodness of a link e
will be based on the value of crwr (ΦR (e ),Φ(tQ )), where ΦR (e ) is the pheromone vector associated

to all the computational resources in R (which coincide with those expressed in the QoS of the
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task). Task requirements that are closer to the available ones are preferable. For a single color, the

optimal value is approached when the single resource waste ratio tends to 1, while the worst case

is when resources are reserved but not completely used by the task, and the function tends to 0. In

the other cases, for each single resource component k , we obtain Φk (tQ )/Φk (e ) when the resource

is under-used, or Φk (e )/Φk (tQ ) when the resource is over-used.

Pheromone Release. When a hunter ant �nds a node willing to perform a task, it releases its

own type of pheromone, which serves to record a measure of the node’s availability to execute

remote tasks, its presence in the network, and also its load. �e node’s willingness to perform tasks

can be regarded as a reputation assigned to the node, and it is subject to pheromone aging and

evaporation, to take into account the loss of knowledge about the node behavior. At each hop, a

hunter ant computes an overall pheromone value Ψ(e, t ) for a candidate edge e according to:

Ψ(e, t ) = crwrα (ΦR (e ),Φ(tQ )) · Φ
β
� (e ) · Φ

γ
fb (e ) · λ

δ (e, tQ ) (5)

where Φ� is the pheromone value associated to the node’s �nishing time, Φfb is the feedback

pheromone released by hunter ants, and λ(e, tQ ) ∈ R
+

is a heuristic measure which evaluates the

estimated performance of link e for a task with QoS tQ , in terms of data rate and delay perceived

in the last interaction along e . �e last measure takes into account the network overhead for

transferring the task to the node that will execute it. Parameters α , β ,γ and δ are tunable weights

for the components of the equation, which are normalized in the range [0, 1].

Exploration. Unlike the function used by the colored ants, hunter ants combine all types of

pheromone colors (Listing 3, line 8). However, the probability to choose link e ′ as the next hop is

computed in a similar manner based on the following rate:

πh (e
′, t ) = exp

(
Ψ(e ′, tQ )

Ti

)
(6)

All in all, our ACO-based approach has been designed with the peculiarities of volunteer clouds

in mind: the colored scout ants explore the network to build distributed knowledge (something that

would be irrelevant in the case of standard cloud computing systems with a few well-known data

centers); the memory aging mechanism works considering the best resources found in the ant’s path

(and not according to the distance from the node that spawned the ant as in the traditional aging);

the evaporation mechanism is useful for dealing with volatile resources (since the knowledge on

the execution queue is highly variable and changes every time a new task is accepted for execution

and when a task in queue completes its execution); the angry ants clear a portion of the distributed

knowledge to take into account the dynamic online presence of the nodes (again something not

really relevant in the standard cloud systems).

3.2 Dynamic workload-based partitioning of the overlay network
Task distribution strategies applied to the cloud or volunteer computing environment assume the

presence of a central load balancing node, which knows the available resources and their current

load. Exploiting such global knowledge makes it possible to optimize task execution by allocating

each task to the node that can complete it �rst. Unfortunately, maintaining such a global knowledge

is infeasible in volunteer clouds, due to the large size of such systems and the high dynamism and

heterogeneity of the resources. Even for large cloud providers, whose data centers are constituted

by many nodes placed at di�erent geographical locations, maintaining an overall knowledge is

a hard job. To relieve the knowledge requirements, a widely adopted approach foresees the use

of cloud partitioning [27, 64]. �e simplest and most spread approach is partitioning the cloud
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according to geographical location. In this way the knowledge can be managed at two levels. At a

higher level, the load balancer knows only the overall load and capabilities available in each cloud

site. At a lower level, each site manager is in charge of maintaining accurate knowledge on the

status of each node that constitutes the site. When an execution request arrives in a cloud site,

the cloud manager evaluates the site load. If the site can satisfy it, the request is executed locally,

otherwise it is forwarded to the central load balancer. �e load balancer builds a priority queue

with all the cloud sites ordered according to their actual load, then forwards the request to the

less loaded site. Within each site, the same approach can be replicated on a smaller scale or more

sophisticated distribution protocols can be adopted.

�is partitioning approach works well when the number of nodes is known a priori. However, in

a volunteer cloud system the number of participating nodes can be higher than in a classical cloud.

Moreover, resources are heterogeneous and their online presence cannot be guaranteed for the

whole duration of the task execution. Moreover, due to the volunteer participation of each node,

the geographical distribution of resources may not be uniform.

Fortunately, the task workload usually exhibits pa�erns that can be classi�ed. In [49], we

exploited such pa�erns to obtain a simple dynamical partitioning of the volunteer cloud in sites

according to the tasks characteristics. It is worthwhile to observe that, di�erently from the central

load balancing approach used in the classical cloud partitioning, here an accurate knowledge on

node characteristics or load is not required.

Di�erently from static geographical partitioning, with this strategy the volunteer cloud is

dynamically partitioned in logical sites (disregarding from the physical location of the machines)

according to the incoming workload, e.g., to avoid task interference in the execution queue without

requiring a priority queue. Indeed, assuming the presence of two types of tasks (as it has been

proved to be composed the Google workload [32]), interferences in the execution queue of long

running tasks (which are less restrictive on QoS requirements) with small running tasks (with

restrictive QoS requirements) could be generated. In fact, in our previous works [3, 46], we analyzed

di�erent task distribution protocols and observed a saturation in the requests that were satis�ed. In

these scenarios, even increasing the number of executing nodes, the volunteer cloud performance

(evaluated as the number of executed tasks that respect their deadline) does not improve.

�e P2P overlay network of the volunteer cloud is then divided and assigned to a supernode

that becomes responsible for a given site. In addition to the typical duties of a supernode (e.g.,

registering the nodes that enter and leave the network, mediating the communication between

sites), each supernode negotiates with the other supernodes to evaluate the bene�t of a site resizing.

E.g., if a site perceives underutilization, easily satisfying all the requests for the task type assigned

to it, the supernode in charge of that site can evaluate the migration (in the overlay network) of a

certain amount of volunteers to another site that instead is overloaded and unable to satisfy all

the requests. Moreover, supernodes can interact to tune the right number and size of each site

according to any other performance metric. A deeper discussion and a pictorial representation of

these interactions is provided in the following Section 3.2.1 and in Figure 4.

It is worth noting that the supernode does not need to know the actual load of each node in its

cloud site, but only to have an overview of the site performance and the workload characteristics.

E.g., it is possible to design a mechanism where an underloaded or overloaded node, a�er a given

time period, signals its status to the supernode. If the supernode receives a certain amount of these

requests, in a given time-frame, it can interact with other supernodes to resize the sites. In our

previous work, we considered nodes that accept or refuse remote execution requests according to

the perceived tasks miss rate [3]. �e same approach is adopted here to trigger the dissemination

of load information to the supernode.
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Listing 4. Cloud Sites Tuning Heuristic
1Data:
2M: performance metrics = m’ (task-type dependent) ∪ m’’ (overall metrics)
3i: index on metrics. Metric indexes are ordered according to their importance (i=1 is the highest)
4j: index on cloud sites/task types
5

6cloudSitesTuning (){ //multi -objective approximate optimization
7i = 1; //init
8while(TRUE){
9wait(EVAL_PERIOD);
10lastPerformance = evalPerformance ();
11

12//order the sites according to their importance for the current metric:
13if (metr ici in m''){ //if the current metric of interest does not regard a single task -type
14evalWorkload ();
15order_j_according_to_the_evaluated_workload //the importance of each site is then given from their

participation to the overall workload and not chosen by metr ici
16} else //metr ici in m'
17order_j_popping_the_site_corresponding_to_i_on_TOP //metr ici explicitely refers to a task -type
18

19resizeCloudSite(feedback)
20wait(EVAL_PERIOD)
21

22if (lastPerformance[metr ici ] == evalPerformance ()[metr ici ]) //eval the results of the last tuning
23i++ (cycle on i) //try to improve the next metric since the current one has not been improved
24else
25feedback = (lastPerformance[metr ici ] < evalPerformance ()[metr ici ]) ? POSITIVE : NEGATIVE;
26}
27}
28

29evalPerformance (){

30

M∑
i
wi ∗metr ici ; // performance metrics are weighted

31}
32

33resizeCloudSite(feedback){
34∀ first j: cloud_site_j = %INC*feedback;
35=⇒ ∀ last j: cloud_site_j = %DEC*feedback;
36}

Other approaches to avoid interference of task types can act locally, on each volunteer node,

adopting a speci�c queueing policy, e.g., priority queueing. Unfortunately, the possible bene�ts of

a priority queue are paid in terms of increased computational costs, since a queue check/update is

required every time a new task arrives in the system or an execution is completed, thus making

their application infeasible in such a volunteer cloud context.

3.2.1 A Heuristic Approach to Tune the Cloud Sites. Here we exploit a heuristic that resizes the

partitions by evaluating the perceived performance with respect to the metrics of interest. �e

pseudo-code of such a heuristic is reported in Listing 4.

�e heuristic works through a two-level decision making process. At the higher level, supernodes

collaborate to characterize the overall workload (online workload classi�cation) and to tune the cloud

(in terms of size and number of partitions). At the lower level, in each cloud site, the supernode

pinpoints the cumulative load of the partition and the corresponding perceived performance. �e

number of cloud partitions is determined according to the task types identi�ed by the online

workload classi�cation but, in general, are chosen by the supernodes.

�e M measurable performance metrics are constituted by a subsetm′ that concerns a single task

type (e.g., the waiting time per short tasks), and bym′′ that instead does not regard any speci�c task

type (e.g., the overall hit rate). �e volunteer cloud manager assigns weights to each performance

metric (line 29) de�ning a (multi-)objective optimization function. According to the assigned

weights, the tuning function (line 6) tries to improve the performance of each metric, providing

more nodes to the site that results to be more critical for such a metric. If the metric belongs

to m′, the corresponding site is increased, whereas, if the metric belongs to m′′, the workload
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Fig. 4. Agent interactions to partition the overlay-network.

characteristics are evaluated to understand which are the most important task types to improve

the corresponding metric. E.g., if the metric is related to the overall hit rate and the workload is

mainly constituted by small tasks, it could be worth evaluating an increase of the corresponding

site. A�er each resize action (line 33), the cloud performance is re-evaluated (line 22), to obtain a

positive or a negative feedback on the tuning performed on the sites. If the performance has not

been changed according to the current metric, the subsequent metric of interest is considered in

the subsequent optimization cycle.

3.3 Combining ACO-based task scheduling and workload-based partitioning
For illustration purposes, in this section we describe how the best algorithms that we have investi-

gated in our previous research e�orts (i.e., the two techniques presented in the previous sections)

can be combined in an e�ective way. �e overlay network optimizer structures the overlay network

in such a way that nodes are grouped according to the type of tasks they are more suited to. �is

solution eases the activity of hunter ants, since they can directly jump to the most promising region

of the network, i.e., the one populated by nodes specialized in the type of task to be executed. In

detail, in case the hunter ant is generated by a node in cloud partition a, but it must �nd a node

specialized in type b tasks, the hunter ant is moved to cloud partition b without consuming its TTL.

Figures 4 and 5 summarize the key interactions performed by agents to carry out the holistic

optimization. �ey are split in two �gures only for the sake of clarity, but actually performed in

parallel. Table 1 describes these interactions decomposing them in steps. In the �gures, dashed

lines represent node neighborhoods, clouds are logical sites/partitions, nodes with thick borders

are supernodes, whereas the workload (consisting of an independent set of tasks) is generated by

any set of nodes participating to the network.

Periodically (see step 1 in Figure 4 and Table 1), each node sends to the supernode responsible of its

site: (1.A) information about the perceived performance (such as hit rate, tasks waiting and sojourn

times); (1.B) a description (if any) of the task execution requests that it has generated (composed by

number of tasks, SLA, required number of cores, etc.); (1.C) a heartbeat to support the basic P2P

functionalities. Each supernode can thus: (2.A) aggregate the perceived performance and execute

the performance analysis; (2.B) perform the workload analysis by building a collective knowledge

on the incoming workload (i.e., classes of tasks with their characteristics, as later exempli�ed in
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Fig. 5. Agent interactions to schedule the tasks.

Section 4.2.2 and Figure 6). Finally (see step 3), the supernodes, sharing the knowledge on their

partition, perform the workload-based partitioning as discussed in Section 3.2.

Instead, at the application execution layer, the colored scout ants (i.e., mobile agents) are spawned

by each node (see step 0 in Figure 5 and the second half of Table 1) to collectively build the colored
computational �elds. Scout ants explore the whole network but, as mentioned earlier, thanks to

the optimization in the lower layer, the computational �eld that they build is already optimized to

be subsequently exploited by hunter ants e�ciently. Every time a new task execution request is

generated (step 1), the source node �rst checks the internal satis�ability of the request (step 2). If it

cannot satisfy such a request, it spawns hunter ants (step 3) that, exploring the computational �eld,

quest for a node willing to accept the task execution. Once a hunter ant �nds a suitable node, the

task is transmi�ed (step 4) and �nally executed (step 5).

4 PERFORMANCE EVALUATION
�is section describes the tools used to carry out the performance evaluation, the characteristics

of the considered scenario, the algorithms that have been compared, and concludes by reporting

and discussing the obtained results. Resources and information to reproduce our experiments are

available at [43].

4.1 The Volunteer Cloud Simulator
AVoCloudy [43, 45] is a volunteer cloud simulator, built on top of DEUS [4, 14] andMultiVeStA [50,

63].

DEUS is a �exible open source, general-purpose, Java-based discrete event simulator supporting

the analysis of every kind and size of complex system. DEUS is characterized by three basic

elements: (i) nodes are entities that populate and interact within the system; (ii) events de�ne the

internal actions of the nodes, as well as the interactions with other nodes and the environment; (iii)

processes determine the stochastic or deterministic scheduling of the events.

MultiVeStA is an e�cient distributed statistical model checker that can be easily integrated

with any existent discrete event simulator. MultiVeStA is equipped with Multi�aTEx, a �exible

language to formally express system properties of interest. Multi�aTEx queries are evaluated by

MultiVeStA by means of independent distributed simulation runs, until the required statistical
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Table 1. Agent interactions in the proposed combination (the first part summarises the interactions in the
overlay network, whereas the second part summarises the ones in the application execution layer).

Step # who what when

1.A

nodes to supernode

send the perceived performance

periodically1.B send tasks descriptions

1.C basic P2P functionalities

2.A

each supernode

aggregates the perceived performance (ref 1.A)

periodically

performance analysis
2.B builds a collective knowledge (ref 1.B)

workload analysis
3 supernodes share the knowledge on their site/partition

periodicallyworkload-based partitioning
0 each node sends colored scout ants to periodically

build the colored computational �elds
1 any node a task arrives in the system on-demand

2 request generator check the satis�ability of the request on-demand

3 request generator sends the hunter ants on-demand

4 request generator task transmission on-demand

to node that accept

5 node that accept task execution on-demand

accuracy is met. MultiVeStA has been chained with several simulators and used to study several

di�erent scenarios [63]. �e reader interested in a deeper analysis of the performance scaling

achievable by integrating MultiVeStA with a discrete event simulator can refer to [40].

4.1.1 Performance Parameters. AVoCloudy allows one to assess several performance metrics,

such as hit rate, total number of execution requests, task waiting and sojourn times, and number of

tasks assigned to each node. In the following, we focus on the most signi�cant ones, to compare

the QoS shown by the considered algorithms: (i) hit rate, de�ned as the relative amount of tasks

that met the deadline or that are still running but that will complete successfully if their host will

not go o�ine (i.e., a higher value denotes the ability of a strategy to accommodate a heavier load);

(ii) mean waiting time, which is the average amount of time that tasks have spent in the execution

queues (i.e., lower values suggest a be�er system response to incoming requests).

4.2 Simulated Scenario
In the following, we describe the main characteristics of the scenario used in our performance

evaluation. We assumed a set of universities participating to the volunteer cloud with their data

centers, whereas desktop/laptop resources are shared by laboratories and private users when idle

(e.g., at night) or used for web-browsing only.

4.2.1 Node characteristics. �e network of participants initially includes 10 cloud sites, 7 of

which have a central data center and several desktop/laptop nodes, while the rest of the sites are

composed by desktops/laptops only. �e speci�cation of node resources is reported in Table 2.

Obviously, desktop/laptop nodes are less computationally powerful, as they correspond to private

devices.
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Table 2. Simulation Configuration - Node a�ributes

type CPU freq. cores RAM Nodes

Desktop/Laptop 1 − 2 GHz 1 − 6 0.1 − 2 GBs 100 − 3, 000

Data Center 1 − 3 GHz 2 − 32 2 − 6 GBs 7

We consider di�erent cloud con�gurations, which di�er in the number of participating volunteer

nodes (from 100 to 3000), each one belonging to one cloud site. Every site is managed by a

supernode, which can be run on top of a data center or a volunteer node. �e overlay network is

semi-hierarchical, with supernodes connected with peers of other sites, and normal nodes have

connections within the same site only. Each node joining the network noti�es its presence to the

corresponding supernode, and receives a list of neighbors, i.e., a random subset of the volunteer

nodes in the same site. �e only exception to this overlay network con�guration takes place with

the proposed algorithm, in which the overlay network is partitioned according to the characteristics

of the incoming workload (as described in Section 3.2).

Nodes are both task producers and consumers, and share their resources to address task execution

requests coming from other nodes, but can also create their own requests. Tasks are executed in

exclusive application environments. A task is accepted for execution only if its timely completion

can be guaranteed, (i.e., if the node that has received the task execution request, considering all the

tasks already in its execution queue, can satisfy the deadline speci�ed in the SLA), otherwise the

task is discarded. A completed task marks a hit for the node on which it has been executed. �e

cost of communication is computed by means of the simple yet realistic network models described

by Saino et al. [42]. Moreover, we assume, for performance reasons, that tasks are executed only if

the node can satisfy the RAM requirements (i.e., we forbid the use of memory swapping techniques

that could have a profound impact on the perceived QoS).

4.2.2 Workload characteristics. We have adopted the Google Cloud Backend workload model [22],

described by Mishra et al. [32]. �ere, task requirements are characterized by CPU cycles and

memory occupation. �e task a�ributes we have considered are reported in Table 3, namely task

duration, required number of cores, RAM, deadline o�set and arrival mean. As workload data

are partially obfuscated [22], we made some assumptions. An example is the quality of service,

in terms of task deadlines, a�er which task executions are considered to be useless. We set up a

deadline o�set with respect to the actual duration of the task. �e mean arrival characterize the

task arrival process, which is Markovian, as derived by Mishra et al. [32] from the Google Cloud

Backend traces. �e inter-arrival time between two consecutive tasks is modeled as an exponential

random variable with mean value equal to 600 ms for large tasks, and 200 ms for small tasks. From

a queue theoretic point of view, the scenario can be seen as a queueing model where data centers

are modeled as M/G/m/1 queues, while desktops/laptops are modeled as M/G/1/1 queues. I.e., task

arrivals are modeled by a Markovian process (M), service time follows a generic (G) distribution,

data centers havem virtual machines (VMs), desktops/laptops have 1 VM each, and task queues

are unbounded. �e duration of the simulated scenario is 1 hour, with 10 ms granularity. In this

paper, the focus is on building distributed knowledge of the available machines and optimizing

their usage according to the incoming workload, in presence of a large number of nodes (up to

3,000 in our scenario). �us, we have assumed that, for the simulated time window (i.e., 1 hour),

the online presence of the nodes could be reasonably considered stable (with just a few nodes that

join and leave, corresponding to a very small number of task misses).
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Table 3. Simulation Configuration - Task a�ributes

type duration CPU RAM Deadline o�set Mean Arrival

(hours) (cores) (GBs) (%) (ms)

small 0 − 0.4 1 0 − 0.5 0.2 200

large 1 − 12 1 − 4 1 − 4 0.4 600

In Figure 6, the characteristics of the Google workload are analyzed. In particular, it is possible

to observe (see Figure 6a) that large tasks are more resource demanding (in terms of CPU cycles,

cores, RAM) than small ones, but have more relaxed deadlines and are generated less frequently.

According to a Poisson arrival distribution, in one year only a quarter of the generated tasks are of

the large type (see Figure 6b). However, weighting task arrival with required CPU cycles gives one

a very di�erent view: small tasks demand for only 9% of the total computation. Finally, considering

that large tasks are more capable of exploiting CPU cores, time consumption is divided 17%/83%

respectively for small and large tasks. �is last observation, combined with the knowledge of task

deadlines, has brought us to partition the overlay network according to the incoming workload, to

avoid that small tasks get stuck by large tasks in the execution queues.

(a)

(b)

Fig. 6. Workload analysis: (a) a�ributes comparison for small and large tasks (mean values); (b) percentage of
the total amount of tasks arrived in a year, required execution time (in hours) and execution time exploiting
the tasks parallelism.

4.3 Scheduling Algorithms
�e proposed holistic approach to support execution-oriented tasks has been compared with other

standard algorithms, namely random, round robin, local di�usion and greedy oracle. With the random
approach, execution requests are randomly spread to the neighborhood of the node that generated

the task, not considering task requirements or node resources. �e round robin approach probes

the neighborhood in a circular order, while Local di�usion is a variant of our ACO algorithm that

replaces scout ants by local di�usion of pheromones, according to a procedure inspired by spatial

computing [65].

�e greedy oracle algorithm is impossible to realize in practice, as it assumes to have complete

information (knowing all nodes’ resources and queued tasks) and assigns the incoming task to the

node that can complete it �rst. �us, from local optimal choices, the greedy oracle algorithm tries
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to obtain a global optimum. We use this algorithm as a sort of upper bound to be�er evaluate how

close the algorithms are to near-optimal performance.

4.3.1 ACO Task Scheduling in a Workload-Based Partitioned Network. As described in Section 3.1,

our ACO-based algorithm is highly parametric. �e scout ant behavior can be tuned acting on its

con�guration through the choice of several of its parameters, e.g., TTL, initial pheromone on each

path, pheromone depositing and aging functions, Boltzman’s temperature function and evaporation

rate. Some of the con�guration parameters of the algorithm are functions (i.e., releasing, aging

and temperature) for which the current implementation considers several possibilities (constants,

linear or exponential functions, user-speci�ed functions, etc.). AVoCloudy allows one to easily

express ant con�gurations by means of an XML �le.

�e con�guration of the pheromone deposit function depends on the color. In our performance

evaluation, for computational resources (CPU frequency, CPU cores and memory) the function

is de�ned as x , while for color “�nishing time” the function must be decreasing (to assign more

pheromone when the �nishing time is closer to the actual time), thus it is con�gured with 1 − x/5
and with a constant evaporation rate of 0.0001. Scout ants are spawned with a period of 50 seconds.

Hunter ants are instead con�gured with 3 a�empts for each task (hunting e�orts before giving up),

a pheromone deposit function equal to 1 − x , a weight for each kind of pheromone (used in Eq. 5)

equal to 1, and a constant temperature value of 1.

According to the workload analysis described in the previous subsection, we partition the overlay

network dedicating 70% of the nodes to the sole execution of large tasks, whereas the remaining

30% is devoted to small tasks.

Furthermore, to evaluate the bene�t of the proposed holistic approach with respect to a simpler

task scheduling algorithm, we compare it with the use of the ACO scheduling alone.

4.4 Results
Apart from the basic common con�guration we described above, it is worth mentioning that every

node uses ants that are con�gured with exactly the same behavior, despite AVoCloudy allows to

de�ne groups of peers with di�erent strategies, and we plan to study this case in a future work.

We performed parametric simulations, to study the behavior of the system for di�erent numbers of

participating volunteer nodes (on the horizontal axis). Obviously, the higher the number of nodes,

the be�er the performance of the system in terms of hit rate.

In the following, we refer to the average results obtained a�er reaching a 95% con�dence interval,

with a radius of 0.001, evaluated with Student’s t-test. To reach the desired con�dence interval,

MultiVeStA automatically decides how many simulation runs are necessary. In our experiments,

about 20 simulation runs (with di�erent seeds) were necessary. Each simulation implying the

ACO algorithm took several hours. �e presented results should be considered only for the sake

of example, as a more careful parameter tuning should allow to obtain even be�er performance

results. In particular, the workload-based approach to partition the overlay network can consider

di�erent optimization criteria (and even a combination of them). Being the workload dominated by

small tasks, to achieve a be�er overall hit rate, the algorithm has favored such type of tasks and

then slightly penalized the large ones.

When the number of nodes is higher, more scout ant explorations are required to build an

informative computational �eld and thus take be�er decisions. �e basic local di�usion algorithm

considered does not seem to build a very informative �eld and consequently underperforms the

ACO algorithm. �e overall number of performed tasks is acceptable, considering the limited

number of participants, i.e., even if in some cases the hit rate is not close to 1, in most cases it

is close to the hit rate of the �ctitious greedy oracle algorithm. Moreover, one should take into
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account that, despite it is very likely that the Google cluster is able to satisfy the entire workload,

the number of machines in the largest volunteer network considered in our performance evaluation

is signi�cantly smaller than the number of machines available in the Google cluster the workload

model belongs to (that are in the order of 10000).

We observe that, in the overall hit rate (Figure 7 bo�om) among the scheduling algorithms, the

best performance is achieved by the ACO algorithm, but our holistic approach combining ACO and

overlay partitioning outperforms it even in presence of a limited number of volunteer nodes. Such

a bene�t is mainly achieved because of the improvement in the hit rate of small tasks (Figure 7 top

le�), whereas the hit rate of large tasks is essentially the same (Figure 7 top right). Once more, we

recall that the workload is mainly composed by small tasks.

Fig. 7. Hit Rate for small (top le�), large (top right) and all (bo�om) tasks

�e performance gain achieved by our approach is explained by observing the task waiting time

(Figure 8). Having removed the interference among task types, in which large tasks (with high

computational demand but lower deadline requirements) obstruct the execution of further small

tasks, the small tasks are able to perceive a signi�cant improvement in the waiting time (Figure 8

le�). �e waiting time for the large tasks is only slightly a�ected (Figure 8 right).

For the sake of brevity, we do not show the results related to the other performance indexes.

Nevertheless, we summarize the insights we obtained. With a reduced number of nodes, the

knowledge added by the scout ants and the mismatch policy followed in Eq. 4 tend to favor large

tasks to data center nodes, leading to increased waiting and sojourn times, with lower execution

rate, for small tasks. �us, large tasks become a bo�leneck for small ones. Scout ants provide
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Fig. 8. Mean Waiting Time for small (le�) and large (right) tasks

an almost linear scaling of executed tasks, by increasing the number of nodes and the number of

accepted remote requests. With them, the load is be�er spread among the nodes which are able to

execute the tasks.

All in all, our ACO algorithm o�ers the best performance in terms of perceived QoS at a reasonable

price in terms of communication overhead, but it is outperformed by the proposed holistic approach

thanks to the optimization in the overlay network.

Finally, it is worth noting that the Google workload is compute-intensive rather than data-

intensive. Indeed, in the la�er case the tasks transferring process could have been more a�ected by

latency, bandwidth or lack of geographical locality in the design of the network overlay partitions.

5 RELATEDWORK
In our recent research e�orts, we tackled the problem of collaborative task execution in the volunteer

cloud [44] from several perspectives. In [48], we proposed a framework to allocate task requests

according to di�erent policies de�ned by suitable integer programming problems. �ose problems

are solved in a distributed fashion, relying on the Alternating Direction Method of Multipliers.

An example policy de�nable in our framework is the maximization of the node greenness [47].

A di�erent point of view is considered in [11], in which we proposed a methodology to assess,

at design time, the performance of collaborator selection strategies, in a scenario where cloud

participants are willing to share their machines but are not willing to disclose details of their

resources.

In the remainder of this section we brie�y discuss some of the related contributions that can be

found in the literature, in particular on the use of ACO-based optimization, partitioning techniques

in cloud computing, and cloud simulators.

5.1 ACO-based approaches
�e ACO approach was �rstly proposed by Di Caro and Dorigo [9], to address the routing problem.

In their AntNet algorithm, each arti�cial ant builds a path from source to destination. While

building the path, ants collect information about the time length of the path components, and

implicit information about the load status of the network. Although our ACO algorithm is clearly

inspired by that work, it does address the more complex problem of distributed QoS-constrained

task execution.

In their comprehensive survey on approaches to network routing and load-balancing based on

ACO, Sim et al. [52] stressed the main weakness of ACO-based approaches, namely stagnation,
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and focused on the many strategies that have been developed to deal with it. In addition to the

ones featured also by our algorithm (namely evaporation and aging), they considered pheromone
smoothing (placing a maximum to the amount of pheromone and releasing less pheromone when

that threshold is closer), pheromone limiting (se�ing upper bounds on the amount of deposited

pheromone), privileged pheromone laying (a privileged set of ants may release more pheromone

than the rest) and pheromone-heuristic control (the choice of ants is a weighted combination of the

amount of pheromone and the estimate of a heuristic).

Below we describe some of the e�orts on solving load balancing problems in task distribution

systems through the use of ACO-based approaches.

Mishra [33] proposed a simple ACO approach to deal with the load balancing problem, to have

every node doing approximately the same amount of work at any instant of time. �e proposed

ACO-based algorithm for dynamic load balancing relies only on the current state of the system

(no prior knowledge is needed). Each node is con�gured with its capacity, its probability of being

a destination, and its pheromone (or probabilistic routing) table, whose role is similar to the one

of our colored computational �eld. Each row of the pheromone table is a routing preference for

each destination, and each column represents the probability of choosing a neighbor as the next

hop. Ants are launched with random destination, to feed the information of the table. When an ant

reaches a node whose pheromone table is empty, it does make a random decision. An extended

version of such an algorithm considers the presence of multiple ant colonies, with the sole purpose

of reducing the likelihood that all mobile agents establish the same connection. In our opinion,

although such an approach is suitable for load balancing in network routing problems, it is not

adequate for collaborative task execution in volunteer clouds, as ants’ decisions do not take into

account the QoS requirements of the tasks.

LBACO (Load Balancing Ant Colony Optimization) [31] is an extension of the basic ACO

algorithm of [9]. LBACO tries to �nd the optimal resource allocation for each task, and to minimize

the makespan of a given task set, adapting to the dynamic cloud computing system and balancing

the entire system load. �e makespan is de�ned as the time di�erence among the task that

completes �rst, and the one that completes last. �e basic ACO algorithm is extended by carrying

out scheduling decisions that take into account the results of previous ones, and also considering

the load of each VM. �e algorithm takes into account VM features like the number of available

processors, its MIPS (Million Instructions Per Second) capability and communication bandwidth.

LBACO is evaluated through simulation, and compared with basic FIFO (First-In-First-Out) and ACO

algorithms, in terms of average makespan and Degree of Imbalance (a measure of imbalance among

VMs). �e ACO algorithm considered in the present work has instead a di�erent purpose, as it

considers only individual tasks, which have an associated deadline parameter, and tries to maximize

the number of completed tasks, while respecting their QoS requirements. LBACO cannot be directly

applied to collaborative task execution in volunteer clouds, since it assumes that each node knows

all the resources available in the neighbors nodes, which is unrealistic in those scenarios.

�e idea of colored ants was previously presented in a completely di�erent way by Ali and

Belal [2]. �ey considered a multiple colony approach, where each node sends a colored colony

throughout the network. Colored ant colonies help in preventing ants of the same nest from

following the same route, hence enforcing them to be distributed all over the nodes in the network.

One main di�erence with respect to our work is that Ali and Belal’s ants tend to maximize the

coverage of the network (exploration), while our scout ants can be con�gured with a certain

exploration-exploitation tradeo�, according to the so�max method (see Eq. 1).

A di�erent approach was adopted by Di Ni�o et al. [37], who used bio-inspired algorithms to

balance the workload, i.e., to ensure that all the nodes have almost the same amount of tasks in their

ACM Transactions on Modeling and Computer Simulation, Vol. -, No. -, Article 0. Publication date: 2017.



A Holistic Approach for Collaborative Workload Execution in Volunteer Clouds 0:23

queue. To deal with node heterogeneity, the algorithm proceeds in two steps: �rst, the network is

rewri�en to cluster the nodes of the same type; second, messages are spread among nodes of the

same type, to redistribute the load. �e goal of such an algorithm is di�erent from ours. Moreover,

we consider nodes with heterogeneous resource characteristics, not belonging to only few classes.

5.2 Cloud partitioning
Geographical cloud partitioning is already adopted by many public cloud providers. Multiple

geographical locations can provide redundancy and ensure reliability in the event of site failures.

A game theoretical model for load balancing in partitioned clouds was proposed by Xu et al. [64].

�ere, the cloud is partitioned according to the data centers geographical location. A centralized

node acts as load balancer receiving and dispatching the jobs. Each machine periodically provides

information about its characteristics and load to the central node. If an execution request cannot

be satis�ed, the load balancer forwards the request to another site according to a round robin

approach a�er having ordered the queue with updated information on load the load of nodes.

In [27], Khare and Chauhan reviewed several load balancing implementation works where clouds

are partitioned. Disregarding the implementation details in a real public cloud, that are out of the

scope of the presented work, all the reviewed architectures work with geographical partitions with

the rationale of minimizing the network overhead due to the transmission of load information.

A mathematical formulation of system performance prediction in the cloud, based on queueing

theory, was studied in [39]. �ere, a Markovian Arrival Process was used as a tool for characterizing

workload �uctuations under time-varying tra�c intensities. Such a prediction model can be

implemented in the supernodes while tuning the size of cloud sites.

Load balancing can be exploited even from an energy e�ciency point-of-view. Adnan et al. [1],

proposed a geographical load balancing where the central dispatcher node considers workload

latency requirements and electricity price variations to choose how much workload should be

executed in each data center to obtain a cost saving.

5.3 Cloud simulators
In its early days, cloud systems were mainly simulated by means of the already available grid

computing simulators. �e huge popularity gained by cloud computing in the subsequent years en-

couraged the development of new, more speci�c simulators, such as CloudSim [7], GreenCloud [29],

iCanCloud [38] and GloudSim [13]. For a detailed discussion of the relation with our simulator we

refer to [45]. We just mention here that a direct point-to-point comparison among the mentioned

simulators and AVoCloudy cannot be done, since their purposes are very di�erent: either to

accurately simulate few interconnected data centers focusing on network aspects, or to study the

cost-performance tradeo� or the jobs lifecycle.

6 CONCLUSION AND FUTUREWORK
Volunteer cloud computing can help overcome the scalability limitations of cloud computing by

harnessing the users’ willingness to share the spare resources of their machines. �e complexity,

dynamism and heterogeneity of volunteer cloud computing systems pose several challenges to

their engineering and prediction.

We have presented a novel holistic approach in which intelligent agents in the overlay and

in the application execution layers of all cloud participants cooperate to provide a collective

task management service. We have shown an instantiation of our approach through a novel

combination of two promising techniques: ant colony optimization of task scheduling [46] and

overlay network partitioning [49]. �e �rst one is a self-adaptive, highly parametric algorithm
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suited for collaborative task execution problems, relying on the Computational Field Framework

inspired by Ant Colony Optimization [16] and Spatial Computing [65] approaches. �e la�er one

is a dynamic workload-based partitioning of the overlay network, with the aim of supporting the

task scheduling algorithm running on top of it.

�e performance of the proposed approach has been evaluated by means of simulation-based

statistical analysis using a compute-intensive workload from Google [22, 32] and comparing it to

other known algorithms. �e results show that the proposed holistic approach outperforms all

other techniques in terms of perceived QoS, because of its collective, decentralized, collaborative

and self-adaptive nature.

In the proposed approach, adaptiveness resides both at the overlay layer (i.e., when scout ants

maintain the network) and at the application execution layer (i.e., when the partitioning is adapted

to the load of the nodes and the task characteristics). In future work, we plan to incorporate further

adaptivity capabilities, e.g., to tune the parameters that control the ACO-based approach. At the

application execution layer, we plan to evaluate further features of our algorithm, with particular

a�ention to the self-adaptive anti-stagnation mechanisms proposed in [46] (i.e., angry ants and

memory aging). Moreover, we plan to investigate novel mechanisms based on heterogeneous ants

(i.e., ants having di�erent behaviors), as well as to study variants of the basic spatial computing

based on the information di�usion rules we have used in the experiments. Furthermore, lightweight

performance monitoring and workload classi�cation mechanisms could be implemented. Workload

classi�cation could be used by agents to dynamically adjust the number and size of each cloud site.

Moreover, additional experiments could evaluate the system performance when agents adopt a

multi-criteria optimization (i.e., assign priority to more than one metric) while tuning the partitions,

e.g., queue waiting time for small tasks can be more important than the number of successfully

completed large tasks. Since overlay partitioning is suitable to be used with any workload, we will

also plan to study the performance of our algorithms under additional workload and tra�c models

(e.g., [28, 30, 56, 58]), in which most likely a di�erent number of classes of tasks are present.
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