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A B S T R A C T

Fast metabolite quantification methods are required for high throughput screening of microbial strains obtained
by combinatorial or evolutionary engineering approaches. In this study, a rapid RIP-LC-MS/MS (RapidRIP)
method for high-throughput quantitative metabolomics was developed and validated that was capable of
quantifying 102 metabolites from central, amino acid, energy, nucleotide, and cofactor metabolism in less than 5
minutes. The method was shown to have comparable sensitivity and resolving capability as compared to a full
length RIP-LC-MS/MS method (FullRIP). The RapidRIP method was used to quantify the metabolome of seven
industrial strains of E. coli revealing significant differences in glycolytic, pentose phosphate, TCA cycle, amino
acid, and energy and cofactor metabolites were found. These differences translated to statistically and biolo-
gically significant differences in thermodynamics of biochemical reactions between strains that could have
implications when choosing a host for bioprocessing.

1. Introduction

Traditional high-throughput screening approaches in metabolic
engineering have primarily relied upon basic physiology markers of
strain performance. Physiological markers often include basic input/
output parameters such as growth rate, substrate uptake rate, product
excretion rate, yield, and productivity. While useful, these markers give
little information on the underlying strain physiology. Omics data types
(e.g., transcriptomics, metabolomics, fluxomics, etc.,) could potentially
provide a richer and deeper understanding of strain performance,
which would allow more informed engineering decisions (McCloskey
et al., 2013). However, -omics data types are often not utilized in
routine screening of new production strain candidates because of high
costs and low throughput (Hansen et al., 2017). Of the various -omics
data types available, metabolomics provides the greatest potential to
gain rich and deep insight on strain physiology at a lower cost and
higher throughput (Fuhrer et al., 2011; Guder et al., 2017; Link et al.,
2015).

Metabolomics methods used for the absolute quantification of in-
tracellular metabolites are often on the order of 30min (or 48 samples
per day) (Bennette et al., 2011; Buescher et al., 2010; McCloskey et al.,
2016a, 2015). Longer run-times are often required for complete chro-
matographic separation of biologically important isomers that can not
be resolved by differences in MS fragmentation. Longer run-times are

also needed to allow for enough instrument scan time to acquire enough
points across each detected metabolite peak in order to accurately and
reproducibly measure a high number of transitions in a given run
(McCloskey et al., 2016a). With the advent of shorter columns with
decreased particle sizes and mass spectrometers with faster scan rates,
the potential to reduce method run-times to less than 5min with
minimal compromise to chromatographic resolution or quality of ac-
quired peaks is now possible (Guder et al., 2017). However, current fast
separation methods often compromise on the ability to resolve im-
portant biological isomers (e.g., glucose 6 phosphate and glucose 1
phosphate). In addition, fast separation methods often compromise on
the separation of structurally similar compounds with interfering sig-
nals (e.g., AMP, ADP, and ATP) that may compromise accurate quan-
titation. The ability to separate these species is critical for quantitative
modeling of biological systems (Almquist et al., 2014; Henry et al.,
2006; Jamshidi and Palsson, 2008; Miskovic et al., 2017; Saa and
Nielsen, 2016). An ultra high-throughput metabolomics method less
than 5min that is able to resolve of biologically important isomers and
provide complete separation of structural similar compounds with in-
terfering transitions has yet to be demonstrated.

Escherichia coli are often used as a model prokaryote for genomic
and physiological studies (Archer et al., 2011; Arifin et al., 2014; Ishii
et al., 2007; Vijayendran et al., 2007; Yoon et al., 2012), and as host
strains for industrial bioprocesses (Chae et al., 2017; S. S.Y. Choi et al.,
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2016; S. Choi et al., 2016; Park et al., 2011, 2007; Yim et al., 2011)
owing to the rich toolset available for gene and expression modification
(Datsenko and Wanner, 2000; Jiang et al., 2015; Ronda et al., 2016;
Wang et al., 2009) as well as accumulated historical knowledge base of
biochemical understanding (Guo et al., 2013; Kanehisa et al., 2017;
Keseler et al., 2013; Monk et al., 2017). Seven commonly used strains in
biotechnology applications include K-12 MG1655, K-12 W3110, K-12
DH5a, BL21, C, Crooks, and W. It has been shown that particular strains
are better suited for different applications (Monk et al., 2016). For
example, DH5a is often preferred in cloning applications (Song et al.,
2015; Taylor et al., 1993), while BL21 is often preferred for expression
of recombinant proteins (Marisch et al., 2013a; Robichon et al., 2011).
It has also been shown that choice of host strain for production of a
given compound can significantly impact production titers (Na et al.,
2013). Various comparisons between the seven industrial strains of E.
coli under bioprocess conditions or as host strains for a particular me-
tabolic engineering endeavor have been described (Chae et al., 2010;
Fathi-Roudsari et al., 2016; Marisch et al., 2013a, 2013b; Monk et al.,
2016). However, a comprehensive comparison of the metabolomes
between the strains does not yet exist. An understanding of the starting
metabolite levels of the strains would give researchers a key piece of
information when deciding which E. coli strains to use as a host in their
particular bioprocess.

In this study, a rapid reverse phase ion-pairing liquid chromato-
graphy triple quadrupole mass spectrometry (RapidRIP) for the rapid
quantification of the intracellular metabolome for routine screening
applications was developed and validated. It was shown that the
method was capable of quantifying 102 metabolites in less than 5min
with comparable resolution, sensitivity, and reproducibility to a 33min
RIP-LC-MS/MS (FullRIP) method. The RapidRIP method was used to
quantify the metabolome of seven industrial strains of E. coli.
Significant differences in glycolytic, pentose phosphate, TCA cycle,
amino acid, and energy and cofactor metabolites were found. These
differences translated to strain-specific differences in reaction thermo-
dynamics.

2. Material and methods

2.1. Biological material and growth conditions

Escherichia coli strains E.coli C (DSMZ 4860), E. coli Crooks (DSMZ
1576), E. coli DH5a (DSMZ 6897) E. coli W (DSMZ 1116), E. coli W3110
(DSMZ 5911) were obtained from DSMZ-German Collection of
Microorganism and Cell Cultures; E. coli BL21 (DE3) was purchased as
competent cells from Agilent (Agilent Technologies), E. coli K-12
MG1655 (ATCC 700926). All cultures were grown in 25mL of un-
labeled or labeled glucose M9 minimal media (Sambrook and Russell,
2001) with trace elements (Fong et al., 2005) and sampled from a heat
block in 50mL autoclaved tubes that were maintained at 37 °C and
aerated using magnetics.

Growth and sampling procedures for Pseudomonas, Mouse, and
CHO are described in the Supplemental methods.

2.2. Materials and reagents

Uniformly labeled 13C glucose was purchased from Cambridge
Isotope Laboratories, Inc. (Tewksbury, MA). Unlabeled glucose and
other media components were purchased from Sigma-Aldrich (St. Louis,
MO). LC-MS reagents were purchased from Honeywell Burdick &
Jackson® (Muskegon, MI), Fisher Scientific (Pittsburgh, PA) and Sigma-
Aldrich (St. Louis, MO).

2.3. LC-MS/MS instrumentation and data processing

Metabolites were acquired and quantified on an AB SCIEX Qtrap®
5500 mass spectrometer (AB SCIEX, Framingham, MA) using a

ACQUITY UPLC HSS T3 Column (100 Å, 1.8 µm, 2.1 mm X 30mm) and
processed using MultiQuant® 3.0.1 as described previously (McCloskey
et al., 2015). The acquisition method used for all transitions is given in
Table S10.

2.4. Metabolomics

Internal standards were generated as described previously
(McCloskey et al., 2014a, 2014b). All samples and calibrators were
spiked with the same amount of internal standard taken from the same
batch of internal standards. Calibration curves were ran before and
after all biological and analytical replicates. The consistency of quan-
tification between calibration curves was checked by running a Quality
Control sample that was composed of all biological replicates twice a
day. Solvent blanks were injected every ninth sample to check for
carryover. System suitability tests were injected daily to check instru-
ment performance.

Metabolomics samples were acquired from triplicate cultures (1mL
of cell broth at an OD600 ~ 1.0) using a previously described method
(Douglas McCloskey et al., 2014a, 2014b). A pooled sample of the fil-
tered medium that was re-sampled using the FSF filtration technique
and processed in the same way as the biological triplicates was used as
an analytical blank. Extracts obtained from triplicate cultures and re-
filtered medium were analyzed in duplicate. The intracellular values
reported, unless otherwise noted, are derived from the average of the
biological triplicates (n=6). Metabolites in the pooled filtered medium
with a concentration greater than 80% of that found in the triplicate
samples were not analyzed due to high background intereference. In
addition, metabolites that were found to have a quantifiable variability
(RSD>= 50%) in the Quality Control samples or any individual
components with an RSD>= 80 were not used for analysis.

Missing values were imputed using a bootstrapping approach as
coded in the R package Amelia II (Honaker et al., 2011) (version 1.7.4,
1000 imputations). Remaining missing values were approximated as ½
the lower limit of quantification for the metabolite normalized to the
biomass of the sample. Prior to statistical analyses, metabolite con-
centrations were log transformed to generate an approximately normal
distribution using the R package LMGene (Rocke et al., n.d.) (version
3.3, “mult”=”TRUE”, “lowessnorm”=”FALSE”). A Bonferroni-adjusted
p-value cutoff of 0.01 as calculated from a Student's t-test was used to
determine significance between metabolite concentration levels. The
glog-normalized values were used for downstream statistical analyses.

2.5. Thermodynamics

In vivo free energy change of reaction were calculated as described
previously (McCloskey et al., 2014a, 2014b) using a recent genome-
scale reconstruction of E. coli (Orth et al., 2011). In short, free energy of
formation values taken from the eQuilibrator data base (Flamholz et al.,
2012) were adjusted to physiologically estimated values for the cyto-
solic, periplasmic, and extracellular space for temperature (37 °C), pH
(7.5, 7.0, and 7.0, respectively), and ionic strength (0.2M). The 95%
confidence intervals of the metabolomics concentrations were used to
calculate the 95% confidence intervals of the free energies of reaction.
Free energy changes of reaction with non-overlapping confidence in-
tervals between the strains were defined as statistically significant. Free
energy changes of reaction with confidence intervals with different
signs between the strains were defined as biologically significant. Free
energy changes of reaction were only compared for those reactions with
sufficient measured metabolomics and compound free energy of for-
mation data coverage (50% and 99% of all reactants and products,
respectively). Concentration values for phosphate, water, hydrogen,
oxygen, and carbon dioxide were estimated as 1e-3, 55.0, 0.034e-3,
0.055e-3, and 1.4e-3M, respectively. Concentration confidence inter-
vals for missing metabolites were estimated as 1.58e-3M and 1.58 e-6M.
Free energy of formation confidence intervals not measured were
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estimated using the group contribution method (Flamholz et al., 2012).
Thermodynamic flux variability analysis (TFVA) was performed as

previously described (Henry et al., 2007) using an open-source module
for cobrapy called thermodynamics (https://github.com/dmccloskey/
thermodynamics). Blocked reactions were those where the min and
max flux was 0, essential reactions were those where the min and max
flux were greater than 0, substitutable reactions were those where the
min flux was 0 but the max flux was greater than 0, and constrained
reactions were those where the min and max flux were the same.

3. Results and discussion

3.1. RapidRIP method development

A RapidRIP method was developed using the same mobile phase,

temperature, and column chemistry to the FullRIP method (Fig. 1,
Table 1). A shorter column with reduced particle size was used to
maintain resolving power at a greatly reduced run-time (see Materials
and Methods). A multitude of gradients, flow rates, and flow regimes
were tested in order to optimize the method (Fig. S1). The optimized
chromatographic parameters are given in the Material and Methods.
Flow rate was modulated to allow for faster separation of later eluting
compounds and faster column wash and equilibration, while main-
taining the ability to retain early eluting compounds and separate
hexose and pentose isomers. Percent mobile phase B was modulated to
improve the separation of critical pairs, peak shape, and overall sensi-
tivity (Fig. S1, Table S1). Interestingly, it was found that even within a
greatly reduced method run time, substantial differences in separation
between critical pairs could be obtained by careful tuning of the mobile
phase gradient (Fig. S1, Table S1 and S2). Also, compound elution times

Fig. 1. RapidRIP vs. FullRIP chromatography. A comparison of chromatograms obtained from pools of standard mixes ran using the RapidRIP and FullRIP methods.
The TIC (A and B), and XICs of lactate (lac-L), pyruvate (pyr), glucose 6-phosphate (g6p, fructose 6-phosphate (f6p), glucose 1-phosphate (g1p), fructose 1-phosphate
(f1p), amp, adp, and atp (C and D), and nad(p)(h) (E and F) for the RapidRIP and FullRIP methods, respectively. Inset shows a scaled image of the TIC of the RapidRIP
method projected onto the time axis of the FullRIP method.
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were evenly distributed and peak widths were minimized in order to
maximize the number of transitions that could be analyzed in a given
run.

3.2. RapidRIP method validation

The ability of the method to resolve biologically critical isomers was
determined. Critical pairs included the hexose and pentose phosphates,
mono-, di-, tri- adenine nucleotide phosphates, nad(p)(h), and citrate/
isocitrate, ac(coa), and various organic acids and amino acids (Fig. S1,
Tables S1 and S2). Baseline resolution (resolution greater than or equal
to 1.0) was achieved for 75% of the representative critical pairs listed (9
of 12 pairs), while separation (retention time difference>0.01min)
was achieved for all pairs. Importantly, compounds that were not
baseline resolved have non-isotopic overlapping transitions, which
allow them to be measured without isotopic interference from neigh-
boring compounds.

Quantification accuracy and variation was assessed by measuring
the average points across the peak, and the variation in peak height
across multiple injects of a neat standard solution for five different
acquisition methods (Table S3). 55, 94, 61, 96, 100% of compounds
measured had on average 10 or more acquired points across the base-
line for MRM2+EPI, MRM2, MRM1+EPI, MRM1, and MRMsub ac-
quisition methods, respectively. 81, 94, 72, 98, 100% of compounds
measured had a RSD of peak height of less than 30% for MRM2+EPI,
MRM2, MRM1+EPI, MRM1, and MRMsub, respectively. These results
indicated that the MRM2 and MRM1 acquisition methods were able to
collect a sufficient number of points across the peak to allow for ac-
curate quantification of almost all target transitions. In contrast, the
drop in the number of points across the peak as well as the increased
variation in peak height found for the MRM2+EPI and MRM1+EPI
indicated that the acquisition methods that included an additional data-
dependent enhanced product ion (EPI) scan were not suitable for ac-
curate quantification. While the ability to collect an additional product
ion spectra for further compound identification confirmation would be
desirable, a tradeoff of decreased number of transitions would be re-
quired. Consequently, the MRM only methods were used in further
method validation.

Method linearity and sensitivity was determined by running cali-
bration curves for all compounds (Table S4). A total of 102 compounds
were quantifiable. The limits of quantification ranged from less than
1 nanomolar (aromatic and phosphorylated metabolites) to above
100micromolar (amino acids), with many metabolites spanning a de-
tection range of 5 orders of magnitude.

The reproducibility of the method was determined by measuring
pooled samples of representative sample matrices that included
(Fig. 2, Table S5). 98, 100, 53, and 97 compounds were measured in
Pseudomonas, E. coli, Mouse Plasma, and CHO, respectively. 90, 90, 53,

and 93 compounds were found to be quantifiable in Pseudomonas, E.
coli, Mouse Plasma, and CHO, respectively. 85%, 81%, 91%, and 88% of
measured compounds had a peak height ratio RSD of less than 30% in
Pseudomonas, E. coli, Mouse Plasma, and CHO, respectively. Metabo-
lites with a RSD greater than 30% were generally found to be at the
lower limits of detection(LLOD). All measured components had a re-
tention time RSD of less than 10% in all sample matrices tested. Im-
portantly, no carryover was found between any of the runs (data not
shown).

3.3. RapidRIP vs. FullRIP

The RapidRIP method was compared to a previously published
33min RIP-LC-MS/MS method. It was found that sufficient resolution
between critical pairs could be maintained for a majority of the com-
pounds analyzed between the RapidRIP and FullRIP methods (Fig. 1,
Tables S2) to allow for comparable quantitation (Fig. 3). For example,
the separation between the pentose isomers ribose 5-phosphate dn ri-
bulose 5-phosphate was sufficient to achieve baseline separation. A
notable compromise in resolution in the reduced method was the se-
paration of glucose 6-phosphate and fructose 6-phosphate, which were
not well separated compared to the FullRIP (Fig. 1.) However, the
unique 199 product ion allows for the direct quantification of glucose 6-
phosphate and indirect quantification of fructose 6-phosphate by sub-
traction of the calculated concentrations as determined from a cali-
bration curve from the 169 and 199 ions.

It was found that both methods were comparable in linearity and
sensitivity (Table S4). 54% of the compounds measured with RapidRIP
had an LLOQ less than or equal to those measured with FullRIP; and
75% of the compounds measured with RapidRIP had an ULOQ greater
than or equal to those measured with FullRIP. A decrease in sensitivity
and LLOQ but increase in ULOQ was found primarily for early eluting
compounds consisting of amino acids, nucleosides and nucleotides. An
increase in resolution and LLOQ was found for many later eluting
metabolites. The increase in resolution can be explained by the de-
creased peak width using the RapidRIP method. The overall increase in
ULOQ may be attributed to an overall increase in ion suppression due to
the number of components eluting from the column in a given period of
time. This is most noticeable for the early eluting compounds noted
above where a loss in sensitivity was also found.

The RapidRIP and FullRIP methods were found to have comparable
quantitative accuracy (Fig. 3A-G). A correlation coefficient (Pearson's
R) greater than or equal to 0.88 between glog normalized absolute
metabolite concentrations (mmol*gDW-1) for all seven strains tested
(Fig. 3A-G, Table S7) was found. Interestingly, the peak height ratio
correlation coefficients between strains were much less than the abso-
lute metabolite correlation coefficients (Table S7). This indicates that
there was sufficient changes in analyte or internal standard peak
heights from other components in the sample matrix that were well
separated in the FullRIP method that are no longer well separated in the
RapidRIP method to make the direct comparison between peak height
ratios problematic. However, this also indicates that the use of a cali-
bration curve was sufficient to compensate for the majority of these
changes.

The RapidRIP and FullRIP methods were also found to have com-
parable quantitative precision (Fig. 3H). 61% and 58% of quantified
metabolites for all strains had a % RSD less than or equal to 30 for
RapidRIP and FullRIP methods, respectively. 7% and 4% of quantified
metabolites for all strains had a % RSD greater than 60% RSD for Ra-
pidRIP and FullRIP, respectively. The distribution of %RSDs (Fig. 3H),
and the percentages of metabolites below 30 and above 60%RSD be-
tween both methods indicates that the short method can retain the
quantitative precision of the full method.

Table 1
RapidRIP chromatographic gradient. Chromatographic conditions are
given in the Section 2.

Time %B flow_rate

0 0 0.5
0.4 0 0.5
0.9 2 0.5
1.0 6 0.5
1.4 6 0.5
1.5 11 0.5
1.9 11 0.5
2.1 28 0.5
2.2 53 0.5
2.5 53 0.5
2.6 0 0.5
3.9 0 0.5
4.4 0 0.5
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3.4. Quantification of the intracellular metabolome of seven industrial
strains of E. coli

The RapidRIP method was used to quantify the intracellular meta-
bolome of 7 industrial strains of E. coli (Fig. 4, Table S6, see Material
and Methods for strains). Consistent with previous literature, the most
abundant metabolites in the strains consisted of reduced glutathione, L-
glutamate, and ATP (Bennett et al., 2009; Taymaz-Nikerel et al., 2011).
Hierarchical clustering (Fig. 4A) reveals that similar to gene expression
levels, the levels of intracellular metabolites do not reflective genomic

distances between the strains (Monk et al., 2016). The hierarchical
clustering is also consistent with how the strains group by Partial Least
Squares Differential Analysis (PLS-DA, Fig. 4C). The primary mode of
separation between the strains involve differences in glycolytic, pentose
phosphate, and TCA cycle intermediates, and the secondary mode of
separation include metabolites involved in nucleotide metabolism
(Fig. 4D). These differences are discussed in greater detail below.

Physiological ratios are ratios of individual metabolites that often
reflect broad physiological states (e.g., energy depletion, redox im-
balance, etc.,) that are tightly regulated by the cell. Physiological ratios,

Fig. 2. Method robustness and reproducibility
in complex biological matrices. Pooled samples
of Pseudomonas sp. VLB120 (Pseudomonas), E.
coli MG1655 K-12 (E. coli), mouse plasma
(Mouse), and chinese hamster ovarian cells
(CHO) were analyzed across multiple injec-
tions at periodic intervals. Representative
compounds across the chromatogram for all
sample matrices are shown. Representative
compounds shown include L-glutamate (glu-L),
dihydroxyacetone phosphate (dhap), glu-
tathione oxidized (gthox), succinate (succ),
phosphoenol pyruvate (pep), and reduced
Nicotinamide adenine dinucleotide phosphate
(nadph). All peaks were scaled to their max-
imum ion count for comparison. Peaks for succ
in Pseudomonas and nadph in Mouse were not
found due to an incomplete TCA cycle in
Pseudomonas and lack of intracellular meta-
bolites present in mouse plasma, respectively.

Fig. 3. RapidRIP vs. FullRIP quantitative ac-
curacy and precision. A comparison of absolute
quantitation of metabolites using the RapidRIP
(y axis) and FullRIP (x axis) are shown for the 7
industrial strains of E. coli: A) E. coli BL21, B) E.
coli C, C) E. coli Crooks, D) E. coli DH5a, E) E.
coli K-12 E. coli MG1655, F) E. coli W, and G) E.
coli K-12 W3110. The name of the strain and
the Pearson correlation coefficient are anno-
tated in the plots. The x and y axis are glog
normalized absolute metabolite concentrations
(mmol*gDW-1). For comparison, the glog
normalized peak height ratios between ana-
lytes and internal standards are given in Table
S7. H) Histogram of %RSD of RapidRIP and
FullRIP.
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including the nitrogen charge, energy charge, glutathione ratio, and
redox ratio, differed between the strains (see methods for ratio defini-
tions, Fig. 5A). E. coli C and DH5a had the lowest nitrogen and energy
charges due to elevated levels of akg and amp, respectively. Non- sig-
nificant differences in the glutathione and redox ratio, but significant
differences in the metabolites that compose those ratios were found.
The conservation of these ratios, but not necessarily the levels of the
individual components may indicate the importance of the glutathione
and redox ratios for maintaining normal aerobic physiology.

The intracellular concentration of 14 amino acids differed between
the strains (Fig. 5B). E, coli DH5a was found to be a poor starting strain
for L-tryptophan production. The intracellular concentrations of L-
tryptophan were significantly lower than the other strains. E, coli
MG1655, C, and W3110 were found to maintain significantly higher
levels of D-aspartate. This is most likely due to utilization of the
Phosphoenolpyruvate Carboxylase (PPC) in MG1655 and W3110
(McCloskey et al., 2016a, 2016b), and overall increased levels of TCA
cycle intermediates in strain C. E. coli MG1655 and W3110 were also
found to have the highest levels of L-arginine. It should be noted that
when compared to the transcript levels or flux predictions of the amino
acid producing pathways (Monk et al., 2016), little correlation between
the absolute metabolite concentrations was found, which indicates the
difficulty in predicting metabolite levels through indirect evidence as is
consistent with previous works (Daran-Lapujade et al., 2007; Hackett
et al., 2016).

Levels of central metabolism intermediates differed vastly between
the strains (Fig. 6). E. coli MG1655, W, and W3110 were found to
maintain significantly lower levels of glycolytic intermediates than
other strains (i.e., g6p, f6p, fdp, 13dpg/23dpg, 2 pg/3 pg, and pep).
However, the levels of pep in W3110 were found to be significantly
higher than all other strains. E. coli MG1655 had the highest levels of
ribulose and ribose 5- phosphate (ru5p-D and r5p) compared to the
other strains. This most likely contributed to the higher levels of L-
histidine, a downstream product of r5p, in E. coli MG1655.

Based on the data collected here, E. coli C would serve as a good
candidate for aerobic succinate and malate production due to high
endogenous levels of succinate. E. coli C had significantly higher DL-
lactate, succinate, malate, and fumarate concentrations compared to
the other six strains. In addition, the levels of TCA cycle intermediates
citrate and 2-oxoglutarate were among the highest. E. coli C has indeed
previously been successfully used as the base strain for succinate pro-
duction from glucose under aerobic and anaerobic conditions (Balzer
et al., 2013; Jantama et al., 2008; Lin et al., 2005a, 2005b; Sánchez
et al., 2005). Interestingly, E. coli DH5a had the highest levels of citrate,
aconitate, isocitrate, and 2-oxoglutarate. This could indicate altered
regulation or utilization of the TCA cycle in E. coli DH5a.

3.5. Thermodynamic analysis of the seven industrial strains

Change in free energies of reaction (dGr) for each of the industrial

Fig. 4. Statistical analysis of the absolute metabolite concentrations for the 7 industrial strains of E. coli. A) A cluster analysis (Euclidean, Complete) of the 7 strains.
B) The 7 strains are shown. C) PLS-DA scores plot of components 1 and 2. D) PLS-DA loadings plot of components 1 and 2. Metabolites with an absolute loadings
greater than 0.2 are annotated and highlighted in light blue.

D. McCloskey et al. Metabolic Engineering 47 (2018) 383–392

388



Fig. 5. Physiological ratios (A) and intracellular amino acid levels (B). Selected ratios and metabolite levels that significantly changed are highlighted in the inset.
The nitrogen charge (nc) is defined as (gln-L+0.5 *glu-L) * (gln-L+glu-L+akg)-1. The energy charge is defined as (atp + .5 * adp)* (atp + adp + amp)-1. The
glutathione ratio (Gth) is defined as (gthrd*gthox-1). The redox ratio is defined as (nad(p)h * (nad(p)+nad(p)h)-1. Units are the log2 fold change of the median value
of each strain to the mean of all 7 strains.

Fig. 6. Absolute metabolite concentrations of central metabolism intermediates for the 7 industrial strains of E. coli. A) Schematic of central carbohydrate meta-
bolism. B) Heatmap of metabolite levels. Units are the log2 fold change of the median value of each strain to the mean of all 7 strains. Selected metabolites that
changed significantly are shown in the inset.
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strains were calculated and compared in order to identify statistically
(i.e., non-overlapping confidence intervals) and biologically (i.e., a
change in dGr sign indicating a change in reaction directionality) sig-
nificant differences in reaction thermodynamics between the strains
(Table S8). Of the 475 reactions with satisfactory measured metabo-
lomics and free energy of formation coverage (see Methods), between
22 and 58 statistically different reactions were found between the
strains, between 4 and 17 biologically different reactions were found
between the strains, and between 0 and 4 statistically and biologically
different reactions were found between the strains (Fig. 7, Table S9).

Thermodynamics analysis revealed differences in the thermo-
dynamic potential to push carbon towards glycogen biosynthesis in-
stead of more economically valuable carbon endpoints between the
strains. Biologically and statistically significant differences were found
between glucose 1-phosphate adenyltransfarase (GLGLC, EC 2.7.7.27)
in E. coli C and all other strains except E. coli W and W3110 (Fig. 7). E.
coli C had the highest levels of the glycogen precursor ADP-glucose,
which leads to the thermodynamic differences. ADP-glucose (adpglc) is
formed from glucose 1-phosphate via GLGC. Increased expression of
glgC or mutations in glgC that increase GLGC activity have been shown
to accumulate glycogen (Ballicora et al., 2003; Eydallin et al., 2007;
Ghosh et al., 1992; Leung et al., 1986). No significant differences in the
transcriptomic profiles of glgC in E. coli C were found and E. coli C is not
known to harbor any unique mutation in the glgC gene, indicating that
the elevated levels of adpglc could be due to kinetic factors.

Thermodynamics analysis also revealed that E. coli BL21 can be
used for biotechnology without concern of a reduced flux through the
oxidative pentose phosphate pathway (oxPPP). No biologically or sta-
tistically significant differences in change of reaction free energy were
found between PGL in E. coli BL21 and the other seven strains (Fig. 7).
E. coli BL21 had the highest levels of 6-phosphogluconate (6pgc). BL21
lacks the pgl gene that encodes the hydrolase6-phosphogluconolacto-
nase (PGL) that converts 6-phosphoglucono-δ-lactone to (6pgl) to 6-
phosphogluconate (6pgc) (Meier et al., 2012; Studier et al., 2009). In
the absence of PGL, 6pgc is spontaneous converted to g-6-phos-
phogluconolactone (y6pgl), and then spontaneously broken down to

6pgc. However, BL21 appears to also have a PGL bypass (Meier et al.,
2012) that utilizes an uncharacterized pathway to rapidly convert 6pgl
to 6pgc. In either case, the results shown here are consistent with
previous findings that 6pgl and 6pgc rapidly accumulate to high in-
tracellular levels (Meier et al., 2012). Also consistent are the relative
levels of the downstream metabolite ribulose 5-phosphate (ru5p-D)
compared to MG1655 (Meier et al., 2012). Non-intuitively, the lack of
PGL in the oxPPP does not appear to detrimentally affect the levels of
Reduced Glutathione nor NADPH compared to the other strains
(Fig. 5A). This indicates that utilization of the oxPPP through sponta-
neous conversion with or without utilizing an uncharacterized bypass is
feasible thermodynamically.

4. Conclusion

In this study, a RapidRIP method capable of quantifying over 100
metabolites in less than 5min was described. The method is capable of
analyzing 327 samples per day (or 2289 samples per week). Including
QC, calibrator, and carryover check samples, this amounts to approxi-
mately 1000 strains that can be screened per week on a single instru-
ment. Metrics for sensitivity, resolution, linearity, accuracy, and pre-
cision was determined and compared to a FullRIP method. All metrics
were found to be comparable with a few minor compromises as noted in
the main text. The RapidRIP method significantly accelerates metabo-
lomic characterization compared to existing methods. Combined with
high-throughput cultivation methods this allows using metabolomics as
a routine tool for characterizing the large-numbers of engineered or
evolved microbial strains that modern cloning, genome editing and
laboratory evolution approaches create.

In order to demonstrate the applicability of RapidRIP for char-
acterizing strain differences, od was used to quantify the metabolome of
7 industrial strains of E. coli during aerobic growth on glucose. Major
differences in central, amino acid, nucleotide, energy, and redox me-
tabolism metabolite levels were found. These differences translated to
statistically significant differences in reaction thermodynamics; several
of which were also found to be biologically significant through change

Fig. 7. Thermodynamic analysis of the 7 in-
dustrial strains of E. coli. A) Heatmap of pair-
wise counts of reaction that differed either
statistically, biologically, or both between the
strains. B) Schematic of the oxidative pentose
phosphate pathway (oxPPP) with spontaneous
and unknown (?) reactions shown for E. coli
BL21. Note the high levels of oxPPP inter-
mediates in E. coli BL21. C) Schematic of the
first step in glycogen biosynthesis encoded by
glucose 1-phosphate adenyltransferase
(GLGC). Note the high level of ADP-glucose
(adpglc) in E. coli C. The change in reaction
free energy differed for GLGC differed biolo-
gically and statistically between E. coli C and
all other strains except E. coli W and W3110.
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in reaction directionality. Knowledge of these differences provides re-
searchers with valuable information when choosing which strain to use
as host for a particular chemical production process. For example, re-
searchers should not be dissuaded from using the BL21 strain based on
theoretical predictions of compound yield derived from genomic in-
formation alone because the thermodynamics of the PPP in the absence
of the pgl gene are such that flux and levels of NADPH are not sig-
nificantly altered.
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