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Abstract. One of the key demands of cyberphysical systems is that
they meet their safety goals. Timed automata has established itself as
a formalism for modeling and analyzing the real-time safety aspects
of cyberphysical systems. Increasingly it is also demanded that cyber-
physical systems meet a number of security goals for confidentiality and
integrity. Notions of security based on Information flow control, such as
non-interference, provide strong guarantees that no information is leaked;
however, many cyberphysical systems leak intentionally some informa-
tion in order to achieve their purposes.

In this paper, we develop a formal approach of information flow for
timed automata that allows intentional information leaks. The security
of a timed automaton is then defined using a bisimulation relation that
takes account of the non-determinism and the clocks of timed automata.
Finally, we define an algorithm that traverses a timed automaton and
imposes information flow constraints on it and we prove that our algo-
rithm is sound with respect to our security notion.

1 Introduction

Motivation. Embedded systems are key components of cyberphysical systems
and are often subject to stringent safety goals. Among the current approaches
to the modeling and analysis of timed systems, the approach of timed automata
[5] stands out as being a very successful approach with well-developed tool sup-
port – in particular the UPPAAL suite [28] of tools. As cyberphysical systems
become increasingly distributed and interconnected through wireless communi-
cation links it becomes even more important to ensure that they meet suitable
security goals.

In this paper, we are motivated by an example of a smart power grid system.
In its very basic form, a smart grid system consists of a meter that measures
the electricity consumption in a customer’s (C) house and then sends this data
to the utility company (UC). The detailed measurements of the meter provide
more accurate billings for UC, while C receives energy management plans that
optimize his energy consumption. Although this setting seems to be beneficial
for both UC and C, it has been shown that high-frequent monitoring of the
power flow poses a major threat to the privacy of C [14,23,27]. To deal with
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this problem many smart grid systems introduce a trusted third-party (TTP ),
on which both UC and C agree [27]. The data of the meter now is collected by
the TTP and by the end of each month the TTP charges C depending on the
tariff prices defined by UC. In this protocol, UC trusts TTP for the accurate
billing of C, while C trusts TTP with its sensitive data. However, in some cases,
C may desire an energy management plan by UC, and consequently he makes
a clear statement to TTP that allows the latter to release the private data of C
to UC. Therefore, it is challenging to formally prove that our trusted smart grid
system leaks information only under C ′s decision.

Information Flow Control. [10,26,29] is a key approach to ensuring that software
systems maintain the confidentiality and/or integrity of their data. Policies for
secure information flow are usually formalized as non-interference [29] properties
and systems that adhere to the stated policy are guaranteed to admit no flow of
information that violates it. However, in many applications information is leaked
by intention as in our smart grid example. To deal with such systems, informa-
tion flow control approaches are usually extended with mechanisms that permit
controlled information leakage. The major difficulty imposed by this extension
is to formalize notions of security that are able to differentiate between the
intentional and the unintentional information leakages in a system.

Contribution. It is therefore natural to extend the enforcement of safety prop-
erties of timed automata with the enforcement of appropriate Information Flow
policies. It is immediate that the treatment of clocks, the non-determinism, and
the unstructured control flow inherent in automata will pose a challenge. More
fundamentally there is the challenge that timed automata is an automata-based
formalism whereas most approaches to Information Flow take a language-based
approach by developing type systems for programming languages with structured
control flow or process calculi.

We start by giving the semantics of timed automata (Sect. 2) based on the
ones used in UPPAAL [28]. Next, we formalize the security of a timed automaton
using a bisimulation relation (Sect. 3). This notion describes the observations of
a passive attacker and formally describes where an observation is allowed to leak
information and where it is not. To deal with implicit flows we define a general
notion of the post-dominator relation [18] (Sect. 4). We then develop a sound
algorithm (Sect. 5) that imposes information flow constraints on the clocks and
the variables of a timed automaton. We finish with our conclusions (Sect. 6) and
the proofs of our main results (Appendix).

Related Work. There are other papers dealing with Information Flow using
language based techniques for programs with a notion of time [2,9,16,22] or
programs that leak information intentionally [6,13,19–21,24]. Our contribution
focuses on the challenges of continuous time and the guarded actions of timed
automata.

The work of [7,8] define a notion of non-interference for timed automata
with high-level (secret) and low-level (public) actions. Their notion of security is
expressed as a non-interference property and it depends on a natural number m,
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representing a minimum delay between high-level actions such that the low-level
behaviors are not affected by the high-level ones. The authors of [17] define a
notion of timed non-interference based on bisimulations for probabilistic timed
automata which again have high-level (secret) and low-level (public) actions.
A somewhat different approach is taken in [12] that studies the synthesis of
controllers. None of those approaches considers timed automata that have data
variables, nor is their notion of security able to accommodate systems that leak
information intentionally.

The authors of [25] take a language-based approach and they define a type-
system for programs written in the language Timed Commands. A program
in their language gives rise to a timed automaton, and type-checked programs
adhere to a non-interference like security property. However, their approach is
limited only to automata that can be described by their language and they do
not consider information release.

2 Timed Automata

A timed automaton [1,5] TA = (Q,E, I, q◦) consists of a set of nodes Q, a set of
annotated edges E, and a labelling function I on nodes. A node q◦ ∈ Q will be
the initial node and the mapping I maps each node in Q to a condition (to be
introduced below) that will be imposed as an invariant at the node.

The edges are annotated with actions and take the form (qs, g → x :=a: r, qt)
where qs ∈ Q is the source node and qt ∈ Q is the target node. The action
g → x :=a: r consists of a guard g that has to be satisfied in order for the multiple
assignments x :=a to be performed and the clock variables r to be reset. We shall
assume that the sequences x and a of program variables and expressions, respec-
tively, have the same length and that x does not contain any repetitions. To cater
for special cases we shall allow to write skip for the assignments of g → x :=a: r
when x (and hence a) is empty; also we shall allow to omit the guard g when it
equals tt and to omit the clock resets when r is empty.

It has already emerged that we distinguish between (program) variables x
and clock variables (or simply clocks) r. The arithmetic expressions a, guards g
and conditions c are defined as follows using boolean tests b:

a ::= a1 opa a2 | x | n
b ::= tt | ff | a1 opr a2 | ¬b | b1 ∧ b2
g ::= b | r opc n | (r1 − r2) opc n | g1 ∧ g2
c ::= b | r opd n | (r1 − r2) opd n | c1 ∧ c2

The arithmetic operators opa and the relational operators opr are as usual. For
comparisons of clocks we use the operators opc ∈ {<,≤,=,≥, >} in guards and
the less permissive set of operators opd ∈ {<,≤,=} in conditions.

To specify the semantics of timed automata let σ be a state mapping vari-
ables to values (which we take to be integers) and let δ be a clock assignment
mapping clocks to non-negative reals. We then have total semantic functions [[·]]
for evaluating the arithmetic expressions, boolean tests, guards and conditions;
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the values of the arithmetic expressions and boolean expressions only depend
on the states whereas that of guards and conditions also depend on the clock
assignments.

The configurations of the timed automata have the form 〈q, σ, δ〉 ∈ Config
where [[I(q)]](σ, δ) is true, and the transitions are described by an initial delay
(possibly none) that increases the values of all the clocks followed by an action.
Therefore, whenever (qs, g → x :=a: r, qt) is in E we have the rule:

〈qs, σ, δ〉 d−→ 〈qt, σ
′, δ′〉

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

d ≥ 0
[[I(qs)]](σ, δ + d) = tt,
[[g]](σ, δ + d) = tt,
σ′ = σ[x 	→ [[a ]]σ], δ′ = (δ + d)[r 	→ 0],
[[I(qt)]](σ′, δ′) = tt

where d corresponds to the initial delay. The rule ensures that after the initial
delay the invariant and the guard are satisfied in the starting configuration and
updates the mappings σ and δ where δ + d abbreviates λr. δ(r) + d. Finally,
it ensures that the invariant is satisfied in the resulting configuration. Initial
configurations assume that all clocks are initialized to 0 and have the form
〈q◦, σ, λr.0〉.
Traces. We define a trace from 〈qs, σ, δ〉 to qt in a timed automaton TA to have
one of three forms. It may be a finite “successful” sequence

〈qs, σ, δ〉 = 〈q′
0, σ

′
0, δ

′
0〉 d1−→ · · · dn−→ 〈q′

n, σ′
n, δ′

n〉 (n > 0)
such that {n} = {i | q′

i = qt ∧ 0 < i ≤ n}.

in which case at least one step is performed. It may be a finite “unsuccessful”
sequence

〈qs, σ, δ〉 = 〈q′
0, σ

′
0, δ

′
0〉 d1−→ · · · dn−→ 〈q′

n, σ′
n, δ′

n〉 (n ≥ 0)
such that 〈q′

n, σ′
n, δ′

n〉 is stuck and qt 
∈ {q′
1, · · · , q′

n}
where 〈q′

n, σ′
n, δ′

n〉 is stuck when there is no action starting from 〈q′
n, σ′

n, δ′
n〉.

Finally, it may be an infinite “unsuccessful” sequence

〈qs, σ, δ〉 = 〈q′
0, σ

′
0, δ

′
0〉 d1−→ · · · dn−→ 〈q′

n, σ′
n, δ′

n〉 dn+1−→ · · ·
such that qt 
∈ {q′

1, · · · , q′
n, · · · }.

We shall write [[TA : qs 	→ qt]](σ, δ) for the set of traces from 〈qs, σ, δ〉 to qt. We
then have the following proposition

Proposition 1 [15]. For a pair (σ, δ) whenever [[TA : qs 	→ qt]](σ, δ) contains
only successful traces, then there exists a trace t ∈ [[TA : qs 	→ qt]](σ, δ) with
maximal length.

We also define the delay of a trace t from 〈qs, σ, δ〉 to qt and we have that if t is
a successful trace

〈qs, σ, δ〉 = 〈q′
0, σ

′
0, δ

′
0〉 d1−→ · · · dn−→ 〈q′

n, σ′
n, δ′

n〉 = 〈qt, σ
′, δ′〉
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1 2

4

3

bill,analytics

dataam

datapm

midnight

data,request

data

releaseno

price

releaseyes

price,analytics

Invariants:
1 T ≤ 720
2 T = 720
3 T = 720
4 T = 720

dataam: t ≤ 12 ∧ r = 1 → e1:=e1 + ed: r
datapm: t > 12 ∧ t < 24 ∧ r = 1 → e2:=e2 + ed: r
midnight: t = 24 ∧ r = 1 → e2:=e2 + ed: r, t
data,request: T = 720 → s, c1, c2:=1, e1, e2:
data: T = 720 → s, c1, c2:=0, e1, e2:

releaseno: s = 0 → skip:
releaseyes: s = 1 → y1, y2:=c1, c2:
price,analytics: p1, p2, a, f:=v1, v2, z, 1
price: p1, p2, a, f:=v1, v2, 0, 1
bill,analytics: f = 1 → b, x, e1, e2, f:=

p1 ∗ c1 + p2 ∗ c2,
a, 0, 0, 0: T,t,r

Fig. 1. The timed automaton SG (and the abbreviations used).

then
Δ(t) =

∑n
i=1 di

In the case of t being an unsuccessful (finite or infinite) trace we have that

Δ(t) = ∞
Finally for (σ1, δ1), (σ2, δ2) whenever for all t1 ∈ [[TA : qs 	→ qt]](σ1, δ1) and
t2 ∈ [[TA : qs 	→ qt]](σ2, δ2) we have that Δ(t1) = Δ(t2), we will say that (σ1, δ1)
and (σ2, δ2) have the same termination behaviour with respect to qs and qt. Note
that it is not necessarily the case that a pair (σ, δ) has the same termination
behaviour as itself.

Example 1. To illustrate our development we shall consider an example automa-
ton of a smart grid system as the one described in Sect. 1. The timed automaton
SG is given in Fig. 1 and it uses the clocks t and T to model the time elapse of a
day and a month respectively. Between midnight and noon, the electricity data
ed is aggregated in the variable e1, while from noon to midnight the measure-
ments are saved in the variable e2. The clock r is used to regulate the frequency
of the measurements, by allowing one measurement every full hour. At the end
of a day (midnight) the last measurement is calculated and the clock t is being
reset to 0 indicating the start of a new day. At the end of each month (T = 720)
the trusted party TTP collects the data e1 and e2 of the meter and stores it in
the collectors c1 and c2 respectively. At the same time, the customer C sends a
service request s to TTP in case he desires to get some analytics regarding his
energy consumption. The TTP then requests from the UC the prices p1, p2 of
the electricity tariffs for the two time periods of interest and in case that C has
made a request for his data to be analysed (s = 1 otherwise s = 0), TTP also
reveals the collected data c1 and c2 to the UC where the latter stores them in
the variables y1 and y2 respectively. The UC then responds back to the TTP by
sending the values v1 and v2 of the electricity tariffs and also the result z of C ′s
data analytics in case C made a request for that, otherwise it sends the value 0.
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Once the TTP receives everything (f = 1) he calculates the bill b for C, sends it
to him together with the analysis result a (C stores it in x), the clocks and the
variables of the meter are being reset to 0 and a new month starts. For simplicity
here we assume that all the calculations done by the TTP and the UC by the
end of the month are being completed in zero time.

3 Information Flow

We envisage that there is a security lattice expressing the permissible flows [10].
Formally this is a complete lattice and the permitted flows go in the direction
of the partial order. In our development, it will contain just two elements, L
(for low) and H (for high), and we set L � H so that only the flow from H to
L is disallowed. For confidentiality, one would take L to mean public and H to
mean private and for integrity one would take L to mean trusted and H to mean
dubious.

A security policy is then expressed by a mapping L that assigns an element
of the security lattice to each program variable and clock variable. An entity is
called high if it is mapped to H by L, and it is said to be low if it is mapped to
L by L. To express adherence to the security policy we use the binary operation
� defined on sets χ and χ′ (of variables and clocks):

χ � χ′ ⇔ ∀u ∈ χ : ∀u′ ∈ χ′ : L(u) � L(u′)

This expresses that all the entities of χ may flow into those of χ′; note that
if one of the entities of χ has a high security level then it must be the case that
all the entities of χ′ have high security level.

Example 2. Returning to Example 1 of our smart grid system, we have that L
maps the program variable ed of the electricity data, the variables e1, e2 that
store this data, the collectors c1, c2 and the bill b to the security level H, while
the rest of the program variables and clocks are mapped to L.

Information flow control enforces a security policy by imposing constraints of the
form {y} � {x} whenever the value of y may somehow influence (or flow into)
that of x. Traditionally we distinguish between explicit and implicit flows as
explained below. As an example of an explicit flow consider a simple assignment
of the form x:=a. This gives rise to a condition fv(a) � {x} so as to indicate
that the explicit flow from the variables of a to the variable x must adhere to
the security policy: if a contains a variable with high security level then x also
must have high security level. For an example of an implicit flow consider a
conditional assignment g → x:=0 where x is assigned the constant value 0 in
case g evaluates to true. This gives rise to a condition fv(g) � {x} so as to
indicate that the implicit flow from the variables of g to the variable x must
adhere to the security policy: if g contains a variable with high security level
then x also must have high security level.

As has already been explained, many applications as our smart grid example
inevitably leak some information. In this paper we develop an approach to ensure
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that the security policy is adhered to by the timed automaton of interest, however
in certain conditions it can be bypassed. Thus, for a timed automaton TA =
(Q,E, I, q◦), we shall assume that there exists a set of observable nodes Y ⊆ Q,
that are the nodes where the values of program variables and clocks with low
security are observable by an attacker. The observable nodes will be described
by the union of two disjoint sets Ys and Yw, where a node q in Ys (Yw resp.) will
be called strongly observable (weakly observable resp.). The key idea is to ensure
that {x} � {y} whenever there is an explicit flow of information from x to y (as
illustrated above) or an implicit flow from x to y in computations that lead to
strongly observable nodes, while computations that lead to weakly observable
nodes are allowed to bypass the security policy L.

To overcome the vagueness of this explanation we need to define a semantic
condition that encompasses our notion of permissible information flow, where
information leakage occurs only at specific places in our automaton.

Observable Steps. Since the values of low program variables and clocks are only
observable at the nodes in Y , we collapse the transitions of the automaton that
lead to non-observable nodes into one. Thus we have an observable successful
step

〈qs, σ, δ〉 D=⇒Y 〈qt, σ
′, δ′〉

whenever there exists a successful trace t

〈qs, σ, δ〉 = 〈q0, σ0, δ0〉 d1−→ · · · dn−→ 〈qn, σn, δn〉 = 〈qt, σ
′, δ′〉 (n > 0)

from 〈qs, σ, δ〉 to qt in TA and qt ∈ Y , D = Δ(t) and ∀i ∈ {1, ..., n − 1} : qi 
∈ Y .
And we have an observable unsuccessful trace

〈qs, σ, δ〉 ∞=⇒Y ⊥
whenever there exists an unsuccessful finite trace

〈qs, σ, δ〉 = 〈q0, σ0, δ0〉 d1−→ · · · dn−→ 〈qn, σn, δn〉 (n ≥ 0)

or an unsuccessful infinite trace

〈qs, σ, δ〉 = 〈q0, σ0, δ0〉 d1−→ · · · dn−→ 〈qn, σn, δn〉 dn+1−→ · · ·
from 〈qs, σ, δ〉 to any of the nodes in Y and ∀i > 0 : qi 
∈ Y . From now on it
should be clear that a configuration γ will range over Config ∪ {⊥}.

We write (σ, δ) ≡ (σ′, δ′) to indicate that the two pairs are equal on low
variables and low clocks:

(σ, δ) ≡ (σ′, δ′) iff ∀x : L(x) = L ⇒ σ(x) = σ′(x) ∧
∀r : L(r) = L ⇒ δ(r) = δ′(r)

It is immediate that this definition of ≡ gives rise to an equivalence relation.
Intuitively ≡ represents the view of a passive attacker as defined in [24], a prin-
cipal that is able to observe the computations of a timed automaton and deduce
information.
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We will now define our security notion with the use of a bisimulation relation.
Our notion shares some ideas from [19,21], where a bisimulation-based security
is defined for a programming language with threads. In their approach, the
bypassing of the security policy is localized on the actions, and that is because
their attacker model is able to observe the low variables of a program at any of
its computation steps (e.g. in a timed-automaton all of the nodes would have
been observable). In contrast to [19,21], we localize bypassing of policies at the
level of the nodes, while we also define a more flexible notion of security with
respect to the attacker’s observability.

Definition 1 (Y −Bisimulation). For a timed automaton TA = (Q,E, I, q◦) and
a set of nodes Y = Ys ∪ Yw, a relation �Y ⊆ (Config ∪ {⊥}) × (Config ∪ {⊥})
will be called a Y −bisimulation relation if �Y is symmetric and we have that if
γ1 = 〈q1, σ1, δ1〉 �Y 〈q2, σ2, δ2〉 = γ2 then

(σ1, δ1) ≡ (σ2, δ2) ⇒ if γ1
D1=⇒Y γ′

1 then ∃γ′
2,D2 :

γ2
D2=⇒Y γ′

2 ∧ γ′
1 �Y γ′

2∧
(γ′

1 
= ⊥ ∧ γ′
2 
= ⊥) ⇒ ((node(γ′

1) ∈ Yw ∧ node(γ′
2) ∈ Yw)∨

pair(γ′
1) ≡ pair(γ′

2))

where node(〈q, σ, δ〉) = q, pair(〈q, σ, δ〉) = (σ, δ), and if γ1 �Y γ2 then

(γ1 = ⊥ ⇔ γ2 = ⊥)

We write ∼Y for the union of all the Y −bisimulations and it is immediate that
this definition of ∼Y is both a Y −bisimulation and an equivalence relation. Intu-
itively, when two configurations are related in ∼Y , and they are low equivalent
then they produce distinguishable pairs of states only at the weakly observable
nodes. Otherwise, observations made at strongly observable nodes should be still
indistinguishable. In both cases, the resulting configurations of two Y −bisimilar
configurations should also be Y −bisimilar. We are now ready to define our secu-
rity notion.

Definition 2 (Security of Timed Automata). For a timed automaton TA =
(Q,E, I, q◦) and a set Y = Ys ∪ Yw of observable nodes, we will say that TA
satisfies the information security policy L whenever:

∀q ∈ {q◦} ∪ Y : ∀(σ, δ), (σ′, δ′) :
([[I(q)]](σ, δ) ∧ [[I(q)]](σ′, δ′)) ⇒ 〈q, σ, δ〉 ∼Y 〈q, σ′, δ′〉

Whenever Yw = ∅ our notion of security coincides with standard definitions of
non-interference [29], where an automaton that satisfies the information security
policy L does not leak any information about its high variables.

Example 3. For the smart grid automaton SG of the Example 1, we have the set
of observable nodes Y = {2, 3, 4}, where the strongly observable ones are the
nodes 2 and 4 (Ys = {2, 4}), and the weakly one is the node 3 (Yw = {3}), where
the TTP is allowed to release the secret information of C.
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4 Post-dominators

For the implicit flows arising from conditions, we are interested in finding their
end points (nodes) that are the points where the control flow is not dependent
on the conditions anymore. For that, we define a generalized version of the post-
dominator relation and the immediate post-dominator relation [18].

Paths. A path π in a timed automaton TA = (Q,E, I, q◦) is a finite π =
q0act1q1...qn−1actnqn (n ≥ 0) or infinite π = q0act1q1...qn−1actnqn... sequence
of nodes and actions such that ∀i > 0 : (qi−1, acti, qi) ∈ E. We say that a path is
trivial if π = q0 and we say that a node q belongs to the path π, or π contains q,
and we will write q ∈ π, if there exists some i such that qi = q. For a finite path
π = q0act1q1...qn−1actnqn we write π(i) = qiacti+1qi+1...qn−1actnqn (i ≤ n) for
the suffix of π that starts at the i-th position and we usually refer to it as the
i-th suffix of π. Finally, for a node q and a set of nodes Y ⊆ Q we write

Π(q,Y ) = {π | π = q0act1q1...qn−1actnqn : n > 0 ∧ q0 = q ∧ qn ∈ Y ∧
∀i ∈ {1, ..., n − 1} : qi 
∈ Y }

for the set of all the non-trivial finite paths that start at q, end at a node y in
Y and all the intermediate nodes of the path do not belong in Y .

Definition 3 (Post-dominators). For a node q and a set of nodes Y ⊆ Q we
define the set

pdomY (q) = {q′ | ∀π ∈ Π(q,Y ) : q′ ∈ π(1)}
and whenever q′ ∈ pdomY (q), we will say that q′ is a Y post-dominator of q.

Intuitively whenever a node q′ is a Y post-dominator of a node q it means that
every non-trivial path that starts at q has to visit q′ before it visits one of the
nodes in Y . We write pdomy(q) whenever Y = {y} is a singleton and we have
the following facts

Fact 1. For a set of nodes Y ⊆ Q and for a node q we have that

pdomY (q) =
⋂

y∈Y

pdomy(q)

Fact 2. The post-dominator set for a singleton set {y} can be computed by find-
ing the greatest solution of the following data-flow equations:

pdomy(q) = Q if Π(q,{y}) = ∅
pdomy(q) = {y} if y ∈ succ(q)
pdomy(q) =

⋂
q′∈succ(q)

({q′} ∪ pdomy(q′)
)
otherwise

For a node q, we are interested in finding the Y post-dominator “closest” to it.

Definition 4. For a node q and a set of nodes Y we definite the set

ipdomY (q) = {q′ ∈ pdomY (q) | pdomY (q) = {q′}∨
q′ 
∈ Y ∧ (∀q′′ ∈ pdomY (q) : q′′ 
= q′ ⇒

q′′ ∈ pdomY (q′))}
and a node q′ ∈ ipdomY (q) will be called an immediate Y post-dominator of q.
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The following fact gives us a unique immediate Y post-dominator for the nodes
that can reach Y (Π(q,Y ) 
= ∅). Intuitively this unique immediate Y post-
dominator of a node q is the node that is the “closest” Y post-dominator of
q, meaning that in any non-trivial path starting from q and ending in Y , the Y
immediate post-dominator of q will always be visited first before any other Y
post-dominator of q.

Fact 3. For a set of nodes Y and a node q, whenever Π(q,Y ) 
= ∅ and
pdomY (q) 
= ∅ then there exists node q′ such that ipdomY (q) = {q′}.
For simplicity, whenever a node q′ is the unique immediate Y post-dominator of
a node q and Π(q,Y ) 
= ∅ we shall write ipdY (q) for q′ and we will say that the
unique immediate Y post-dominator of q is defined. For any other case where
q can either not reach Y (Π(q,Y ) = ∅) or pdomY (q) = ∅ we will say that the
unique immediate post-dominator of q is not defined.

Example 4. For the timed automaton SG and for the set of observable nodes
Y = {2, 3, 4}, we have that pdomY (q) = ipdY (q) = {2} for q being 1, 3 and 4
while pdomY (2) = ipdY (2) = ∅. Therefore for the nodes 1,3 and 4 their unique
immediate Y post-dominator is defined and it is the node 2, while the unique
immediate Y post-dominator of the node 2 is not defined.

5 Algorithm for Secure Information Flow

We develop an algorithm (Fig. 2) that traverses the graph of a timed automa-
ton TA = (Q,E, I, q◦) and imposes information flow constraints on the program
variables and clocks of the automaton with respect to a security policy L and
a Y post-dominator relation, where Y = Ys ∪ Yw is the set of observable nodes.
Before we explain the algorithm we start by defining some auxiliary operators.

Auxiliary Operators. For an edge (qs, g → x :=a: r, qt) ∈ E we define the auxil-
iary operator ass(.), expr(.) and con(.) as

ass((qs, g → x :=a: r, qt)) = {x, r}
expr((qs, g → x :=a: r, qt)) = {a}
con((qs, g → x :=a: r, qt)) = I(qs) ∧ g ∧ I(qt)[a/x][0/r]

where ass(.) gives the modified variables and clocks of the assignment performed
by TA using that edge, expr(.) gives the expressions used for the assignment,
and the operator con(.) returns the condition that has to hold in order for the
assignment to be performed. We finally lift the ass(.) operator to finite paths and
thus for a finite path π = q0act1q1...qn−1actnqn we define the auxiliary operators
Ass(.) as

Ass(q0act1q1...qn−1actnqn) =
⋃n

i=1 ass((qi−1, acti, qi))

We write
Q�w = {q | ∀π = q..q′ ∈ Π(q,Y ) : q′ ∈ Yw}
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Fig. 2. Security of TA = (Q,E, I, q◦) with respect to L and the Y post-dominator
relation

for the set of nodes, where whenever the automaton performs a successful observ-
able step starting from a node q ∈ Q�w and ending in an observable node q′ ∈ Y ,
then it is always the case that q′ is weakly observable.

Condition C1. We start by looking at the nodes in Q�w. According to our
security notion (Definition 2), for two low equivalent configurations at a node
q, whenever the first one performs a successful (or unsuccessful) observable step
that ends at a weakly observable node, then also the second should be able
to perform an observable step that ends at a weakly observable node (or an
unsuccessful one resp.). For that, the condition C1 (a) first requires that the
conditions of the outgoing edges in Eq where Eq = {(q, act, q′) | (q, act, q′) ∈ E}
contain only low variables. However, this is not enough.

Fig. 3. Example automata
(a) (top) and (b) (bottom)

To explain the rest of the constraints imposed by
the condition C1 (a) consider the automaton (a) of
Fig. 3, where the node 3 is weakly observable, h and
l is a high and a low variable respectively, and all the
invariants of the nodes are set to tt. This automaton
is not secure with respect to Definition 2. To see this,
we have ([l 	→ 0, h 	→ 1], δ) ≡ ([l 	→ 0, h 	→ 0], δ)
(for some clock state δ) but the pair ([l 	→ 0, h 	→
1], δ) always produces ⊥ since we will have an infinite
loop at the node 2, while ([l 	→ 0, h 	→ 0], δ) always
terminates at the node 3. That is because even if both
edges of the node 2 contain only the low variable l
in their condition, the assignment l:=h bypasses the
policy L and thus, right after it, the two pairs stop
being low equivalent.

As another example, consider the automaton (b)
of Fig. 3. Here the node 4 is weakly observable, h is
a high variable, l, l′ are two low variables and all
the invariants of nodes are set to tt again. We have
([l 	→ 0, l′ 	→ 0, h 	→ 1], δ) ≡ ([l 	→ 0, l′ 	→ 0, h 	→ 0], δ) (for some clock state δ)
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and again the first pair produces ⊥ by looping at the node 3, whereas the second
pair always terminates. Here even if the variable l is not used in any condition
after the assignment l:=h, it influences the value of l′ and consequently, since l′

appears on the condition of the edges of the node 3 we get this behavior.
To cater for such cases, for an edge e = (qs, g → x :=a: r, qt) we first define

the predicate
Ae =

∧

i

fv(ai) � {xi}

that takes care of the explicit flows arising from the assignments. We then define

Π(e,Y ) = {π | e = (q0, act1, q1) : π = q0act1q1...qn−1actnqn ∈ Π(q0,Y )}

to be set of paths (the ones defined in Sect. 4) that start with e and end in Y , and
all the intermediate nodes do not belong to Y . Finally, whenever an assignment
bypasses the security policy L due to an explicit flow and thus Ae is false, we
then impose the predicate

Ψe = ∀π ∈ Π(e,Y ) : ∀q′ ∈ π(1) :
q′ 
∈ Y ⇒ (∀e′ ∈ Eq′ : (ass(e) \ R) ∩ (fv(con(e′)) ∪ fv(expr(e′))) = ∅)

The predicate Ψe demands that the assigned program variables of e =
(qs, act, qt) cannot be used in any expression or condition that appears in a
path that starts with qt and goes to an observable node. Note here that even if
Ψe quantifies over a possibly infinite set of paths (Π(e,Y )), it can be computed in
finite time by only looking at the paths where each cycle occurs at most once.

We will now look at the nodes where the automaton may perform a success-
ful observable step that ends in a strongly observable node. Those nodes are
described by the set Qc

�w = Q \ Q�w, that is the complement of Q�w.

Condition C2. For a node q in Qc
�w, whose immediate Y post-dominator is

defined, condition C2 (a) takes care of the explicit and the implicit flows gener-
ated by the assignment and the control dependencies respectively, arising from
the edges of q. Note here that we do not propagate the implicit flows any further
after ipdY (q). This is because ipdY (q) is the point where all the branches of q are
joining and any further computation is not control-dependent on them anymore.
Those constraints are along the line of Denning’s approach [10] of the so-called
block-labels.

1 2

h > 0 → skip:

l:=1

Fig. 4. Example
automaton (c)

To understand condition C2 (b) consider the automaton
(c) of Fig. 4, where h and l is a high and a low variable respec-
tively, the node 2 is strongly observable, and both nodes 1
and 2 have their invariant set to tt. Next take ([l 	→ 0, h 	→
1], δ) ≡ ([l 	→ 0, h 	→ 0], δ) (for some clock state δ) and
note that the first pair can result in a configuration in 2 with
([l 	→ 0, h 	→ 1], δ) (taking the top branch) while the second
pair always ends in 2 with [l 	→ 1, h 	→ 0]. Therefore this automaton is not secure
with respect to our Definition 2.
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To take care of such behaviours we write sat(· · · ) to express the satisfiability
of the · · · formula. Whenever there are two branches (induced by the edges e and
e′ both leaving q) that are not mutually exclusive (that is, where sat(con(e) ∧
con(e′)) we make sure to record the information flow arising from bypassing the
branch that would otherwise perform an assignment. This is essential for dealing
with non-determinism.

Fact 4. For a timed automaton TA = (Q,E, I, q◦), we have that if

〈q, σ, δ〉 D=⇒{q′} 〈q′, σ′, δ′〉
then

{x | σ(x) 
= σ′(x)} ∪ {r | δ′(r) 
= δ(r) + D} ⊆
⋃

π∈Π(e,{q′})

Ass(π)

where e corresponds to the initial edge of this observable step.

Condition C2 (c) takes care of cases where a timing/termination side channel
[2] could have occurred.

1 2

h > 0 ∧ t > 30 → skip:

h ≤ 0 → skip:

Fig. 5. Example
automaton (d)

As an example of such a case consider the automaton (d)
of Fig. 5, where h and t is a high program variable and a low
clock respectively, node 2 is strongly observable and both 1
and 2 have their invariant set to tt. Next, for ([h 	→ 1], [t 	→
0]) ≡ ([h 	→ 0], [t 	→ 0]) we have that the first pair always
delays at least 30 units and ends in 2 with a clock state that
has t > 30, whereas the second pair can go to 2, taking the
lower branch immediately without any delay, and thus the resulting pairs will
not be low equivalent. To take care of such behaviours, we stipulate a predicate
Φq such that

∃t1, t2 ∈ ⋃
(σ,δ):[[I(q)]](σ,δ)[[TA : q 	→ ipdY (q)]](σ, δ) : Δ(t1) 
= Δ(t2)

⇓
Φq

Using this predicate we demand that whenever the TA does not have a “constant”
termination behavior from the node q to the node ipdY (q), then variables that
influence the termination behavior should not be of high security level.

Condition C3. We are now left with the nodes in Qc
�w, whose immediate Y

post-dominator is not defined. Since for such a node q, we cannot find a point
(the unique immediate Y post-dominator) where the control dependencies from
the branches of q end, condition C3 (a) requires that the conditions of the edges
of q should not be dependent on high security variables.

Condition C3 (b) caters for the explicit flows, of an edge e using the predicate
Ae. However we are allowed to dispense Ae, whenever further computations after
taking the edge e may lead only to weakly observable nodes and Ψe holds. To
express this for an edge e = (qs, g → x :=a: r, qt) we write

e � w

whenever qt ∈ Yw or qt ∈ Q�w.
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Example 5. Consider now the automaton SG of Example 1, and the Y post-
dominator relation of Example 4.

We have that the nodes 1, 3 and 4 are in Qc
�w and also that their immediate

unique Y post-dominator is defined. Condition C2 (a) and C2 (b) impose the
following constraints

{T, t, r} � {ed, ei, ci, s, t, r}, {ed, ei} � {ei}, {ei} � {ci}, {vi} � {pi} (i = 1, 2)
{T} � {p1, p2, a, f}, {z} � {a}, {} � {s, f, a}

Finally, for the node 1, because Φ1 (C2 (c)) all the clocks need to be of low
security level.

Next, the node 2 is in Qc
�w and since its unique immediate Y post-dominator

is not defined, condition C3 (b) impose the constraints

{p1, p2, c1, c2} � {b}, {a} � {x}, {} � {e1, e2, f}

and condition C3 (a) imposes that T, s and f should be of low security level.
Notice here that since for the edge e = (2, s = 1 → y1, y2:=c1, c2: , 3) that releases
the sensitive information of C we have that e � w, we are not imposing the
constraint {ci} � {yi} (i = (1, 2)). Those constraints are easy to verify for the
security assignment of Example 2.

Now if we were to change the node 3 from being a weakly observable to a
strongly observable node, the automaton SG will not be secure with respect to
Definition 2. In that case our algorithm will reject it, since for the edge e we
would have that e 
� w and the predicate Ae would have resulted in false.

Finally, we shall write secY,L(TA) whenever the constraints arising from our
algorithm (Fig. 2) are satisfied and thus we have the following lemmas

Lemma 1. For a timed automaton TA = (Q,E, I, q◦), if secY,L(TA) then for
(σ1, δ1), (σ2, δ2) such that [[I(q)]](σ1, δ1) and [[I(q)]](σ2, δ2) and (σ1, δ1) ≡ (σ2, δ2)
we have that

if 〈q, σ1, δ1〉 D1=⇒Y 〈q′, σ′
1, δ

′
1〉 then ∃(σ′

2, δ
′
2),D2 : 〈q, σ2, δ2〉 D2=⇒Y 〈q′, σ′

2, δ
′
2〉∧

(q′ ∈ Yw ∨ (σ′
1, δ

′
1) ≡ (σ′

2, δ
′
2))

Lemma 2. For a timed automaton TA = (Q,E, I, q◦), if secY,L(TA) then for
(σ1, δ1), (σ2, δ2) such that [[I(q)]](σ1, δ1) and [[I(q)]](σ2, δ2) and (σ1, δ1) ≡ (σ2, δ2)
we have that

if 〈q, σ1, δ1〉 ∞=⇒Y ⊥ then also 〈q, σ2, δ2〉 ∞=⇒Y ⊥

The following theorem concludes the two lemmas from above to establish
the soundness of our algorithm with respect to the notion of security of
Definition 2.

Theorem 1. For a timed automaton TA = (Q,E, I, q◦), if secY,L(TA) then TA
satisfies the information security policy L.
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6 Conclusion

We have shown how to successfully enforce Information Flow Control policies
on timed automata. This has facilitated developing an algorithm that prevents
unnecessary label creep and that deals with non-determinism, non-termination,
and continuous real-time. The algorithm has been proved sound by means of a
bisimulation result, that allows controlled information leakage.

We are exploring how to automate the analysis and in particular how to
implement (a sound approximation of) the Φq predicate. There has been a lot of
research [3,4] done for determining the maximum (maxt) or minimum (mint)
execution time that an automaton needs to move from a location qs to a location
qt. One possibility is to make use of this work [3,4] and thus the predicate Φq

would amount to checking if the execution time between the two nodes of interest
(q and ipdY (q)) is constant (e.g. maxt = mint).

A longer-term goal is to allow policies to simultaneously deal with safety and
security properties of cyberphysical systems.

Appendix

Proposition 1

Assume that all the traces in [[TA : qs 	→ qt]](σ, δ) are successful and we want to
show that there exists t ∈ [[TA : qs 	→ qt]](σ, δ) with a maximal length m.

We use results from model-checking for timed automata [15]. As in [15] we
first transform our automaton to an equivalent diagonal-free automaton, that
is an automaton where clocks appearing in its guards and invariants can be
compared only to integers (e.g. r1 − r2 ≤ 5 is not allowed). We then define the
region graph RG(TA) of TA, that is a finite graph where nodes of the region graph
are of the form (q, reg) where reg is a clock region, that is an equivalence class
defined on the clock states (for details we refer to [15]). Configurations of RG(TA)
are of the form 〈(q, reg), σ〉 and we have that 〈(q, reg), σ〉 =⇒ 〈(q′, reg′), σ′〉 if
there are δ ∈ reg, δ′ ∈ reg′, d ≥ 0, σ′ such that the automaton TA performs the
transition 〈q, σ, δ〉 d−→ 〈q′, σ′, δ′〉. Lemma 1 of [15] then states that each abstract
run (finite or infinite) in the region graph RG(TA) can be instantiated by a run
(finite or infinite resp.) in TA and vice verca. This is based on the property of
the region graph of being pre-stable that is that 〈(q, reg), σ〉 =⇒ 〈(q′, reg′), σ′〉 if
∀δ ∈ reg there are δ′ ∈ reg′, d ≥ 0, σ′ such that 〈q, σ, δ〉 d−→ 〈q′, σ′, δ′〉. Therefore
the computation tree T of 〈q, σ, δ〉 in TA has the same depth as the computation
tree T ′ of 〈(q, [δ]), σ〉 in RG(TA) where [δ] is the region that contains all the
clock states that are equivalent to δ. We then recall König’s infinity lemma as it
applies to trees – that every tree who has infinitely-many vertices but is locally
finite (each vertex has finitely-many successor vertices), has at least one infinite
path [11]. It is immediate that T ′ is a locally finite tree. Now if T ′ is infinite
then by König’s infinity lemma we have that T ′ has an infinite path and thus
using Lemma 1 of [15] we have also that T has an infinite path that corresponds
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to a trace 〈q, σ, δ〉 in TA which contradicts our assumptions that all the traces
of 〈q, σ, δ〉 are finite. Therefore we can conclude that T ′ has a finite depth and
therefore also T and that they are equal to the number m.

Proof of Fact 2

Proof. The first equation is straightforward by the definition of the post-
dominator relation. For the second one, that is when y is a successor (an immedi-
ate one) of q then the only post-dominators of q is the node y, since there exists
a non-trivial path π = qacty ∈ Π(q,y) (for some action act) such that the trivial
path π(1) = y contains only y, and therefore for any other path π′ ∈ Π(q,y)

in which a node q′ different from y is contained in π′(1), q′ can not be a post-
dominator of q since it is not contained in the trivial path π(1). To understand
the last equation notice that if a node q′′ post-dominates all of the successors of
q or it is a successor of q that post-dominates all the other successors of q then
all the non-trivial paths from q to y will always visit q′′ and thus q′′ ∈ pdomy(q);
similarly if q′′ 
∈ ⋂

q′∈succ(q)

({q′} ∪ pdomy(q′)
)

then there exists a successor of
q, q′ 
= q′′ such that q′′ does not post-dominate q′ and thus we can find a non-
trivial path π ∈ Π(q,Y ) that starts with qactq′ (for some action act) and does
not contain q′′ and thus q′′ is not a post-dominator of q.

Proof of Fact 3

Proof. To prove that ipdomY (q) is singleton we consider two cases. In the case
that pdomY (q) = {q′} then the proof is trivial.

Assume now that pdomY (q) = {q1, ..., qn} (n ≥ 2) and take an arbitrary
non-trivial path π ∈ Π(q,Y ) and find the closest to q (the one that appears first
in the path) Y post-dominator qj ∈ pdomY (q) in that path. Next note that
qj 
∈ Y since if qj ∈ Y , we could shorten that path to the point that we meet qj

for the first time and thus we have found a non trivial path π′ ∈ Π(q,Y ) (since
qj ∈ Y ) in which ∀i 
= j : qi 
∈ π′(1) and thus ∀i 
= j : qi 
∈ pdomY (q) which
contradicts our assumption. Next to prove that ∀i 
= j : qi ∈ pdomY (qj) assume
that this is not the case and thus we can find ql 
= qj : ql 
∈ pdomY (qj). Therefore
we can find a path π′′ ∈ Π(qj ,Y ) such that ql 
∈ π′′(1), but this means that if
we concatenate the paths π′ and π′′ we have a path in Π(q,Y ) in which ql does
not belong to it and thus ql does not belong in its 1-suffix either and therefore
ql 
∈ pdomY (q), which again contradicts our assumption.

Finally to prove that ipdomY (q) is singleton assume that there exists another
Y post-dominator of q, ql such that ql 
= qj and ql 
∈ Y and qj ∈ pdom(ql).
Then this means that qj belongs in all the 1-suffixes of the paths in the set
Π(ql,Y ). Therefore take π = ql...qj ...y ∈ Π(ql,Y ) (for some y ∈ Y ) such that π
contains no cycles (e.g. each node occurs exactly once in the path) but then there
exists a path π′ = qj ...y (the suffix of the path π) such that ql 
∈ π′ and thus
ql 
∈ pdomY (qj) which contradicts our assumption. Therefore we have proved
that qj is the unique immediate Y post-dominator of q.
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Proof of Lemma 1

Proof. Assume that 〈q, σ1, δ1〉 D1=⇒Y 〈q′, σ′
1, δ

′
1〉 because of the trace

〈q, σ1, δ1〉 = 〈q, σ01, δ01〉 d1−→ ...
dk−→ 〈qk1, σk1, δk1〉 = 〈q′, σ′

1, δ
′
1〉 (∗)

where k > 0 and ∀i ∈ {1, .., k − 1} : qi1 
∈ Y and D1 =
∑k

j=1 dj and the first
transition of the trace has happened because of the edge e ∈ Eq.

We shall consider two main cases. The one where q is in Q�w and one where
it is not.

Main Case 1: q is in Q�w. In that case q′ ∈ Yw and thus we only have to prove
that (σ2, δ2) can reach q′. We start by proving a small fact.

First for a set of variables and clocks Z, and two pairs (σ, δ), (σ′, δ′) we write

(σ, δ) ≡Z (σ′, δ′) iff ∀x : (x ∈ Z ∧ L(x) = L) ⇒ σ(x) = σ′(x) ∧
∀r : (r ∈ Z ∧ L(r) = L) ⇒ δ(r) = δ′(r)

Next, for a finite path π = q0act1q1...qn−1actnqn we define the auxiliary
operator Z(.) as Z(π) =

⋃n−1
i=0 (

⋃
e′∈Eqi

fv(con(e′)) ∪ fv(expr(e′))).
Now we will prove that for a path π = q′

01act′1q
′
11...q

′
(n−1)1act′nq′

n ∈ Π(e,Y ), if

〈q, σ1, δ1〉 = 〈q′
01, σ

′
01, δ

′
01〉

d′
1−→ ...

d′
l−→ 〈q′

l1, σ
′
l1, δ

′
l1〉 (l ≤ n) (1)

using the edges (q′
01, act′1, q

′
11), ..., (q

′
(l−1)1, act′l, q

′
l) and (σ1, δ1) ≡Z(π) (σ2, δ2)

then ∃(σ′
l2, δ

′
l2):

〈q, σ2, δ2〉 = 〈q′
01, σ

′
02, δ

′
02〉

d′
1−→ ...

d′
l−→ 〈q′

l1, σ
′
l2, δ

′
l2〉 (a)

and
l < n ⇒ (σ′

l1, δ
′
l1) ≡Z(π(l)) (σ′

l2, δ
′
l2) (b)

where recall that π(l) is the l−suffix of π. The proof proceeds by induction on l.

Base Case l = 1. To prove (a), let e = (q′
01, g → x :=a: r, q′

11) and note that
because (σ1, δ1) ≡Z(π) (σ2, δ2) and con(e) contains only low variables (since q′

01 =
q ∈ Q�w and C1 (a)) it is immediate that there exists σ′

12 = σ2[x 	→ [[a ]]σ2],
δ′
12 = (δ2+d′

1)[r 	→ 0] such that [[I(q′
01)]](σ2, δ2+d′

1) = tt and [[I(q′
11)]](σ

′
12, δ

′
12) =

tt, and 〈q′
01, σ2, δ2〉 d′

1−→ 〈q′
11, σ

′
12, δ

′
12〉.

Now if l < n, to prove (b) we consider two cases. One where Ae is true and one
where it is false. If Ae is true we note that (σ′

11, δ
′
11) ≡Z(π) (σ′

12, δ
′
12), and then

it is immediate that also (σ′
11, δ

′
11) ≡Z(π(1)) (σ′

12, δ
′
12) as required. Otherwise,

if Ae is false then Ψe is true and thus (σ′
11, δ

′
11) ≡Z(π(1)) (σ′

12, δ
′
12), because

the two pairs are still low equivalent for the variables that are not used in the
assignment of e, while the ones used in the assignment of e they do not appear
in any condition (or expression) of an edge of a node q that belongs in π(1).

Inductive Case l = l0 + 1 (l0 > 0). Because of the trace in (1) we have that t1 =

〈q′
01, σ

′
01, δ

′
01〉

d′
1−→ 〈q′

11, σ
′
11, δ

′
11〉 and t2 = 〈q′

11, σ
′
11, δ

′
11〉

d′
2−→ ...

d′
l−→ 〈q′

l1, σ
′
l1, δ

′
l1〉.
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Using our induction hypothesis on t1 we have that there exists (σ′
12, δ

′
12) such

that 〈q′
01, σ2, δ2〉 d′

1−→ 〈q′
11, σ

′
12, δ

′
12〉 and (σ′

11, δ
′
11) ≡Z(π(1)) (σ′

12, δ
′
12) and the

proof is completed using our induction hypothesis on t2. The proof of Main
Case 1 follows by the result (a) of the fact from above, taking the path π
that corresponds to the trace (∗) and using that (σ1, δ1) ≡Z(π) (σ2, δ2) (since
(σ1, δ1) ≡ (σ2, δ2) and all the nodes in π except qk1 have edges whose conditions
contain only low variables). Therefore, since (σ1, δ1) creates the trace (*) we also
have that ∃(σ′

2, δ
′
2) :

〈q, σ2, δ2〉 = 〈q01, σ02, δ02〉 d1−→ ...
dk−→ 〈qk1, σk2, δk2〉 = 〈q′, σ′

2, δ
′
2〉

and thus for D2 = d1 + ... + dk we have that

〈q, σ2, δ2〉 D2=⇒Y 〈q′, σ′
2, δ

′
2〉

where q′ ∈ Yw and this completes the proof for this case.

Main Case 2: When q is not in Q�w. The proof proceeds by induction on the
length k of the trace (∗).

Base Case (k = 1). We have that

〈q, σ1, δ1〉 d1−→ 〈q′, σ′
1, δ

′
1〉

and let e = (q, g → x :=a: r, q′), then it is immediate that D1 = d1, σ′
1 = σ1[x 	→

[[a ]]σ1], δ′
1 = (δ1 + d1)[r 	→ 0] and [[I(q)]](σ1, δ1 + d1) = tt and [[I(q′)]](σ′

1, δ
′
1) = tt.

We shall consider two subcases one where the unique immediate Y post-
dominator of q is defined and one where it is not.

Subcase 1: When the unique immediate Y post-dominator ipdY (q) is defined. It
has to be the case then that q′ = ipdY (q) since q′ ∈ Y and in particular, we have
that q′ ∈ Ys. We will proceed by considering two other subcases of the Subcase
1, one where the condition Φq is true and one which it is false.

Subcase 1(a): When Φq is true. Then it is the case that all the variables of the
condition con(e) are low and thus it is immediate that there exists d2 = d1 and
σ′
2 = σ2[x 	→ [[a ]]σ2], δ′

2 = (δ2 + d2)[r 	→ 0] and [[I(q)]](σ2, δ2 + d2) = tt and
[[I(q′)]](σ′

2, δ
′
2) = tt such that 〈q, σ2, δ2〉 d2−→ 〈q′, σ′

2, δ
′
2〉 which implies that for

D2 = d2

〈q, σ2, δ2〉 D2=⇒Y 〈q′, σ′
2, δ

′
2〉

Finally, because secY,L(TA), condition C2 (a) gives us that Ae is true, and thus
all the explicit flows arising from the assignments x :=a are permissible and
thus (σ′

1, δ
′
1) ≡ (σ′

2, δ
′
2) as required.

Subcase 1(b): When Φq is false. If it is the case that all the variables in the
condition con(e) are low then the proof proceeds as in Subcase 1(a).
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For the case now that at least one variable in the condition con(e) is high then
because secY,L(TA), condition C2 (a) and Fact 4 ensure that ∀x : L(x) = L ⇒
σ′
1(x) = σ1(x) and ∀r : L(r) = L ⇒ δ′

1(r) = δ1(r) + d1. Since Φq is false (σ1, δ1)
and (σ2, δ2) have the same termination behaviour and thus there exists d2 = d1

and (σ′
2, δ

′
2) such that 〈q, σ2, δ2〉 d2−→ 〈q′, σ′

2, δ
′
2〉 and therefore for D2 = d2 we

have that
〈q, σ2, δ2〉 D2=⇒Y 〈q′, σ′

2, δ
′
2〉

We just showed that (σ′
1, δ

′
1) ≡ (σ1, δ1+d1) ≡ (σ2, δ2+d2) and we will now show

that (σ′
2, δ

′
2) ≡ (σ2, δ2 + d2).

Now if
〈q, σ2, δ2〉 d2−→ 〈q′, σ′

2, δ
′
2〉

using the edge e or an edge e′ 
= e such that con(e′) contains a high variable, since
secY,L(TA), condition C2 (a) and Fact 4 gives that ∀x : L(x) = L ⇒ σ′

2(x) =
σ2(x) and ∀r : L(r) = L ⇒ δ′

2(r) = δ2(r)+d2 and therefore (σ′
2, δ

′
2) ≡ (σ2, δ2+d2)

as required. If now con(e′) contains only low variables, (σ1, δ1) is a witness of
sat(con(e) ∧ con(e′)) and therefore because secY,L(TA), using the condition C2
(b) and Fact 4 we work as before and we obtain that (σ′

2, δ
′
2) ≡ (σ2, δ2 + d2).

Subcase 2: When the unique immediate Y post-dominator of q is not defined. In
that case, all the variables in con(e) are low. If q′ is in Yw we have that e � w
and we proceed as in Main Case 1. Otherwise, we proceed as in Subcase 1(a).

This completes the case for k = 1.

Inductive Case (k = k0 + 1). We have that
〈q, σ1, δ1〉 = 〈q, σ01, δ01〉 d1−→ ...

dk−→ 〈qk1, σk1, δk1〉 = 〈q′, σ′
1, δ

′
1〉

and recall that the first transition happened because of the edge e and that q is
not in Q�w.

We shall consider two cases again, one where the unique immediate Y post-
dominator of q is defined and one where it is not.

Subcase 1: When the unique immediate-post dominator ipdY (q) is defined. We
will proceed by considering two subcases of Subcase 1, one where Φq is true and
one where Φq is false.

Subcase 1(a): When Φq is true. Since Φq is true we have that all the variables in
con(e) are low and thus ∃d′

1 = d1 and (σ12, δ12) ≡ (σ11, δ11) (this is ensured by
our assumptions that secY,L(TA) and the predicate Ae of the condition C2 (a)
that takes care of the explicit flows arising from the assignment in the edge e)
such that

〈q, σ2, δ2〉 = 〈q01, σ02, δ02〉 d′
1−→ 〈q11, σ12, δ12〉 (1)

Since q is not in Q�w, note that it is also the case that q11 is not in Q�w and
thus using that (σ12, δ12) ≡ (σ11, δ11) and our induction hypothesis on the trace

〈q11, σ11, δ11〉 d2−→ ...
dk−→ 〈qk1, σk1, δk1〉
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we have that ∃(σ′
2, δ

′
2) and D′

2 such that

〈q11, σ12, δ12〉 D′
2=⇒Y 〈q′, σ′

2, δ
′
2〉 (2)

and therefore by (1) and (2) and for D2 = d′
1 + D′

2 we have that

〈q, σ2, δ2〉 D2=⇒Y 〈q′, σ′
2, δ

′
2〉

and (σ′
1, δ

′
1) ≡ (σ′

2, δ
′
2) ∨ q′ ∈ Yw as required.

Subcase 1(b): When Φq is false. In the case that all the variables in con(e) are
low then the proof proceeds as in Subcase 1(a).

Assume now that at least one variable in con(e) is high. Since ipdY (q) is
defined then there exists j ∈ {1, ..., k} such that qj1 = ipdY (q) and ∀i ∈ {1, .., j−
1} : qi1 
= ipdY (q). Therefore we have that

〈q01, σ01, δ01〉 d1−→ ...
dj−→ 〈qj1, σj1, δj1〉 dj+1−→ ...

dk−→ 〈qk1, σk1, δk1〉

Next, using that secY,L(TA), condition C2 (a) and Fact 4 gives us that ∀x :
L(x) = L ⇒ σj1(x) = σ01(x) and ∀r : L(r) = L ⇒ δj1(r) = δ01(r)+d1 + ...+dj .
Since Φq is false, (σ1, δ1) and (σ2, δ2) have the same termination behaviour and
thus there exists trace t′ ∈ [[TA : q 	→ ipdY (q)]](σ2, δ2) and d′

1, ..., d
′
l such that

d1 + ... + dj = d′
1 + ... + d′

l and (σl2, δl2) such that t′ is

〈q, σ2, δ2〉 = 〈q, σ02, δ02〉 d′
1−→ ...

d′
l−→ 〈ql2, σl2, δl2〉 (3)

and ql2 = ipdY (q).
It is immediate that ∀x : L(x) = L ⇒ σl2(x) = σ02(x) and ∀r : L(r) = L ⇒

δl2(r) = δ02(r)+d′
1+...+d′

l. To see how we obtain this result, we have that if t′ has
started using the edge e or an edge e′ 
= e, where con(e′) contains at least one high
variable, then this result follows by our assumptions that secY,L(TA), condition
C2 (a) and Fact 4. Now if the t′ has started using an edge e′ 
= e and con(e′)
contains only low variables then (σ1, δ1) is a witness of sat(con(e) ∧ con(e′)) and
the result follows by our assumptions that secY,L(TA), condition C2 (b) and
Fact 4. Therefore in any case (σj1, δj1) ≡ (σl2, δl2).

Now if ipdY (q) = qk1 the proof has been completed. Otherwise we have that
ipdY (q) is not in Q�w and the proof follows by an induction on the trace

〈qj1, σj1, δj1〉 dj−→ ...
dk−→ 〈qk1, σk1, δk1〉

using that (σj1, δj1) ≡ (σl2, δl2)

Subcase 2: When the unique immediate Y post-dominator of q is not defined. In
that case, all the variables in con(e) are low. Therefore, if e � w we proceed
similar to Main Case 1, otherwise we proceed as in Subcase 1(a).

This completes our proof.
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Proof of Lemma 2

Proof. Assume that 〈q, σ1, δ1〉 ∞=⇒Y ⊥ and thus either there exists a finite unsuc-
cessful trace t

〈q, σ1, δ1〉 = 〈q01, σ01, δ01〉 d1−→ ...
dn−→ 〈qn1, σn1, δn1〉 (n ≥ 0)

such that ∀i ∈ {1, ..., n} : qi1 
∈ Y and 〈qn1, σn1, δn1〉 is stuck, or there exists an
infinite unsuccessful trace t

〈q, σ1, δ1〉 = 〈q01, σ01, δ01〉 d1−→ ...
dn−→ 〈qn1, σn1, δn1〉 dn+1−→ ...

such that ∀i > 0 : qi1 
∈ Y .
Assume now that all the traces from 〈q, σ2, δ2〉 to a node q′ ∈ Y are successful,

which means that 〈q, σ2, δ2〉 
 ∞=⇒Y ⊥ and thus by Proposition 1 the set

{k | 〈q′
0, σ

′
0, δ

′
0〉

d′
1−→ ...

d′
k−→ 〈q′

k, σ′
k, δ′

k〉 : 〈q′
0, σ

′
0, δ

′
0〉 = 〈q, σ2, δ2〉 ∧ q′

k ∈ Y ∧
∀i ∈ {1, ..., k − 1} : q′

i 
∈ Y }
has a maximum m.

The proof proceeds by contradiction where we show that we can either con-
struct an unsuccessful trace of 〈q, σ2, δ2〉 or a “long” trace t′

〈q, σ2, δ2〉 = 〈q02, σ02, δ02〉 d′
1−→ ...

d′
l−→ 〈ql2, σl2, δl2〉 (l > 0)

where ∀i ∈ {1, ..., l} : qi2 
∈ Y and m ≤ l and that would mean that this trace
will either terminate later (at a node in Y ) and thus it will have a length greater
than m, or it will result into an unsuccessful trace.

We consider two main cases one where q is in Q�w and one where it isn’t.

Main Case 1: When q is in Q�w. If the trace t of 〈q, σ1, δ1〉 visits only nodes that
can reach Y (∀i : Πqi1 
= ∅) then we proceed similar to the proof of Main Case 1
of Lemma 1, using the result (a) and (b) of the fact proven there. Therefore if t
is infinite we can show that (σ2, δ2) can simulate the first m steps of (σ1, δ1) and
this give us the desired trace t′. Similarly, in case of t being a finite unsuccessful
trace that stops at the node qn1, and 〈qn1, σn1, δn1〉 is a stuck, we can also show
that (σ2, δ2) can reach the node qn1 (using the result (a)) and the resulting
configuration will be stuck (using the result (b)).

Now if the first j > 0 nodes q01...qj1 (visited by t) can reach Y and then for
the node q(j+1)1 we have that Π(q(j+1)1,Y ) = ∅, we can show similarly as before
that (σ2, δ2) can reach the node q(j+1)1 (using the results (a) and (b)), and thus
any further computation will lead to an unsuccessful trace since Π(q(j+1)1,Y ) = ∅.

Finally if t visits only nodes that cannot reach Y (∀i : Πqi1 = ∅) and thus
also q cannot reach Y , the proof is trivial since all the traces of 〈q, σ2, δ2〉 will
be unsuccessful with respect to Y . This completes the proof of Main Case 1.

Main Case 2: When q is not in Q�w. We will now present a finite construction
strategy for the desired trace t′.
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Construction. We start by looking at the configurations 〈q, σ1, δ1〉, 〈q, σ2, δ2〉 the
unsuccessful trace t of (σ1, δ1), and we remember that so far we have created a
trace t′ = 〈q, σ2, δ2〉 of length l = 0. We proceed according to the following cases:

Case 1: When the unique immediate Y post-dominator ipdY (q) of q is defined.
We then consider two subcases, one where Φq is false and one where Φq is true.

Subcase (a): Φq is false. Now if the trace t does not visit ipdY (q), we have that
(σ1, δ1) and (σ2, δ2) have the same termination behaviour (using that Φq is false)
and thus there exists a trace t′ of (σ2, δ2) that never visits ipdY (q). However,
then we would have the case that t′ is an unsuccessful trace with respect to q
and the set Y which contradicts our assumptions.

If the trace t does visit ipdY (q), then it has to be the case that ipdY (q) is
not in Y . Assume now that t starts with an edge e ∈ Eq. If con(e) contains
only low variables then ∃d′

1 = d1 and (σ12, δ12) ≡ (σ11, δ11) (this is ensured by
our assumptions that secY,L(TA) and the predicate Ae of condition C2 (a) that
takes care of the explicit flows arising from the assignment in the edge e) such
that

〈q, σ2, δ2〉 = 〈q02, σ02, δ02〉 d′
1−→ 〈q12, σ12, δ12〉

where q12 = q11. If now m ≤ l +1 then we have our desired trace t′ and we stop.
Otherwise, notice that also q11 is not in Q�w and we repeat the Construction

by looking at the configurations 〈q11, σ11, δ11〉, 〈q11, σ12, δ12〉, the suffix of t that
starts with 〈q11, σ11, δ11〉 and we remember that so far we have created the trace

t′ = 〈q02, σ02, δ02〉 d′
1−→ 〈q12, σ12, δ12〉 (〈q, σ2, δ2〉 = 〈q02, σ02, δ02〉)

that has length equal to l+1.
Now if con(e) contains at least one high variable then we look at the first

occurrence of ipdY (q) in t and let that to be the configuration 〈qh1, σh1, δh1〉
for some h > 0. Therefore, since secY,L(TA), using the condition C2 (a) and
Fact 4 we have that ∀x : L(x) = L ⇒ σh1(x) = σ01(x) and ∀r : L(r) = L ⇒
δh1(r) = δ01(r)+d1+ ...+dh. Since Φq is false (σ1, δ1) and (σ2, δ2) have the same
termination behaviour and thus there exists trace t′ ∈ [[TA : q 	→ ipdY (q)]](σ2, δ2)
and d′

1, ..., d
′
j such that d1 + ... + dh = d′

1 + ... + d′
j and (σj2, δj2) such that t′ is

〈q, σ2, δ2〉 = 〈q02, σ02, δ02〉 d′
1−→ ...

d′
j−→ 〈qj2, σj2, δj2〉

where qj2 = ipdY (q).
Now if j + l ≥ m we have constructed the required trace t′.
Otherwise, we have that ∀x : L(x) = L ⇒ σj2(x) = σ02(x) and ∀r : L(r) =

L ⇒ δj2(r) = δ02(r)+d′
1+ ...+d′

j . To see how we obtain this result, we have that
if t′ has started using the edge e or an edge e′ 
= e, where con(e′) contains at least
one high variable, then this result follows by our assumptions that secY,L(TA),
condition C2 (a) and Fact 4. Now if the t′ has started using an edge e′ 
= e and
con(e′) has only low variables then (σ1, δ1) is a witness of sat(con(e) ∧ con(e′))
and the result follows again by our assumptions that secY,L(TA), condition C2
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(b) and Fact 4. Therefore in any case (σh1, δh1) ≡ (σj2, δj2) and thus we repeat
the Construction by looking at the configurations 〈qh1, σh1, δh1〉, 〈qj2, σj2, δj2〉
the suffix of t that starts with 〈qh1, σh1, δh1〉 and we remember that so far we
have created the trace t′

〈q, σ2, δ2〉 = 〈q02, σ02, δ02〉 d′
1−→ ...

d′
j−→ 〈qj2, σj2, δj2〉

of length equal to l + j.

Subcase (b): Φq is true. Then if t starts with the edge e, because secY,L(TA),
con(e) contains only low variables and we proceed as in Subcase (a).

Case 2: When the unique immediate Y post-dominator ipdY (q) of q is not
defined. In this case, if t starts with the edge e, because secY,L(TA) we have
that con(e) contains only low variables. Now if e � w working as in Main Case
1 we can get an unsuccessful trace t′, otherwise we proceed as in Subcase (a).

Proof of Theorem 1

Proof. Let

Z = {(〈q, σ, δ〉, 〈q, σ′, δ′〉) | [[I(q)]](σ, δ) ∧ [[I(q)]](σ′, δ′)}
∪{(⊥,⊥)}

It is immediate by Lemmas 1 and 2 that Z is a Y −bisimulation and that

∀q ∈ {q◦} ∪ Y : ∀(σ, δ), (σ′, δ′) :[[I(q)]](σ, δ) ∧ [[I(q)]](σ′, δ′)
⇓

(〈q, σ, δ〉, 〈q, σ′, δ′〉) ∈ Z

Therefore since ∼Y is the largest Y −bisimulation we have that Z ⊆∼Y and thus
TA satisfies the information security policy L.
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issues, and solutions. Annales des Télécommunications 72(9–10), 517–549 (2017)

15. Herbreteau, F., Srivathsan, B., Walukiewicz, I.: Efficient emptiness check for timed
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