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hexamethyl-1,2,3,4-tetrahydronaphthalene; ANOVA - analysis of variance; AsV – arsenic V; 

BaP - benzo(a)pyrene;BMDL - benchmark dose lower limit; BP1 - Benzophenone 1; Cd - 

cadmium; CeCs - contaminants of emerging concern; Cr – chromium; Cu -copper; DBENZO - 

Hexyl 2-[4-(diethylamino)-2-hydroxybenzoyl]benzoate; DHMB - 2,2-Dihydroxy-4,4-

dimethoxybenzophenone; DHA - docosahexaenoic acid; DORM-4 – dogfish muscle reference 

material; DPMI - 6,7-dihydro-1,1,2,3,3-pentamethyl-4(5H)-indanone; dSPE - dispersive solid-

phase extraction; EC – European Commission; ECHA – European chemicals agency ; EFSA – 

European Food Safety Authority; EHS - 2-Ethylhexyl salicylate; EPA - eicosapentaenoic aci; 

ERM-BC211 – rice reference material; GC–IT-MS/MS - gas chromatography-ion trap-tandem 

mass spectrometr; GC-MS - gas chromatography-mass spectrometry; HBGVs - health-based 

guidance values; Hg – mercury; HHCB - 1,3,4,6,7,8-hexahydro-4,6,6,7,8,8-

hexamethylcyclopenta-(g)-2-benzopyran; HHCB-lactone - 1,3,4,6,7,8-hexahydro-4,6,6,7,8,8-
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chromatography; HS - 3,3,5-Trimethylcyclohexylsalicylate;  iAs - inorganic arsenic; ICP-MS - 

inductively coupled plasma mass spectrometer; ISTD – internal standards; Kow - n-

octanol/water partition coefficientLC-IT-MS/MS - liquid-chromatography-ion trap tandem mass 

spectrometry; LOD - limit of detection; LOQ - limit of quantification; MeHg – methyl mercury; 

MOE – margins of exposure; MS- mass spectrometry; NOAEL – no observed adverse effect 

level; OC – Octocrylene; PAH2 - sum of benzo(a)pyrene, chrysene; PAH4 - sum of 

benzo(a)pyrene, chrysene, benz(a)anthracene, benzo(b)fluoranthene; PAH8 - sum of 

benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, benzo(k)fluoranthene, chrysene, 

dibenzo(a,h)anthracene, indeno(123cd)pyrene, benzo(ghi)perylene; PAHs - polycyclic aromatic 

hydrocarbons; Pb – lead; PCBs - polychlorinated biphenyls; PCPs - personal care products; 

PFBA – perfluorobutanoate; PFBS - perfluorobutane sulfonate; PFCs - perfluorinated 

compounds; PFDcA – perfluorodecanoate; PFDoA - perfluorododecanoate; PFDS - 

perfluorodecane sulfonate; PFHpA – perfluoroheptanoate; PFHpS - perfluoroheptane sulfonate; 

PFHxA - perfluorohexanoate, PFHxS - perfluorohexane sulfonate;PFNA - perfluorononanoate; 

PFOA – perfluoroctanoate; PFOS - perfluorooctane sulfonate; PFPeA – perfluoropentanoate, 

PFTeA - perfluorotetradecanoate, PFTrA - perfluorotridecanoate; PFUnA - 

perfluorundecanoate; POPs - persistent organic pollutants; QuEChERS - quick, easy, effective, 

rugged and safe; RSD - relative standard deviation; TAs - total arsenic; TDI - tolerable daily 

intake; THg - total mercury; TORT-2 - lobster hepatopancreas reference material; TWI - 

tolerable weekly intake; UF - safety/uncertainty factor; UL - tolerable upper intake level. 
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Abstract 

Seafood consumption is a major route for human exposure to environmental contaminants of 

emerging concern (CeCs). However, toxicological information about the presence of CeCs in 

seafood is still insufficient, especially considering the effect of cooking procedures on 

contaminant levels. This study is one among a few who evaluated the effect of steaming on the 

levels of different CeCs (toxic elements, PFCs, PAHs, musk fragrances and UV-filters) in 

commercially relevant seafood in Europe, and estimate the potential risks associated with its 

consumption for consumers. In most cases, an increase in contaminant levels was observed 

after steaming, though varying according to contaminant and seafood species (e.g. iAs, 

perfluorobutanoate, dibenzo(ah)anthracene in Mytilus edulis, HHCB-Lactone in Solea sp., 2-

Ethylhexyl salicylate in Lophius piscatorius). Furthermore, the increase in some CeCs, like Pb, 

MeHg, iAs, Cd and carcinogenic PAHs, in seafood after steaming reveals that adverse health 

effects can never be excluded, regardless contaminants concentration. However, the risk of 

adverse effects can vary. The drastic changes induced by steaming suggest that the effect of 

cooking should be integrated in food risk assessment, as well as accounted in CeCs regulations 

and recommendations issued by food safety authorities, in order to avoid over/underestimation 

of risks for consumer health. 

 

1. Introduction 

Seafood is an important food item for a healthy and balanced diet, being its consumption widely 

recommended to prevent several diseases, such as hypertension, coronary heart disease and 

cancer (Bayen et al., 2005; Schmidt et al., 2015). Seafood health benefits are mainly associated 

to its low cholesterol levels and high levels of essential nutrients, such as amino acids (e.g. 

cysteine, lysine, and methionine), polyunsaturated n-3 fatty acids [e.g. eicosapentaenoic acid 

(EPA), docosahexaenoic acid (DHA)], vitamins (e.g. vitamin A and vitamin D) and minerals (e.g. 

selenium, iodine) (Bayen et al., 2005; Bhavsar et al., 2014). Nevertheless, like other types of 

food, it can accumulate high levels of chemical contaminants, including persistent organic 

pollutants (POPs; e.g. dichlorodiphenyltrichloroethane, polychlorinated biphenyls, dioxins) and 

toxic elements [mercury (Hg), cadmium (Cd), lead (Pb) and arsenic (As)], through 

environmental exposure, representing a risk to human health (Alves et al., 2017; Domingo, 
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2011; Marques et al., 2011). Since seafood can be one of the major dietary routes of human 

exposure to environmental contaminants, the interest in assessing levels of contaminants of 

emerging concern (CeCs) in seafood is growing within the scientific community and regulatory 

authorities (Aznar-Alemany et al., 2017).  

Although most seafood is cooked before consumption, the current risk assessment and limits 

set by European authorities for the presence of chemical contaminants are mainly based on the 

analysis of uncooked/raw products (Marques et al., 2011). The diversity of culinary and 

industrial procedures is enormous for each product, varying according to the region, local 

traditions and cultural heritages, thus hampering the inclusion of cooking, processing and eating 

habits in risk assessment and regulations. However, it is known that the nutritional value of 

seafood products can be strongly affected by cooking procedures (Alves et al. 2017; Maulvault 

et al., 2012). Similarly, chemical contaminants’ concentration can drastically change according 

to cooking procedures and seafood species (Domingo, 2011). Therefore, human risks 

associated to seafood consumption may be under- or overestimated (Marques et al., 2011).  

Presently, most available studies have assessed the effects of cooking on levels of some 

chemical contaminants in seafood [e.g. Hg (Alves et al. 2017; Maulvault et al., 2012; Perugini et 

al., 2013; Schmidt et al., 2015), Cd (Amiard et al., 2008; Ersoy et al., 2006; Houlbrèque et al., 

2011), As (Devesa et al., 2001; Ersoy et al., 2006; Maulvault et al., 2012), PFCs (Bhavsar et al., 

2014), PBDEs (Aznar-Alemany et al.,2017; Bayen et al., 2005; Hori et al., 2005), PCBs and 

dioxins (Bayen et al., 2005; Hori et al., 2005)], but as far as CeCs are concerned the information 

is still limited.   

In this context, this study aims to evaluate the effect of steaming on CeCs levels (toxic 

elements, perfluorinated compounds (PFCs), polycyclic aromatic hydrocarbons (PAHs), musk 

fragrances and UV-filters) in commercially-relevant seafood species consumed in Europe and to 

assessing the potential risk associated to seafood consumption. 

 

2. Material and Methods 

2.1. Sampling species and culinary treatment 

Thirteen seafood species were selected based on the following assumptions: i) being frequently 

consumed in EU countries; and ii) previously reported as containing high levels of specific CeCs 
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(Cunha et al., 2018; Jacobs et al., 2015; Vandermeersch et al., 2015; Vilavert et al., 2017). The 

selected seafood species of commercial size consumed in Europe collected in different 

markets, are summarized in Table 1. The selected species include, sole (Solea sp.), mackerel 

(Scomber scombrus), farmed seabream (Sparus aurata), mussels (Mytilus galloprovincialis and 

Mytilus edulis), plaice (Pleuronectes platessa), brown crab (Cancer pagurus), octopus (Octopus 

vulgaris), farmed salmon (Salmo salar), monkfish (Lophius piscatorius), cod (Gadus morhua), 

tuna (Katsuwonus pelamis) and hake (Merluccius australis and Merluccius capensis). For fish, 

muscle tissue (fillets) were collected without skin, while for cephalopods and crustaceans the 

mantle and abdominal muscle tissues were sampled (n = 25). For bivalves, the edible part with 

the intervalvar liquid was collected (n = 50). Each sample was divided in two portions, one for 

culinary treatment (steaming) and another for raw seafood assessment. Steaming was 

performed as follows: seafood samples were wrapped up in aluminum foil, steamed in an oven 

(Combi-Master CM 6, Rational GroßkÜcken Technik GmbH, Germany) at 105 ºC during 15 min 

for fish, crustaceans and cephalopods, and at the same temperature during 5 min for bivalves. 

Raw and steamed samples were homogenized with a grinder (Retasch Grindomix GM200, 

Germany) using polypropylene cups and stainless steel knives at 10,000 g until complete visual 

disruption of the tissue, frozen at -80 ºC, freeze-dried for 48 h at -50 °C at low pressure 

(approximately10-1 atm), re-homogenized and kept at -20ºC until further analysis. 

 

2.2. Contaminant analysis 

2.2.1. Targeted contaminants 

The target contaminants were from five different chemical groups:  

i) Toxic elements: Total mercury (THg), methyl-mercury (MeHg), total arsenic (TAs), 

inorganic arsenic (iAs), cadmium (Cd), chromium (Cr), copper (Cu) and lead (Pb);  

ii) Perfluorinated compounds (PFCs): perfluorobutanoate (PFBA), perfluoropentanoate 

(PFPeA), perfluorohexanoate (PFHxA), perfluoroheptanoate (PFHpA), perfluoroctanoate 

(PFOA), perfluorononanoate (PFNA), perfluorodecanoate (PFDcA), perfluorundecanoate 

(PFUnA), perfluorododecanoate (PFDoA), perfluorotridecanoate (PFTrA), 

perfluorotetradecanoate (PFTeA), perfluorobutane sulfonate (PFBS), perfluorohexane 
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sulfonate (PFHxS); perfluoroheptane sulfonate (PFHpS), perfluorooctane sulfonate  

(PFOS) and perfluorodecane sulfonate (PFDS);  

iii) Polycyclic aromatic hydrocarbons (PAHs): acenapthylene, acenapthene, fluorene, 

phenanthrene, anthracene, fluoranthene, pyrene, benzo(a)anthracene, chrysene, 

benzo(b)fluoranthene, benzo(k)fluoranthene, benzo(j)fluoranthene, benzo(e)pyrene, 

benzo(a)pyrene, indeno(123cd)pyrene, dibenzo(ah)anthracene and benzo(ghi)perylene;   

iv) Musk fragrances [6,7-dihydro-1,1,2,3,3-pentamethyl-4(5H)-indanone (DPMI), 4-acetyl-

1,1-dimethyl-6-tert-butylindane (ADBI), 6-acetyl-1,1,2,3,3,5-hexamethylindane (AHMI), 5-

acetyl-1,1,2,6-tetramethyl-3-isopropylindane (ATII), 1,3,4,6,7,8-hexahydro-4,6,6,7,8,8-

hexamethylcyclopenta-(g)-2-benzopyran) (HHCB), 7-acetyl-1,1,3,4,4,6-hexamethyl-1,2,3,4-

tetrahydronaphthalene (AHTN),  2,4,6-trinitro-1,3-dimethyl-5-tert-butylbenzene (MX), 

1,1,3,3,5-pentamethyl-4,6-dinitroindane (MM) and 1,3,4,6,7,8-hexahydro-4,6,6,7,8,8-

hexamethylcyclopenta-(g)-2-benzopyran-1-one (HHCB-lactone); 

v) UV-filters: 2-Ethylhexyl salicylate (EHS), 3,3,5-Trimethylcyclohexylsalicylate (HS); 

Isoamyl-4 methoxycinnamate (IMC), 3-(4-Methylbenzylidene)camphor (4-MBC), 2-

Ethylhexyl 4-(dimethylamino)benzoate (EPABA); 2-Ethylhexyl 4-methoxycinnamate 

(EHMC), Octocrylene (OC), benzophenone 3 (BP3), benzophenone 1 (BP1), 2,2-

Dihydroxy-4,4-dimethoxybenzophenone (DHMB) and Hexyl 2-[4-(diethylamino)-2-

hydroxybenzoyl]benzoate DBENZO).  

2.2.2. Toxic elements 

2.2.2.1. Total and organic Mercury (THg and MeHg) 

Mercury concentrations (total and MeHg) were quantified by atomic absorption spectrometry, 

using an automatic Hg analyser (AMA 254, LECO, USA), according to Maulvault et al. (2015).  

For total Hg determination, 10-20 mg of solid sample was placed on a sample boat of the 

automatic analyser. After drying and combustion, samples enter in a decomposition tube, where 

they undergo amalgamation at 700 °C, and the dissolved elemental mercury (Hg) is pre-

concentrated, released and detected at a wavelength of 254 nm. For the quantification of MeHg, 

150 mg of freeze-dried samples were hydrolyzed in hydrobromic acid (10 mL, 47% w/w, Merck), 

followed by MeHg extraction with toluene (35 mL, 99.8% w/w, Merck) and removed from toluene 

using an aqueous solution of cysteine (1% L-cysteinium chloride in 12.5% anhydrous sodium 
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sulfate and 0.775% sodium acetate, SIGMA). Then 100 µL of liquid sample (cysteine extracts 

containing MeHg) is analysed in the automatic Hg analyser. THg and MeHg accuracy was 

evaluated with Lobster hepatopancreas reference material (TORT-2) from the National 

Research Council of Canada (Ontario, Canada). The obtained values for Hg (0.332 ± 0.004 mg 

kg-1) and MeHg (0.140 ± 0.009 mg kg-1) were in agreement with the certified values (0.27 ± 

0.06mg kg-1 and 0.152 ± 0.013 mg kg-1, respectively). Detection limits for this analysis can be 

found in Table 2. 

2.2.2.2. Inorganic Arsenic (iAs) 

Inorganic arsenic was quantified by anion exchange HPLC (High Performance Liquid 

Chromatography) (1260 HPLC Agilent Technologies, Waldbronn, Germany) coupled on-line to 

an ICP-MS, according to Rasmussen et al. (2012). Freeze-dried samples were weighed (0.2 - 

0.5 g) into 15 mL polypropylene plastic tubes and 10 mL of extraction solution was added (0.06 

M nitric acid, SCP Science, Courtaboeuf, France, in 3% hydrogen peroxide, Merck). Tubes were 

placed in a water bath (90 ± 3 °C) for 60 ± 3 min. After cooling at room temperature, tubes were 

centrifuged for 10 min and an aliquot of the supernatant was removed for arsenic speciation 

analysis. The supernatants were then filtered through 0.45 µm polytetrafluoroethylene filters in 

Mini-UniPrep HPLC vials (Whatman International, Maidstone, Kent, UK) prior to analysis. 

Aliquots of the extract (5 µL) were injected onto the HPLC–ICP-MS system. The determination 

of iAs followed the standard procedure (EN 16802:2016) issued by the European Committee for 

Standardization (CEN, 2016). Separation of AsV from other As species was obtained following 

Sloth et al. (2005) protocol. The iAs accuracy was evaluated by DORM-4 (Dogfish muscle) from 

the National Research Council of Canada (Ontario, Canada) and ERM-BC211 (rice) from the 

Institute of Reference Materials and Measurements, (Geel, Belgium). ERM-BC211 is certified 

for iAs (0.124 ± 0.011 mg kg-1), whereas DORM-4 is only certified for total As, and not for 

inorganic arsenic, but a target value for iAs has recently been established in a collaborative trial 

at 0.270 ± 0.040 mg kg-1 (Sloth, 2015) and the value obtained in this study (0.277 mg kg-1) was 

in agreement with the collaborative trial results. Detection limits for this analysis can be found in 

Table 2. 

2.2.2.3. Total Arsenic (TAs), Cadmium (Cd), chromium (Cr), copper (Cu) and lead (Pb) 
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Five elements were determined by inductively coupled plasma mass spectrometer (ICP-MS) 

(Agilent 8800 ICP-QQQ-MS, Santa Clara, USA). Subsamples of homogenized freeze-dried 

seafood (0.2 - 0.5 g) were digested in closed vessels in a microwave oven (Multiwave 3000, 

Anton Paar, Graz, Austria) with 4 mL nitric acid (68% w/w) and 2 mL MilliQ water. The digests 

were diluted to a volume of 20 mL and sample aliquots were further diluted 10 times with acids 

to obtain ~2% HNO3 and 1% HCl (c/v) aqueous solutions. ICP-MS equipped with a micromist 

concentric quartz nebulizer and a Scott type double-pass water-cooled spray chamber was run 

in no gas (111Cd, 202Hg, 206Pb), helium (55Mn, 59Co, 65Cu, 66Zn) and oxygen (56->72Fe, 52->68Cr, 75-

>91As, 78->94Se) modes, respectively, with 0.2 s integration time per mass. Typical plasma 

conditions were 1550 W RF power, 15 L min-1 plasma gas, 1.05 L min-1 carrier gas and 0 L min-

1 makeup gas. Cell gas flows were 5 mL min-1 for helium and 30% oxygen with stabilization 

times of 30 s, 10 s and 30 s for helium, no gas, and oxygen modes, respectively. Instrument 

parameters were optimized by autotune in the MassHunter software (Agilent, Santa Clara, 

USA). Internal standards (ISTD; 115In and 209Bi) were added online (5 µg L-1) via a t-piece using 

the peristaltic pump. Blank samples were analysed in the same conditions as samples and were 

subtracted to all results. Analytical accuracy was assessed through the analysis of the CRM 

Dogfish muscle (DORM-4). The values obtained in this study for As (6.9 mg kg-1), Cd (0.310 mg 

kg-1), Cr (2.10 mg kg-1), Cu (16.4 mg kg-1) and Pb (0.328 mg kg-1) were in agreement with 

certified values (6.8 ± 0.64 mg kg-1, 0.306 ± 0.015 mg kg-1, 1.87 ± 0.16 mg kg-1, 15.9 ± 0.9 mg 

kg-1 and 0.416 ± 0.053 mg kg-1, respectively). The detection limits for these analyses can be 

found in Table 2. 

2.2.3. Perfluorinated compounds (PFCs) 

PFCs were analysed according to the method described by Kwadijk et al. (2010). As internal 

standard, 50 ng 13C4-PFOS and 13C4-PFOA in 350 µL acetonitrile were added to 2 g of sample 

in a 15 mL polypropylene tube. Eight mL of acetonitrile (HPLC grade, Promochem) were added 

to the sample, shaken for 30 min. and subsequently centrifuged for 10 min. at 3,220 g. 

Supernatants were transferred to 50 mL polypropylene tubes and the extraction was repeated 

twice. Extracts were dried using sodium sulphate and concentrated to 10 mL using a TurboVap. 

Afterwards, 10 mL of hexane (picograde, Promochem) was added and samples were  

vigorously shaken for 5 min., centrifuged for 5 min. at 3,220 g, and the hexane layer was 
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removed. This procedure was repeated twice and extracts were concentrated to 700 µL. 

Samples were transferred to polypropylene eppendorfs, where 50 mg of ENVIcarb (Supelco) 

were added. Samples were vortexed for 1 min., and centrifuged for 5 min. at 7,270 g. Extracts 

were then transferred to a vial and stored at 4 °C until analysis by liquid-chromatography-ion 

trap tandem mass spectrometry (LC-IT-MS/MS Thermo Finnigan, Waltham, United States). The 

accuracy of the method was confirmed by an internal reference sample (pike perch, 

Wageningen Marine Research) in each series of samples. Results for the internal reference 

sample were all satisfactory (< 2s). Calibration curves ranged from 0.5 – 500 ng mL-1, with an 

R2 ≥ 0.995 for all compounds. The methods intra-day and inter-day repeatability, expressed as 

relative standard deviation (RSD%), was typically <20% for all analytes. The detection limits for 

this analysis can be found in Table 2. 

2.2.4. Polycyclic aromatic hydrocarbons (PAHs) 

Sample preparation for PAH analysis followed the methodology described by De Witte (2014).    

Samples were extracted by accelerated solvent extraction (Dionex, ASE350). Cells of 22 mL 

were filled with dried sample, 2.5 g of florisil (Merck, 0.150–0.250 mm) and diatomaceous earth 

(Sigma Aldrich, Celite 545) and a mixture containing acenaphthene d10, anthracene d10, pyrene 

d10, benzo(a)anthracene d12, benzo(a)pyrene d12 and indeno(123cd)pyrene d12 in iso-octane 

was added as recovery standards. Cells were then extracted at 100 °C with a mixture of hexane 

(Merck, Suprasolv, P98.0%) and acetone (Biosolve, Pesti-S,P99.9%) (3:1). For the extraction, 3 

cycles of 5 min static time each were programmed. The extract was evaporated to 1 mL by a 

Turbovap II evaporator (Zymark) and eluted with 15 mL hexane on a glass column filled with 2 g 

of aluminum oxide (Merck, Aluminium oxide 90 active basic), deactivated with 10% of type 1 

water. A second evaporation step to 1 mL was performed, followed by the extract elution with 

10 mL of hexane on a glass column filled with 1 g of silicon oxide (Merck, Silica gel 60). After 

evaporation and reconstitution to 0.5 mL of iso-octane (Merck, Lichrosolv, P99.0%), samples 

were transferred to vials for analysis by gas chromatography-mass spectrometry (Agilent 7890A 

GC with an Agilent 5975C MS-detector) with chrysene d12 in toluene added to the vial as 

injection standard. The detection limits for this analysis can be found in Table 2. 

2.2.5. Musk fragrances 
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The analytical method used is described in detail by Trabalón et al. (2015), and was based on 

QuEChERS (Quick, Easy, Effective, Rugged and Safe) extraction, followed by gas 

chromatography-ion trap-tandem mass spectrometry determination (GC–IT-MS/MS, Varian, 

Walnut Creek, CA, USA), equipped with a 3800 gas chromatograph, a 4000 ion trap mass 

detector, a 1079 programmable vaporising temperature injector and a CombiPal autosampler 

(CTCAnalytics, Zwigen, Switzerland). Homogenized freeze-dried samples were weighted (0.5 g) 

and mixed in 10 mL of ultrapure water and 10 mL of acetonitrile. Then according to the 

Standard Method EN15662, an extraction salt packet (Scharlab) was added and centrifuged. 

The acetonitrile layer (supernatant) was removed and transferred to a 15 mL centrifuge tube 

containing 2 g of florisil (Sigma-Aldrich) for the dSPE (dispersive solid-phase extraction) clean-

up. Tubes containing each sample were centrifuged and the supernatant was evaporated under 

a gentle stream of nitrogen to a final volume of approximately 1 mL. The internal standard (d15-

MX) was added and the extract was reconstituted to 2 mL with ethylacetate (GC grade purity 

>99.9%, Prolabo). Extracts were filtered with a 0.22 mm PTFE syringe filter and analysed by 

GC–IT-MS/MS. Matrix matched calibration curves were performed for the quantification by 

spiking hake, salmon and mussel samples at different levels, and good linearity was achieved 

(R2 > 0.98). The detection limits were calculated as three times the signal-to-noise ratio (Table 

2). Intra-day and inter-day repeatability were expressed as relative standard deviation (RSD%) 

(n = 5, 50 ng g-1), being lower than 21% for all analytes. 

2.2.6. UV-filters 

Individual standard solutions of UV-filters were prepared in methanol (HPLC grade from Sigma-

Aldrich) at concentrations of 2 mg mL-1, accordingly to Cunha et al. (2017). Briefly, 2 g of freeze-

dried sample were added to 100 µL of BPd10 (IS, 2 mg L-1) into a 40 mL amber glass vial tube. 

Then, 7 mL of deionized water and 10 mL of MeCN were added, vortexed, and placed on a 

wrist action shaker for 10 min. Four g of anhydrous MgSO4 and 1 g of NaCl were added, shake 

vigorously by hand for 5 min. and centrifuged at 4,736 g for 3 min. MeCN extract were 

transferred (3 mL) to a 20 mL vial tube, diluted with 7 mL of deionized water and then 4 mL of 

hexane:tertbutylmethylether (3:1 v/v) was added. Afterwards, it was gently shaken by hand for 

30 s and centrifuged at 4,736 g for 1 min. to remove the organic phase, and then 4 mL of 

hexane:benzene (3:1 v/v) was added. For fish samples, the organic phases were combined and 
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evaporated to dryness using a gentle nitrogen stream at room temperature. In contrast for 

mussel samples the organic phases were combined with 200 mg of Z-Sep+, vortexed during 1 

min., centrifuged at 4,736 g for 3 min., and the top layer was evaporated to dryness using a 

gentle nitrogen stream at room temperature. Finally, analytes were silylated, 50 µL of BSTFA 

were added, derivatized during 5 min. in a household microwave (600 W) and injected (1 µL of 

the extract) in the GC-MS system. The GC-MS/MS equipment consisted of an Agilent 7890B 

chromatograph (Agilent Technologies, Palo Alto, CA, USA) equipped with 7693 autosampler 

(Agilent Tecnologies) and coupled to a triple quadrupole mass spectrometer Agilent 7000C MS 

(Agilent Technologies). GC separation was performed in a DB-5MS capillary column (30 m x 

0.25 mm I.D., 0.25 µm film thickness; J & W, USA), following Cunha et al. (2017).Mass Hunter 

Quantitative Analysis software (v. B.02.03) (Agilent Technologies) was used for data 

processing. Matrix matched calibration curves were performed for quantification by spiking 

blank extracted mackerel sample at different levels, and good linearity was achieved (R2 > 

0.996). The detection limits were calculated as three times the signal-to-noise ratio (Table 2). 

Intra-day and inter-day repeatability were expressed as relative standard deviation (RSD %) (n 

= 6, 25 ng g-1), being lower than 20% for all analytes. 

 

2.4 Consumers health risk assessment 

Consumers’ risks associated with the ingestion of 150 g of cooked seafood were evaluated 

based on: i) Tolerable weekly intake (TWI) (THg and MeHg, EFSA, 2012; Cd, EFSA, 2011; 

PFOS, EFSA, 2008b), ii) Tolerable daily intake (TDI) (Cr, EFSA 2014a), iii) Tolerable Upper 

Intake Level (UL) (Cu, EFSA, 2015), iv) Benchmark Dose Lower Limit (BMDL10) for BaP 

(benzo(a)pyrene), PAH2 (sum of benzo(a)pyrene, chrysene), PAH4 (sum of benzo(a)pyrene, 

chrysene, benz(a)anthracene, benzo(b)fluoranthene) and PAH8 (sum of benzo(a)anthracene, 

benzo(a)pyrene, benzo(b)fluoranthene, benzo(k)fluoranthene, chrysene, 

dibenzo(a,h)anthracene, indeno(123cd)pyrene, benzo(ghi)perylene), EFSA, 2008a]; and v) 

Benchmark Dose Lower Limit (BMDL01) for iAs (EFSA, 2014b) and Pb (EFSA, 2010). Margins of 

exposure (MOE) were calculated for BMDL10 by dividing this value with the estimates of dietary 

exposure. A MOE of 10,000 or higher is typically considered of low concern for genotoxic 

carcinogenic compounds like PAHs (EFSA, 2005). Based on the available NOAEL (No 
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Observed Adverse Effect Level) values for (PFDoA, Kato et al., 2015), AHTN (ECHA, 2008a), 

HHCB (ECHA, 2018b), and EHS (ECHA, 2017a), TDI and TWI, were calculated by dividing 

NOAEL values by a safety/uncertainty factor (UF) of 100 (accounting for species differences 

and human variability) (Renwick, 2002).  

 

2.5. Statistical analysis 

Data were analysed for normality and variance homoscedasticity using Kolmogorov–Smirnov 

and Levene's tests, respectively. The t-test student for dependent samples was performed to 

test significant differences between contaminants levels in raw and steamed seafood, for each 

compound and seafood species. Whenever data (or transformed data) did not met the normality 

and variance homoscedasticity assumptions, non−parametric Mann–Whitney U test was used. 

Furthermore, differences between species were also analysed by One-way ANOVA, followed by 

Tukey’s post-hoc test for pair wise multiple comparisons. When ANOVA assumptions were not 

met, Kruskal–Wallis test was performed, followed by non-parametric multiple comparison test. 

Statistical analysis was performed at a significance level of 0.05, using the STATISTICA™ 

software (Version 7.0, StatSoft Inc., Tulsa, Oklahoma, USA). 

 

3. Results  

3.2.1. Toxic elements 

From the nine species analysed for THg and MeHg, significantly higher levels (p <0.05) were 

found in steamed samples for Solea sp., O. vulgaris, S. scombrus, L. piscatorius, P. platessa 

and K. pelamis (Fig. 1). Yet, in M. capensis, despite THg levels significantly increased (23%) 

after steaming, MeHg levels significantly decreased (18%). The highest THg and MeHg 

increase (%) in steamed samples were observed in O. vulgaris (47% and 38%, respectively), 

followed by L. piscatorius (30% and 32%, respectively). Significant differences in THg levels 

were also found between species in steamed samples (p < 0.05) according to the following 

order: Solea sp. < P. platessa = S.aurata < S. scombrus < K. pelamis < L. piscatorius = M. 

capensis = M. austalis < O. vulgaris. On the other hand, MeHg levels were significantly different 

(p < 0.05) between species after steaming according to the following order: Solea sp. < S.aurata 
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= S. scombrus = P. platessa < M. capensis = K. pelamis < L. piscatorius = M. austalis < O. 

vulgaris (Fig. 1).  

Concerning other elements, significant differences (p < 0.05) between raw and steamed 

samples were found in M. galloprovincialis (TAs, iAs, Cu, Cd, Cr and Pb), M. edulis (TAs, iAs, 

Cu, Cr and Pb) and C. pagurus (Cd) (Fig. 1). On the one hand, steaming resulted in a strong 

increase (%) of the following elements: iAs (88% in M. edulis and 50% in M. galloprovincialis), 

Cr (69% in M. galloprovincialis) and Pb (60% in M. galloprovincialis). On the other hand, Cr 

levels decreased (28%) in steamed samples of M. edulis. Significant differences (p <0.05) in 

TAs, iAs, Cu, Cd, Cr and Pb levels were observed between species in steamed samples 

accordingly to the following order: M. edulis < M. galloprovincialis < C. pagurus, in TAs and Cd; 

M. galloprovincialis < M. edulis < C. pagurus, in iAs and Cu; M. galloprovincialis < M. edulis  in 

Cr; and M. edulis < M. galloprovincialis in Pb (Fig. 1).  

 

3.2.2. Perfluorinated compounds (PFCs) 

Out of all analysed PFCs, only 5 compounds were detected in raw and steamed samples of K. 

pelamis and P. platessa, i.e. PFUnA, PFDoA, PFTrA, PFTeA and PFOS (Fig. 2). On the other 

hand, PFBA and PFDcA, which were not detected (< LOD) in raw samples, were detected in 

steamed samples of M. edulis and K. pelamis, respectively (Fig. 2). Furthermore, PFDcA, which 

was detected in raw samples of M. edulis, was not detected after steaming (< LOD) (Fig. 2). 

Steaming resulted in significant increase (p <0.05) of PFTrA, PFBA and PFDcA levels, as well 

as a significant decrease (p <0.05) of PFUnA, PFDoA, PFOS and PFDcA levels (Fig. 2). The 

highest decrease (%)was observed for PFDcA (>100% in M. edulis) followed by PFUnA (68%) 

and PFOS (53%). On the contrary, highest decreases (%)were observed for PFBA and PFDcA 

(>100%; M. edulis and K. pelamis, respectively), followed by PFTrA (50%). PFPeA, PFHxA, 

PFHpA, PFOA, PFNA, PFBS, PFHxS, PFHpS, PFDS were not detected (< LOD) in the 

analysed species (i.e. P. platessa, M. australis, M. capensis, K. pelamis and M. edulis). 

Significant differences (p <0.05) in PFOS levels were observed between species (i.e. P. 

platessa < K. pelamis), as well as in PFDcA (i.e. M. edulis < K. pelamis), after steaming (Fig. 2). 

 

3.2.3. Polycyclic aromatic hydrocarbons (PAHs) 
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Out of all analysed PAHs, 14 compounds were detected in raw and steamed M. 

galloprovincialis, M. edulis and C. pagurus (Fig. 3). Acenapthylene (M. galloprovincialis and M. 

edulis) and fluoranthene (C. pagurus), which were detected in raw samples, were not detected 

(< LOD) after steaming (Fig. 3). Conversely, benzo(a)pyrene and dibenzo(ah)anthracene were 

not detected in raw M. edulis, but steamed samples revealed quantifiable levels of these 

compounds (Fig. 3). Steaming resulted in significant increase (p <0.05) of chrysene, 

fluoranthene, benzo(a)pyrene, benzo(e)pyrene, benzo(a)anthracene, benzo(ghi)perylene, 

benzo(b)fluoranthene, benzo(j)fluoranthene, benzo(k)fluoranthene, dibenzo(ah)anthracene and 

indeno(123cd)pyrene levels and in statistical decrease (p <0.05) of fluorine levels (Fig. 3). 

Steaming also resulted in significant increased or decreased (p <0.05) levels of phenanthrene 

and pyrene according to species (Fig. 3). The highest increase (%) after steaming was 

observed for benzo(a)pyrene (> 100%;  M. edulis) and dibenzo(ah)anthracene (>100% and 

77%; M. edulis and M. galloprovincialis, respectively), followed by benzo(e)pyrene, 

benzo(a)anthracene and benzo(j)fluoranthene (75%, 74% and 73%, respectively in M. edulis) 

(Fig. 3). On the other hand, the highest decrease of ratio levels was observed in acenapthylene 

(>100%; M. edulis and M. galloprovincialis) and fluoranthene (>100%; C. pagurus), followed by 

fluorene (52%; M. galloprovincialis) and pyrene (32%; M. edulis). Furthermore, fluorene, 

phenanthrene, chrysene, fluoranthene, pyrene, benzo(a)pyrene, benzo(e)pyrene, 

benzo(a)anthracene, benzo(ghi)perylene, benzo(b)fluoranthene, benzo(j)fluoranthene, 

benzo(k)fluoranthene, dibenzo(ah)anthracene and indeno(123cd)pyrene levels in steamed 

samples were significantly different (p <0.05) between species accordingly to the following 

order: M. galloprovincialis < M. edulis  (fluorene); C. pagurus <  M. edulis  < M. galloprovincialis 

(phenanthrene, chrysene, fluoranthene, benzo(a)fluoranthene, benzo(j)fluoranthene); and M. 

edulis  < M. galloprovincialis (pyrene, benzo(a)pyrene, benzo(e)pyrene, benzo(a)anthracene, 

benzo(ghi)perylene, benzo(k)fluoranthene, dibenzo(ah)anthracene, indeno(123cd)pyrene) (Fig. 

3). 

  

3.2.4. Musk fragrances 

Among musk fragrances, only 3 compounds revealed detectable levels (> LOD) in raw and 

steamed samples of Solea sp., P. platessa, C. pagurus, S. scombrus and M. galloprovincialis, 
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i.e. HHCB, HHCB-Lactone and AHTN (Fig. 4). Moreover, AHTN, DPMI and HHCB-Lactone 

levels, which were not detected (< LOD) in raw samples of M. galloprovincialis and Solea sp., 

were quantified after steaming (Fig. 4). Conversely, DPMI levels were detected in raw samples 

of Solea sp. and M. edulis, but not detected (< LOD) after steaming (Fig. 4). Steaming resulted 

in significantly increased (p <0.05) levels of HHCB (Solea sp., C. pagurus and M. 

galloprovincialis), HHCB-Lactone (S. scombrus) and AHTN (Solea sp., P. platessa and S. 

scombrus), but significantly decreased (p <0.05) HHCB (S. scombrus) and AHTN (C. pagurus) 

levels (Fig. 4). Yet, the highest increase (%) was observed for DPMI (>100%; M. 

galloprovincialis), HHCB-lactone (>100%; Solea sp), AHTN (>100% and 75%; M. 

galloprovincialis and Solea sp., respectively) and HHCB (87% and 60%; M. galloprovincialis and 

Solea sp., respectively) after steaming. On the other hand, the highest decrease 8%) was 

registered for DPMI (>100%) in steamed samples of Solea sp. and M. edulis, followed by HHCB 

and AHTN in steamed samples of S. scombrus (37%) and C. pagurus (21%), respectively (Fig. 

4). Musk fragrances levels in steamed samples were significantly different (p <0.05) between 

species (i.e. HHCB: P. platessa < M. galloprovincialis < Solea sp. < S. scombrus < C. pagurus; 

HHCB-lactone: Solea sp. < S. scombrus; DPMI Solea sp. = M. edulis < M. galloprovincialis; 

AHTN: M. galloprovincialis < P. platessa < S. scombrus = Solea sp. < C. pagurus) (Fig. 4). 

 

3.2.5. UV-filters 

Within UV-filters, only EHS, HS and DHMB presented detectable levels in raw and steamed 

samples of S. scombrus, M. galloprovincialis and L. piscatorius, respectively (Fig. 5). Yet, EHS 

(i.e. S. aurata, S. salar and G. morhua), HS (i.e. S. aurata and S. salar), DHMB (i.e. S. aurata), 

OC (i.e. S. aurata, G. morhua and L. piscatorius) and BP1 (i.e. S. aurata and M. 

galloprovincialis) were quantified in raw samples, but not detected after steaming (< LOD) (Fig. 

5). The opposite trend occurred for EHS (L. piscatorius), HS (S. scombrus and L. piscatorius), 

4-MBC (M. edulis) and DBENZO (S. scombrus) (Fig. 5). Steaming resulted in significantly 

increased (p <0.05) levels of EHS (>100% and 55%) and HS (>100%) in L. piscatorius and S. 

scombrus, as well as 4-MBC (>100%) in M. edulis and DBENZO (>100%) in S. scombrus. 

Significantly decreased (p <0.05) levels were detected for EHS (>100%; S. aurata, S. salar and 

G. morhua), HS (>100%; S. aurata, S. salar and 62%; M. galloprovincialis), DHMB (>100%; S. 
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aurata and 36%; L. piscatorius), OC (>100%; S. aurata; G. morhua and L. piscatorius) and BP1 

(>100%; S. aurata and M. galloprovincialis) (Fig. 5). Also, EHS, HS and DHMB levels in 

steamed samples were significant different (p <0.05) between species by the following order: S. 

aurata = S. salar = G. morhua < S. scombrus < L. piscatorius (EHS); S. aurata = S. salar < L. 

piscatorius = M. galloprovincialis < S. scombrus (HS) and S. aurata < L. piscatorius (DHMB) 

(Fig. 5). 

 

3.3. Consumers health risk assessment 

Based on the available health-based guidance values (HBGVs), the exposure to contaminants 

through the consumption of 150 g seafood day-1 varied according to species and compound 

(Table 3). In general, human exposure to CeCs increased with the consumption of 150 g of 

seafood after steaming. Consumption of O. vulgaris, especially after steaming, increased 

human exposure to MeHg, representing 60% of the tolerable weekly intake (TWI) for adults and 

exceeding TWI for children (i.e. 8 years old). In case of children, higher exposure to MeHg 

increased with the consumption of steamed L. piscatorius and M. australis (66% TWI), as well 

as M. capensis and K. pelamis (51% TWI). Also, the consumption of 150 g of steamed C. 

pagurus brown meat, provided remarkably higher intakes of Cu (62% UL) for both adults and 

children, and Cd exposure increased with the consumption of steamed C. pagurus brown meat, 

reaching intakes of 66% in adults TWI and exceeding children Cd TWI. The consumption of M. 

galloprovincilis after steaming, increased consumer exposure to Pb, exceeding Pb BMDL01 in 

both adults and children. In contrast, intake of M. edulis exceeded BMDL01 values of Pb (in raw 

and steamed samples) and iAs (in steamed samples) only for children. Regarding PAHs, the 

consumption of steamed M. galloprovincialis enabled higher exposure to carcinogenic PAHs, 

where MOE were exceeded for all PAHs in children and in PAH4 and PAH8 for adults. 

Concerning, the other CeCs (PFCs, Musk fragrances and UV-filters), exposure through the 

consumption of 150 g of seafood did not increase with the culinary treatment (steaming), with 

intakes being below 1% of health-based guidance values (HBGVs). 

 

4. Discussion 
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In recent years, there has been a growing research interest to assess the effects of cooking 

procedures on seafood contamination levels. Yet, still limited information is available in what 

concerns CeCs. This study reveals that the concentration of most CeCs generally increases 

after steaming. However, data also point out that the changes induced by cooking practices 

depend on the type of compound and on the seafood species. Increased levels of toxic 

elements after cooking were previously associated with the loss of water, volatilization and 

degradation of lipids, carbohydrates and proteins, resulting in weight loss and consequently in 

increased concentration of contaminants (Ganbi, 2010; Maulvault et al., 2012). Another 

potential explanation for such trend is the higher affinity of some toxic elements to tissue 

proteins, forming stable complexes that do not easily leach out by simple cooking processes, 

such as steaming and boiling (Schmidt et al., 2015). In line with the present study, increases in 

total Hg concentrations were also observed for a diversity of cooking processes in several 

species (Ganbi, 2010; Kalogeropoulos et al., 2012; Maulvault et al., 2012; Perugini et al., 2013; 

Torres-Escribano et al., 2011). For instance, increases in Hg levels were observed in boiled 

fillets of Epinephelus areolatus (Ganbi, 2010), grilled Xiphias gladius, Galeorhinus galeus, 

Sarda sp. and Thunnus sp. (Torres-Escribano et al., 2011), grilled and fried Aphanopus carbo 

(Maulvault et al., 2012), pan-fried and grilled Sardina pilchardus and M. merluccius 

(Kalogeropoulos et al., 2012), and boiled Nephrops norvegicus (Perugini et al., 2013). The iAs 

increase in cooked samples may be explained by the conversion of organic As species into iAs 

during the cooking process (Devesa et al., 2001). Increases in As and iAs levels were also 

reported in bivalves after steaming (Devesa et al., 2001), in sardine, hake and tuna after frying, 

grilling, roasting and boiling (Perelló et al., 2008) and in A. carbo after grilling and frying 

(Maulvault et al., 2012). Concerning Pb, increased levels were also reported in fried sardine, 

hake and tuna, as well as in grilled, roasted and boiled hake (Perelló et al., 2008) and in grilled 

and pan-fried S. pilchardus (Kalogeropoulos et al., 2012). Increases in Cu levels were 

registered in boiled E. areolatus (Ganbi, 2010), in pan-fried S. pilchardus and M. 

galloprovincialis and in grilled and pan-fried M. merluccius (Kalogeropoulos et al., 2012). 

Increases in Cd levels were observed in boiled Mytilus chilensis (Houlbrèque et al., 2011), in 

pan-fried M. merluccius, S. pilchardus and M. galloprovincialis and in grilled S. pilchardus 

(Kalogeropoulos et al., 2012). At last, increases in Cr levels were recorded in pan-fried M. 
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merluccius, S. pilchardus and M. galloprovincialis, and in grilled M. merluccius (Kalogeropoulos 

et al., 2012).  

On the other hand, decreases in element content were also reported in our study (e.g. MeHg in 

steamed M. capensis and Cr in steamed M. edulis), and can possibly be associated with 

solubilisation or volatilization, drip loss and degradation of the complex Hg-proteins by protein 

denaturation and/or hydrolysis (Devesa et al., 2001; Ganbi, 2010; Houlbrèque et al., 2011). 

Decreases in Hg and MeHg were previously reported by Perreló et al. (2008) in grilled sardine 

and fried and roasted hake, as well as by Schmidt et al. (2015) in roasted and fried Thunnus 

albacares, Arapaima gigas and Brotula barbata. Higher losses of MeHg can occur with changes 

in Hg-cysteine complexes, once MeHg predominantly binds to proteins (Schmidt et al., 2015). 

Moreover, decreases in Cr levels were also reported in fried, boiled and roasted E. areolatus 

(Ganbi, 2010) and in grilled M. merluccius (Kalogeropoulos et al., 2012). Contrastingly, 

decreases in As levels were previously reported in fried Dicentrarchus labrax (Ersoy et al., 

2006), in Pb levels of baked D. labrax (Ersoy et al., 2006), in Cd and Pb levels of fried and 

grilled tuna (Perelló et al., 2008), in Pb, Cu and Cd levels of fried, boiled and roasted E. 

areolatus (Ganbi, 2010) and in Cd levels of grilled M. merluccius (Kalogeropoulos et al., 2012). 

Although, carnivorous fish species usually have higher MeHg levels, in this study O. vulgaris 

revealed the highest MeHg levels, likely reflecting the feeding habits of this species that are 

based on small pelagic fish species, thus being subjected to the bioaccumulation and 

biomagnification patterns of mercury along the food chain (Maulvault et al., 2015). Within the 

other toxic elements, iAs predominates in seawater and sediments, where filter-feeding 

organisms’, such as mussels, accumulate higher iAs levels (Vandermeersch et al., 2015). On 

the other hand, brown crab meat (particularly the hepatopancreas) presents high levels of Cd 

and Cu, reflecting the Cd detoxifying role of this organ in crustaceans (Barrento et al. 2009). 

The high levels of Cu in brown crab hepatopancreas are likely associated with the accumulation 

of this element required for the respiratory pigment haemocyanin of crustacean’s haemolymph 

(Barrento et al. 2009). 

As for the other CeCs, limited studies assessed the effect of cooking on contamination levels in 

seafood. The decreased PFCs levels registered in the current study (i.e. PFUnA, PFDoA, 

PFDcA and PFOS) were in line with previous studies undertaken in other seafood species and 
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with other culinary treatments. Indeed, Del Gobbo et al. (2008) observed decreases in PFOA, 

PFNA, PFDA, PFUA, PFDoA, PFTeA and PFOS levels in several seafood species (cuttlefish, 

sea squirt, grouper, red snapper, catfish, monkfish, yellow croaker, grey mullet, whitting, skate 

and octopus) after baking, boiling or frying. Also, PFUnA, PFDoA, PFTrA, PFHxS and PFOS 

levels decreased in common carp after boiling and frying (Bhavsar et al., 2014). Like toxic 

elements, PFCs have higher affinity for tissue proteins and, therefore, losses are likely due to 

leaching into the cooking media caused by the disruption of PFCs aggregation to proteins (Del 

Gobbo et al., 2008). Nonetheless, increases in PFCs (i.e. PFDA, PFUnA, PFDoA, PFBS and 

PFOS) levels were also reported in several fried and grilled seafood species (M. 

galloprovincialis, Parapenaeus longirostris, Loligo vulgaris, Spicara smaris, Atherina boyeri, S. 

pilchardus, Engraulis encrasicolus and Boops boops; Vassiliadou et al. 2015), as well as PFOS 

levels in baked, boiled and fried chinook salmon, lake trout and walleye (Bhavsar et al., 2014). 

Such increase of PFCs levels in cooked seafood could be related with mass loss through 

evaporation during the cooking procedures (Vassíliadou et al., 2015). As far as PAHs are 

concerned, it is important to highlight the general increase in levels of eight PAH compounds 

considered as carcinogenic for humans (benzo[a]anthracene, benzo[a]pyrene, 

benzo[b]fluoranthene, benzo[k]fluoranthene, chrysene, dibenzo[a,h]anthracene, indeno[1,2,3-

c,d]pyrene and benzo[ghi]perylene) in the current study. It is known, that PAHs occur as a result 

of the incomplete combustion or pyrolysis of organic materials and their presence in seafood 

are mainly associated with atmospheric contamination, industrial food processing and even with 

home cooking practices, especially grilling/barbecuing, roasting and smoking (EFSA, 2008). 

Moreover, PAHs are lipophilic, have low aqueous solubility, and are mainly accumulated in lipid 

tissues, thus higher levels are generally found in seafood with higher fat content (Storelli et al., 

2003). Increases of PAHs (i.e. fluoranthene, pyrene, benzo(a)anthracene, chrysene, 

benzo(b)fluoranthene and phenanthrene), levels after cooking have also been reported for fried 

sardine, fried, grilled, boiled and roasted hake and fried and grilled tuna (Perelló et al., 2009). In 

contrast, decreases in PAHs (i.e. phenanthrene, fluoranthene, benzo(a)anthracene, crysene 

and pyrene) were previously reported in grilled and fried sardine, grilled, fried and boiled hake, 

and in grilled tuna (Perelló et al., 2009). Like most neutral organic contaminants, decreases may 

be due to moisture loss or evaporation during the cooking procedure (Domingo, 2011). It is also 
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worth mentioning that low molecular weight (LMW, 2–3 aromatic rings) PAHs levels, such as 

acenaphtylene and fluorine, readily evaporate, thus likely explaining the decreased levels after 

steaming (Albers, 2003). Additionally, PAHs levels in aquatic organisms depend on the ability of 

these organisms to metabolize them. While fish have a well-developed detoxification system, 

bivalve mollusks, like mussels, are not able to efficiently metabolize PAHs and, therefore, can 

accumulate high molecular weight (HMW) PAHs (Zelinkova and Wenzl, 2015).  Within personal 

care products (PCPs), there is a raising concern about the potential toxicological effects of 

musk fragrances and UV-filters for consumers. In the current study, steaming increased most 

musk fragrances concentration (e.g. HHCB-lactone), whereas the opposite trend was observed 

for UV-filters (e.g. DHMB, OC, BP1). Despite the presence of UV-filters and musk fragrances 

has been previously reported in seafood (Cunha et al., 2015; Trabalón et al., 2015), limited 

information concerning the effect of cooking is currently available. Like other lipophilic 

compounds (e.g. PAHs and PCBs), changes in musk fragrances and UV-filters contents after 

cooking could be due to chemical changes promoted by heat exposure during steaming (Alves 

et al., 2017). Within compounds, differences may be explained by their physico-chemical 

properties (e.g. water solubility, vapor pressure and polarity). Also, isomerization of UV-filters 

can occur and both isomers and enantiomers (optical isomers) may differ in biological behavior 

during the cooking procedure (Gago-Ferrero et al., 2010). Increases and decreases in musk 

fragrances and UV-filters, may also be the result of reconversion after thermal treatment to 

parent compounds (McEneff et al., 2013) or into metabolites, e.g. degradation of HHCB into 

HHCB-Lactone (Cunha et al., 2015).  

Organic contaminants with higher log Kow (n-octanol/water partition coefficient), such as PAHs 

(Kow = 3.94 – 6.68; ECHA, 2009), UV-filters (Kow = 3.93 – 6.16; Kotnik et al., 2014; Rodil et al. 

2009) and musk fragrances (Kow = 4.0 – 5.9; ECHA, 2008a, 2008b) are hydrophobic and 

lipophilic, thus being associated with fatty tissues. In this context, cooking processes promoting 

the reduction of fat are likely to decrease the levels of these contaminants (Domingo, 2011). 

Conversely, toxic elements and PFCs are generally associated with protein tissues, therefore, 

being less affected by mild cooking procedures, such as steaming (Bhavsar et al., 2014). Yet, in 

our study, the results for both toxic elements and PFCs, as well as for organic contaminants, do 

not seem to follow this trend. This could be due to the distinct characteristics of the analysed 
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seafood species and contaminants (Bhavsar et al., 2014).  Another reason for the differences 

observed from previous studies may be due to the different cooking procedures assessed. Also, 

chemicals with very high log Kow values (i.e. > 4.5) may potentially bioconcentrate in living 

organisms, thus explaining the differences in contaminants concentration among species 

(ECHA, 2017b). Previous studies demonstrated that steaming not only reduce the moisture 

content, but also increase the relative ratio of protein and polar lipid fractions (Bhavsar et al., 

2014; Castro-González et al., 2014), which can explain the increase of most CeCs after 

steaming.   

In terms of risk assessment of consumers’ exposure to CeCs in steamed seafood, the current 

results reveal that steaming generally increased contaminants levels, resulting in a higher risk of 

contaminant exposure to seafood consumers, especially when the observed levels were close 

to toxicity levels or toxicological safety thresholds. Currently, TWI, TDI, UL and BMDL01 are 

established for most toxic elements. Despite the general increase observed in toxic elements 

levels during cooking procedures, in the present study they were overall below the toxicological 

safety thresholds established by EFSA. Yet, increased exposure to MeHg was registered 

through the consumption of steamed O. vulgaris, as well as to iAs levels in steamed M. edulis, 

and Cu and Cd levels in C. pagurus brown meat, which may represent a risk for European 

consumers, particularly children. Moreover, potential adverse effects of Pb, including 

developmental neurotoxicity in children and nephrotoxicity in adults (EFSA, 2010), through the 

consumption of steamed mussels cannot be excluded, once the estimated dietary intakes 

exceeds the BMDL01 intake values for both adults (M. galloprovincialis) and children (M. 

galloprovincialis and M. edulis). So far, EFSA (2008a) has also set maximum levels for one 

carcinogenic PAH individually (BaP) and for the combination of carcinogenic PAHs (PAH2, 

PAH4 and PAH8). The general increase in PAHs levels in steamed M. galloprovincialis, resulted 

in MOEs below 10,000 for both adults (i.e. PAH4 and PAH8) and children (i.e. BaP, PAH2, 

PAH4, PAH8), which indicates the possibility that a carcinogenetic effect cannot be excluded on 

some consumers (EFSA, 2008a). It should be emphasized that despite in general, cooking 

procedures tend to increase contaminants concentration in seafood, contaminants’ 

bioaccessibility generally decreases contaminant levels likely absorbed, thus reducing risks to 

consumers (Alves et al., 2017; Amiard et al., 2008). To sum up, the general increase of CeCs 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

23 

 

levels in seafood after steaming may exacerbate health risks for adults and children. Indeed, the 

consumption of steamed octopus, brown crab and mussels lead to a higher human exposure to 

toxic elements (i.e. MeHg, iAs, Cu, Cd and Pb) and carcinogenic PAHs (i.e. BaP, PAH2, PAH4, 

PAH8), for which reference values are available.  

 

5. Conclusions 

The present study provides new insights into the effect of steaming on seafood CeCs levels, 

highlighting the importance to undertake further research on human exposure to these 

contaminants through seafood consumption, including the effect of cooking processes. To the 

authors’ knowledge, the effect of cooking is assessed for the first time integrating a range of 

CeCs and the potential risks associated with seafood consumption. Results clearly indicate that 

steaming can indeed affect the levels of most CeCs in seafood products, though strongly 

varying according to the chemical properties of each contaminant, seafood species and cooking 

procedure. Steaming resulted in significant increases of most toxic elements, PAHs and musk 

fragrances, as well as significant decreases in most PFCs and UV-filters. Considering the 

scarcity of data related with the cooking effect on CeCs levels, these results also evidence the 

overall increased levels of musk fragrances and decreased levels of UV-filters after steaming.  

Based on the currently available recommendations set for some toxic elements and PAHs, the 

increase of contaminant levels in seafood after steaming indicates that adverse health effects 

can never be excluded, regardless of contaminant. Given the fact that seafood is mainly 

consumed after cooking, it is strongly recommended to include a heating step (or heating factor) 

in monitoring and risk assessment studies. Moreover, to enhance seafood consumers’ 

confidence, further studies should be undertaken covering a diversity of CeCs from distinct 

chemical groups, integrating the most consumed seafood species and the different regional 

culinary habits (e.g. frying, grilling, roasting and boiling), as well as contaminants 

bioaccessibility and bioavailability. Such information will allow to have more realistic data 

concerning CeCs levels in seafood for consumers exposure assessment, enabling food safety 

authorities to adjust the HBGVs of contaminants in seafood products, and to provide more 

reliable recommendations (taking into account both risks and benefits) associated with seafood 

consumption.  
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Table 1. Seafood species used to assess the effect of culinary processing in contaminants of emerging concern (CeCs) levels. 

Species Origin Market country N 
Total length 

(mm) 
Weight (g) 

Moisture (%) Contaminants analysed                                                                              
(raw vs cooked) raw cooked 

Gadus morhua North Sea Denmark 25 780 - 870 4500 - 6000 81.0 75.7 UV-filters 

Katsuwonus pelamis Azores Portugal 25 n.a. 235 - 139a 67.6 56.2 Hg, MeHg;  PFCs  

Lophius piscatorius Atlantic Ocean Portugal 25 570 - 590 3365 - 3448 82.4 77.2 Hg, MeHg; UV-filters 

Merluccius australis South America Portugal 25 n.a. 2500 - 3500 74.7 67.1 Hg, MeHg;  PFCs  

Merluccius capensis South Africa Portugal 25 n.a. 2400 - 3000 78.9 75.0 Hg, MeHg;  PFCs  

Pleuronectes platessa Channel Belgium 25 330 - 370 332 - 555 78.2 71.4 Hg, MeHg; Musk fragrances; PFCs  

Salmo salar Farmed (DanSalmon) Denmark 25 520 - 560 1480 - 1678 59.3 63.1 UV-filters 

Sparus aurata Farmed  Italy 25 260 - 310 381 - 526 72.4 70.1 Hg, MeHg; UV-filters 

Scomber scombrus 
Atlantic Ocean Spain 25 250 – 320  70.2 65.0 Hg, MeHg; UV-filters 

Goro Italy 25 189 – 285 48 – 269  75.2 72.5 UV-filter (EHS); Musk fragrances 

Solea sp. Goro Italy 25 215 - 250 97 - 159 77.8 72.4 Hg, MeHg; Musk fragrances 

Octopus vulgaris Mediterranean Spain 25 350 - 440 
 

80.1 72.7 Hg, MeHg 

Cancer pagurus North Sea The Netherlands 25 153 - 205 546 - 1440 60.5 59.2 toxic elements; UV-filters; Musk fragrances; PAHs 

Mytilus edulis 
North Sea The Netherlands 50 44 - 68 5.9 - 18.5b 79.2 77.0 iAs, As; Musk fragrances 

France France 50 31 - 50 2.6 - 9.9b 75.3 70.2 Hg, MeHg, Cd, Cu, Cr, Pb; UV-filters; Musk fragrances; PAHs; PFCs 

Mytilus galloprovincialis 
Goro Italy 50 42 - 62 6.0 - 19.9 82.1 76.6 Musk fragrances 

Farmed (Atlantic Ocean) Spain 50 49 - 74 2 - 11b 85.3 80.7 As, iAs, Cd, Cu, Cr, Pb; UV-filters; PAHs 

total length (mm) and total weight (g), range minimum and maximum; moisture, average values; N, number of specimens; n.a, data not available; a slice weight;  b flesh weight; PFCs, perfluorinated 
compounds; PAHs, polycyclic aromatic hydrocarbons 
 
Table 2. Contaminant limit of detection (LOD, µg kg-1 w.w.) and limit of quantification (LOQ, µg kg-1 w.w.) of the CeCs analysed for steamed samples 

LOD (µg kg -1 w.w.) LOQ (µg kg -1 w.w.) 
Element s     

Hg & MeHg 0.5 ‒ 2  1 ‒ 4 
As & iAs <0.002 <0.006 

Cd 0.03 0.10 
Cu 0.04 0.12 
Cr 0.07 0.21 
Pb 0.04 0.12 

PFCs <0.01 <0.04 
PAHs 0.01 ‒ 0.23 0.15 ‒ 0.47 

UV-filters  0.30 ‒ 1.52 1 ‒ 5 
Musks*  0.30 ‒ 3.00 (0.40 ‒ 4.00) 2.00 ‒ 11.00 (2.00 ‒ 12.00) 

*Musk fragrances values for fish matrix and in parentheses for mussels’ matrix  
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Percentages were calculated according to the HBGVs set and considering an adult average body weight (bw) of 75 kg and in parenthesis an 8 years old children of 35 Kg. Tolerable weekly intake (TWI), Benchmark Lower 
Limit (BMDL), Tolerable Upper Intake Level (UL), Tolerable Daily Intake (TDI). Toxic elements: Hg (TWI) = 4 µg.kg-1 of individual bw, MeHg (TWI) = 1.3 µg.kg-1 of individual bw, iAs (BMDL01) = 0.3 µg.kg-1 of individual bw, Cu 
(UL) = 5mg.day-1, Cd (TWI) = 2.5 µg.kg-1 of individual bw, Cr (TDI) = 300 µg.kg-1 of individual bw and Pb (BMDL10) = 0.63 µg.kg-1 of individual bw for adults (chronic kidney disease) and Pb (BMDL01) = 0.5 µg.kg-1 of individual 
bw for children (developmental neurotoxicity). PFCs: PFDoA (TWI) = 7 µg.kg-1 bw, PFOS (TWI) = 1.05 µg.kg-1 bw. PAHs: BaP (BMDL10) = 0.07 mg.kg-1 bw, PAH2 (BMDL10) = 0.17 mg.kg-1 bw, PAH4 (BMDL10) = 0.34 mg.kg-1 
bw, PAH8 (BMDL10) = 0.49 mg.kg-1 bw. Musks: HHCB (TWI) = 3500 µg.kg-1 bw, AHTN (TWI) = 350 µg.kg-1 bw. UV-filters: EHS (TWI) = 1750 µg.kg-1 bw. BaP: benzo[a]pyrene; PAH2: benzo[a]pyrene, chrysene; PAH4: 
benzo[a]pyrene, chrysene, benz[a]anthracene, benzo[b]fluoranthene; PAH8: benzo[a]anthracene, benzo[a]pyrene, benzo[b]fluoranthene, benzo[k]fluoranthene, chrysene, dibenzo[a,h]anthracene, indeno[1,2,3-c,d]pyrene, 
benzo[ghi]perylene. MOE (margin of exposure) was calculated by dividing the BMDL10 by the mean estimated dietary intake levels. >MOE indicates that the calculated MOE means increased human exposure to 
contaminants 

Table 3. Percentage of the health-based guidance values (HBGVs) established for CeCs, considering the consumption of a portion size of 150 g of seafood.  

  Solea sp. Sparus aurata 
Octopus 
vulgaris 

Scomber 
scombrus 

Lophius 
piscatorius 

Pleuronectes 
platessa 

Merluccius 
australis 

Merluccius 
capensis 

Katsuwonus 
pelamis Cancer pagurus 

Mytilus 
galloprovincialis Mytilus edulis 

  raw cooked raw cooked raw cooked raw cooked raw cooked raw cooked raw cooked raw cooked raw cooked raw cooked raw cooked raw cooked 

Toxic elements 

Hg 2 (5) 3 (6) 7 (13) 7 (13) 
20 

(40) 30 (59) 8 (16) 10 (20) 
11 

(22) 15 (29) 5 (10) 7 (13) 
15 

(31) 15 (31) 
13 

(25) 16 (31) 
10 

(20) 12 (24) - - - - - - 

MeHg 4 (9) 5 (10) 
14 

(28) 14 (28) 
44 

(88) 
60 

(>TWI) 
13 

(26) 16 (33) 
25 

(50) 33 (66) 
11 

(22) 14 (28) 
36 

(71) 33 (66) 
31 

(62) 25 (51) 
21 

(41) 26 (51) - - - - - - 

iAs - - - - - - - - - - - - - - - - - - 20 (39) 20 (41) 15 (29) 22 (44) 40 (80) 
75 

(>BMDL01) 

Cu - - - - - - - - - - - - - - - - - - 67 62 3 4 4 5 

Cd - - - - - - - - - - - - - - - - - - 
61 

(>TWI) 
66 

(>TWI) 14 (28) 17 (33) 7 (13) 7 (15) 

Cr - - - - - - - - - - - - - - - - - - - - 0.1 (0.2) 0.2 (0.4) 0.5 (1.1) 0.4 (0.8) 

Pb - - - - - - - - - - - - - - - - - - - - 
65 

(>BMDL01) >BMDL01 
60 

(>BMDL01) 
67 

(>BMDL01) 

PFCs 

PFDoA - - - - - - - - - - - - - - - - 
0.1 

(0.2) 
0.1 

(0.2) - - - - - - 

PFOS - - - - - - - - - - 
0.1 

(0.1) 
0.1 

(0.1) - - - - 
0.1 

(0.3) 
0.1 

(0.1) - - - - - - 

PAHs 

BaP - - - - - - - - - - - - - - - - - - - - 37 (73) 
58 

(>MOE) - - 

PAH2 - - - - - - - - - - - - - - - - - - 2 (5) 3 (5) 71 (>MOE) 
99 

(>MOE) 6 (12) 8 (16) 

PAH4 - - - - - - - - - - - - - - - - - - 2 (3) 2 (4) 81 (>MOE) >MOE 8 (16) 13 (26) 

PAH8 - - - - - - - - - - - - - - - - - - - - 79 (>MOE) >MOE 9 (18) 13 (27) 

Musks 

HHCB 
0.0 

(0.0) 
0.0 

(0.0) - - - - 
0.0 

(0.0) 
0.0 

(0.0) - - 
0.0 

(0.0) 
0.0 

(0.0) - - - - - - 
0.0 

(0.0) 
0.0 

(0.0) - - - - 

AHTN 
0.0 

(0.0) 
0.0 

(0.0) - - - - 
0.0 

(0.0) 
0.0 

(0.0) - - 
0.0 

(0.0) 
0.0 

(0.0) - - - - - - 
0.0 

(0.0) 
0.0 

(0.0) - 0.0 (0.0) - - 

UV-filters 
EHS 

- - 
0.0 

(0.0) - - - 
0.0 

(0.0) 
0.0 

(0.0) - 
0.0 

(0.0) - - - - - - - - - - - - - - 
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Fig. 1. Toxic elements content content (mg kg-1 wet weight) obtained in raw and steamed seafood 
samples. THg (Total mercury); MeHg (Methyl mercury); TAs (Total arsenic); iAs (Inorganic arsenic); Cu 
(Copper); Cd (Cadmium); Cr (Chromium); Pb (Lead), and percentages of element content increase (+) and 
decrease (-) upon steaming. Results are expressed as mean ± standard deviation. Asterisk indicates 
significant differences (p < 0.05) between raw and steamed samples. Different letters (capital letters for 
steamed; small letters for raw) represent significant differences of element contents between species (p < 
0.05).  

Fig. 2. Perfluorinated compounds (PFCs) content (µg/kg wet weight) obtained in raw and steamed seafood 
samples. PFUnA (Perfluorundecanoate); PFDoA (Perfluorododecanoate); PFTrA (Perfluorotridecanoate); 
PFTeA (Perfluorotetradecanoate), PFOS (Perfluorooctane sulfonate) PFBA (Perfluorobutanoate); PFDcA 
(Perfluorodecanoate), and percentages of PFCs content increase (+) and decrease (-) upon steaming. 
Results are expressed as mean ± standard deviation. Asterisk indicates significant differences (p < 0.05) 
between raw and steamed samples. Different letters (capital letters for steamed; small letters for raw) 
represent significant differences of PFCs contents between species (p < 0.05). 

Fig. 3. Polycyclic aromatic hydrocarbons (PAH) content (µg/kg wet weight) obtained in raw and steamed 
seafood samples and percentages of PAHs content increase (+) and decrease (-) upon steaming. Results 
are expressed as mean ± standard deviation. Asterisk indicates significant differences (p < 0.05) between 
raw and steamed samples. Different letters (capital letters for steamed; small letters for raw) represent 
significant differences of PAHs contents between species (p < 0.05). 

Fig. 4. Musk fragrances content (µg/kg wet weight) obtained in raw and steamed seafood samples. DPMI 
(6,7-dihydro-1,1,2,3,3-pentamethyl-4(5H)-indanone); AHTN (7-acetyl-1,1,3,4,4,6-hexamethyl-1,2,3,4-
tetrahydronaphthalene); HCCB (1,3,4,6,7,8-hexahydro-4,6,6,7,8,8-hexamethylcyclopenta-(g)-2-
benzopyran); HHCB-lactone (1,3,4,6,7,8-hexahydro-4,6,6,7,8,8-hexamethylcyclopenta-(g)-2-benzopyran-
1-one), and percentages of musk fragrances content increase (+) and decrease (-) upon steaming. Results 
are expressed as mean ± standard deviation. Asterisk indicates significant differences (p < 0.05) between 
raw and steamed samples. Different letters (capital letters for steamed; small letters for raw) represent 
significant differences of musk fragrances contents between species (p < 0.05). 

Fig. 5. UV-filters content (µg/kg wet weight) obtained in raw and steamed seafood samples. EHS (2-
Ethylhexyl salicylate); HS (3,3,5-Trimethylcyclohexylsalicylate);  DHMB (2,2-Dihydroxy-4,4-
dimethoxybenzophenone); OC (Octocrylene); BP1 (Benzophenone 1); 4-MBC (3-(4-
Methylbenzylidene)camphor); DBENZO (Hexyl 2-[4-(diethylamino)-2-hydroxybenzoyl]benzoate), and 
percentages of UV-filters content increase (+) and decrease (-) upon steaming. Results are expressed as 
mean ± standard deviation. Asterisk indicates significant differences (p < 0.05) between raw and steamed 
samples. Different letters (capital letters for steamed; small letters for raw) represent significant differences 
of UV-filters contents between species (p < 0.05). 
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Highlights: 

• CeCs levels strongly varied according to the contaminant and seafood species  

• Most toxic elements, PAHs and musk fragrances levels increased after steaming 

• Most PFCs and UV-filters levels decreased after steaming 

• Adverse health effects can never be excluded, regardless of contaminants 

concentration 

 


