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H I G H L I G H T S

• Energy Flexibility is defined as a dynamic function suitable for control.

• This definition leads to important and useful characteristics which are discussed.

• Furthermore, it defines a Flexibility Index both on individual and aggregated level.

• Based on this index a standardized method for labelling can be deduced.

A R T I C L E I N F O
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A B S T R A C T

The large penetration rate of renewable energy sources leads to challenges in planning and controlling the
energy production, transmission, and distribution in power systems. A potential solution is found in a paradigm
shift from traditional supply control to demand control. To address such changes, a first step lays in a formal and
robust characterization of the energy flexibility on the demand side. The most common way to characterize the
energy flexibility is by considering it as a static function at every time instant. The validity of this approach is
questionable because energy-based systems are never at steady-state. Therefore, in this paper, a novel metho-
dology to characterize the energy flexibility as a dynamic function is proposed, which is titled as the Flexibility
Function. The Flexibility Function brings new possibilities for enabling the grid operators or other operators to
control the demand through the use of penalty signals (e.g., price, CO2, etc.). For instance, CO2-based controllers
can be used to accelerate the transition to a fossil-free society. Contrary to previous static approaches to quantify
Energy Flexibility, the dynamic nature of the Flexibility Function enables a Flexibility Index, which describes to
which extent a building is able to respond to the grid’s need for flexibility. In order to validate the proposed
methodologies, a case study is presented, demonstrating how different Flexibility Functions enable the utiliza-
tion of the flexibility in different types of buildings, which are integrated with renewable energies.

1. Introduction

The sustainable transition to a fossil-free energy system with a high
penetration of energy conversion technologies based on fluctuating
renewable energy resources, like wind and solar, calls for a paradigm
shift in power systems [1,2]. Traditionally, power systems have been
designed with centrally-situated large power generation units that are
operated to meet the demand. However, to support the transition to a
renewable energy system with intermittent and fluctuating power
generation, a change is commonly suggested, where demand is adjusted

to the available generated power [3,4]. Moreover, renewable energy
generation is often locally situated, changing the present system from a
unidirectional centralized system towards a bi-directional decentralized
system with smaller units and multiple prosumers [5]. Such disruptive
changes imply increased utilization of advanced control systems to
enable flexible demand through demand response technologies and
proper system integration [6]. The flexibility potential is already pre-
sent (e.g., through heat storage [7]), and is further enhanced by ad-
vances and increased utilization of batteries [8]. Today, the use of
model predictive control in buildings is seen as a strong opportunity to
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minimize costs, while still meeting the comfort requirements [9]. This
control can be done either centralized by e.g., a grid operator (direct
control), or decentralized by each building owner [10]. In this paper,
the focus is on the latter type. The strategies used for defining the op-
timal controller can take a variety of parameters into account. For
buildings the focus can be on energy efficiency, CO2 efficiency, or
minimizing the total cost [11], where trade-offs arise as a part of se-
lecting the strategy. For example, a controller that is energy-efficient is
typically not price-optimal given the energy markets and the energy-
related taxes that exist today [12].

The building sector plays a key role in the future smart energy
system as buildings account for approximately 40% of the global energy
consumption [13]. Flexible buildings can provide grid services and
thereby accelerate the transition to a low carbon energy system. The
potential for using a building for demand response is defined as its
energy flexibility [14]. The buildings’ ability to provide energy flex-
ibility is influenced by several factors [15]: (1) its physical character-
istics such as thermal mass, insulation, and architectural layout, (2) its
technologies such as ventilation, heating, and storage equipment, (3) its
control system that enables user interactions; the possibility to respond
and react to external signals such as electricity price or CO2 factors, and
(4) the occupants’ behaviour and comfort requirements.

The energy flexibility potential can be found either by building si-
mulation tools, i.e., deductively, or by use of experimental data, i.e.,
inductively by statistical time series analysis. Similar to a prediction of
the energy consumption of a building, predicting the energy flexibility
requires detailed dynamic modeling of a building’s energy systems,
including technical constraints, occupancy behaviour, and boundary
conditions; see e.g., [16–18]. Using experimental data for estimating
the energy flexibility of households with a price-responsive load was
first suggested as a part of the FlexPower project [19]. However, the
concept of controlling the energy balance in power systems using prices
is not new, since it was first presented in [20]. In [21], the authors
suggested the use of time series analysis tools to quantify the flexibility
of buildings as a response to time-varying prices for the electricity using
data from the Olympic Peninsula Project [22]. Similarly, in [23], a
method based on inverse optimization was used to estimate the flex-
ibility using real data. It was shown by [21] how the variations in pe-
nalties could be used to shift the load from peak hours to off-peak
hours. The authors in [6,12] went a step further and demonstrated that
the frequency and voltage in power grids could also be controlled by
this method. However, they failed to specify which systems (e.g.,
buildings, districts, pools, etc.) are suitable for this approach.

Characterizing energy flexibility in a structural way is challenging
as it involves many aspects [24]. A characterization of the energy
flexibility and structural thermal energy storage is made in [25]. Here,
the authors propose three characteristics: (1) available storage capacity,
(2) storage efficiency, and (3) power shifting capability that reflects the
relation between the aspects of power, duration and comfort con-
straints. Authors in [26], on the other hand, investigate the flexibility of
a heat pump pool, and propose some characteristics; one example being
the time until the electricity has returned to the baseline load. The
drawback of the characterization methods in [25,26] is that they focus
on specific characteristic numbers independently of each other. Fur-
thermore, communicating the values of all these characteristics is
complicated, and thus, there is a need for a simplified characterization
that can take the dynamics of the system into account. The fact that
these methods refer to a baseline load also makes them difficult to use
in practice, where there is no baseline.

In this paper we propose a method to characterize the energy flex-
ibility as a dynamic function, titled the Flexibility Function (FF). Unlike
the bidding-based approaches that assume constant flexibility as de-
scribed in [27,28], the dynamic nature of the FF enables the description
of energy flexibility transients. Thus, it is useful even when the system
is not in steady state, which is the case whenever energy flexibility has
recently been utilized. The suggested method does not need any

calculation of a baseline load. The FF can be determined either by si-
mulation or by analyzing time series data. In situations where the FF is
based on experimental data, it indirectly considers other factors such as
heating equipment, usage, comfort and controllability. This generic
energy flexibility characterization enables a comparison between sys-
tems with vastly different characteristics (e.g., an office building and a
sewer system). It also enables the computation of the total flexibility
when combining several systems. The suggested methodology for a
dynamic characterization of the flexibility of e.g., a building, is de-
signed such that it can be used for providing the energy system and the
grid with ancillary services. Such services are given a high priority in
the EU Winter Package [29]. In the linear case, the flexibility can be
characterized using impulse response functions, step response func-
tions, frequency response, and transfer functions - see also [30,31].
Consequently, the flexibility can easily be described using different
approaches and characterized either in time or frequency domain. Since
the intermittent energy sources may only partly be predictable, meth-
odologies for energy demand management for dynamic systems under
uncertainty must be established. It will be argued that the suggested
dynamic description of the energy flexibility is designed such that it
facilitates methods for providing grid services such as voltage control,
load balancing, and other ancillary services. In this paper, we will focus
on buildings, but the technology can be used for other types of flexible
responses like waste water treatment plants [32] and supermarket
cooling [33,34].

Based on the FF, a method for calculating a Flexibility Index (FI),
which measures the reaction of a building or cluster of buildings to
penalty signals like CO2 intensity or control signals imposed by the grid,
is also proposed. For instance, a FI of zero indicates that the building
does not react at all, whereas a FI equal to 0.2 denotes that 20% of the
penalty-related cost can be saved due to the smartness and flexibility of
the building. This generic characterization of energy flexibility assumes
that the system under consideration either contains a penalty-aware
controller [6,11,35] or a manual response to variations in penalty sig-
nals like electricity price or CO2 intensity (hereinafter referred as pe-
nalties) as described in [36]. The FI holds the essential information for
particular applications of flexibility, and can be understood and com-
municated without technical insight in energy flexibility.

The paper is structured as follows: In Section 2 the novel idea of a FF
is introduced along with the requirements for using it. Then, in Section
3 three applications of the FF is presented: (1) Quantitative description
of energy flexibility, (2) Computing FIs, (3) Performing ancillary ser-
vices. Next, Section 4 illustrates the concepts in a case study. Finally,
Section 5 is a short summary and outlines plans for the future work.

2. Characterizing flexibility of penalty-aware buildings

This section introduces the novel idea of characterizing energy
flexibility through a dynamic function, the FF, and the prerequisites for
applying it. In this paper, we consider the building level. However, the
methodologies can be applied to any energy-consuming system, e.g., a
sewing system, a group of buildings, or a district. In many cases, it
would actually be more optimal to consider a group of buildings, a
smart district or a smart city, since the large scale offers solutions for
energy production and storage, which may not be economically or
practically suitable in the case of a single building. In fact, the district
heating network in Denmark is a key element for the operation of the
Danish power system that consists of more than 40% fluctuating wind
energy [37].

2.1. Penalty-aware control and smart buildings

The methodology for characterizing energy flexibility presented in
this paper are based on the general assumption that the system pro-
viding the flexibility is smart in a manner that it is able to respond to an
external penalty signal. Penalty signals express the importance of a local
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and temporal adaption of the power consumption. Therefore, in this
context, a smart building is an energy-flexible building, which is
equipped with penalty-aware controllers responding to external penalty
or control signals, as illustrated in Fig. 1. The choice of control meth-
odology for reacting to penalty signals is independent of the char-
acterization of the energy flexibility. However, in this paper, we utilize
an economic model predictive control methodology [6,11,35].

As a typical example, consider a building that needs to be heated
and let the penalty be the energy-price. In this case, the penalty-aware
controller will try to keep the building within thermal comfort
boundaries at the lowest possible cost. This is illustrated in Fig. 2,
where the top plot shows temperature in a building using both a pen-
alty-aware controller that minimizes costs (green, dashed), and a reg-
ular one that minimizes energy usage (red, solid). The middle plot
shows the penalties (black columns) and the heating operation of the
controllers. It is seen that in general the regular controller keeps the
temperature just above the minimum required value. On the other
hand, the penalty-aware controller tends to heat when the penalty is
low, which results in the temperature varying more. The lower plot
shows the accumulated penalty, and as expected, the regular controller
accumulates more penalty than the penalty-aware controller. This
principle of penalty-aware control for diverse flexible systems and for a
variety of penalty signals has been applied in many studies
[12,32,35,38].

Depending on the context of application, e.g., local energy mix,
energy system constraints, or even societal ambitions, different penalty
signals can be constructed to tailor the optimal energy demand. Let us
consider three different penalty signals:

• Real time CO2. If the real time (marginal) CO2 emission related to
the actual electricity production is used as penalty, then, a smart
building will minimize the total carbon emission related to the
power consumption. Hence, the building will be emission efficient.

• Real time price. If a real time price is used as penalty, the objective
is to minimize the total cost. Hence, the building is cost efficient.

• Constant. If a constant penalty is used, then, the controllers will
simply minimize the total energy consumption. The smart building
is, then, energy efficient.

It is clear that smart buildings with controllers with the objective of
minimizing the total emission will in general use more energy, but this
happens at periods with, for instance, a large wind power production.
Thus, the alternative might be to stop some wind turbines.

2.2. The flexibility function

The principles described in this paper can be used for any power-
related flexibility. However, we will consider heating as an important
example of a flexible power load. It is clear that a heating system can be
turned off for some periods (minutes to hours) without any remarkable
consequences on the thermal comfort. As flexibility is a dynamic phe-
nomenon, the relationship between the penalty signal and the response
must be described using a dynamic function. For simplicity, we assume

that the building and the response to the penalty signal can be con-
sidered linear and time-invariant. Furthermore, we assume that the re-
sulting load when exposed to a penalty signal can be separated into two
parts; the load that responds to the penalty, and the non-responsive
load Rt. In this case, the load (i.e., the response) Yt at time t can be
described as

∑= +
=

∞

−Y h λ R ,t
k

k t k t
0 (1)

where {λt} is the penalty signal, and Rt is the non-responsive con-
sumption. Here, it is assumed that the penalty is constant between time
steps. The length of the time steps can vary between a second and whole
days, depending on the problem being solved. In the example illustrated
by Fig. 2, the penalty changes once every hour, and thus, in this case, it
makes sense to let the time steps be equal to one hour. In continuous
time, the convolution sum in Eq. (1) is simply the convolution integral.
In linear systems theory, see e.g., [31], the function {hk} is called the
impulse response function. It reflects the effect of penalty on demand
response after k time-steps. However, it is more appropriate to find the
step response function, since it contains information about important
characteristics of the system related to flexibility, as will be explained in
Section 3.1. Thus, we define the FF as the step response function, i.e., by

Fig. 1. A smart building is able to respond to a penalty or external control
signal.

Fig. 2. Top plot: An example of the temperature in a building controlled by a
penalty-aware controller (green, dashed) and a conventional controller (red,
solid). Both controllers are restricted to stay within the dashed lines. Middle
plot: The black shading gives the penalties, while the green and red lines show
when the two controllers heat, respectively. Bottom plot: These graphs illustrate
the accumulated penalty for each of the controllers. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web
version of this article.)
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finding the expectation at time t when =λ 0k for <k 0 and =λ 1k for
⩾k 0:

∑=
=

FF t h( ) .
k

t

k
0 (2)

Fig. 3 shows the estimated FF of a summer house with an indoor
swimming pool located in Denmark. The swimming pool is being con-
trolled using CO2 intensity in the Danish power grid as penalty signal.
The set-up is described in [39]. It is seen how the energy demand drops
shortly after the penalty increases, since heating of the swimming pool,
in this case, will usually be turned off. After a while, the energy demand
starts increasing, since as time continues, to avoid the temperature
dropping too low, the heating has to be resumed. At some point in time,
the energy demand exceeds the initial level prior to the increase in
penalty to bring the temperature back to the initial state. Later, the
energy demand comes to rest at the energy demand prior to the increase
in penalty. Notice that the response is extremely slow due to occasional
technical issues in the control setup resulting in occasional unrespon-
siveness of the heating system.

In this example the FF is estimated based on time series data con-
sisting of penalties and the penalty responsive load. A similar result was
obtained in [21] for residential buildings. Alternatively, the FF can be
found from first principles by setting up a detailed model of the sys-
tems, its constraints, occupancy behaviour, controllers and boundary
conditions. Such a simulation-based approach has been used in e.g.,
[16–18]. In general, we might need to consider varying coefficient

models where the flexibility depends on external variables like the
ambient air temperature. Varying coefficient models can be written as

∑= +
=

∞

−Y h θ λ R( ) ,t
k

k t k t
0 (3)

where θ is given by the external variables. As an example the ambient
temperature has a large impact on the flexibility, since the heating/
cooling system can only provide flexibility when the respective need is
verified. The relationship can be estimated through e.g., non-para-
metric kernel estimation [40,41]. Using Eq. (2), it is straightforward to
define the FF in the nonlinear and time-varying cases as well. It is also
to be expected that the FF, due to physical changes in e.g., buildings
and electrical grid, changes over time. Thus, the models should also be
adaptive as described in [31,42].

3. Applications of the flexibility function

In this section it is shown how characterizing the FF can be used to
differentiate between different kinds of flexibility. It is, then, described
how the FIs, that quantify usefulness of flexible systems in different
settings, can be computed based on the FF. Lastly, a brief description of
how the FF can be used to perform ancillary services is presented.

3.1. Characterizing the energy flexibility

Most commonly, the time constants constitute the main part of
characterizing the energy flexibility [34,43,44]. Indeed, this is an im-
portant parameter. For instance, the illumination of a room has a very
small time constant, since the full effect of illumination from turning
light-bulbs on or off happens almost immediately. On the contrary, the
heating of a swimming pool, due to its thermal dynamics, has a large
time constant. However, only the information about the time constants
of a system is not sufficient to fully characterize and quantify its energy
flexibility. Again, referring back to the swimming pool, it is not parti-
cularly flexible if the heating equipment is sized in such a way that it
needs to run all the time, since in this case it can never be switched off
to provide flexibility. However, as heating systems are usually sized to
cover the maximum load on the coldest day, the swimming pool has
excess heating power throughout most of the year. This excess heat
pump capacity, then, is able to provide all the heat the swimming pool
needs in a short time span. Thus, the heating time can, to some degree,
be chosen to match when it is most beneficial to do so.

Six characteristics for the FF, termed hereinafter as the Flexibility
Characteristics (FC) as shown in Fig. 4, are identified as follows:

• τ (Time): The delay from adjusting the energy price and seeing an

Fig. 3. The expected change in energy consumption due to an increase in
penalty for an indoor swimming pool. The red line shows the penalty while the
black line shows the expected change in energy consumption. (For interpreta-
tion of the references to colour in this figure legend, the reader is referred to the
web version of this article.)

N
or

m
al

iz
ed

 e
ne

rg
y 

de
m

an
d

N
or

m
al

iz
ed

 e
ne

rg
y 

de
m

an
d

Time

0.
80

0.
90

1.
00

0.
80

0.
90

1.
00

−2 0 1 3 5 7

N
or

m
al

iz
ed

 e
ne

rg
y 

pr
iz

e

Energy demand
Penalty

A

B

τ

α

β

Δ

Fig. 4. Flexibility characteristics.

R.G. Junker et al. Applied Energy 225 (2018) 175–182

178



effect on the energy demand. 0.5 in the example.

• Δ (Power): The maximum change in demand following the penalty
change. 0.2 in the example.

• α (Time): The time it takes from the start in change in demand until
it reaches the lowest level. 0.6 in the example.

• β (Time): The total time of decreased energy demand. 2 in the ex-
ample.

• A (Energy): The total amount of decreased energy demand.

• B (Energy): The total amount of increased energy demand.

These FC describe how feasible control strategies can be con-
structed. For example, Δ has to be larger than the adjustment that one
wants to make, while β has to be greater than the amount of time that
one wants to adjust the demand. If the effect of the control needs to
happen quickly, then, it is important to have a small τ and α. Similarly,
it is of great interest to consider A since it gives how much demand one
can move in total. The size of B is related to the loss in efficiency that
one can expect when utilizing flexibility. These characteristics are
useful for determining what kind of renewable energy sources can be
used to integrate, as shown through a case study in Section 4. The FC
also gives the feasibility of participating in different energy markets.
For example small values of τ and α enable participating in balancing
markets while A is more important for participating in day ahead
markets. However, currently participation in these markets requires
much more than one building. A proposed solution to this problem is to
aggregate buildings in a district or buildings connected to a district
heating network [45]. One of the advantages of this characterization is
that the aggregated flexibility of several buildings is given by esti-
mating the FF from their combined energy usage. Alternatively the
additivity of the FF, allows the aggregated FF to be found by summing
the individual FFs. The FC are readily obtained from the aggregated FF.
This means that the exact same methodology can be used for the in-
dividual buildings and districts of buildings alike. Notice that the time
constants of the individual buildings are not assumed to be equal. In-
deed, a district of buildings can consist of a mix of well-insulated
buildings with large time constants and poorly-insulated buildings with
smaller time constants. If a district of buildings is provided with the
same penalty signal, then the aggregated FF is of interest. In general,
the grid operator requires FFs in the same or higher spatial resolution as
that of the penalty signals. If penalty signals are constant within dis-
tricts of buildings, then, it is the accumulated energy demand and
flexibility that is of interest, and thus it makes sense to estimate the
aggregated FF.

3.2. Flexibility indexes for buildings

This section introduces the concept of a FI, which combines the
penalty signals from Section 2.1 and the building’s FF from Section 2.2.
The motivation for introducing a FI is that it communicates the value of
utilizing the flexibility dependent on its purpose, e.g., cost minimiza-
tion or CO2 minimization. Moreover, while the FC defined in Section
2.2 have clear value for engineers and researchers in a design and
control context, this FI is expected to be easier to interpret for a wider
audience, such as end-users and legislative bodies.

Seen from the building owners’ perspective, their benefit of utilizing
buildings’ flexibility is determined by the cost savings that is achieved
by utilizing it. This leads to the Expected Flexibility Savings Index
(EFSI). On the other hand, from the grid operators’ point of view, their
benefit of utilizing buildings’ flexible resources is to know how much of
their request/need for demand response can be activated. In this case,
the penalty signal could be linked to wind availability, peak load re-
duction, or balancing of the electrical grid, etc., yielding the FI.

The most accurate way to identify a FI is to have two identical
buildings with identical usage behavior; for one performing the control
based on penalties while letting the other be penalty-ignorant. The ratio
between the accumulated penalties would then tell us how large the

relative savings would be. This is, however, not feasible in practice.
Instead, we propose that the FI for buildings can be assessed by simu-
lating its operation by using the FF with both penalty-aware and pen-
alty-ignorant controllers, and comparing the accumulated penalty of
the two. If, for instance, the penalty is the real time electricity cost, then
the index will show how large savings one would be able to achieve.
What the test really shows is how much the smart building (thermal
mass, controllers, etc.) is able to react to the penalty signal.

In summary, two different FIs are suggested. The first index is re-
lated to the actual penalty, and hence to the actual costs. The second
index is based on a reference penalty designed to test certain char-
acteristics. The FIs are:

• Expected Flexibility Savings Index: This index is related to actual costs,
meaning that an EFSI equal to 0.10 implies that the expected savings
for the actual smart building is 10%. A drawback of this definition is
that it depends on the actual level of the penalties, and it might be
difficult to get an EFSI larger than, say, 0.25.

• Flexibility Index: This index is related to reference penalties and these
reference penalties will be designed such that the FI will be able to
take values between zero and one. If, for instance, we are focusing
on a flexibility for peak shaving, then this alternative definition
could lead to a FI equal to 1 if power consumption in the peak
periods is avoided completely.

Both indexes are calculated using the same procedure which is de-
scribed in the following, exemplified by the FI. The FI uses the reference
penalty signal, λ, and consists of the following steps:

1. Let λt be the penalty on the energy consumption at time t.
2. Simulate the control of the building without considering the penalty,

and let ut
0 be the energy consumption at time t.

3. Simulate the control of the building considering the penalty, and let
ut

1 be the energy consumption at time t.
4. The total operational cost of the penalty-ignorant control is given by

= ∑ =C λ ut
N

t t
0

0
0.

5. Similarly the operational cost of the penalty-aware control is given
by = ∑ =C λ ut

N
t t

1
0

1.
6. Then the quantity

= −FI C
C

1
1

0 (4)

gives us the fractional amount of saved weighted cost, and this is the
suggested FI.

If the penalty signal, λ, is the actual cost (like real-time price or
CO2), the calculation procedure leads to the EFSI instead of the FI. The
controller in a smart building must be able to respond to the external
penalty signal. If the controller is unable to do so, then =FI 0. An ex-
ample of the procedure can be seen at the bottom of Fig. 2, where the
accumulated cost is shown. The flexible controller accumulates around
80% of the regular controller cost, and thus for this particular building
and penalty signal =EFSI 0.2. Indeed, it is seen that the ability to es-
timate the long-term expected savings is due to the transient behavior
being included in the FF. Static flexibility representations lack this
quality, which means that the same approach is not applicable for them.

The penalty signal for calculating the FI should be long enough to
include relevant seasonal effects. Most renewable energy resources in-
cludes yearly variations, and to capture this, the time period chosen for
the case study is one year. The penalty signals can be designed as ty-
pical scenarios for e.g., the CO2 variability for the considered area, as
done in Section 4. In Denmark, a typical scenario should be related to
the variability of wind power, and wind might be present or missing for
1–3 days, as shown by Fig. 6. For countries with a lot of solar power, the
scenario should be linked to the truncated harmonic variation of solar
power, and hence the low penalty should be around say 8 h. For
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countries like Norway, with a lot of hydro power, but where the typical
morning and afternoon peak load is covered by fossil sources, the
penalty should be around say 2–3 h. In fact this illustrates that the
suggested concept could be used to create a FI for buildings optimized
for wind power, solar power or optimized for peak shaving for a couple
of hours.

3.3. Ancillary services

Problems related to frequency, voltage, and congestion have his-
torically been solved by the supply side. However, according to [46]
recent increases of e.g., PV integration mean that local demand side
flexibility is required. In this scenario, traditional transactional solu-
tions are ill-suited for the fast activation of flexibility required for
proper grid management and therefore other approaches should be
introduced. For instance, it is suggested by [46] to perform ancillary
services by adjusting the electricity price for the loads causing the
problems. This corresponds to penalty-based control of the load, where
the penalty is chosen as the solution to specific problems. For example
in case of voltage magnitude regulation, a problem formulation could
be

∑⎛

⎝
⎜

⎞

⎠
⎟− + −

=

∞

−f h λ v α λ λargmin ,
λ k

k t k ref t ref
0t

where λt is the penalty at time t v, ref is the nominal voltage and f is a
function mapping the load to voltage. The first term describes the cost
of violating the nominal voltage level, while the second term ensures
that the penalties do not deviate too much from the nominal level, λref .
α determines how much weight is put on each of the objectives. The
coefficients hk, used to determine the load as a function of penalty, are
given by the FF. Thus, the penalty provided for each area is determined
by its FF. Similarly, frequency and congestion problems can be solved
the same way. Another major advantage of this method over the
transactive energy approaches, is that it only needs one-way commu-
nication to send the penalty signals, compared to the two-way com-
munication needed to negotiate prices.

4. Case study

This section demonstrates how different FFs enable the utilization of
flexibility toward integrating various types of renewable energies.
Three theoretical FFs are shown in Fig. 5. For the sake of simplicity
assume that these represent three buildings, having vastly different FC.
Building 1 is able to move the largest amount of energy, while Building
3 is able to move the least. On the other hand, Building 3 is able to
respond faster than the other two. Building 2 is somewhat in the
middle. We can also consider a combination of the buildings, which is
easily as the average of the FFs.

Let us consider, how well each building performs in environments
dominated by different kinds of renewable energy, namely wind, solar,
and hydro power. For wind and solar power, we have used the pro-
duction of 2017 in Denmark to make penalty signals inversely pro-
portional to the amount of produced wind or solar power. Hydro power
can be controlled and thus, it does not experience the same kind of
problems as wind and solar. The problems still experienced are mainly
due to large ramps in demand during the morning and afternoon hours.
Therefore, a penalty signal based on these ramps has been constructed
from the 2017 data obtained from the Norwegian power grid [47].

A period of the penalty signals can be seen in Fig. 6. The daily
variation is seen for the solar penalty, and since the period is during the
winter where the solar power production is large only for short periods
of the day. The wind penalty starts at zero due to the period starting
with windy weather. Then, it changes for a couple of days where ap-
parently the wind power production is small. However, after this
period, we see almost three days of zero penalty, which means that
there were lots of wind. The ramp penalty remains close to zero with
only a few peeks when the ramp in demand was large. This snapshot of
the data is representative of the penalty signals in general, where in
short: wind is dominated by low frequency variation, solar by 24-h
variation, and ramp by few sudden spikes.

Computing the EFSI as described in Section 3.2, Table 1 quantifies
how well each of the buildings’ flexibility is utilized in the integration
of wind power, solar power, and dealing with ramping problems, re-
spectively. It is seen that the EFSI is heavily dependent on the penalty
signal, to the extent that for each penalty signal a different building is
the most flexible. Building 1 is able to make the most of the wind
penalty, since it is the only building that is able to sustain a demand
response on a time scale similar to that which the wind penalty changes
on. For the solar and ramp penalties it does not matter that Building 1 is
able to sustain the demand change for such a long time, since these two
penalties change much more frequently. In fact, the response of
Building 1 is so slow that usually it is not able to react to the changes in
penalty when based on solar or ramp. For these two penalty signals the
faster speed at which Building 2 and 3 can react with is critical. In the

Fig. 5. The Flexibility Function for three different buildings.

Fig. 6. Penalty signals based on wind and solar power production in Denmark
during 2017. Ramp penalty based on Consumption in Norway during the same
period.

Table 1
Expected Flexibility Savings Index (EFSI) for each of the buildings and the
swimming pool based on wind, solar and ramp penalty signals.

Wind (%) Solar (%) Ramp (%)

Building 1 11.8 4.4 6.0
Building 2 3.6 14.5 10.0
Building 3 1.0 5.0 18.4
Combination 5.4 8.0 11.5
Swimming Pool 3.5 2.7 0.6
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end, the solar penalty is slower than the ramp penalty making it better
suited for building 2 that can sustain its response for a while, while the
very fast variations in the ramp penalty can only be captured by the fast
response of Building 3. Due to the linearity of the FF, the combination
of each of the buildings simply obtains FIs equal to the average of the
buildings. The swimming pool obtains low scores due to the technical
issues in the control setup, but is still able to provide some flexibility for
the wind-based penalty scenario.

To get the FI we use simple deterministic reference scenarios that
represent the issues related to ramps and integration of wind and solar
power. Examples of this can be seen in Fig. 7. The wind penalty is
constant for 36 h, alternating between 0 and 1. The sun penalty is equal
to 0 for 8 consequent hours each day and 1 otherwise, while the ramp
penalty is equal to 0 all the time except for two periods of two hours
each, every day, where it is equal to 1. These signals are simple, and
more sophisticated signals can be developed to better represent reality.
However, by repeating these signals and simulating each of the build-
ings’ response, we compute the FI based on these scenarios and obtain
Table 2. Comparing with Table 1, the trend is similar except that the
numbers are approximately 3 to 4 times larger. This means that even
these very simple reference penalty signals are sufficient for testing the
energy flexibility. Furthermore, the reference scenarios indicate how
close the building is to reaching the limit of what is possible for the
given reference scenario. For example, we see that Building 3 achieves a
FI of 71% of the maximum amount of possible energy flexibility when it
comes to the ramp-based penalty.

5. Summary and future work

Planning and control problems experienced in power systems, when
integrating considerable amounts of fluctuating renewable energy re-
sources, call for a paradigm shift to a demand control approach. With
buildings accounting for a considerable amount of global energy con-
sumption, the energy flexibility offered by this sector can be used to
implement required demand response measures. Taking this into con-
sideration, this paper proposes an energy flexibility characterization
methodology based on the presented flexibility function, which

describes the reaction of a specific smart building, or cluster of smart
buildings, to a penalty signal. The dynamic nature of the flexibility
function enables it to be useful even when the system is not in steady
state. Assuming linearity and time-invariance, the flexibility function
contains all information about the relationship between the penalty
signal and the resulting energy demand profile. Several important
features of the flexibility function determine what kind of grid problems
can be solved by the available energy flexibility, as demonstrated by the
presented case study. In particular the flexibility index quantifies the
overall effectiveness of utilizing the referred energy flexibility, in dif-
ferent scenarios.

In addition to the technical and operational applicability of the
methodology, the flexibility characteristics and flexibility index are also
used for labelling of energy flexible systems, such as buildings. This is
an important step forward compared to previous static approaches.
Flexibility labels can be obtained by defining standardized penalty
signals and comfort intervals (for temperature, humidity, etc.). Under
those standardized boundary conditions, results can be used for an
inter-comparison of technologies, buildings or even districts in their
potential energy flexibility. As such, the presented methodology can,
for example, contribute to the development of the smart readiness in-
dicator, which is currently being investigated as an amendment to the
European Energy Performance of Buildings Directive [48] to assess the
level of smartness of buildings.

Within the framework of the International Energy Agencies’ Energy
in Buildings and Communities Annex 67, the proposed energy flexibility
characterization methodology will be further developed and evaluated.
Specifically, more data will be collected to assess the described time
invariance and linearity assumptions. Nevertheless, as shown in Section
2.2, time varying models are a natural extension. The nature of possible
non-linearities will have to be investigated, to decide on appropriate
methods to deal with them.
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