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Predicting Speech Intelligibility based on Fluctuations in Simulated Auditory-Nerve Responses

Johannes Zaar!?), Christoph Scheidiger!, Laurel H. Carney?, and Torsten Dau

l1Hearing Systems group, Department of Electrical Engineering, Technical University of Denmark
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Various speech intelligibility (SI) models have been proposed to predict the  NH reference data:SRT data obtained in 9 Danish NH listeners (Christiansenand Dau, 2012). Speech level: 65 dB SPL. This alternative approach for the back end was inspired by the assumption of across-CF contrast evaluation after modulation analysis in the inferior
ability of normal-hearing (NH) listeners to understand speech in adverse * Hl reference data: SRT data obtained in 13 Danish HI listeners (Christiansen and Dau, 2012). Speech level: 80 dB SPL. colliculus (IC; Carney et al., 2015), see Fig. 7.
listening conditions. However, most current SI models are based on a strongl e : : - . - : . :
simplifiid Tnear simuletien 6F s ey nomdiner eveieny perhen; whigc:: e Speech: Danish five-word sentences from the CLUE corpus (Nielsen and Dau, 2009), spoken by a male talker (F, = 119 Hz). Here, the simulated firing rates were used directly, omitting the spike generation. All fiber types were used (60% HSR, 20% MSR, 20% LSR). The
it ety £l o el citss of hesrns fpeimert o 5, & th’e came * Three additive-noise conditions using the following noise types: modulation filterbank (see Fig. 3) was replaced by one single IC filter (i.e., a modulation bandpass filter) with a center frequency of 125 Hz. The resulting
: , . : . . : rate pattern was segmented into 20-ms time frames k; the across-CF correlation between the noisy-speech and noise-alone representations [sn(k,CF)
time, the models’ decision stages typically interact strongly with the type of 1) SSN: Steady-state speech-shaped noise ) . . ) . . : .
. ) . and n(k,CF)] was obtained in each time frame. Finally, the correlation coefficients r(k) were averaged across time and converted to a distance1—-r,,,.
auditory front-end processing applied. 2)  SAM: Sinusoidally amplitude-modulated speech-shaped noise e
Freq Channel Freq Channel Firing Rate IC filter Segmentation Decision metric Prediction
Jgrgensen et al. (2013) proposed a powerful SI model termed ”"multi-resolution 3) ISTS: International speech test signal (Holube et al., 2010) A g Y [ SN [ A
speech-based Envelope Power Spectrum Model” (mr-sePSM). Using a Harmoni :‘”HHH m““ Fig. 7: Hypothesis | CF=8kHz
modulation filterbank, the mr-sEPSM calculates the signal-to-noise ratio in the v g o n - on vowel coding | Awm St Fig. 8: Structure of
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ES%:;gpal\jl-(lsﬁi '€ )_' t\ivass own tofaccour?c olr spede-f- HEEERMIED LIRS eE The gammatone filterbank and envelope extraction stages of the original mr-sEPSM (Fig. 1) were replaced by the oy | o1 (o0E) y . e N 7,7 model framework.
=i ISTENErS 1IN a Tdrge range ot atostical conditions. peristimulus time histograms (PSTH) obtained from the firing rates of the AN model at 21 CFs (log-spaced between 125 Hz —T ' ' SIN | ANM erm} / Overlop: [across-CF LI
In order to also account for speech intelligibility in hearing-impaired (HI) and 8 kHz). Firing rate Modulation Segmentation  Decision metric  Prediction i G N CF;Z?\:HZ
listeners, the present study attempted to incorporate a non-linear auditory- SN [ anm filterbank — | CF=500Hz J;ﬁﬁliﬁh
nerve (AN) model (Zilany et al., 2014; see Fig. 2) in the framework of the mr- CF=8kHz mnhﬂ]}
1 N 256Hz % . . . o
sEPSM. Two approaches were considered: ~ o 1 A ST [%] NH predictions HI prediction examples
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