Technical University of Denmark

Transgenerational effects of pesticide on vector mosquito Culex pipiens under global warming

Tran, T.; Janssens, L.; Dinh, Khuong Van

Publication date: 2018

Document Version Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):

Tran, T., Janssens, L., & Dinh, K. V. (2018). Transgenerational effects of pesticide on vector mosquito Culex pipiens under global warming. Abstract from SETAC Europe 28th Annual Meeting, Rome, Italy.

DTU Library Technical Information Center of Denmark

General rights

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.

- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

WE330 Transgenerational effects of pesticide on vector mosquito **Culex pipiens under global warming** <u>T. Tran</u>, L. Janssens, KULeuven; K.V. Dinh, DTU Technical University of Denmark; R. Stoks, University of Leuven / Department of Biology. Recent transgenerational studies have showed that some species could acclimate to warming and pesticide separately. Transgenerational plasticity is even being considered as a powerful mechanism to enhance species resilience to projected warming. However, it is unknown how exposure to pesticide under warming in the parental generation will shape the offspring susceptibility to these stressors, specifically in vector species. We studied the transgenerational effects of single and combined exposure to warming (4°C increase) and the pesticide chlorpyrifos on life history traits and antipredator behaviors of the vector mosquito Culex pipiens using a bifactorial transgenerational experiment. Parental exposure to a single stressor, either warming or the pesticide, had negative effects on the offspring: both parental exposure to warming and to the pesticide resulted in an overall lower offspring survival. Parental warming impaired the anti-predator behaviors of the offspring by decreasing the diving proportion and diving time off the offspring. Within both the parental and the offspring generations, warming made the pesticide more toxic in terms of survival. However, this synergism disappeared in the offspring of parents who had been exposed to both stressors simultaneously because in this condition the pesticide was already more lethal at the lower temperature. For anti-predator behaviors, in both generations the two stressors reduced diving time in a synergetic way. In the parental generation, the effect of pesticide were stronger at 20°C than at 24°C. In the offspring generation, this synergetic effect depended on parental temperature. Pesticide induced stronger reduction in diving time at 20°C than at 24°C but only in the offspring of parents exposed to 20°C. Our results indicate that transgenerational effects will not increase the ability of this vector species to deal with pesticides in a warming world. This study highlights the importance of using bifactorial transgenerational experiment to understand the combined impact of pesticide and warming across generations, hence to assess the efficacy of vector control in a warming world.