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Time-Domain Neural Network Receiver for
Nonlinear Frequency Division Multiplexed Systems

Rasmus T. Jones, Simone Gaiarin, Metodi P. Yankov, and Darko Zibar

Abstract—The nonlinear Fourier transform is a new approach
of addressing the capacity limiting Kerr nonlinearities in optical
communication systems. It exploits the property of integrability
of the lossless nonlinear Schrödinger equation and thus incorpo-
rates nonlinearities as an element of the transmission. However,
practical links employing erbium-doped fiber amplifiers include
losses/gains and introduce noise which breaks the integrability of
the nonlinear Schrödinger equation. Although the lossless path
average approximation proposes an integrable model, its impre-
cision still leads to unintended distortions and thus performance
degradation. We propose an alternative receiver for nonlinear
frequency division multiplexing optical communication systems
using techniques from machine learning. It is highly adaptive as
it learns from previously transmitted pulses and thus holds no
assumptions on the system and noise distribution. The detection
method presented is fully applied in time-domain and omits the
nonlinear Fourier transform. The numerical results provide a
benchmark for nonlinear Fourier transform based detection of
high order solitons for fiber links with losses and noise present.

Index Terms—optical fiber communication, coherent commu-
nication, machine learning, (inverse) nonlinear Fourier transform

I. INTRODUCTION

Kerr nonlinearities are limiting the data throughput of coherent
optical communication systems, while the demand for data
driven applications is increasing. The optical fiber research
community is urged for new approaches to overcome the
imminent capacity shortcoming [1]. A promising and emerging
mathematical method, the nonlinear Fourier transform (NFT),
provides an entirely new way of transmitting data in optical
communication systems [2, 3]. Communication systems based
on the NFT integrate Kerr nonlinearities by exploiting the
integrability of the nonlinear Schrödinger equation (NLSE).
The NFT associates a so-called nonlinear spectrum, composed
of a discrete and continuous part, to a signal. The evolution of
the spectrum upon spatial propagation in the nonlinear fiber
channel is described by a linear transformation [4]. This prop-
erty and the inverse linear transformation allows to recover
the transmitted data if encoded in the nonlinear spectrum. A
common communication scheme employing the NFT is known
as nonlinear frequency division multiplexing (NFDM) [5]. In
this work, we use NFDM with information only carried by the
discrete spectrum as complex eigenvalues and their spectral
amplitudes. In the time-domain those complex eigenvalues
correspond to higher order solitons. However, fiber losses and
noise from optical amplifiers in real systems conflict with the
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assumption of integrability of the NLSE which leads to an
unintended nonlinear evolution of the spectrum. Therefore,
robust ways of countering noise and loss in NFT systems are
of high research interest. Methods averaging the effect of fiber
loss leading to an integrable model [6], and decoding schemes
[7] have been proposed to deal with the impact of losses and
noise. Yet, the propagation is still sub-optimal and an optimal
receiver for NFT based transmission in practical channels
is unknown. An optimal NFT receiver must consider how
distortions to the time-domain signal are translated into the
nonlinear spectral domain as described in [4] and references
therein.

We propose a novel machine learning based receiver, that
maps from time-domain solitons directly to symbol decisions.
Trained on previous transmissions, the distortion characteris-
tics are learned and applied for inference for future decisions.
It is trained using a neural network (NN) [8], entirely omitting
the NFT at the receiver. It is shown that a trained NN
recovers the data encoded on solitons in presence of losses and
noise. It significantly outperforms the NFT based detection
for a practical link configuration, leading to an improved
bit error rate (BER). For comparison, a simpler receiver is
trained, learning the distortion average and using the Euclidean
minimum distance (MD) for detection [9]. The MD receiver
is also outperformed by the NN which indicates that the
accummulated distortion of the system is not i.i.d. Gaussian
distributed [10].

This letter is structured as follows. In Section 2, the
basic concept of an NFDM comunication system and the
time-domain receivers of this letter are presented. Section
3 describes the numerical simulation model of the fiber-
optic communication link. Different NN configurations are
tested for different transmission lengths and optimized for two
transmission lengths, leading to numerical simulation results
of the system performance in BER. The results are discussed
and concluded thereafter in Sections 4 and 5.

II. METHODS

A. NFDM communication system

The normalized NLSE

i
∂q(t, z)

∂z
=
∂2q(t, z)

∂t2
+ 2|q(t, z)|2q(t, z), (1)

provides the mathematical foundation for NFDM commu-
nication systems. The NFDM based transmitter generates a
time-domain waveform of truncated and thus non overlapping
soliton pulses

A(t, z=0) =
∑
k

uk(t− kTs, z), (2)
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Fig. 1. Simulation setup (a) (transmitter Tx, transmission link and receiver Rx), and evolution of one soliton pulse (b) through an ideal (lossless and noiseless)
and nonideal realistic channel.

where each soliton uk(t, z) is an NFDM symbol and Ts is the
duration of the symbol period in which a single pulse lies. In
the nonlinear spectral domain an NFDM symbol is represented
by QPSK modulated scattering coefficients, i.e. b(λi) for sin-
gle and {b1(λi), b2(λi)} for dual polarization [11], associated
to the eigenvalues λi, i=1,2. Thus, NFDM constellations in
the nonlinear spectrum are mapped to soliton pulses in time-
domain with the inverse NFT using the lossless path average
approximation [6], which leads to N distinguishable pulses,

N =M (p·E), (3)

where E is the number of eigenvalues, M the order of
the constellation, and p the number of polarizations. After
transmission and coherent detection, the received pulses are
transformed back into the nonlinear spectrum using the NFT.
After a linear shift the transmitted scattering coefficients are
recovered, as shown in Fig. 1.

B. Machine learning receivers

In this paper, three detection schemes of NFDM commu-
nication systems are analysed. The first scheme employs a
standard NFT based detection. The second and third schemes
are applied directly in time-domain and using the Euclidean
MD and an NN, respectively, as shown in Fig. 1. After
transmitting over a distance L, the MD receiver is trained
by averaging over multiple received instances of each of the
N individual solitons. These averages are used as reference
u
(n)
ref (t, L), n=1..N , to detect future received solitons. Hence,

for every received soliton pulse uk(t, L) the Euclidean distance
to all references is calculated and the reference pulse with
minimum distance is chosen for decoding:

nopt[k] = argmin
n

(∫ ∞
−∞
|uk(t, L)− u(n)ref (t, L)|

2dt

)
, (4)

where the integral becomes a summation for sampled signals.
The MD receiver does not take the noise distribution into
account, whereas an NN does, i.e., the NN receiver learns a
near optimal probability distribution of the received symbols
during the training process. With a sampling rate of R samples
per symbol (SPS), all received pulses lie in an Rp dimensional
complex space. Thus, the NN learns the mapping from the
Rp dimensional complex space of pulses to a decision on one
of the N possible transmitted symbols. The Rp dimensional
complex input to the NN is separated in real and imaginary
parts and the decisions are transformed to one-hot encoded
vectors of length N [8]. Thus, the NN has 2Rp input units
and N output units.

III. SIMULATION SETUP

The described detection schemes are applied in a simulation.
The setup is described in Fig. 1 (a). The transmitter consists of
a pseudorandom binary sequence (PRBS) pattern generator, an
NFDM symbol mapper and an implementation of the inverse
NFT algorithm to map symbols to soliton pulses. Single and
dual polarization NFDM systems are simulated. Both deploy-
ing E=2 eigenvalues (λ1 =0.3j and λ2 =0.6j) and QPSK con-
stellations with unitary radius (M=4), resulting in N=16 and
N=256 symbols for single and dual polarization, respectively.
A rotational offset of π/4 is applied to the constellations asso-
ciated to the eigenvalue with larger imaginary part, as depicted
in Fig. 1 (b). The symbol rate is 1/Ts=1 GBd. The electrical
signal drives a Mach-Zehnder modulator in pseudo-linear
region. An ideal laser is considered, neglecting the effect of
phase noise. The waveform is propagated using the split-step
Fourier method with dispersion parameter 17.5 ps/(nm km),
nonlinear coefficient 1.25 1/(W km), fiber loss 0.195 dB/km
and increasing transmission distance from 0 to 5004 km. The
link is divided into Ns spans of 41.7 km each interleaved by an
erbium-doped fiber amplifier (EDFA). After coherent detection
the waveform is sliced into single pulses at R =128 samples
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and passed on to the three receiver schemes for detection.
The MD receiver is trained with 100,000 training symbols to
extract its references. The NN receiver has one hidden layer
with 32 and 128 hidden units for single and dual polarization.
All NNs are trained with sigmoid activation functions, softmax
output layer, cross-entropy loss function, stochastic gradient
descent and the Adam optimization algorithm [8]. The training
data size is 100,000 symbols for each distance, where 90%
are used for the actual training and 10% for testing. To avoid
over-fitting, the training is stopped when the test performance
ceases to improve (early stopping) [8]. An independent data set
of 100,000 symbols for each distance is used for validation and
all performance estimations in this paper. This makes BERs
estimated above 1.25 · 10−4(6.25 · 10−5) reliable since at least
100 errors are seen for the 800,000 (1,600,000) transmitted
bits for the single (dual) polarization case. For further analysis
of the hyperparameters, the training data size, the number of
hidden units and the number of SPS are swept.

IV. RESULTS & DISCUSSION

A. Temporal/Spectral Evolution and BER performance

For correct detection it is important that the solitons remain
stable throughout transmission. This means that the solitons
stay temporally confined in a time slot no larger than the
transmitter slot Ts. In order to demonstrate how the power
envelope of the NFDM generated solitons evolve during trans-
mission, one instance of the possible solitons is propagated
under lossless and noiseless (ideal) conditions and with losses
and noise (nonideal). In Fig. 1 (b), it is observable that under
ideal conditions (top) the soliton breathes but stays stable,
but under nonideal conditions (bottom) the soliton distorts
and the pulse is in the process of splitting. When a pulse
splits and disperses out of its time slot the carried information
is lost. Further, to demonstrate how the spectral density of
NFDM solitons evolve during transmission, a whole train of
soliton pulses is propagated under nonideal conditions and
the evolution of the baseband frequency spectrum is shown
in Fig. 2 along with the bandwidth containing 99% of the
power. It is observable that the bandwidth changes with the
transmission distance and thus the receiver sampling rate must
be chosen accordingly (further discussed in Section IV-C).
For performance estimation, all three detection schemes are
simulated. In Fig. 3, BER performances for single (a) and

Fig. 2. The evolution of the power spectral density of a train of soliton
pulses with the transmission distance and the bandwidth containing 99% of
its power (dashed).
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Fig. 3. BER vs transmitted distance for NFT, MD and NN receivers, single (a)
and dual (b) polarization.

dual (b) polarization transmissions are shown. Further, for sin-
gle polarization the performance of the NN detection scheme
for different hyperparameters such as the number of hidden
units, the sampling rate and the training data size are shown on
the left in Fig. 4. Further, the hyperparameters are optimized
at two transmission lengths, 2001.6 km and 3002.4 km (48
and 72 spans) as shown on the right in Fig. 4.

B. NFT, NN and MD receivers

As NFDM communication systems are based on the lossless
NLSE, transmission of thereof derived solitons suffers from
attenuation and noise of real fibers and amplifiers. Further,
the detection scheme applying the NFT assumes that the
received pulses are stable and within their time slot. However,
with increasing transmission distance the solitons gradually
lose their stability until they rigorously disperse as indicated
in Fig. 1 (b). This leads to a performance degradation as
shown in Fig. 3. Under the chosen simulation parameters
the performance already suffers at around 1000 km, since
the NFT receiver wrongly assumes to detect undistorted soli-
tons. Moreover, the distribution of the accumulated distortion
through the link is not i.i.d. Gaussian distributed, otherwise
the MD receiver would be optimal and perform no worse than
the NN receiver [10]. The NN receiver, trained to model the
distribution of the distortions, outperforms the other receivers
and allows transmission of almost 3000 km with a BER below
10−3. An important beneficial factor for the NN is that the
solitons are separable in time throughout the whole transmis-
sion. This means, neighbouring solitons do not interact during
transmission, such that there is no intersymbol interference or
other memory effects for the NN to consider.

C. NN receiver hyperparameters

The NN receiver is dependent on hyperparameters such as
the amount of training data, number of inputs and hidden
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Fig. 4. NN receiver BER performance for different numbers of hidden units,
numbers of SPS and sizes of the training dataset.

units. They determine the complexity of the NN and its
potential performance. Choosing optimal hyperparameter is a
multidimensional optimization problem and often solved via a
grid search in the hyperparameter space [8]. Performing a grid
search for every NN trained in this work is infeasible. Instead,
the hyperparameters are swept independently to indicate their
impact and the potential NN complexities. The complexity
of an NN is usually given by the number of free parameters
and hence by the number of hidden, input and outputs units,
whereas here the number of input units is determined by
the number of SPS and the number of output units by N .
More free parameters empower an NN to learn more complex
patterns from data but at the same time increase the risk
of overfitting to noise. As shown in Fig. 4 (a), 16 hidden
units are sufficient to model the data with an NN, with 8
hidden units the performance is degraded and no noticeable
performance improvement is achieved with 32 or more hidden
units. Further, the bandwidth of the NFDM signal has no
sharp bandlimit, Fig. 2, thus reducing the sampling rate is
a trade-off between providing more information to the NN
and the complexity of its input layer. Depending on the
transmission distance, sampling rates of 16 to 32 are sufficient
to capture the information provided by the signal, Fig. 4 (b).

The performance of the NN is also dependent on the amount
of data used explicitly for training. Evidently from Fig. 4 (c),
more data leads to better performance. In other words, the
NN inherently models a posterior probability distribution,
more data provides more evidence and thus a better model.
Acquiring more data is the easiest and straight forward way
of improving the NN performance [8]. The results in Fig. 4 (c)
show that more than 50,000-75,000 symbols for training will
yield negligible improvement in performance.

V. CONCLUSION

This paper offers a viable alternative receiver for NFDM
optical communication systems. It outperforms the standard
NFT based receiver and an MD metric receiver by using an
NN of feasible complexity. Effects of losses and noise in
NFDM systems cause distortions that the NFT receiver is not
equipped for. The NN handles such impairments by learning
the distortion characteristics from previous transmissions and
thus is highly adaptable to the system configuration. The
results obtained present a performance benchmark for future
NFT receiver algorithms.
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