
University of Tartu

Faculty of Science and Technology

Institute of Technology

Tambet Viitkar

Hypervisor and Virtual Machine Memory Optimization
Analysis

Graduation Thesis (12 ECTS)
Computer Engineering

Supervisor:

Meelis Roos

Tartu 2018

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DSpace at Tartu University Library

https://core.ac.uk/display/158595607?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Resümee/Abstract

Hüperviisorite ja virtuaalmasinate mäluhalduse analüüs
Käesoleva lõputöö eesmärgiks on uurida ning analüüsida hüperviisorite ja virtuaalmasi-
nate mäluhalduse funktsionaalsust ja efektiivsust väheste mäluressursside korral. Katse-
tuste käigus kasutatakse laialtlevinud hüperviisoreid: VMware ESXi, Microsoft Hyper-
V, KVM ja Xen. Sihiks on mõõta, kui palju mälu suudavad optimiseerimisalgoritmid
hüperviisorile tagastada ning kui efektiivselt mälu koondatakse. Katsetulemuste andmed
kogutakse kokku spetsiaalselt süsteemide monitoorimiseks mõeldud tarkvaralahenduste
Zabbix ja collectd poolt. Analüüsi põhjal saab öelda, et kõige efektiivsem on Hyper-V, mil-
lele järgnes ESXi ja KVM. Xen hüperviisoril puudus automaatne mäluhalduse võimekus
ning sellest tulenevalt ei kaasatud teda katsetustes.

CERCS: P170 Arvutiteadus, arvutusmeetodid, süsteemid, juhtimine;
T120 Süsteemitehnoloogia, arvutitehnoloogia.

Märksõnad: arvutid, hüperviisorid, virtuaalmasinad, mäluhaldus, mälu optimiseerim-
ine, virtuaalmälu, süsteemihaldus, vmware, hyperv, kvm, xen

Hypervisor and Virtual Machine Memory Optimization Analysis

The goal of this thesis is to test memory optimization and reclamation tools in the most
widely used hypervisors: VMware ESXi, Microsoft Hyper-V, KVM, and Xen. The aim
is to measure how much memory could be reclaimed and optimized by different mem-
ory management algorithms across hypervisors mentioned above. Dedicated monitoring
tools Zabbix and collectd are going to gather the data which will be analyzed. As a
result, Hyper-V seems to be the most effective, with ESXi second and KVM falling some-
what behind in the third place. Xen failed to meet specific criteria (automated memory
optimization) which rendered it impractical to include in the testing process.

CERCS: P170 Computer science, numerical analysis, systems, control; T120 Systems
engineering, computer technology

Keywords: computers, hypervisors, virtual machines, memory management, memory
optimiztion, virtual memory, system engineering, vmware, hyperv, kvm, xen

2

Contents

Resümee/Abstract 2

List of Figures 5

List of Tables 6

Abbreviations 7

1 Introduction 9

1.1 Connection to computer engineering . 10

2 Virtualization 12

2.1 What is virtualization? . 12

2.2 Where did it start? . 12

2.3 Types of virtualization . 13

3 Hypervisors and Virtual Machines 14

3.1 Hypervisors . 14

3.1.1 Type 1 . 14

3.1.2 Type 2 . 14

3.1.3 Resource Allocation . 15

3.1.4 Options for Type 1 Hypervisor . 16

3.2 Virtual Machines . 18

4 Virtual memory and optimization 19

4.1 A brief overview of virtual memory . 19

4.2 Swapping vs. Paging . 20

4.3 Memory Optimization . 21

4.3.1 Overcommiting . 21

4.3.2 Ballooning . 21

4.3.3 Page sharing . 22

4.3.4 Compression . 22

3

5 Methodology and laboratory 23

5.1 Methodology . 23

5.2 Laboratory . 24

5.2.1 Hardware . 24

5.2.2 Software . 25

6 Analysis 29

6.1 VMware ESXi . 29

6.1.1 Memory optimization . 29

6.1.2 Performance . 31

6.2 Hyper-V . 32

6.2.1 Memory optimization . 33

6.2.2 Performance . 34

6.3 KVM . 34

6.3.1 Memory optimization . 34

6.3.2 Performance . 35

6.4 Xen . 35

Summary 37

Acknowledgements 39

License 40

References 40

Appendix 44

4

List of Figures

3.1 Type 1 hypervisor . 14

3.2 Type 2 hypervisor . 15

3.3 VMware ESXi architecture . 16

3.4 Hyper-V architecture . 16

3.5 Xen architecture . 17

3.6 KVM architecture . 17

4.1 Memory allocation . 19

4.2 Virtual memory . 20

4.3 Memory ballooning . 22

4.4 Page sharing . 22

5.1 Test procedure . 23

5.2 ESXi disk layout . 24

5.3 Running the Python script . 27

6.1 VMware — Memory optimization enabled 29

6.2 VMware — Ballooning only . 30

6.3 VMware — Page sharing only . 30

6.4 VMware — Compression only . 30

6.5 VMware — Memory reclamation by opt.method (avg) 31

6.6 Hyper-V — Dynamic memory . 32

6.7 ESXi and Hyper-V . 33

6.8 KVM — Ballooning . 34

6.9 Ballooning and KSM . 35

6.10 Network topology . 44

5

List of Tables

4.1 Memory features of hypervisors . 21

5.1 Hard disk drives . 24

6

Abbreviations

• CPU - central processing unit

• DHCP - dynamic host configuration protocol

• DNS - domain name system

• GB - gigabyte

• GHz - gigahertz

• GiB - gibibyte

• HDD - hard disk drive

• IOMMU - input output memory management unit

• IoT - internet of things

• KB - kilobyte

• KVM - kernel-based virtual machine

• MHz - megahertz

• MMU - memory management unit

• OOM - out of memory

• OS - operating system

• POSIX - portable operating system interface

• RAM - random access memory

• RDP - remote desktop protocol

• RHEL - Red Hat Enterprise Linux

• RPM - rounds per minute

• SATA - serial AT attachment

• SSD - solid state drive

• SSH - secure shell

• VM - virtual machine

• VMM - virtual machine monitor

• VNC - virtual network computing

7

”And if you gaze long into an abyss,
the abyss also gazes into you.”

—Friedrich Nietzsche

1. Introduction

The following thesis focuses on hypervisors and virtual machines, more precisely on mem-
ory optimization and reclamation tools. The goal of this thesis is to deploy most popular
hypervisors, populate them with virtual machines, install operating systems focused on
server applications, run stress tests on memory and gather the results after which it will
be analyzed and compared. The motivation for this thesis is the growing popularity of
virtualization technologies and cloud computing. Memory is one of the essential compo-
nents in computers, and efficient memory management is a key to lower hardware costs,
and higher consolidation ratios1. This thesis analysis should answer following questions:
how different guest operating systems and hypervisors behave in low memory conditions,
how efficiently can they reclaim memory and if there are any severe flaws, to what extent
and what are the possible causes.

The thesis consists of following chapters:

1. Introduction

2. Virtualization

3. Hypervisors & Virtual machines

4. Virtual memory & Optimization

5. Methodology & Laboratory

6. Analysis

7. Summary

The second chapter, Virtualization, gives a short overview of the history of virtualization
and where it stands today. Third chapter Hypervisors & Virtual machines introduces
type 1 and type 2 hypervisors; what is resource allocation; hypervisors available today
and what exactly is a virtual machine. The fourth chapter, Virtual memory & Opti-
mization, consists of a brief review of virtual memory, clarifies confusing terminology and
exhibits modern memory optimization techniques. The following chapter Methodology &
Laboratory specifies the hardware (server, hard disks, network device) and software (hy-
pervisors, guest operating systems, monitoring systems) that will be used to assemble a
testing lab and how it all connects. In the final chapter Analysis gathered data is ex-
amined and compared. As this is a scientific paper, it will try its best to be unbiased,
but as a human is its author, then there is a risk of a possible unconscious and tilted
preferences2. The thesis ends with a summary that concludes the findings and gives an
assessment: how successful were the tests, did memory optimization work, how well did
it work, did memory reclamation fail at any point, did any of the virtual machines or
hypervisors crash and what research could be done in the future.

The following expectation is made in advance and verified as thesis progresses through the
testing and analysis: commercial tools are easy and fast to setup and configure, leaving
more time to test hypervisors and virtual machines. Similar results are anticipated across
hypervisors, and guest machines — differences in results are presumed to be minuscule.

1Consolidation ratio is the number of VMs on a server
2Sincere apologies in advance.

9

On a side note. As technology is changing at a rapid pace, it becomes ever more difficult
to find informative and up-to-date sources in traditional book form. Therefore this thesis
relies heavily on online sources, not because of deliberate choice, but due to the awareness
that online sources are updated and created on a more regular basis. It is up for debate
how books compare to web sources — for example, quality versus quantity, but that
discussion is for another day. There are however two books worth a mention as they were
used exclusively throughout this thesis:

• Virtualization Essentials (2nd Edition) by M. Portnoy

• Modern Operating Systems (4th Edition) by A.S. Tanenbaum & H. Bos

1.1 Connection to computer engineering

At first sight, it might not make much sense for computer engineers to take an interest
in virtualization. After all, what has it got to do with electrical engineering, hardware,
robotics, computer vision, embedded systems and so forth?

It is arguable that virtualization can be to computer engineering what networking is to
the Internet of Things. Many do not appreciate the delegate world of network engineering
that is one of the cornerstones that makes the Internet of Things possible in the first place;
it is taken for granted.

M. Tim Jones wrote an excellent article for IBM, Virtualization for embedded systems
(2011) laying out why virtualization in embedded systems can be and is beneficial. He
states that a hypervisor can considerably enhance embedded system’s efficiency (real-
time capabilities), add an extra layer of security, better communication, isolation, and
reliability. Embedded hypervisors are used to create platforms where legacy applications
can run concurrently with newer software packages. For example, PikeOS is an embedded
hypervisor used extensively in the field of avionics for safety-critical applications and has
made its way into automotive systems [15].

Embedded hypervisors are out of the scope of this thesis as it is a more advanced topic.
Server virtualization is currently the trend with vast amounts of resources available both
online and on paper. It is an excellent introduction to the world of virtualization on which
to lay a strong theoretical and practical foundation and carve the way for more high-level
and in-depth research and projects.

In addition to embedded systems, another example presents itself in the form of cloud
robotics that could employ virtualization to create virtual environments, robotic ecosys-
tems and off-load computationally expensive operations to massive data centers. Moving
robotics to the cloud provides worldwide access to these machines from almost any loca-
tion and allows to design and assemble smaller and mobile devices. Building something
that is small, computationally powerful with reduced strain on onboard power supplies
can stifle mobility and considerably increase design and manufacturing cost[20, 29].

A high-level configuration of hypervisors requires a deep understanding of the underlying
physical hardware, e.g., one has to know how a computer works down to the metal to

10

https://www.sysgo.com/products/pikeos-hypervisor/why-pikeos/

make the best out of virtualization. That is something that computer engineers could
excel. After all, virtualization is nothing more than another tool in the toolbox that is
readily available and can be utilized to create better, more resource efficient and secure
products, services and systems.

11

2. Virtualization

2.1 What is virtualization?

Whenever there is a discussion about computers, networks, sharing resources and uti-
lizing those very resources to their fullest, it usually does not take long until the word
virtualization gets mentioned.

What exactly is virtualization? Due to its popularity, virtualization has been described
and defined in many different ways by various organizations and individuals. WMware,
one of the leading companies specializing in cloud infrastructure and digital workspace
technology, describes it as follows. ’Virtualization is the process of creating a software-
based, or virtual, representation of something, such as virtual applications, servers, stor-
age, and networks. It is the single most effective way to reduce IT expenses while boosting
efficiency and agility for all size businesses.’ [33].

RedHat, the world’s leading provider of open source solutions, defines it as ’Technology
that helps to create useful IT services using resources that are traditionally bound to hard-
ware. It allows using a physical machine’s full capacity by distributing its capabilities
among many users or environments.’ [28].

There are many definitions in similar vain available both online and print form. More
broadly speaking, virtualization is an intricate part of the modern information age. Not
only does commercial business-world depend on virtualization, but it is also a part of our
everyday lives and services we use, love and are accustomed to. Even if we are not aware
of its presence on a daily basis, virtualization has changed how computers: hardware,
software, networks, and services are distributed and implemented these days.

2.2 Where did it start?

Just like many technological achievements in use today (e.g., touchscreens1), virtualization
is not a new concept, and its roots reach back to 1960s and 1970s.

Gerald J. Popek and Rober P. Goldberg codified the framework that describes the re-
quirements for a computer system to support virtualization. Concepts from their article
that was released back in 1974 called ”Formal Requirements for a Computer System to
Support Virtualization” are still widely in use even today [25].

IBM was one of the first to utilize virtualization, specifically on their mainframe IBM
System 360/67. IBM called it platform (system) virtualization, and it aimed to share
computer’s resources with multiple users (time-sharing). It ran CP/CMS operating sys-
tem [14, 25, 32].

1https://goo.gl/eyYE1r

12

2.3 Types of virtualization

Virtualization classifications vary somewhat depending on the (online) resources, but the
most common and well-known types are:

• Server virtualization

• Desktop virtualization

• Operating system virtualization

• Network virtualization

This thesis focuses on server virtualization. Servers are high-end computers designed
to process vasts amount of data. Server virtualization means that a physical server is
partitioned into multiple sub-machines (VMs) within the virtualization software (hyper-
visor). The hypervisor provides VMs with access to the host’s hardware by allocating a
portion of available resources to each VM — defined by the system administrator in VM
configuration files.[38].

13

3. Hypervisors and Virtual Machines

3.1 Hypervisors

A hypervisor1 acts as an authority — its job is to allocate resources between one or more
virtual machines (instances; guests) that operate on top of it by continually monitoring
guests and their resource requirements and active utilization rates in order to redistribute
resources and boost system’s overall efficiency. Without hypervisors, it would be difficult
to take full advantage of the modern processing power and memory resources simply
because most applications only use a fraction of what is available, leaving a significant
percentage of resources unadapted [25].

3.1.1 Type 1

Figure 3.1: Type 1 hypervisor

Type 1 hypervisor, also known as a bare-
metal hypervisor, (figure 3.1) operates di-
rectly on the physical hardware. Type 1
hypervisors are much more efficient at de-
ploying resource to VMs compared to type
2 hypervisors; mainly because of the absent
OS layer that is present in type 2 that in-
duces additional overhead. Low overhead
makes for a more productive system and
enables to create and run more VMs con-
currently on a single host — increasing the consolidation ratio [25].

Type 1 hypervisors are also deemed more secure compared to type 2. All VMs and guest
operating systems within them are independent of each other, unable to have any effect
on the hypervisor. A guest can only affect and damage itself without escaping the virtual
machine’s realm [25].

3.1.2 Type 2

Type 2 hypervisor, on the other hand, (figure 3.2) behaves more like an everyday applica-
tion that runs on the already existing operating system through which hardware resources
are accessed. Type 2 hypervisors are substantially easier to install and run because the
operating system incorporates much of the hardware functionality (communication, re-
source allocation, support for wide range of hardware and so forth) that is required by the

1”Initially, the problem that the engineers were trying to solve was one of resource allocation, trying to
utilize areas of memory that were not accessible to programmers. The code they produced was successful
and was dubbed a hypervisor because, at the time, operating systems were called supervisors and this code
could supersede them.” — M. Portnoy [25]

14

virtualization software. The underlying OS that hosts type 2 hypervisors also consumes
physical resources itself. That can drastically affect both the efficiency and the level of
resources that are available for guest machines [25].

Figure 3.2: Type 2 hypervisor

Type 2 hypervisors are also more suscep-
tive to failures which renders them less re-
liable. Whatever happens to the host will
affect every virtual machine2. Some oper-
ating systems require a system reboot af-
ter an update, even forcing it upon the
user, which means that all active virtual
machines need to reboot as well [25].

3.1.3 Resource Allocation

Hypervisor functions as a workload bal-
ancer. Applications on guest systems make
countless requests to the hardware. Since
VMs do not have any access to host’s components3 then a hypervisor must step in and
manage all those requests promptly and provide sufficient supplies. To do that resource
scheduling processes are used. Depending on the hypervisor vendor it might even be able
to prioritize mission-critical virtual computers over low priority systems and dynamically
reallocate resources on the fly without any input from system administrators [25].

A certain amount of available physical memory will be reserved and used by the hypervi-
sor. Depending on memory availability and the hypervisor this can be up to 20% of total
RAM, but that is a rare case. Modern hypervisors require far less than that: VMware
ESXi and Windows Server 2012 R2 with Hyper-V require roughly 2 GB of RAM to oper-
ate. In addition to hypervisors, virtual machines reserve a certain amount of memory too
to power up and keep themselves running. This sort of memory reservation is called mem-
ory overhead, and although it is a crucial concept to understand and take into account in
production environments, it is not relevant in the scope of this thesis [8, 25, 34].

When configuring virtual machines, it is a good idea to have some headroom, i.e., not
appropriating all the resources. If a number of VMs work on a task that requires a
considerable amount of memory those resources should be promptly available. Lack of
memory can lead to all sort of problems that can cause slowness, system errors and crashes:
usually in the virtual machine, but in worst case scenarios in the hypervisor itself which
could affect every virtualized appliance [30].

2This is not to say that type 1 hypervisors do not need updates or never fail. Instead, their design
should prevent hiccups of this kind as much as possible.

3In most cases VMs are not even aware that they are virtual.

15

3.1.4 Options for Type 1 Hypervisor

VMware ESXi

Figure 3.3: VMware ESXi architecture

VMware was the first company
that made x86 architecture vir-
tualization available commercially
(1998), holding close to 70% of the
global market today. ESXi archi-
tecture’s core is its VMkernel (fig-
ure 3.3) that includes all the tools
to create and manage virtual ma-
chines and allocate resources. It
additionally supports third-party modules (i.e., hardware drivers). The kernel is a POSIX-
like operating system that performs analog to other operating systems, but its primary
goal is to host virtual machines. It includes tools to handle resource scheduling, I/O
stacks, device drivers and so forth. Out of all the hypervisor developers, VMware could
at this time still be considered the most mature [4, 25].

Hyper-V

Figure 3.4: Hyper-V architecture

Microsoft has been developing its type 1 hy-
pervisor (figure 3.4) since 2005 and released it
in 2008. Today they control about 20% of the
market. Compared to VMware ESXi, Hyper-V
requires a parent partition (root partition) that
has access to the hardware and holds the virtu-
alization management stack. A partition alone
is not enough, and Windows operating system
is required4. Hyper-V is part of Windows as an
optional feature, and no extra software is re-
quired. Hyper-V manager handles virtual ma-
chine (child partitions) creation and manage-
ment. Child partitions have no direct access
to the physical host5, and all the communica-
tion and resource allocation goes through the

hypervisor [7, 25].

4Windows Enterprise, Professional, Education or Server [6]
5Hyper-V supports isolation as a partition

16

Xen

Figure 3.5: Xen architecture

Keir Fraser and Ian Pratt are the creators of
Xen hypervisor which was part of a research
project started back in the late 1990s at Cam-
bridge University. Xen is available both as an
open-source project and a commercial edition
known as Citrix XenServer. One of the pri-
mary components of Xen’s architecture (figure
3.5) is Domain 0’s (Dom0) guest. As the host
machine running Xen hypervisor boots, Dom0
starts along with it. Domain 0 is the interme-
diate device between host’s hardware resources
and VMs. If a guest OS makes a request, it goes
through the Xen hypervisor straight to the Do-
main 0 which grants access to resources. As
Domain 0 is a guest system too, it requires ad-
ditional configuration (best practices) to achieve a more stable and prolific system [25,
45, 46].

Kernel-based Virtual Machine

Figure 3.6: KVM architecture

Avi Kivity, an Israeli software developer, is the
original author of KVM but is no longer actively
involved with its development. Announced in
2006, KVM became part of Linux’s kernel6 in
2007. As KVM is integrated to Linux (figure
3.6), it has access to the memory manager, pro-
cess scheduler, network stack and other parts
of the operating system. Virtual machines cre-
ated within KVM are regular Linux processes
with a dedicated virtual hardware which can
be managed through QEMU tools or with the
libvirt-based stack. KVM is actively gaining
popularity and in the future might become one of the leading contenders to VMware. Be-
ing an open-source hypervisor creates a state where the hypervisor becomes a commodity,
and the management tools, their features and ease of use become the selling point [17,
23, 26, 27].

6Linux 2.6.20 or newer.

17

https://wiki.xenproject.org/wiki/Xen_Project_Best_Practices

3.2 Virtual Machines

A virtual machine behaves more or less like a conventional physical computer. The dif-
ference being, and as the word virtual might insinuate, it is an implicit representation of
something that exists in the real world. Unlike a physical device which can only run one
operating system at a time, it is possible to run multiple virtualized systems on a single
host, limited only by its physical resources and capabilities. Virtual machines can run
different operating systems, set of applications and serve unique purposes [25].

A virtual machine comprises a set of files: customizable configuration file and virtual
disk file(s). The configuration file defines the hardware used by the VM: the central
processing unit, number of cores, amount of memory, network interfaces and so forth.
The virtual disk file, on the other hand, contains the guest operating system, all the
required applications, and other system and user files. As configuration files remain the
same, it enables to move machines across different hardware and virtualization platforms
— making VMs very mobile [25].

18

4. Virtual memory and optimization

”More than any other resource, memory is the one with the largest impact
on how well or how poorly the virtual environment will perform.”

—Mike Portnoy, Virtualization Essentials

Memory, also known as random access memory is the essential part of any computer
system. It is the container that stores data that is accessed most often by the operating
system and active applications [25]. It is imperative to recognize that memory is not
storage and to this day there is plenty of confusion between the two. This thesis focuses
exclusively on (random access) memory.

Compared to hard disks and solid state drives, memory is many times faster and presents
a more flexible model compared to accessing data from storage devices. Speed comes with
a price tag, literally. RAM is expensive, and it can become scarce. Therefore, efficient
memory optimization and strategic resource allocation are vital to run multiple VMs on
a single physical machine [25].

Figure 4.1: Memory allocation

In VMs, memory is made avail-
able by the hypervisor (abstracts
memory) who functions as an
intermediate player between the
physical hardware and virtual ma-
chine(s). A host might have a to-
tal amount of 16 GB of RAM (fig-
ure 4.1), but if the VM has been
configured to use 2 GB, then it is
only aware of those 2 GB1. Remaining RAM can be applied to other guests or as a possible
memory expansion to the already existing VMs if demand for it should arise.

Allocating too much memory can create paucity in guests and lead to excessive paging
which in turn affects the whole virtualization domain. Being too moderate while allocating
RAM can cause resource wastage — the exact problem hypervisors were meant to solve.

4.1 A brief overview of virtual memory

In this section, it is reviewed how modern operating systems handle the concept of virtual
memory. It must be made clear that virtual memory is not a feature of hypervisors nor
virtual machines; it is part of operating systems. The idea being that every programme
(process) has its virtual address space (figure 4.2) that comprises the physical memory and
secondary storage. That address space gets split into fixed-size pieces (most commonly 4
KB, but not strictly bounded to) called pages. Its counterpart in RAM is a page frame.

1Not entirely accurate in Hyper-V’s case and it will be addressed later in the thesis.

19

The mapping (address translation) from virtual address space to the physical address
space is handled by MMU and information how to map virtual pages onto page frames is
stored in a page table [31].

Figure 4.2: Virtual memory

An example: Application runs, storing the most im-
portant pages in the physical memory. If the appli-
cation requests data from a page that is mapped
to physical memory, then the data transfer happens
almost instantly. However, if the referenced part of
its address space is not in physical memory, a page
fault is thrown. The software is put on halt, operat-
ing system analyses the memory regions assigned to
this particular application and finds the least used
frame. That frame gets transferred to a secondary
storage unit, and the missing piece of data required
by the application is loaded from disk and stored in
memory. The page table is updated, software noti-
fied, and the process continues where it left off [31].

In summary, virtual memory consists of physical
memory which extends its reach to secondary stor-
age if random access memory is in short supply. The
amount of secondary storage assigned to aid mem-
ory is set by configuring a page file.

4.2 Swapping vs. Paging

Swapping and paging are used as interchangeable terms as they describe moving processes
from primary memory to a secondary storage unit. However, there is a clear difference
between these two terms in how they operate.

Swapping is a method of moving a particular process, its entire data set to a swap file
or (swap) partition. For swapping to be effective, the process should be idle; otherwise,
there is a high probability that the process is requested again and has to be loaded back
to memory rapidly, rendering swapping an unavailing operation. Excessive swapping can
have a devastating effect on the system’s overall performance [2, 44].

Paging is more relatable to virtual memory as it is quite literally moving pages from system
memory into a page file. In paging, only a portion of an active process; less used data, is
relocated. Paging also allows OSs to target specific sections of running applications that
have been idle for some time and move them out of memory, making room for other data
[2, 44].

Modern operating systems use paging as their default method2, and throughout this thesis
this term is going to be used [16].

2Linux has traditionally referred to swapping as paging.

20

4.3 Memory Optimization

Memory Optimization

Hypervisor Overcommiting Ballooning Page Sharing Compression

ESXi

Hyper-V

KVM

XEN

Table 4.1: Memory features of hypervisors

4.3.1 Overcommiting

Overcommitting is a method to allocate more memory to virtual machines that is available
on the host. In other words, the hypervisor is memory-overcommitted if the sum of
assigned memory across all active virtual machines exceeds the possible physical memory.
Although memory overcommitment is a very abstract idea, it provides an additional
method to appropriate and redistribute resources, enhancing efficiency and increasing the
consolidation ratio [1, 25].

It might seem like an odd move to allocate memory that does not exist. However, idle VMs
might not utilize all the memory accessible to them. Overcommitment allows to extricate
those resources and reallocate them to other VMs accordingly - creating a dynamic buffer.
That makes memory reclamation techniques an essential part of overcommitment but as
it has more to do with consolidation ratio it will not be investigated further in this thesis
[1].

4.3.2 Ballooning

Ballooning is a memory reclamation technique that allows the hypervisor to retrieve a
certain amount of memory from VMs if host’s physical memory usage has reached a certain
threshold (i.e., low memory state). It is important to heed that every VM is an isolated
instance and guests are not aware of their virtualized-ness. It is therefore impossible for
guests to detect when the host is low on memory and the whole domain is in danger of
crashing. To solve this problem a deus ex machina in the form of memory ballooning was
introduced.

Ballooning is made possible by balloon drivers which are usually part of the hypervisor’s
guest drivers. In a low memory state, the host notifies the guest’s balloon driver, sets
a target size and waits. Target balloon is the amount of memory the host strives to
retrieve from a VM. Once ballooning is triggered, it inflates (figure 4.3) and forces the
OS to reorganize its memory content. Guest OS must utilize its optimization algorithms
to figure out how to best accommodate to the inflating balloon: remove unnecessary
information from random access memory, store less crucial data in a page file and so
forth.

21

Figure 4.3: Memory ballooning

Memory retrieved by ballooning
can be reallocated to more re-
source intensive or higher priority
guests. In ideal cases ballooned
memory is returned to their right-
ful owners once resource intensive
operations have completed. As
a side note: extensive balloon-
ing can lead to widespread pag-
ing which can drastically decrease
performance [25, 36].

4.3.3 Page sharing

Figure 4.4: Page sharing

Plenty of data stored in RAM is never al-
tered by the OS nor by the user. As guests
populate the memory with system and ap-
plication data, many of those pages are
homogeneous across multiple VMs — ex-
hausting memory by containing duplicates
of the same data. Page sharing aims to
remove duplicates (figure 4.4) by continu-
ally analyzing pages and keeping one copy
that is shared among numerous VMs, con-
sequently saving RAM [25].

In a situation where a VM requests write permission to a page that has a shared tag
associated with it, the hypervisor will create a copy of that page and assign exclusive
access rights to the VM that requested it in the first place. This process is called copy-
on-write [25].

4.3.4 Compression

Compression is a memory optimization tool that aims to decrease the level of paging and
enhance performance. A compression cache gets created by the hypervisor. If paging is
about to occur those pages are analyzed and if possible compressed and stored in that
memory cache for future use. Idealistically this should somewhat decrease the negative
aspects of paging as it is computationally costly and it would be far easier to fetch and
decompress data from the compression cache instead than loading it from an extensively
slower secondary storage device [25, 35].

22

5. Methodology and laboratory

5.1 Methodology

The goal of this thesis is to test memory optimization and reclamation tools in VMware
ESXi, Microsoft Hyper-V, KVM, and Xen — measure how much memory can hypervisors
reclaim from VMs; how much RAM are VMs willing to return to the host; how much can
optimization algorithms decrease memory usage in VMs. To do that each hypervisor
is going to be populated by four guest machines: Ubuntu 16.04, CentOS 7, Windows
Server 2012 R2 and Windows Server 2016. Each operating system is to be given a unique
hostname and prepared to run a memory stress tool and data gathering software.

Figure 5.1: Test procedure

Each hypervisor is to be tested
with, and without any memory
optimization tools enabled and
one memory optimization tool at
a time. From now on, these test
scenarios will be referred to as
conditions.

Each test condition must follow the guideline:

• A single condition is to be tested three times in a row (iterations)

• Stress tools must start simultaneously (a small margin of error allowed)

• Each iteration should run for ten minutes

• After each iteration there should be a five-minute cooldown to let the system regain
stability

• Roughly 95% of memory should be allocated by stress tools to provoke memory
optimization and reclamation tools and minimize undesired paging

• Test results should be gathered automatically by dedicated software solutions

• Host must be rebooted before the next test condition

An example: VMware ESXi supports three memory optimization/reclamation tools:
memory ballooning, page sharing, and memory compression. Therefore there are five
discrete conditions: memory optimization enabled, memory optimization disabled, bal-
looning only, page sharing only, memory compression only. Each test condition runs
roughly for 40 minutes — three iteration (10 minutes each) with five-minute cooldowns
between each iteration excluding the last one.

23

5.2 Laboratory

5.2.1 Hardware

Server

Sun Fire X2250 manufactured by Sun Microsystems (provided by supervisor Meelis Roos)
is the server unit on which memory optimization testing took place. It holds two Intel
Xeon E5405 64-bit quad-core CPUs with a base frequency of 2.00 GHz and bus speed
of 1333 MHz. It has a 12 MB (cache per processor 2 x 6 = 12 MB) Level 2 cache
memory. It supports up to 32 GB of RAM (8 slots); fully utilized in this particular unit.
Intel Xeon E5405 does not support following technologies: Intel Turbo Boost Technology,
Hyper-Threading Technology, VT-x with Extended Page Tables [5, 13].

Hard Disk Drives

ID Manufacturer Size (GB) RPM Hypervisor

EM74 Western Digital 500 7200 ESXi 6.5

EFDN Western Digital 500 7200 Hyper-V 2012

8Y4J Western Digital 500 7200 Xen 4.8

H4T7 Toshiba 500 7200 KVM

Table 5.1: Hard disk drives

Storage

Figure 5.2: ESXi disk layout

Hypervisors were installed on one of
the three Western Digital manufactured
Enterprise Class Certified by Dell and
one Toshiba/Hitachi HDDs (provided by
Meelis Roos). Each SATA drive is capa-
ble of storing around 500 GB of data with
platter rotation speeds up to 7200 RPM.
Drives were assigned unique identification
codes (table 4.1) to help distinguish them
from one another. Multiple disks allowed
to create strictly segregated test environ-
ments for each hypervisor and switch between them in a short amount of time. An
additional benefit was the ability to return to these environments and repeat tests if nec-
essary. With a single hard drive, test environments would have been impossible to set up
and run in a reasonable amount of time.

Each disk has a similar layout (figure 5.2): four operating systems with unique hostnames
to differentiate between them in the configuration, testing, data gathering, and analysis
phase. Linux systems were assigned around 20 GB of hard disk space, and for Windows
Server variants 40 GB of space was allotted. Rest of the space was either used by the
hypervisor (configuration files, data files and so forth), page file or left untouched.

24

Network

A dedicated local area network was built (figure 6.10) to connect all the physical hard-
ware, hypervisors, virtual machines, monitoring and data gathering services. Linksys
WRT54GS1 served as the pivotal piece assuming the role of a router, switch, and DHCP
server. DNSMasq (built-in to WRT54GS) provided DNS services. This network drasti-
cally simplified both the setup and management of all the devices and services, especially
data gathering, that were integral throughout the test phase.

5.2.2 Software

Hypervisors

VMware ESXi 6.5 installation and configuration was simple. Being the first in the com-
mercial hypervisor market has its benefits — ESXi works out-of-the-box. It comes with a
web-based administration panel which frees it from platform dependent restrictions and
allows the administrator to configure the system from whatever platform he or she chooses
as long as it supports a modern web-browser.

Due to server’s hardware limitations, namely lack of IOMMU, it was impossible to install
the latest Microsoft Windows Server 2016 with Hyper-V. Hyper-V was very persistent that
this requirement is a must-have with no exceptions. Windows Server 2012 R2 with Hyper-
V2 was set up instead. Overall very simple to set up — user-friendly, but less configurable,
at least from the graphical user interface, compared, for example, to VMware ESXi 6.5.

Installing Kernel-based Virtual Machine was also simple as it is part of the modern Linux
kernel. Unfortunately, out-of-the-box it does not include sophisticated tools to manage
memory optimization automatically, for example, memory ballooning [21]. Fortunately,
there is a wide variety of management tools available for KVM, both open-source and
commercial [22]. Based on Google’s search engine results, oVirt Management Platform
(built on top of KVM) was chosen as it supports automatic ballooning and KSM; has
excellent documentation and in addition to KVM models on the RHEV-M3 [24].

Xen was the most challenging hypervisor which in the end failed to meet specific re-
quirements and was not tested. Similarly to KVM, Xen supports ballooning, but in its
genuine form, that process is manual. Of course, there are more capable frontend solu-
tions available that include automation, but in Xen’s case, it is troublesome to find good
open-source alternatives. Xen is mainly known for Citrix XenServer, and that is a license
based hypervisor. It is possible to request a trial license for the latest XenServer, but
as the current testing equipment is somewhat older, this hypervisor’s installation failed.
Older versions of XenServer are available, but it is not possible to request a trial license.

1Firmware version DD-WRT v24-sp2 (10/10/09) std.
2Hyper-V is also available as a standalone command line based version.
3Red Hat Enterprise Virtualization Management.

25

Operating systems

Following operating systems were installed in each hypervisor:

• Ubuntu Server 16.04

• CentOS 7

• Windows Server 2012 R2

• Windows Server 2016

At the time of composing the current thesis, those OSs were the latest and most commonly
referred to and applied in production environments around the globe. It presented an
excellent opportunity to compare two open-source OSs against proprietary solutions and
furthermore compare systems in those two categories against each other.

Ubuntu is based on the Debian architecture and developed and published by Canonical
Ltd. It is a ubiquitous choice for both desktop applications and servers alike as it sup-
ports prominent processor vendors, including Intel, AMD, and ARM. Ubuntu 16.04 LTS
(released on April 21, 2016), codenamed Xenial Xerus has an expected end of life date of
April 2021 [37, 39].

CentOS distribution stems from Red Hat Enterprise Linux. Compared to RHEL, it is
available at no extra cost and strives to provide enterprise-class functionality just like its
origin but its entirely community supported. Current main versions are 6.9 and 7. Version
7 (released on July 7, 2014) maintenance updates will be available until June 2024 [3, 43].

Windows Server 2012 is the sixth release in the Windows Server branch released on
September 4, 2012. Mainstream support is scheduled to end in October 2018. Windows
Server 2016 was developed alongside with Windows 10 and released on October 12, 2016.
Mainstream support is available until January 2022 [41, 42].

Stress tools

Stress-ng4 runs on GNU/Linux. It is an updated version of the popular stress tool which
is used to accentuate pressure on a computer in various ways (e.g., CPU, GPU, memory,
I/O) and it has a dedicated toolset for virtual memory. Linux’s kernel has a feature
that attempts to kill any process that completely hogs the system (i.e., out of memory).
Stress-ng’s countermeasure to this is to run stress workers as separate processes and if
they happen to get terminated the main program restarts them [11, 18, 19].

Following are the most relevant stress-ng parameters in the scope of the current thesis:

• –vm - number of workers (default: 1)

• –vm-byte - bytes allocated per worker (95% of total VM’s RAM)

4Version 0.08.16.

26

• –vm-method - stress methods (default: all)

• -q - quiet mode

• -t - test duration (seconds)

A console-based program named TestLimit by Sysinternals (Mark Russinovich) was used
in Windows Server. There is not much information available about TestLimit, other than
it is a rather popular and recommended choice to stress and leak memory in Windows.
Following parameters were used:

• –d - leak and touch memory in a specificied MBs

• –c - count of number of objects to allocate

A small script5 was written in Python 3 programming language to aid in the memory
optimization test phase. The script requires four parameters; an explanation will follow
after this paragraph. The Python script is platform-aware, and depending on the oper-
ating system it will start one of the stress tools with the parameters discussed above and
manages cooldowns between iterations. As simple as this script is, it was an indispensable
tool without which testing would have been very cumbersome.

Following are the Python’s stress test management script’s parameters:

• i - number of test iterations (default: 3)

• t - duration of a single interation (default: 30 s)

• r - duration of cooldown (default: 10 s)

• mem6 - memory utilization in percentage (default: 0.5)

Figure 5.3: Running the Python script
5Included as a separate file alongside this thesis.
6This parameters has a special non-numeric value — dynamic. It is used to trick Hyper-V and work

around a particular dynamic memory limitation which will be discussed later in this thesis.

27

Data gathering

A virtual environment was created in VMware Workstation 14 Player to host a data gath-
ering and management server. The virtual machine ran a preconfigured Zabbix Appliance
(Zabbix 3.4.7 (20 February 2018)) operating on Ubuntu 16.04. It is a popular open-source
monitoring solution to help monitor, maintain and collect data from hypervisors and VMs.
Data gathering could have been done individually on every hypervisor, but the level of
monitoring features vary drastically per hypervisor.

In addition to Zabbix, a Unix-based collectd daemon was set up on KVM. Collectd is
a system and application performance metrics software which periodically collects and
stores data in RRD format. Reason for collectd is simple: out-of-the-box Zabbix has
its limitations, and it is very challenging to find pre-made templates to collect necessary
information from KVM. It is possible to build custom templates, but that would require
a substantial investment of one’s time and effort to make it worthwhile. Collectd has all
the necessary tools already built-in (e.g., virtual machine monitoring) and in combination
with Collectd Graph Panel it displayed the data as easy to interpret graphs.

Other tools

Remmina7 is a free remote desktop client that supports multiple network protocols (RDP,
VNC, SSH and so forth) which makes it a versatile tool for system administrators and
hobbyists alike. Remmina served as the primary tool to manage Hyper-V 2012 as every
tool developed by Microsoft did not comply with Linux.

Virtual Machine Manager8 developed by Red Hat served as Xen’s administrative panel in
addition to command-line based xl tools stack [40].

VMware ESXi and oVirt (KVM) ship with dedicated web-based administration panels
and no additional tools were required.

7Remmina v1.1.2.
8Virtual Machine Manager v1.4.0.

28

6. Analysis

6.1 VMware ESXi

6.1.1 Memory optimization

U16 C7 WS12 WS16
0

500

1000

1500

2000

1,
20

0

25
8

22
7

1,
72

0

66
2.

88

10
2.

58

42
0.

33

1,
10

0

17
.9

8

0 0 7.
02

M
em

or
y

(M
B

)

Ballooning Page sharing Compression

Figure 6.1: VMware — Memory optimization enabled

Zabbix gathered the stress results
and automatically calculated av-
erage values for every optimiza-
tion tool expect for ballooning.
Balloon data is based on the high-
est measured value. Inflated bal-
loons did not stay active for very
long — average inflation span var-
ied from 3-5 minutes per iteration,
meaning that over the course of a
40-minute test scenario averaged
balloon data would have resulted
in unrealistically low values. Note
that whenever ballooning is men-
tioned it is nothing more than the
amount of memory relcaimed by
the host machine. Zabbix’s re-
sults were used to plot the follow-
ing bar charts (see 6.1). The ver-
tical axis represents the amount of
reclaimed memory by the optimization tools Virtual machines are positioned on the hor-
izontal axis. To make charts as compact as possible shorter names were generated for
operating systems.

• U16 - Ubuntu 16.04

• C7 - CentOS 7

• W12 - Windows Server 2012 R2

• W16 - Windows Server 2016

VMware’s first test condition (figure 6.1) had all the optimization tools (ballooning, page
sharing, compression) enabled. From Ubuntu ballooning successfully retrieved 1.2 GB of
RAM. Windows Server 2012 R2 and Windows Server 2016 were forced to return 942.2 MB
and 1.72 GB of memory respectively. CentOS was the most resilient system delivering
only 258 MB to the host. Page sharing was most effective in Windows OSs which is
not that unusual considering that these two systems are closely linked. From Windows

29

U C W12 W16
0

1000

2000
1,920

420

1,090

1,640

M
em

or
y

(M
B

)

Figure 6.2: VMware — Ballooning only

U16 C7 WS12WS16
0

500

1000

478.1

171.9

1,100 1,140

M
em

o
ry

(M
B

)

Figure 6.3: VMware — Page sharing only

Server 2012 R2 it reclaimed 420.33 MB and from Windows Server 2016 1.1 GB of RAM.
In Ubuntu, page sharing managed to save 662.88 MB of memory. Once again CentOS
was the most resistant with page sharing saving 102.58 MB of memory. Compression was
pretty much non-existent all across. Only measurements were made in Ubuntu (17.98
MB) and Windows Server 2016 (7.02 MB).

U16 C7 WS12WS16
0

500

1000 887.28

230.25
356

497.88

M
em

or
y

(M
B

)

Figure 6.4: VMware — Compression only

During the second test condition (figure
6.2), only one memory reclamation tool
was left running — ballooning. Ubuntu
and Windows Server 2016 were the most
willing to return memory to the host.
Ubuntu gave up 1.92 GB, and Windows
Server 2016 released 1.64 GB. Windows
Server 2012 R2 did not fall far behind the
previous two: 1.09 GB. CentOS returned
420 MB of RAM.

As stated few paragraphs back Windows
Server 2012 R2 and Windows Server 2016 have much in common in their overall archi-
tecture. Therefore it is no surprise that page sharing was most productive (figure 6.3)
on Windows OSs. Windows Server 2016 returned 1.14 GB and Windows Server 1.1 GB
of random access memory. Over at Linux page sharing managed to relieve 478.1 MB
(Ubuntu) and 171.9 MB (CentOS) of RAM.

If one looks back at the first test condition (figure 6.1), then it is obvious that compression
was the least effective or at least it did not get called out as much compared to the other
tools. Surprisingly once compression was left on as a sole optimization (figure 6.4) method
it managed reclaim 887.28 MB of RAM in Ubuntu, 230.25 MB in CentOS, 356 MB in
Windows Server 2012 R2 and 497.88 MB in Windows Server 2016.

For a better comparison between VMware’s various memory optimization and reclama-
tion tools the following chart was generated (figure 6.5). Y-axis portrays the amount of
reclaimed memory, and the X-axis denotes memory optimization tools where each bar
represents the average memory reclaimed by the previously discussed stress conditions.
For example across four VMs in the first test condition, an average of (1200 + 662.88 +
17.98+258+102.58+227+420.33+1720+1100+7.02)/4 = 1428.95 MB was reclaimed

30

by ballooning, page sharing, and compression combined. With only ballooning enabled
this amount was 1267.5 MB. Page sharing followed with 722.5 MB and last, but not least,
compression with 492.85 MB.

Based on this data it can be reasoned that out of ESXi’s memory optimization and
reclamation tools ballooning was the most capable of retrieving memory with page sharing
and compression taking a smaller role. Of course, that does not mean that the last two
should be rendered useless — each tool managed to do its job, and best results were
accomplished as every optimizer was enabled and active.

All Ballooning Page Sharing Compression
0

200

400

600

800

1000

1200

1400

1600
1428.85

1267.5

722.5

492.85M
em

or
y

(M
B

)

VMware

Figure 6.5: VMware — Memory reclamation by opt.method (avg)

6.1.2 Performance

In this subsection, a subjective assessment on VMware’s hypervisor and VMs is given.
Subjective meaning that no specific benchmark tests were run nor any data gathered —
systems were simply tested by hand before, during and after tests had completed.

ESXi successfully survived all the test conditions: memory optimization enabled, disabled
and one optimization tool at a time. Even during the extreme memory pressure without
any reclamation tools at hand, the host kept itself operational — administrative panel was
fully accessible and responsive. Warnings informed that the system was in low memory
state, but that was the extent of it.

Virtual machines, on the other hand, did not do as well. As stress tools were running
guests became extremely slow and at times even unresponsive. Once stress testing had
completed, however, guests gradually returned to the optimal state. Worst outcome was
during during the second test condition (no optimization) that ended in Windows Server

31

2012 R2, and Windows Server 2016 being forcefully shut down as they froze. Linux
operating systems managed to shut down on their own barely.

6.2 Hyper-V

Compared to other hypervisor vendors Hyper-V had the most straightforward and min-
imalistic user interface. Hyper-V is aiming at ease of use, fast setup, and configuration
process. However, it only supports one memory reclamation tool — a variation of bal-
looning which Microsoft itself identifies as dynamic memory [10]. Dynamic memory has
three main components that can be modified.

• Startup RAM - the amount of memory allocated to the VM as it boots

• Minimum RAM - the minimum amount of memory guaranteed to a VM

• Maximum RAM - the total amount of memory that can be allocated by the hyper-
visor

Dynamic memory has an inherent flaw — guests are not aware of the maximum amount
of random access memory potentially available to them. Take for example a VM with
following parameters: startup RAM of 1024 MB; minimum RAM of 1024 MB; maximum
RAM of 4096 MB.

U16 C7 W12 W16
0

0.5

1

1.5

2

2.5

3

1.
94

1.
66

2.
56 2.

67

1.
92

0.
42

1.
09

1.
64

M
em

or
y

(G
B

)

Dynamic memory Ballooning (ESXi)

Figure 6.6: Hyper-V — Dynamic memory

Once the guest has booted,
and the user starts a re-
source manager (i.e., Win-
dow’s Task Manager; Linux’s
htop) it will display 1024 MB
as the total amount of RAM,
not 4096 MB. If this VM
comes under memory pres-
sure, Hyper-V will dynami-
cally allocate more memory
— a process that can be
observed from any resource
manager in real time. This
design comes with its intri-
cacies. Applications that
perform memory checks be-
fore installation or startup
would fail, because, from the
guest’s point of view, there is
not enough memory available
which might or might not be
accurate [12]. This exact predicament occurred during stress tests conducted as part

32

of this thesis. Linux guests failed to start the stress tool — not enough memory. A
workaround was devised, and thankfully the solution was rather easy — start stress-ng
with more than one worker, allocating enough memory at the start to trigger Hyper-V’s
dynamic memory. As it turns out this is a legitimate problem in the production environ-
ments too. One workaround1 is to use MS Paint (only works in Windows VMs), expand
its canvas size to the absolute maximum. This operation will consume a lot of resources
and forces dynamic memory to hot-add memory — allowing to install and start programs
that previously failed to do so [9].

6.2.1 Memory optimization

Dynamic memory is a very aggressive memory reclamation method. If a virtual machine is
not fully utilizing resources that have been allocated to it, then it takes dynamic memory
a minute, and in some cases thirty (30) seconds, or less to reclaim it. It is apparent as
one looks at the figure 6.6. In each VM, dynamic memory managed to retrieve more than
1 GB of RAM — Ubuntu 1.94 GB; CentOS 1.66 GB; Windows Server 2012 R2 2.56 GB
and Windows Server 2016 2.67 GB — exceeding VMware.

ESXi Hyper-V
0

500

1000

1500

2000

2500

1428.85

2208

M
em

or
y

(M
B

)

Figure 6.7: ESXi and Hyper-V

A pattern is starting to develop — Hyper-
V’s bar chart resembles those of VMware
(figure 6.2). Both Windows Server guests
were most willing to give up memory as the
host aimed to reclaim it. Ubuntu came to
a close third and CentOS being the most
resilient like before. It is too early to decide
whether this patternicity was caused by the
stress tools or guest operating systems.

Comparing Hyper-V’s dynamic memory to
VMware’s ballooning chart (figure 6.6) it
is ever more apparent that Hyper-V had
better results. From Ubuntu Hyper-V and
ESXi managed to reclaim about the same
amount of RAM (1.93 GB). In CentOS,
VMware did a lesser job and retrieved four
times less (400 MB) compared to Hyper-
V’s 1.66 GB. In Windows OSs, both hyper-

visors managed to reclaim more than 1 GB of memory, but Hyper-V surpassed VMware
by an extra gigabyte.

1Recommended by Microsoft.

33

6.2.2 Performance

Hyper-V’s and its VMs performance evaluations are subjective, as they were with VMware.
Hyper-V survived both stress conditions and did not crash. The system remained online
and responsive even under extreme memory pressure caused by disabling dynamic mem-
ory — only warning about the low memory state. The probability that Hyper-V2 was
ever going to crash during these test conditions was extremely low. Hypervisors reserve
a certain amount of physical resources to themselves, and virtual machines do not have
any access to that domain making it very improbable for VMs to crash the host.

Linux guests were sluggish compared to Windows Servers even after implementing all
the configurations recommended by Microsoft. Other than that both Linux and Windows
OSs displayed slowness and unresponsiveness during testing — just like in VMware. Once
stress tools had finished and around 2-4 minutes had passed virtual machines stabilized.

6.3 KVM

6.3.1 Memory optimization

Collectd gathered test results from KVM. Unfortunately one of the plugins did not operate
as expected — kernel same page merging measurement script. Different configurations
based on tips and tricks from the Internet were attempted but failed to rectify the problem.
That rendered KSM’s data gathering from VMs impossible.

U16 C7 W12 W16
0

200

400

600

800

30
0

30
0

80
0

60
0

M
em

or
y

(G
B

)

Figure 6.8: KVM — Ballooning

Fortuitously, data was also gathered from
the hypervisor. As KVM only supports
two memory reclamation tools it was pos-
sible to extract3 information linked to page
sharing from KVM’s hypervisor memory
dataset. Reverse engineered data was not
as accurate with no indication how much
sharing took place in virtual machines in-
dividually, but at least it gave a rough es-
timate how well this memory optimization
tool performed.

With both memory optimization tools en-
abled KVM managed to reclaim 2 GB by
ballooning (figure 6.8). Ubuntu and Cen-
tOS recovered roughly 300 MB of RAM
each. Windows Server 2012 R2 and Win-
dows Server 2016 800 MB and 600 MB re-
spectively. KVM’s ballooning chart resem-

2Or any other hypervisor for that matter.
3Reverse engineer.

34

bles Hyper-V’s dynamic memory results — both Linux OSs freed around the same amount
of memory with Windows Servers leading ahead with double the memory.

Kernel same page merging managed to reclaim an average of 650 MB across four VMs
approximately. It must be remarked once again that KSM data gathering in VMs failed
and there is no data to display reclaimed memory proportionality per guest. On the other
hand, based on the data analyzed in previous sections, it does not seem a far cry that
KSM chart would look similar to VMware’s page sharing (figure 6.3). This proposal is also
backed by KVM’s ballooning which indicated that Linux OSs are less prone to give back
memory next to Windows operating systems — a trend seen across multiple hypervisors.
In the end, there was no hard data, and this assumption should be taken with a pinch of
salt.

6.3.2 Performance

Balloon KSM
0

200

400

600
500

650
M

em
or

y
(M

B
)

Figure 6.9: Ballooning and KSM

KVM as a hypervisor was as sturdy as ESXi and
Hyper-V — under extreme memory pressure the
administrative panel was reachable and responsive.
As with the previous two hypervisors, KVM also
warned as the system was on the verge of running
out of resources, but since it has reserved a specific
amount for its own use then these warnings are more
related to virtual machines, and it should not cause
any serious problems in the hypervisor.

Virtual machines were more responsive compared
to Hyper-V’s guests. Guest tools installation was
considerably more difficult and not as straightfor-
ward as with VMware and Microsoft. In low mem-
ory state guests became less responsive, but none of
them ever crashed. Once the testing was complete
machines returned to their optimal state.

6.4 Xen

As stated few chapters back, Xen hypervisor failed to meet specific criteria — automated
memory management. That made it difficult to test and compare it to other hypervisors.
Xen is available as an open-source and a commercial product (Citrix), and both versions
were given a go.

The installation of the latest Citrix XenServer 7 failed as it continually froze during the
installation4 and none of the recommendations on the community forum and by Citrix
support did not resolve the problem. Out of interest, an older Citrix XenServer 6.2 was

4https://support.citrix.com/article/CTX136517

35

installed instead — successfully. That lead to the conclusion that Citrix XenServer 7
did not comply with Sun Fire X2250. Unfortunately, it was not possible to request a
trial license for such an old hypervisor, rendering Citrix XenServer’s performance testing
impossible.

After that, the open-source variant was given a try instead. Installation was a success,
and the hypervisor was populated with VMs. Unfortunately, it soon came to attention
that although Xen supports memory optimization; that process is entirely manual and
the only way to get access to advanced memory optimization features is to use a dedicated
frontend, i.e., Citrix XenServer as alternative open-source solutions are outdated and very
cumbersome to set up on modern operating systems.

36

Summary

In conclusion chapter two through four served as the theoretical background. Chapter two
introduced the concept of virtualization and laid out its history in a very brief manner. In
the third chapter two vital components of virtualization were presented — hypervisors and
virtual machines. Chapter three revised the concept of virtual memory; its connection to
hypervisors and virtual machines and what sort of memory optimization and reclamation
tools are available today. In the fifth chapter experiment methodology and the laboratory
set up process was described in detail.

Based solely on the numerical results Windows Server 2012 R2 with Hyper-V was able to
reclaim most memory from its VMs with VMware ESXi taking the second and Kernel-
based Virtual Machines third place, but Hyper-V has an inherent feature that makes its
deployment and reliability in a production environment somewhat questionable. As it was
pointed out in the thesis VMs running on top of Hyper-V are not aware of the maximum
random access memory they have the potential access too. It took a bit of trickery to
work around this limitation and force Hyper-V to allocate the much-needed RAM. On
the other hand, once dynamic memory got triggered it acted quickly in both allocating
and reallocating memory. If a VM did not utilize available memory, it took Hyper-V
less than a minute or even less to reclaim it. The hypervisor never crashed nor did the
VMs, but compared to ESXi and KVM guests Hyper-V’s VMs were more sluggish and
less responsive.

Although according to the data VMware ESXi was the second hypervisor based on the
amount of reclaimed memory, it is still the most mature package out of the three. Easy to
install and configure and it employs three memory optimization and reclamation tools5 —
offering a wide range of possibilities. Keep it in mind that tests conducted throughout this
thesis were mostly based on default system parameters, but in a production environment,
a more specific approach route might be taken. In those situations, it is beneficial to
have a tool that offers more than one resolution to the same problem and provides the
system engineer with options to configure virtualization environments based on specific
requirements. If customization is a must, then VMware ESXi is a viable option.

Performance wise Kernel-based virtual machines were the poorest, but these results should
not be taken as absolute truth, and future research is hugely commendable. As it was
mentioned in the KVM’s analysis the data gathering software did not operate as expected
and some of the data was derived from other related datasets. The hypervisor did not
crash during the test nor did the VMs — an excellent result in any hypervisor under
extreme memory pressure. Once the tests were done, the system returned to a stable
state.

KVM, depending on the frontend, can offer an experience similar to VMware ESXi —
it is a hypervisor with customization and large production environments in mind. Guest
drivers installation was not as straightforward as with ESXi, but the presence of drivers
did make a difference in performance.

5Four if including memory overcommitting.

37

Although KVM performed poorly, it holds great potential. Based on the article by Trevor
Pott The Real Threat to VMware: KVM (2016), it is seen as one of the possible future
contenders to VMware and that in itself is a noble thing. VMware is the current market
leader (70%) in the hypervisor’s industry, and that can create a state where innovation
stops. If KVM manages to grab a significant portion of the market, and it seems to
have the potential to do so, it would stir up the virtualization world and could lead to
innovations — and that would be beneficial to both virtualization as a technology and
industries that rely on it.

This thesis set out to test and analyze memory optimization and reclamation tools in
widely used hypervisors (VMware ESXi, Microsoft Hyper-V, Kernel-based Virtual Ma-
chine, Xen). The aim was to set up a dedicated environment and stress test both the
hypervisors and virtual machines within them to see how much memory could be re-
claimed and optimized to handle resources as efficiently as possible. Overall the testing
and analysis could be considered a success, even when taking into account the numerous
problems and hiccups along the way. That is a legitimate part of scientific research —
things do not always work, and that in itself is a valuable lesson.

38

Acknowledgements

I would like to thank my supervisor, Meelis Roos, for helping me to choose a topic for my
graduation thesis, providing hardware and guiding me through the creative process.

39

License

I, Tambet Viitkar

1. herewith grant the University of Tartu a free permit (non-exclusive licence) to:

Hypervisor and Virtual Machine Memory Optimization Analysis

supervised by Meelis Roos.

(a) reproduce, for the purpose of preservation and making available to the public,
including for addition to the DSpace digital archives until expiry of the term
of validity of the copyright, and

(b) make available to the public via the web environment of the University of
Tartu, including via the DSpace digital archives until expiry of the term of
validity of the copyright,

2. I am aware of the fact that the author retains these rights.

3. I certify that granting the non-exclusive licence does not infringe the intellectual
property rights or rights arising from the Personal Data Protection Act.

Tartu, 20.05.2018

References

[1] Ishan Banerjee, Fei Guo, and Kiran Tati. Memory Overcommitment in the ESX
Server. 2013. url: http://bit.ly/2GwbMfx (visited on 03/17/2018).

[2] Ed Carrel. What’s the difference between operating system swap and page? Nov. 6,
2009. url: https : / / stackoverflow . com / questions / 1688962 / whats - the -

difference-between-operating-system-swap-and-page (visited on 04/20/2018).

[3] CentOS. What is CentOS Linux? 2018. url: https://wiki.centos.org/ (visited
on 04/04/2018).

[4] Charu Chaubal. The Architecture of VMware ESXi. Oct. 24, 2008. url: https://
www.vmware.com/content/dam/digitalmarketing/vmware/en/pdf/techpaper/

ESXi_architecture.pdf (visited on 04/09/2018).

[5] Cnet. Sun Fire X2250 Xeon E5405 2 GHz. 2018. url: https://cnet.co/2IorgTi
(visited on 04/03/2018).

[6] Sarah Cooley. Introduction to Hyper-V on Windows 10. Apr. 7, 2018. url: https:
//docs.microsoft.com/en-us/virtualization/hyper-v-on-windows/about/

(visited on 04/12/2018).

[7] Sarah Cooley, Justin Terry, and Hannah Juarez. Hyper-V Architecture. Jan. 11,
2018. url: https://docs.microsoft.com/en-us/virtualization/hyper-v-on-
windows/reference/hyper-v-architecture (visited on 04/09/2018).

[8] A. Finn. How Much Memory Does My Hyper-V Host Require? Sept. 30, 2015. url:
http://www.aidanfinn.com/?p=19043 (visited on 04/17/2018).

[9] A. Finn. Software Setup Does Not Meet Memory Requirements with Dynamic Mem-
ory Enabled. Dec. 20, 2010. url: http://www.aidanfinn.com/?p=11007 (visited
on 04/17/2018).

[10] Aidan Finn. What is Hyper-V Dynamic Memory? Mar. 31, 2014. url: https:

//www.petri.com/hyper-v-dynamic-memory-overview (visited on 04/12/2018).

[11] Vivek Gite. How To Stress Test CPU and Memory (VM) On a Linux and Unix With
Stress-ng. Jan. 30, 2015. url: http://bit.ly/2HTTzN5 (visited on 03/12/2018).

[12] Eric Horschman. Hypervisor Memory Management Done Right. Feb. 18, 2011. url:
https://blogs.vmware.com/virtualreality/2011/02/hypervisor-memory-

management-done-right.html (visited on 04/12/2018).

[13] Intel. Intel Xeon Processor E5405. 2007. url: https://intel.ly/2ItbK93 (visited
on 03/29/2018).

[14] M. Tim Jones. Application virtualization, past and future. 2011. url: https://
ibm.co/2H8WDlH (visited on 03/03/2018).

[15] M. Tim Jones. Virtualization for Embedded Systems. Apr. 19, 2011. url: https://
www.ibm.com/developerworks/library/l-embedded-virtualization/ (visited
on 04/12/2018).

41

http://bit.ly/2GwbMfx
https://stackoverflow.com/questions/1688962/whats-the-difference-between-operating-system-swap-and-page
https://stackoverflow.com/questions/1688962/whats-the-difference-between-operating-system-swap-and-page
https://wiki.centos.org/
https://www.vmware.com/content/dam/digitalmarketing/vmware/en/pdf/techpaper/ESXi_architecture.pdf
https://www.vmware.com/content/dam/digitalmarketing/vmware/en/pdf/techpaper/ESXi_architecture.pdf
https://www.vmware.com/content/dam/digitalmarketing/vmware/en/pdf/techpaper/ESXi_architecture.pdf
https://cnet.co/2IorgTi
https://docs.microsoft.com/en-us/virtualization/hyper-v-on-windows/about/
https://docs.microsoft.com/en-us/virtualization/hyper-v-on-windows/about/
https://docs.microsoft.com/en-us/virtualization/hyper-v-on-windows/reference/hyper-v-architecture
https://docs.microsoft.com/en-us/virtualization/hyper-v-on-windows/reference/hyper-v-architecture
http://www.aidanfinn.com/?p=19043
http://www.aidanfinn.com/?p=11007
https://www.petri.com/hyper-v-dynamic-memory-overview
https://www.petri.com/hyper-v-dynamic-memory-overview
http://bit.ly/2HTTzN5
https://blogs.vmware.com/virtualreality/2011/02/hypervisor-memory-management-done-right.html
https://blogs.vmware.com/virtualreality/2011/02/hypervisor-memory-management-done-right.html
https://intel.ly/2ItbK93
https://ibm.co/2H8WDlH
https://ibm.co/2H8WDlH
https://www.ibm.com/developerworks/library/l-embedded-virtualization/
https://www.ibm.com/developerworks/library/l-embedded-virtualization/

[16] Kernel.org. Swap Management. 2018. url: https : / / www . kernel . org / doc /

gorman/html/understand/understand014.html (visited on 04/20/2018).

[17] Sean Michael Kerner. How Did KVM Virtualization Get Into the Linux Kernel?
Nov. 18, 2013. url: http://www.eweek.com/cloud/how-did-kvm-virtualization-
get-into-the-linux-kernel (visited on 04/20/2018).

[18] Colin Ian King. Stress-ng. Mar. 12, 2018. url: http://kernel.ubuntu.com/

~cking/stress-ng/ (visited on 03/12/2018).

[19] Colin Ian King. Stress-ng Manual. Feb. 22, 2018. url: http://kernel.ubuntu.
com/~cking/stress-ng/stress-ng.pdf (visited on 03/14/2018).

[20] Anis Koubaa. A Service-Oriented Architecture for Virtualizing Robots in Robot-as-
a-Service Clouds. 2014. url: http://bit.ly/2jdpZUD (visited on 04/27/2018).

[21] KVM. Automatic Ballooning. Jan. 23, 2014. url: https://www.linux-kvm.org/
page/Projects/auto-ballooning (visited on 04/10/2018).

[22] KVM. Management Tools. Apr. 12, 2017. url: https://www.linux-kvm.org/
page/Management_Tools (visited on 03/10/2018).

[23] OpenSUSE. Introduction to KVM Virtualization. 2018. url: https://doc.opensuse.
org/documentation/leap/virtualization/html/book.virt/cha.kvm.intro.

html (visited on 04/21/2018).

[24] oVirt. What is oVirt? 2018. url: https://www.ovirt.org/documentation/

introduction/what-is-ovirt/ (visited on 04/10/2018).

[25] Matthew Portnoy. Virtualization Essentials (Second Edition). Sybex, 2016. isbn:
978-1-119-26772-0. url: https://www.amazon.com/Virtualization-Essentials-
Matthew- Portnoy/dp/1119267722?SubscriptionId=0JYN1NVW651KCA56C102&

tag=techkie-20&linkCode=xm2&camp=2025&creative=165953&creativeASIN=

1119267722.

[26] Trevor Pott. The Real Threat to VMware: KVM. July 19, 2017. url: https://
virtualizationreview.com/articles/2016/07/19/the- real- threat- to-

vmware-is-kvm.aspx (visited on 04/22/2018).

[27] RedHat. What is KMV? 2018. url: https://www.redhat.com/en/topics/

virtualization/what-is-KVM (visited on 04/20/2018).

[28] RedHat. What is virtualization? 2018. url: https://red.ht/2HdgGiZ (visited on
03/03/2018).

[29] RoboEarth. What is Cloud Robotics? Apr. 27, 2018. url: http://roboearth.

ethz.ch/cloud_robotics/index.html (visited on 04/27/2018).

[30] Jonathan Strickland. How Server Virtualization Works. 2018. url: http://bit.
ly/2EhX7mk (visited on 03/03/2018).

[31] Andrew S. Tanenbaum and Herbert Bos. Modern Operating Systems (4th Edition).
Pearson, 2014. isbn: 978-0-13-359162-0. url: https://www.amazon.com/Modern-
Operating - Systems - Andrew - Tanenbaum / dp / 013359162X ? SubscriptionId =

0JYN1NVW651KCA56C102&tag=techkie-20&linkCode=xm2&camp=2025&creative=

165953&creativeASIN=013359162X.

42

https://www.kernel.org/doc/gorman/html/understand/understand014.html
https://www.kernel.org/doc/gorman/html/understand/understand014.html
http://www.eweek.com/cloud/how-did-kvm-virtualization-get-into-the-linux-kernel
http://www.eweek.com/cloud/how-did-kvm-virtualization-get-into-the-linux-kernel
http://kernel.ubuntu.com/~cking/stress-ng/
http://kernel.ubuntu.com/~cking/stress-ng/
http://kernel.ubuntu.com/~cking/stress-ng/stress-ng.pdf
http://kernel.ubuntu.com/~cking/stress-ng/stress-ng.pdf
http://bit.ly/2jdpZUD
https://www.linux-kvm.org/page/Projects/auto-ballooning
https://www.linux-kvm.org/page/Projects/auto-ballooning
https://www.linux-kvm.org/page/Management_Tools
https://www.linux-kvm.org/page/Management_Tools
https://doc.opensuse.org/documentation/leap/virtualization/html/book.virt/cha.kvm.intro.html
https://doc.opensuse.org/documentation/leap/virtualization/html/book.virt/cha.kvm.intro.html
https://doc.opensuse.org/documentation/leap/virtualization/html/book.virt/cha.kvm.intro.html
https://www.ovirt.org/documentation/introduction/what-is-ovirt/
https://www.ovirt.org/documentation/introduction/what-is-ovirt/
https://www.amazon.com/Virtualization-Essentials-Matthew-Portnoy/dp/1119267722?SubscriptionId=0JYN1NVW651KCA56C102&tag=techkie-20&linkCode=xm2&camp=2025&creative=165953&creativeASIN=1119267722
https://www.amazon.com/Virtualization-Essentials-Matthew-Portnoy/dp/1119267722?SubscriptionId=0JYN1NVW651KCA56C102&tag=techkie-20&linkCode=xm2&camp=2025&creative=165953&creativeASIN=1119267722
https://www.amazon.com/Virtualization-Essentials-Matthew-Portnoy/dp/1119267722?SubscriptionId=0JYN1NVW651KCA56C102&tag=techkie-20&linkCode=xm2&camp=2025&creative=165953&creativeASIN=1119267722
https://www.amazon.com/Virtualization-Essentials-Matthew-Portnoy/dp/1119267722?SubscriptionId=0JYN1NVW651KCA56C102&tag=techkie-20&linkCode=xm2&camp=2025&creative=165953&creativeASIN=1119267722
https://virtualizationreview.com/articles/2016/07/19/the-real-threat-to-vmware-is-kvm.aspx
https://virtualizationreview.com/articles/2016/07/19/the-real-threat-to-vmware-is-kvm.aspx
https://virtualizationreview.com/articles/2016/07/19/the-real-threat-to-vmware-is-kvm.aspx
https://www.redhat.com/en/topics/virtualization/what-is-KVM
https://www.redhat.com/en/topics/virtualization/what-is-KVM
https://red.ht/2HdgGiZ
http://roboearth.ethz.ch/cloud_robotics/index.html
http://roboearth.ethz.ch/cloud_robotics/index.html
http://bit.ly/2EhX7mk
http://bit.ly/2EhX7mk
https://www.amazon.com/Modern-Operating-Systems-Andrew-Tanenbaum/dp/013359162X?SubscriptionId=0JYN1NVW651KCA56C102&tag=techkie-20&linkCode=xm2&camp=2025&creative=165953&creativeASIN=013359162X
https://www.amazon.com/Modern-Operating-Systems-Andrew-Tanenbaum/dp/013359162X?SubscriptionId=0JYN1NVW651KCA56C102&tag=techkie-20&linkCode=xm2&camp=2025&creative=165953&creativeASIN=013359162X
https://www.amazon.com/Modern-Operating-Systems-Andrew-Tanenbaum/dp/013359162X?SubscriptionId=0JYN1NVW651KCA56C102&tag=techkie-20&linkCode=xm2&camp=2025&creative=165953&creativeASIN=013359162X
https://www.amazon.com/Modern-Operating-Systems-Andrew-Tanenbaum/dp/013359162X?SubscriptionId=0JYN1NVW651KCA56C102&tag=techkie-20&linkCode=xm2&camp=2025&creative=165953&creativeASIN=013359162X

[32] UKEssays. The History Of Virtualization. 2015. url: http://bit.ly/2q4gBqq
(visited on 03/03/2018).

[33] VMWare. Virtualization Essentials. 2018. url: http://bit.ly/2GQsklR (visited
on 03/03/2018).

[34] VMware. Understanding Memory Overhead. url: https://pubs.vmware.com/
vsphere-4-esx-vcenter/index.jsp#com.vmware.vsphere.resourcemanagement.

doc_40/managing_memory_resources/c_understanding_memory_overhead.

html (visited on 04/16/2018).

[35] VMware. Understanding Memory Resource Management in VMware ESX 4.1. 2010.
url: https://www.vmware.com/content/dam/digitalmarketing/vmware/en/
pdf/techpaper/vsp_41_perf_memory_resource-management-white-paper.pdf

(visited on 04/05/2018).

[36] VMware. Understanding Memory Resource Management in VMware ESX Server.
2009. url: http://bit.ly/2q4uR2o (visited on 03/16/2018).

[37] Ubuntu Wiki. Ubuntu - List of Releases. List of Releases. 2018. url: https://
wiki.ubuntu.com/Releases (visited on 04/04/2018).

[38] Wikibooks. Introduction to Information Technology — Virtualization. Ed. by Wik-
ibooks. 2016. url: http://bit.ly/2Ha5SSy (visited on 03/03/2018).

[39] Wikipedia. Ubuntu (operating system). 2018. url: https://en.wikipedia.org/
wiki/Ubuntu_(operating_system) (visited on 04/04/2018).

[40] Wikipedia. Virtual Machine Manager. 2018. url: http://bit.ly/2uQxF88 (visited
on 04/03/2018).

[41] Wikipedia. Windows Server 2012. 2018. url: https://en.wikipedia.org/wiki/
Windows_Server_2012 (visited on 04/04/2018).

[42] Wikipedia. Windows Server 2016. 2018. url: https://en.wikipedia.org/wiki/
Windows_Server_2016 (visited on 04/04/2018).

[43] Wikpedia. CentOS. 2018. url: https://en.wikipedia.org/wiki/CentOS (visited
on 04/04/2018).

[44] Matt Woodward. Swap vs. Paging File. 2018. url: https://archive.techarp.
com/showarticle1776.html?artno=143&pgno=1 (visited on 04/20/2018).

[45] XenProject. Best Practices. 2015. url: https://wiki.xenproject.org/wiki/
Xen_Project_Best_Practices (visited on 04/08/2018).

[46] XenProject. History. 2014. url: https://www.xenproject.org/about/history.
html (visited on 04/08/2018).

43

http://bit.ly/2q4gBqq
http://bit.ly/2GQsklR
https://pubs.vmware.com/vsphere-4-esx-vcenter/index.jsp#com.vmware.vsphere.resourcemanagement.doc_40/managing_memory_resources/c_understanding_memory_overhead.html
https://pubs.vmware.com/vsphere-4-esx-vcenter/index.jsp#com.vmware.vsphere.resourcemanagement.doc_40/managing_memory_resources/c_understanding_memory_overhead.html
https://pubs.vmware.com/vsphere-4-esx-vcenter/index.jsp#com.vmware.vsphere.resourcemanagement.doc_40/managing_memory_resources/c_understanding_memory_overhead.html
https://pubs.vmware.com/vsphere-4-esx-vcenter/index.jsp#com.vmware.vsphere.resourcemanagement.doc_40/managing_memory_resources/c_understanding_memory_overhead.html
https://www.vmware.com/content/dam/digitalmarketing/vmware/en/pdf/techpaper/vsp_41_perf_memory_resource-management-white-paper.pdf
https://www.vmware.com/content/dam/digitalmarketing/vmware/en/pdf/techpaper/vsp_41_perf_memory_resource-management-white-paper.pdf
http://bit.ly/2q4uR2o
https://wiki.ubuntu.com/Releases
https://wiki.ubuntu.com/Releases
http://bit.ly/2Ha5SSy
https://en.wikipedia.org/wiki/Ubuntu_(operating_system)
https://en.wikipedia.org/wiki/Ubuntu_(operating_system)
http://bit.ly/2uQxF88
https://en.wikipedia.org/wiki/Windows_Server_2012
https://en.wikipedia.org/wiki/Windows_Server_2012
https://en.wikipedia.org/wiki/Windows_Server_2016
https://en.wikipedia.org/wiki/Windows_Server_2016
https://en.wikipedia.org/wiki/CentOS
https://archive.techarp.com/showarticle1776.html?artno=143&pgno=1
https://archive.techarp.com/showarticle1776.html?artno=143&pgno=1
https://wiki.xenproject.org/wiki/Xen_Project_Best_Practices
https://wiki.xenproject.org/wiki/Xen_Project_Best_Practices
https://www.xenproject.org/about/history.html
https://www.xenproject.org/about/history.html

Appendix

Figure 6.10: Network topology

44

	Resümee/Abstract
	List of Figures
	List of Tables
	Abbreviations
	Introduction
	Connection to computer engineering

	Virtualization
	What is virtualization?
	Where did it start?
	Types of virtualization

	Hypervisors and Virtual Machines
	Hypervisors
	Type 1
	Type 2
	Resource Allocation
	Options for Type 1 Hypervisor

	Virtual Machines

	Virtual memory and optimization
	A brief overview of virtual memory
	Swapping vs. Paging
	Memory Optimization
	Overcommiting
	Ballooning
	Page sharing
	Compression

	Methodology and laboratory
	Methodology
	Laboratory
	Hardware
	Software

	Analysis
	VMware ESXi
	Memory optimization
	Performance

	Hyper-V
	Memory optimization
	Performance

	KVM
	Memory optimization
	Performance

	Xen

	Summary
	Acknowledgements
	License
	References
	Appendix

