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Multichannel battery testing system

This thesis focuses on the hardware and software development of a battery testing system
capable of concurrently testing eight single cell Li-ion or Li-Po rechargeable batteries while
providing overvoltage, undervoltage and temperature protection. The battery testing system can

log test measurements onto an SD card, which provides a computer independent backup.

The battery testing system is computer controllable: the software allows changing various
parameters, creating customized test scenarios and shows live plots during tests. When a test
ends a conclusive plot will be shown. The system’s supported observable battery parameters

are voltage, current, temperature and the amount of electric charge/discharge.

CERCS: T120 Systems engineering, computer technology, T125 Automation, robotics, control

engineering; T170 Electronics

Keywords: electronics, rechargeable battery, automated testing, SD card

Mitme kanaliga akutestimisiisteem

Kéesolev bakalaureusetod kirjeldab akutestimisiisteemi tarkvara ja riistvara arendust.
Akutestimissiisteem on voimeline samaaegselt testima kaheksat iiheelemendilist Li-ion voi Li-
Po akut, kaitstes neid alalaetuse, iilelactuse ja kdrge temperatuuri eest. Seade saab kirjutada SD

malukaardile testi moStetulemused, mis tagab arvutist soltumatu andmete varundamise.

Akutestimissiisteem on arvutijuhitav: tarkvaraga saab seadistada erinevaid testi parameetreid,
mis vOimaldab luua erinevaid teststsenaariume. Tarkvara kuvab kédimasoleva testi ajal
graafikuid reaalajas ja testi 16pus kokkuvotva tulemuste graafiku. Testimisiisteem voimaldab

jalgida akude pingeid, voole, temperatuure ja jalgib akude laetuse ning tithjenemise tasemeid.

CERCS: T120 Siisteemitehnoloogia, arvutitehnoloogia, T125 Automatiseerimine, robootika,
T170 Elektroonika

Mairksonad: elektroonika, aku, automatiseeritud testimine, SD malukaart
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Acronyms and abbreviations

ADC Analog-to-digital converter
DAC Digital-to-analog converter
DMA Direct memory access
FIFO First in, first out
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HAL Hardware abstraction layer
12C Inter-Integrated Circuit
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Li-ion Lithium-ion

Li-Po Lithium-ion polymer

MCU Microcontroller unit

MOSFET Metal—-oxide—semiconductor field-effect transistor

PCB Printed circuit board

PSU Power supply unit

PWM Pulse width modulation

SCL Serial Clock Line

SD Secure Digital

SDA Serial Data Line

SDIO Secure Digital Input Output

SPI Serial Peripheral Interface Bus

UART Universal asynchronous receiver/transmitter

USB Universal Serial Bus



1. Introduction

Rechargeable batteries are used in a wide variety of applications. Conducting tests on
rechargeable batteries might be necessary to verify battery’s suitability in a specific application
and when comparing batteries. Testing used batteries can help identify which ones have passed
their rated usable lifespan or are close to it [1]. In such a scenario, rather than periodically
swapping out batteries, battery testers could be used to more closely evaluate the state of a

battery, resulting in environmentally and economically favourable outcomes.

Quantifying all conditions of a battery cannot be done in short, comprehensive tests. The state-
of-health of a battery can be estimated to various degrees of accuracy based on available
symptoms [1]. In order to ease the testing procedures, battery testing equipment can be used.
The sophistication of the battery testing equipment determines which parameters of the battery

can be directly or indirectly measured.

Measuring parameters of a battery could be carried out with non-specialized equipment, but it
can be more time-consuming and in case of human error or misuse, also damaging for the
equipment and for the battery. Battery testing equipment may implement safeguards to avoid
damage and provide different types of automated tests in order to analyse different aspects of
the battery. The equipment may have different types of interfaces, i.e. on-board dials, screens
and other indicators, but it may also be controllable with computer software, which provides

the user interface [2].

This thesis gives an overview of the design of a computer controllable multichannel battery
testing system. The highlights of the testing system include the ability to test up to eight
batteries concurrently, user configurable test parameters and safeguards implemented to protect
batteries from various hazards. Areas discussed in the thesis cover the requirements of the
system, electronics and software design. During the development process a working prototype
of the battery testing system was built. The capabilities of the prototype are examined alongside

with data collected from conducted tests.



2. Overview

Battery performance depends on how the battery is used and on the environmental conditions
under which it is used. These environmental conditions can be deficiently specified in market
advertising [3]. When comparing batteries, environmental conditions and testing parameters

must be similar or the same.

Most commonly evaluated parameters of a battery include battery capacity, the ability to store
energy; internal resistance, describing current delivery capability; self-discharge, reflecting
mechanical integrity and stress-related conditions [1]. Additionally, parameters of interest
include discharge curves, showing effective capacity relation to discharge rates; effects of
temperature; cycle life, the number of cycles a cell can perform before its capacity drops to 80%
of its initial specified capacity; effects of discharge depth on cycle life [3]. Many of these
parameters require carrying out comprehensive and time-consuming tests, which can be

automated with the use of battery testing equipment.

The market offers battery testing equipment in various price ranges, functionality and

measurement accuracy. Examples include:

e The BST8-3, starting with prices of about USD$3000, can concurrently test multiple
batteries with configurable voltages and currents. This device is interfaceable with a
computer. For additional cost, the functionality of connecting the device with the
computer over Wi-Fi can be added [4].

e For less cost, various controllable electronic loads are available [5]. Although these
provide less functionality, they can be used to discharge a battery at known rates and
thus can be used for example to measure effective capacity relation to the different
discharge rates. Typical electronic loads cannot be used to recharge a battery, so
separate devices are needed for this purpose.

e Lastly, there are devices such as the Adafruit Charger Doctor, which can measure the
capacity of Universal Serial Bus (USB) power banks. These devices do not incorporate
electronics neither for charging nor discharging but can measure the amount of charge

and discharge that has moved through them. [6]



2.1. System requirements

The battery testing system described in this thesis was developed taking into consideration the
suitability for long running tests with moderate charging and discharging currents. The

requirements imposed for the design of the battery testing system were:

e User configurable test parameters, allowing to alter:

o maximum charging current (in the range of 330...2000 mA) and charging
voltage (in the range of 3.5...4.4 V, which is sufficient for most single cell
Lithium-ion (Li-ion) and Lithium-ion polymer (Li-Po) batteries [7]),

o discharging current (in the range of 0...4000 mA) and discharging until
specified voltage,

o number of charge-discharge cycles to be conducted.

e Ability to test up to eight batteries concurrently.
e Monitors each battery’s:

o current,

o Voltage,

o temperature,

o charge/discharge amount.

e Allows testing batteries in a thermal chamber; the batteries should be connected to the
battery tester with long wires enabling to leave the tester outside the chamber.

e Provides convenient way to get measurements onto a PC.

e Configurable safeguards for battery voltage and temperature.

e Fault detection in communication with the PC.

e Live data plotting of an ongoing test and conclusive plots of the test’s results.

e Backs up test data onto a Secure Digital (SD) card.

The laboratory thermal chamber allows to test multiple batteries in similar conditions at various
temperatures. The capability of measuring the temperature of each battery separately may prove
useful in a laboratory thermal chamber test, as different batteries might reach the thermal
chamber’s specified temperature at different rates. Battery temperature measurements show
how charging and discharging affect the battery’s temperature, which may be of interest in

some applications.
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3. Design

3.1. General Structure

The overall structure of the battery testing system is modular. This modularity allowed separate
development and testing of the systems individual components. Also, during testing or using
the system, in case of a hardware problem with the device, this modularity should make

pinpointing and repairing/replacing faulty components easier.

In Figure 1, alongside with laser cut acrylic glass structural elements used to assemble the

device, the main components of the battery testing system’s hardware can be seen:

1. two 80 mm Arctic F8 PWM fans to provide cooling for the module boards during battery
discharge operations;

2. amodule board of the battery testing system, up to eight can be connected,;

3. Mean Well RSP-200-7.5 power supply (PSU), which provides power to the system;

4. the main board of the battery testing system.

=
@7
| -

Figure 1. Photograph of the assembled battery testing system
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3.2. Electronics design

The main battery testing system’s electronics consists of a main board and eight module boards.
The electronics schematics and printed circuit boards (PCBs) were designed in Altium
Developer 17. Most important electronical components on the main board and module boards,

including the types of their interconnecting signals, are shown in Figure 2.
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Figure 2. System electronics overview

3.2.1. Module board

Each module board allows to connect a battery to it with a 2x4 Molex connector. The electronics

on a module board allow to carry out charging and discharging of the batteries based on the
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main board’s commands and converts necessary parameters of a battery into suitable form for
the main board’s analog-to-digital converters (ADCs) to measure. A module board is attached
to the main board with a PCI Express x1 connector. All the electronical schematics of the

module board can be seen in Appendix 1.

The module boards are designed with two-sided PCBs. Figure 3 shows two module boards, one
with a heatsink installed. On the left module board, the layout of the components on the top
PCB layer is shown. The tasks handled by grouped components in the figure is as follows: 1.
current measurement; 2. charge/discharge monitoring; 3. voltage measurement; 4. charging
electronics; 5. discharging electronics. Bottom side of the PCB houses ground (GND) polygon
and some signal wires. Note that in squares indicated with 1 and 2 electrical fixes have been
made. Square 1 shows an operational amplifier added to the current shunt monitor’s reference,
and square 2 has a rerouted power wire. These corrections have been included in the module

board schematics.

TEMP|3v3

TEMP]3v3
S-S+

Figure 3. Photograph of module boards’ PCB top side

Measurement electronics

The AD8278ARZ difference amplifier, with a gain of %, is used to scale down battery voltage.
A separate pair of wires coming from the battery is used to measure battery voltage without
voltage drop on the battery’s current carrying wires. The INA213 current shunt monitor’s
reference voltage has been chosen such that the current shunt monitor can measure 2.05 A of

charging current and 4.20 A of discharging current. The difference amplifier’s and current shunt

13



monitor’s outputs are measured by the main board’s 12-bit ADC with 2.5 V reference, meaning
voltage can be measured in the range of 0...5 V with the resolution of 1.22 mV and current
with the resolution 1.53 mA.

The LTC4150 coulomb counter is used to keep track of the amount of charge or discharge of a
battery. This integrated circuit (IC) monitors current through an external shunt and its internal
voltage-to-frequency converter transforms current sense voltage into a series of output pulses

at the interrupt pin, which can be captured by the main board’s microcontroller unit (MCU).

1
3600 * Gvf * Rsense

Each pulse at the interrupt pin corresponds to a charge of Ah, where for the

LTC4150, the typical value of voltage to frequency gain (Gyf) is 32.55 Hz/V [8], meaning with
an 8 mQ shunt resistor (Rsense) Used on the system, the coulomb counter achieves a resolution
of around 1.06 mAh. The polarity pin of the IC gives information in which direction the charge

had moved.

For temperature measurements the LMT87 temperature sensor is used. It can be attached to the
battery, as the sensor is connected to the battery tester with long wires. The sensor operates in
the temperature range of —50...150 °C with the corresponding output range of 3277...538 mV
[9]. This voltage is directly measured by the main board’s MCU’s internal ADC. As the MCU’s
ADC uses 3 V reference, then the measurable temperature is reduced to the range of -28...150
°C, 12-bit ADC gives the resolution of 0.04 °C per bit.

Charging and discharging electronics

The electronic load schematics was first simulated using LTSpice software. The LT6004
operational amplifiers are used to steer the IRF530 metal-oxide—semiconductor field-effect
transistor (MOSFET) according to the main board’s analog control signal. The electronic load
is designed to be controlled with an analog signal up to 3 V, which allows the electronic load
to discharge a battery with the current of 0...4200 mA, meaning with a 12-bit DAC, resolution
of around 1.03 mA will be achieved.

To cool the IRF530 MOSFET, firstly thermal vias were added to the 24x30 mm two-sided PCB
section the MOSFET is soldered onto. Additionally, an aluminium heatsink with dimensions of
35x35x10 mm can be installed on top of the MOSFET. The heatsink can be seen in Figure 3 on
the right module board. During testing at ambient temperature of 25 °C, it was concluded that
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the electronic load can continuously discharge an 8.4 W load, then the MOSFET stabilized at
temperature of 123 °C. During the test the fans were set to maximum speed and a shroud was
placed onto the device to optimize airflow. With these ambient temperatures, 4 A of discharge
current can be used for short periods of around 15 seconds. For continuous discharging at high
currents the heatsinks should be provided with greater airflow and/or lower ambient

temperatures. The MOSFET is rated for maximum operating temperature of 175 °C [10].

The charging operations are handled by the BQ24257 IC, which provides configurable charging
currents of 330 mA and 500...2000 mA, with 50 mA steps. Additionally, the IC allows the
configuration of charging voltage in the range of 3500...4440 mV, with voltage steps of 20
mV. [11]

3.2.2. Main board

All eight module boards are connected to the main board. The main board controls the module
boards and collects measurements of batteries’ parameters from the module boards. The main
board is intended to be connected to a computer via an USB cable. The MCU uses its universal
asynchronous receiver-transmitter (UART) peripheral to communicate with the PC alongside
with the CP1202 USB-UART bridge IC. All the electronical schematics of the main board can

be seen in Appendix 2.

Microcontroller unit

The STM32F103VFT9 was chosen as the MCU, because of availability and as it had necessary
peripherals — UART, Serial-Peripheral Interface bus (SPI), inter-integrated circuit (1°C) bus,
timers, and Secure Digital Input Output (SDIO). This MCU had enough General-Purpose Input-
Outputs (GP10s) and also provided sufficient amount of analog input pins, which are necessary

as the MCU’s ADC is used for battery temperature measurements.

A timer of the MCU is configured to provide pulse with modulation (PWM) for the cooling
fans. The duty cycle of the PWM is configurable in runtime, which in turn allows to control the
speed of the fans. The default PWM duty cycle has been configured such that on the start-up of

the device both fans are guaranteed to start spinning at low speeds.
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The main board also incorporates the micro-SD card connector. The SD card is wired to
communicate with the MCU in 4-bit SD transfer mode. The FDC6330L integrated load switch
can be used to turn off power for the SD card with an MCU’s GPIO, which effectively allows
to reset the SD card, should the need arise [12].

External ADC-DAC and I°C multiplexer

The MAX1257 I1C’s 12-bit analog inputs (16 in total) are used for accurate battery voltage and
current measurements. The IC communicates with the MCU over SPI bus. The IC has averaging
capabilities [13], it has been configured to output the average of 32 individual measurements.
During development it was measured that acquiring 16 ADC readings with averaging takes less
than 1 ms. The MAX1257 also incorporates eight 12-bit DAC channels, which are used to
control the electronic load used for discharging batteries. The MAX1257’s ADC uses its
internal 2.5 V reference and the DAC uses external 3 V reference voltage from the ADR363.
The same 3 V reference is also used by the MCU’s internal ADC.

The PCA9547, an eight-channel 12C multiplexer is used to communicate with module boards’
charging ICs. The usage of an 1°C multiplexer is necessary because the address of the BQ24257
charging IC is factory set and unchangeable [11], thus the 1°C multiplexer makes it possible to
still use a single 1°C bus.

General PCB layout

The main board is designed onto a four-layer PCB:

1. The top layer (see Figure 4) incorporates (A) fan connectors, (B) eight PCI Express x1
connectors for the module boards, (C) 20-pin JTAG connector for debugging and
programming, (D) 1°C multiplexer with its signal wires, (E) ADC-DAC, (F) 12 V power
regulator, (G) 3.3 V power regulator, (H) crystal oscillator, reset and boot switch for the
MCU, (1) micro-SD card connector with its load switch, (J) USB mini-B connector with
a 3.3 V regulator and (K) 2x2 Molex connector for the PSU.

2. The first internal layer is mainly ground layer.

3. The second internal layer is used for ADC-DAC signal wires. Using an internal layer
for these signals will help to isolate them from noise.

16



4. The bottom layer incorporates mainly the MCU with its signal wires and the USB-
UART bridge IC.

\é) - g GND& %Qi e
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Figure 4. Photograph of main board PCB top side

The main board gets its input power from the Mean Well PSU, which is set to output 6 V. The
PSU can deliver 26.7 A of current [14]. The 6 V is fed straight into the module boards’
BQ24257 charging IC. Additionally, 3.3 V and 12 V are created on-board. 3.3 V is used by the
MCU, external ADC-DAC IC, I°C multiplexer and SD card, 12 V is used by the cooling fans
and module boards’ electronic loads. The main board also has circuitry to get 3.3 V from the
USB connector, which allowed to test and develop most of the main board’s functionality
without the PSU.

3.3. Workflow of the MCU

The MCU code was developed in Microsoft Visual Studio Community 2015, with the addition
of VisualGDB v5.2R9, which added MCU debugging functionality. Segger J-Link v9.3 was

used for debugging and programming.
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The MCU will first initialize its internal peripherals and after that goes through the setup of
external I1C-s. STM32CubeMX was used to generate initialization code and hardware
abstraction layer (HAL) for the MCU and its peripherals. The initialization code worked well,
apart from the 1°C code, in which the MCU sometimes went into timeout loop and failed the
initialization due to the 12C’s analog filter providing a wrong value. The workaround was to
configure Serial Data Line (SDA) and Serial Clock Line (SCL) pins to GP10Os, pull them logical
low and then high, lastly reconfigure them to I°C again [15]. The second issue involved timer
initialization, which tried to carry out read-modify-write on a write-only register, which resulted

in disabling the debugging interfaces of the MCU.

Start
Reset UART | Send response-';
" Hasinbound . yps . watchdog& : .~ Command expects ™. Yes _iover UART & |
... UART commands? .- ‘log command .. response? . . logitto |
{ toSDcard . SDcard
NOI | — . N0¢ e eeneeenen ] ................
Update battery Any
Is UART. No_) temperature, (_} ~battf:?i‘es """"'-;,_No
“., watchdog expired? .- : currentand ., N A critical
voltage readings statc"
v — ey
Disable
i ongoing | Go to
"battery testing, Start
operations

Figure 5. MCU main loop diagram

After initializations, the MCU will go into the main loop as shown in Figure 5. Firstly, the MCU
will act upon commands it has received, if necessary prepares a reply and if logging is enabled,
writes data to SD card. Inbound UART data validity is also checked with cycling redundancy
check — CRC-32. Continuing in the main loop, UART watchdog is checked, if it has timed out,
all battery testing operations will be halted. After that, the MCU will update current and voltage
readings from the external ADC and averages temperature readings from internal ADC’s
readings, which are continuously gathered with dynamic memory access (DMA) peripheral. If
one channel’s temperature or voltage is not in the range of permitted values, that channel’s

testing operations will be aborted. The range of these permitted values and UART watchdog
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timeout are configurable from the PC. The MCU always keeps battery measurements up-do-
date so in case a request from the PC is received valid data is always at hand.

3.4. Communication

The UART configuration is as follows: baudrate 500,000; 8 data bits; 1 stop bit; no parity bits.
The MCU’s UART uses a circular first in, first out (FIFO) buffer for inbound data, the buffer
is filled in UART interrupt callback. Outbound UART data is transmitted with DMA.

The communication is set up in the way that the computer sends eight bytes of data to the
device. These eight bytes can be commands, e.g. set a specific module board to drain a battery
at a specific current; commands do not have replies. The eight bytes can also be requests, e.g.
the computer requests a specific module board’s battery voltage, current, temperature and
coulomb counter data. The lengths of replies can vary dependent on the request. See Appendix

3, for the complete list of all commands/request.

The commands/requests usually are structured as follows: the 1% byte is command code —
dependent on that the MCU knows how it’s supposed to react, the 2" byte is usually the index
of a module board, the bytes 3 and 4 usually form a value, which is given to the MAX1257
DAC to set up discharging current or to the BQ24257 charging IC to alter charging parameters.
The last 4 bytes are CRC-32.

An area of improvement in the communication protocol would be to add Consistent Overhead
Byte Stuffing (COB), which would allow to implement commands/requests of arbitrary length.

Then for example it would be possible to send initialization parameters in one command.
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3.5. Calibration

Calibration data is used to convert physical quantities into values usable for the MCU and for
conversions the other way around. Each out of the eight testing channels has its own calibration,
0" channel’s calibration is shown in Figure 6. In the figure, voltage, current and temperature
calibration plots show the relations to their corresponding physical quantities. Load calibration
plot shows what DAC value the MCU expects for a given discharge current. Linear fitting

calibration data gave root-mean-squared error values smaller than 0.05.

Voltage calibration Current calibration

5 _ 4
Z. ﬂ X Data
%})4‘5 g Fit
S I ] =
E 4 X D_ata E
E 35 Fit §
Q ]
=55 ‘ : : = 6 : : : :
2000 2500 3000 3500 4000 0 1000 2000 3000 4000 5000
ADC reading ADC reading
Load calibration Temperature conversion function
5000 : : : : 200 ‘ : :
O 150
% fusli
_ ]
s § 100
[~
(:é 3 50}
A £
S 0]
L I L L _50 L I L
0 1 2 3 4 5 0 1000 2000 3000 4000
Multimeter current [A] Voltage [mV]

Figure 6. Channel O calibration plots

The calibration of the module boards was done using Textronix DMM 4050 multimeter, TTi
QL355TP variable lab bench power supply and Mighty Watt electronic load. The devices were
controlled, and results were collected and stored using MATLAB R2016a. The temperature
conversion is done based on the temperature sensor’s conversion function [9] and was not

calibrated with other measuring devices.

Voltage calibration setup used the lab bench power supply, providing various voltages in the

range of 2.6...4.8 V to the battery voltage sense inputs of the module board. Meanwhile the
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multimeter measured the voltages on the same inputs, so with the main board ADC’s voltage

readings the voltage calibration was created.

Data for load calibration and current calibration discharge part were collected at the same time.
For that the multimeter, the lab bench power supply and the tester’s module board were
connected in series. The module board’s electronic load was used to set an amount of discharge
current and hold the current until measurements were collected, then the current was increased,
and the process repeated; current range of 0...4 A was used. The charging part of the current
calibration was done using MightyWatt electronic load that simulated various charging currents
passing through the module board’s current measuring shunt resistor, whilst the multimeter and

the main board’s ADC were measuring the current.

3.6. Data logging onto SD card

The logging capabilities of the device were tested with the Silicon Power 8 GB Elite UHS-1
SD card [16], which was formatted in FAT32 file system with cluster size of 4 KiB. The
microcontroller uses a generic FAT/exFAT filesystem module [17] called FatFs for creating
log files, writing and synchronizing the log files. Special attention of the synchronization
operation was given as this operation ensures that data from buffers has been written to the SD
card [18], but it also hinders performance as shown in Table 1. Based on the table, the

synchronization was set to take place periodically after 200 bytes.

Table 1. Writing 300,000 bytes to a file, in blocks of 10 bytes

Synchronization operation after | Average write speed Average time to write 10 bytes
Never 42492 bytes/s ~0.24 ms
100 bytes 8551 bytes/s ~1.17ms
200 bytes 13717 bytes/s ~0.72ms

Data is written to the SD card in ASCII. For each command or request from the PC, the logged
data includes: time, the command/request code and in case of a request also the reply. The data
logging timestamp’s resolution is set to 10 ms. The MCU uses STM32CubeMX HAL’s SysTick
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to keep track of elapsed time. To counter the SysTick’s possible drift, the PC should
periodically send a time update. The timestamp logged onto the SD card consists of two values:

1. PC time since the start of a test,

2. MCU measured time since the PC sent its time update.

The logged data is sufficient to reread and recreate the test results. It was observed, that
MATLAB serial library’s capability to sending a command over UART and getting a reply took
about 100 ms. At most 69 bytes of data (see Appendix 3 — Table 4) is written to the SD card for
reacting to a command, which means an 8 GB SD card should be sufficient to log data for over
3000 hours.
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4. Results and testing

4.1. Coulomb counter accuracy test

Two 30-minute tests were conducted to see the accuracy of the battery tester’s on-board
coulomb counter IC, see Table 2 for the results. The tests were conducted at fixed discharge
currents with measurements taken every 10 seconds. Later the currents gathered by multimeter
and tester were used to calculate the discharge amount in mAh. The calculation involved
integrating the currents with the trapezoidal rule and dividing the integral by 3.6 to convert
coulombs to mAh. In the end of the 30-minute test runs, both the coulomb counter IC’s result
and tester current integral were less than 1.1% off from the multimeter measured current

integral.

Table 2. 30-minute coulomb counter drain test

Tester set DMM 4050 Tester measured current | Coulomb counter drain
drain current | multimeter measured | integral [mAh] amount [mAh]

[mA] current integral [mAh]

500 249.0 249.2 251.7

750 372.8 371.0 3755

4.2. User interface

The PC software, which allows to control the device, is written in MATLAB R2016a.
MATLAB scripts provide means to connect and communicate with the battery testing system,

and to store and plot data acquired from the testing device.

Ready-to-run scripts are provided, which allow users to specify the voltage bounds in which
specific batteries will be tested, charging and discharging currents. These scripts allow to
configure the number of charge-discharge cycles that will be conducted or allow to set the time
during which batteries will be cycled. The scripts check user-configurable parameters and the

user will be warned if any of the parameter is out of reasonable or unsupported bounds.
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Live plotting features were added to the MATLAB scripts to allow monitoring an ongoing test.
The live plots’ time window length is user-configurable. Battery tester’s channels 0 and 5 live
data plots during discharge are shown in the Figure 7, the respective channel’s results are
arranged columnwise. The script was configured to update current and voltage at maximum
frequency, coulomb counter data i.e. charge and discharge information every 5 seconds and

temperature every 16 seconds. Rowwise the plot contains:

e The first row’s subplots depict voltages with blue lines and currents with red lines,
negative currents represent discharging. The units are volts and amperes respectively.

e The second row’s subplots depict coulomb counter readings, where the green line shows
charging and the red line discharging in milliamp-hours.

e The third row’s subplots depict temperature sensor readings in Celsius scale.
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3.9 e . -0.28
:_':- B S e+ e T _: -"..-":. jg S — T :: . bl
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Figure 7. Two battery test live plot screenshot



When a test ends or SD card backup data is read, the MATLAB script opens an interactable
plot for each channel that underwent a test, an example can be seen in the Figure 8. In the
example the battery was discharged and recharged two times, with the currents of -0.5 and 0.5
A respectively, within the voltage range of 3.7 V to 4.1 V. To analyze a timeframe of interest,
a subplot can be zoomed in, the other plots’ time scales will also adjust accordingly. The

subplots’ locations and coloring scheme is the same as the live plot’s.
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Figure 8. Battery cycling test results

Depending on the need, the user can modify or create new MATLAB scripts, using the provided
code to communicate with the device and to plot collected data. This allows to conduct tests
with different parameters and purposes. The user can choose which data is plotted and acquired
from the battery tester. The MATLAB functions also provide means to set battery tester’s
configurations and override battery protection parameters, in case the user wishes to perform
destructive battery tests.
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Summary

The aim of this thesis was to develop a multichannel battery testing device that allows to test
batteries in a laboratory thermal chamber. The battery tester’s requirements were chosen to
accommodate testing single cell Li-Po and Li-ion batteries. The hardware on the resulting
prototype is fully functional and the software allows to conduct different user-configurable tests
and presents the results in various graphs. Up to eight single cell batteries can be tested

concurrently. Most important aspects of the battery tester prototype were:

e able to measure voltage (range of 0...5 V), current (range of -4...2 A), temperature
(range of —28...150 °C), monitors the amount of charge/discharge;

e charging current range of 0.33...2 A and discharging current up to 4 A;

e protecting the batteries against undervoltage, overvoltage and overtemperature;

e logs backup data to an SD card, which can be used to reproduce the test results.

The electronics of the battery testing device were divided onto a main board and eight module
boards. One battery can be connected to each module board. A module board can charge-
discharge a battery and provides necessary conversions for the main board to conduct
measurements of the battery. The MOSFET based electronic load on the module board is
controlled by the main board’s external DAC. For charging operations, module boards have

highly integrated and configurable charging ICs.

The main board is responsible for communicating with the computer, controls and collects
measurements from the module boards. Voltage and current measurements are done using an
external ADC. Temperature measurements are conducted by the main board MCU’s internal

ADC. The external ADC and DAC are used for improved accuracy and precision.

The microcontroller’s internal peripheral initialization code and hardware abstraction layer was
generated with STM32CubeMX. Code to control external integrated circuits was written in C
language. Computer side software was developed in MATLAB R20164a, this software is used
to communicate with the device and to plot test results. Users can write new MATLAB scripts

or configure existing ones, to create suitable tests with different parameters and purposes.
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Kokkuvote

Kédesoleva bakalaureusetoé eesmirgiks oli vilja tootada labori termokapis kasutatav
akutestimissiisteem. Seade on vilja tootatud kaheksa iiheelemendiliste Li-ioon ja Li-Po aku
samaaegseks testimiseks. Valminud akutestimissiisteemi riistvara on tddvalmis ning
arvutipoolne tarkvara voimaldab 14bi viia erinevaid seadistatavaid teste. Kdimasolevate testide
seisu kuvatakse reaalaja graafikutel, 10plikud testide tulemused kuvatakse kokkuvdtvatel

graafikutel. Olulisemad siisteemi parameetrid:

e vdimeline modtma akude pinget (vahemikus 0...5 V), voolu (vahemikus -4...2 A),
temperatuuri (vahemikus (-28...150 °C) ning jalgima akude lactuse/tithjenemise taset;

e laeb akusid vooludega vahemikus 0.33...2 A ja tiihjendab vooludega kuni 4 A,

o kaitseb akusid alalaetuse, iilelactuse ja korge temperatuuri eest;

e logib tagavaraandmed SD kaardile, millega saab testi tulemused taastada.

Akutestimissiisteemi elektroonika on jaotatud peaplaadi ja kaheksa moodulplaadi vahel. Iga
moodulplaadi kiilge saab tihendada {ihe aku. Moodulplaadi elektroonika voimaldab akut tdis ja
tithjaks laadida ning teisendab akude mdddetavad parameetrid peaplaadi jaoks moddetavasse
vormi. Akude tithjendamiseks Kasutakse véljatransitori baasil ehitatud koormist, mida juhib
peaplaadi mikrokontrolleri viline digitaal-analoogmuundur. Laadimiseks on moodulplaadid

spetsiaalne integraalskeem.

Peaplaadi iilesanneteks on arvutiga suhtlemine ja moodulplaatide juhtimine ning nendelt
modtetulemuste kogumine. Voolu ja pinge modtmised teostatakse mikrokontrolleri vilise
analoog-digitaalmuunduriga, temperatuuri mdddab mikrokontrolleri seesmine analoog-
digitaalmuundur. Mikrokontrollerist eraldiseisvaid muundureid kasutatakse tapsemate

modtetulemuste saavutamiseks.

Mikrokontrolleri initsialiseerimiskood ja  riistvara  abstraktsioonikiht  genereeriti
STM32CubeMX tarkvaraga. Akutestimisiisteemi mikrokontrolleri programm on Kirjutatud C
keeles. MATLAB R2016a abil kirjutatud arvutipoolne tarkvara voimaldab testseadmega
suhelda ja testi tulemusi kuvada. Olemasolevaid MATLABI skripte muutes voi uusi kirjutades

on voimalik luua nduetele vastav sobilike parameetritega ning eesmargiga test.
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Appendices

Appendix 1. Module board schematics
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Figure 12. Module board charging electronics schematics



X

A
BATTERY_PLUS
246799
&7 — Q1
R4 R2E M ] IRF530
i SR ™ Sw | 1
S2kR IR AL
RO6Uhg4601 L o603
UzB 3079430 Ufeedback
12V 3
5 Ufeedback OmR
.2kR R2512
RO6O3 LT6004
= T GND
GND LOAD_DAC_IN
(‘-V\T'D
c
batterySlavelLoad.SchDoc
D

2

Figure 13. Module board electronic load schematics

Project: batteryTesterSlave.PriPch
Subsystem:  Test

Drawn by: Juhan Raedov
Modified: 24.04.2018
Checked by:  Erik llbis

Checked on: _27.12.2017
Approved by: Erik Ibis
Approved on: 27.12.2017

A
B
(g
University of Tartu ( B
W.Ostwaldi 1 - D601 N .
Tartu 50411 S
Tarumaa ESTCUBE
Estonia
estcube@estcube.cu
Revision: | Sheet: 5 of 5

4

35



Appendix 2. Main board schematics
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Figure 15. Main board MCU schematics
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Figure 16. Main board ADC-DAC schematics
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Figure 17. Main board 12C multiplexer schematics
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Figure 18. Main board connectors schematics
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Figure 19. Main board SD card schematics
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Figure 20. Main board power management schematics
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Appendix 3. Communication protocol

Table 3. System and channel initialization commands

T - Forbids charging, discharging, reinitializes
System initialize Initialized 130 MAX1257, deinitializes channels None
Set fan duty cycle 25% 131 percentage None
Init channel Initialized 140 (channel Dlsablé d|§chz.arg|ng, initializes BQ2547 None
(charging is disabled)

v

c

Kl

S |Deinitializes channel Initialized 141 |[channel D|sa‘bl.e.s c.hannel operations, status set to None

3 not initialized

g

2

= . . . L

®|Set UART heartbeat timeout 5000 ms 142 milliseconds D.lsables charging & discharging if timeout. 0 None

5] disables heartbeat

]

£

3

:’>; Set battery recognition voltage (3000 mV 143 voltage mV |Initialization fails, if under rec. voltage None
Set battery critical low voltage 3600 mV 144 voltage mV  |Disables discharging if undervoltage None
Set battery critical high voltage (4250 mV 145 voltage mV  |Disables charging if overvoltage detected None
Set battery critical high 1958 mV .- |Disables operations if high temp. See LMT87
temperature (50 °C) 146 velle (] transfer table None
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Table 4. Measurement and status commands

h | .
iztazuizgz:::tus & 150 | channel Yes 13 150 | channel | status voltage current charged discharged | Temperature
Reset channel 151 | channel None
measurements
Get multiple channel 152 Bit as chn? OxFF - all channels, ves | 1+n |152 0 chn 1chn | 2chn | 3chn | 4chn | 5¢chn | 6chn | 7chn
statuses index 0x01 - channel 0 status | status | status | status | status | status | status | status

3

 |Get multiple ch | Bit as ch 4ch

43 et multiple channe 153 '. aschn Yes | 1+2*n | 153 | 0 chn voltage 1 chn voltage 2 chn voltage 3 chn voltage cnn

& voltages index voltage

w

5
Get multiple ch | Bit as ch 4ch

uE) et multiple channe 154 '_ aschn Yes | 1+2*n | 154 | 0 chn current 1 chn current 2 chn current 3 chn current cnn

5 |currents index current

©

()

= Get multiple ch | Bit as ch
c:arr;eutilz € channe 155 Iinac:ei( n Yes | 1+2*n | 155 | 0 chn charge 1 chn charge 2 chn charge 3 chn charge |4 chn charge
G.et multlpl.e channel 156 BIF RGN Yes | 1+2*n | 156 | 0 chn discharge | 1 chn discharge | 2 chn discharge | 3 chn discharge .4 GilE
discharge tics index discharge
ie;’r::::’:zlrz;:hannel 157 Blz:jecxhn Yes | 1+2*n | 157 0 chn temp? 1 chn temp 2 chn temp 3 chn temp 4 chn temp

tChn - channel
2 temp - temperature
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Table 5. Charging integrated circuit commands

Enable charging Disabled| 160 | channel Disables discharging [None
Disable charging Disabled| 161 | channel Disables discharging [None
Set channel charge 4200 162 | channel voltage |3500...4440mV, step None
voltage mV mV 20mV
EDSEt channel charge 500 mA | 163 | channel current | 500...2000mA, step None
@ [current mA 50mA
(S)
.2 .
~ Set chanpel charge somA | 164 | channel current 50...200mA, step None
§ termination current mA 25mA
N BQ24257i
g Get' Q24257 internal 165 | channel Yes 10 165 |channel{Code|regl |reg2 |reg3 |reg4 |reg5 |regb |reg7
registers
Enabl Itiple ch | Bit h
na qu Iple channe Disabled| 166 |'asc : Disables discharging [[None
charging index
Di . .
|sab!e multiple channel Disabled| 167 B".: as chn Disables discharging [None
charging index
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Table 6. MAX1257 ADC-DAC and SD card logging commands

MAX1257 ADCDAC

SD logging

Enable logging (update

Reset MAX1257 180 Doesn’t update batteryl \
status
Control discharging 0mV 181 [channel| voltage mV 12-bit value.; disables None
charging
Updziite MAX1257 182 None
readings
0-
Set MAX1257 auto- enabled 183 disable, None
update 1-
enable
Get MAX1257 If age is greater than Age | Conversion
conversion index, data 184 255 ms, then 255 ms || Yes 184 6 R
A ms index
age will be shown
. Bit as . o,
Control m_ultlple _ 185 | chn ey 12-bit valuef disables None
channel discharging index charging

Clear RX FiFo

In case of CRC error

Yes

230

X R 190 Time None
logging time)
Stop logging 191 None
Get logging status 192 Yes 192 |status

Unknown command

None
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