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Abstract / Resümee 

Software development for ESTCube-2 primary communication subsystem 

This thesis is focused on software development for the primary communications system of 

ESTCube-2 nanosatellite. The goals are to describe and document the architecture of the 

systems software, develop primary prototype software and test it in different scenarios. The 

system must be compatible with previously agreed standards, developed communication system 

hardware and other subsystems of the satellite. 

As part of this bachelor’s thesis, top and low level functionality of ESTCube-2 communication 

system was stated and implemented, including data handling, data transmission, 

communication with other subsystems, error handling and logging. 

Keywords: ESTCube, nanosatellite, radio communication 

CERCS: T320 Space technology, T180 Telecommunication engineering 

 

Kuupsatelliidi ESTCube-2 peasidesüsteemi tarkvara arendus 

Käesoleva lõputöö teemaks on tarkvara arendus ESTCube-2 nanosatelliidi sidesüsteemi jaoks. 

Töö eesmärk on kirjeldada ja dokumenteerida kasutatav tarkvara ülesehitus, implementeerida 

selle tarkvara prototüüplahendus olemasoleva riistvara peal ja samuti testida valminud süsteemi 

eri stsenaariumite korral. Loodud süsteem peab vastama ESTCube-2 eelneva arenduse raames 

loodud standarditele, peab töötama väljavalitud ja väljatöötatud sidesüsteemi riistvara peal ja 

peab olema liidestatav teiste satelliidi alamsüsteemidaga. 

Töö raames kirjeldati ja implementeeriti erinevat kõrgema ja madalama taseme 

funktsionaalsust ESTCube-2 sidesüsteemile, sealhulgas andmetöötlus, andmete hoiustamine ja 

edastamine raadioside teel, suhtlus teiste alamsüsteemidega, veatöötlus ja logimine. 

Märksõnad: ESTCube, nanosatelliit, raadioside 

CERCS: T320 Kosmosetehnoloogia, T180 Telekommunikatsioonitehnoloogia  
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Abbreviations and terminology  

ESTCube-1 / EC-1 – first satellite of Estonian Student Satellite program, orbiting the Earth 

ESTCube-2 / EC-2 – second satellite of Estonian Student Satellite program, planned to orbit 

the Earth 

ESTCube-3 / EC-3 – third satellite of Estonian Student Satellite program, planned to orbit the 

Moon 

COM – communication subsystem of ESTCube-2 

PCOM – Primary COM – primary communication subsystem 

KCOM – Kill-COM – secondary communication system, capable of muting primary COM 

OBCS -  on board computer system 

EPS – electrical power system 

HAL – hardware abstraction layer 

MCU – microcontroller unit 

PCB – printed circuit board 

UART - universal asynchronous receiver-transmitter 

FRAM – ferroelectric random-access memory 

FIFO – first-in-first-out (type of data organization and handling in memory buffer) 

CRC – cyclic redundancy check 

AX.25 - amateur X.25 (radio communication protocol) 

AFSK - audio frequency-shift keying (modulation technique) 

NRZI - non-return-to-zero inverted (data encoding type) 

RSSI – received signal strength indicator 

IC – integrated circuit 

DAC – digital-to-analog converter 

ICP – internal communication protocol 

SPI – Serial Peripheral Interface 

TX – transmission 

RX – reception 

TCVCXO – temperature compensated, voltage-controlled crystal oscillator 

PID – protocol identifier 
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1. Introduction 

From the beginning of the 21st century the space is more and more open for smaller industries 

and enthusiast groups, who don’t need big and expensive satellites for their studies and 

experiments [1]. With the help of standardized nanosatellites and their modular launching 

system, it is possible to send small satellites to space with considerably smaller costs [2]. This 

brings more enthusiasts from different fields to the topic and helps to spread the knowledge 

about space technology [3]. However, as satellites are getting smaller and more compact, it 

challenges developers to miniaturize all systems of the spacecraft. For that, modern knowledge 

and engineering skill is needed. This makes developing small, standardized satellites popular 

in universities around the world as it provides create learning platform for wide range of fields. 

University of Tartu is not an exception and in 2008 Estonian Student Satellite program was 

created [4]. The first mission, ESTCube-1 (EC-1) was launched in 2013 and turned out 

successful, after which ESTCube-2 (EC-2) development started [5] [6]. Ten years into the 

program and five years after first launch, the EC-2 development is in a state where hardware 

functionality for all satellite systems has been finalized and is  in active development and testing 

process. The communication subsystem is in the same state. 

The communication subsystem can, by some criteria, be considered the most critical system of 

a satellite as it mediates all the communication between ground and the satellite, making all 

other systems dependent on it. The responsibility of the subsystem is to provide uplink and 

downlink capabilities for command and data transfer but at the same time be configurable to 

account for environmental changes and errors, and work as efficiently as possible. 

In EC-2 the communication subsystem (COM) is divided into two parts – primary COM 

(PCOM) and Kill-COM (KCOM), which are developed somewhat separately. This thesis is 

focused on the software development of the primary communication subsystem. 

The main parts of the thesis are: 

• PCOM software architecture description, 

• Software development for PCOM, 

• Testing of PCOM software, 

• Providing description and reasoning for all previous parts as thesis document. 
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2. Overview of EC-2 and the COM subsystem 

Estonian Student Satellite program is a program, started in 2008 in University of Tartu. The 

goal of the program is to support space research and the development of space technology in 

Estonia. It focuses on giving students an opportunity to learn new technology with hands-on 

experience [7]. The first mission of the program, EC-1, launched in 2013 and currently EC-2 is 

in development. Satellites of both missions are mainly developed and tested by students from 

University of Tartu with help from some scientists and companies. 

EC-1, being the first satellite of the program, had a general mission of proving and showing 

Estonia as a space country. But apart from that it was also used to test E-sail technology [6]. 

Although the E-sail test wire failed to reel out, the mission was still successful, the satellite took 

and sent many pictures taken from space and also initiated the development of a successor – 

EC-2. This, second satellite of the program, is three times bigger, with dimensions of 10x10x30 

cm or 3 U (units) by CubeSat standard, compared to 1 U or 10x10x10 cm of EC-1. It also means 

that EC-2 can fit a lot more payloads, have more sun panels and thus more powerful systems. 

However, one of the main goals of EC-2 is to test all the systems on board for reliability, as it 

is predecessor for EC-3 (ESTCube-3) which will be a Moon mission. As Moon missions are a 

lot more expensive, it is important to test the concept before. That is the reason, why EC-2 has 

several systems or system expansions on board that are not relevant for the mission itself but 

are there for future testing purposes. 

2.1. Overview of other similar missions 

There are several programs like Estonian Student Satellite Program from different universities 

around the world. A lot of them have sent more than one CubeSat type satellite into space. 

Some of the most long-term programs include AAUSAT missions from Aalborg University in 

Denmark and CP PolySat missions from Californian Polytechnic State University, which is also 

the place where the CubeSat standard started from [1]. The AAUSAT project was started 

already on 2001 and since then 5 CubeSats have been launched [8]. Currently the next 

generation of their improved satellites is under development [9]. Just like ESTCube, the project 

is mainly for educational purpose as all interested engineering students can join the 

development team. The CP PolySat satellite program was started already in 1999 by 

engineering students and has launched 12 satellites. They have improved from motivated 

students team all the way up to more advanced research missions supported and sponsored by 
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big science foundations and operated together with NASA (National Aeronautics and Space 

Administration) [10] [11]. 

2.1.1. Communication subsystems 

Both, the AAUSAT and CP PolySat program have also had several problems with the 

communication subsystems of their satellites. Those problems have stated some must-haves of 

a simple satellite and some concepts that can be improved. For example, the very first satellite 

of Aalborg University suffered serious communication issues that never allowed fully 

functional communication with the satellite. With weak signal, not allowing to receive decoded 

data, they only received simple beacon data that was not enough to find the reason of the 

problem [12]. This is a good indicator that both the encoded beacon and simple Morse beacon 

should be used to send enough housekeeping data, because it might help to receive critical 

information to resolve on-board problems. Also, their connection-oriented AX.25 (Amateur 

X.25) communication turned out to have too much overhead [12], which concludes that 

communication with satellite should be kept as simple as possible while providing necessary 

functionality and performance. At least it should be possible to reset the communication to 

simplified format if a more complex version does not work. As another example, on the CP4 

satellite by PolySat program, the intersatellite communication failed, that was implemented 

with well-known I2C (two-wire interface) protocol. The failure was most caused by an 

intermediate device failure [13]. This incident shows why a custom protocol and a backup 

communication bus can be useful. 

These two programs have also tested some concepts that will also be used on EC-2. For 

example, both programs use AX.25 standard for radio communication and amateur radio 

frequency range in their satellites [14] [15]. Also, the CP8 satellite by PolySat program had a 

digipeater mode, meaning that it allowed to relay data through the satellite, which provides 

amateur radio enthusiasts a way of testing their systems [13]. This is also planned to be used on 

EC-2.  

2.2. EC-2 communication subsystem hardware 

The system described in this thesis is designed for a communication subsystem hardware 

solution that has been researched, designed and developed by the EC-2 team earlier in the 

development process. In this thesis this is taken as a working base for the firmware design and 

development.  
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The COM PCB (printed circuit board) has two subsystems on it (see Figure 1). Those 

subsystems are primary COM for both up- and downlink and Kill-COM for only uplink. They 

each have their own MCU (Microcontroller unit).  The subsystems and their peripherals get 

power from the EPS (Electrical power system).  

PCOM, that offers main communication functionality, has external transceiver chip, while 

KCOM has the same type of transceiver built into the MCU. Additionally, the primary COM 

has external FRAM (ferroelectric random-access memory) IC for non-volatile data storage and 

external DAC (digital to analog converter) IC. The name Kill-COM comes from the fact that 

the KCOM MCU has a hardware-based capability to turn off the power of PCOM amplifiers, 

in order to stop transmitting if the PCOM does not respond. 

The primary COM can communicate with the rest of the satellite using GPIO (general purpose 

input-output) and RS-485 based ICP (internal communication protocol) lines. The 

communication between the PCOM and KCOM is done using pure UART (universal 

asynchronous receiver-transmitter) and the prototype hardware also has a RS-232 debugging 

connection with PC. 

 

Figure 1 - EC-2 COM hardware schematics  
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3. Primary COM software architecture description 

3.1. COM purpose in satellite and architectural requirements 

The purpose of the communication subsystem in a satellite is to provide a link between the 

ground station and all the satellite systems that must communicate with the ground station. 

What makes COM (communication subsystem) one of the most critical systems is that it allows 

to control other subsystems from ground and make the information created or gathered by those 

other subsystems useful by transmitting it to the mission control center on Earth. Without a 

correctly functioning communications subsystem the satellite would become inaccessible space 

trash. To provide fast and reliable downlink and uplink, several architectural aspects must be 

learned and considered. As a part of this thesis the requirements for PCOM software were 

collected and a software architecture description for the subsystem in EC-2 was developed. 

To achieve the main functionality of the communications subsystem – transmitting data 

between the ground station and rest of the satellite, the PCOM must be configurable but provide 

the service itself while being transparent. This means the service must be provided in a way that 

the subsystems have direct communication with the ground station and other way around just 

like the subsystems onboard communicate with each other. In other words, the COM should 

provide router functionality for packets. 

Also, for the COM to be reliable, it is necessary that it provides information about itself and act 

upon any errors. This means that for better further control, the system must send critical 

information periodically to the ground station and log basic information on board for mission 

operators to know the status of the satellite and make decisions based on this information.  

But the PCOM subsystem must also have some logic on board to handle cases when the uplink 

fails and there is no possibility to send recovery commands. In such scenario the subsystem 

should lower baud rate, go to safe mode with only main functionality and start sending critical 

beacons in simple encoding. If none of those actions help and the problem is in corrupted 

firmware, then the system should boot from backup firmware image. 

All the requirements were gathered from and discussed with rest of the EC-2 team and specially 

COM team members and complete list of agreed requirements is stated in Table 1 alongside 

with the priority for each requirement from low to the highest priority level of critical. 
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ID Requirement Priority 

1 Transmit data from the satellite to the ground station (Downlink 

functionality) 

Critical 

2 Receive data on the satellite, sent from the ground station (Uplink 

functionality) 

Critical 

3 Communicate with other subsystems over common protocol Critical 

4 Collect and transmit satellite and COM health and state information Very High 

5 Provide functionality to change data rate and modulation technique High 

6 Buffer data for bulk data transmission High 

7 Switch to safe mode in case of problems High 

8 Transmit health and state data as Morse beacon High 

9 Secure uplink by validating incoming commands High 

10 Provide functionality to retransmit not received bulk data packets Medium 

11 Provide digipeater functionality to retransmit frames received by KCOM Medium 

12 Automatic changing of data rate and modulation type for best speed Medium 

13 Provide functionality for clock synchronization for data timestamps Low 

14 Provide functionality to transmit FM (frequency modulated) soundtrack 

from satellite 

Low 

Table 1 - requirements for EC-2 PCOM subsystem 

Considering all the previous requirements, a primary COM software architecture description 

was developed as part of this thesis. The architecture description was changed and improved 

during the development process to meet new requirements and keep the architecture description 

up to date with the actual system. 

3.2. Architecture overview for ESTCube-2 primary COM 

For better understanding the architecture of PCOM subsystem was developed with modular 

approach. The system is divided into blocks that each have their own role in the system (see 

Figure 2). It is also described how all these blocks interact with each other and what is their 

purpose in the whole system. 

The main blocks of the system are: 

• Processor status and regular interrupts block; 

• Transceiver IC (Integrated circuit) control block, including two sub blocks: 
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o Transceiver configuration block; 

o Data transmission block. 

• External FRAM IC control block; 

• External DAC IC control block; 

• SPI (Serial peripheral interface) control block; 

• Housekeeping data collection block; 

• ICP control block, including two sub blocks: 

o ICP core and bus control; 

o ICP packet handler and creator. 

• AX.25 packet control block. 

 

Figure 2 - Overview of main system blocks of primary COM software architecture and their interconnections 

Each of these blocks has its own task in the final software. The processor status and regular 

interrupts block keeps track of the current state of the program and any state changes. It initiates 

any regular activities and acts upon any errors. Next main part of the PCOM subsystem software 

is the transceiver block. It provides both transceiver configuration options and data transmission 

functionality. External FRAM is used to buffer bulk data, like files and images, that come as 

multiple packets, prior to sending. DAC block is used to provide analog voltage to temperature 

compensated voltage-controlled oscillator (TCVCXO), which allows to fine tune the reference 

frequency for transceiver. Another DAC channel is used to give gate voltage for MOSFET 

transistor to determine DC bias point for the transistor amplifier. The external FRAM, DAC 

and Transceiver are physically separate components and communication with those works over 
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SPI.  To provide media control for those three SPI devices, a SPI control and configuration 

block is used. 

Other set of blocks provide data manipulation and parsing functionality. ICP control block takes 

care of managing the data flow on the ICP bus and providing correct ICP packet format. In 

addition, it creates the packets that are sent out and decodes incoming packets. AX.25 block 

takes care of packets that are ready to be sent out to the ground station or are  received over 

radio. It manages the packet error checks and AX.25 header data manipulation. The 

housekeeping data collection block gathers all the necessary data for stating the current physical 

and software condition of PCOM subsystem and critical parts of other subsystems. 

All the blocks are described more in-depth on separate diagrams, stating the functional logic 

that they work upon. This helps in developing the actual firmware and additionally helps to 

understand the code of the final solution for other coworkers from EC-2 team. 

3.3. Functional blocks in software architecture 

3.3.1. Processor status and regular interrupts block 

The processor status block takes care of managing all required states. These states include 

working mode, transceiver mode, error states, interrupt states and running firmware version.  

The PCOM subsystem has two working modes – normal mode and safe mode. It is kept track 

of and logged working mode is currently active. The firmware should go into safe mode when 

the program does not respond, or the satellite has not received command from the ground station 

for longer than expected. In safe mode, it should be still possible to upload new, fixed software, 

but most importantly the satellite should send easily decodable and informative beacon. For 

example, long Morse beacon. This allows to human-decode signal even if it is quite weak or 

corrupted up to a point. This way it could be possible to figure out what is wrong with the 

satellite and a fix can be developed.  

Transceiver mode keeps track of whether the transceiver is in transmitting or receiving state 

and when it should switch between the modes. Besides, it handles the baud rate of data 

transmission, allowing to lower it when higher data rates don’t work because of weather 

conditions or other factors and increase again when it is ordered. If in dynamic baud rate mode, 

any change in baud rate must still follow very strict logic as it is important to know on the 

ground station, what baud rate to use to communicate with the satellite. 
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Errors might occur in all parts of the system – in communication with other systems (ICP 

errors), in data Transmission, in data buffering, in power supply and in other functional blocks. 

Those all require different approach. Some ICP errors require switching to secondary bus, some 

data buffering errors require dumping buffered data or trying to find valid data. Transmission 

errors might require reconfiguring the transceiver or resending some packets and power supply 

errors might require communicating with electrical power subsystem or going to sleep and 

turning off transceiver for some time. 

Additionally, it is important to know what is the firmware version that is currently running for 

several reasons. First, when nothing other helps, the satellite should boot from backup firmware 

and then it is required to know when a backup firmware is used and if it was loaded correctly. 

Also, it is important in case of uploading and switching to new updated firmware. Then it needs 

to be known if the new firmware was loaded properly and the PCOM subsystem is now 

successfully using it.  

The block also keeps track of interrupt states. When an interrupt occurs, the fact it has happened 

is saved and therefore the program always has overview of unhandled interrupts. These saved 

interrupt notifications are constantly handled in order of priority within the main program loop. 

This approach ensures that even if several interrupts happen at the same time, the ones with 

higher priority are handled before. Having only a flag-switching statement within the interrupt 

also makes the initial handlers a lot less time-consuming. That means, the most critical 

interrupts, if handled straight in the interrupt can be served while the lower priority interrupt 

handling is in progress. 

3.3.2. ICP control block 

In ESTCube-2 system there is a custom protocol used for communication between all 

subsystems. This protocol has been designed and is called and referenced as ICP in ESTCube 

documents.  

ICP architecture consists of two different layer parts – ICP core and configuration part and 

higher layer packet managing part (see Figure 3). The underlaying core part is common for all 

subsystems of the satellite, providing reliable base, as communication is interpreted the same 

way throughout the system. The higher, packet processing layer takes actions on actual packets, 

including creating the information in the ICP packet that will be sent out and decoding the data 

of an incoming ICP packet. 
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Figure 3 - Detail description of the ICP block of EC-2 PCOM software architecture description 

The task of the core block is to manage the physical ICP lines according to the agreed ICP 

standard. It also does the filtering of packets according to protocol – in normal operation each 

subsystem should only accept packets destined for this certain subsystem or if the packet is 

broadcast. COM should only get packets destined for the COM or for the ground station. 

Systems can also listen to all packets if needed, but the acknowledgement scheme remains the 

same.  The Core block also provides functionality to send and receive the fields of ICP packet 

in correct order and as continuous data flow. 

The higher layer of packet handling allows to decode the command and information fields in 

the packet and initiate corresponding action. The ICP packet handler for COM should handle 

differently packets destined for the COM and packets destined for the ground station. Packets 

that are meant for the ground station should be buffered to be handled and transmitted later 

unless it is possible to transmit them right away. Packets destined for COM itself go into further 

parsing where dependent on the command field, certain functionality is invoked.  

The packet handling layer is also responsible for creating fields for outgoing packets. This 

includes selecting corresponding destination and source nodes, command and information. The 

ICP controller of COM should be able to initiate communication itself, but also check and 

forward the packets that are received from the ground station and unpacked from AX.25 frame.  
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3.3.3. AX.25 packet control block 

The AX.25 block is responsible for nesting data that is ready to be transmitted according to 

amateur radio protocol named AX.25. This standard provides rules for address field, control 

field, Protocol identifier (PID) field, data field and CRC field encoding and delimiter flags [16]. 

This metadata is added by the AX.25 block when transmitting and checked and removed when 

receiving. The standard also regulates how the delimiting flags are avoided inside the packet 

and how to encode the data, which is handled by this block by providing bit stuffing and NRZI 

(non-return-to-zero inverted) encoding. Bit stuffing for AX.25 states that there must not be any 

6 consecutive 1-bits elsewhere in the packet than flags, so a 0 is stuffed (added) after every 5 

consecutive ones [16]. NRZI encoding means that there is transition in the signal when a zero-

bit occurs and no transition when one-bit occurs. Also, for data rates of 9.6 kBd and above, it 

is advised to use scrambling to avoid unwanted sequences of continuous ones or zeroes [17]. 

On EC-2 it is agreed that for compatibility between all subsystems and to avoid excessive data 

handling, all data is transmitted as an ICP packet. So, the maximum total length of ICP packet 

is made to be equal with the maximum length of AX.25 packet information field that is 237 

bytes. The ICP packet however contains its own CRC (cyclic redundancy check) and as the 

CRC of AX.25 already covers this same data, it is inefficient to send both checksums. To use 

the space of the field more efficiently, the CRC of ICP packet is replaced with the packet 

sequence number on transmission that helps to group and recognize missing packets on the 

receiving side. The receiver can then send back bitmap image with information of which 

packets were not received, so these packets could be sent again. 

When transmitting, the first operation is replacing the CRC of ICP packet with sequence 

number, then the CRC for AX.25 frame is calculated over modified data (ICP packet) and 

constant header fields – address, control and PID (protocol identifier) field. The whole packet 

is put together in corresponding order – first start flag of 0x7E, followed by Address, control 

and PID fields, then data, CRC and finally end flag, which is the same as the start flag. 

According to the AX.25 standard all other fields are transmitted low-order bit first, but CRC is 

transmitted bit 15 first [16], so to make further processing easier, the CRC is already put into 

the packet accounting this. After the packet is constructed the bitwise operations are done – first 

the packet is bit-stuffed, then scrambled and finally NRZI encoded.  

When receiving, the whole progress is reversed, but some extra checks are made to identify 

whether the packet is correctly delivered and if it is meant for the satellite. This check is done 
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after the packet is decoded, descrambled and all stuffed bits are removed. If it appears that the 

packet is correct in all means, only then the AX.25 frame is removed, CRC of the payload 

packet is calculated and put to corresponding field and the received payload is sent for further 

processing. Otherwise the whole frame is dropped. 

 

Figure 4 - Detail description of the AX.25 block of EC-2 PCOM software architecture description 

3.3.4. Transceiver IC control block 

The transceiver IC control block is used for communicating with transceiver and managing its 

state and properties. It provides functionalities for transmitting and receiving data, and for 

configuring, viewing different properties of the data transmission and the transceiver chip itself.  

The transceiver properties can be configured all at one time, by sending full configuration array 

to transceiver IC or change only specific property by sending corresponding property command 

followed by property value. In the COM application the transceiver full initialization should be 

done on every reboot, but when changing some parameters during normal program operation, 

then the possibility of changing individual properties should be used. Overall in the system, 

only some properties have to be changeable, while others are the same on all program 

executions and in all conditions. Consequently, there is no need to provide functionality to 

change all possible parameters. Some of the changeable parameters include modulation scheme, 

baud rate, frequency deviation and internal amplifier gain meanwhile constant parameters are 

for example base(carrier) frequency, input crystal frequency, sync word and preamble, FIFO 

(first-in-first-out type of buffer) setup, incoming packet match conditions and all functionality 

that is not used – checksum calculation, channel selection and others. 

Data that will be transmitted or has just been received is carried between transceiver IC and the 

processor over SPI. To make the process more resource-efficient, the transceivers internal data 
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buffers are used for both received and ready to transmit data. This allows the slow radio 

transmission to be handled mostly by transceiver and so freeing the processor from constant 

polling that also allows for longer sleep cycles or time for other processing. These transceiver 

buffers are 64 bytes each if used for reception and transmitting separately, but they can be used 

as one 128-byte buffer.  However, a full-length AX-25 packet cannot fit into the transceiver 

buffer at once because the maximum length of the packet is over 256 bytes, meaning that 

processor must refill the FIFO during the transmitting process and read out bytes during 

reception. To account this problem of long packets, the transceiver IC has built in interrupts to 

notify that the internal FIFO buffer is getting almost empty while transmitting and that the 

reception FIFO is almost full while receiving. These interrupts could be used to let processor 

know that it is time to add more transmittable data to buffer or to read out received data, 

therefore ensure constant data transmission without gaps. The transceiver also has interrupts to 

let know that full packet has been transmitted or that a full packet has been received, letting 

know that the packet can be now handled. 

 

Figure 5 - Detail description of transceiver control block of the PCOM software architecture 
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3.3.5. External FRAM memory IC control block 

The external FRAM memory is used to buffer outgoing packets. The buffer is used because 

bulk data like files and pictures come in through ICP faster than it is possible to transmit. Also, 

packets may be requested to transmit while there is reception in progress or there is currently 

no connection with the ground station. In all those cases, packets need to be buffered until they 

can be transmitted. For this a 4 Mbit external FRAM IC is used. The idea is to be able to buffer 

as many packets of information there without having to waste extra time. For this the packets 

are buffered as ICP packets. Storing a full packet also stores the packet length information, 

which allows the packet to take only as much space as it needs and still knowing where the 

packet ends. As the maximum agreed length of an ICP packet can be 237 bytes, the 4 Mbit or 

524 KB FRAM can hold about 2200 full-length packets. The block provides basic functions for 

buffering packets and receiving buffered packets as well as buffer initialization, as seen on 

Figure 6. 

 

Figure 6 - Detail description of FRAM buffering block of the PCOM software architecture 

3.3.6. External DAC IC control block 

The DAC control block converts the desired voltage levels to be given to analog devices to 

corresponding SPI commands, where the channel and new value are specified. It sends them to 

the dual DAC IC, which then uses its internal parser to read the SPI input, loads the new value 

to the internal 10-bit DAC and outputs corresponding analog voltage. The voltage is kept in 

output, until new value update command is received. 
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3.3.7. SPI control block 

The function of the SPI control block is to provide uniform access to all SPI slave devices and 

manage slave selection. The devices that are connected over SPI in current hardware version 

are the transceiver IC, external DAC IC and external FRAM. Both, the Transceiver and FRAM, 

use 2-way communication, where the slave replies to commands sent. The SPI block is 

responsible for managing this data flow and returning the replied information. The 

communication with DAC however is unidirectional and commands are just clocked in without 

waiting for reply. 

3.3.8. Housekeeping data collection block 

Housekeeping block takes care of collecting primary health data from the whole satellite. It 

uses COM internal measurement capabilities to collect information about the subsystem and 

transceiver state, and satellite internal communication to collect main information from other 

subsystems. Some of the information that is collected from COM include temperature of the 

board and MOSFET transistor amplifier, RSSI (received signal strength indicator), state 

information, error count and types, and power consumption. 

The data that was measured, will be either forwarded to ICP block for combining it into packet 

or the data might be converted to Morse code and sent straight to transceiver, depending on the 

mode of operation. 

4. Software solution 

4.1. Software overview 

The software for the primary COM is written in C programming language and made to run on 

an MSP430FR5994 embedded microcontroller. The programming was done using Code 

Composer Studio (CCStudio) integrated development environment and MSP430FR5969 

LaunchPad Development Kit. 

The software uses layered approach with the bottom HAL (hardware abstraction layer) layer 

providing universal access to processor functions and the higher layer containing COM logic. 

The HAL layer also allows the same top-level code to run on different processors of the same 

type with only changing configuration file in HAL. During this thesis, mostly the top layer 
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COM logic was developed on top of existing HAL. Only some additions were introduced to the 

HAL layer. 

The software is written directly to the processor without having an operating system. The basic 

principle of the program is that all different events trigger a flag in a corresponding interrupt. 

All the flags are then checked and handled in the main loop in the order of priority.  

4.2. Main functional blocks 

The source code of the program has tree-like structure with the main firmware root folder being 

categorized into subdirectories according to the file properties – configuration files, driver files, 

application software files and common(external) files. In the configuration of the current thesis, 

the board configuration files are stored in “board” folder, driver files for different internal and 

external peripherals are stored in “drivers” folder, higher level application files are stored in 

“app” folder, satellite-wide ICP core source is stored in “ICPLib” folder and the underlaying 

MSP HAL code is stored in “HAL” folder. All these folders include subdirectories for header 

files and for source files. 

4.3. Developed functionality 

As part of this thesis some functionality that was stated above was implemented for the PCOM 

subsystem. Implemented parts are data transmission, including making use of AX.25 protocol, 

calculating CRC on PCOM hardware, communicating data to transceiver IC and controlling the 

transceiver to transmit the data. Another implemented module is for data buffering in external 

FRAM, which includes handling a circular FIFO buffer and usage of the FRAM IC API. 

Finally, the ICP testing capability was added to the COM firmware, including packet handlers, 

ICP configuration and testing commands. 

To test all the added functionality, other smaller changes to the program were also developed. 

For testing purposes, debugging commands and debugging logic for all parts were developed 

to test them individually.  
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5. Functional testing results 

5.1. Testing of individual blocks 

For quicker and more efficient testing, in the COM software, serial communication with 

computer was implemented and used. This allowed to execute commands on COM board and 

viewing results and program state, without having other communication methods, like ICP and 

radio, available yet. This however couldn’t be final testing approach as it is not part of final 

solution. It also uses same UART pins on hardware side as the main ICP line, meaning that it 

cannot be used while ICP is in use. 

5.1.1. Testing data transmission 

During the development process of the COM software, one of the most complicated things to 

test was the data transmission. Testing is made complicated by both the fact of great number of 

configuration parameter combinations and by usage of radio hardware and software on the 

ground station side. 

In order to test the transmitting part most easily, using software radio on regular computer with 

external USB radio device was preferred. The device that was available for this was NooElec 

NESDR Mini 2+ 0.5PPM TCXO USB RTL-SDR Receiver with external antenna. To configure 

and process signal received from the dongle, the HDSDR freeware software was used. This 

software allowed to set the internal crystal frequency and spectrum of the dongle and do the 

FM demodulation of the signal. The outputted demodulated signal was then sent to another 

software for packet handling over virtual audio cable that allows to connect two programs on 

one computer. For this application VBCABLE software was used. For packet handling an 

G3RUH hs soundmodem was used. It allows to decode packets in several formats and with 

different data rates. In current use, the software was configured to decode AX.25 packets with 

AFSK modulation and output all their fields separately and data field in ASCII format. This 

allowed to test if packets that were sent from COM board and transmitted over radio signal, 

arrived correctly. 

However, this software configuration didn’t allow to see why packets were not received 

correctly as the hs soundmodem software only outputs correct packages. So, to first figure out 

in development process why packets were not received and what to modify, the packets were 

investigated more deeply using Audacity audio editing program. Looking at the demodulated 
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FM audio track from the HDSDR output in Audacity made it possible to look the data bit by 

bit, measure its baud rate, length and see how distinguishable the data is. The steps of testing 

the transmission are visualized in appendix, in Figure 8, Figure 9, Figure 10 and Figure 11 

To test data reception, another setup was needed, because the dongle and computer-side 

software used are not capable of transmitting data. But as it was confirmed that transmitting 

data was working, it was possible to use one COM board as transmitter and another one in 

receiving configuration. To make the testing easier the transmitter board was configured to 

continuously transmit data with short intervals and an antenna was connected to the receiver 

board. As the configuration of the preamble and all transmission properties for both of the sides 

were configured identically, it was possible by interrupts to detect if the reception works as the 

transceiver chip provides capabilities to produce interrupts for valid preamble detection. If this 

part was working, it was easier to test data reception. 

5.1.2. Testing ICP 

In order to test and monitor ICP, special dongles were used, that allowed to monitor ICP activity 

from computer software. It also allowed to test one single subsystem at a time by providing 

capability of the dongle with computer-side software to act as a fully functional ICP node. 

However, this testing configuration had several problems that prevented from using this 

configuration for testing.  

First, the dongle-side firmware had a communication speed problem that did not allow to relay 

real-time interrupts fast enough to computer-side software over UART connection. The 

problem was that whenever an access line of ICP was activated, then the packet follows in 250 

microseconds. However, when access goes active, which is detected as falling edge on ICP 

access line, the dongle sent a 5-byte packet over UART to PC. This packet was first sent with 

19.2 kBd baud rate and therefore took 2.1 ms to send, which means the actual data started to 

come in before the notification that access went active was received. So, the data was not 

listened. This problem was solved by increasing the baud rate of the UART connection between 

dongle and PC to 500 kBd, which is near the limit of what the ATmega88 chip on the dongle 

can handle.  

After resolving the first problem, another issue occurred with the UART communication and 

buffers. The processing of UART packets on computer side has some operating-system level 

buffers and logic added to it, which does prevent desired data flow in that high speed as 500 
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kBd. To overcome this problem, the EC-2 OBCS (on-board computer system) team, whose 

responsibility is developing the PC-side software, added bigger delays to the ICP for testing 

purposes.  

Finally, the PC-side software, which is thread-based to listen on 3 UART channels 

simultaneously, encountered some threading problems and therefore the testing of ICP on COM 

with this software was postponed out of the time-scope of this thesis. 

However, the primary functionality of ICP implementation on PCOM subsystem was tested 

with two COM boards. Both COM boards were configured identically, only difference was that 

one of the boards was configured as COM node and other one as OBCS node to test packets 

with different destination points. During this test, the ICP1 bus was tested, as the UART lines 

of ICP0 bus were used for communication with PC. Both nodes also were able to send packets 

to OBCS and to COM. The packets had random but distinguishable data, so that the validity of 

the packet could be determined on the other end. Sending the packet and determining which of 

two test packets will be sent was determined through the debugging serial connection. Also, the 

received packet was printed to the serial.  

This testing approach can validate the basic functionality of ICP, however it could not 

determine if the implementation is compatible with implementations from other subsystems 

and neither could it find out all the issues that can occur, when more than two nodes 

communicate on the same bus. 

The testing results showed that there is a misconfiguration of the receiving node, as the packets 

are sent out, but the access line is never released. This indicates that the packet is not recognized 

or accepted correctly, and the receiving node does not release the access line. The fact that the 

sender outputs correctly formatted packet and releases the line, was checked using the dongle 

on other end and measuring signals on lines using logic analyzer. 

5.1.3. Testing packet handlers 

To test the ICP packet handlers and the radio communication packet handlers simultaneously, 

the previous ICP testing configuration was planned to use in slightly modified way. Two testing 

ICP packets could be added to one COM board, one that requests a reply packet from other 

node with increased value and other one that requests the ICP packet to be sent over radio.  

The packets could be analyzed on the other ICP endpoint by the ICP packet handler that 

dependent on the ICP command field value, takes the corresponding action.  To verify the result 
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of the packet transmitting command, the same configuration can be used that was explained in 

the testing data transmission section. For the reply request packet, it can be checked if the 

correct reply packet is printed to serial, from where the initial request packet was sent. This 

testing can be done once the ICP testing gives positive results. 

5.2. Discovered problems and their solutions 

During the development of the COM system several problems were faced. Some of them were 

solved during the development process, but some of them still need more advanced research to 

work as supposed to. For those problems, temporary solutions have been offered. 

5.2.1. ICP multiple nodes 

ICP was first designed so that all subsystems use same core library for handling the sending 

and receiving of packets and controlling ICP lines. The ICP protocol and therefore also the core 

library was designed so that if the packet is not broadcast then only the system that the packet 

was meant to, will listen for the packet. Correspondingly the library had option to specify the 

node that is used to specify which packets should be listened and what will be the source when 

sending out packets. The problem was that during the development it was not considered that 

the COM subsystem must have two different destination nodes to listen to – packets destined 

for COM itself but also packets destined for the ground station. Fixing the problem was made 

harder by the fact that the library defined the same node to be used when sending and receiving. 

Making fix in the entire library would have added overhead to other systems as well which is 

not necessary and would require modifying the library that was by that time finalized. 

The temporary solution to this problem was to modify the library locally on COM subsystem. 

However, this fix has some drawbacks to it. Firstly, it makes the library inconsistent and in case 

of any updates it must be remembered that the fix has to be applied again. Also, it makes the 

code harder to read as the fix did not follow the best coding standards. 

5.2.2. AX.25 not full bytes for transceiver FIFO 

One of the problems encountered during data transmission programming was the combining of 

individual data bits into full 8-bit bytes. The problem source is that AX.25 standard specifies 

bit stuffing as described above, which means adding individual bits into the data array after five 

one-bits. However, the number of such occurrences in data can vary a lot and most of the times 

is not divisible by 8. This means that after the bit stuffing the length of data in bits might not be 
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divisible by 8 either. The problem then is that if not providing data bit by bit to the transceiver 

chip but using the chips internal FIFO buffer instead, then the data must be converted to bytes 

as the FIFO is byte based. Also, the chip does not know anything about the packet ending and 

will recognize that the packet is transmitted only if the FIFO is emptied. Therefore, the last byte 

that will still have some data in it, but might not be full byte, must be filled with some dummy 

bits that are still transmitted although not needed. To reduce any excessive noise, one-bits were 

added there, as then there are no transitions and constant frequency is retained. 

5.2.3. Challenges with common HAL 

Using common HAL over several processors has several challenges. First, as the HAL must 

have functionality for all processors of the family, some functionality, that only few processors 

have, can easily be forgotten to add. Any HAL level errors are hard to debug as there is lot of 

code. Additionally, functionality that works with the same HAL on other processor, is not 

considered as the cause for the problem in first place, so debugging might take long time. In 

current development the problem with HAL occurred with GPIO interrupts, when the MSP 

processor in use had more port interrupts available than other versions used in other EC-2 

subsystems. Thus, the missing of those declarations in HAL was not discovered earlier and 

ended up in long debugging. 

Another problem with HAL is that as it contains a lot of potential functionality description, that 

is not used or not present on a current processor, it uses up lot of program memory. In future 

this problem might become problematic and for this reason it is planned to make possible to 

specify the modules that will be used from HAL, discarding rest of the code, making the HAL 

usage more effective. 

5.3. Possible firmware enhancements for future 

As the development and testing of ESTCube-2 continues, then also the COM software must be 

modified, improved and new functionality needs to be added. Also testing of the COM 

operation continues and at some point, the whole satellite as a combined system must go 

through several tests, meaning there is still lots of work to be done with COM system as well. 

Some firmware enhancements that are known to be added but were not part of this thesis include 

adding custom bootloader to COM, implementing bitmap protocol, uplink securing protocol, 

exact mode switching algorithm and logging.  
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The main goal of custom bootloader is to allow updating the COM firmware while in space. 

The working principle of firmware update is that new firmware is sent over radio 

communication to satellite, then it is saved to processors internal FRAM memory and checked 

for validity. Then command is issued to reboot and start from new firmware, meaning that the 

new firmware is copied by bootloader to executable memory part and then executed. The 

custom bootloader should also allow to boot from backup firmware image in case the original 

image gets corrupted. The bitmap allows to detect missing packets and request resending of 

those. Uplink has to be secured, so that others can not control the satellite, even if they record 

and resend the commands. 

5.4. Overall functionality rating 

Based on the testing results of the implemented software parts, it can be stated how well the 

implemented architecture solution works on the firmware.  

It can be said that the implementation was mostly successful, because all the parts of the PCOM 

firmware that were implemented, worked at least at base level and fulfilled the minimum 

requirements. The implementations that were tested and taken into account, were for data 

transmitting, data reception, data buffering in external FRAM and ICP communication. 

The data transmitting worked in the level that was desired in the thesis. In future it can be made 

more configurable and needs boundary and reliability testing also in more realistic 

environments. Data reception however still has problems to it, and currently only reading raw 

bits from transceiver works. It might be the best solution possible, as the transceiver does not 

recognize AX.25 packets, but this is a drawback compared to initial architecture plan for the 

thesis. The FRAM buffering works in current mode, on ground but another backup mode should 

also be developed for space, because current implementation is vulnerable by bit errors. The 

second mode would be benefit compared to initial architecture. ICP communication works well 

on transmitting side, but there are still line-handling bugs on PCOM implementation that have 

to be solved. 

Considering all those results, it can be said that the prototype software development was 

successful for some parts and partly successful for others, however, the implementation proves 

the concept that the PCOM subsystem can operate in the way planned with no major drawbacks. 

There are still several more parts to the PCOM subsystem to implement, and several tests to 

carry out before the final functionality for the system can be stated.  
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6. Summary 

In this thesis the requirements and architecture of the EC-2 PCOM firmware were stated. As 

part of the thesis, also the prototype firmware was developed and tested and the approaches and 

results for both were described in the thesis.  

The main outcomes of the thesis are: 

• Full system architecture description for EC-2 PCOM as text and as diagram 

• Prototype firmware for PCOM, with following parts implemented: 

o Receiving and transmitting data using AX.25 standard and AFSK modulation 

o Communication with other satellite subsystems over ICP protocol 

o Packet handlers for ICP and AX.25 communications 

o Internal command parser with basic commands 

• Test results showing that the hardware and software of PCOM allows to fulfil the main 

requirements determined for the subsystem. 

The development of the PCOM firmware however is not over with the part described in this 

thesis. There is still functionality to implement and improve according to tests and future needs. 

The final testing of the satellite can be only done when all the subsystems are finished and tested 

individually and even then, modifications can be done. 
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Ülevaade tööst eesti keeles 

Käesolevas töös kirjeldati ära nõuded ja tarkvara arhitektuur EC-2 peasidesüsteemi jaoks. 

Lisaks valmis töö raames algne tarkvara implementatsioon, mida ka testiti. Töös on kirjeldatud 

nii tarkvara arenduse kui ka testimise protsesse ja tulemusi.  

Töö peamised väljundid on: 

• Täielik süsteemi arhitektuuri kirjeldus, vastavalt välja toodud nõuetele, nii diagrammi 

kui lihttekstina 

• Prototüüp tarkvara peasidesüsteemijaoks, milles on implementeeritud järgmised osad : 

o Andmete saatmine ja vastuvõtmine üle raadioside, kasutades AX.25 

kommunikatsiooniprotokolli ja AFSK tüüpi modulatsiooni 

o Suhtlus ülejäänud satelliidiga kasutades kohandatud ICP suhtlusprotokolli 

o Pakettide käsitlejad nii AX.25 pakettidele kui ka ICP pakettidele 

o Sisemine käsuinterpretaator koos funktsionaalsusega peamistele käskudele 

• Testi tulemused, milles kajastub, et peasidesüsteemi riistvara ja tarkvara võimaldab täita 

sidesüsteemile määratud peamisi nõudeid 

Käesolev töö on aga vaid osa peasidesüsteemi arendusest ning alamsüsteemi arendustegevus 

jätkub kuni satelliidi lõpliku valmimiseni. Peasidesüsteemile, nagu ka teistele satelliidi 

alamsüsteemidele on veel vaja lisada uut ja täiendada olemasolevat funktsionaalsust. Seda nii 

puuduste likvideerimiseks kui ka lisanduvate nõuete täitmiseks. Viimased testid, mille käigus 

võib samuti esineda muutuste tegemise vajadus, saavad toimuda alles siis kui kõik satelliidi 

alamsüsteemid on valmis ja kokku pandud. Sellepärast on rõhku pandud ka koodi loetavusele 

ja dokumenteerimisele. 
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Appendix 

I – Used hardware 

 

Figure 7 - Hardware, used in the development and testing process 
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II – Transmission testing 

 

Figure 8 - Transmitting short AX.25 packet initiated over serial communication with COM board 

 

Figure 9 - The packet sent out by COM board detected by HDSDR software, shown in waterfall 

 

Figure 10 - The packet sent out by COM and demodulated by HDSDR software, shown in Audacity program 

 

Figure 11 - several packets sent by the COM and demodulated by HDSDR, successfully received and decoded by the High-

Speed SoundModem software  
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