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Abstract

In this paper we present three models of random wildlife movement: a one-

dimensional model of wildlife-observer encounters on roads, an analogous two-

dimensional model, and an further two-dimensional model that borrows from the

ideas of statistical mechanics. We then derive unbiased estimates of wildlife den-

sity in terms of encounters for each of these models. By extending these results

to incorporate uncertain detection, we suggest three novel distance sampling

methods and briefly consider possible field applications.
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Chapter 1

Introduction

Wildlife movement has long been recognized as an important problem for dis-

tance sampling methodology, which traditionally assumes that animals are de-

tected at their initial positions [1]. Broadly speaking, the movement problem can

be divided into two components: random movement, and responsive movement.

Responsive movement refers to wildlife altering their behavior in the presence of

the observer so that density in the survey area is no longer representative of the

wider habitat. If wildlife flee from the observer, for example, density estimates

will be biased low; if they are attracted, estimates will be biased high.

Yet even if wildlife movement is completely random, and hence unrelated to

the presence of the observer, it still poses serious problems for distance sampling.

Most fundamentally, when wildlife move during the period of observation, there

is no single distance to record. If wildlife are simply recorded at the moment

when they are first observed, distances will be biased downwards, resulting in

overestimates of density. This is because animals are more likely to be detected

the closer they come to the observer. Besides biasing recorded distances, ran-

dom movement gives rise to yet another difficulty. Although distance sampling

relies upon the idea that wildlife are observed at one instant of time, in practice

detections occur over some interval. If wildlife move randomly, animals could

enter the survey area during this period, again biasing density estimates up-

wards. This is an especially serious problem for point transect studies, in which
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the observer is stationary [6] and fixed underwater sensors, operating over long

periods of time [5].

In this paper, we present three models of random wildlife movement, and

show how they can be used to adapt existing distance sampling methodology to

account for the difficulties outlined above. Chapter 2 considers wildlife-observer

encounters on a one-dimensional road. Chapter 3 extends our one-dimensional

results to the two-dimensional plane, and presents an alternative two-dimensional

model based on the ideas of statistical mechanics. Chapter 4 incorporates de-

tectability into our two-dimensional models and considers possible applications

to line and point transect sampling. Chapter 5 concludes with some ideas for

future research.
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Chapter 2

Encounters in One Dimension

This chapter presents a first model of the effect of random movement on wildlife

density estimation, considering wildlife-observer encounters on a one-dimensional

road. Section 2.1 introduces the simplest form of the model, in which wildlife

travel at a fixed speed for a known distance, and encounters occur only when

observer and wildlife occupy the exact same position along the road. The results

of a simulation study confirm our derivations. Section 2.2 generalizes this model

to allow for an observer “field of vision,” but goes on to show that this gener-

alization is counterproductive. Section 2.3 relaxes some of the assumptions of

Section 2.1, allowing a distribution of animal speeds and travel distances. Even

in this more general setting we can draw some useful conclusions about the ef-

fect of movement on density estimation. This chapter presents several results

originally derived by Hirakawa [2], although the arguments presented here novel,

as are our results concerning the observer’s field of vision. Further, whereas Hi-

rakawa considers only discrete distributions of animal speed and travel distance,

we specify a continuous model.

For convenience, we follow a number conventions throughout the chapter.

First, although the road is one-dimensional, we find it helpful to work in the

two dimensional space-time coordinate system. In this context, a stretch of road

combined with an interval of time defines a region with some corresponding area.

We denote by λ(A) the area of some region A. Finally, we let x denote position
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along the road, where x is increasing in observer’s direction of travel.

2.1 A Simple model of Encounters

Suppose that wildlife appear at purely random times and positions on a one-

dimensional road according to a Poisson process with rate q per unit space-time.

For example, if time is measured in hours and space in kilometers, the rate

of the process is q animals per kilometer per hour. Intuitively, we can think

of the coordinate system as a grid of unit squares. Each square contains a

number of animals given by the independent realization of a Possion(q) random

variable. Within a particular square, the initial coordinates of each animal are

purely random. That is, they are given by the realization of a bivariate uniform

random variable.

After appearing on the road, we assume that each animal travels for a dis-

tance s at fixed speed g for an interval of time t, tracing out a linear path in

space-time. Clearly, t = s/g. We further suppose that each animal has probabil-

ity 1/2 of traveling in either direction along the road. Now consider an observer

traveling at fixed speed k for one unit of time in the positive x direction. Like

the animals, the observer traces out a linear path in space-time. In this section,

we define an encounter as the intersection of the observer’s path and some ani-

mal’s path in space-time. In other words, we assume that animal and observer

encounter one another if and only if they they occupy exactly the same position

along the road at exactly the same time. Figure 2.1 provides a simple illustration

in which the observer, depicted in blue, encounters one animal, depicted in red.

To study the effect of observer speed on density estimation under this model,

we first calculate the expected number of number of animals the observer will

encounter during one unit of time while traveling at rate k. The question we

need to ask is this: where and when must animals originate if they are to have

any chance of encountering the observer? Working in the space-time coordinate

system, this reduces to a simple problem of geometry as shown in Figure 2.2. In

both panels, the blue arrow represents the observer’s path while the red arrow
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Figure 2.1: In this illustration of the simple encounter model, the observer,
depicted in blue, encounters one animal, depicted in red, as indicated by the
intersection of its path with his.

represents an animal’s path. Although Figure 2.2 presents two cases, k < g

and k > g, the same principles apply regardless of the ordering of animal and

observer speeds.

To begin, suppose that k < g, as shown in the first panel of Figure 2.2. Given

the slope and length of the animal and observer paths, only animals originating

in the shaded regions A and B have the potential to encounter the observer.

This is because we have defined an encounter as an intersection of wildlife and

observer paths. However, only some of the animals in these regions will actually

encounter the observer. Although wildlife can travel in either direction along

the position axis, they can only travel forwards along the time axis. Hence,

of all the animals originating in region A, only those traveling in the negative

x-direction will encounter the observer. Similarly, of all the animals originating

in region B, only those traveling in the positive x-direction will encounter the

observer. Therefore, the expected number of encounters equals half the expected

number of animals originating in regions A and B. The same reasoning holds
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when k > g, a depicted in the second panel of Figure 2.2. The only difference is

that region B folds over the observer’s path to overlap region A.1

Fortunately, finding the expected number of animals originating in regions

A and B is straightforward. As the Poisson rate q gives the expected number

of animals originating in any unit area, we need only calculate the area of A

plus the area of B and multiply this quantity by q. As mentioned above, one

half of the result will give the expected number of encounters. Because A and

B overlap when the observer travels faster than the wildlife, it might seem as

though we have mistakenly counted region A∩B twice, but this is not the case.

In the doubly shaded region A ∩ B, wildlife traveling in either direction along

the road will encounter the observer. Hence we must count this area twice.

To find the areas of A and B, we first note that they are parallelograms

entirely defined by the the animal and observer paths. To ease calculation, we

shift and rotate A and B towards the origin, as shown in Figure 2.3. This

leaves area unchanged. The observer’s path is given by the column vector (1, k)′

because he travels for one unit of time at rate k. Similarly, the animals’ paths

are given by (t,−s)′ and (t, s)′ depending on whether they are moving in the

positive or negative x-direction, respectively. By an elementary result from linear

algebra, the area of a parallelogram defined by column vectors v and w equals

the absolute value of the determinant of the matrix whose columns are v and w.

Thus, the area of region A is calculated as follows:∣∣∣∣∣∣ 1 t

k −s

∣∣∣∣∣∣ = −(s+ tk)

Hence, taking the absolute value and noting that s = gt,

λ(A) = s+ tk = t(g + k).
1When k = g, region B has zero area, and region A becomes a rectangle. However, this has

no effect on our calculations.
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Figure 2.2: Only animals originating in the shaded regions have the potential to
encounter the observer.
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Figure 2.3: Finding the Area

Similarly for region B, ∣∣∣∣∣∣ 1 t

k s

∣∣∣∣∣∣ = s− tk

so that

λ(B) = |s− tk| = t|g − k|.

Combining, we have

λ(A) + λ(B) = t{(g + k) + |g − k|}.

We now calculate the expected number of encounters, N , by multiplying the

total area of A and B by the appropriate density, q/2. We have,

E[N ] =
qt

2
{(g + k) + |g − k|}. (2.1)
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Noting that s = gt, this expression can be defined piecewise as follows:

E[N ] =

 kqt k > g

qs k ≤ g
(2.2)

Dividing by the observer’s travel distance, yields the following expected en-

counter rates per unit distance:

E[r] =

 qt k > g

qs/k k ≤ g
(2.3)

Now consider the limiting cases where k = 0 and k = ∞. Using Equation

2.1 and noting that s = gt, we have E[N ] = qs when k = 0. Since an observer

traveling for one unit of time at speed zero is stationary, we cannot talk of

encounter rates per unit distance. Hence, the encounter rate for the stationary

observer is qs per unit time. In the case where k =∞, the expected number of

encounters is infinite, but by Equation 2.3, the expected encounter rate is simply

qt per unit distance.

This is the key point: because an observer traveling at infinite speed encoun-

ters all of the animals on the road at a particular instant, his encounter rate, qt

per unit distance, provides an unbiased estimate of wildlife density on the road.

By Equation 2.3, the encounter rate per unit distance for an observer traveling

faster than the wildlife is also qt—the same unbiased estimate of wildlife density.

This is in stark contrast to the observer moving slower than the wildlife. His

encounter rate, qs/k per unit distance, is an overestimate of wildlife density that

approaches infinity as k goes to zero.

Fortunately, since wildlife speed is known, the slow-moving and stationary

observer’s wildlife encounter rates can be corrected to yield an unbiased estimate

of wildlife density. Since s/g = t, dividing the expected number of encounters

per unit time for the slow-moving or stationary observer, qs, by wildlife speed,

g, yields qt: the correct density estimate.

To verify the analytical results given above, we carried out a number of Monte
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Figure 2.4: A simulation with 100 repetitions in which q = g = s = 10. The
solid line gives theoretical encounter rates, the circles simulated encounter rates.

Carlo simulations using the R source code given in Appendix A. Our simulation

program is based on the same geometric reasoning used throughout this chapter.

The program first positions animal paths randomly in space-time given q, s, and

g before positioning the observer at a known starting point. It then varies k,

changing the slope of the observer’s path, and counts intersections for each value

of k. Repeating this process gives increasingly more accurate estimates of the

average encounter rate at various values of k. Over a range of parameter values

and for even relatively short simulation runs, our program produced simulated

encounter rates almost identical to the theoretical values. Figure 2.4 gives an

example in which q, g, and s were all set to 10 and the simulation was repeated

100 times. Simulated encounter rates, given by open circles, lie almost exactly

along on the solid line, denoting theoretical encounter rates.
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2.2 Observer Field of Vision

The model presented in the previous section makes several implausible assump-

tions, among them the idea that encounters occur only when animal are in

exactly the same place at the same time. In this section, we change the model

slightly, giving the observer a field of vision. That is, we now suppose that

the observer encounters all animals within an interval of length d. It does not

turn out to matter whether this field of vision lies to the observer’s front, his

rear, or some combination of the two. A straightforward extension of the ideas

from the previous section allows us to calculate encounter rates and consider the

consequences for density estimation.

We continue with the geometric reasoning used in the previous section, con-

sidering observer and animal paths in two-dimensional space-time. However,

when the observer is given a field of vision, his path is no longer a straight line.

The observer’s field of vision, d, sweeps out a parallelogram in space-time as he

travels along the road. In spite of this difference, our reasoning proceeds in exact

analogy with the previous section: we find the areas of various regions and use

these to calculate encounter rates. Figure 2.5 presents the revised geometry. As

before, the ordering of observer and animal speeds does not affect the argument.

In both panels, the shaded regions A and B correspond exactly to their analogues

in Figure 2.2, and the blue parallelogram, region E, depicts the observer’s field

of vision as it moves through space-time. The observer encounters any animal

whose path intersects this parallelogram.

Following similar reasoning to that given above, the observer encounters half

of the animals originating in regions A and B: those traveling in the negative

x-direction. Similarly, he encounters half of the animals originating in regions

B and D: those traveling in the positive x-direction. However, because they

are already in his field of vision, the observer encounters all of the animals

originating in region E, regardless of their directions of travel. Hence, expected

12



●

time

x
k < g

B

A

D

C

E

●

time

x
k > g

B

A

D

C E

Figure 2.5: When the observer is given a field of vision, his “path” is no longer
a line, but rather a parallelogram.
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encounters are computed as follows:

E[N ] =
q

2
{λ(A) + λ(B) + λ(C) + λ(D)}+ qλ(E)

Since we know λ(A) and λ(B) from the previous section, and λ(C) = λ(D),

we need only calculate the areas of regions C and E. Shifting and rotating to

the origin, we see that region C is defined by the column vectors (t,−s)′ and

(0, d)′, where d is the observer’s field of vision. Region E is likewise defined by

(1, k)′ and (0, d)′. Thus,

λ(C) = dt,

and

λ(E) = d,

so that

E[N ] =
qt

2
{(g + k) + |g − k|+ 2d}+ qd (2.4)

This expression can be defined piecewise as:

E[N ] =

 qt(k + d) + qd k > g

qt(g + d) + qd k ≤ g
(2.5)

We know from the previous section that qt measures wildlife density per unit

distance. The question remains: can we convert encounters per unit time to

density as we did before? Unfortunately, Equation 2.5 shows that we cannot.

Solving for qt requires knowledge of the unknown q. If q were known, there would

be no reason for an observer to record encounters in the first place! In summary,

although giving the observer a field of vision seems like a useful generalization,

encounters recorded in this manner cannot be converted to wildlife density.

2.3 A Generalized Model of Encounters

In the previous section we saw that relaxing the definition of an encounter is

counterproductive if we hope to estimate wildlife density. We now return to our
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original definition of an encounter, relaxing a more fundamental assumption.

Rather than supposing that all animals travel at fixed speed for a fixed distance

along the road, we now investigate the consequences of allowing speed and travel

distance to vary. As before, we assume that each animal’s speed is constant as

it travels along the road and that each animal has probability 1/2 of traveling

in either direction. Further, we continue to suppose that the observer travels for

one unit of time at a constant rate k in the positive x direction.

Associated with each animal is a speed g, travel distance s, and corresponding

time spent on the road t. Rather than assuming that these quantities are fixed,

we now allow them to vary according to some unknown probability distribution.

Since the path of an animal traveling at a constant speed is entirely described

by any two of g, s, and t, there are three specifications to choose between, each

containing two of these quantities. For ease, we consider the specification given

in terms of time and distance.

Let f(t, s) be the distribution of wildlife speed and travel distance. Although

wildlife could spend any nonnegative amount of time on the road, and likewise

travel any nonnegative distance, their speed is clearly bounded. Hence, we take

as our support sets for the distribution t ≥ 0, s ≥ 0 and Gmin ≤ g ≤ Gmax,

where Gmax and Gmin are the maximum and minimum speeds of the wildlife

under consideration, respectively. Because g does not feature in f directly, we

rewrite this last constraint in terms of t and s as Gmin ≤ s/t ≤ Gmax, or more

compactly t, s ∈ G. Hence, expected wildlife travel time and distance are given

by the following:

E[t] =
∫∫

t,s∈G
t · f(t, s) ds dt

E[s] =
∫∫

t,s∈G
s · f(t, s) dt ds

As average speed is simply average distance divided by average time, we have

E[g] = E[s]/E[t].

If q is the overall density of wildlife per unit space-time, then q ·f(t, s) dt ds is
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the density per unit space-time of wildlife with some particular travel time t and

travel distance s. We can also find the density of wildlife with some particular

travel time q ·f(t) dt, or some particular travel distance q ·f(s) ds by calculating

marginal distributions. In particular,

f(t) =
∫ t·Gmax

t·Gmin

f(t, s) ds

f(s) =
∫ s/Gmin

s/Gmax

f(t, s) dt

We can now return to a result from Section 2. For any particular wildlife

speed g, travel time t and travel distance s, Equation 2.3 clearly holds. Thus we

may restate it as follows, recalling that g = s/t:

r|t, s =

 qt · f(t) dt k > s/t

qs/k · f(s) ds k ≤ s/t

To find the total encounter rate, we need to integrate over all values of t when

k > s/t and over all values of s when k ≤ s/t.

First, consider the case where k > Gmax, i.e. the observer travels faster than

all of the wildlife. Since s/t ≤ Gmax, this means that k > s/t for all s and t.

Thus we integrate over all t as follows:

E[r] =
∫ ∞

0
qt · f(t) dt =

∫ ∞
0

∫ t·Gmax

t·Gmin

qt · f(t, s) ds dt = q · E[t] (2.6)

Because qt · f(t) dt gives the density of wildlife with some particular travel time

t, by extension q ·E[t] gives the overall density of wildlife. Hence, the encounter

rate for an observer traveling faster than all of the wildlife on the road provides

an unbiased estimate of total wildlife density per unit distance.

Now consider the case where k < Gmin, i.e. the observer travels slower than

all of the wildlife. Since s/t ≤ Gmin, we have k < s/t for all s and t. Hence,
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integrating over s,

E[r] =
∫ ∞

0

qs

k
· f(s) ds =

∫ ∞
0

∫ s/Gmin

s/Gmax

qs

k
· f(t, s) dt ds =

q

k
· E[s] (2.7)

The preceding expression is undefined when k = 0, so we consider instead ex-

pected encounters per unit time. Multiplying by k, we have:

E[N ] = k · E[r] = q · E[s]

But we know from above that E[s] = E[t] · E[g]. Hence:

E[N ] = k · E[r] = q · E[t] · E[g].

Dividing by E[g],

E[N ]/E[g] = q · E[t]

In other words, knowledge of average wildlife speed allows us to convert expected

encounters per unit time to wildlife density, provided that the observer travels

no faster than any of the wildlife. We simply divide encounter per unit time by

average wildlife speed.

The situation is somewhat more complicated when Gmin < k < Gmax, that

is when the observer travels faster than some, but not all wildlife. In this case,

we have

E[r] =
∫ ∞

0

∫ s/k

s/Gmax

qs

k
· f(t, s) dt ds+

∫ ∞
0

∫ t·k

t·Gmin

qt · f(t, s) ds dt (2.8)

The first term in this expression calculates the encounter rate for wildlife trav-

eling slower than the observer, while the second term calculates the encounter

rate for wildlife traveling faster than the observer. The total encounter rate is

simply the sum of these. By analogy with Equations 2.7 and 2.6, the second

term of the above expression gives the density of wildlife traveling faster than

the observer, but the first term overestimates the density of wildlife traveling

slower than the observer. Hence, the encounter rate per unit distance for an
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observer traveling faster than some but not all wildlife, is an overestimate of

wildlife density. From the form of Equation 2.8, we see that this overestimate

cannot be corrected without knowledge of f(t, s).
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Chapter 3

Encounters in Two Dimensions

In this chapter we turn our attention to the more realistic and interesting ques-

tion of wildlife movement in two dimensions, developing two models that take

very different approaches. The first, originally devised by Hirakawa [3], employs

the ideas of the previous chapter by creating an analogy between encounters in

two-dimensions and encounters on roads. The second model, following a paper

by Skellam [4], takes its cue from statistical mechanics, allowing us to consider

movement in extremely general terms.

3.1 Linear Encounter Model

We now extend the results of the previous chapter from a one-dimensional road

to a two-dimensional transect. With the proper definition of an encounter, as

we shall see, all of the results that held on the line also hold in the plane. We

first explain the basic two-dimensional situation. Suppose our observer follows

a transect of half-width w at rate k for one unit of time. Since coordinate axes

are completely arbitrary, we may assume that the transect lies along the y-axis,

and the observer begins at the origin. We suppose that the observer begins at

(w, 0) and ends at (w, k).

As the observer walks along the transect, he takes with him an imaginary

line, perpendicular to his direction of travel, and jutting out a distance w to each

side. We say that the observer has encountered any animal that passes through
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Figure 3.1: An observer, shown in blue, and and animal, shown in red, travel
along a transect of width 2w. The filled circles show the animal and observer’s
positions at time t.

this line. The situation is depicted in Figure 3.1, in which the observer, shown in

blue, encounters an animal, shown in red. The filled circles denote positions at

time t, the moment when the animal passes through the imaginary line abeam

of the observer, effecting an encounter. To put another way, a given animal must

meet two requirements to encounter the observer. First there must exist a time

t when animal and observer have the same y-coordinate. Second, the animal

must be on the transect at time t.

Wildlife movement in the y-direction controls encounters in one sense, by

determining when animals lie abeam of the observer. On the other hand, wildlife

movement in the x-direction determines when a given animal enters the transect,

and how long it stays there. However, we can abstract from this second spatial

dimension by positing a distribution for the amount of time animals spend on

the transect, and a rate at which they appear along its length. Combining this

with a distribution of speeds in the y-direction for wildlife on the transect, we
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have a perfect analogy with the one-dimensional case. Wildlife appear on the

transect (road) with rate q per unit length, per unit time. They then travel with

equal probability in either direction along the y-axis at some constant speed

drawn from a probability distribution. The amount of time wildlife spend on

the transect (road) is also drawn from a probability distribution.

It is now clear that all the results of the previous chapter hold in the two-

dimensional case. Most importantly, the encounter rate for an observer traveling

faster than all wildlife provides an unbiased estimate of wildlife density, and the

encounter rate per unit time for a stationary observer can be converted to provide

the same. There are only two slight modifications in the two-dimensional case.

First, note that we no longer consider wildlife speed, but speed in the y-direction,

the direction in which our observer travels. Second, to put our density estimate

into two dimensions, we need to divide by the width of the transect. For example,

the encounter rate for an observer traveling faster than all wildlife is

E[r] =
∫ ∞

0
qt · f(t) dt =

∫ ∞
0

∫ t·Gmax

t·Gmin

qt · f(t, s) ds dt = q · E[t]

while the corresponding two-dimensional density estimate is D = q · E[t]/2w.

The convenience of the above results, however, masks a few complications.

First, although we have only assumed that one component of wildlife velocity

is constant, the component directed along the transect, in practice this will

not suffice. Because transects are placed randomly, in order to guarantee that

velocity in the transect direction is constant, velocity magnitude must also be

constant. Second, there is the problem of measuring a expected wildlife velocity

in a single direction. In order for such a measurement to be meaningful, we must

also assume that wildlife travel direction is purely random. If travel direction,

given by θ, does in fact follow a uniform distribution, and the magnitude of

wildlife velocity, g, distributes independently of θ, we can compute expected

speed in the transect direction, gy as follows:

E[gy] = E[g] · E[| sin θ|] = E[g] · 2
∫ π

0
sin θ · 1

2π
dθ =

2
π
· E[g] (3.1)
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3.2 Wildlife as an Ideal Gas

We have seen one way of modeling wildlife encounters in two-dimensions that

works by constructing an analogy with the simpler, one-dimensional case. The

results are convenient, but rely upon relatively strong assumptions. In this sec-

tion we consider a vastly different approach to the same problem that takes its

inspiration from statistical mechanics. Although the resulting model is compli-

cated, it makes comparatively weaker assumptions. The original idea modeling

wildlife movement in terms of the kinetic theory of gases is due to Yapp [7]. Our

argument is based upon a more general form of the model originally derived by

Skellam [4].

3.2.1 The Basic Model

Consider a two-dimensional plane with average wildlife density D, in which an-

imals follow arbitrary paths. We make only two assumptions about wildlife

movement. First we suppose that their paths are rectifiable, i.e. that they can

be approximated to arbitrary precision by a sufficient number of line segments.

This is a very weak requirement: it is nearly impossible to imagine wildlife fol-

lowing a path that is not rectifiable. Second, we assume that wildlife behave

in the same way, on average, in any region of the plane. This is a somewhat

stronger requirement. If wildlife tend to gather around a watering hole, or move

in response to the observer, for example, this assumption will not be satisfied.

Now suppose an observer follows a rectifiable path through the plane, carrying

with him a field of vision. We assume that the observer encounters any wildlife

that enter this field of vision, henceforth the contour. The contour may be prac-

tically any shape that seems appropriate; we assume only that it is smooth, and

encloses a convex region of the plane.

Rather than modeling observer and wildlife movement separately, we employ

a coordinate system that keeps the observer fixed at the origin, regardless of

how he might move over time. For convenience, but without loss of generality,

we suppose that he faces in the positive x-direction. To fix the observer at the
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origin, we must vector-subtract his movement from that of the wildlife. This

is accomplished by modeling relative rather than absolute animal movement.

Specifically, we let v(t) denote the scalar speed and θ(t) the angle of some animal

at time t, both given relative to the observer. At any time t, f(v, θ; t) gives the

distribution of relative wildlife speeds and angles. Above we mentioned the

assumption that wildlife behave in the same way, on average, throughout the

plane. More formally stated, this requires that D and f(v, θ; t) are independent,

which of course holds trivially when D is a constant as we have supposed. This

ensures that D·f(v, θ; t) dv dθ gives the expected number of animals with relative

speed v and angle θ in any region of unit area at time t.

We are now ready to ask the fundamental question of interest: how many

animals will the observer encounter over some period of time? In the vocabulary

of our model, we need to determine how many animals will cross the contour

headed inside. Figure 3.2 gives the geometric intuition. The small blue circle

at the origin represents the observer, while the larger blue oval represents the

contour. The contour need not have the shape we have depicted here. As

mentioned above, we only require that it is smooth and encloses a convex region.

The two directed line segments in the third quadrant depict the hypothetical

paths of two animals, both with speed v and angle θ relative to the observer.

The solid black circles represent their positions at time t, and the filled circles

their positions at time t+ 1. From the paths of these animals, we can see that,

given θ and v relative to the observer, only those animals originating in the

shaded region will encounter the observer after one unit of time. The question

is: how many of them are there?

In any region of unit area, D · f(v, θ; t) dv dθ animals have speed v and

direction θ at time t. Hence, the problem reduces to finding the area of the red

shaded region, given v and θ. At this point, it becomes convenient to introduce

some additional notation. Henceforth we denote by H(θ) the distance across the

contour at angle θ, as shown in Figure 3.2. Measured in the direction specified

by θ, the height of the red shaded region is constant, and equal to v. Because

its width measured in this direction is, by definition, H(θ), the area of the red
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Figure 3.2: The integration region is depicted. Particles with a given velocity,
specified in terms of magnitude v and angle θ, will cross the contour after one
unit of time if and only if they originate in the red shaded region.
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shaded region is simply v·H(θ). Thus, at time t there areDv·H(θ)·f(v, θ; t) dv dθ

animals with speed v and angle θ situated such that, if their speeds and angles

were to remain constant, they would encounter the observer by time t+ 1. This

is the instantaneous encounter rate at time t for animals with speed v and angle

θ.

To find the overall instantaneous encounter rate, we integrate the encounter

rate for animals with speed v and angle θ over all values of both variables,

yielding

E[r|t] = D
∫ 2π

0

∫ ∞
0

v ·H(θ) · f(v, θ; t) dv dθ

We can now compute expected encounters by integrating over time:

E[N ] =
∫ T1

T0

E[r|t] dt = D
∫ T1

T0

∫ 2π

0

∫ ∞
0

v ·H(θ) · f(v, θ; t) dv dθ dt (3.2)

3.2.2 A Simplification

Equation 3.2 gives us, in one formula, a way to estimate the density of moving

wildlife while making virtually no assumptions about the nature of this move-

ment. Unfortunately, it is of little use as it stands. It might be reasonable to

suppose that we know the shape of the contour, and hence can approximate

H(θ), but to evaluate the integral we would still need to specify f(v, θ; t). For-

tunately, there is a way to exclude the integral altogether by working in terms

of average relative speed.

The expected value of v given t is:

E[v|t] =
∫ 2π

0

∫ ∞
0

v · f(v, θ; t) dv dθ

Integrating this expression over a time interval turns the rate v into a distance.

To turn it back into a rate, we need to divide by the duration of the time interval.

Hence, the average speed (relative to the observer) over some time interval is

given by:

E[v] =
1

T1 − T0

∫ T1

T0

∫ 2π

0

∫ ∞
0

v · f(v, θ; t) dv dθ (3.3)
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This looks remarkably similar to right hand side of Equation 3.2 with one notable

difference: the absence of H(θ). Here is where our assumptions about the shape

of the contour come into play. If, as we have assumed, the contour is smooth

and convex, H(θ) is guaranteed to be continuous on [0, 2π]. Hence, applying the

intermediate value theorem, H(θ) attains all values between its minimum and

maximum—call them Hmin and Hmax.

Now define

g(θ) =
∫ T1

T0

∫ ∞
0

v · f(v, θ; t) dv dt (3.4)

The expression on the right hand side “integrates out” v and t, leaving a function

of θ alone. Substituting Equation 3.4 into Equation 3.2, we have

E[N ] = D
∫ 2π

0
H(θ) · g(θ) dθ

For any θ, we clearly have

Hmin ≤ H(θ) ≤ Hmax

thus:

Hmin

∫ 2π

0
g(θ) dθ ≤

∫ 2π

0
H(θ) · g(θ) dθ ≤ Hmax

∫ 2π

0
g(θ) dθ

The integral
∫ 2π
0 g(θ) dθ is simply a constant. Hence, dividing through by this

quantity,

Hmin ≤
∫ 2π
0 H(θ) · g(θ) dθ∫ 2π

0 g(θ) dθ
≤ Hmax

Now define

H̃ =

∫ 2π
0 H(θ) · g(θ) dθ∫ 2π

0 g(θ) dθ
(3.5)

Since we have shown thatHmin ≤ H̃ ≤ Hmax, the intermediate value theorem

ensures that H(θ̃) = H̃ for some θ̃. Multiplying both sides of Equation 3.5 by∫ 2π
0 g(θ) dθ, we have

H̃

∫ 2π

0
g(θ) dθ =

∫ 2π

0
H(θ) · g(θ) dθ
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Now recall the definition of g(θ), given in Equation 3.4. Substituting this into

the above expression, we find that

H̃

∫ T1

T0

∫ 2π

0

∫ ∞
0

v · f(v, θ; t) dv dθ dt =
∫ T1

T0

∫ 2π

0

∫ ∞
0

v ·H(θ) · f(v, θ; t) dv dθ dt

Thus, we can re-express Equation 3.2 in terms of H̃ as

E[N ] = DH̃
∫ T1

T0

∫ 2π

0

∫ ∞
0

v · f(v, θ; t) dv dθ dt

Using the definition of E[v], given in Equation 3.3,

E[N ] = DH̃(T1 − T0)E[v]

or expressed more conveniently,

D =
E[N ]

H̃(T1 − T0)E[v]
(3.6)

3.2.3 Special Cases

We now have an expression for wildlife density that does not involve f(v, θ; t),

requiring only that we know the average relative speed of wildlife. However, the

quantity H̃ remains unknown. We know only that it exists and lies between the

maximum and minimum values of H(θ). Fortunately, this is enough information

to calculate H̃ in a very important special case: that of circular contours. When

the contour is a circle, H(θ) is constant and equal to 2r, where r is the radius

of the circle. In this case,

D =
E[N ]

2r(T1 − T0)E[v]
(3.7)

We will return to this expression later when we consider the implications of the

present model for point transects.

Even if the contour is not a circle, it is sometimes possible to compute H̃

analytically. Suppose that f(v, θ; t) does not depend on θ. This will occur when
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the observer is stationary, and velocity magnitudes are spread equally across

angles. Then,

E[N ] = D
[∫ 2π

0
H(θ) dθ

] [∫ T1

T0

∫ ∞
0

v · f(v; t) dv dt
]

By definition,

H̃ =

[∫ 2π
0 H(θ) dθ

] [∫ T1

T0

∫∞
0 v · f(v; t) dv dt

]
∫ 2π
0

∫ T1

T0

∫∞
0 v · f(v; t) dt dv dθ

but since f(v; t) does not involve θ,

H̃ =

∫ 2π
0 H(θ) dθ∫ 2π

0 dθ
=

1
2π

∫ 2π

0
H(θ) dθ

Hence,

H̃ =
1

2π

∫ 2π

0
H(θ) dθ

If the shape of the contour is known, the above can be easily approximated.

Skellam [4] shows further that if the contour is an oval of continuous curvature,

H̃ = s/π, where s is the perimeter of the contour.

3.2.4 From Relative to Absolute Velocity

Unless the observer is stationary, v represents not absolute, but relative wildlife

speed. To overcome this difficultly, Yapp [4] proposed the following simple for-

mula:

E[v]2 = E[u]2 + E[w]2 (3.8)

where w is the absolute speed of the observer, and u the absolute speed of

wildlife. Skellam [4] showed that if u and w are drawn from independent Rayleigh

distributions, this formula holds exactly. This will be the case if the x and y

components of velocity are independent draws from a Normal(0, a2) distribution

for the wildlife, and a Normal(0, b2) distribution for the observer (the parameters

a and b need not be equal). This is a plausible assumption for wildlife, but not
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for an observer following a straight path. Unfortunately, Yapp’s formula does

not hold in general, but can be a reasonable approximation in certain cases, as

we shall see.

To find relative velocity, v, we vector-subtract the absolute velocity of the

observer, w, from that of the wildlife u. By the law of cosines,

v2 = u2 + w2 − 2uw cos θ

Now suppose that that the distribution of θ is independent of uw. This will occur

as long as the absolute speeds w and v vary irrespective of the angle between

them θ. Taking expectations:

E[v2] = E[u2] + E[w2] + E[uw]E[cos θ]

Consider the case in which E[cos θ] = 0. This is certainly true, as noted by

Skellam [4], if θ distributes as a uniform random variable, since
∫ 2π
0 cos θ dθ =

0. However, E[cos θ] is equal to zero under far more general conditions. The

canonical Fourier series representation of an integrable function h(θ) with period

2π is given by:

h(θ) ∼ 1
2
a0 +

∞∑
r=1

[ar cos (rθ) + br sin (rθ)]

where

ar =
1
π

∫ π

−π
cos (rθ)h(θ) dθ

br =
1
π

∫ π

−π
sin (rθ)h(θ) dθ

If we now let h(θ) denote the distribution of θ, we see that to impose E[cos θ] = 0

is only to require that a1 = 0. This is true of a great many distributions besides

the uniform. In this case,

E[v2] = E[u2] + E[w2]
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For any random variable X, V[X] = E[X2]− E[X]2. Thus,

E[v]2 = E[u]2 + E[w]2 + V[u] + V[w]− V[v] (3.9)

Comparing this expression to Equation 3.8, we can see why Yapp’s formula does

not, in general, hold. Even if u and w are constant, so that V[w] = V[u] = 0,

V[v] will not equal zero because of v’s dependence on the random variable θ –

Yapp’s formula is an overestimate.

Although Yapp’s formula is not true in general, it serves as a reasonable ap-

proximation under the assumption that observer and wildlife speeds are fixed,

and θ follows a uniform distribution. Under these conditions, the expected rel-

ative speed of wildlife is given by:

E[v] =
1

2π

∫ 2π

0
v dθ

but since v2 = u2 + w2 − 2uw cos θ,

E[v] =
1

2π

∫ 2π

0
(u2 + w2 − 2uw cos θ)1/2 dθ

Recall that Yapp’s formula gives E[v]2 = E[u]2 + E[w]2. Taking u and w to be

constant, the formula becomes vyapp = (u2 + w2)1/2. To measure the accuracy

of Yapp’s formula we consider the ratio E[v]/vyapp. We have,

E[v]
vyapp

=
1

2π

∫ 2π

0

(u2 + w2 − 2uw cos θ)1/2

(u2 + w2)1/2
dθ

Simple algebra shows that this ratio depends only on the fraction u/w:

E[v]
vyapp

=
1

2π

∫ 2π

0

[
1− 2(u/w)

1 + (u/w)2
cos θ

]
dθ (3.10)

Of course, because u and w are interchangeable in both Yapp’s formula and the

law of cosines, we could as easily have written the above expression with w/u

in the place of u/w. Hence when animal and observer speeds are fixed and θ

distributes as a uniform random variable, the accuracy of Yapp’s formula depends
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u/w 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
w/u ∞ 10 5 3.33 2.5 2 1.67 1.43 1.25 1.11 1
E[v]
vyapp

1 1.00 0.99 0.98 0.97 0.95 0.94 0.92 0.91 0.90 0.90

Table 3.1: Numerical approximations of Equation 3.10 for various combinations
of animal and observer speeds, following Skellam [4].

solely on the relative magnitudes of animal and observer speed. Finding the exact

error is simply a matter of carrying out the appropriate numerical integration.

Figure 3.3 plots the (negative) percent error of Yapp’s formula against u/w while

Table 3.1 provides selected values of E[v]/vyapp. We see that the maximum error

occurs when u = w, in which case Yapp’s formula is a 10% underestimate of the

true relative velocity. However, provided that wildlife and observer speeds differ

by a factor of 5 or more, the error is less than 1%.
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Figure 3.3: This plot shows the (negative) percent error resulting from the use of
Yapp’s formula in the case where observer and wildlife speeds are constant, and
θ follows a uniform distribution. As it turns out, the percent error depends only
on the relative magnitudes of observer and wildlife speeds, w and v respectively,
attaining a maximum of just under 10% when u = w
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Chapter 4

Detectability

Thus far, we have considered the effects of random movement under the assump-

tion that the observer detects all animals entering his range of perception: either

a line abeam, or contour surrounding him. We now show how the models of the

previous chapter can be extended to allow for uncertain detection, and briefly

consider the applicability of these new techniques. Section 4.1 considers the case

of line transects, using the linear encounter model of Section 3.1, while section

4.2 presents two models for point transects based on the ideas of section 3.2.

4.1 Line Transects

Our first model of detectability follows the general framework of Section 3.1.

We once again assume that wildlife speed is constant while animals lie on the

transect, and that travel direction is purely random, to allow the calculation

of speed in the transect direction. Continuing our earlier convention that the

transect lies along the y-axis with its boundaries at x = 0 and x = 2w, we

now regard it as an agglomeration of one-dimensional vertical strips, each of

width dx. In this way, we present a slightly different justification for Hirakawa’s

extension of his one-dimensional results to the two-dimensional case, allowing us

to incorporate a detection function almost immediately.

We first note that on any strip of infinitesimal width dx, the results of Chapter

2 automatically hold. Thus, using the abeam encounter definition from Chapter
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3, the total number of wildlife-observer encounters on the transect can be found

by integrating the encounters on each strip from 0 to 2w. If movement is random,

the rate at which animals appear in any vertical strip is exactly the same: q per

unit distance, per unit time. Further, when an animal crosses the transect, it

spends exactly the same amount of time in each vertical strip.1 If t represents

total time on the transect, as determined by the x-component of a given animal’s

velocity, t·dx/2w is the amount of time spent on each strip. The two-dimensional

model from Section 3.1 follows immediately from these observations.

The rate at which animals appear, ceteris paribus, governs the rate at which

they are encountered. Hence, an obvious way to incorporate detectability is to

construct a model in which appearance rates decrease towards the edges of the

transect. As mentioned above, wildlife appearance rates are actually the same

in all parts of the transect, but if encounters are less likely at range, appearance

rates can be thought to effectively decrease from the perspective of the observer.

To model this, we define by τ(x) a thinning process on [0, 2w], where τ(x) ∈ (0, 1]

for any x, and τ(w) = 1. For any infinitesimal vertical strip with position x along

the transect, q · τ(x) gives the rate of wildlife appearance. Because τ(w) = 1,

the appearance rate along the centerline is simply q. This is the analogue of the

standard line-transect assumption that detections are certain at distance zero

from the observer.

Now consider the case where the observer travels faster than all wildlife. By

the one-dimensional argument of Section 2.3, the expected number of encounters

per unit distance on strip x is

E[N(x)] = q · E[t]τ(x)
dx

2w

Integrating this expression from 0 to 2w, we find the total number of encounters

(per unit distance) as follows:

E[N ] =
∫ 2w

0
N(x) dx =

q · E[t]
2w

∫ 2w

0
τ(x) dx

1We can ignore those animals traveling parallel to the transect, as they form a set of measure
zero.
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But we know from Section 3.1 that q ·E[t]/2w = D, wildlife density. Thus, when

the observer travels faster than all wildlife,

D =
E[N ]∫ 2w

0 τ(x) dx

If we suppose that τ(x) is symmetric about the centerline x = w,

D =
E[N ]

2
∫ w
0 τ(x) dx

It is now apparent that τ is nothing more than a detection function by another

name. Whereas the standard detection function g(x) is given in terms of distance

abeam of the center line, τ(x) is specified in terms of horizontal position along

the transect. From the perspective of the integral in the previous expression,

however, this is immaterial. Hence, we may write

D =
E[N ]

2
∫ w
0 g(x) dx

(4.1)

If E[N ] is instead taken as the total number of encounters for the entire distance

surveyed, L, the previous expression becomes

D =
E[N ]

2L
∫ w
0 g(x) dx

Now suppose that the observer is stationary. Again by Section 2.3, the

expected number of encounters per unit time on strip x is

E[N(x)] = q · E[t] E[gy] τ(x)
dx

2w
,

where E[gy] is average wildlife speed in the transect direction. Hence, the total

number of encounters (per unit time) is given by

E[N ] =
∫ 2w

0
N(x) dx =

q · E[t] E[gy]
2w

∫ 2w

0
τ(x) dx
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but since q · E[t]/2w = D,

D =
E[N ]

E[gy]
∫ 2w
0 τ(x) dx

Again, if τ(x) is symmetric, we have

D =
E[N ]

E[gy] · 2
∫ w
0 g(x) dx

(4.2)

Redefining E[N ] as the total number of encounters during the observation period,

T units of time, we have

D =
E[N ]

E[gy] · 2T
∫ w
0 g(x) dx

We can now suggest two field methods for line transect sampling in the

presence of random wildlife movement, provided that wildlife speed can be taken

as constant along the transect. In the first, the observer travels at a fixed speed,

faster than all wildlife, recording the distance to each animal at the moment

when it lies abeam of him. After estimating a detection function, the total

number of encounters per unit distance can be directly converted to provide an

unbiased estimate of wildlife density. In the second method, an observer remains

stationary, and hence slower than all wildlife, again recording distances abeam of

his position. If average wildlife speed, E[v], is known, it can be converted to E[gy],

average speed in the transect direction, by the formula E[gy] = 2E[v]/π, under

the assumption that travel direction is purely random. In this way, encounters

per unit time can likewise be adjusted to provide an unbiased estimate of wildlife

density.

Note that so long as the observer is stationary or moving faster than all

wildlife, there is no question of which distance to record. Each animal is de-

tectable for exactly one instant, the instant when it lies abeam of the observer.

In practice, there may be some problems with the assumption that g(0) = 1 if

human observers are asked to scan a line abeam of their position. These diffi-

culties could possibly be overcome by scanning from above using aircraft, or by
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employing fixed, mechanized detectors. One could imagine a device involving

a beam that, once broken, records an encounter distance. Such a device could

be left in place over very long periods of time, to yield highly accurate density

estimates.

4.2 Point Transects

We now consider two models for point transects based on Equation 3.7. Recall

that in the case of a circular contour and a stationary observer, Skellam’s model

gives:

D =
E[N ]

2r(T1 − T0)E[v]

where E[N ] is the expected number of animals entering a contour of radius r

(from the outside) during the time interval (T0, T1), and E[v] is average wildlife

speed. By combining the above expression with a detection process, we derive

unbiased density estimates in the presence of random wildlife movement.

4.2.1 Minimum Distance Model

In our first model, we make two assumptions. First, we suppose either that the

contour of radius w is empty at T0, or equivalently that the period of observation

is sufficiently long to ensure that the number of animals within this radius at T0

is negligible. Under this assumption, any animal entering a contour of radius r

from without, where r < w, must enter all intermediate contours between w and

r. Second, we assume that a given animal’s probability of detection depends

solely on the minimum distance it attains from the observer. The basic idea

is to classify each animal by the innermost contour it crosses, and assign it a

detection probability accordingly.

Rearranging Equation 3.7 the number of animals entering any contour of

radius r over (T0, T1) is

E[N ] = 2rD(T1 − T0)E[v]
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The number of animals that attain r as their minimum distance from the ob-

server, Nmin(r), is simply the number that cross contour r minus the number

that cross the next smallest contour: r − dr. Thus,

Nmin(r) = {2rD(T1 − T0)E[v]} − {2rD(T1 − T0)E[v](r − dr)}

= 2D E[v](T1 − T0) dr

Now define by g(r) the probability that an animal attaining r as its minimum

distance from the observer is detected. Then, of all the animals attaining this

minimum distance,

Nmin(r) · g(r) = g(r) · 2D E[v](T1 − T0) dr

is the expected number that will be detected. Hence, integrating over all r, the

expected number of detections, E[Nd] is simply

E[Nd] = 2D E[v](T1 − T0)
∫ w

0
g(r) dr

so that

D =
E[Nd]

E[v](T1 − T0)
∫ w
0 g(r) dr

(4.3)

Equation 4.3 immediately suggests a possible field method for point transects:

a stationary observer tracks animals entering the contour of radius w and records

their minimum distances, allowing the estimation of g(r), from which an unbiased

estimate of D can be computed. Unfortunately, there are two major problems

with this approach. First, factors other than minimum distance almost certainly

play a part in the determination of g(r), for example the amount of time that

animals spend in the observation area. Second, observed minimum distances

will be subject to significant upwards bias, unless all animals can be tracked

perfectly. This is because it is impossible to observe an animal at less than

its minimum distance, but quite easy to fail to observe its minimum distance,

resulting in an overestimate.
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4.2.2 Repeated Observation Model

As an alternative to the previous model, we now consider a detection process

based on repeat observations of the same wildlife. Suppose that g(r) gives the

probability that any animal entering the contour of radius r is detected, regard-

less of which other contours it has entered, and whether it has already been

detected. As given above, the number of animals entering any contour of radius

r, N(r), during some interval of time (T0, T1) is given by

N(r) = 2rD E[v] (T1 − T0)

so that the proportion detected at any radius r is N(r)g(r) dr. Integrating over

all r, the total number of animals detected is

E[Nd] = 2D E[v] (T1 − T0)
∫ w

0
r · g(r) dr

Rearranging,

D =
E[Nd]

2D E[v] (T1 − T0)
∫ w
0 r · g(r) dr

(4.4)

As it turns out, Equation 4.4 shares an important link with a well-established

field method: cue counting. The standard cue counting formula is given by

Dwildlife =
Ncues

φTρ
∫ w
0 r · g(x) dr

where Ncues is the number of cues detected during a time interval T in a sector

of angle φ, and ρ and g(x) are the cue rate and detection function, respectively

[1]. Hence, Equation 4.4 can be thought of as a special case of cue counting in

which φ = 2π, and ρ = E[v]/π.

The repeated observation model immediately suggests a field method to ac-

count for random movement: record the radial distance to each animal every

time it is observed, and divide the total count at each distance by two. This

division ensures that only animals crossing a given contour from the outside are

counted. Unfortunately, there is an obvious problem with this approach. For
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as long as a given animal remains in view, its distance must be recorded con-

tinuously. This is clearly impractical for a human observer, especially if several

animals should happen to be visible at the same time. Yet even for a mechanized

detector that could, in principle, record distances continuously, this method is

unworkable, as it would require collecting an uncountably infinite amount of

data!

These difficulties might possibly be overcome by recording only at certain

radial distances. For example, it could be possible to construct a mechanized

detector that records only those animals attaining a whole number distance, to

some tolerance, from the observation point. In this case, the detection function

would be discrete, and Equation 4.4 would involve a sum rather than an integral.

It might also be possible to specify a discrete-time version of the above encounter

model. This would require the assumption that wildlife velocities are constant

between discrete time units, resulting in a trade-off between plausibility and

the frequency at which data must be collected. For example, it is reasonable

to suppose that velocity is constant during one second intervals, but recording

every second would result in enormous amounts of data. To avoid this trade-

off, a simulated Poisson process with known rate could specify at which times

measurements should be made, greatly reducing the amount of data collected. In

this case, ĝ(x) would not be an estimate of the detection function, but rather a

scaled version of it. Knowledge of the Poisson rate would allow us to reconstruct

an estimate of the true detection function.
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Chapter 5

Future Directions

The models presented in this paper are by no means exhaustive. There remains

an enormous scope for the study of both random and responsive wildlife move-

ment, and their implications for distance sampling. Although our research has

not considered responsive movement, it is possible, at least in principle, to extend

the reasoning that led to Skellam’s model to incorporate repulsion or attraction

of wildlife due to the observer’s presence. The assumption that density is uni-

form over the plane would have to be abandoned, as would the assumption that

density and f(v, θ; t) are independent. This would require specifying functional

forms for f and a responsive density process, and carrying out the appropriate

numerical integrations.

If we are willing to posit a more specific model for the paths wildlife take,

it might also be possible to construct hazard rate models to study the effects of

movement on detectability. This would allow an animal’s entire path through the

survey region to determine its probability of detection. Although such a model

would involve parametric assumptions, it could lead to fruitful simulation studies.

Movement is still a problem for distance sampling, but with the development of

new models, it may not remain so for long.
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Appendix A

R Simulation for the Simple Encounter Model

This program simulates Hirakawa’s Model of wildlife-observer encounters for
fixed observer and wildlife speeds. The number of simulations is given by N .
A Poisson process with rate q governs the number of animals appearing on the
road per unit space-time. Each animal travels at speed g for a distance s along
the road. The observer travels a unit distance at speed k.

The main function hirakawa.sim repeatedly calls another function, findcross.
This function determines whether a given animal appearing at point (a, b) before
traveling for a distance s at velocity v, which could be negative, will encounter
an observer begining at point (c, d) traveling a unit distance at rate k.

hirakawa.sim <- function(N, q, g, s)
{

#Print Simulation Parameters
print("Simulation With:", quote=FALSE)
print(c("N=", N), quote=FALSE)
print(c("q=", q), quote=FALSE)
print(c("g=", g), quote=FALSE)
print(c("s=", s), quote=FALSE)

k.range <- 3
k <- seq(from=0, to=k.range*g, by=1)
k.length <- length(k)

#Set up the simulation region
width <- ceiling(1+s/g)
height <- ceiling(k.range*g+s)+ceiling(s)

#Set convenient starting point (c,d) for observer
c <- ceiling(s/g)
d <- ceiling(s)
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#Initialize a matrix to store encounter data
encounters <- matrix(0, nrow=k.length, ncol=N)

for(n in 1:N)
{

#Simulate Animal Starting Points (a,b)
count <- rpois(1, width*height*q)
a <- runif(count, 0, width)
b <- runif(count, 0, height)
direction <- rbinom(count, 1, 0.5)
velocity <- (-1)^(direction)*g

#If N==1, plot the simulation
#This allows us to check findcross() visually
if(N==1)
{

print(c("Number of Animals Generated:", count), quote=FALSE)
par(mfrow=c(1,2))
plot(a,b, col="white", xlim=c(0, max(a)+s/g), ylim=c(0-s, max(b)+s),
ylab="Position", xlab="Time", main="Simulated Encounters")
segments(c, d, c+1, d+(0:3)*g, col="blue")
segments(a, b, a+s/g, b+((-1)^(direction)*g) , col="red")

}

#Initialize a vector containing indicators for each animal:
#If animal and observer cross, the indicator is set to one.
#Otherwise it is set to zero.
crossings <- rep(0, count)

#Traverse vector of observer speeds
for(i in 1:k.length)
{

#Traverse vector of animal crossing indicators
for(j in 1:count)
{

#Check for crossings between animal and observer
crossings[j] <- findcross(a[j], b[j], c, d, s, velocity[j], k[i])

}
encounters[i, n] <- sum(crossings)

}

}

avg.encounters <- apply(encounters, 1, mean)
out<-cbind("k"=k, "Encounters"=avg.encounters,
"Encounter Rate"=c(NA, avg.encounters[-1]/k[-1]))
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print(out)
plot(out[-1,1], out[-1,3], xlab="Observer Speed",
ylab="Encounter Rate", main="Theoretical vs. Simulated Encounter Rates")
p <- seq(from=0, to=g, by=0.1)
points(p, q*s/p, type="l")
segments(g, q*s/g, g*k.range, q*s/g)

#Ensure Graphics Set to Default
par(mfrow=c(1,1))

}

findcross <- function(a, b, c, d, s, v, k)
{

t <- s/abs(v)

x <- ((d-k*c)-(b-v*a))/(v-k)

cross <- 0

#If the two segments lie on the same line, check for overlap
if(is.nan(x))
{

leftmost <- which.min(c(a, c))
leftmost.right <- c(a+t, c+1)[leftmost]
other.left <- c(c, a)[leftmost]

if((leftmost.right - other.left) >= 0)
{

cross <- 1
}

}

else{
if(is.finite(x))
{

if((x>=a) & (x<=(a+t)) & (x>=c) & (x<=c+1))
{

cross <- 1
}

}
}

return(cross)
}
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