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Summary

The bacterial community composition of activated
sludge from a wastewater treatment plant (Almeria,
Spain) with the particularity of using seawater was
investigated by applying 454-pyrosequencing. The
results showed that Deinococcus-Thermus, Proteo-
bacteria, Chloroflexi and Bacteroidetes were the
most abundant retrieved sequences, while other
groups, such as Actinobacteria, Chlorobi, Deferrib-
acteres, Firmicutes, Planctomycetes, Spirochaetes
and Verrumicrobia were reported at lower propor-
tions. Rarefaction analysis showed that very likely
the diversity is higher than what could be described
despite most of the unknown microorganisms prob-
ably correspond to rare diversity. Furthermore, the
majority of taxa could not be classified at the genus
level and likely represent novel members of these
groups. Additionally, the nitrifiers in the sludge were
characterized by pyrosequencing the amoA gene. In
contrast, the nitrifying bacterial community, domi-
nated by the genera Nitrosomonas, showed a low
diversity and rarefaction curves exhibited saturation.
These results suggest that only a few populations of
low abundant but specialized bacteria are responsi-
ble for removal of ammonia in these saline wastewa-
ter systems.
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Introduction

Activated sludge constitutes a crucial tool in the biodeg-
radation of organic materials, transformation of toxic
compounds into harmless products and nutrient removal
in wastewater treatment plants (WWTPs). It contains a
highly complex mixture of microbial populations whose
composition has been intensively studied in the past
decades. By applying culture-dependent methods many
species have been isolated from activated sludge (Dias
and Bhat, 1964; Prakasam and Dondero, 1967; Benedict
and Carlson, 1971). However, a great majority cannot be
obtained by conventional techniques (Wagner etal.,
1993) and, consequently, current molecular techniques
such as sequence analysis of 16S rRNA gene clone
libraries (Snaidr etal, 1997), fingerprinting methods
such as denaturing gradient gel electrophoresis (DGGE;
Boon et al., 2002), thermal gradient gel electrophoresis
(TGGE; Eichner etal., 1999) and terminal restriction
fragment length polymorphism (Saikaly etal., 2005)
along with fluorescence in situ hybridization (FISH) have
been employed in wastewater microbiology to analyse
and compare the microbial structure of activated sludge.
Recently, PCR-based 454 pyrosequencing has been
applied to investigate the microbial populations of acti-
vated sludge in different WWTPs as well as in full-scale
bioreactors (Sanapareddy et al., 2009; Kwon et al., 2010;
Kim et al.,, 2011; Ye et al., 2011; Zhang et al., 2011a; b),
greatly expanding our knowledge on activated sludge
biodiversity.

An important process in WWTPs is nitrification, in which
ammonium is removed by converting it first into nitrite and
then to nitrate. Different bacterial species involved in
this process have been characterized by means of clone
library analysis in addition to FISH (Juretschko et al.,
1998; Purkhold et al., 2000; Daims et al., 2001; Zhang
etal, 2011b). Several ammonia-oxidizing and nitrite-
oxidizing bacterial populations belonging to the phylum
Nitrospira and to Beta- and Gammaproteobacteria have
been identified as key members in this process, such as
the genera Nitrosomonas, Nitrobacter, Nitrospira and
Nitrosococcus (Wagner et al., 2002; Zhang et al., 2011b).
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Nevertheless, most studies of microbial diversity in
WWTPs refer to freshwater plants, either domestic or
industrial, and yet very little is known about plants that
utilize seawater for their operation, mainly because there
are still very few of these running in the world. Their
utilization responds to the deficiency in hydric resources
prevailing in their locations and their use will probably
increase in the near future due to water shortage associ-
ated to global warming as many areas are experiencing
today (Barnett et al., 2005). As a consequence, knowl-
edge of the microbial diversity becomes crucial to identify
the key players in these systems.

In a recent survey (Sanchez et al., 2011), the prokaryo-
tic diversity of a seawater-utilizing WWTP from a pharma-
ceutical industry located in the south of Spain was
characterized using a polyphasic approach by means of
three molecular tools that targeted the 16S rRNA gene,
i.e. DGGE, clone libraries and FISH. The results showed
that the composition of the bacterial community differed
substantially from other WWTP previously reported, since
Betaproteobacteria did not seem to be the predominant
group; in contrast, other classes of Proteobacteria,
such as Alpha- and Gammaproteobacteria, as well as
members of Bacteroidetes and Deinoccocus- Thermus
contributed in higher proportions. Besides, utilization of
specific primers for amplification of the amoA (ammonia
monooxygenase subunit A) gene confirmed the presence
of nitrifiers corresponding to the Beta- subclass of Proteo-
bacteria, although they were not identified in this study.

In the present article, we further investigated the diver-
sity of this system by applying 454-pyrosequencing, a
much more powerful molecular technique, which provides
thousands of sequence reads. We analysed the bacterial
assemblage by targeting the 16S rRNA gene and
increased our knowledge on its diversity by one order of
magnitude. Additionally, we characterized the nitrifying
members of this sludge by pyrosequencing the amoA
gene. As far was we know, this is the first study that
analyses the amoA gene diversity in an activated sludge
of a WWTPs with the particularity to utilize seawater.

Results and discussion

We investigated the bacterial community structure and
identified the nitrifying members from the activated sludge
of a seawater-utilizing WWTP located in Almeria (South-
east Spain). The plant treats wastewater from a pharma-
ceutical industry. The mean influent flow of the plant is
300 m®*h™" and has a treatment volume of 32 000 m®.
Nitrogen and chemical oxygen demand sludge loads were
about 150-170 kg h~' and 900-1000 kg h™" respectively.
DNA was extracted from samples of aerated mixed acti-
vated sludge collected in 2 consecutive years (2007 and
2008).
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Diversity of bacterial communities in activated sludge

After a rigorous quality control (see Experimental proce-
dures and Table S1) a total of 16176 16S rRNA
tag sequences of sufficient quality were analysed
(8010 sequences corresponding to year 2007 and 8166
sequences to year 2008) and grouped into operational
taxonomic units using uclust at 3% cut-off level. The clus-
tering resulted in a total of 320 different OTUs from which
107 were shared between samples (33.3%) as shown in
the Venn diagram (Fig. 1A). The number of OTUs in 2007
was 201 and in 2008 was 226. Although the proportion of
shared OTUs is rather low, the unique diversity in each
sample corresponded mainly to rare OTUs (relative abun-
dance below 1%). In the case of year 2007, the unique
clones to that sample represented a 19% of the total
reads, from which only three OTUs were above 1%. For
the 2008 sample, the unique clones represented a 9% of
total sequences and only two OTUs presented an abun-
dance above 1%. These results are in agreement with
previous observations in which DGGE analysis from both
samples showed virtually the same pattern for universal

A 16S rRNA

119 107 94

(9% reads) (81% reads 2007)

(91% reads 2008)

(19% reads)

B amoA

6

(100% reads 2007)
(96% reads 2008)

Fig. 1. Venn diagrams of shared OTUs between the two samples
(D07 and D08) for (A) 16S rRNA gene and (B) amoA gene. The
number of reads that the OTUs represent is indicated in brackets.
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Fig. 2. Rarefaction curves of 16S rRNA OTUs defined by 3%
sequence variations in the activated sludge. Curves refer to the
pyrosequence analyses of the 2 consecutive years (D07 and D08-
454) compared with the clone library analysis of the 2007 sludge
(D07 — cloning).

primers amplifying Bacteria, suggesting that activated
sludge was at a steady state at least for the most abun-
dant phylotypes (Sanchez et al., 2011).

Richness was computed by the Chao1 estimator and
analysis by rarefaction showed that the diversity in the two
samples was within the same range, although slightly
higher in 2008. However, we found that this depth of
sequencing was not sufficient to saturate the curve and
therefore, the actual diversity is likely much higher
(Fig. 2). Nevertheless, if compared with the rarefaction
curve from a clone library performed from the 2007 acti-
vated sludge sample, we observe that, by applying pyro-
sequencing we increased our knowledge on the diversity
present by one order of magnitude. Rank-abundance
curves (Fig. S1A) show that there were only a few abun-
dant phylotypes and a long tail of rare taxa, therefore,
most of the unknown diversity probably corresponds to
rare diversity (Pedros-Alid, 2007).

RDP Classifier was used to assign the representative
OTU sequences into different phylogenetic bacterial taxa.
Figure S2 shows the relative abundances of the different
groups at the phylum and class level for both years.
Deinococcus-Thermus, Proteobacteria, Chloroflexi and
Bacteroidetes were abundant in both samples. Compari-
son with a previous survey (Sanchez et al., 2011) indi-
cates that most of these groups were also retrieved by
different molecular methodologies. However, the contribu-
tion of each group varied depending on the technique
used. The bacterial clone library over-represented the
Deinococcus-Thermus group, while the rest of proce-
dures showed similar results concerning this phylum. In
contrast, the Alphaproteobacteria were over-represented
by FISH (Fig. S3).

On the other hand, pyrosequencing allowed the detec-
tion of other groups that could not be recognized by
other molecular techniques, such as the Chlorofiexi,
Chlorobi, Deferribacteres, Verrumicrobia, Planctomyc-
etes and Spirochaetes, deepening our knowledge on the
diversity of this activated sludge. Also, a certain percent-
age of sequences remained as unidentified bacteria
(6.5% and 10.5% for years 2007 and 2008; Fig. S2).
Except the Chlorobi and Deferribacteres, different
pyrosequencing studies have reported the presence of
these groups in conventional activated sludge samples
(Sanapareddy et al., 2009; Kwon et al., 2010). However,
it is remarkable that, in general, the proportions of the
different groups in freshwater activated sludge were dif-
ferent from saline samples, and when going deeper into
genus composition, the assemblage of our samples
differs strongly from that previously reported. In general,
prior pyrosequencing studies with different samples of
activated sludge are in agreement with the predomi-
nance of the classes Beta- and Gammaproteobacteria
and the phylum Bacteroidetes (Sanapareddy etal.,
2009; Kwon et al., 2010), while in our saline activated
sludge the groups that predominate are, within the
phylum Proteobacteria, the Alpha- (8.0% and 7.3% in
samples 2007 and 2008 respectively), Gamma- (19.0%
and 21.4%) and Deltaproteobacteria (15.2% and 7.2%),
as well as the Deinococcus-Thermus group (21.8% and
10.9%) and members of the phyla Chloroflexi (9.5%
and 35.1%) and Bacteroidetes (18.3% and 2.8%). In
contrast, Ye and colleagues (2011), who analysed by
pyrosequencing the bacterial composition of a slightly
saline activated sludge from a laboratory-scale nitrifica-
tion reactor and a WWTP from Hong Kong, found that,
in addition to Proteobacteria and Bacteroidetes, the
phylum Firmicutes was also abundant in their samples;
they also obtained similar groups as in the present
study, such as the Actinobacteria, Planctomycetes, Ver-
rumicrobia, Deinococcus-Thermus, Chloroflexi and Spi-
rochaetes, although at different relative ratios, as well
as different phyla not retrieved in the present work, for
example the Nitrospira, Chlamydiae and TM7. Probably,
differences are due to the feeding wastewater, since in
our case the main influent corresponds to intermediate
products of amoxicillin synthesis whereas in the other
study the WWTP treated a slightly saline urban sewage
from Hong Kong.

As in previous pyrosequencing studies (Keijser et al.,
2008; Liu et al., 2008; Claesson et al., 2009), a part of
sequences could only be assigned to the phylum/class
level and the majority of taxa could not be classified at the
genus level (74% for 2007 and 83.5% for 2008), demon-
strating the extraordinary microbial diversity of activated
sludge that cannot be classified using public 16S rRNA
databases. Table S2 shows the taxa found in each sample
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in this study at the genus level, which are different from
other reported genus of freshwater or either slightly saline
activated sludge studies (Sanapareddy et al., 2009; Kwon
etal.,, 2010; Ye et al., 2011). One of the most abundant
genus in both samples is Truepera, a member of the
phylum Deinococcus-Thermus, which includes radiation-
resistant and thermophilic species. Although this phylum
was also detected by pyrosequencing in a recent study
with a slightly saline activated sludge (Ye et al., 2011), it
accounted for no more than 0.6% of total community,
while we found a significant percentage of sequences
from this genus (21.8% and 10.9% for years 2007 and
2008 respectively).

Diversity of nitrifying community in activated sludge

A total of 43 297 amoA gene sequences of good quality
(11 236 reads for year 2007 and 32 061 reads for year
2008) were grouped into operational taxonomic units
using uclust at 6% cut-off level. We selected a 6% cut-off
to group closely related phylotypes of the amoA gene
without losing potentially valuable information by the
inclusion of phylogenetically distinct sequences. Interest-
ingly, the diversity of the nitrifying bacterial community
revealed by pyrosequencing of the amoA gene was very
low and rarefaction analyses showed the depth of
sequencing was sufficient to saturate the curve and
recover the great majority. The clustering of 43 297 reads
resulted in a total of only eight OTUs from which six were
shared between samples as shown in the Venn diagram
(Fig. 1B). The shared OTUs corresponded to 97% of total
reads, which indicates that the nitrifying community was
very similar both years.

All amoA sequences were highly related to previously
described sequences in the GenBank database, both
environmental and from isolates (Fig. 3). Phylogenetic
analysis revealed that eight phylotypes formed two
separate clusters. The first cluster, which contains three
OTUs, was mostly retrieved in the 2008 library and rep-
resented 45.4% of sequences of that sample. The closest
relatives in GenBank database (99% similarity) included
sequences from organisms that have not been obtained
from a WWTP, and Nitrosomonas sp. LT-2 and LT-5, iso-
lated from a CANON reactor (98% identity). The second
cluster, which contains five of the OTUs and represented
the most abundant phylotypes in both samples, was most
closely related (94% identity) to cultured representatives
of strains of Nitrosomonas marina isolated from a biofilter
of a recirculating shrimp aquaculture system (GenBank
Accession No. HM345621, HM345612 and HM345618)
and Nitrosomonas sp. NS20 isolated from coastal
marine sediments. This cluster virtually represented all
sequences (99.99%) in the sample of 2007 whereas in
2008 it comprised 54.6%.
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These data are consistent with previous results found by
Ye and colleagues (2011) in slightly saline activated
sludge, which showed that Nitrosomonas, together with
Nitrospira, was the dominant nitrifying genera, and also
with the study by Park and colleagues (2009), who iden-
tified that a specific ammonia-oxidizing bacteria belonging
to the Nitrosomonas europaea lineage was dominant in a
full-scale bioreactor treating saline wastewater due to its
adaptation to high-salt conditions. In general, nitrosomon-
ads are also responsible for ammonia oxidation in conven-
tional WWTPs (Purkhold et al., 2000; Zhang et al., 2011b).
However, we did not retrieve Nitrosomonas in the pyrose-
quencing 16S rRNA libraries or previously in DGGE gels,
clone libraries and FISH (Sanchez et al., 2011) probably
due to their low abundance. Thus, pyrosequencing of
functional genes such as amoA revealed the presence of
particular groups which could not be retrieved when ana-
lysing the 16S rRNA, demonstrating its value to deepen
into the functionality of microbial populations when target-
ing specific genes. The only nitrifier that could be retrieved
in our samples by 16S rRNA pyrosequencing was Nitroso-
coccus, a Gammaproteobacteria which just represented
0.3% and 0.5% of the total reads for years 2007 and 2008
respectively, and has also been reported to be an impor-
tant nitrifier in some activated sludges (Juretschko et al.,
1998; Raszka et al.,, 2011). Thus, since it was actually
detectable in the general bacterial 16S rRNA gene popu-
lation, it could also participate in ammonia oxidization
together with the Betaproteobacteria, despite previous
efforts for amplifying the gammaproteobacterial amoA
gene yielded negative results (Sanchez et al., 2011).

On the other hand, we know that nitrification and deni-
trification are central processes in our system, since a
nitrification fraction of 98% and a total nitrogen removal
over 80% have been reported (M.l. Maldonado, pers.
comm.). In fact, Yu and Zhang (2012), when applying both
metagenomic and metatranscriptomic approaches to
characterize microbial structure and gene expression of
an activated sludge community from a municipal WWTP
in Hong Kong found that nitrifiers such as Nitrosomonas
and Nitrospira had a high transcription activity despite
presenting a very low abundance (they accounted only
0.11% and 0.02% respectively in their DNA data set), and
the results from Zhang and colleagues (2011b) indicated
that the abundance of ammonia-oxidizing bacteria in the
activated sludge from different WWTPs was very low.
Similarly, our results suggest that Nitrosomonas could be
responsible of nitrification although showing a low abun-
dance. Also, it may be possible that other genera different
from the well-known Betaproteobacteria could contribute
to nitrification activity.

In fact, different studies have reported the autotrophic
oxidation of ammonia by members of the domain
Archaea. The crenarchaeon Nitrosopumilus maritimus is
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Fig. 3. Maximum-likelihood tree of amoA gene. The tree was determined using approximately 491 unambiguously aligned positions of nucleic
acid amoA sequences. Each sequence from this study (in bold) is representative of clustered amoA sequences in the WWTP activated sludge
with an identity of 94%. Reference sequences from GenBank database are indicated by their accession number if they correspond to uncul-
tured organisms or by the strain name if they belong to amoA sequences from bacterial strains. The tree was constructed with RAXML (http://
bioinformatics.oxfordjournals.org/content/22/21/2688.full) using the GTRGAMMA model and an alignment made with MUSCLE (http://
www.ncbi.nlm.nih.gov/pmc/articles/PMC390337/). The sequence of methane monooxygenase subunit A from Methylococcus capsulatus strain
Bath served as outgroup (GenBank Accession No. YP_115248). The scale bar indicates substitutions per site.
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able to oxidize ammonia to nitrite under mesophilic con-
ditions (Kénneke et al., 2005), while ammonia-oxidizing
Archaea occurred in activated sludge bioreactors used to
remove ammonia from wastewater (Park et al., 2006).
However, amplification of the amoA gene to detect the
presence of archaeal nitrifiers yielded negative results in
our samples. In fact, Archaea accounted only for 6% of
DAPI counts, and all sequences retrieved previously in
an archaeal clone library were related to methanogenic
archaea (Sanchez et al., 2011). Other studies have also
demonstrated the presence of methanogens in aerated
activated sludge but, although active, they played a minor
role in carbon and nitrogen turnover (Gray et al., 2002;
Fredriksson et al., 2012).

Interestingly, different heterotrophic bacteria, such as
Bacillus sp. (Kim et al., 2005), Alcaligenes faecalis (Liu
etal., 2012), Marinobacter sp. (Hai-Yan etal., 2012),
Achromobacter xylosoxidans (Kundu et al., 2012) and
Pseudomonas sp. (Su et al., 2006) have been described
as potential nitrifiers, and remarkably, some of these
genera have been isolated from our activated sludge by
culture-dependent techniques (data not shown); for
instance, some strains were identified as Bacillus sp.,
Alcaligenes sp., Marinobacter hydrocarbonoclasticus and
Pseudomonas sp.

In contrast, sequences of Nitratireductor sp., a denitri-
fying microorganism, have been retrieved with different
molecular methods (pyrosequencing in this study and
DGGE and clone library in Sanchez et al., 2011), while
other sequences from potential denitrifiers have been
recovered only by 454-pyrosequencing, such as Leuco-
bacter sp., Caldithrix sp., Castellaniella sp. and Halo-
monas sp. Besides, other candidates for denitrifying
bacteria have been isolated by culture-dependent tech-
niques, such as Alcaligenes sp., Bacillus sp., Paracoccus
sp., Pseudomonas sp. and Marinobacter sp. (data not
shown). Other genera retrieved by pyrosequencing were
related to the nitrogen fixation process, that is, Microbac-
terium sp., Aminobacter sp. and Spirochaeta sp., while
Sphingomonas was detected by clone library and culture-
dependent methods.

Summarizing, we can conclude that the bacterial diver-
sity in the activated sludge of the seawater-processing
plant was high as previously observed in conventional
WWTPs. However, the composition of the bacterial
community differed strongly from other plants, and was
dominated by Deinococcus-Thermus, Proteobacteria,
Chloroflexi and Bacteroidetes. Previous analyses by
clone library, DGGE and FISH were not enough to reflect
the profile of the bacterial community in wastewater
sludge and although pyrosequencing was a powerful tool
to define the microbial composition deeper sequencing is
required. Despite nitrification rates were high in the
system, known ammonia-oxidizing bacteria were not
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identified by means of 16S rRNA studies and analysis of
the specific functional gene amoA was required to reveal
the presence and identity of the bacteria responsible for
this process. These results suggest that only a few popu-
lations of low abundant but specialized bacteria likely with
high transcription activity are responsible for removal of
ammonia in these systems. However, further studies to
isolate the key microorganisms involved in ammonia-
oxidation will be essential in order to understand this
process in saline WWTPs.

Acknowledgements

We thank the Bioinformatics Platform UAB (BioinfoUAB),
Ramiro Logares and Guillem Salazar for help and support
with sequence analyses.

Conflict of interest

None declared.

References

Barnett, T.P.,, Adam, J.C., and Lettenmaier, D.P. (2005)
Potential impacts of a warming climate on water availability
in snow-dominated regions. Nature 438: 303-309.

Benedict, R.G., and Carlson, D.A. (1971) Aerobic hetero-
trophic bacteria in activated sludge. Water Res 5: 1023—
1030.

Boon, N., De Windt, W., Verstraete, W., and Top, E.M. (2002)
Evaluation of nested PCR-DGGE (denaturing gradient gel
electrophoresis) with group-specific 16S rRNA primers for
the analysis of bacterial communities from different waste-
water treatment plants. FEMS Microbiol Ecol 39: 101-112.

Claesson, M.J., O'Sullivan, O., Wang, Q., Nikkila, J.,
Marchesi, J.R., Smidt, H., et al. (2009) Comparative analy-
sis of pyrosequencing and a phylogenetic microarray for
exploring microbial community structures in the human
distal intestine. PLoS ONE 4: e6669.

Daims, H., Nielsen, J.L., Nielsen, P.H., Schleifer, K.H., and
Wagner, M. (2001) In situ characterization of Nitrospira-like
nitrite-oxidation bacteria active in wastewater treatment
plants. Appl Environ Microbiol 67: 5273-5284.

Dias, F.G., and Bhat, J.V. (1964) Microbial ecology of acti-
vated sludge. Appl Environ Microbiol 12: 412—417.

Eichner, C.A., Erb, R.W., Timmis, K.N., and Wagner-Dobler,
1. (1999) Thermal gradient gel electrophoresis analysis of
bioprotection from pollutant shocks in the activated
sludge microbial community. App! Environ Microbiol 65:
102-109.

Fredriksson, N.J., Hermansson, M., and Wilén, B.-M. (2012)
Diversity and dynamics of Archaea in an activated
sludge wastewater treatment plant. BMC Microbiol 12:
140.

Gray, N.D., Miskin, E.P., Kornilova, O., Curtis, T.P., and Head,
I.M. (2002) Occurrence and activity of Archaea in aerated
activated sludge wastewater treatment plants. Environ
Microbiol 4: 158-168.

© 2013 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology, Microbial

Biotechnology, 6, 435-442



441 O. Sanchez, I. Ferrera, J. M. Gonzadlez and J. Mas

Hai-Yan, Z., Ying, L., Xi-Yan, G., Guo-Min, A., Li-Li, M., and
Zhi-Pei, L. (2012) Characterization of a marine origin
aerobic nitrifying—denitrifying bacterium. J Biosci Bioeng
114: 33-37.

Juretschko, S., Timmerman, G., Schmid, M., Schleifer, K.-H.,
Pommerening-Roser, A., Koops, H., and P., and Wagner,
M. (1998) Combined molecular and conventional
analyses of nitrifying bacterium diversity in activated
sludge: Nitrosococcus mobilis and Nitrospira-like bacteria
as dominant populations. Appl Environ Microbiol 64: 3042—
3051.

Keijser, B.J., Zaura, E., Huse, S.M., van der Vossen, J.M.,
Schuren, F.H., Montijn, R.C., et al. (2008) Pyrosequencing
analysis of the oral microflora of healthy adults. J Dent Res
87: 1016-1020.

Kim, J.K., Park, K.P., Cho, K.S., Nam, S.W., Park, T.J., and
Bajpai, R. (2005) Aerobic nitrification-denitrification by het-
erotrophic Bacillus strains. Bioresour Technol 96: 1897—
1906.

Kim, T.-S., Kim, H.-S., Kwon, S., and Park, H.-D. (2011)
Nitrifying bacterial community structure of a full-scale
integrated fixed-film activated sludge process as investi-
gated by pyrosequencing. J Microbiol Biotechnol 21: 293—
298.

Koénneke, M., Bernhard, A.E., de la Torre, J.R., Walker, C.B.,
Waterbury, J.B., and Stahl, D.A. (2005) Isolation of an
autotrophic ammonia-oxidizing marine archaeon. Nature
437: 543-546.

Kundu, P., Pramanik, A., Mitra, S., Choudhury, J.D., Mukher-
jee, J., and Mukherjee, S. (2012) Heterotrophic nitrification
by Achromobacter xylosoxidans S18 isolated from a small-
scale slaughterhouse wastewater. Bioprocess Biosyst Eng
35: 721-728.

Kwon, S., Kim, T.-S., Yu, G.H., Jung, J.-H., and Park, H.-D.
(2010) Bacterial community composition and diversity of a
full-scale integrated fixed-film activated sludge system as
investigated by pyrosequencing. J Microbiol Biotechnol 20:
1717-1723.

Liu, Y., Li, Y., and Lv, Y. (2012) Isolation and characterization
of a heterotrophic nitrifier from coke plant wastewater.
Water Sci Technol 65: 2084—2090.

Liu, Z., DeSantis, T.Z., Andersen, G.L., and Knight, R. (2008)
Accurate taxonomy assignments from 16S rRNA
sequences produced by highly parallel pyrosequencers.
Nucleic Acids Res 36: e120.

Park, H.-D., Wells, G.F., Bae, H., Criddle, C.S., and Francis,
C.A. (2006) Occurrence of ammonia-oxidizing archaea in
wastewater treatment plant bioreactors. Appl Environ
Microbiol 72: 5643-5647.

Park, H.-D., Lee, S.-Y., and Hwang, S. (2009) Redundancy
analysis demonstration of the relevance of temperature to
ammonia-oxidizing bacterial community compositions in
a full-scale nitrifying bioreactor treating saline wastewater.
J Microbiol Biotechnol 19: 346-350.

Pedrds-Alié, C. (2007) Ecology. Dipping into the rare bio-
sphere. Science 315: 192—193.

Prakasam, T.B.S., and Dondero, N.C. (1967) Aerobic hetero-
trophic populations of sewage and activated sludge. |. Enu-
meration. Appl Environ Microbiol 15: 461-467.

Purkhold, U., Pommerening-Réser, A., Juretschko, S.,
Schmid, M.C., Koops, H.P., and Wagner, M. (2000) Phyl-

ogeny of all recognized species of ammonia oxidizers
based on comparative 16S rRNA and amoA sequence
analysis: implications for molecular diversity surveys. App/
Environ Microbiol 66: 5368-5382.

Raszka, A., Surmacz-Gorska, J., Zabczynski, S., and
Miksch, K. (2011) The population dynamics of nitrifiers in
ammonium-rich systems. Water Environ Res 83: 2159—
2169.

Saikaly, P.E., Stroot, P.G., and Oerther, D.B. (2005) Use of
16S rRNA gene terminal restriction fragment analysis to
assess the impact of solids retention time on the bacterial
diversity of activated sludge. Appl Environ Microbiol 71:
5814-5822.

Sanapareddy, N., Hamp, T.J., Gonzélez, L.C., Hilger, H.A.,
Fodor, A.A., and Clinton, S.M. (2009) Molecular diversity of
a North Carolina wastewater treatment plant as revealed by
pyrosequencing. Appl Environ Microbiol 75: 1688—1696.

Sanchez, O., Garrido, L., Forn, |., Massana, R., Maldonado,
M.l., and Mas, J. (2011) Molecular characterization of acti-
vated sludge from a seawater-processing wastewater
treatment plant. Microb Biotechnol 4: 628—-642.

Snaidr, J., Amann, R., Huber, |., Ludwig, W., and Schleifer,
K.-H. (1997) Phylogenetic analysis and in situ identification
of bacteria in activated sludge. App/ Environ Microbiol 63:
2884-2896.

Su, J.J,, Yeh, K.S., and Tseng, P.W. (2006) A strain of Pseu-
domonas sp. Isolated from piggery wastewater treatment
systems with heterotrophic nitrification capability in Taiwan.
Curr Microbiol 53: 77-81.

Wagner, M., Amman, R., Lemmer, H., and Schleifer, K.-H.
(1993) Probing activated sludge with oligonucleotides spe-
cific for proteobacteria: inadequacy of culture-dependent
methods for describing microbial community structure.
Appl Environ Microbiol 59: 1520—1525.

Wagner, M., Loy, A., Nogueira, R., Purkhold, U., Lee, N., and
Daims, H. (2002) Microbial community composition and
function in wastewater treatment plants. Antonie Van Leeu-
wenhoek 81: 665-680.

Ye, L., Shao, M.-S., Zhang, T., Tong, A.H.Y., and Lok, S.
(2011) Analysis of the bacterial community in a laboratory-
scale nitrification reactor and a wastewater treatment
plant by 454-pyrosequencing. Water Res 45: 4390-
4398.

Yu, K., and Zhang, T. (2012) Metagenomic and metatran-
scriptomic analysis of microbial community structure and
gene expression of activated sludge. PLoS ONE 7:
€38183. doi:10.1371/journal.pone.0038183.

Zhang, T., Shao, M.F., and Ye, L. (2011a) 454 pyrosequenc-
ing reveals bacterial diversity of activated sludge from 14
sewage treatment plants. ISME J 6: 1137—-1147.

Zhang, T., Ye, L., Tong, A.H.Y., Shao, M.-F.,, and Lok, S.
(2011b) Ammonia-oxidizing archaea and ammonia-
oxidizing bacteria in six full-scale wastewater treatment
bioreactors. Appl Microbiol Biotechnol 91: 1215-1225.

Supporting information

Additional Supporting Information may be found in the
online version of this article at the publisher’'s web-site:

Experimental procedures.

© 2013 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology, Microbial

Biotechnology, 6, 435-442



Table S1. Summary of clean sequences, singletons and
operational taxonomic units (OTUs) in the two data sets
analysed.

Table S2. Genera identified from pyrosequencing and
cloning in the saline activated sludge.

Fig. S1. Rank abundance curves of OTUs defined by a 3%
sequence variation for 16S rRNA (A) and 6% for amoA (B)
genes in the activated sludge.

Fig. S2. Taxonomic composition by phylum and class for the
sequences retrieved in 2 consecutive years.
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(FISH) and reads (454) affiliated to different phylogenetic
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cloning and FISH have been extracted from Sanchez and
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