
South African
Computer
Journal
Number 11
May 1994

Suid-Afrikaanse
Rekenaar­
tydskrif
Nommer 11
Mei 1994

The South African
Computer Journal

Die Suid-Afrikaanse .
Rekenaartydskrif

An official publication of the Computer Society
of South Africa and the South African Institute of

Computer Scientists

'n Amptelike publikasie van die Rekenaarverenging
van Suid-Afrika en die Suid-Afrikaanse Instituut

vir Rekenaarwetenskaplikes

Editor
Professor Derrick G Kourie
Deparunent of Computer Science
University of Pretoria
Hatfield 0083
Email: dkourie@dos-lan.cs.up.ac.za

Professor Gerhard.Barth
Director: Gennan AI Research Institute

Professor Judy Bishop
University of Pretoria

Professor Donald D Cowan
University of Waterloo

Professor Jtirg Gutknecht
ETH, Zurich

Subeditor: Information Systems
Prof John Shochot

· Production Editor
Dr Riel Smit

University of the Witwatersrand
Private Bag 3

Mosaic S,oftware (Pty) Ltd
P.O.Box ,16650

WITS 2050 Vlaeberg 8018
Email: 035ebrs@witsvma.wits.ac.za , Email: gds@cs.uct.ac.za

Editorial Board

Professor Pieter Kritzinger
University of Cape Town

Professor Fred H Lochovsky
University of Science and Technology, Kowloon

Professor Stephen R Schach
Vanderbilt University

Professor Basie von Sohns
Rand Afrikaanse Universiteit

Subscriptions.

Southern Africa:
Elsewhere:

Annual
R45,00
$45,00

Single copy
R15,00
$15,00

to be sent to:
Computer Society of South Africa
Box 1714 Halfway House 1685

Phone: +Tl (11) 315-1319 Fax: +Tl (11) 315-ZT/6

Metadata and Security Management in a Persistent Store

Sonia Berman
Department of Computer Science, University of Cape Town, Rondebosch, 7700

Abstract

Since its emergence in the early eighties, persistence has become an important branch of Computer Science. Many persistent
systems have now been developed and a wide variety of related issues have been well researched. Two areas which have
received little attention are metadata management and security enforcement. This paper investigates the incorporation of
these features into an existing persistence machine. The CPOMS (Persistent Object Management System in C) was used
as a vehicle for the study, because of its popularity and reliability. We discuss design alternatives, motivate those selected
for this experiment and illustrate how they have been implemented. Our results are evaluated, highlighting some areas for
future work.
Keywords: Design, Experimentation, Performance, Metadata, Security
Computing Review Categories: H.2.0

Received: March 1993, Accepted: September 1993, Final version: February 1994.

1 Introduction

Persistent progrmnming lm1guages extend general purpose
languages by providing persistence for data of any type;
they were proposed as m1 alternative to conventional data­
base systems in [2]. As a result of its progrrunming lm1-
guage origins, the large body of research that has arisen in
this area has failed to adequately examine data-oriented
issues [7], particularly as regards metadata and security
management. This paper describes an attempt to rectify
tJ1is situation by including these facilities in the CPOMS
(Persistent Object Management System in C) [4]. This ma­
chine was chosen as the basis for our experiment because
it is well established ru1d flexible, having been used by a
variety of persistent lru1guages [l, 3, 6, 9-12]. Our aim
wali to improve this environment ru1d at the srune time ex­
tend its applicability, so that it is capable of supporting
a wider rru1ge of progrrunming lru1guage features. The
paper begins by introducing the concept of a persistence
machine. The differences between a persistence environ­
ment ru1d conventional DBMS scenarios are highlighted,
ru1d lhc implications for type mru1agement and data protec­
tion are discussed. We exmnine alternative approaches to
security ru1d metadata hru1dling in this context, and explain
tJ1e options selected for the extended CPOMS. These are
described from the user viewpoint ru1d at the implementa­
tion level. The paper concludes with ru1 evaluation of the
work ru1d suggcslions for future research.

2 Background

This section introduces the notion of a persistent language
and describes its advru1tages over a conventional database
environment. We lhen outline the CPOMS system in terms
of its databtL~e-oricnted instructionsru1d its 1mmagement of
tJ1e data slore. In conclusion, the effects of this architecture

SACJ/SART, No 11, 1994

on metadata and security subsystems are presented.

Persistent Languages

A persistent progrmnming language extends a general pur­
pose language by allowing data of any type to remain on
disk after execution tenninates. This data is kept on a data­
base, but is manipulated identically to conventional, tran­
sient data. In other words, it is impossible to tell whether
a program statement is handling conventional heap objects
or database items, because the same structures and oper­
ators are used in both contexts. This environment offers
several advantages; experience with PS-Algol [12) showed
that productivity increased, program code was shortened
and maintenance simplified, compared with conventional
database applications [2). In the first place, programmers
do not need to learn a separate database language with its
own types and operators. A program fragment is expressed
independently of the persistence of data it uses. Secondly,
there is no need for code that translates objects from data­
base fonnat into progrrunming language fonnat and vice
versa; nor for statements that move data between disk and
main memory every time a database is accessed. Studies
have shown that such code typically talces up 30 percent of
m1 application program [2]. Furthermore, the database is
able to support tl1e complex data types ru1d data structures
of the progrrunming lru1guage, ru1d is not restricted to flat
files or first nonnal fonn relations.

The Ohject Management System

The CPO MS [4] was originally developed for the persistent
Iru1guage PS-Algol. It mruiages the persistent store contain­
ing all database data, and will automatically retrieve or save
objects there when necessary. It provides for flexibility
through simplicity, and has been used to support a variety
of lru1guages [l, 6, 9-12). This paper describes an exten­
sion of this system to incorporate metadata and security
mru1agement, without chru1ging its interface or introducing

39

any restrictions on the kinds of language supported. In this
way, the new features are available to a wide range of per­
sistent languages. Before giving details of this extension,
some description of the workings of the CPOMS is in order.

The persistent store is divided into a number of data­
bases which form the unitoflocking. That is, each database
may be concurrently opened by one writer or many readers.
Inter-database references are pennitted however, so data­
bases are not independent collections. Any type of data
may be added to the store at any time; there is no schema
restricting database contents or curtailing data organisation.

To minimise database store and retrieve commands,
only so-called "primary" objects are explicitly written to
(using "Enter") or fetched from (using "Lookup") a data­
base. The majority of items are automatically inserted on
the store using the principle of reachability, whereby the
system automatically stores on disk all objects referenced
by persistent data. In other words, the transitive closure
of pointer references from a primary becomes persistent.
For example, if a program creates a large tree structure and
Enters its root, the entire tree persists. When the machine
detects a pointer dereference which is a disk address, it au­
tomatically copies the item off the store into memory. The
system keeps a record of objects that have already been
placed in memory, to prevent repeated accesses. Changes
are only written back to a database when a "Commit" state­
ment is executed. This enables a program to apply a trans­
action atomically: that is, either all its changes are applied
to the store, or none. Commit also writes new objects to
the store, placing these on the same page as the data that
references them wherever, possible. As there can be several
poiliter paths to an item, it cannot in general be detennined
on which database a non-primary object resides.

Implications for Data Management

The CPOMS environment has two fundamental properties,
neither of which applies to conventional databa~e systems,
that affect metadata and security management. Firstly,
it adheres to the Persistence Principle [2] that underlies
all persistent languages; and furthennore it must be suf­
ficiently flexible to support a wide range of programming
languages. In this section we consider the effects of each
of tJ1ese characteristics in tum.

The persistence principle [2] states tliat there should
be no distinction between tnmsient ru1d persistent objects.
Progrruns should be able to freely and implicitly add new
types of data to the store; tl1ere must be no schema defining
"persistent types", ru1d no database-related specifications
in programs. Reading ru1d writing to a dataha~c is largely
trru1sparcnt in progrrun text; ru1d it is impossible to distin­
guish database objects in the code.

The absence of a schema makes it extremely difficult
to find out about the types of objects on a database ru1d so
there is a real need for some metadata query facility. There
crumot be some program section declaring the database
types to be used, or its authorisation to access information.
Special hru1dling of databa5e objects, e.g. to check tl1eir
security clearru1ce, is not possible at compile time because
persistent objects are indistinguishable from other data.

40

Thus, in particular, attempts to illegally update an item
cannot be detected until runtime. Nor can one tell by
examining the program code at which points data is fetched
from a database, although type- and security checking may
be required. Since insertions are not explicit, it is only when
executing Conunit that unauthorised creation of objects
can be detected. Deletions are only evident on garbage
collection, which occurs after all programs have ceased
using the persistent store.

"" The metadata system must permit any kind of item to be
stored, along with is complete type specification; not just
nonnalised relations or object-oriented objects. Without
this flexibility, we would have to limit the languages that
can be supported. Thus the internal metadatarepresentation
must in no way restrict the types allowed on the store. Type
checking must be performed by any persistent system, to
ensure that the type of a database object conforms to that
expected by the program wishing to use it. It is possible
to do all this type checking statically - but only if the
compiler is written in a persistent language (and is thus
able to access the metadata) and only if the language has
no dynamic typing. In order to support other persistent
environments as well, it is necessary to provide for runtime
type checking of database data.

The majority of persistent_ languages which are cur­
rently supported by the system have no notion of sets or
classes. Instead, because of the reachability principle, most
databases consist mainly of networks of objects connected
through pointers. Graph structures do not lend themselves
to security enforcement as easily as simpler structures like
sets, sequences or bags. Access predicate protection (eg
all employees where salary > 9999) ru1d statistical control
(whereby individual values are inaccessible but averages,
minima, etc. are disclosed) are hard to provide for in an
environment where data is available through reachability.
It becomes difficult to ensure that data which a program is
entitled to use is accessible to it along some path; and also
to enforce the protection of ru1 item which is reachable via

· many routes. As an exrunple, consider the case of a write­
protected pointer. This can prevent unauthorised alteration
of the pointer value, but crumot prevent the contents of the
target object from being changed. Write-protection along
a pointer path is easily circumvented, since a program can
always construct a new database item having a pointer to
the target object ru1d then edit it through this new path, as
shown in Figure 1.

unprotected path

Figure 1. Write-protection of pointers cannot prevent target
object alteration.

SACJ/SART, No 11, 1994

3 Extending the System

Tue extended CPOMS [3] has four new features: metadata
management, security, set.types and complex objects; only
the first two are discussed in this paper. Metadata is auto­
matically maintained to allow type checking and security
enforcement, and to permit querying of type information.
Thus users are able to learn about a database, recall type
specifications or study the mix of data across databases,
etc. This metadata is also available to system software like
browsers and diagnostic aids.

The type system of a programming language is but
one way of protecting data from misuse. Preventing unau­
thorised disclosure or alteration of certain information is
equally important in most database applications. Our se­
curity subsystem protects database items· from being ex­
amined, changed, deleted or created without appropriate
authorisation.

For the sake of completeness, we note the new types
supported by the extended system: a set type was devel­
oped to cater for bulk data collections, and nested structures
were introduced to directly support languages with com­
plex data [3]. Previously, all values had to be atomic; any
structured component was implemented as a pointer to a
separate object.

4 Metadata Management

Since metadata handling is affected by the introduction of
security control, we firstconsiderasystem without database
protection. Looking at type maintenance alone therefore,
we outline our requirements for the metadata management
system. Its implementation is described in the two subsec­
tions that follow.

Using Type Information
There are two reasons for keeping meta.data: to pennit the
types on a database to be queried; and for type checking
purposes.

Interrogation by the User
Metadata incorporates type definitions, security, owner­
ship, instm1ce counts, placement infonnation and cross ref­
erences. 'The last of these is optional - if there are a large
number of inter-related types. the additional space required
for storing inverse relationships may not be warranted. All
types are treated identically, including Stm1dard types m1d
component types having a definition but no nmne. For
exmnple, if a component is declared to be an array with el­
ements of type X, this unnmned array type will be included
in cross-references to X.

Since inter-object references can span several data­
bases, it cannot always be detennined on which database
a persistent object will be placed. Therefore type names
must be unique across the entire store and type-related
access privileges must be the smne for all databases. A
progrmn can then have a new object stored on m1y database
without conflicts arising, and can make copies of m1 object

SACJ/SART, No 11, 1994

even if some of these end up being stored on a different
database.

Type infonnation can be obtained interactively using a
metadata query utility. This allows programmers to learn
about a database prior to writing code that will access it.
Within a program, standard metadata access functions are
available; for example, one of these returns the number of
occurrences of a given type on a given database. Metadata
can be accessed in the same way as data. Since type infor­
mation is organised in sets, and the set operations available
are relationally complete, this fonn of metadata querying
is particularly easy. The sets are indexed in such a way
that queries relating to a specific type, field or person are
efficiently handled (information on a person identifies the
types for which they are responsible). Queries are phrased
with respect to a particular database, all databases currently
open, the persistent store as a whole, or all currently reach­
able data (i.e. including non-database items created by the
program).

Type checking
Program declarations must be checked against database
types to prevent persistent data from being wrongly in­
terpreted or manipulated. For languages where all typing
is static, it is sufficient to type check each primary on a
Lookup and to add to metadata when new primaries are
Entered. This requires that every primary be associated
with a type object on the database, which is some encoded
representation of its type declaration. Naturally all non­
standard types referenced must also be fully specified. The
compiler includes encoded type declarations in the object
code so that the runtime system can add new types to the
metadata.

An important feature of the CPOMS is its ability to
support languages with dynmnic typing. For example, PS­
Algol has untyped pointers, so pointer dereferences require
dynmnic type checking. As dynmnic typing may be nec­
essary for objects retrieved from a database, all persistent
objects include a pointer to their type. If a pointer deref­
erence causes m1 object to be fetched from the store. the
system converts the database representation of its type into
the required heap format, to permit the dynamic type check­
ing that follows. When a newly persistent item is written
to a database, the system ensures that its type pointer refer­
ences the correct Persistent Type. Before explaining how
these tasks have been implemented, the internal storage of
type infonnation is outlined.

Internal Metadata Representation

This section briefly describes how type infonnation is
stored; firstly on the persistent store and secondly on the
local heap. For a more detailed description of the data
structures used and the reasons behind their choice, the
reader is referred to [3].

Metadata comprises a set of Persistent Type objects,
each of which encapsulates the definition of one data type
referenced on a database. There is a separate copy of every
Persistent Type on each database where it is used, so as to
reduce metadata access conflicts. A central metadata repos-

41

itory in the fonn of a system-owned database METADB is
used to maintain consistency across databases.

All data objects include a pointer to their type in their
header, as this is needed for languages with dynamic typing.
It should be pointed out that type pointers are useful in any
persistent system for facilities such as type-related security
and physical clustering by type [3]. The links between
persistent data and metadata are illustrated in Figure 2.

A type declaration was initially encoded as a string,
but this was replaced by a scheme using type graphs. A
single node in this graph represents one data type T; if T
references another type U (e.g. U is the type of a field or
element of T), then there is a pointer to the node for U.
Thus structured types take the fonn of a graph. This repre­
sentation speeds up type checking, simplifies the interface
to metadata, saves space [5], facilitates garbage coll~tion
of types and avoids keeping in memory infonnation which
is not actually needed during execution [3]. The only po­
tential problem with a graph fonnat is that it might limit
the type constructors that can be supported, and we do not
wish to place any restrictions on languages that may use
the system. To illustrate this, suppose we were supporting
a single language with say M type constructors. We could
have M + 1 kinds of node in the type graphs: M kinds to
store the infonnation for the M constructors and an addi­
tional one for standard types. Since we wish to make the
representation completely general however, a combination
of strings ru1d graphs is used. Each node in the graph is
a string, ru1d so cru1 be a compacted representation of any
type declaration whatsoever. Within this string, referenced
types are represented by the special symbol "%%", along
with a pointer to the node for that type.

Metadata Persistent
set types

Data
objects

Figure 2. Metadata on the persistent store.

In addition to metadata recorded on the persistent store,
trru1sient types must also be kept in memory so that they cru1
be compared against their persistent counterparts, or added
to the metadata if necessary. Object code thus includes
encoded type declarations. Each of these is associated with
a type number, which is allocated according to the order­
ing of declarations in tl1e progrrun text. Instructions witJ1
types as parruneters identify tl1ese by type number. At run­
time, the encoded declarations are used to create "Local
Type" objects, which are kept in ru1 array indexed on type
number. These Local Types contain type name, the en­
coded type definition, security data ru1d tJ1e disk addresses
of the corresponding type on different databases. After the

42

type has been checked against its database counterpart, the
definition is replaced by a flag indicating if type checking
succeeded.

Implementing Type Management
To manage type infonnation in the persistent store, the
system needs to ensure that type checking is done where
necessary, that the type pointer in every object's header is
correct, and that new infonnation is added to metadata on
the persistent store when appropriate.

Type checking
It would appear that checking program types against their
definition on the persistent store must be done as each ob­
ject is retrieved from a database. Since it cannot be deter­
mined statically which pointer traversals access persistent
data, the interpreter would have to be infonned of the type
expected with every pointer dereference and would carry
the overhead of always testing if type checking is required.
Fortunately a more efficient approach is possible however:
when we encounter a primary object Lookup, deep type
checking is perfonned. This ensures that all data reachable
from there can subsequently be retrieved without checking.

A compiler which is itself written in a persistent lan­
guage can access the store and type check primary struc­
tures statically. Should this not be the case, the extended
CPOMS will do so at runtime when executing a Lookup;
the compiler simply has to supply the type number of the
primary type. To check type compatibility, declarations in
the Local Type array are compared with type graphs on the
persistent store. Deep type checking stops when a Local
Type is encountered that is already flagged. If type check­
ing succeeds, the database address of the Persistent Type is
recorded so that any newly persistent objects of this type
Cc:'Ul have their type pointers set accordingly. Type graphs
on the heap are disposed of after type checking.

Newly Persistent Objects
Progrruns create objects by meru1s of a New instruction .

. 'The object code for a New statement includes a parruneter
identifying the object's type. When the instruction is exe­
cuted, this type number is used to index to the appropriate
Local Type, ru1d the type pointer in the header of the new
object is made to point there. Thus it is always possible to
detennine data type by following this pointer.

The Commit instruction creates new items on the per­
sistent store. It must first examine such objects to check
their type ru1d to add new types to the metadata. Com­
mit also has the task of identifying these newly persistent
objects and updating the type pointer in their headers to
reference the corresponding Persistent Type. Now an ob­
ject X cru1 only be created on the store if some persistent
object points to X, or if X is Entered. If X is refer­
enced by a persistent object, then its type will already have
been checked before its parent was accessed. Therefore to
hru1dle newly persistent objects, the only additional type
checking required is ensuring that new primaries confonn
with the types expected on a database. This can be done by
deep type checking new primaries, either on Commit or on

SACJ/SART, No 11, 1994

Enter.
The checking is perfonned on Commit to cater for

situations where a program chooses not to Commit a trans­
action in which an illegal Enter occurred. It is in any case
more efficient to check then, because the Local Type needs
to be located during Commit in any case, to set type pointers
in object headers. Commit follows the type pointer from a
new object's header to the Local Type, and checks the flags
there. If this indicates a type mismatch, then the Commit
aborts. Otherwise, the address of the corresponding Persis­
tent Type on the database is obtained from the Local Type
and the type pointer in the object header is overwritten with
this value. The type is added to the metadata of a database
if it is new there; if the type is totally new to the persistent
store, it is added to the METADB database as well.

5 The Security Subsystem

Security Policy
When designing a security system, there are several aspects
to decide, including granularity, privileges, authorisation
method, access right specification and the points at which
control is enforced. This section discusses the choices
made in our experiment.

Granularity
In most database systems, security is a property of data
type. In the extended CPOMS, one can protect not only
whole databases or entire types, but also individual objects.
The objects that can be protected independently are the pri­
mary objects. Security cru1 be enforced at the component
level, ru1d read- ru1d write-privileges are distinguished. We
have not distinguished between insertion, update ru1d dele­
tion rights because these are not explicit operations in a
persistent environment.

Authorisation Method
Three common authorisation methods are lock-ru1d-key
schemes, classification mechanisms and the use of priv­
ilege lists (see e.g. [8]). The lock-and-key approach typi­
cally associates a secret string (the lock) witJ1 a protected
item; access to the affected data is then restricted to those
who are able to supply this string (the key). The last of
these methods a~sociatcs with a type (or object) a list of
userid-authorisation pairs. Only users appearing in this
list may access the type (or object); the authorisation part
indicates which operations that user is entitled to perform
on instances of that type (or on that single object). Classi­
fication methods are not considered further since they are
too inflexible for most enterprises: each user ru1d each ob­
ject is assigned a security level, ru1d users may only access
items at tlleir level or below. For exrunple, if the levels are
ordered Unprotected, Confidential, Secret ru1d Top-Secret
then a user rated "Secret" can work witll items classified
Secret, Confidential or Unprotected, but not Top-Secret
ones. One difference between tlle remaining two methods
is that privilege lists a~sociate rights witll users; but with
lock-ru1d-key systems, authorisation is a property of a pro-

SACJ/SART, No 11, 1994

gram or procedure. It is more logical that security clearance
should be detennined by the task being perf onned, rather
than according to the person executing this task. To restrict
the users who may run a program, should this be necessary,
is a separate issue which can be handled by the program
itself. Another advantage of tlle lock-and-key approach is
that it requires less space on the store for recording autho­
risations.

Since database-related specifications are out of place in
a persistent environment, a problem arises as to how secu­
rity clearance can be established. Privilege list authorisa­
tion takes the fonn of statements like "Grant Read Access
on StudentType to Bloggs" or "Grant Write Access on Win­
nerObject to Bloggs". Such security-related statements are
clearly database-oriented and violate the persistence princi­
ple. Privilege list schemes thus require a separate utility for
granting access rights, and newly persistent types and ob­
jects are completely inaccessible to all but their creator until
this utility is run. On the other hand, lock-and-key schemes
are easily and neatly incorporated within programs by us­
ing passwords as parruneters to Lookup, Enter and type
declarations. Instead of statements like "Readkey for Stu­
dentType is XYZ", passwords can be given in declarations
e.g. "Type StudentType (XYZ) = ... " or as parruneters e.g.
Lookup(WinnerObject, MyDB, "XXY"). A consequence
of this approach is that type protection is then dependant
on scope. This raises a problem if the language has dy­
namic typing or structural equivalence: an object can be
accessible in different scopes which have different security
clearru1ce for that type. This scoping problem does not
apply to privilege list systems simply because declarations
are made in separate utilities rather than within application
programs.

The lock-and-key method was selected for the ex­
tended CPOMS. The one difficulty it presents (i.e. scop­
ing) is limited to. languages with structural equivalence or
dynamic typing, and a policy was devised to cope with this
problem. Protection is always detennined by the scope in
which data is retrieved from the store. An advantage of this

· policy is that library routines can force the calling program
to fetch ru1 object; its security clearance then reflects the
privileges afforded tlle caller, and its use within tlle rou­
tine will be restricted accordingly. Autllorisation to insert
a new object on tlle store is detennined by the privileges
held at tlle time the item was created. Thus new data can
be Committed in any scope; even if its type is no longer
in scope at all! In any case, to enforce security according
to current scope is far too costly - it means re-establishing
autJ1orisat.ion on every access to every value, persistent or
transient.

Passwords are given witll type declarations and, for
primaries, tlley are supplied as parruneters of Lookup and
Enter. Keys may be given as variables instead ofliterals, so
security clearru1ce cru1 be tailored to the program's end-user.
Complex objects cru1 comprise any number of protected
components. These keys are specified as a set of strings,
since a set parruneter is a convenient way of passing an
indetenninate number of values.

43

Access Privileges
To access an object requires authorisation to use both its
type and its "access path". For a primary, access path means
the right to Lookup that object; for an object reached via
a pointer dereference it means authorisation to read that
pointer. As a result, having clearance for a type, its in­
stances can be accessed via any authorised path, irrespec­
tive of rights to other paths. If some component of an
object (i.e. a field or element) is read-protected, then nei­
ther this value nor the object as a whole may be referenced;
only its other components are accessible. This prevents it
being copied to a variable where that component is unpro­
tected. Similarly, if unauthorised to write to a component,
other components may be assigned new values - but not
that component, nor the object in its entirety. In partic­
ular, write-protection of a pointer compoi1ent implies that
the referenced object cannot be destroyed - that is, the
pointer cannot be altered to NIL to make the target object
unreachable.

In the case of a read-only pointer component, the pro­
tection does not prevent changing the contents of the refer­
en~ object (see Figure 1). For example, suppose Winner
is a write-protected pointer to a Person instance. It can­
not be changed without the necessary write-authorisation
to Winner; but the contents of that Person (e.g. Name, Ad­
dress, etc.) can be updated. However, the change will
cause all relationships of the affected object to refer to the
new individual, and hence is unlikely to go undetected. In
a relational system, such a Winner attribute would contain
the key of some Person tuple. Chru1ging the Winner would
involve associating this identifier with a different person.
If user-visible keys serve as identifiers the change is not
possible, since e.g. a person's Social Security Number can­
not be chru1ged. Otherwise, the situation is analogous to
that of the extended CPOMS. ·

Enforcement Points
It is not possible to enforce security at compile-time be­
cause persistent objects crurnot be distinguished from trru1-
sient ones; ru1d t11e points at which objects move between
disk ru1d memory cmrnot be determined until runtime. Since
ru1y persistent object cru1 contain a pointer to a primary, it is
also impossible to statically enforce security on primaries.
Thus protection of persistent data takes place at runtime.

A read-violation occurs a~ soon a~ an illegal attempt is
made to access a persistent value. Write pennission could
similarly be checked on every input, assignment statement
and parameter pass. The only bencfi tin immediate I y check­
ing write pennission is that it simplifies debugging. How­
ever this is very costly, particularly as it will be done for
trm1sicnt objects as well m1d will be repeated every time a
value is chru1ged. Ibere is also the possibility that a pro­
grrun may be terminated because of ru1 invalid write when
in fact it had not intended to Commit the trm1saction. As
it is only on Commit that newly persistent objects become
apparent, database insertions cmmot be checked for write
pennission until this stage. Therefore it is more consistent
to detect all write-violations on Commit. This is a logical
point at which to do so, m1d is a far more efficient approach.

44

Representing Security Information
Before discussing security enforcement, the storage of ac­
cess privileges is outlined in this section. We first describe
how Local Types record security clearance, and then iden­
tify the access rights attached to individual data items.

The type descriptions in the object code include these­
curity strings associated with a type. With each Local Type,
the system initially keeps pointers to these passwords. As
with type checking, a Lookup causes security clearance to
be established for the types involved, disposing of pass­
word strings and recording authorisation in security flags
associated with the Local Type. To store authorisations for
individual components of a structured type, 2N security
bits are stored with the Local Type (where N is the size of
its instances in words). There is one read- and one write-bit
for each word to cater for nested structures. To cover the
case where a component is itself complex, with individu­
ally protected components, access privileges are kept at the
word level rather thru1 the component level.

To attach access rights to data, four bits of the ob­
ject header are used: the read-only, partly-readable, partly­
writable and is-primary flags. Partly-readable/writable ap­
plies only to complex data with protected components.
Whenever a persistent object is fetched from disk, these
flags are set according to the clearance associated with its
Local Type. An extra N authorisation bits are attached to
structured objects; where a bit_is set if the corresponding
word is inaccessible. Although they are associated with
individual objects rather thru1 (Local) types, these flags re­
quire a negligible amount of extra memory in return for
rapid checking of read pennission, which must be per­
fonned on every component reference. Write-protection of
fields is not carried with data in this way: the information
is obtained by following the object's type pointer to the
associated Local Type. The deferring of write-checks until
Commit meru1s this extra access to the Local Type does not
occur too frequently.

Security Enforcement

. This section illustrates how the data structures above are
utilised to ensure tl1at objects imported from the store are
properly protected, ru1d that new items are not written to a
database unless a progrmn has the right to do so.

Determining Privileges
Authorisation to manipulate database data cannot be deter­
mined at compile time because it is not known statically
which pointer dereferences cause objects to be fetched from
the persistent store. 'Therefore every database retrieval
needs to fetch not only the desired data object but also its
type, and record its security clearance accordingly. The
alternative is to include type number as part of a pointer
dereference instruction; this was not implemented because
only a small minority of pointer traversals will actually
require database access.

With lock-mid-key protection, the "locks" associated
with the database type need to be checked against the "keys"
provided in its progrrun declaration. The security bits of
a Local Type are set during type checking: deep checking

SACJ/SART, No 11, 1994

ensures the correct protection of embedded structures. On
a database retrieval, the type pointer in the object's header
identifies its Persistent Type. A map from Persistent Type
address to type name is kept in memory. The type name is
used to identify the corresponding Local Type, and security
flags in the data header are then set according to the security
bits attached to this Local Type.

Primary protection is applied whenever an object re­
trieved from the persistent store has the is-primary bit set
(not only on a Lookup). The Offset instruction, which
advances to some field of a structure, checks component
authorisation by examining the component-read-flags at­
tached to the object. This instruction includes a parameter
giving the size of the value being accessed, so that the
corresponding number of bits may be checked.

The Effect of Program Scope
If a language uses structural equivalence or dynamic typing,
a database object fetched onto the heap during a particular
procedure call C, can be accessed outside this scope as
well. It will then be associated with a different type decla­
ration, and so its protection may differ in different scopes.
As explained earlier, the protection of an object is deter­
mined by the scope in which the program retrieved it from
the store: the data can only be used accordingly in other
scopes. Since security c1earance is a property of objects
on the program heap, not of databases, this inf onnation is
maintained by the runtime system (the persistent store is
not affected) in a manner described below.

To keep track of scope chru1ges, we cru1 either maintain
a single set of current types which is updated on every func­
tion call and exit, or we can keep a list of sets (similar to the
way scoping is done with a static chain). Because of exten­
sive support for indexing [3], the former approach has been
used; indexing a single collection is faster than searching a
chain. A CurrentMeta index on typenrune points to types
currently in scope. FunGtion calls adjust CurrentMeta by
deleting lypes no longer in scope ~md inserting new ones.
When a new type is encountered on scope entry, any type
in CurrentMeta with the srune nrune must be replaced; the
situation is reversed when the routine tenninates. The acti­
vation record of each routine includes two sets, New-types
ru1d Old-types. On routine exit, CurrentMeta ha~ all New­
typcs removed ruul all Old-types restored.

Write Protection
To provide atomicity, the Commit routine has two phases.
ribe first validates all databa\e chru1ges made by the trm1s­
action ru1d writes copies of their original state to a Be­
fore Looks File. The second ph,L~e wriles new data to the
store. The first phase enforces all write protection: newly
persistent data ruul chru1ged databa\e items must be vali­
dated. Before Committing a new object to the store, its
type pointer is always traversed to obtain U1e appropriate
Local Type. From this U1e progrrun's right to create such
data is detennined.

With updated items, the first step is to consult the ob­
ject's read-only flag, and abort immediately if it is set. If
the part-writable flag is set, the read-only fields are identi-

SAC.J/SART, No 11, 1994

fled by exrunining the associated Local Type. Component
write-protection can be applied at little extra cost by com­
paring current values against original values (obtained for
the Before Look) to detect alteration of read-only fields.

6 Conclusion

We have shown how to maintain infonnation on the types
in use on a persistent store, without limiting the persistent
l&nguages it is able to support. We illustrated how this
infonnation can be employed to type check database usage
and provide for flexible metadata querying. The imple­
mentation of a security system was described and its use by
languages with dynamic typing and structural equivalence
was outlined. We conclude by discussing the benefits and
di~vantages offered by the resulting system, and identify
some areas requiring futher work.

Evaluation

The introduction of data protection requires negligible
space; but extra local heap dereferences on persistent store
retrievals, to check authorisation, are unavoidable.

The CPOMS pennits one writer or mru1y readers to
access a database concurrently. It is for this reason that
the types in use on a database are described by Persistent
Type objects on that srune database. Several databases
can have existing persistent types added to their metadata
concurrently, as this requires at worst only read access to
METADB. However, once a progrrun introduces a new type
to the persistent store, no other run-unit can simultaneously
copy a type to a new database, since METADB is open for
writing. Metadata handling is thus complicated because
inter-object references are not limited by the unit oflocking.
We conclude that until concurrency is properly supported,
inter-database references should not be allowed.

The use of pointers to reference related objects, rather
than keys (as in relational systems for example), permits a
more flexible security system. There can be multiple paths

. to an object, enabling a progrrun authorised to traverse any
one of these paths to use the data concerned. In addition,
confidential parts of a complex object can be stored sep­
arately, and kept private by read-protecting the pointer to
these values. The existence of named primary structures
enables these objects to have individual protection. They
may still be referenced by other persistent objects, so data
structuring is unaffected by this. It is more efficient to check
for write-violations when a database is updated, rather than
on every instruction that chru1ges some value. The Commit
statement that demarkates the end of a transaction means
that all dalaha\e chru1ges made by that transaction can be
validated together at a logical point in the program execu­
tion.

In the original CPOMS all the components of an ob­
ject had to be atomic. This restriction has been removed
by allowing for nested structures [3], in order to support
languages with complex data types. Such complex objects
were seen to require more space for read-flags and to be
more cumbersome to protect (eg the Offset instruction re-

45

quires· the size of the value to subsequently be extracted).
The bulk data type we introduced proved useful for non­
procedural access to metaclata, and facilitated the handling
of cross-references, variants, local metaclata and persistent
types.

Compilers for persistent languages should themselves
be written in a persistent language so that they are able to
access metaclata and type check database structures. This
would remove the burden of type checking from the runtime
system. Security cannot be enforced statically because per­
sistent store retrievals are not distinguishable in program
code. Data flow analysis could be used to detect pointer
dereferences involving disk addresses and to flag the sym­
bol table entry for the corresponding object according to
its security clearance. However this analysis is limited by
end-user inputs and database values, which are not known
statically. Hence the runtime system would still need to au­
thorise accesses; the only.benefit of static checking would
be to raise some errors at compile time - but execution time
would not improve.

Future Work

Several extensions to the existing metadata management
system are possible. If part of a program type definition
is incompatible with that of the store, the security subsys­
tem could be used to treat the object as partly-readable,
instead of terminating execution. We suggest·that the en­
tire item be write-protected, as it seems unreasonable to
allow a·program to alter an object if its type is not fully
known. More sophisticated protection of set types should
be possible, such as access predicate and statistical con­
trol. Furthermore, persistent functions create opportunities
for protection of behavioural infonnation, which has not
been investigated. Instead of dynamically keeping track
of scope for type-related security, it appears in retrospect
that it might have been better to do this at compile time, by
making the pointer dereference instruction include the type
number of the target object. Although this would be used
only infrequently - when a database retrieval occurred -
this overhead may be justified by the resulting simplication
off unction entry and exit.

References

1. A Albano, L Cardelli, and R Orsini. 'Galileo:
A strongly-typed, interactive conceptual lcmguage'.
ACM Trans. on Database Systems, 10(2):230-260,
(1985).

2. M Atkinson, P Bailey, K Chisholm, W Cocksholt,
and R Morrison. 'An approach to persistent program­
ming'. Computer Journal, 26(4), (1983).

3. S Bennan. P-Pascal: A Data-Oriented Persistent
Programming Language. PhD thesis, University of
Cape Town, 1991.

4. A Brown and W Cockshott. 'The CPOMS persistent
object ipanagement system'. Persistent Programming
Research Report PPRR 13, Universities of Glasgow
and St Andrews, (1985).

46

5. R Connor, A Brown, Q Cutts, A Dearle, RMorrison,
and J Rosenberg. 'Type equivalence checking in per­
sistent object systems'. In A Dearle and G Shaw, eds.,
Proc. 4th Int. Workshop on Persistent Object Systems,
pp. 151-164, (1990).

6. A Davie and D McNally. 'STAPLE User's Manual'.
Research Report CS/90/12, Deparunent of Computa­

. tional Science, University of St. Andrews, (1990).
7. A Dearle. On the Construction of Persistent Pro­

gramming Environments. PhD thesis, Deparunent of
Computational Science, University of St Andrews,
1988.

8. E Fernandez, R Summers, and C Wood. Database
Security and Integrity. Addison-Wesley, Reading,
Mass., 1981.

9. P Gray, D Moffat, and J Du Boulay. 'Persistent Pro­
log: A searching storage manager for Prolog'. In
M Atkinson, 0 B uneman, and R Morrison, eds., Data
Types and Persistence, pp. 353-368. Springer-Verlag,
(1988).

10. R Morrison, A Brown, R Connor, and A Dearle. 'The
Napier88 reference manual'. Persistent Programming
Research Report PPRR 77, Universities of Glasgow
and St Andrews, (1989).

11. N Perry. 'Hope+'. report IC/FER/LANG/2.5.1/7I,
Imperial College.

12. Persistent Programming Research Report PPRR 12,
Universities of Glasgow and St Andrews. PS-Algol
Reference Manual (4th ed.), 1988.

SACJ/SART, No 11, 1994

Notes for Contributors

•.•X•.•.•.•.:_;_:_:.:.:_:_;_;_;_:.:_;_;_,_;_;_,_;_;_;_;_;_,.:.:.:.:.:.:.:.:.:.:.:.:.:.·.:.:::.:.:.:.:_:::::.:.:.:_:;:_:::.: __ ;;:;:;:;:;:;:;:.:.: .. ·.:;:;:;:;:::.:.:.:.:.:;:.:.:;:,:::::.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:::.:.:.:'.:.:.:::::::.:;:_:::.:.:_:_:_;_:.:.:.:.:.:.:.:::.:_:;:_:_:;:::.:.:.:.:.:.:.:.:.:.:.:.:.: .•.. :.:.:.:.:.:.: .•. : .•. : ..•. :.:.:.:.:.: .. : .. :.: .•. : .•. :.: .. :.:..:
" .

The prime purpose of the journal is to publish original
research papers in the fields of Computer Science and In­
fonnation Systems, as well as shorter technical research
papers. However, non-refereed review and exploratory ar­
ticles of interest to the journal's readers will be considered
for publication under sections marked as Communications
or Viewpoints. While English is the preferred language
of the journal, papers in Afrikaans will also be accepted.
Typed manuscripts for review should be submitted in trip­
licate to the editor.

Form of Manuscript

Manuscripts for review should be prepared according to the
following guidelines.

• Use wide margins and 1 t or double spacing.

• The first page should include:

- title (as' brief as possible);

- author's initials and surname;

- _author's affiliation and address;

- an abstract of less th,m 200 words;

- an appropriate keyword list;

- a list of relevant Computing Review Categories.

• Tables and figures should be numbered and/ titled.
Figures should be submitted as original line draw­
ings/printouts, and not photocopies.

• References should be listed at the end of the text in
alphabetic order of the (first) author's surnmne, m1d
should be cited in the text in square brackets [l-=-3].
References should take the fonn shown at the end of
these notes.

Mmmscripts accepted for publication should comply with
the above guidelines (except for the spacing requirements),
and may be provided in one of the following fonnats (listed
in order of prefere1.1ce):

1. As_ (a) 1Hp(file(s), either on a diskette, or via e­
mail/ftp - a lbTp(style file is available from the pro­
duction editor;

2. As m1 ASCII file accompanied by a hard-copy showing
fonnatting intentions:'

• Tables m1d figures should be on separate sheets of
paper, clearly numbered on the back m1d ready for
cutting m1d pasting. Figure titles shouJd appear
in the text where the figures are to be p~aced.

• Mathematical m1d other symbols may be either
hm1dwritten or typed. Greek letters m1d unusual
symbols should be identified in the margin, if
they are not clear in the text.

Further iilstructions on how to reduce page charges can
be obtained from the production editor.

3. In cmnera-ready fonnat- a detailed page specification
is available from the production editor;

4. In a typed fonn, suitable for scmming.

Charges

Charges per final page will be levied on papers accepted
for publication. They will be scaled to reflect scanning,
typesetting, reproduction and other costs. Currently, the
minimum rate is R30-00 per final page for lbTp(or camera­
ready contributionsand the maximum is R120-00perpage
for contributions in typed format (charges include VAn.

These charges may be waived upon request of the au­
thor and at the discretion of the editor.

Proofs

Proofs of accepted papers in categories 2 and 4 above will
be sent to the author to ensure that typesetting is correct,
and not for addition of new material or major amendments
to the text. Corrected proofs should be returned to uie
production editor within three days.

Note that, in the case of cmnera~ready submissions, it
is the author's responsibility to ensure that such submis­
sions are error-free. However, the editor may recommend
minor typesetting chm1ges to be_ made before publication.

Letters and Communications
Letters to the editor are welcomed. They should be signed,
and should be limited to less than about 500 words.

Announcements m1d communications of interest to the
readership will lie considered for publication in a separate
section of the journal. Cmmnunications may also reflect
minor research contributions. However, such communi­
cations will not be refereed m1d will not be deemed as
fully-fledged publications for state subsidy purposes.

Book reviews
Contributions in this regard will be welcomed. Views and
opinions expressed in such reviews should, however, be
regarded as those of the reviewer alone.

Advertisement
Placement of advertisements at Rl000-00 per full page per
issue m1d R500-00 per half page per issue will be consid­
ered.• These charges exclude specialized production costs
which will be borne by the advertiser. Enquiries should be
directed to the editor.

Refer~nces

1. E Ashcroft m1d Z Manna. 'The translation of 'goto'
programs to 'while' progrmns'. In Proceedings of IFIP
Congress 71, pp. 250-255, Amsterdam, (1972). North­
Hollm1d.

2. C Bohm and G Jacopini. 'Flow diagrams, luring ma­
chines and languages with only two formation rules'.
Communications of the ACM, 9:366-371, (1966).

3. S Ginsburg. Mathematical theory of context free lan­
guages. McGraw Hill, New York, 1966.

South African
Computer

Journal

Number 11, May 1994
ISSN 1015-7999

GUEST CONTRIBUTIONS

Contents

Ideologies of Infonnation Systems and Technology
LD Introna

What is Information Systems?
TD Crossman

RESEARCH ARTICLES

Suid-Afrikaanse
Rekenaar­

tydskrif

Nmmner 11, Mei 1994
ISSN 1015-7999

Intelligent Production Scheduling: A Survey of Current Techniques and An Application in The Footwear Industry

1

7

V Rain : . 11

Effect of Sy~te1~ and Team Size on 4GL Software Development Productivity
GR Finnie and GE Wittig

I

EDI in South Africa: An Assessment of the Costs and Benefits
G Harrington . ,._. ·<. '

MetadaL:1 and Security Management in a Persistent Store
S Bermai1 : :

Markovian Analysis of DQDB MAC Protocol
F Ba use, P Kritzinger and M Sczittnick .

TECHNICAL NOTE

•·. '"'-.-.~ .

'·'\"'"'

• . ·:.,{:.- t"·

An evaluation of substring algorithms that determine similarity between surnames
Gde V de Kock and C du Plessis ,.

COMMUNICATIONS·AND REPORTS

Ensuring Successful IT Utilisation in Developing Countries . ··':
BR Gardner .

. .

Infonnation Technology Training in Organisations:0·:A Replication
R Roets

The Object-Oriented Paradigm: Uncertainties and Insecurities
SR Schach

A Survey of Information Authentication Techniques
WB Smuts

Parallel Execution Strategies for Conventional Logic Programs: A .Review

18

26

39

. 47

58

63

68

77

84

. PEN Lutu ·: ·:··. 91
~ ..

The FRD Special Programme on ColJaborative Software Research and Development: Draft Call for Proposals . 99

Book ryview 102

