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Abstract

Distributed systems have become pervasive in current society. From laptops and mobile
phones, to servers and data centers, most computers communicate and coordinate their
activities through some kind of network. Moreover, many economic and commercial
activities of today’s society rely on distributed systems. Examples range from widely
used large-scale web services such as Google or Facebook, to enterprise networks and
banking systems. However, as distributed systems become larger, more complex, and
more pervasive, the probability of failures or malicious activities also increases, to
the point that some system designers consider failures to be the norm rather than the
exception.

The negative effects of failures in distributed systems range from economic losses,
to sensitive information leaks. As an example, reports show that the the cost of
downtime in industry ranges from $100K to $540K per hour on average. These
undesired consequences can be avoided with better monitoring tools that can inform
system administrators of the presence of anomalies in the system in a timely manner.
However, key challenges remain, such as the difficulty in processing large amounts
of information, the huge variety of anomalies that can appear, and the difficulty in
characterizing these anomalies.

This thesis contributes a novel framework for the online detection and identification
of anomalies in large-scale distributed systems that addresses these challenges. Our
framework periodically collects system performance metrics, and builds a behavior

characterization from these metrics in a way that maximizes the distance between nor-
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mal and anomalous behaviors. Our framework then uses machine learning techniques
to detect previously unseen anomalies, and to identify the type of known anomalies
with high accuracy, while overcoming key limitations of existing works in the area. Our
framework does not require historical data, can be employed in a plug-and-play man-
ner, adapts to changes in the system behavior, and allows for a flexible deployment that
can be tailored to numerous scenarios with different architectures and requirements.

In this thesis, we employ our framework in three anomaly detection application
domains: distributed systems, large-scale systems, and malicious traffic detection.
Extensive experimental studies in these three domains show that our framework is
able to detect several types of anomalies with 0.80 Recall on average, and 0.68 mean
Precision or 0.082 mean F PR depending on the domain. Moreover, our framework
achieves over 0.80 accuracy in the identification of various types of complex anomalous
behaviors. These results significantly improve similar works in the three explored
research areas.

Most importantly, our approach achieves these detection and identification rates
with significant advantages over existing works. Specifically, our framework does
not rely on historical anomalous data or on assumptions on the characteristics of the
anomalies that can make anomaly detection easier. Moreover, our framework provides
a flexible and highly scalable design, and an adaptive method that can incorporate new

system information at run time.
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