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Jeffrey M. Weiss, M.S.
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Intracortical brain-computer interfaces (BCI) have the potential to restore motor function

to people with paralysis by extracting movement intent signals directly from motor cortex.

While current technology has allowed individuals to perform simple object interactions with

robotic arms, such demonstrations have depended exclusively on visual feedback. Additional

forms of sensory feedback may lessen the dependence on vision and allow for more dexterous

control. Intracortical microstimulation (ICMS) has been proposed as a method of adding

somatosensory feedback to BCI by directly stimulating somatosensory cortex to evoke tac-

tile sensations referred to the hand. Our lab recently demonstrated that ICMS can elicit

graded and focal tactile sensations in an individual with spinal cord injury (SCI). However,

several challenges must be resolved to demonstrate the viability of ICMS as a technique for

incorporating sensory feedback in a closed-loop BCI.

First, microstimulation generates large voltage transients that appear as artifacts in the

neural recordings used for BCI control. These artifacts can corrupt the recorded signal

throughout the entire stimulus train, and must be eliminated to allow for continuous BCI

decoding. Second, it is unknown whether the sensations elicited by ICMS can be perceived

quickly enough for use as a feedback signal.

Here, I present several aspects of the development of a closed-loop BCI system, including

a method for artifact rejection and the characterization of simple reaction times to ICMS

of human somatosensory cortex. A human participant with tetraplegia due to SCI was

implanted with four microelectrode arrays in primary motor and somatosensory cortices.
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I implemented a robust method of artifact rejection that preserves neural data as soon as

750 microseconds after each stimulus pulse by applying signal blanking and an appropriate

digital filter. I validated this method by comparing BCI performance with and without

ICMS and found that performance was maintained with ICMS and artifact rejection. Next,

I characterized simple reaction times to single-channel ICMS, and found that responses to

ICMS were comparable, and often faster, than responses to electrical stimulation on the

hand. These findings suggest that ICMS is a viable method to provide feedback in a closed-

loop BCI.
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1.0 INTRODUCTION

Individuals with tetraplegia due to conditions such as spinal cord injury, strokes, or neu-

rodegenerative diseases such as amyotrophic lateral sclerosis (ALS) are unable to use their

hands or legs, and in many cases are paralyzed from the neck down. While assistive devices

exist to help individuals with tetraplegia operate wheelchairs and computers, such individ-

uals often require assistance for activities of daily living and struggle to be independent.

Just as cochlear implants have restored hearing to individuals with deafness [Eshraghi et al.,

2012], a neural prosthesis may be capable of restoring motor function and independence to

individuals with paralysis.

In recent years, a number of advances in the field of brain-computer interfaces (BCI)

have allowed people with paralysis to control robotic limbs using intent signals recorded

from the motor cortex [Collinger et al., 2013, Downey et al., 2016, Wodlinger et al., 2014].

However, future progress may plateau without incorporating sensory feedback to reduce the

reliance on visual feedback and allow for more dexterous object interactions. Intracortical

microstimulation (ICMS) has been proposed as a method of introducing such feedback,

but a number of challenges remain to be solved before the viability of this technique can

be demonstrated. The efficacy of ICMS must be proven in the sense that the sensations

produced by ICMS can be interpreted in a meaningful and timely manner as feedback to

improve motor control. Furthermore, the addition of ICMS must not disrupt the existing

components of a BCI system. In particular, care must be taken to ensure that the recording

quality and motor control does not degrade with the addition of microstimulation.

In this chapter, I will provide background on BCI research, the somatosensory system and

the need for somatosensory feedback in prosthetic devices, and ICMS, including the history,

mechanism, effects, and safety of using microstimulation in the brain. I will also discuss
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problems and unknowns with using ICMS in a BCI system, including stimulus artifacts

and the response latency of ICMS, to motivate the novel work presented in this thesis. In

Chapter 2, I will describe a method of removing stimulus artifacts and validate the method

in a closed-loop BCI system. In Chapter 3, I will characterize the reaction times to ICMS, a

first step in determining whether or not ICMS can transmit information quickly enough for

use as feedback. Finally, I will summarize my findings and discuss alternative solutions and

future work in Chapter 4.

1.1 BRAIN-COMPUTER INTERFACE

A brain-computer interface (BCI) is a device that extracts signals from a user’s brain to

control external devices. The concept was first proposed in 1973 by Jacques Vidal as a

potential method of “controlling such external apparatus as prosthetic devices or spaceships”

[Vidal, 1973]. While BCI spaceships are still relegated to science fiction,1 research into brain-

controlled prosthetics has made significant progress in recent years. Several methods exist

for extracting brain signals for BCI, including the non-invasive electroencephalogram (EEG)

(e.g. [Wolpaw et al., 1991]), and more invasive electrocorticography (ECoG) (e.g. [Leuthardt

et al., 2004, Wang et al., 2013]) or intracortical microelectrode arrays (e.g. [Collinger et al.,

2013, Hochberg et al., 2006]), both of which require implanted electrodes. While each of

these technologies has unique benefits and limitations, this thesis will focus on intracortical

BCIs that make use of implanted microelectrodes to record from single neurons.

In 1969, Eberhard Fetz performed an operant conditioning experiment that trained mon-

keys to modulate the firing rate of single units in motor cortex in order to receive a food

reward [Fetz, 1969]. The monkeys received auditory or visual feedback corresponding to the

firing rate of the recorded unit. This experiment demonstrated for the first time that it is

possible to volitionally control the firing rates of individual neurons. A decade later, Edward

Schmidt performed a similar experiment with the goal of controlling external devices by

1Elon Musk, the billionaire entrepreneur and founder of the commercial aerospace company SpaceX, co-
founded Neuralink in 2016, which is reportedly working on invasive brain-computer interfaces [Urban, 2017].
One can only speculate about Musk’s true intentions.
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direct cortical control [Schmidt, 1980]. Schmidt trained monkeys to modulate firing rates

of single units to eight discrete firing rate targets, indicated by a row of lightbulbs, and

discussed the possibility of extracting signals from cortex to control external devices such as

neuromuscular stimulators for people with quadriplegia.

A major breakthrough was made when Apostolos Georgopoulos discovered a method

to decode movement direction from populations of neurons in motor cortex [Georgopoulos

et al., 1982]. Georgopoulos recorded from single neurons while monkeys performed an eight-

target center-out reaching task, and discovered that many neurons exhibited a “preferred

direction” in which they fired maximally, and attenuated their firing rates during reaches in

the opposite direction. A cosine tuning curve could be fit to relate the firing rate of each cell

to movement direction. Georgopolous then repeated this experiment with three-dimensional

reaches and developed the population vector algorithm, in which each cell was treated as a

vector along the axis of its preferred direction. The firing rate of each cell was then used to

determine a weighted contribution to a resultant population vector predicting the direction

of the monkey’s reach [Georgopoulos et al., 1986]. This algorithm eventually led to the

development of BCI decoders [Schwartz et al., 2001], which translate neural firing rates into

control signals for external devices.

By the early 2000s, microelectrode arrays had been developed that allowed many neurons

to be recorded simultaneously. Several groups trained monkeys to control cursors [Serruya

et al., 2002, Taylor et al., 2002] or robotic arms2 [Carmena et al., 2003] by decoding velocity

from populations of neurons in motor cortex. A few years later, Andrew Schwartz’s group

trained monkeys to control a robotic arm and hand with four degrees-of-freedom (endpoint

position and grasp) in a self-feeding task [Velliste et al., 2008].

During this time, intracortical BCI began translating to clinical human work. The “Brain-

Gate” clinical trial demonstrated that humans with tetraplegia could use a BCI to control

a cursor and interact with a computer [Hochberg et al., 2006], and that the system could

function for at least 1000 days [Simeral et al., 2011]. This clinical trial involved implanting

a Utah electrode array (as seen in Figure 1.1), a 4x4 mm array of 100 microelectrodes which

2In the cited study, monkeys learned to control a cursor with a BCI. The BCI was then used to control
a robot, but the monkeys were only presented with a cursor for visual feedback.
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Figure 1.1: Utah microelectrode array. a) Shows a scanning electron microscrope (SEM)

image of a 4 × 4 mm array of 100 electrodes. b) is a high-magnification view of a single

electrode tip. Image reproduced with permission from [Negi et al., 2010].

has been used in nearly all human intracortical BCI studies to date. The BrainGate team

also demonstrated basic robotic arm control [Hochberg et al., 2012], but this was soon fol-

lowed by the achievement of continuous BCI control of a robot arm by a tetraplegic subject

with seven [Collinger et al., 2013], and then ten [Wodlinger et al., 2014], simultaneously

decoded degrees-of-freedom at the University of Pittsburgh.

A number of achievements have been made in recent years, including the addition of

functional electrical stimulation (FES) to BCI systems to directly stimulate the user’s mus-

cles, restoring hand [Bouton et al., 2016] and arm [Ajiboye et al., 2017] control, and in-

creasingly high-performance communication BCIs with self-calibrating decoders [Jarosiewicz

et al., 2015, Pandarinath et al., 2017]. However, all of these systems have relied exclu-

sively on visual feedback. Able-bodied people rely heavily on somatosensation, and it has

long been suggested that BCI performance and usability will improve with the addition of

sensory feedback (e.g. [Abbott, 2006, Bensmaia and Miller, 2014, Lebedev and Nicolelis,

2006, Mussa-Ivaldi, 2003, Weber et al., 2012]).
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1.2 SOMATOSENSORY FEEDBACK

The “sense of touch,” or somatosensation, is actually a collection of several sensory modalities,

which allow us to detect many qualities associated with object interaction such as pressure,

vibration, texture, temperature, and wetness. The somatosensory system can be classified

by three functions, exteroceptive (perception of external stimuli), interoceptive (perception

of internal stimuli), and proprioceptive (perception of body position) [Abraira and Ginty,

2013]. Four recognized submodalities in the cutaneous somatosensory system include the

tactile, thermal, pain, and itch senses [McGlone and Reilly, 2010]. The tactile submodality

can be further subdivided into modalities such as perceptions of shape and texture, motion,

skin stretch, and vibration, which depend on several types of both rapidly adapting and

slowly adapting afferents. These peripheral afferents synapse in the cuneate nucleus of the

brainstem and the ventroposterior lateral (VPL) nucleus of the thalamus before projecting

to primary somatosensory cortex (S1) [Saal and Bensmaia, 2014], as illustrated in Figure 1.2.

Somatosensory feedback, and in particular the tactile and proprioceptive senses, are neces-

sary for fine motor control. A number of case studies have demonstrated the impairments

that occur with partial or complete loss of peripheral sensation.

Deafferented patients have exhibited a number of impairments due to their loss of periph-

eral somatosensation, including the inability to perform dexterous tasks such as buttoning

up their clothing or properly manipulating a pen. Such patients tend to grip objects with

excessive force in an attempt to avoid accidentally dropping them [Rothwell et al., 1982].

Without proprioception, people make errors in both the planning and execution of move-

ment plans, although visual feedback can be used to make corrections [Gordon et al., 1995].

It is not uncommon for such patients to require a wheelchair due to difficulty balancing,

and even with visual feedback, one patient reportedly performed 3–12 standard deviations

below normal for various tasks in a test of hand function [Forget and Lamarre, 1987]. These

impairments are not solely due to a loss of proprioception, as experiments in which local

anesthesia is applied to the fingers have demonstrated that a lack of cutaneous tactile input

impairs the ability to handle and manipulate objects [Johansson and Flanagan, 2009, Monzee

et al., 2003].
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Figure 1.2: Anatomy of the cutaneous tactile somatosensory system. Mechanoreceptors

in the skin transduce sensory information into afferent signals that propagate through the

spinal cord to the cuneate nucleus and thalamus before synapsing in primary somatosensory

cortex. Image credit: Kenzie Green.
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While BCIs have enabled paralyzed users to control robotic arms [Collinger et al., 2013,

Wodlinger et al., 2014] or even their own hands and arms in conjunction with an FES

system [Bouton et al., 2016, Ajiboye et al., 2017], these systems have only provided visual

feedback. One can thus draw parallels between BCI arm control and deafferented patients,

and expect an upper limit for BCI performance under visual feedback. While limb state can

be estimated visually without proprioception, the absence of tactile feedback is particularly

likely to impair skillful object manipulation. This problem is not unique to BCI; most

prosthetic limbs, particularly those that are myoelectric-controlled, provide limited or no

somatosensory feedback [Shannon, 1979]. The need for somatosensory feedback in prosthetic

limbs has been stated as early as 1951 [Wiener, 1951], and researchers have experimented

with various methods of incorporating artificial sensory feedback into prosthetic limbs for

decades.

By the late 1960s and 1970s, several researchers began evaluating the feasibility of using

sensorized prosthetics and surface electrical stimulation [Beeker et al., 1967, Rohland, 1975,

Shannon, 1979], vibrotactors [Alles, 1970, Carruthers and Pottinger, 1968], or even implanted

electrodes [Clippinger, 1973] and intraneural stimulation [Anani et al., 1977, Reswick et al.,

1975], to transduce feedback about grip pressure or limb state to the prosthesis wearer.

Despite such advances and continued research over many decades (e.g. [D’Anna et al.,

2017, D’Anna et al., 2018, Davis et al., 2016, Dhillon and Horch, 2005, Marasco et al.,

2011, Raspopovic et al., 2014, Schiefer et al., 2016, Tan et al., 2014]), as well as a preference

for better sensory feedback or less reliance on vision by amputees [Atkins et al., 1996, Biddiss

and Chau, 2007], artificial sensory feedback is still absent from clinically available prosthetic

limbs [Antfolk et al., 2013, D’Anna et al., 2017]. We are interested in restoring somatosensory

feedback for BCI users by stimulating in area 1 of primary somatosensory cortex, which is

on the surface of the postcentral gyrus in humans and receives input from tactile afferents.
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1.3 INTRACORTICAL MICROSTIMULATION

There is a long history of electrically stimulating the nervous system, dating back to early

experiments in 1791 by Luigi Galvani that first proposed the role of “animal electricity”

as a mechanism for nerves to generate muscle contraction in frogs [Piccolino, 1998], and a

self-experiment in the early 1800s by Alessandro Volta documenting a crude procedure for

electrically stimulating his own auditory system, generating a sound described as “a kind

of crackling, jerking, or bubbling as if some dough or thick material was boiling” [Eshraghi

et al., 2012]. In 1870, Fritsch and Hitzig were the first to apply direct electrical stimulation

to mammalian cortex and, according to Wilder Penfield, discovered that activation of the

frontal cortex generated contralateral movements [Penfield and Boldrey, 1937, Penfield and

Rasmussen, 1950]. In 1909, Harvey Cushing first demonstrated that sensations could be gen-

erated by electrically stimulating the human postcentral gyrus [Cushing, 1909], and several

decades later Wilder Penfield used electrical stimulation to map the surface of human cortex

during neurosurgery, leading to the discovery of the motor and sensory cortical homunculus

[Penfield and Boldrey, 1937, Penfield and Rasmussen, 1950].

The advent of penetrating microelectrodes in the mid-twentieth century (e.g. [Hubel,

1957, Renshaw et al., 1940]) eventually led to the use of microstimulation to activate small

regions of neural tissue by applying small currents in close proximity to neurons. Intracor-

tical microstimulation (ICMS) was first used by Hiroshi Asanuma to study topography and

activation thresholds in the motor cortex of cats [Asanuma and Sakata, 1967, Stoney et al.,

1968], and has since been used in numerous experimental and clinical studies.

1.3.1 Mechanism of ICMS

In the 1950s, Hodgkin and Huxley performed a series of experiments with a giant squid

axon and developed a series of equations modeling the flow of ionic currents across the cell

membrane that generate action potentials [Hodgkin and Huxley, 1952]. The Hodgkin-Huxley

model revealed the relationship between the voltage across the neural cell membrane and the

permeability of sodium and potassium ions through the membrane, leading to the discovery
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of voltage-gated ion channels in neural cell membranes. Voltage-gated sodium channels open

when the membrane potential is depolarized past a voltage threshold, allowing a rapid influx

of sodium ions, followed by an outflux of potassium ions through voltage-gated potassium

channels. The flow of ions permitted by these voltage-gated channels result in the action

potential current. Electrical stimulation activates neurons by artificially perturbing the

extracellular voltage around the cell to depolarize the cell, opening voltage-gated sodium

channels and triggering an action potential. While anodal current will cause cells to be

locally hyperpolarized, regions further away from the electrode can depolarize with sufficient

current [Ranck, 1981]. This behavior is characterized by Rattay’s activating function, as

demonstrated in Figure 1.3, from [Rattay, 1987]. In either case, current is a more informative

parameter for predicting neural recruitment than electrode voltage, as large, time-varying

voltage drops occur at the electrode-tissue interface, resulting in a non-linear and non-time-

invariant relationship between electrode-voltage and tissue voltage. [Ranck, 1975, Ranck,

1981].

It is generally understood that microstimulation primarily activates axons, and not cell

bodies, in close proximity of the electrode, a finding with evidence from both modelling

[Rattay, 1999] and in vivo experimentation [Histed et al., 2009, Histed et al., 2013]. It is

often assumed that the relationship between stimulus amplitude and threshold for activation

is proportional to the square-distance between the neuron and electrode tip [Tehovnik, 1996],

as the depolarizing effect of stimulation is thought to activate a spherical volume of neurons

around the electrode tip that is a function of stimulation amplitude. However, Ranck noted

in 1975 that this assumption is overly simplistic, as many factors affect what is stimulated

by an electrode, including the electrical properties and anatomy of neurons, distance and

orientation of neural elements relative to the electrode, tissue resistivities, pattern of current

flow between the cathode(s) and anode(s), and current waveform (shape, duration, and

magnitude) [Ranck, 1975]. Histed et al. used two-photon calcium imaging to demonstrate

that ICMS resulted in a sparse activation of neurons both near and far from the electrode,

and increases in amplitude resulted in increased density, but not volume, of activated neurons

[Histed et al., 2009]. However, this finding is not necessarily contradictory with the theory

of stimulation current-distance relationships, as increases in amplitude may result in larger
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Figure 1.3: Activating function for a non-myelinated axon. (a) Shows the change in extra-

cellular voltage in response to monopolar anodal stimulation, while the activating function

for anodal stimulation is shown in (b). The equivalent function for cathodal stimulation

is shown in (c). Shaded regions indicate axon segments that are depolarized, and white

regions are hyperpolarized. (d) indicates the electrode position and the 70∘ angle between

depolarized and hyperpolarized regions. Figure reproduced with permission from [Rattay,

1987].
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spheres of activated axons, resulting in antidromic action potentials activating cell bodies

widely distributed around the electrode.

1.3.2 Effects of ICMS on behavior

The effect of ICMS on perception has been difficult to study in animal models, because

we cannot simply ask an animal what they feel. Regardless, a number of studies have

demonstrated that microstimulation can bias behavior and animals can consciously detect

and react to microstimulation.

In 1965, Robert Doty showed that monkeys could be trained to press a lever in response

to stimulation from depth electrodes with diameters ranging from 160–250 𝜇m [Doty, 1965].

In 1980, John Bartlett and Robert Doty extended this work, demonstrating that monkeys

could be trained to detect and respond to microstimulation in striate cortex with currents

as low as 2–4 𝜇A [Bartlett and Doty, 1980]. These experiments required training for the

monkey to respond to the stimulus, and thus it is difficult to make inferences about what

the monkeys perceived in response to cortical stimulation. Later experiments attempted to

address this limitation by introducing ICMS in tasks without explicitly training monkeys to

respond to microstimulation.

In 1990, Daniel Salzman, Ken Britten and Bill Newsome demonstrated that microstim-

ulation in visual area MT biased the perception of motion direction in monkeys trained on

a motion direction discrimination task [Salzman et al., 1990]. Several years later, Ranulfo

Romo demonstrated that monkeys could respond directly to ICMS of primary somatosen-

sory cortex by training monkeys in a flutter frequency discrimination task. When the second

mechanical stimulus was replaced with ICMS in area 3b of S1, monkeys could correctly dis-

criminate between the frequencies of mechanical and intracortical stimulation [Romo et al.,

1998], and the monkeys could continue performing the task if both stimuli were replaced with

ICMS trains [Romo et al., 2000]. A similar experimental design was used to test the behavior

of rats in response to ICMS of primary auditory cortex in a frequency discrimination task.

Much like Romo’s result, the rats were able to discriminate ICMS trains interleaved with

auditory stimuli without additional training, and the ICMS responses were similar to those
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of auditory stimuli with the preferred frequency of neurons near the electrode [Otto et al.,

2005a, Otto et al., 2005b]. While results of animal experiments suggest that ICMS stimuli

are nearly indistinguishable from natural stimuli, it is impossible to ask animals what they

perceive in response to ICMS. Human studies are required to fully understand the sensations

evoked by ICMS.

ICMS was first tested in humans in the 1990s, in an attempt to develop a visual prosthesis.

In 1990, Martin Bak et al. tested the use of ICMS in human visual cortex to generate

phosphenes in three epileptic patients [Bak et al., 1990]. This study was followed-up by

chronically implanting 38 microelectrodes in a blind woman for 4 months [Schmidt et al.,

1996]. Phosphenes were reliably generated throughout the 4-month period with detection

thresholds as low as 1.9 𝜇A and brightness was modulated by amplitude, frequency, or

pulse-width. Furthermore, the phosphenes were more focal than those generated in previous

studies ([Brindley and Lewin, 1968, Dobelle et al., 1974]) using macroelectrodes on the

cortical surface.

More recently, there has been much interest in using ICMS to provide somatosensory feed-

back for brain-computer interface control. Nathan Fitzsimmons demonstrated that monkeys

could be cued to make reaches based on the spatiotemporal pattern of microstimulation in

S1 [Fitzsimmons et al., 2007]. However, unlike Romo’s experiment the monkeys required

training to perform this task. In a similar experiment, Brian London trained monkeys to

perform a two-target reach task and demonstrated that monkeys could distinguish between

two frequencies of ICMS in area 3a of S1 used to cue the target direction [London et al.,

2008]. Joseph O’Doherty later adapted this task to BCI, and demonstrated that ICMS de-

tection could be used to discriminate between two targets in a BCI-cursor task, although

this also required explicit training for the monkey to be successful [O’Doherty et al., 2009].

In a follow-up experiment, O’Doherty also demonstrated that monkeys could be trained to

interpret ICMS of S1 as feedback that the cursor was in the target region, rather than as a

cue for target direction, and discriminate between frequencies [O’Doherty et al., 2011]. A

comparable experiment was repeated by Christian Klaes, in which a monkey was trained to

discriminate between two targets using a virtual arm controlled by modulating multi-unit

activity in posterior parietal cortex (PPC) [Klaes et al., 2014].
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While each of these experiments demonstrated that a closed-loop BCI is possible, the sen-

sory components of the tasks primarily required detection of the stimulation. Maria Dadar-

lat, Joseph O’Doherty, and Philip Sabes later demonstrated that with significant training,

monkeys could learn to interpret multi-channel microstimulation continuously encoding a

movement vector as feedback to complete reaches to a target [Dadarlat et al., 2014]. While

the authors made no attempt to provide naturalistic percepts, they did demonstrate that

ICMS could be used as a continuous feedback source to complete motor tasks. Sliman Bens-

maia’s group used an experimental design similar to that of [Romo et al., 2000] to show

that monkeys trained to perform pressure and location discrimination tasks with mechan-

ical stimuli could continue performing the task in response to ICMS of areas 1 and 3b of

S1, without any additional training [Tabot et al., 2013]. Furthermore, they tested the use

of a sensory prosthetic by applying mechanical stimuli to a sensorized robotic finger, and

mapped sensor data to ICMS pulse trains. Monkeys were able to continue performing the

discrimination tasks when stimuli were applied to the robotic finger.

These studies suggest that ICMS is a promising method for developing a sensory pros-

thetic in visual, auditory, or somatosensory cortex. In a study immediately preceding the

work presented in this thesis, Sharlene Flesher et al. demonstrated that ICMS of human

primary somatosensory cortex can produce focal, graded tactile percepts, suggesting that

ICMS can be used to provide artificial somatosensory feedback as part of a closed-loop

neuroprosthetic [Flesher et al., 2016].

1.3.3 Safety of ICMS

In order for ICMS to be feasible for use in a sensory prosthetic, chronic microstimulation

must be safe and not result in tissue or electrode damage. Stimulation has the potential to

permanently damage neural tissue, evident by the fact that electrolytic lesions have been

used for many years as a method of destroying regions of the brain to study the impact

on behavior [Horsley and Clarke, 1908, Sweet and Mark, 1953] (typically with larger DC

currents of at least 1 mA) or to mark electrode locations [Asanuma, 1981, Hubel, 1959] with

sustained DC currents as low as 5 𝜇A. Hiroshi Asanuma noted in 1975 that monophasic
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pulse trains began producing noxious effects at 40 𝜇A, and currents of 60 𝜇A resulted in

bubbling at the electrode tip and observable tissue damage [Asanuma, 1981].

In 1977, John Bartlett investigated the safety of ICMS and determined that neuronal

damage occurs due to electrode polarization and hydrolysis, and detection thresholds in-

creased when electrodes were not discharged between pulses [Tehovnik, 1996]. Brummer

and Turner had previously presented an overview in 1975 of the electrochemical reactions

that occur when stimulating through a platinum microelectrode, including the irreversible

hydrolysis reaction that occurs with sufficiently high voltage, releasing oxygen and hydrogen

gas from water, and changing local pH by generating hydrogen ions [Doty and Bartlett,

1981]. In Bartlett’s study, neural damage and threshold increases were avoided by using

charge-balanced biphasic pulses to avoid polarizing the electrode [Tehovnik, 1996], a method

first used in 1955 and originally termed the “Lilly” waveform [Doty and Bartlett, 1981]. This

method can keep the tissue-electrode interface within the “water window,” the potential

range in which hydrolysis of water does not occur [Merrill et al., 2005].

Using larger electrodes, Vernon Rowland had previously found in 1960 that charge-

balanced pulses with less than 20,000 nC/phase did not produce lesions in cat cortex, but

pulses with greater than 25,000 nC/phase generated lesions with sizes linearly proportional

to charge per phase, and not related to frequency or waveform shape (including interphase

period) [Tehovnik, 1996]. In fact, tissue damage in response to stimulation is explained by

an interaction between charge density and charge per phase [McCreery et al., 1990]. Charge

density increases with reduced electrode size, and thus microelectrodes can cause damage

with much lower levels of charge [Tehovnik, 1996]. More recently, sputtered iridium oxide

film (SIROF) microelectrodes have been developed that are capable of delivering current

with lower voltages than electrodes made of high-impedance materials such as platinum

[Negi et al., 2010], and can be reliably used for chronic microstimulation without exceeding

water window limits or degrading recording quality [Kane et al., 2013, Torab et al., 2011]. In

a nonhuman primate study designed to evaluate safe ICMS procedures for the human work

conducted by our lab and presented in this thesis, Alexander Rajan et al. demonstrated

that chronic ICMS, with biphasic pulses of up to 100 𝜇A at 300 Hz with a 50% duty cycle

(5 seconds on:5 seconds off), and delivered through SIROF microelectrode arrays, did not
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impair motor control or result in tissue damage beyond what would be expected for a non-

stimulated array [Rajan et al., 2015]. The work presented in this thesis was subject to safety

limits based on this study. Biphasic pulses were limited to 100 𝜇A in amplitude and could

not be stimulated for more than 1500 pulses within a 30 second window (based on a 50%

duty cycle at 100 Hz). A complete list of safety parameters is presented in Appendix B.

1.3.4 Stimulation artifacts

Despite the small currents used for microstimulation, large voltages are generated due to

the relatively high impedance of microelectrodes and the electrode-tissue interface. These

large voltages present as large artifacts in microelectrode recordings that are several orders of

magnitude larger than extracellular spike potentials (See Figure 2.4). Stimulation artifacts

mask spikes, often saturate recording amplifiers, and can last longer than the actual stimulus

pulse. Artifacts have been noted as an obstacle to simultaneous recording and stimulation

since the earliest days of ICMS [Stoney et al., 1968], and a variety of methods have been

presented in an attempt to reduce the impact of artifacts with varying degrees of success.

Stimulation artifacts appear in recordings due to conduction of the stimulus current

through tissue, and capacitive crosstalk between stimulating and recording leads [Wagenaar

and Potter, 2002, Grumet, 1999]. Furthermore, high-gain amplifiers are likely to saturate

in response to stimulation, producing nonlinear output. Amplifiers also typically include

bandpass filters for noise reduction and anti-aliasing. Both saturation and filtering can

extend the artifact duration, in some cases up to 100 ms [Wagenaar and Potter, 2002].

Electrode geometry can have a notable impact on the severity of stimulus artifacts, and

bipolar stimulation has often been used in an attempt to reduce artifacts [Ranck, 1981].

However, bipolar stimulation is less understood and may not follow the current-distance

relationships of monopolar stimulation. Depending on electrode and fiber geometry, axons

may be oriented orthogonally to the voltage gradient and fail to activate, or a fiber depolar-

ized and activated by a cathode may be hyperpolarized by the anode, blocking the action

potential from propagation [Ranck, 1975, Ranck, 1981]. Many techniques have been pro-

posed to reduce or eliminate artifacts during monopolar stimulation, such as sample-and-hold
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[Freeman, 1971] or template subtraction [Limnuson et al., 2014, McGill et al., 1982], but all

methods have unique limitations and issues with generalizability. Our goals necessitate a

robust method to record spikes and reject artifacts in real-time while applying monophasic

ICMS in an adjacent area of cortex, without making significant changes to existing hardware,

which has been cleared for human use by the U.S. Food and Drug Administration (FDA).

Additional background on stimulation artifacts is presented in Chapter 2, followed by my

solution to the problem.

1.4 RESPONSE LATENCY OF SENSORY FEEDBACK

In order for artificial sensory feedback in a prosthetic and brain-computer interface to be

useful, the user must be able to interpret and make use of encoded information in a timely

manner. For example, if a prosthetic user begins to apply excessive force on a breakable

object such as an egg, the user must receive feedback quickly enough to react and loosen

their grip before breaking the object. Alternatively, if an object begins to slip out of their

hand, the user must increase grip force before the object is dropped. Vision is not necessarily

perceived quickly enough to correct for such perturbations, as deafferented patients struggle

to maintain a stable grasp even while observing their hand [Rothwell et al., 1982].

The need for a fast rate of information transfer in feedback for prosthetics was identified

many decades ago (e.g. [Carruthers and Pottinger, 1968]), but there has been limited work

investigating the timing criteria that must be met for a feedback method to be useful. In

addition to the need for providing useful information in a timely manner in order to improve

performance, evidence suggests that feedback must be delivered quickly to facilitate embod-

iment [Tabot et al., 2015]. The rubber hand illusion is a phenomenon that occurs when

a person receives tactile stimulation on their unseen hand while simultaneously observing

stimulation applied to a rubber hand. If the visual and tactile stimuli are applied simulta-

neously, the person is likely to feel as though the rubber hand is part of their own body,

but the illusion typically fails if the tactile stimulation is delayed with respect to the visual

stimulation by more than 300 ms [Shimada et al., 2009].
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Sensory feedback is often used in unconscious mechanisms such as reflexes. While cortical

stimulation cannot replicate the reflexes that occur in the spinal cord or brainstem, there

may be long-loop reflex circuits in cortex that could potentially be influenced by stimulation

[Weber et al., 2012]. For example, cutaneous feedback has been shown to contribute to

reflex-like activity in motor cortex in response to object slip perturbations [Picard and Smith,

1992]. While the unconscious use of feedback should be a goal for sensory prosthetics [Antfolk

et al., 2013], it is likely that feedback will need to be consciously perceived and evaluated to

inform a change in motor plan, and these events must happen quickly in order to respond

to perturbations.

While we might expect response times to ICMS, which bypasses conduction through

afferent circuits, to be faster than responses to peripheral stimuli, there are conflicting reports

on the response times to ICMS. Ranulfo Romo noted that monkeys receiving ICMS in area 3b

of somatosensory cortex exhibited reaction times that were indistinguishable from mechanical

stimuli in a discrimination task [Romo et al., 2000]. Kevin Otto found that response latency

to ICMS of auditory cortex in rats was significantly faster than to auditory stimuli in a similar

discrimination task [Otto et al., 2005a, Otto et al., 2005b]. On the other hand, slow reaction

times to ICMS were documented in a blind human patient implanted with microelectrodes

in visual cortex [Schmidt et al., 1996], although the authors noted the known relationship

between reaction time and phosphene size and brightness [Kohfeld, 1971].

In an attempt to directly address this issue, Jason Godlove et al. compared the use of

visual, vibrotractile, and ICMS cues in a redirect reaching task [Godlove et al., 2014]. The

authors were surprised to find that a monkey responded to ICMS slower than to visual or

vibrotactile stimulation. The authors had initially hypothesized that response time to ICMS

would be faster than to tactile stimulation because directly stimulating the cortex bypasses

afferent pathways. For humans, conduction delays from peripheral afferents to second-order

neurons in the cuneate nucleus are on the order of 14–28 ms [Antfolk et al., 2013, Johansson

and Flanagan, 2009], so one might expect reaction times to cortical stimulation to be faster

by a similar margin. The authors suggested several explanations for why they observed slow

reaction times, such as the fact that they may have activated cortex with unnatural patterns

of activity that needed to be refined and amplified by downstream processing, whereas such
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amplification and refinement would normally occur in upstream processes, such as in the

thalamus [Godlove et al., 2014]. It is also worth emphasizing that these findings were not

repeated in more than one animal.

The conflicting reports of response times to ICMS in the literature motivates my study in

Chapter 3, in which my goals are to characterize the reaction times to ICMS of somatosensory

cortex for a human participant, and compare against reaction times to visual and peripheral

tactile stimuli.

1.5 MOTIVATION AND GOALS FOR CLOSED-LOOP BCI

DEVELOPMENT

1.5.1 Current state of field

Prior to the start of the work presented in this thesis, many advancements had been made

in the field of BCI, such as ten degree-of-freedom control of a robotic limb by a paralyzed

individual [Wodlinger et al., 2014]. However, limited progress had been made to incorporate

sensory feedback into such a system, despite the acknowledgement that nonvisual feedback

was necessary [Weber et al., 2012]. A number of animal experiments demonstrated that

trains of intracortical microstimulation in somatosensory cortex could be detected and dis-

criminated, as summarized in Section 1.3.2, but the use of ICMS in humans was limited to

two studies evaluating the feasibility of a visual prosthesis [Bak et al., 1990, Schmidt et al.,

1996]. Concurrent with the start of this work, our lab demonstrated for the first time that

ICMS of human somatosensory cortex can evoke focal tactile sensations that are graded by

amplitude [Flesher et al., 2016]. This was an encouraging result that renewed optimism

in the feasibility of a closed-loop BCI system. However, several unknowns remained to be

solved.
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1.5.2 Elimination of stimulus artifact

A well-known challenge to simultaneously recording and stimulating in cortex is the stimulus

artifact that corrupts recordings during and after each stimulus pulse, as described in Sec-

tion 1.3.4. While many techniques have been described to reduce or eliminate stimulation

artifacts, it was unclear if any of these techniques would be applicable to the requirements

of our system. Our lab was granted an Investigational Device Exemption by the U.S. Food

and Drug Administration (FDA), which required that we use clinically approved, safe hard-

ware without modification. Thus, we needed to implement a robust method for real-time

artifact rejection that was compatible with our FDA-cleared hardware. Our design goals

were to implement a simple, robust method to record and stimulate in adjacent regions

of cortex. We desired a method that was robust to amplifier saturation and allowed for

recording as soon as 1 ms after each stimulus pulse. We also wished to avoid substantial

changes to our clinical BCI system, particularly hardware modifications that would require

additional review by the FDA. Finally, the primary goal was to implement an artifact rejec-

tion method effective enough to allow for multi-channel ICMS during BCI control without

any degradation in performance. I have implemented such a method by applying two simple

modifications to our system, which is described in Chapter 2. Furthermore, I validated the

method in Section 2.3.5 by demonstrating that skillful BCI performance is maintained during

multi-channel ICMS with artifact rejection in place.

1.5.3 Characterization of ICMS reaction times

A critical unknown is whether the sensations elicited by ICMS can be interpreted and used

effectively to improve motor control. This multi-faceted problem is beyond the scope of this

thesis, but it can be broken down into smaller components. One critical issue is the latency

between stimulus onset and when a user is able to respond to the feedback. This latency

is likely task-dependent, but conflicting reports exist in literature, including a study that

suggested that response time to ICMS was slower than either visual or vibrotactile stimuli

[Godlove et al., 2014]. This finding was troublesome, because if a user cannot perceive and

respond to a feedback signal quickly enough, the signal will not be useful for influencing
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motor control. I chose to investigate this issue by characterizing the simple reaction time to

single-channel ICMS of somatosensory cortex in a human BCI participant, as summarized

in Chapter 3. I compared reaction times to ICMS with reaction times to visual stimulation

and electrical stimulation on the hand, in both the BCI participant and able-bodied control

subjects, and found that ICMS reaction times were similar, and perhaps faster, than reaction

times to peripheral stimuli.

1.5.4 Impact and future work

The work presented in this thesis provide evidence in favor of the viability of using ICMS for

feedback in closed-loop BCI. ICMS can be used without degrading the performance of BCI

decoders, and humans can respond to ICMS with reactions times comparable to peripheral

sensory input. This will enable us to study how to effectively transmit sensory information

to supplement visual feedback with feedback variables such as object contact and applied

force. The use of ICMS feedback will hopefully allow for dexterous object manipulation

beyond what is currently possible with state-of-the-art intracortical BCI systems.
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2.0 ARTIFACT-FREE RECORDING DURING HUMAN

INTRACORTICAL MICROSTIMULATION

The contents of this chapter are in preparation for submission to the Journal of Neural En-

gineering by: Jeffrey M. Weiss, Sharlene N. Flesher, Robert Franklin, Jennifer L. Collinger,

and Robert A. Gaunt.

In this chapter, I describe and validate a simple and robust method for removing stimu-

lation artifact from microelectrode recordings in real-time and using FDA-cleared hardware

for use in a closed-loop intracortical brain computer interface.

2.1 INTRODUCTION

A major goal of neuroprosthetic research is to restore motor function to individuals with

upper extremity paralysis. Recent work has shown that it is possible to achieve high degree-

of-freedom control of a robotic arm using a brain-computer interface (BCI) [Collinger et al.,

2013, Wodlinger et al., 2014]. While performing simple object interactions with a BCI-

controlled limb has been successful, dexterous control remains a significant challenge. One

limitation of current BCI systems is the absence of somatosensory feedback. It is known

that humans require somatosensory feedback to perform dexterous object manipulation [Jo-

hansson et al., 1992, Monzee et al., 2003], but in general BCI systems only provide visual

feedback. We have recently shown that it is possible to generate graded tactile percepts

using intracortical microstimulation (ICMS) [Flesher et al., 2016], suggesting that micros-

timulation has potential as a source of somatosensory feedback in a closed-loop BCI system.

Sensors on a BCI-controlled end-effector can be used to modulate stimulus parameters. By
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supplementing visual feedback with ICMS tactile feedback, it may be possible to perform

dexterous tasks using a BCI that were previously not feasible.

While the concept of incorporating microstimulation into a BCI system is not new [Ab-

bott, 2006, Bensmaia and Miller, 2014, Fitzsimmons et al., 2007, Lebedev and Nicolelis,

2006, Mussa-Ivaldi, 2003, Venkatraman et al., 2009, Weber et al., 2012], progress in this area

has been relatively slow. A significant technical hurdle is the ability to record spikes while

stimulating in an adjacent brain area. Microstimulation generates voltages orders of mag-

nitude greater than the microvolt-scale extracellular spike potentials produced by neurons.

When filtered, these large, brief stimulus pulses can generate artifacts several milliseconds

in duration. While the onset timing of primary stimulus artifacts is precisely known, the

secondary artifacts occurring after each stimulus pulse are often unpredictable. The long

duration and unpredictability of stimulus artifacts present difficulty in reliably masking out

artifacts and detecting neural spikes. A closed-loop BCI system must have a robust method

for artifact rejection to decode uninterrupted motor commands during ICMS.

A number of artifact rejection solutions have been proposed previously, with varying

degrees of simplicity and generalizability. One proposed solution is to alternate recording

and stimulus trains in time, e.g. in 50 ms intervals. This method was used to instruct

target selection via ICMS in a two-dimensional BCI control task [O’Doherty et al., 2011].

This approach may not be optimal, as only 50% of neural data is preserved and stimulation

can only occur in bursts, rather than in a continuous pulse train. A better solution would

allow stimulation to occur continuously with minimal neural data loss. Alternative solutions

for artifact rejection include more sophisticated signal processing techniques such as various

methods of template subtraction or modeling [Klaes et al., 2014, Limnuson et al., 2014,

Mena et al., 2017, O’Shea and Shenoy, 2018, Wagenaar and Potter, 2002], regression-based

referencing [Young et al., 2018], or a combination of bipolar stimulation with adaptive-

filtering [O’Doherty and Sabes, 2016]. Some of these alternative solutions allow spikes to

be detected during the stimulus, but only in experiments where the amplifiers are never

saturated, and sometimes requiring noncausal processing, resulting in additional challenges

to rejecting artifacts in real-time [O’Shea and Shenoy, 2018, Young et al., 2018]. Many

of these methods also require a training dataset to generate stimulus artifact templates or
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model parameters. We sought a simple, generalizable method for artifact rejection that did

not require training and could be implemented in real-time using existing hardware.

This work was conducted as part of a larger brain-computer interface (BCI) study with

three main goals: 1) demonstrate high degree-of-freedom BCI arm control in tetraplegic sub-

jects [Collinger et al., 2013, Wodlinger et al., 2014], 2) demonstrate the use of intracortical

microsimulation (ICMS) to provide somatosensation in an SCI subject [Flesher et al., 2016],

and 3) demonstrate the use of ICMS-provided feedback to improve BCI control. The final

goal of closed-loop BCI control necessitates a bidirectional electrophysiology system capable

of recording neural activity in motor cortex while simultaneously stimulating in somatosen-

sory cortex. We propose a simple yet robust solution to artifact rejection that minimizes

neural data loss while using existing FDA-approved clinical hardware and avoiding compli-

cated signal processing techniques that may fail to generalize.

2.2 METHODS

2.2.1 Array implantation

A 28-year old male participant1 with spinal cord injury enrolled in the study. The partic-

ipant sustained a spinal cord injury 10 years prior to implantation and presented with a

C5 motor/C6 sensory ASIA B spinal cord injury. Presurgical MEG imaging, as described

previously [Flesher et al., 2016], was used to identify the hand areas of primary motor cortex

(M1) and area 1 of primary somatosensory cortex (S1). Two cortical recording and stimu-

lating (CRS) microelectrode array systems (Blackrock Microsystems, Salt Lake City, Utah)

were implanted in the participant’s left cortex, as shown in Figure 2.1. Each CRS array

system consisted of an 88-channel platinum Utah array and a 32-channel sputtered iridium

oxide film (SIROF) Utah array wired to a Neuroport pedestal connector. The two platinum

arrays were implanted in the hand and shoulder areas of left motor cortex, while the two

SIROF arrays were implanted in the hand area of left primary somatosensory cortex. The

motor cortex arrays were used for recording, while the somatosensory arrays were used for
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Figure 2.1: Location of implanted electrode arrays marked on pre-surgical anatomical MR

image. Blue boxes indicate location of recording (M1) arrays and red boxes indicate location

of stimulating (S1) arrays. Array locations were determined by intraoperative photos and

postsurgical CT imaging.

intracortical microstimulation. The goals of our study do not necessitate simultaneously

stimulating and recording from the same array.

The study was performed under an Investigational Device Exemption granted by the

U.S. Food and Drug Administration. The study received approval from the Institutional

Review Boards at the University of Pittsburgh and the Space and Naval Warfare Systems

Center Pacific and is registered at ClinicalTrials.gov (NCT01894802).

2.2.2 Bidirectional electrophysiology system

Neural recording was accomplished using two Neuroport clinical electrophysiology systems,

each consisting of a Neural Signal Processor (NSP) and Front-End Amplifier (Blackrock Mi-

crosystems, Salt Lake City, UT). The amplifiers have a sample-and-hold feature, allowing the

recordings to be “blanked” during stimulation pulses. A TTL input can gate the amplifier’s

analog-to-digital converter (ADC), causing it to stop sampling the analog input signal and
1In Chapter 3, this subject is referred to as CRS2.
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instead hold the last-sampled value on each channel as output. Spike extraction occurs on

the Neural Signal Processor by applying a digital high-pass filter and thresholding for spikes.

Intracortical microstimulation (ICMS) was delivered using the Cerestim R96 micros-

timulator (Blackrock Microsystems). The stimulator’s sync output produces a TTL pulse

beginning 60 microseconds before each stimulus pulse. A monostable multivibrator (Texas

Instruments CD74HC123, Dallas, TX) was used to generate a TTL pulse of an arbitrary du-

ration set by a potentiometer and triggered by the stimulator’s sync signal. This TTL pulse

was used to blank the recording during stimulation pulses by gating the sample-and-hold

feature of the amplifiers. A timing diagram of this process is shown in Figure 2.2.

The Cerestim R96 and Neural Signal Processors interfaced with a BCI software suite

written in C++ and Matlab. This software was configured to reject spikes caused by tran-

sient threshold crossings at the offset of the sample-and-hold blanking period, as a result of

discontinuous sampling of the analog signal. The complete bidirectional electrophysiology

system is shown in Figure 2.3.

The system presented above has two primary components that can be tuned to reject

stimulation artifacts, while preserving neural data. First, the digital filter used for spike

extraction can be tuned to minimize the effect of stimulation artifacts. Second, the raw

signals can be blanked during stimulation for an arbitrary duration. This blanking duration

can be tuned to balance removing the artifact from the raw signal, while also preserving

neural data. These features were tuned using raw voltage recordings collected from electrodes

in motor cortex during intracortical microstimulation of somatosensory cortex.

2.2.3 Open-loop recording experiments

Electrode recordings from both M1 arrays were collected during open-loop intracortical mi-

crostimulation trials for the purpose of tuning and validating the artifact rejection system.

Analog voltage recordings were band-pass filtered (0.3–7500 Hz) and digitized at 30,000 sam-

ples per second. Signal blanking and digital filters were not applied online. This allowed for

the artifact rejection and spike detection features to be implemented and tuned offline on

the raw, artifact-contaminated signals.
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Figure 2.2: Signal blanking timing diagram. Each biphasic stimulus pulse consisted of a

0.2 ms cathodal period, followed by a 0.1 ms interphase period and a 0.4 ms anodal period.

The stimulator outputs a TTL sync signal beginning 0.06 ms before the stimulus pulse and

ending at 1000/𝐹 ms, where 𝐹 is the commanded stimulation frequency. The rising edge

of the sync signal triggered the blanking circuit to output a TTL blanking signal of a fixed,

experimenter-defined duration. This blanking signal triggered the amplifier’s sample-and-

hold feature, resulting in each electrode recording to maintain a constant value from 0.06 ms

prior to the stimulus pulse until the falling edge of the blanking signal.
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Figure 2.3: Closed-loop system diagram. Each recording array (blue) records neural signals,

which are digitized, filtered, and decoded to control an end effector. Sensor data from the end

effector are transformed to generate stimulation commands, which are delivered through the

stimulating arrays (red). The recording signal is blanked during stimulus pulses to remove

the majority of the artifact before filtering.

Intracortical microstimulation consisted of trains of charge-balanced, cathodic-leading

asynchronous pulses delivered at 100 Hz. Each pulse had a 200 𝜇s cathodal phase, 100 𝜇s

interphase, and 400 𝜇s anodal phase. Cathodal amplitudes ranged from 2–100 𝜇A; anodal

amplitudes were always half of the cathodal amplitude. Up to twelve electrodes could be

simultaneously stimulated, with a maximum total charge per phase of 144 nC.

2.2.4 Digital filter analysis

Digital filters affect both artifacts caused by ICMS as well as the neural spike signal of

interest. In a typical neural recording setup, a digital fourth-order Butterworth filter with

a high-pass cutoff frequency of 250–300 Hz is used to remove low frequency components

of the recorded signal [Fraser et al., 2009, Simeral et al., 2011]. To study the effects of

cut-off frequency on the ability to record spikes, the band-pass filter analysis from [Lempka

et al., 2011] was replicated on data recorded from M1 in the absence of stimulation. Raw

voltage signals were initially filtered with a fourth-order high-pass Butterworth filter with

a 250 Hz cutoff frequency, as in [Collinger et al., 2013], and thresholded at −4.5 times the

root-mean-square standard deviation to extract spike snippets. The spike snippets were then
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sorted and spike times were saved for each single-unit. The raw voltage signals were then re-

filtered with a second-order band-pass Butterworth filter with varying cutoff frequencies, as

in [Lempka et al., 2011], and sorted snippets were extracted using the previously determined

spike times. The mean peak-to-peak voltage, noise estimate, and signal-to-noise ratio (SNR)

was calculated for each unit and filter setting. The noise estimate was calculated as the

standard deviation of the first five samples of each snippet, which is prior to the start of a

typical action potential. The SNR was calculated as the mean peak-to-peak voltage divided

by two times the noise estimate. This analysis was then repeated with first-order high-pass

Butterworth filters.

2.2.5 Closed-loop BCI system

The bidirectional electrophysiology system described in Section 2.2.3 was used to develop

a closed-loop BCI system, expanding on the high degree-of-freedom BCI system presented

previously [Collinger et al., 2013, Wodlinger et al., 2014].

2.2.5.1 Decoding The filtered spike signal described above was thresholded at −4.5

times the root-mean-square (RMS) voltage value to detect spikes. Digital filters and thresh-

olds were applied in real-time on the Neural Signal Processors (Blackrock Microsystems).

No spike sorting was applied; threshold crossings on each recording channel were treated

as a single-unit. Firing rates were estimated using 20 ms bins of spike counts, which were

then smoothed using an exponential function with a 440 ms sliding window. The two-phase

calibration procedure previously described [Collinger et al., 2013] was used to train an opti-

mal linear estimator (OLE) decoder to control the Modular Prosthetic Limb (Johns Hopkins

University Applied Physics Lab). The resulting decoder predicts endpoint and grasp velocity

by relating the firing rate, 𝑓 , of each unit to five-dimensional velocity, 𝑣, using equation 2.1.

𝑓 = 𝑏0 + 𝑏𝑥𝑣𝑥 + 𝑏𝑦𝑣𝑦 + 𝑏𝑧𝑣𝑧 + 𝑏𝑟𝑣𝑟 + 𝑏𝑔𝑣𝑔 (2.1)

The five-dimensional velocity includes 𝑥, 𝑦, and 𝑧 endpoint translation components, an

endpoint roll orientation component, 𝑟, and a grasp component, 𝑔. Optimal linear estimation
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with ridge regression was used to determine decoding weights from each b coefficient to

predict arm kinematics from the recorded firing rates. During testing, firing rates were scaled

using equation 2.2 prior to decoding to account for global changes in firing rate [Downey

et al., 2017]. Firing rates were multiplied by the mean firing rate during training divided by

the mean firing rate over the previous 300 ms.

𝑓scaled = 𝑓 · mean(𝑓training)

mean(𝑓300 ms)
(2.2)

2.2.5.2 Sensor-stimulus transform To generate stimulus commands, torque sensors

on the digits of the Modular Prosthetic Limb were mapped to electrodes in S1, as previ-

ously described [Flesher et al., 2016]. Torque sensor values, 𝑇 , were linearly converted to

stimulation amplitude, 𝐴, using equation 2.3, such that electrodes began stimulating at a

minimum amplitude, 𝐴min, when the corresponding sensor value crossed a defined threshold,

𝑇min, and increased linearly in amplitude with increasing torque until a maximum value,

𝐴max, was reached at a defined maximum torque value, 𝑇max. Stimulus frequency was fixed

at 100 Hz. Stimulus pulses were charge-balanced and asymmetric, with a 200 𝜇s cathodic

phase, followed by a 100 𝜇s interphase period and a 400 𝜇s anodic phase.

𝐴 =

(︂
𝑇 − 𝑇min

𝑇max − 𝑇min

)︂
(𝐴max − 𝐴min) + 𝐴min ; 𝑇min ≤ 𝑇 ≤ 𝑇max (2.3)

2.2.6 Object transfer task

The closed-loop system was evaluated using an object transfer task. The goal of this ex-

periment was to demonstrate that the artifact rejection features enable closed-loop BCI

performance that is functionally equivalent to BCI performance without stimulation. In

each session, a five DOF velocity decoder was trained as described in Section 2.2.5.1. The

decoder’s functional performance was then evaluated with an object transfer task, in which

the subject was required to use the Modular Prosthetic Limb to grasp a cylinder on the left

side of a table, pick it up, and transfer it to the right side of the table. A 20 cm wide region

in the center of the table was indicated by two lines of tape. The subject was required to
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hold the object above this region while transporting it, rather than simply drag the object

across the surface of the table. If the object contacted the table at any point in this region,

the subject was required to bring the object back to the left to reset the transfer. The task

was scored based on the number of successful transfers in two minutes. On a given day of

testing, the system was configured with either a fourth-order Butterworth 250 Hz high-pass

spike filter, as used in previous studies, or a first-order Butterworth 750 Hz high-pass spike

filter. Filter settings and thresholds were fixed throughout each testing day. Within each

day, three task conditions were tested in a block design: no stimulation, stimulation with

artifact rejection, and stimulation without artifact rejection. Here, artifact rejection refers to

signal blanking and software rejection. In all cases, coincidence detection, a standard feature

of the Neural Signal Processor, was enabled to reject threshold crossings that occurred simul-

taneously on at least 45 channels. During task conditions with stimulation, eight electrodes

spanning both S1 stimulation arrays were mapped to the index finger torque sensor and

simultaneously amplitude-modulated using the sensor-stimulus transform in Equation 2.3.

2.3 RESULTS

2.3.1 Recordings during ICMS

The stimulation artifacts recorded in primary motor cortex during microstimulation of pri-

mary somatosensory cortex were typically on the scale of millivolts, and often saturated the

amplifier when exceeding eight millivolts. These artifacts were 1–2 orders of magnitude larger

than most extracellular potentials, such as those in Figure 2.4. Even in the case of amplifier

saturation, spikes were often observed in the raw voltage signal within one millisecond of the

offset of microstimulation. Therefore, we determined that it would be possible to discard

artifacts and recover spikes a short duration after each stimulus pulse. Our artifact rejection

scheme is the result of applying a minimal number of changes to our existing clinical BCI

system. Signal-blanking duration and digital filter parameters were tuned to allow us to

reliably record artifact-free spikes between each stimulation pulse.
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Figure 2.4: Example recording during microstimulation. Stimulation artifacts are several or-

ders of magnitude larger than extracellular spike recordings and often saturate the amplifier.

(left) Three stimulation artifacts are shown, along with several neural spikes. Each artifact

saturates the amplifier during the cathodal phase. (right) Detailed view of the red boxed

region on the left. Spikes can be seen at approximate times 1.3, 3.5, and 6.2 ms. The first

spike begins approximately 0.6 ms after the offset of stimulation.
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2.3.2 Digital spike filters

A typical neural recording scheme involves recording a high bandwidth voltage signal (i.e.

0.3–7500 Hz bandpass-filtered signal sampled at 30,000 samples per second), applying a

digital spike filter, and then applying a voltage threshold on the filtered signal to detect

spikes. A good spike filter is typically designed to filter out low-frequency local field potentials

(LFPs) while passing high-frequency action potentials that can be detected via thresholding.

For example, in previous studies we used a fourth-order Butterworth high-pass filter with

a 250 Hz cutoff frequency [Collinger et al., 2013, Wodlinger et al., 2014]. However, ICMS

introduces another source of high-frequency content that can lead to undesirable filter output.

We wanted to explore how modified filters alone could reduce the effect of the ICMS artifact.

Microstimulation generates high-amplitude primary stimulus artifacts that are impulse-

like in nature. These high-amplitude artifacts generate filter output approximating the

filter’s impulse response, distorting the artifact. For infinite impulse response (IIR) filters,

this can cause ringing in the filter output, often resulting in spurious threshold crossings, or

secondary artifacts, long after the initial stimulus artifact.

In many signal-processing applications, filter parameters are chosen to best approximate

an ideal filter in the frequency domain. For this reason, higher-order Butterworth filters are

often preferred for their short transition bands and flat passbands and stopbands. In our

case, we determined that the time domain properties of the filter were more critical than

the frequency domain properties because we wish to detect spikes as quickly as possible

after each stimulation pulse. The secondary artifacts due to filter ringing can be reduced or

eliminated by choosing a filter with an impulse response exhibiting a fast settling time and

few or no oscillations. The impulse responses to several high-pass Butterworth filter designs

are shown in Figure 2.5. We chose a first-order filter design to eliminate oscillations in the

impulse response. High-pass Butterworth filters with increased cutoff frequencies feature

impulse responses with faster settling times. Therefore, we used a higher cutoff frequency

than in previous studies.

The effects of fourth-order, 250 Hz and first-order, 750 Hz high-pass Butterworth filters

on an example stimulus artifact are demonstrated in Figure 2.6. Our final spike filter im-
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Figure 2.5: High-pass Butterworth impulse responses. Lower order filters oscillate less in

response to a perturbation, while higher cutoff frequencies have exhibit faster settling times.
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plementation was a first-order Butterworth high-pass filter with a 750 Hz cutoff frequency,

which was chosen due to its elimination of filter ringing and fast settling time. These features

reduce, but do not eliminate, the distortion of the stimulus artifact. Further increases in

cutoff frequency, while resulting in faster settling times, would attenuate much of the signal

power in the spike band, commonly cited as approximately 300–6000 Hz [Quian Quiroga,

2009, Stark and Abeles, 2007], with much of the information at about 1000 Hz [Irwin et al.,

2016]. While the 750 Hz cutoff frequency is within this band, most of the spike signal is

preserved because of the first-order filter’s gradual roll-off, as shown in Figure 2.7.

2.3.3 Signal blanking

Stimulation waveforms are distorted by IIR spike filters, resulting in long duration arti-

facts. The first-order 750 Hz high-pass filter described in Section 2.3.2 reduces, but does

not eliminate, this distortion after the end of the stimulus pulse. We implemented a method

of blanking the recorded signal during pulse delivery to both reject primary stimulus ar-

tifacts and avoid contaminating the filter input with large impulses. Signal blanking was

implemented in hardware to ensure that primary stimulus artifacts were eliminated before

the digital filtering step. This was achieved using a digital sample-and-hold in the ampli-

fiers. The stimulator was configured to output a TTL synchronization signal beginning 60

microseconds before each stimulation pulse was delivered. This signal was then input to a

“blanking circuit,” which uses a monostable multivibrator to generate pulses of a fixed dura-

tion defined using a potentiometer. The TTL blanking signal output of this circuit, triggered

by the rising edge of the stimulator synchronization output, was input to the amplifiers to

gate the recording during stimulation by enabling the sample-and-hold feature 60 microsec-

onds before each stimulation pulse, and resuming recording shortly after each stimulation

pulse.

While signal blanking is effective at removing primary stimulus artifacts, additional ar-

tifacts are caused by discontinuities at the offset of blanking. These discontinuities, while

smaller in amplitude than the primary stimulus artifact, often approximate a step input.

Just as the impulse-like nature of the primary stimulus artifact produces an approximate
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Figure 2.6: Effect of filtering microstimulation artifacts. Each figure shows 100 voltage traces

aligned to microstimulation (blue), with a mean trace in dark blue. Filtered signals appear in

orange with a mean trace in red. (A) Fourth-order 250 Hz high-pass Butterworth. Distortion

and ringing are present in the filtered signal. (B) First-order 750 Hz high-pass Butterworth.

Ringing is eliminated but some distortion is still present. (C) and (D) Detailed views of (A)

and (B). Dashed gray-lines indicate thresholds used for spike detection.
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Figure 2.7: Frequency responses of two high-pass Butterworth filters. The edges of the spike

power band (300–6000 Hz) are denoted by dashed vertical lines. Despite the first-order

filter’s higher cutoff frequency, much of the power in the spike band is preserved due to the

filter’s gradual roll-off.
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impulse response, the step-like nature of the blanked signal produces an approximate step

response. Therefore, the criteria used to tune the digital filters in Section 2.3.2 still apply

after blanking the primary stimulus artifact. The combination of signal blanking and a dig-

ital filter with short impulse and step responses can be used to eliminate stimulus artifacts

and resume the ability to detect spikes shortly after each stimulus pulse.

The recorded voltage signals were blanked during each stimulation pulse using a sample-

and-hold period of 1467 microseconds (44 samples at 30 kHz) triggered by the onset of the

synchronization signal output by the stimulator 60 microseconds before each stimulation

pulse. This includes 60 microseconds before each stimulation pulse, 700 microseconds while

the stimulator is delivering current, and an additional 707 microseconds as the voltage begins

to recover from the anodal phase, which in some cases saturates the amplifier. The effect

of blanking the signal prior to filtering with either a fourth-order 250 Hz high-pass filter or

first-order 750 Hz filter are shown in Figure 2.8. In the final implementation, one additional

sample was blanked in software, after the application of the digital filter and threshold, to

discard occasional false spikes caused by the discontinuity at the offset of the blanking period.

This allows for reliable spike detection as soon as 740 microseconds after the offset of each

stimulus pulse and a total signal-blanking duration of 1500 microseconds. The histogram in

Figure 2.9, generated from a representative closed-loop stimulation trial, demonstrates that

after the blanking period, the distribution of spikes in the inter-stimulus period approximates

a uniform distribution.

2.3.4 Signal quality

As discussed in Section 2.3.2, the spike filter was tuned to quickly return to steady state

after perturbations related to stimulation. However, the filter parameters also have an effect

on overall signal quality. To investigate the effects of high-pass cutoff frequency on signal

quality, we performed an analysis based on the band-pass filter analysis in [Lempka et al.,

2011] using neural recordings in the absence of ICMS. We validated that increasing the high-

pass cutoff frequency resulted in a decrease in peak-to-peak voltage, yet an overall increase

in signal-to-noise ratio (SNR). We repeated this analysis using a first-order high-pass filter
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Figure 2.8: Recordings with blanking and filtering during microstimulation. Each figure

shows 100 post-blanking voltage traces aligned to microstimulation (blue), with a mean trace

in dark blue. Filtered signals appear in orange with a mean trace in red. Dashed gray-lines

indicate thresholds used for spike detection. (A) Fourth-order 250 Hz high-pass Butterworth.

Some ringing persists in the filtered signal despite the use of blanking. (B) First-order 750 Hz

high-pass Butterworth. Signal exhibits a fast settling time without undesired threshold

crossings.
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Figure 2.9: Distribution of spikes during inter-stimulus interval. Spikes are absent during

the blanking period, but are uniformly distributed during the remainder of the inter-stimulus

interval.
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and found the same trend to be true. The relationships of cutoff frequency on peak-to-peak

voltage, noise level, and SNR are shown in Figure 2.10.

2.3.5 Closed-loop BCI control

The complete artifact rejection scheme was validated online in a closed-loop BCI control

task, in which the subject was required to transfer an object across a table as many times as

possible in two minutes using a BCI-controlled robot arm. Microstimulation was triggered

by the reaction torque measured at the index finger motor as the robot hand contacted the

object. Task performance for each condition (no stimulation, stimulation without blanking,

and stimulation with blanking for both the fourth-order 250 Hz high-pass filter and first-

order 750 Hz high-pass filter) is summarized in Figure 2.11. A one-way analysis of variance

revealed a significant difference in number of transfers between task conditions (𝐹 (5, 12) =

75.64, 𝑝 < 0.001). Post-hoc Tukey tests revealed no significant differences between the two

no stimulation conditions (𝑝 = 0.462). The number of transfers performed with the artifact

rejection scheme with the first-order filter was not significantly different from either the no

stimulation fourth-order filter condition (𝑝 = 0.761) or the no stimulation first-order filter

condition (𝑝 = 0.994). Performance was significantly impaired compared to no stimulation

for all other conditions (𝑝 < 0.001).

2.4 DISCUSSION

We sought to implement a scheme for ICMS artifact rejection that would enable us to develop

a closed-loop brain computer interface. We were able to do this by making only minor

modifications to an FDA-approved clinical system. By reducing the order of our high-pass

Butterworth digital spike filter from fourth-order to first-order, we eliminated oscillatory

ringing in the filter output after stimulus pulses. Furthermore, we decreased the settling

time of the filter output after stimulation by increasing the cutoff frequency from 250 Hz to

750 Hz. By blanking the signal prior to digital filtering, we were able to reduce the size of
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Figure 2.10: Relationship between high-pass cutoff frequency and signal quality. Black lines

and gray areas indicate median and interquartile ranges. Red lines are results from [Lempka

et al., 2011], included for comparison. Blue dashed lines highlight 750 Hz. (Top) Peak-to-

peak voltage decreases with increasing cutoff frequency. (Middle) Noise estimate decreases

with increasing cutoff frequency. (Bottom) SNR increases with cutoff frequency.
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Figure 2.11: Closed-loop BCI task performance. Bars indicate mean number of object

transfers per condition. Blue dots indicate number of object transfers for each trial. SB

refers to the use of signal blanking, while 4th and 1st order refers to the high-pass filter

used.
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the perturbation introduced to the filters and further reduce the magnitude of the filter’s

response to stimulation. Our system allows for spike detection as soon as 740 microseconds

after the offset of each stimulus pulse. The increased cutoff frequency also resulted in an

overall increase in signal-to-noise. We demonstrated that the introduction of ICMS did not

impair functional BCI performance with the artifact rejection scheme in place.

The proposed artifact rejection scheme is simple to implement with standard clinical

BCI hardware and has few parameters, allowing it to be easily tuned for different subjects

and experiments. Unlike other methods, there is no type of training required. The blanking

duration can be varied to favor preserving neural data or eliminating artifact from the raw

signal. The high-pass filter cutoff frequency can also be tuned to balance peak-to-peak

voltage with fast settling times and high SNR. The scheme also functions with monopolar

microstimulation and makes no assumptions about amplifier saturation, unlike proposals

that necessitate the use of bipolar stimulation to localize the magnitude and volume affected

by artifact [O’Doherty and Sabes, 2016]. Alternative approaches to artifact rejection often

rely on complex modeling and signal processing to estimate and subtract templates, or even

noncausal algorithms [O’Shea and Shenoy, 2018]. These methods may be useful tools for

offline analysis, but may be difficult to adapt to a robust real-time system. When continuous

high-bandwidth raw data is collected during stimulation, such as in the development phase of

this study, a variety of methods can be applied for offline analysis that would be challenging

to implement in real-time due to limitations related to hardware and the need for fast, causal

signal processing.

There are several limitations of our proposed scheme. Notably, the use of signal blanking

results in a loss of neural data. When stimulating at 100 Hz, a total blanking duration of

1500 𝜇s yields a 15% loss of neural data. In some cases, it may be possible to reduce the signal

blanking duration and recover additional spikes. For example, using shorter, symmetric

stimulus pulses is likely to be an effective method of reducing the blanking duration. From

a practical BCI perspective, we have found that this loss of data has a negligible impact

on performance and the method is very effective as long as synchronous stimulus pulses

are used with a sufficiently low pulse rate. A model presented by [Young et al., 2018]

suggests that decoder SNR is expected to drop off with the square root of the fraction
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of blanked data (SNRBlanked = SNR(
√
1− 𝑏), 𝑏 = fraction of blanked data). This model

predicts that our decoder experiences a 7.8% decrease in SNR during 100 Hz stimulation,

but this theoretical decline in decoder performance did not manifest as a measurable decrease

in task performance.

In the future we may choose to generate biomimetic asynchronous pules on many elec-

trodes. This would lead to cases where stimulation pulses are constantly occurring, and

an artifact rejection approach relying on signal-blanking would fail. In this case, another

solution such as amplifiers with a higher input range that can fully sample both artifacts and

spike signals or different modalities of recording and stimulation, such as optical methods,

may be required.

Another limitation is that the parameters must be tuned for worst-case scenarios since the

implementation is global and blanks all channels for an equal duration for each stimulation

pulse, regardless of artifact amplitude. When stimulation currents are low, the artifacts are

less severe and spikes could likely be recovered much closer to the offset of stimulation. A

system that automatically adjusts blank time based on stimulation amplitude or electrode

location could theoretically perform better, but at the expense of added complexity and

less generalizability. A simpler modification that may improve performance would be to

linearly interpolate during the blanking period rather than holding a constant value. This

computation would require a delay in processing and could not be implemented sample-by-

sample in real-time, but would eliminate discontinuities at the offset of blanking. In this case

the blanking duration could theoretically be reduced to the duration of the stimulus pulse

plus any transients caused by the analog filters. This method cannot be easily implemented

with our hardware, but could be implemented by processing the raw digital signals for

spike extraction in software. Our method takes advantage of the capabilities of the Neural

Signal Processors, but this limited our ability to modify the default signal processing scheme.

Processing the raw signals in software would permit much more flexibility to pre-process the

signals before applying a digital filter, much like when raw data is processed offline.

Finally, first-order filters have undesirable characteristics in the frequency domain. The

filter’s frequency response has a wide transition band with gradual roll-off, and thus a large

range of frequencies below the cutoff frequency are only partially attenuated. This can be
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seen in the filter output during stimulation; low-frequency responses to stimulation are not

entirely filtered out and thus the mean filtered signal is not DC during stimulation. While

the amplitude of this variation is small, it does bring the mean signal closer to or further

from the threshold at various time points, which may affect the sensitivity of detecting low

SNR peri-threshold spikes in a time-varying manner. Despite the undesirable frequency

domain characteristics of the first-order filter, we chose this filter due to its favorable time-

domain characteristics, specifically the absence of ringing in the impulse response. Because

the increase in high-pass cutoff frequency resulted in a faster settling time, it is possible that

some ringing can be tolerated from a higher order Butterworth filter if the cutoff frequency is

increased to yield a sufficiently fast settling time. This would result in a steeper roll-off and

better attenuation of low frequencies, but at the expense of attenuating lower frequencies

within the spike power band.

Several unanswered questions and future steps may yield further improvements to the

system. First, it is unclear what effect the changes in filter order and cutoff frequency have

on unit discriminability. While SNR increases with high-pass cutoff frequency, peak-to-peak

voltage decreases. This decrease in peak-to-peak voltage may affect the ability to distinguish

multiple units. In recent years, spike sorting has fallen out of favor in the BCI community

[Chestek et al., 2011, Fraser et al., 2009, Oby et al., 2016, Trautmann et al., 2017], but this

may be of concern to groups interested in studying single units. Second, only IIR Butterworth

filters2 were investigated in this study. Finite impulse response (FIR) filters, by definition,

can be defined to have a short impulse response and may outperform the first-order IIR filter

used here. However, FIR filters typically require many coefficients to perform well in the

frequency domain. Finally, modifying the scheme to linearly interpolate during the blanking

period, while adding complexity to the system, is likely to yield significant performance gains

without introducing more parameters requiring tuning.

2Additional discussion of first-order IIR filters is presented in Appendix A.
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3.0 REACTION TIMES TO INTRACORTICAL MICROSTIMULATION OF

HUMAN SOMATOSENSORY CORTEX

The contents of this chapter are in preparation for submission as a journal article by: Jeffrey

M. Weiss, Grace A. Brueggman, Sharlene N. Flesher, Jennifer L. Collinger, and Robert A.

Gaunt.

In this chapter, I characterize reaction times to single-channel microstimulation of pri-

mary somatosensory cortex for a man with tetraplegia due to a cervical spinal cord injury.

The data presented in this chapter provide insight about the rate that we can expect ICMS

to transfer information to a BCI user as feedback.

3.1 INTRODUCTION

Brain-computer interfaces (BCIs) have enabled users with tetraplegia to control end effectors

such as computer cursors [Hochberg et al., 2006, Pandarinath et al., 2017, Simeral et al.,

2011], robotic arms [Collinger et al., 2013, Wodlinger et al., 2014], or even their own hands

and arms via functional electrical stimulation [Ajiboye et al., 2017, Bouton et al., 2016].

However, all of these systems lack somatosensory feedback, which able-bodied people depend

on for dexterous object manipulation and reaching in the absence of vision. Intracortical

microstimulation (ICMS) of somatosensory cortex has been proposed as a method to add

sensory feedback to BCI systems [Bensmaia and Miller, 2014, Weber et al., 2012]. We recently

demonstrated that ICMS of primary somatosensory cortex can generate graded, focal tactile

sensations in a human subject [Flesher et al., 2016], an encouraging result suggesting that

ICMS is a viable method to generate naturalistic feedback in a closed-loop BCI. However,
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questions remain regarding the information transfer ability of ICMS. For example, a 2014

study found that ICMS cues resulted in much slower responses than visual or vibrotactile

cues in a task in a which a monkey was required to redirect to a different target mid-

reach after cue presentation [Godlove et al., 2014]. This result was surprising, as one might

expect reaction times to ICMS to be faster than natural tactile stimulation, given that ICMS

bypasses peripheral conduction with delays typically exceeding 20 ms [Antfolk et al., 2013].

Conflicting results were found in earlier studies. In one experiment, rats were found to

perform a discrimination task faster when stimulated with ICMS in auditory cortex versus

auditory stimuli [Otto et al., 2005a, Otto et al., 2005b]. Monkeys exhibited indistinguishable

reaction times between ICMS of somatosensory cortex and vibrotactile stimuli in a similar

discrimation task [Romo et al., 2000]. However, slow reaction times to single-channel ICMS

of V1 were noted in, to our knowledge, the only prior attempt to characterize reaction times

to ICMS of human cortex [Schmidt et al., 1996].

Previous studies have shown that delayed auditory feedback can impair speech production

[Yates, 1963], and delayed visual or auditory feedback can affect motor performance in target

tracking tasks [Wargo, 1967], and we suspect that delayed tactile feedback will similarly

impair motor performance. We posit that reaction times to ICMS must be similar to those

of natural sensory input in order for ICMS to be a viable source of feedback. If ICMS

cannot be detected and interpreted with sufficiently low latency, it is unlikely to transmit

information quickly enough to be useful for dexterous motor control tasks.

Here, we characterize reaction times to single-channel ICMS of somatosensory cortex in

a human with tetraplegia due to spinal cord injury (SCI). We tested the hypothesis that

ICMS reaction times would be faster than reaction times to peripheral stimuli by directly

comparing ICMS reaction times to electrical stimulation on a region of the participant’s hand

with spared sensation. We characterized reaction times to ICMS electrodes with projected

fields in regions with and without spared sensation to evaluate our hypothesis that the ability

to respond to ICMS is unaffected by SCI. We also compared the participant’s reaction times

to visual and peripheral electrical stimulation with an able-bodied control group to evaluate

the generalizability of our results to a larger population.
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3.2 METHODS

3.2.1 Participants

A 30-year-old right-handed male (subject CRS21) with a chronic C5 motor/C6 sensory AIS B

spinal cord injury enrolled into this study as part of a broader study evaluating the long-

term use of a closed-loop BCI. CRS2 was implanted with four Utah microelectrode arrays

(Blackrock Microsystems, UT), including two 2.4 mm × 4 mm arrays of 32 functional sput-

tered iridium oxide film (SIROF) electrodes in area 1 of left primary somatosensory cortex

(S1) and two 4 mm × 4 mm arrays of 88 functional platinum electrodes in the hand and

shoulder areas of left primary motor cortex (M1). The SIROF arrays were used to deliver

ICMS from a Cerestim R96 microstimulator (Blackrock Microsystems, UT). CRS2 had been

implanted for approximately two years prior to collecting the data presented here. Details

of the implantation are described in [Flesher et al., 2016].

Four healthy, right-handed, able-bodied control (ABC) subjects were recruited to com-

pare CRS2’s reaction times to a sample normative population. This subject group included

two males and two females, with ages ranging from 24–31 (mean 27.5) years old. Each ABC

subject was tested in a single test session.

3.2.2 Reaction time paradigm

All subjects were seated in front of a TV screen and provided with either a) a push button

(Jelly Bean Twist, AbleNet, MN), or b) a bite switch (Conceptus, AZ) for recording reaction

time responses. Subject CRS2 used the bite switch exclusively due to motor deficits resulting

from his SCI. Able-bodied subjects were tested with both response methods to evaluate the

differences between each method. A green LED was placed in front of each subject to present

visual stimuli. Stimulating electrodes were applied to each subject’s right arm and hand to

provide peripheral electrical stimulation. A ground electrode was placed on each subject’s

elbow (3M Red Dot, MN), and an adhesive bar electrode (PT30, The Electrode Store, WA)

was placed on the lateral side of the PIP joint on the second digit (D2).

1Subject CRS2 is the same subject that was described in Chapter 2.
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A fixation cross appeared on the TV during each trial to inform the subject that a trial

was active, although gaze direction was not systematically controlled. The fixation cross

disappeared during a one second inter-trial period between each trial. A longer break was

offered after every 20 trials. In each session, a minimum of 5% of trials were catch trials in

which no stimulus appeared. In all other trials, one of three possible stimuli occurred after

a random delay (0.25–4 s). The three possible stimuli were 1) a visual pulse emitted by a

green LED (visual), 2) a 100 Hz train of electrical stimulation pulses applied to D2 (e-stim),

or 3) a 100 Hz train of single-channel ICMS pulses (ICMS). Only subject CRS2 received

ICMS, as described in Section 3.2.4. All stimuli were 500 ms in duration. E-stim pulses

were symmetric anodal-leading biphasic pulses with 200 𝜇s phase widths, delivered using an

isolated pulse stimulator (A-M Systems Model 2100, WA). ICMS pulses were asymmetric,

charge-balanced pulses with a 200 𝜇s cathodal phase followed by a 100 𝜇s interphase and

a 400 𝜇s anodal phase. Stimulus and response times were recorded as digital events with

331
3
𝜇s resolution using a Neuroport Neural Signal Processor (Blackrock Microsystems, UT).

All stimuli were presented in blocks of at least 60 trials (for subject CRS2) or 100 trials

(ABC subjects). Additional trials were collected if multiple trials were failed due to the

subject becoming distracted or if the e-stim amplitude needed to be adjusted. ABC subjects

repeated the visual stimulus condition with both response methods, the bite switch and the

push button. All other conditions were evaluated using only the bite switch. Subject CRS2

repeated a subset of tasks in a total of 12 sessions over a 7 month period, with individual

tasks repeated between 3 and 7 times, as detailed in Section 3.2.4.

3.2.3 Detection thresholds and e-stim amplitude

Electrical stimulation (e-stim) detection thresholds were determined by gradually increasing

the stimulation amplitude during a continuous 100 Hz pulse train until the subject reported

the stimulation was just-noticeable. This procedure was repeated a minimum of three times

until a consistent value was determined. For ABC subjects, e-stim amplitudes during the

reaction time paradigm were determined by stimulating at 2× threshold, and reducing the

amplitude as necessary to a comfortable and salient level. In some cases, this level was
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adjusted during breaks due to decreases in perceived intensity after repeated stimulation.

Such adjustments were typically on the scale of 0.1–0.2 mA. Thresholds were measured again

for ABC subjects at the conclusion of the e-stim block to confirm there were no large changes

in threshold during the session.

E-stim thresholds for CRS2 were only measured during three sessions, using the same

method as ABC subjects. For subject CRS2, the amplitude was set each day to match the

perceived intensity of ICMS channel 19 at 100 𝜇A. This channel features a projected field

in the D2 PIP joint of CRS2’s hand. The e-stim bar electrode was placed in an attempt

to match this projected field. The e-stim amplitude was set by alternating between ICMS

and e-stim stimulation, and adjusting the e-stim amplitude until CRS2 could not determine

which stimulus was more intense.

Detection thresholds for ICMS channel 19 were measured at the beginning of each session

using a two-alternative forced-choice staircase procedure, as described in [Flesher et al., 2016].

Detection thresholds for all other tested ICMS electrodes were recorded in a single session

after the conclusion of all other experiments. Data previously published in [Flesher et al.,

2016] suggest that, for most ICMS electrodes, detection thresholds do not undergo significant

changes over time. As part of a separate series of experiments based on methods described

in [Flesher et al., 2016], projected field location and sensation quality were documented for

each tested ICMS electrode at 60 𝜇A.

3.2.4 ICMS reaction time subtasks

Subject CRS2 completed three variations of the reaction time paradigm to characterize

CRS2’s reaction times to a total of four ICMS electrodes. In all variations, reaction times

to visual stimuli were collected as a control for day-to-day variability and to compare with

ABC data.

In the first variation, repeated in a total of 7 sessions, CRS2’s reaction times to channel 19,

an electrode on the lateral S1 array, were characterized. This electrode exhibits a projected

field in a region of CRS2’s hand with spared sensation, and thus the e-stim electrode was

placed during each session in an attempt to match the perceived location on the index finger.
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Reaction times were collected for channel 19 at 100 𝜇A and for e-stim at an amplitude with

approximately equal perceived intensity, as judged by CRS2.

In the second variation, ICMS channel 46, an electrode on the medial S1 array with a

projected field in an insensate region of CRS2’s hand, was characterized. This variation was

repeated in 6 sessions. This channel was compared with previously-characterized channel 19

because CRS2 could not detect e-stim in the same perceived location. Reaction times were

collected for channel 46 at 100 𝜇A and for channel 19 at an amplitude with approximately

equal perceived intensity, as judged by CRS2.

Finally, reaction times for one additional ICMS electrode on each array were charac-

terized in three sessions to evaluate generalizability across electrodes. Channel 22, on the

lateral array, has a projected field similar to channel 19 in a region of the hand with spared

sensation. Likewise, channel 54, on the medial array has a projected field in an area of

CRS2’s hand without intact sensation. Reaction times were collected in response to both of

these electrodes at 100 𝜇A.

3.2.5 Reporting of projected fields and sensation qualities

Projected field locations and sensation qualities were documented for each ICMS electrode at

60 𝜇A as part of regular psychophysical surveys. CRS2 drew receptive fields using a Windows

10 tablet (Surface Pro 4, Microsoft, WA) and described the quality of each sensation using a

survey previously presented in [Flesher et al., 2016], as well as descriptors of his own choice.

A summary of the reported qualities for each tested ICMS electrode was compiled along

with representative projected field drawings from several psychophysical surveys conducted

within the time course of this study.

3.2.6 Statistical analysis

Due to the expected and observed positive skew of reaction time distributions [Ratcliff, 1993,

Whelan, 2008], median and interquartile ranges (IQR) are reported for each reaction time

distribution and non-parametric tests (Mann-Whitney U, Brown-Forsythe test for equality of

variances) were used to make all statistical comparisons. Bonferroni correction for multiple
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comparisons was applied where appropriate, and discrepancies between tests performed with

and without correction are noted. The ex-Gaussian distribution, a three-parameter (𝜇, 𝜎, 𝜏)

distribution formulated by the convolution of an exponential and Gaussian distribution and

commonly used to model reaction time distributions [Ratcliff, 1993, Whelan, 2008], was fit

to reaction time distributions as a visualization aid.

3.3 RESULTS

3.3.1 Comparison of CRS2 with control group

Median and interquartile range (IQR) reaction times to electrical and visual stimulation

are listed for each subject and response method in Table 3.1, along with median and IQR

reaction times pooled across ABC subjects for each stimulus and response condition. While

CRS2 exhibited slower median reaction times than the pooled ABC group for both e-stim

and vision (Mann-Whitney U, 𝑝 < .001), his IQR for both e-stim and vision overlapped with

the ABC group IQR. CRS2’s visual reaction times were significantly different than the visual

reaction times of two of the four ABC subjects (Mann-Whitney U, 𝑝 < .001). The outcome of

the tests were not affected by Bonferroni correction. After Bonferroni correction, CRS2’s e-

stim reaction times were significantly different than the e-stim reaction times for three of the

four ABC subjects (Mann-Whitney U, 𝑝 < .001). Without Bonferroni-correction, CRS2’s e-

stim reaction times were significantly different than all four ABC subjects (𝑝 < .05), though

his median reaction times were faster than two of the ABC subjects, and slower than the

remaining two ABC subjects’ reaction times.

Significant variation was seen across all subjects. All able-bodied subjects had reaction

time distributions that were significantly different than all other able-bodied subjects for

both e-stim and vision (Mann-Whitney U, 𝑝 < .001). The outcome of the tests were not

affected by Bonferroni correction. The differences in reaction time to e-stim across subjects

may be due in part to differences in detection thresholds and test amplitudes for each subject.

Mean detection threshold and test amplitude values are listed for each subject in Table 3.2.
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Table 3.1: Reaction times to electrical and visual stimulation. Reported as median (IQR)

in milliseconds.

Subject E-Stim Visual Visual (Button Response)

ABC1 418.8 (369.4–494.7) 302.3 (276.1–345.8) 290.5 (261.9–337.8)

ABC2 224.0 (206.4–257.8) 245.8 (227.6–268.8) 212.7 (198.2–236.6)

ABC3 255.4 (222.9–295.2) 243.7 (228.6–260.2) 201.2 (183–4-216.7)

ABC4 351.4 (324.0–392.3) 322.2 (282.5–358.3) 235.1 (205.5–276.6)

ABC Median 316.5 (246.0–391.2) 270.5 (242.5–316.4) 225.9 (201.3–273.4)

CRS2 339.0 (312.4–369.3) 307.1 (284.0–338.1)

Detection threshold and test amplitudes for CRS2 were higher than for all ABC subjects,

most likely due to sensory deficits related to his spinal cord injury.

Overall, reaction times to visual stimuli were significantly faster than to e-stim, for both

the pooled ABC group (Mann-Whitney U, 𝑝 < .001), and CRS2 (𝑝 < .001). With Bonferroni

correction, significant differences between the two modalities were seen in all ABC subjects

(𝑝 < .001), except for ABC3 (𝑝 = .047). While the full subject population was overall

slower to respond to e-stim than visual stimuli, subject ABC2 responded significantly faster

to e-stim than to visual stimuli (𝑝 < .001).

Table 3.2: Detection thresholds and test values for electrical stimulation.

Subject Mean Threshold (mA) Mean Test Value (mA)

ABC1 1.2 2.2

ABC2 1.4 2.6

ABC3 1.5 2.8

ABC4 1.1 1.9

CRS2 2.3 3.3
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Figure 3.1: Reaction times measured with a bite switch and push button across the ABC

group.

The difference between each response method for visual stimulation is also evaluated for

each ABC subject and across subjects in Table 3.1. The distributions for each response

method pooled across the ABC group is displayed in Figure 3.1. Across the ABC group,

median reaction times to visual stimuli were 44.6 ms slower when subjects responded with

a bite switch compared to a push button (Mann-Whitney U, 𝑝 < .001). The variance of

the reaction time distribution was unaffected by response method (Brown-Forsythe test,

𝑝 = .5848). Within-subjects, visual reaction times using the two response methods were sig-

nificantly different for three of the four subjects with Bonferroni correction (Mann-Whitney

U, 𝑝 < .001). Without correcting for multiple comparisons, the two response methods were

significantly different for all four subjects (𝑝 < .05), and button responses were always faster

than bite switch responses.

Trial failures were rare for all participants. No catch trials were failed by any partici-

pants. ABC subjects failed to respond to at most 2 trials, and at most 1 trial per condition

(approximately 1% of trials per condition). Across sessions, subject CRS2 failed to respond

in less than 3% of trials for all conditions, with most of these failures (11/14 failures) occur-
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Figure 3.2: Reaction times to single-channel ICMS and e-stim with matched perceived loca-

tion and intensity. Distributions are pooled across 7 sessions.

ring in the e-stim condition. When necessary, additional trials were collected to compensate

for failed trials or if the e-stim amplitude needed to be adjusted.

3.3.2 Reaction times to ICMS and e-stim

Subject CRS2’s reaction times to ICMS channel 19, e-stim, and visual stimuli were measured

across 7 sessions. Channel 19 was always stimulated at 100 𝜇A, and the e-stim amplitude was

set each session to match the perceived intensity of ICMS channel 19. The location of the

e-stim electrode was also placed to align with the projected field of ICMS channel 19. The

reaction time distributions for ICMS channel 19, e-stim, and visual stimuli pooled across 7

sessions are displayed in Figure 3.2. Across the 7 sessions, the median (IQR) reaction times

were 307.0 ms (280.0–338.1) for ICMS, 339.0 ms (312.4–369.3) for e-stim, and 307.1 ms

(284.0–338.1) for visual stimuli.

Median ICMS reaction times were significantly faster than median e-stim reaction times

when pooled across days (Mann-Whitney U, 𝑝 < .001). After Bonferroni correction, reaction
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times to ICMS and e-stim were significantly different in 6 of 7 sessions, 5 of which exhibited

faster ICMS reaction times (Mann-Whitney U, 𝑝 < .001). Without Bonferroni correction,

ICMS reaction times were also faster than e-stim in the seventh session (𝑝 < .01). Visual

reaction times were also significantly faster than e-stim reaction times when pooled across

sessions (Mann-Whitney U, 𝑝 < .001), and in 4 out of 7 sessions (𝑝 < .001). This result

was unaffected by Bonferroni correction. The difference between reaction times to ICMS

and visual stimuli was less clear. Pooled across sessions, there was no significant difference

(Mann-Whitney U, 𝑝 = .3225). Within sessions and with Bonferroni correction, ICMS

was significantly faster than visual stimuli in 2 of 7 sessions (𝑝 < .001). Without Bonferroni

correction, ICMS was significantly faster in 3 sessions (𝑝 < .05), while vision was significantly

faster in 2 sessions (𝑝 < .05). The remaining 2 sessions had non-significant differences with

or without Bonferroni correction. Despite this day-to-day variability, there does not appear

to be a real difference between reaction times to this ICMS channel and to visual stimuli.

3.3.3 Reaction times to additional ICMS electrodes

Reaction times to ICMS channel 46 were characterized across 6 sessions. This channel has a

projected field in a region of CRS2’s hand that is completely insensate as a result of his spinal

cord injury, and thus was not directly compared against e-stim. In each of the 6 sessions,

reaction times to ICMS channel 46 were compared against visual stimuli and the previously-

characterized channel 19 (see Section 3.3.2). Channel 46 was always stimulated at 100 𝜇A,

while channel 19 was stimulated at an amplitude with a comparable perceived intensity,

which varied across sessions (mean ± standard deviation amplitude = 57.7± 9.16 𝜇A). The

reaction time distributions for these two ICMS channels and visual stimuli pooled across

sessions are shown in Figure 3.3. Across sessions, the median (IQR) reaction times were

345.7 ms (315.6–382.3) for channel 46, 336.3 ms (307.9–368.0) for channel 19, and 300.3 ms

(271.6–332.8) for visual stimuli.

Median reaction times to channel 19 were slightly faster than to channel 46 in 4 of 6

sessions, but when pooled across days this difference was not significant with Bonferroni

correction (Mann-Whitney U, 𝑝 = .0277 > .0167). Within days, reaction times to channel
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Figure 3.3: Reaction times to ICMS electrodes with a projected fields in sensate (Ch. 19)

and insensate (Ch. 46) areas of the hand, at a matched perceived intensity. Distributions

are pooled across 6 sessions.

19 were significantly faster than channel 46 for two sessions (𝑝 < .001), while channel 46

was faster than 19 in a third session (𝑝 < .001). Reaction times for each channel were

not significantly different in the remaining three sessions (𝑝 > .05). The results of these

within-day comparisons were not affected by Bonferroni correction. When pooled across

days, median reaction times to visual stimuli were faster than either ICMS electrode (Mann-

Whitney U, 𝑝 < .001). Within sessions, this result held up for each electrode for 5 of

6 sessions with Bonferroni correction (𝑝 < .001), and all 6 sessions without Bonferroni

correction (𝑝 < .05).

Two additional ICMS electrodes, one from each S1 array, were tested in 3 sessions.

One electrode, channel 22, had a projected field in a location similar to that of channel

19 (characterized in Section 3.3.2), which is a sensate region of CRS2’s hand. The other

electrode, channel 54, has a projected field similar to that of channel 46, in an insensate

region of CRS2’s hand. Both channels were stimulated at 100 𝜇A, without attempting to

control for perceived intensity. The reaction time distributions for these two ICMS electrodes
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Figure 3.4: Reaction times for two additional ICMS electrodes. Channel 22 has a pro-

jected field in a sensate area, while Channel 54 has a projected field in an insensate area.

Distributions are pooled across 3 sessions.

and for visual stimuli pooled across 3 sessions are displayed in Figure 3.4. Across sessions,

the median (IQR) reaction times were 278.2 ms (259.8–299.9) for channel 22, 341.6 ms

(309.2–379.4) for channel 54, and 282.8 ms (260.0–312.7) for visual stimuli.

The median reaction times for ICMS channel 22 were significantly faster than channel

54, both when pooling across sessions (Mann-Whitney U, 𝑝 < .001), and within each session

(𝑝 < .001), without any affect of Bonferroni correction. Reaction times to visual stimuli were

also significantly faster than to ICMS channel 54, when pooling across sessions (𝑝 < .001)

or within each session (𝑝 < .001), without any affect of Bonferroni correction. Pooling

across days, there was no significant difference between median reaction times to ICMS

channel 22 and visual stimuli (𝑝 = .069). Within days, reaction times to channel 22 were

significantly faster than to visual stimuli in 1 session (𝑝 = .0019 < .01), with no significant

differences in the other two sessions (𝑝 > .05). There was no effect of Bonferroni correction.

A summary of the median (IQR) reaction times to all four tested ICMS electrodes at 100 𝜇A

and comparisons to other channels and modalities is presented in Table 3.3.
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Table 3.3: Summary of median reaction times to four ICMS electrodes at 100 𝜇A and

comparisons to other modalities. * denotes that channel 19 was stimulated at an amplitude

to match the perceived intensity of channel 22.

Channel Median (IQR) Reaction Time (ms) Relation to other modalities

19 307.0 (280.0–338.1) 19 ≈ visual < e-stim

22 278.2 (259.8–299.9) 22 ≈ visual

46 345.7 (315.6–382.3) visual < 46 ≈ 19*

54 341.6 (309.2–379.4) visual < 54

3.3.4 Properties of tested ICMS electrodes

The detection thresholds for each tested ICMS electrode, measured at the end of the study,

are listed in Table 3.4. Detection thresholds for ICMS channel 19 were recorded before every

session, as part of an on-going long-term ICMS stability study. For the 12 sessions presented

here, the mean ± standard deviation detection threshold for channel 19 was 11.2± 2.8 𝜇A.

The additional three electrodes were only tested in the final 6 sessions, which spanned a

shorter time period. In these 6 sessions, the mean ± standard deviation detection threshold

for channel 19 was 12.4±1.6 𝜇A. The stability of channel 19’s threshold across days, combined

with the detection threshold stability data presented in [Flesher et al., 2016], suggest that

thresholds on the other channels were likely stable throughout the course of the study.

The projected field locations for each tested ICMS electrode at 60 𝜇A, as drawn by CRS2

in a separate experiment, are shown in Figure 3.5, and a summary of the sensations elicited

by each electrode at this amplitude are summarized in Table 3.4. It is worth noting that

CRS2 described channel 22 as the most focal of the four electrodes tested. This electrode

also had the lowest detection threshold, but was not described as the most intense of the

four electrodes at 100 𝜇A. The relative intensities of each electrode were not systematically

studied, but based on discussions with CRS2, each electrode at 100 𝜇A can most likely be

ranked from most to least intense in the following order: 19, 46, 22, 54.
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Table 3.4: ICMS detection thresholds and sensation qualities.

Channel Array Threshold (𝜇A) Sensation Quality Summary

19 Lateral 12.4 Sharp pressure and buzzy vibration

22 Lateral 6.4 Pressure, tingle, and some vibration

46 Medial 8.8 Slightly sharp pressure and warm tingle

54 Medial 17.4 Pressure and tingle

3.4 DISCUSSION

In this study, we characterized simple reaction times to single-channel ICMS of primary

somatosensory cortex in a human participant, and compared against reaction times to visual

stimuli and electrical stimulation in the periphery for the same subject and able-bodied

controls. Overall, we found significant overlap between reaction time distributions for ICMS,

e-stim, and visual stimuli (see Figure 3.2). For most subjects, responses to visual stimuli

were significantly faster than to e-stim. Reaction times to ICMS varied across channels (see

Table 3.3), but reaction times to two of four ICMS channels were not significantly different

than to visual stimuli, and, for the only channel in which a direct comparison was made,

reaction times to ICMS were significantly faster than to e-stim by approximately 32 ms, a

result one might expect given conduction delays of 20 ms or more from the periphery [Antfolk

et al., 2013] (see Section 3.3.2).

Reaction times to two other ICMS electrodes were significantly slower than to vision by

approximately 63–74 ms. One of these two electrodes was compared directly against channel

19, which was previously characterized as eliciting reaction times significantly faster than to

e-stim, and not significantly different than to visual stimuli, by reducing the amplitude on

channel 19 to control for perceived intensity. Reaction times to these two electrodes were

not significantly different. Assuming similar relationships between perceived intensity and

reaction time for ICMS and peripheral e-stim, it is possible that other electrodes would also

elicit faster reaction times than to e-stim when controlling for perceived intensity.
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Figure 3.5: Projected fields for tested ICMS electrodes, as drawn by CRS2.
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We observed considerable variability across subjects (see Table 3.1), sessions, and ICMS

electrodes (see Table 3.3). Comparing e-stim and ICMS reaction times across subjects,

sessions, and electrodes is inherently difficult due to the known relationship between reaction

time and stimulus intensity [Kohfeld, 1971, Teichner, 1954, Teichner and Krebs, 1972], a

parameter which is difficult to control for, particularly with tactile and electrical stimuli.

Using multiples of detection threshold has limitations [Zele et al., 2007], as does self-reported

perceived intensity. In an attempt to minimize the effect of perceived intensity on reaction

time, we attempted to only use stimuli that were sufficiently suprathreshold such that small

changes in intensity would have minimal effect on reaction time [Kohfeld, 1971, Teichner and

Krebs, 1972]. Furthermore, we attempted to match the intensities of ICMS and e-stim (see

Section 3.3.2) and of two ICMS channels (see Section 3.3.3) for direct comparison.

Several prior studies evaluated reaction times to ICMS in various areas of cortex. Schmidt

et al. evaluated reaction times to phosphenes generated by ICMS of primary visual cortex

in a blind human participant [Schmidt et al., 1996]. Like our study, Schmidt only tested

ICMS in a single participant, and only tested a small number of microelectrodes. Based on

previous studies of reaction times to surface stimulation of visual cortex, Schmidt expected

reaction times as fast as 175 ms, but found that reaction times to ICMS were slower than

expected (means of 395 and 452 ms for two electrodes). Schmidt did not directly compare

ICMS reaction times against other stimulus modalities or subjects, but noted the decrease

in reaction time with increasing stimulation amplitude in prior studies, as well as the known

relationships between reaction time and brightness and size of a visual stimulus. In Schmidt’s

study, electrodes were always stimulated at 1.5× threshold during reaction time trials. Based

on their presented threshold data, this suggests amplitudes of approximately 20 𝜇A were

used in reaction time trials, considerably less than the 100 𝜇A amplitude used in our study,

although they used a longer pulse-width (600 𝜇s).

Several animal studies provided choice reaction time data during discrimination tasks

involving ICMS. Romo found that reaction times to ICMS of area 3b of S1 were indistin-

guishable compared to vibrotactile stimuli in a flutter frequency discrimination task [Romo

et al., 2000]. Mean reaction times to vibrotactile (324 ms) and ICMS (339 ms) were not

significantly different. Stimulation amplitudes varied between 65 𝜇A and 100 𝜇A. Otto et al.
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used ICMS of auditory cortex in rats during an auditory frequency discrimination task [Otto

et al., 2005a, Otto et al., 2005b]. The authors found that ICMS of auditory cortex at 68 𝜇A

evoked significantly faster choice reaction times than auditory stimuli by more than 290 ms.

The authors interpreted their results as suggesting that the ICMS stimuli were more salient

than the auditory stimuli but made no other claims about the differences in reaction times

to each modality, acknowledging that the results were dependent on the stimulus parameters

and behavioral task.

Our results suggest that, for at least one electrode and when controlling for intensity,

reaction times to ICMS of area 1 of S1 are faster than to e-stim by approximately 32 ms.

However, conflicting results were presented in an earlier study by Godlove et al. [Godlove

et al., 2014]. In Godlove’s study, a monkey responded slower to ICMS cues than to visual or

vibrotactile cues in a redirect reaching task by approximately 70 ms (vibrotactile) and 50 ms

(visual). These differences were decreased in a simpler pressured reaction time task, in which

ICMS reaction times were approximately 50 ms slower than vibrotactile cues, and 15 ms

slower than visual cues. Additionally, two monkeys and a cohort of human subjects responded

faster to vibrotactile stimuli than to visual stimuli. In our study, most subjects responded

more slowly to electrical stimulation than to visual stimulation. It is possible that electrical

stimulation recruited a different population of afferents than vibrotactile stimulation, but

electrical stimulation is generally believed to recruit the largest diameter axons first [McNeal,

1976], which have the fastest conduction velocities [Goldman and Albus, 1968]. There are

mixed results in the literature comparing the reaction times to visual and tactile stimuli

(e.g. [Diederich and Colonius, 2004, Forster et al., 2002]), suggesting that comparing these

modalities is sensitive to specific task conditions. It is likely that discrepancies are related

to differences in perceived intensity of the stimuli in each experiment. Stimulus intensity is

a well-known correlate of reaction time [Kohfeld, 1971, Teichner, 1954, Teichner and Krebs,

1972], and can be difficult to control across experiments, subjects, sessions, and even within

sessions due to issues such as consistent placement of the electrode or transducer, changes

at the electrode-skin interface, or habituation. Additionally, the fact that the monkey in

Godlove’s study required significant training to perform the task with ICMS raises doubts

about the saliency of the ICMS cue in the monkey.
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It is also worth noting the difference in response methods between studies. The methods

used to capture reaction times is known to significant effects, both in terms of the body part

used to respond [Teichner, 1954], as well as the apparatus and criteria used to determine the

time of response [Smeets and Brenner, 2017]. In our study, participants responded using a

bite switch, and able-bodied controls also responded to visual stimuli with a push button for

comparison. While we determined that reaction times were slower when responding with a

bite switch than a push button, we assumed that any differences between response methods

were independent of stimulus modality. In [Godlove et al., 2014], response time was measured

as the difference between stimulus time and reach reversal (zero-velocity) time in a reaching

task. It is possible that this response method, which was more complex and involved larger

movements than our study, impacted their results.

In [Godlove et al., 2014], stimulus types were interleaved, and during the redirect reach

task, redirect stimuli only appeared in 30% of trials. Reaction times are known to be slower

when stimuli are interleaved [Boulter, 1977], which is why we chose to use a block design.

Boulter found that visual reaction times were more affected by interleaved modalities than

tactile reaction times [Boulter, 1977], suggesting that visual reaction times may have been

disproportionately slowed in Godlove’s study due to the interleaved task design. Finally,

differences in anatomy may explain discrepancies between the two studies. We found that

the ICMS electrode with the most focal projected field elicited the fastest reaction times (see

Section 3.3.4, Table 3.3). While more data is required to determine if a causal relationship

exists between ICMS projected field size and reaction time, it is nonetheless worth mention-

ing that it is unclear if such focal projected fields can be expected in a monkey due to the

differences in anatomical scale between species, resulting in compressed somatotopic organi-

zation in monkeys. A study by Gregg Tabot et al. found that monkeys trained to perform

a location discrimination task with mechanical indentations could continue performing the

task when one or both mechanical stimuli were replaced with ICMS trains, but the mon-

keys’ performance suggested that ICMS projected fields were more diffuse than mechanical

indentations [Tabot et al., 2013].

We hypothesized that reaction times to ICMS would be faster than to peripheral electrical

stimulation because ICMS bypasses peripheral circuits and associated conduction delays.
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However, it can be argued that this hypothesis is overly simplistic, as it is unclear if there are

differences in cortical processing of ICMS and peripheral sensory input to generate a response.

ICMS indiscriminately and synchronously recruits neurons near the electrode tip, leading to

unnatural patterns of activity [Tabot et al., 2015]. It is possible that such unnatural activity

needs additional processing before it can drive downstream circuits to generate a response.

Godlove suggested that the need for signal amplification and refinement could explain the

slow ICMS responses observed in his study [Godlove et al., 2014]. Because stimulation in

S1 bypasses the brainstem and thalamus, additional sensory areas that would normally be

recruited in parallel with S1 are either not recruited at all or are activated in an unnatural

way after S1 drives output to other areas. It is also possible that ICMS may have different

effects on independent streams of cortical processing for conscious perception and reaction,

unconscious reflexes (e.g. long-loop reflexes to prevent object slip [Picard and Smith, 1992]),

updating of feedforward models, and motor learning.

While additional data is required to resolve the discrepancies between various studies of

ICMS reaction times, we find our result encouraging. CRS2’s reaction times were generally

slower than the ABC group, which may have been related to his spinal cord injury, or may

have been an artifact of insufficient sample size, as considerable variation was seen across

subjects. Alternatively, factors related to sleep quality, medication usage, or other health

factors may explain the observed significant differences in reaction times. Regardless, we

find the intra-subject comparisons between modalities compelling. If reaction times to ICMS

are similar to, and perhaps even faster than, reaction times to peripheral e-stim or visual

stimuli, we suspect that ICMS can provide information quickly enough to be a useful source

of feedback for BCI users. Future studies should evaluate reaction times to ICMS at different

amplitudes, reaction times to multi-channel stimulation, and the ability to quickly interpret

ICMS in more meaningful ways, such as discriminating between force levels as encoded by

ICMS amplitude or frequency. A choice reaction time paradigm may be an effective method

to evaluate the ability to quickly discriminate between different ICMS parameters.
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4.0 SUMMARY AND CONCLUSIONS

In the years before starting this work, significant advances had been made in the field

of intracortical brain-computer interface (BCI), starting with rodent research in the late

1990s [Chapin et al., 1999], to nonhuman primate work [Taylor et al., 2002], and the first

demonstration of a human with tetraplegia using an intracortical BCI to control a cursor

in 2006 [Hochberg et al., 2006]. In the following decade, progressively better BCI control

was achieved, allowing for as many as ten simultaneously controlled degrees-of-freedom of

a robotic arm [Wodlinger et al., 2014]. However, all of these demonstrations required the

BCI user’s visual attention at all times, as no alternative forms of feedback were provided.

Able-bodied people depend on somatosensory feedback to perform dexterous tasks and con-

trol their limbs in the absence of vision. The loss of either tactile or proprioceptive sensation

results in substantial deficits to motor control [Gordon et al., 1995, Johansson and Flanagan,

2009, Monzee et al., 2003, Rothwell et al., 1982]. The need to include some form of nonvisual

sensory feedback in a BCI system had been recognized, and intracortical microstimulation

(ICMS) had been proposed as a solution (e.g. [Abbott, 2006, Weber et al., 2012]).

Shortly before starting the work presented here, our lab demonstrated for the first time

that ICMS of somatosensory cortex could evoke naturalistic tactile percepts that are focal and

graded with amplitude in an individual with tetraplegia [Flesher et al., 2016], an encouraging

result suggesting that ICMS has the potential to restore sensory feedback for BCI users.

While several nonhuman primate studies investigated the use of ICMS to provide cues or

feedback during BCI control [O’Doherty et al., 2009, O’Doherty et al., 2011], questions

remained about whether or not ICMS was a viable method of feedback.

I identified two knowledge gaps that needed to be resolved to demonstrate the viability of

ICMS as a method of adding feedback to a closed-loop BCI system. First, questions remained
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about the compatibility of ICMS with current intracortical BCI technology. Intracortical

BCI uses microelectrodes to record small extracellular potentials from the brain, which are

decoded to control end-effectors. ICMS requires large voltages to inject current through

high-impedance microelectrodes and produce voltage gradients in the brain that generate

action potentials in nearby neurons. This produces large artifacts in the recordings, such as

those seen in Figure 2.4. These artifacts mask neural spikes and can saturate the recording

amplifiers. Furthermore, applying a high-pass or band-pass filter, which is necessary to

extract spike signals for BCI decoding, can distort the artifact, resulting in artifacts that

are longer than each stimulus pulse width, and possibly corrupting the recording during

the entirety of a stimulus train. While numerous methods for artifact rejection had been

proposed, such as interleaved recording and stimulation intervals [O’Doherty et al., 2011],

or template subtraction [Limnuson et al., 2014], we required a robust method that would be

compatible with our existing FDA-cleared BCI system and allow for uninterrupted recording

during continuous ICMS trains.

Second, while we had demonstrated that ICMS could evoke sensations that felt natural

[Flesher et al., 2016], questions remained about whether the stimulation could actually be

perceived at a rate appropriate for continuous real-time feedback. A 2014 study found, unex-

pectedly, that a monkey responded more slowly to ICMS cues than to visual or vibrotactile

cues [Godlove et al., 2014]. While conflicting results were found in earlier animal studies

[Otto et al., 2005a, Otto et al., 2005b, Romo et al., 2000], relatively slow reaction times were

also documented in the only known prior attempt to characterize reaction times to ICMS in

a human subject [Schmidt et al., 1996]. Such results were troubling, because if a BCI user

could not quickly detect and react to microstimulation, the modality would not be suitable

for use as a source of continuous real-time feedback to improve motor control in situations

requiring rapid responses to perturbations or errors. For example, if an object begins to slip

out of one’s hand, immediate feedback is needed to generate a motor response to counteract

the slipping before the object is dropped. I sought to address this issue by directly testing

reaction times to ICMS of somatosensory cortex in a human participant.

In Chapter 2, I presented a method to reject artifacts that was simple, robust, and

compatible with our existing BCI system. This method consisted of applying a sample-and-
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hold to blank most of the artifact from the recorded signal prior to digital filtering, and

updating our digital filter to a first-order 750 Hz high-pass Butterworth filter, which features

short impulse and step responses1 without oscillations. These features allowed spikes to be

reliably recorded as soon as 750 𝜇s after the offset of each stimulus pulse. Furthermore, I

“closed the loop” of our BCI system by updating the system to record sensor data from a

robot and transform the sensor data to stimulation commands. I then validated the artifact

rejection method by demonstrating that while the addition of ICMS normally resulted in

impaired BCI performance due to stimulus artifacts, my artifact rejection method restored

BCI performance to baseline levels.

In Chapter 3, I characterized simple reaction times to single-channel ICMS of somatosen-

sory cortex in a human with tetraplegia due to spinal cord injury. Four electrodes were

characterized, including electrodes with projected fields in sensate and insensate regions of

the subject’s hand. I found that, while the subject’s reaction times were generally slower

than a small population of able-bodied subjects, his reaction times to ICMS were similar to

those for both visual stimuli and electrical stimulation of his hand in a region with intact

sensation. For at least one electrode that was directly compared to electrical stimulation,

reaction times to ICMS were significantly faster than to peripheral electrical stimulation,

a result that was hypothesized based on the fact that ICMS bypasses peripheral afferent

pathways with conduction delays exceeding 20 ms [Antfolk et al., 2013], but contradicted

results previously reported in a nonhuman primate study [Godlove et al., 2014].

The results presented in Chapters 2 and 3 suggest that ICMS can provide sensory feed-

back in a closed-loop BCI system that can be quickly perceived by the BCI user and without

significant impairments to the neural recordings used for decoding. While additional work

is needed, these results demonstrate the feasibility of bidirectional BCI systems that both

directly extract information from and transmit feedback to the brain, and the results imply

that such systems may allow for more skillful control than current technology allows.

1By definition, an infinite impulse response (IIR) filter has an infinitely-long impulse response. The
descriptions of “short” or “long” duration impulse and step responses in this thesis refer not to the total
length of the response, but to the approximate duration before the filter approaches its steady state value,
lim𝑡→∞ ℎ(𝑡).
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4.1 FUTURE WORK

4.1.1 Artifact rejection

While the work presented in Chapter 2 met the objective of rejecting artifacts while preserv-

ing enough neural data to maintain BCI performance, there is still room for improvement

in the area of artifact rejection. First, it is unclear that the filter chosen in Chapter 2 is the

optimal filter to preserve high-SNR neural data while reducing blank duration. Alternative

filter designs, such as finite impulse response (FIR) filters may be capable of outperforming

the first-order Butterworth filter. Additionally, the use of a first-order filter may not have

been necessary. Increasing the cutoff frequency reduced the duration of the impulse response

and led to an increase in SNR ratio. Using a first-order filter eliminated oscillations in the

filter response, but at the expense of decreased performance in the frequency domain. If the

impulse response is sufficiently short, some oscillation in the impulse response may be toler-

able when used in combination with software blanking. However, it is unclear if a filter with

a steeper roll-off is actually preferable in this case, as the increase in cutoff frequency causes

low frequency components of spike waveforms to be attenuated. In the current scheme, the

increase in cutoff frequency is somewhat offset by the gradual roll-off of the first-order filter.

It is also unclear if signal blanking is a crucial component of the artifact rejection scheme.

While signal blanking prevents the stimulus waveform from generating a large impulse re-

sponse in the filter output, it also delays the inevitable step response until the offset of

blanking. If an impulse response occurred immediately at stimulus onset and was rejected

via software blanking, it is possible that the filter could be tuned to recover more quickly

than the current scheme with signal blanking.

Numerous methods such as variations of template subtraction (e.g. [Limnuson et al.,

2014, O’Shea and Shenoy, 2018, Wagenaar and Potter, 2002]), or linear regression referencing

[Young et al., 2018], have been proposed which aim to recover neural data during the actual

stimulus pulse. While we opted for a simpler approach that did not require training data or

more complicated signal processing, an ideal solution would not involve any signal blanking

and allow spikes to be recorded even during stimulus pulses. However, monopolar ICMS often
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results in amplifier saturation, which can both extend the length of the artifact and prevent

any possibility of recovering spikes during the stimulus using techniques such as template

subtraction. While some researchers have opted to use bipolar stimulation for this reason

(e.g. [O’Doherty and Sabes, 2016]), a better solution would be to develop amplifiers with

a wider input range such that they can fully sample both stimulus artifacts and coincident

spike waveforms without saturating.

4.1.2 ICMS reaction times and encoding of feedback

The work in Chapter 3 demonstrated that reaction times to ICMS of human somatosensory

cortex were comparable or slightly faster than reaction times to electrical stimulation in

the periphery. However, additional work in needed to address several limitations of this

study. First, a relatively small data set was collected for four microelectrodes in a single

participant. Additional electrodes and subjects should be tested to evaluate generalizability

and to resolve discrepancies between the results of our study and prior studies such as

[Godlove et al., 2014]. Second, with one exception (see Section 3.3.3) each electrode was

only characterized at its maximum amplitude of 100 𝜇A. Additional amplitudes need to be

characterized to confirm that lower amplitudes evoke a sensation that is salient enough to

produce adequate reaction times. Finally, the reaction time task is abstract and shares little

in common with a functional task in which feedback would be beneficial. Additional work is

required to demonstrate that ICMS feedback can be continuously interpreted in a meaningful

way to modify behavior during a motor control task. For example, the critical stability task

[Quick et al., 2014] is a challenging task which requires an informative feedback signal that

can be quickly interpreted to produce rapid corrections in motor output. This task may be

appropriate to test how quickly a modulated ICMS signal can be interpreted in the context

of a motor control task. Alternatively, a choice reaction time task in which various ICMS

parameters must be quickly discriminated is a simple way to extend the reaction time task

to require more than stimulus detection.

While the results of [Flesher et al., 2016] and Chapter 3 suggest that ICMS can both

evoke naturalistic sensations and be perceived quickly enough to be used for feedback, ques-
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tions still remain about how to best encode feedback that can be easily interpreted by the

user. As briefly mentioned in Section 1.2, several types of mechanoreceptors exist in the skin,

which lead to complex patterns of activity in cortex. In the normal somatosensory system,

slowly-adapting and rapidly-adapting afferents encode both dynamic and static components

of tactile sensation. Artificial somatosensory feedback such as ICMS should also provide both

dynamic and static components of touch. Various methods could be used to encode such

information, such as relying on rates of change to indirectly encode dynamic information,

linearly superimposing both components onto a signal, or encoding both signals separately

using independent electrodes. Alternatively, biomimetic pulse trains based on patterns of

spike timing observed in recordings of somatosensory cortex may produce naturalistic sen-

sations containing both dynamic and static information.

4.2 ALTERNATIVES TO ICMS-BASED CLOSED-LOOP BCI

While the work presented in this thesis suggests that ICMS is a promising method to restore

useful and naturalistic feedback to BCI users, there are alternative options that may be

capable of providing adequate feedback, and even options that may not require the user

to receive feedback at all. For example, optogenetics is an alternative method to directly

activate neurons in the brain, and has been proposed as an alternative to ICMS for closed-

loop BCI [Gilja et al., 2011]. Optogenetics involves using genetic engineering techniques to

transfer genes for light-sensitive ion channel proteins to neurons which can then be optically

stimulated. This has several advantages, such as the possibility of targeting populations of

neurons with more precision than is possible with ICMS, and avoiding artifacts in electrical

recordings. While much more research is needed before the use of optogenetics can be

attempted in humans, several recent studies have shown that the approach can work in

nonhuman primates [Gerits and Vanduffel, 2013].

Additional methods for sensory restoration include non-invasive approaches to provide

sensory feedback. For example, rather than attempting to evoke sensations referred to the

hand, a sensory substitution approach could take advantage of regions of intact sensation. An
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experiment by Paul Bach-y-Rita demonstrated that a person with peripheral sensory deficits

could learn to interpret electrical stimuli applied to their forehead as if the sensations were on

their hand [Bach-y Rita, 1973, Bach-y Rita and W. Kercel, 2003]. Similar methods have been

utilized in attempts to restore sensation to amputees via electrical stimulation of the skin

on their residual limb or peripheral nerve stimulation using implanted electrodes [Antfolk

et al., 2013].

Alternative solutions may allow for improved control of BCI end effectors without the

user receiving any form of sensory feedback. For example, our lab previously demonstrated

that BCI control of a robotic limb could be improved by using a shared control approach

that blends BCI and autonomous robotics [Downey et al., 2016]. This system attempted

to determine the user’s intent based on the decoded velocity signal, but allowed the robotic

system to handle low-level tasks such as stabilization and achieving the proper orientation

to grasp a particular type of object. This concept could be expanded to also apply the

correct amount of force on an object, without actually providing force feedback to the user.

Richard Andersen has attempted to decode high-level intent signals directly by recording

from the posterior parietal cortex [Aflalo et al., 2015], a sensory integration area believed to

be involved in motor planning, rather than low-level motor commands that are generated

in primary motor cortex [Andersen and Buneo, 2002]. If high-level intent can be reliably

decoded, such commands may not depend on constant visual feedback and could be executed

by autonomous robotic systems without requiring the user to receive sensory feedback. A

downside to such approaches are that by not providing sensory feedback and abstracting low-

level control to autonomous systems, it becomes less likely that the user will form a sense

of embodiment of the system [Marasco et al., 2011, Tabot et al., 2015]. Thus, it is likely

that the ideal solution will involve a combination of assistance from autonomous control

systems to improve fine motor control, with naturalistic sensory feedback to enhance a sense

of embodiment and inform the user of the state of the system.
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APPENDIX A

NOTES ON IIR FILTER TYPES AND FIRST-ORDER FILTERS

The purpose of this appendix chapter is to document some additional details about the

selection of a digital filter to reduce the effect of stimulus artifacts. The final outcome of

this analysis is presented in Chapter 2.

As discussed in Chapter 2, prior to adding ICMS to our BCI system, we processed our

neural data with a 250 Hz high-pass fourth-order Butterworth filter, which is a standard

filter implemented in the Blackrock Microsystems Neuroport system. We quickly identified

the problem of filter ringing in response to stimulus artifact (see Figure 2.6), and investigated

methods to reduce this ringing. Initially, we questioned the choice of a Butterworth filter,

and investigated alternative types of infinite impulse response (IIR) filters. We considered

the use of Type I Chebyshev filters, which permit ripple in the passband but allow for a

steeper roll-off with a lower filter order. Of course, this was a misunderstanding of the cause

of the filter ringing, which was not directly related to frequency domain characteristics such

as roll-off, but was rather a manifestation of the filter’s time domain properties, and in

particular the filter’s impulse response.

Without a proper understanding of the nature of our problem, we happened to stumble

onto an adequate solution. Knowing that the use of a Chebyshev filter would allow us to

preserve frequency selectivity while reducing the filter order, we tested various lower order

filters and found that a first-order Type I Chebyshev filter completely eliminated the ringing

after each ICMS pulse. We also found, somewhat unexpectedly, that this filter design resulted

in an increase in signal-to-noise ratio (SNR) despite a decrease in peak-to-peak voltage.
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Later, I discovered that similar observations about SNR and peak-to-peak had been made

regarding the effect of high-pass cutoff frequency on spike recordings [Lempka et al., 2011].

At this point, I began to dig into the details to better understand the nature of our

problem and solution. First, I reviewed the equations for magnitude frequency responses for

𝑛th-order Butterworth (Equation A.1) and Type I Chebyshev filters (Equation A.2) with

unity DC-gain. Equations for low-pass filters are shown for simplicity, but these observations

generalize to high-pass filters. 𝜔 denotes frequency, 𝜔𝑐 is the filter’s cutoff frequency, 𝜖 is the

ripple factor, and 𝑇𝑛 is a 𝑛th-order Chebyshev polynomial.

|𝐻(𝑗𝜔)|2 =
1

1 +

(︂ 𝜔

𝜔𝑐
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Next, I compared the first-order implementations of each filter design. The first-order

Chebyshev polynomial is simply 𝑇1(𝑥) = 𝑥. Therefore, the magnitude frequency responses

for first-order low-pass Butterworth (Equation A.3) and Type I Chebyshev filters (Equa-

tion A.4) are:
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The only difference between these two equations is the 𝜖 parameter in the Type 1 Cheby-

shev filter equation. Equation A.4 can be rewritten as:

|𝐻(𝑗𝜔)|2 =
1

1 +
𝜔2

(︂𝜔𝑐

𝜖

)︂2

(A.5)

After examining this lumped parameter, 𝜔𝑐/𝜖, what perhaps should have been obvious is

now immediately clear: a first-order filter can only have one unique parameter. By designing

a first-order Type I Chebyshev filter with cutoff frequency 𝜔𝑐 and ripple factor 𝜖, we were

really changing the true cutoff frequency, 𝜔𝑐,true = 𝜔𝑐/𝜖.

Thus, all first-order IIR filters are equivalent, and should be specified in simplest terms,

i.e. as a single-parameter Butterworth filter. Additionally, the observed increase in SNR can

be explained by the fact that by introducing a ripple factor, we were really increasing the

cutoff frequency, leading to an increase in SNR as predicted by [Lempka et al., 2011].
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APPENDIX B

BCI SOFTWARE DOCUMENTATION

The purpose of this appendix chapter is to provide a brief overview of the closed-loop BCI

software system used in Chapter 2. An overview of the hardware and major algorithms

(decoding and sensor stimulus transform) was provided in Section 2.2, but the software

system was not presented in detail in Chapter 2.

A system diagram of the closed-loop BCI software suite is shown in Figure B1. Neural

and digital data including spike snippets are sent over a UDP protocol from two Neural

Signal Processors (Blackrock Microsystems, UT) to two instances of SPM_Cerebus, which

bin spike snippets into spike counts in 10 ms bins and pass data to SPM_Combiner as

RAW_SPIKECOUNT messages over the Real-Time Messaging Architecture (RTMA) protocol.1

SPM_Combiner receives spike count data from one or more instances of SPM_Cerebus and

combines the data into 20 ms bins of 256-channel spike counts. This data is output every

20 ms as an SPM_SPIKECOUNT message (blue arrows), which is both used for decoding and

as a 50 Hz time source for multiple modules throughout the system.

SPM_SPIKECOUNT messages are buffered and filtered by the SpikeExtraction module to

predict intended velocity commands from estimated firing rates using an optimal linear esti-

mator (OLE) decoder (described in Section 2.2.5.1). In some cases, some degrees of freedom

are partially or fully automated by the ActiveAssist module. CONTROL_SPACE_COMMAND ve-

locity commands (green arrows) from SpikeExtraction and ActiveAssist are summed by the

1RTMA was developed in Andrew Schwartz’s lab by Meel Velliste and Sagi Perel. An open-source version
named Dragonfly Messaging is hosted at https://github.com/dragonfly-msg/dragonfly.

76

https://github.com/dragonfly-msg/dragonfly


MPL_Control module, which forms a final velocity command (FINISHED_COMMAND), sent

over a UDP protocol (MUD) to VulcanX (Applied Physics Laboratory (APL), MD), an

interface to control the Modular Prosthetic Limb (MPL) (APL).

MPL sensor data is returned from VulcanX using a UDP protocol and received by the

MPL_Feedback module, which forwards limb state data (CONTROL_SPACE_FEEDBACK, or-

ange lines) and force and torque data (MPL_REBIASED_SENSOR_DATA) to downstream mod-

ules using RTMA. CONTROL_SPACE_FEEDBACK is received by ActiveAssist to generate au-

tomated proportional velocity commands based on current limb state and target positions.

MPL_REBIASED_SENSOR_DATA is received by the Sensor_Stimulus_Transform module to gen-

erate stimulation commands using a linear transformation, as documented in Section 2.2.5.2.

At the start of each trial, up to 15 stimulus parameter sets (amplitude, frequency, and

pulse-width) are output by Sensor_Stimulus_Transform as CERESTIM_CONFIG_MODULE mes-

sages. Desired stimulation commands are output as CERESTIM_CONFIG_CHAN_PRESAFETY

messages, which are checked for safety in the Stim_Safety_Module, and then output as final

CERESTIM_CONFIG_CHAN messages. CERESTIM_CONFIG_MODULE and CERESTIM_CONFIG_CHAN

messages are received by the Cerestim_Module, which uses the CereStim C++ API to

command the Cerestim R96 microstimulator (Blackrock Microsystems).

The Executive module controls the state of the system and experiment flow. Executive

outputs TASK_STATE_CONFIG messages (gray lines), which contain parameters such as targets,

gains, and weights to determine whether each control dimension is controlled by SpikeEx-

traction, ActiveAssist, or both. Executive determines when Sensor_Stimulus_Transform

can output stimulation commands via TASK_STATE_CONFIG. Executive also receives limb

state CONTROL_SPACE_FEEDBACK messages to compare against target positions and evaluate

task success.

The Stim_Safety_Module ensures that the following safe stimulation criteria are met:

∙ Stimulation amplitudes are in the range 0–100 𝜇A

∙ Stimulation frequencies are in the range 0–300 Hz

∙ No more than 12 electrodes can be simultaneously stimulated

∙ The maximum global charge in 144 nC/phase.

∙ No electrode can be stimulated for more than 1500 pulses/30 s
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Figure B1: BCI system diagram.
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