
Seasonal variation in the correlation between

anomalies of sea level and chlorophyll in the

Antarctic Circumpolar Current
Hajoon Song

1
, Matthew C. Long

2
, Peter Gaube

3
, Ivy Frenger

4
, John

Marshall
5
, Dennis J. McGillicuddy Jr.

6

H. Song, hajsong@mit.edu

1Department of Atmospheric Sciences,

Yonsei University, Seoul, Korea

2Climate and Global Dynamics

Laboratory, National Center for

Atmospheric Research, Boulder, Colorado,

USA

3Applied Physics Laboratory, University

of Washington, Seattle, Washington, USA

4GEOMAR Helmholtz Center for Ocean

Research Kiel, Kiel, Germany

This article has been accepted for publication and undergone full peer review but has not been through
the copyediting, typesetting, pagination and proofreading process, which may lead to differences be-
tween this version and the Version of Record. Please cite this article as doi: 10.1029/2017GL076246

c©2018 American Geophysical Union. All Rights Reserved.

CORE Metadata, citation and similar papers at core.ac.uk

Provided by OceanRep

https://core.ac.uk/display/158572161?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


The Antarctic Circumpolar Current (ACC) has highly energetic mesoscale

phenomena, but their impacts on phytoplankton biomass, productivity, and

biogeochemical cycling are not understood well. We analyze satellite obser-

vations and an eddy-rich ocean model to show that they drive chlorophyll

anomalies of opposite sign in winter versus summer. In winter, deeper mixed

layers in positive sea surface height (SSH) anomalies reduce light availabil-

ity, leading to anomalously low chlorophyll concentrations. In summer with

abundant light, however, positive SSH anomalies show elevated chlorophyll

concentration due to higher iron level, and an iron budget analysis reveals

that anomalously strong vertical mixing enhances iron supply to the mixed

layer. Features with negative SSH anomalies exhibit the opposite tendencies:

higher chlorophyll concentration in winter and lower in summer. Our results

suggest that mesoscale modulation of iron supply, light availability and ver-
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tical mixing plays an important role in causing systematic variations in pri-

mary productivity over the seasonal cycle.

Keypoints:

• The correlation between anomalies of sea level and anomalies of chloro-

phyll has seasonality in the Antarctic Circumpolar Current.

• A positive correlation in summer results from the anomalous iron con-

centration that leads to chlorophyll anomalies.

• A negative correlation in winter results from the anomalous light level

available for primary production.

c©2018 American Geophysical Union. All Rights Reserved.



1. Introduction

The ocean is rich in mesoscale phenomena that account for more than 90% of the

kinetic energy in the surface ocean [Ferrari and Wunsch, 2009] and are known to play a

critical role in transporting momentum, heat, and energy [Robinson, 1983; Wunsch, 1999;

Xu et al., 2014]. The mesoscale modulates marine ecosystems via effects on both the

physical and chemical environment, influencing, for instance, nutrient supply, light levels

and the diversity of phytoplankton populations [McGillicuddy et al., 2007; Rodŕıguez et al.,

2001; Clayton et al., 2016]. This modulation is clearly seen in chlorophyll concentrations

(CHL). Anomalies of satellite CHL, a proxy for phytoplankton biomass, are observed to

be correlated with sea surface height (SSH) anomalies, a proxy for mesoscale phenomena,

in many regions of the ocean [Chelton et al., 2011a; Gaube et al., 2014]. Depending on the

prevailing mechanisms, both positive and negative correlations between SSH and CHL

(ρSSH′,CHL′) can be expected. A wide range of mechanisms have been proposed by which

the mesoscale modulates biogeochemistry, as reviewed in McGillicuddy [2016].

In situ and satellite observations have revealed mixed-layer depth (MLD) modulation by

mesoscale dynamics; deeper (shallower) MLDs are associated with anticyclones (cyclones)

with positive (negative) SSH anomalies in the subtropical ocean [Gaube et al., 2013; Dufois

et al., 2014] and also in the Southern Ocean (SO) [Hausmann et al., 2017]. While the

influence of mesoscale dynamics on the MLD, nitrate, and CHL in the subtropical gyres

has received some attention [Dufois et al., 2014, 2016], these processes remain under-

studied in the SO, which is a region of major importance for biogeochemical cycling and

air-sea carbon exchange.
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In much of the SO, the supply of iron and availability of light are key mediators of

primary productivity [Boyd , 2002; Fauchereau et al., 2011]. During summer when sunlight

is abundant, primary productivity is mainly limited by iron, which is depleted in the

surface ocean and enriched at depth [Venables and Moore, 2010; Boyd and Ellwood , 2010].

In such conditions, introduction of iron-rich subsurface water through vertical mixing

can enhance the primary productivity and increase CHL [Carranza and Gille, 2015]. In

contrast, during the winter, deep convective mixing supplies iron to the upper ocean

[Tagliabue et al., 2014], but simultaneously decreases mixed-layer-average light levels for

photosynthesis [Nelson and Smith, 1991]. Fauchereau et al. [2011] found large spatial and

seasonal variability in the correlation between CHL and MLD, and propose vertical mixing

as an important driver for the surface CHL perturbation through changes in limitation

by either iron or light.

If the mesoscale modulation of MLD has a significant impact, we can anticipate that

deeper vertical mixing in anticyclones would supply iron-rich subsurface water more than

cyclones in summer but decreases light level further in winter when compared with cy-

clones. Then the footprint of mesoscale modulation of MLD on CHL would appear as a

seasonal cycle in ρSSH′,CHL′ . This raises the question, do satellite observations of SSH and

CHL reveal such a signal? In this study, motivated by the systematic modulation of MLD

by the mesoscale and its link to factors limiting productivity, we examine ρSSH′,CHL′ at

the mesoscale in the SO where the mean eddy scale is between 75 km to 100 km [Chelton

et al., 2011b]. We utilize satellite observations and an eddy-rich biogeochemical numerical

model to better understand the physical and biological interactions in the mesoscale.
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After briefly describing the observations and physical-biogeochemical model, we first

report on observed ρSSH′,CHL′ in the SO, particularly along the Antarctic Circumpolar

Current (ACC). We then evaluate the influences of MLD modulation by mesoscale dy-

namics on the observed correlation by utilizing a numerical model.

2. Satellite data and an eddy-rich physical-biogeochemical model

The procedure to obtain the anomaly of SSH and CHL starts from preparing weekly

mean fields from 1998 to 2007. The weekly mean SSH field was prepared by averaging

the daily absolute dynamic topography mapped on the 1/4×1/4 degree grid by Collecte

Localis Satellites / Archiving, Validation and Interpretation of Satellite Oceanographic

data (CLS/AVISO). This data set does not contain mesoscale variability whose length

scale is smaller than 0.4 degree [Chelton et al., 2011b]. The processes to obtain the

weekly CHL include mapping log-transformed daily CHL estimation from Sea-Viewing

Wide Field-of-View Sensor (SeaWiFS) on the same grid as SSH anomalies, applying loess

smoother in time and transforming back to its original linear scale [Gaube et al., 2013].

The weekly average attenuates the features whose time scale is shorter than a few days

(e.g., submesoscale features). Then the anomalies of SSH and CHL were estimated by

spatially high-pass filtering the weekly data with 6 degree half-power cutoff which retains

the variability with wavelength scale shorter than 6 degree. Details of the processing are

provided in Supporting Information.

We evaluate the role of mesoscale phenomena by considering SSH anomalies exceeding

5 cm in absolute value. Such deviations in SSH include those driven by not only coherent

eddy structures expressed by closed contours of anomalies [Chelton et al., 2011b] but also
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other mesoscale flow features (e.g., fronts). Positive SSH anomalies represent anticyclones

while negative anomalies corresponds to cyclones for coherent eddy structures. In case of

fronts, a positive/negative SSH anomaly is likely to be found on the less/more dense side

of the front in the SO where the sea level increases toward the equator. When identified

from a few weekly maps of SSH anomaly using the same eddy detection algorithm as

the one in Chelton et al. [2011b], coherent eddy structures account for approximately

67% of SSH anomalies with the size greater than 5 cm. For simplicity, positive/negative

SSH anomalies are referred to anticyclones/cyclones in this study, recognizing that the

underlying phenomenology is more complicated.

A simulation of eddy-rich coupled physical and biogeochemical states is provided by a

Biogeochemical Elemental Cycling (BEC) model [Moore et al., 2002, 2004, 2013] embed-

ded in the 1/10 degree resolution ocean circulation component of the Community Earth

System Model (CESM). Phytoplankton growth is regulated by both light and nutrients

(iron in this regime) as described in Equation 1 of the Supporting Information. Vertical

mixing is represented by the K-Profile Parameterization (KPP) scheme [Large et al., 1994],

in which diapycnal diffusivity is set proportional to the vertical mixing depth. We use the

vertical mixing depth as a measure of MLD because the vertical mixing of tracers such as

nutrients is subject to it. Although the vertical mixing depth is generally shallower than

the mixed-layer depth determined by potential density criteria in the model simulation,

they show a strong correlation (correlation coefficient > 0.8 with p-value < 0.01). Hence

it is reasonable to expect that the vertical mixing depth (or MLD hereafter) is modu-
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lated by the mesoscale in a manner similar to that of the mixed-layer depth. A detailed

description of the model can be found in Supporting Information.

3. Seasonal correlation between anomalies of sea surface height and

chlorophyll

Our analysis of satellite observations of CHL and SSH anomalies reveals a positive

ρSSH′,CHL′ along the ACC in summer (January–March, Figure a) and a negative ρSSH′,CHL′

in winter (July–September, Figure b) [e.g., Frenger , 2013]. In winter, the signal is not as

clear as in the summer, which may be due to the lower CHL variability. The condition of

low sun elevation, sun glint and frequent storm system passages lowers the observational

density of satellite CHL data in winter. Lower density can be problematic in computing

the anomalies with respect to the spatial mean and possibly obscure the correlation signal.

The seasonality of the correlation along the ACC is clearly different from that to the north

of it where the correlation is generally negative all year long.

To identify the mechanisms by which mesoscale processes in the ACC influence CHL,

we examine the solution of an eddy-rich physical-biogeochemical model. The 5-day mean

model fields are first mapped on the same 1/4 degree grid as the satellite data using bilinear

interpolation to suppress the impact from features that the satellite observations cannot

represent. Encouragingly, the simulation largely reproduces the observed seasonality in

ρSSH′,CHL′ (Figure c-d), as well as SSH variability, mean and seasonality of near-surface

CHL and seasonal variability in the depth of mixed layer (Figures S1-S2 in Supporting

Information). There are broad areas of strongly positive ρSSH′,CHL′ along the ACC and

at its southern margins in summer, changing sign in winter, especially in the Indian
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and Pacific Ocean sectors. South of the ACC, correlations are noisier and observed and

modeled correlations agree less, perhaps due to processes that are missing in the model,

such as iron supply from melting sea ice, or possibly weaker observational constraints in

the polar zone.

We examined ρSSH′,CHL′ averaged zonally along the path of the ACC (defined by SSH

isolines between -80 cm and -20 cm, see Supporting Information) to draw out seasonal

patterns. Correlations are positive within the ACC from summer to fall (January–June),

then switch to negative until early spring (October) (Figure 2a). Observations indicate

that the seasonality in the correlation is lagged south of the regions with -50 cm SSH; the

model, however, shows a more consistent phasing over the meridional extent of the ACC

region (Figure 2b). In spite of this inconsistency, the simulation captures the major corre-

lations in the ACC, justifying an examination of the simulation to identify the underlying

mechanisms generating observed variability in mesoscale modulations of the CHL field.

4. Mechanisms in an eddy-rich biogeochemical model

We hypothesize that oceanic mesoscale dynamics play an important role in the season-

ality of ρSSH′,CHL′ along the ACC by regulating the availability of light and iron, resulting

in differing CHL responses in summer and winter. There is a positive correlation between

MLD and SSH anomalies in all seasons over most of the SO in the model, suggesting

that anticyclones have deeper mixed layers than cyclones (Figures e,f and 2e). This MLD

modulation by the mesoscale is more intense and systematic in winter than in summer,

evident in a larger MLD difference between anticyclones and cyclones (Figure 3a,b) and

a higher correlation coefficient between anomalies of SSH and MLD (Figure 2e). The de-
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gree of mesoscale MLD modulation increases with the amplitude of the SSH anomaly. For

example, the wintertime MLD difference between positive and negative SSH anomalies

whose amplitudes are greater than 5 cm is 24 m; this statistically significant difference in-

creases to 55 m when the amplitude of SSH anomalies greater than 20 cm are considered.

The simulated correlation between SSH anomalies and MLD (Figure 2e), seasonality in

mesoscale MLD modulation and dependency of MLD anomaly on the SSH anomaly am-

plitude are consistent with observed variations of MLD in eddies, whereby anticyclones

exhibit weaker stratification and deeper mixed layers than cyclones [Hausmann et al.,

2017].

In winter, light is the primary factor limiting productivity throughout the whole wa-

ter column and iron limitation is of diminished importance (Figure 3b). Since light is

supplied at the surface and attenuates with depth, simulated mixed-layer mean light (or

photosynthetically active radiation; 〈PAR〉) declines with increasing MLD. We find that

anomalies of 〈PAR〉 estimated from the model are negatively correlated with SSH anoma-

lies throughout the year (Figure 2d). 〈PAR〉 is approximately 30% lower in anticyclones

than cyclones in winter (Figure 4a) and about 7% lower in summer (Figure 4c), suggest-

ing deeper mixing in anticyclones decreases 〈PAR〉 experienced by phytoplankton in the

mixed layer. Thus deeper vertical mixing in anticyclones has the potential to limit produc-

tivity in winter, resulting in lower CHL in anticyclones versus cyclones (Figure 3a,d). This

argument is supported by the ρSSH′,CHL′ along the ACC in the Pacific and Indian Ocean

sectors, although it is less clear in the Atlantic Ocean sector (Figure (b,d)). The Atlantic

Ocean sector exhibits the shallowest mixed layers in winter that relieve the light limitation
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for the phytoplankton growth, leading to a less distinct relationship between anomalous

vertical mixing and CHL. The Pacific and Indian Ocean sectors, however, have deeper

mixed layers and clearer negative ρSSH′,CHL′ along the ACC in both the observations and

the model than the Atlantic Ocean sector.

In contrast, productivity is iron limited in the summer (Figure 3a). The model simu-

lation shows that anticyclones in the ACC have approximately 15% more iron averaged

over the mixed layer (〈Fe〉) in summer (Figure 4c) than cyclones, which promotes higher

productivity and CHL. The 〈Fe〉 anomaly is larger in winter than in summer (30% v.s.

15%, Figure 4a,c), which suggests the link between the intensity of mesoscale MLD modu-

lation and iron supply. However, the positive 〈Fe〉 anomaly associated with anticyclones in

winter does not lead to enhanced productivity under the light-limited environment. Iron

concentrations are elevated both within and below the mixed layer (Figure 3a-c), sug-

gesting that part of the enhanced vertical flux in anticyclones is attributable to a larger

iron reservoir underlying these features at depth. Without anomalous deep mixing, the

positive 〈Fe〉 anomaly in anticyclones cannot be maintained under the active consumption

of iron by phytoplankton.

A budget analysis for 〈Fe〉 along the ACC (Figure 4b,d; see Supporting Information for

details) quantifies the various mechanisms of iron supply and removal. We only consider

areas where bathymetry is deeper than 200 m in order to avoid the direct influence from

shelf regions [Carranza et al., 2017]. Iron is supplied to the mixed layer by lateral and

vertical advection, vertical mixing, aeolian input of dust, and entrainment associated with

changes in the MLD; it is removed through the biogeochemical sink term, which represents
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phytoplankton uptake and scavenging on sinking particulates. Among these processes,

we find that the supply of iron by vertical mixing differs most between anticyclones and

cyclones. Supply of iron by vertical mixing in anticyclones has a median value that is

roughly 10% higher than in cyclones when normalized by the median 〈Fe〉 in the ACC.

The contributions from lateral and vertical advection tend to cancel each other, reducing

the contribution as a whole, and the difference in median value of the total advection

between anticyclones and cyclones is less than 1%. The differences in other terms are

also small (less than 2%) compared to that in the vertical mixing. Iron input from dust

increases 〈Fe〉 but, as might be expected, the differences between anticyclones and cyclones

are negligible. The biogeochemical sink is the largest in summer with slightly more loss

of iron in anticyclones due to higher phytoplankton productivity. The entrainment term

shows little contribution after being normalized by the MLD, and differences between

anticyclones and cyclones are negligible; thus it is not plotted in Figure 4b,d.

Supply of iron through vertical mixing is controlled by both the MLD and the vertical

gradient of iron, suggesting that knowing the vertical structure of iron is important to

understand the enhanced vertical mixing term in anticyclones, especially in summer when

the MLD differences between anticyclones and cyclones are relatively small. The model

simulation suggests that anticyclones have an enhanced vertical iron gradient relative to

cyclones in summer. The iron limiting factor shows a smaller difference between cyclones

and anticyclones at the surface than at 50 m (the solid line in Figure 3c), suggesting

that anticyclones have more favorable conditions for the enhanced iron supply by vertical

mixing than cyclones. Combined with the fact that both the observations [Hausmann

c©2018 American Geophysical Union. All Rights Reserved.



et al., 2017] and the model simulation (Figure 3a,b) suggest that MLD modulation by

the mesoscale is relatively subtle in summer, the enhanced vertical iron gradient in anti-

cyclones may be the key feature driving differences in iron supply by vertical mixing—as

opposed to changes in the depth of mixed layer.

5. Discussion

Our study emphasizes the importance of mesoscale processes affecting phytoplankton

growth through MLD changes impacting iron and light availability. Features with anoma-

lously high SSH (anticyclones) are characterized by deeper mixed layers while those with

negative SSH anomalies (cyclones) have anomalously shallow MLDs. These modulations

of the MLD affect light levels resulting in lower CHL in anticyclones, and higher CHL

in cyclones in winter. The MLD modulation by the mesoscale is also seen in summer,

and the median MLD difference is statistically significant but small: less than 5 m along

the ACC. Nevertheless, deeper MLDs and larger vertical gradients of iron together make

iron supply by vertical mixing greater in anticyclones than cyclones, and contribute to

iron anomalies in the mixed layer in all seasons. Our results suggest that anomalies in

iron availability and light exposure associated with the mesoscale and the alternating role

of iron and light limitation in summer and winter play a major role in explaining the

seasonally changing ρSSH′,CHL′ along the ACC (Figure 3e,f).

The eddy-rich biogeochemical model generates higher levels of iron in anticyclones along

the ACC in both seasons. A possible explanation for higher iron in anticyclones in summer

is preconditioning during winter. In winter when the MLD modulation by the mesoscale

is particularly intense, deeper mixed layers in anticyclones have considerably higher iron
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concentration than the shallower mixed layers of cyclones. Anomalously high iron in

anticyclones in winter is not heavily used due to the lack of sunlight, and subsequently

may promote elevated primary productivity in summer. The mixed layer shoals rapidly

after winter, and iron in the mixed layer is consumed by primary producers, creating

vertical gradients of iron. Then vertical mixing at the base of the mixed layer continues

to entrain iron from the layer that was previously in the mixed layer during winter.

Hence anticyclones have relatively iron-enriched water below the summertime mixed layer

compared to cyclones (Figure 3a), and this may contribute to differences in iron limitation

among the two types of features. This explanation can be applied to well-formed and long-

lived eddies whose lifespans are of the order of months. Given that many eddies along

the ACC survive three months and longer [Frenger et al., 2015], the preconditioning

explanation is plausible.

In other highly dynamic regions of intense eddy activity such as the Gulf Stream and

the Kuroshio Current, it is thought that eddies cause anomalies of CHL concentration

primarily through eddy-driven advection of large-scale CHL gradients, i.e. stirring and

trapping [Kouketsu et al., 2015; Gaube et al., 2014]. The lateral gradient of CHL suggests

that advective mechanisms cannot be entirely ruled out in understanding the correlations

along the ACC (Figure S1c-d in Supporting Information). However, the lateral gradient

in CHL is not as strong as in either the Gulf Stream or the Kuroshio Current, owing

to light limitation in the winter and iron limitation in the summer (the so-called ”High

Nitrate Low Chlorophyll” (HNLC) condition).
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Understanding the influence of mesoscale processes on vertical mixing and iron supply

is important for more accurate estimation of SO’s role in global carbon cycle. However,

coarse resolution climate modeling systems on which many studies rely do not resolve the

ocean’s mesoscale. Such models cannot capture mixed layer modulation by the mesoscale,

leading to as yet unknown biases in air-sea carbon dioxide flux. Quantifying the integrated

effects of these phenomena on biological uptake and the supply of carbon rich water from

depth is necessary to better understand the role of the mesoscale in biogeochemical cycling

in the SO.
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Surface-water iron supplies in the Southern Ocean sustained by deep winter mixing,

Nature Geoscience, 7, 314–320, doi:10.1038/ngeo2101.

Venables, H., and C. Moore (2010), Phytoplankton and light limitation in the Southern

Ocean: Learning from high-nutrient, high-chlorophyll areas, J. Geophys. Res., 115,

C02,015, doi:10.1029/2009JC005361.
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Figure 1. The correlation coefficients between anomalies of SSH and CHL in the (a,b) satellite
observations and (c,d) 1/10 degree ocean model are shown as pseudo-color images. The left and right
columns show the (a,c) correlation for austral summer (January-March) and (b,d) austral winter (July-
September), respectively. Black contours mark the sea level isolines of −20 cm and −80 cm that enclose
the ACC. The masks in gray scale around Antarctica represent the sea-ice area fraction from the Hadley
Centre Sea Ice and Sea Surface Temperature data set in (a,b) and from the model in (c,d). The sea-
ice areas are masked by the color changing from white to black. The correlation coefficients between
anomalies of SSH and MLD in the eddy-rich model are also presented similarly in (e,f). The areas
in white have either a correlation coefficient close to zero or a P-value greater than 0.01 (statistically
insignificant).
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Figure 2. The correlation of anomalies in SSH and CHL along SSH isolines in (a) observations

and (b) model. The areas within two black lines at -80 cm and -20 cm approximate the ACC

and correspond to the black contours in Figure 1. The equivalent latitude is shown on the right

y-axis in (b). Panels on the right are the correlation coefficients of anomalies of the (c) iron and

(d) light limiting factor averaged over the MLD, and (e) MLD with SSH anomalies from the

model. Correlations are statistically significant at the 99% confidence level.
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Figure 3. (a,b) The median vertical profiles of light limiting factor (L) and iron limiting factors
(V Fe = Fe/(Fe + KFe)) for anticyclones (V Fe

ae) and cyclones (V Fe
ce) in the biogeochemical model

(Supporting Information, Equation 1) averaged in the ACC. In summer, iron is the limiting factor for
the primary productivity within the mixed layer (a). The magnitude of limiting factor is inversely
related to its’ effect on primary productivity, e.g., light is more important than iron concentration
throughout the whole water column in winter (b). Blue and red dotted lines represent the median value
for MLD within cyclones and anticyclones, respectively, in the ACC. Panel (c) displays the vertical
profile of the iron limiting factor differences (V Fe

ae − V Fe
ce) in summer (solid line) and winter (dashed

line). Confidence intervals of the MLDs are omitted in (a-c) because they are too narrow. A diagram
depicting the mesoscale modulation of MLD and its impact on phytoplankton biomass in two different
seasons in the SO are shown in panels (d) and (e). The brightness of the blue and orange shading
represents the iron concentration and sunlight intensity, respectively. In summer, primary production is
controlled by iron supply (blue arrows) and not light in the mixed layer (d). In winter, intensive vertical
mixing enriches iron concentration near the surface, but low light availability limits primary production
(e).
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Figure 4. The bar plots in (a,c) represent the percentage differences in light level (yellow) and

iron concentration (blue) in the mixed layer between anticyclones and cyclones in winter and

summer, respectively. The percentage differences between anticyclones and cyclones in various

contribution to the iron averaged over the mixed layer are plotted in (b,d). Those contributions

are 3-dimensional advection (3D adv including both buoyancy- and wind-driven transports),

vertical mixing (v. mix), biogeochemical cycle (bio) and flux from dust (flux), and they are

normalized by the averaged iron in the mixed layer. The contribution from entrainment is little

and not plotted. The 95% confidence intervals estimated using bootstrapping are narrow and

not shown.
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