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Abstract 

We present new geochemical and 
40

Ar/
39

Ar analyses from seven seamounts located off the 

northeastern margin of the shallow Galápagos Platform. Initial volcanism at 5.2 Ma created a 

small island (Pico) over the current location of the hotspot with geochemically enriched lavas. 

There is no further record of magmatism in the study area until 3.8 to 2.5 Ma, during which four 

roughly conical volcanoes (Sunray, Grande, Fitzroy, and Beagle) formed through from the 

eruption of lavas derived from a depleted mantle source. Sunray, Fitzroy, and Grande were 

islands that existed for ~3 m.y. ending with the submergence of Fitzroy at ~0.5 Ma. The 

youngest seamounts, Largo and Iguana, do not appear to have been subaerial and were active at 

1.3 Ma and 0.5 Ma, respectively, with the style of edifice changing from the previous large cones 

to E-W elongate, composite structures. The progression of magmatism suggests that Pico erupted 

near 91.5W near the location of the Galápagos plume while the others formed well east of the 

plume center. If the locations of initial volcanism are calculated using the eastward velocity of 

the Nazca plate, there appears to be a progression of younger volcanism toward the east, opposite 

what would be expected from a fixed mantle plume source. The rate that initial volcanism moves 

eastward is close to the plate velocity. A combination of higher temperature and geochemical 

enrichment of the thickened lithosphere of the Galápagos platform could have provided a 

viscosity gradient at the boundary between the thick lithosphere and the thinner oceanic 

lithosphere to the northeast. As this boundary moved eastward with the Nazca plate, it 

progressively triggered shear-driven mantle upwelling and volcanism. 

1. Introduction 

The Galápagos magmatic province in the eastern Pacific consists of subaerial volcanoes that 
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form the well-known islands and a variety of submarine volcanic features (Figure 1).  Several 

characteristics of this province adhere to the “classic” hotspot model, such as a well-defined 

volcanic center with a chain of extinct islands extending in the direction of motion of the Cocos 

and Nazca Plates (Morgan, 1972).  The westernmost islands of Fernandina and Isabela are the 

most active, have compositions consistent with a deep mantle source (Kurz and Geist, 1999; 

White et al., 1993), and lie over a low velocity mantle zone (Byrnes et al., 2015; Geist et al., 

2005; Hooft et al., 2003; Villagómez et al., 2014) that represents a mantle plume.  To the east of 

Fernandina, there is a general increase in the oldest ages of the islands and seamounts (White et 

al., 1993), consistent with the hotspot model. Despite these characteristics, there are several 

observations that do not support a simple hotspot model.  While the oldest ages do increase to the 

east, significant magmatism on the islands can persist hundreds of kilometers from Fernandina. 

For example, young, relatively recent lavas are found 200 km east of Isla Fernandina on Isla San 

Cristobal (Geist et al., 1986; White et al., 1993). There also is recent (<1 Ma) magmatism to the 

north of the main platform between the inferred center of the hotspot and the Galápagos 

Spreading Center (GSC). This set of volcanoes is collectively referred to as the Northern 

Galápagos Volcanic Province (NGVP) and include five young islands (Wolf, Darwin, Pinta, 

Marchena, and Genovesa) (Harpp et al., 2002; White et al., 1993) and a collection of seamounts 

distributed along several volcanic lineaments arrayed in a fan-shaped pattern (Mittelstaedt et al., 

2012; Sinton et al., 2003) (Figure 1). The volcanism of the NGVP is likely a result of the 

interactions between the GSC and the hotspot and there are several models that attempt to 

explain this relationship (Harpp and Geist, 2002; Mittal and Richards, 2017; Mittelstaedt et al., 

2014; Mittelstaedt and Ito, 2005; Morgan, 1978; Sinton et al., 2003).  

While the current NGVP represents the more recent (<1 Ma) interaction between the GSC and 

the Galápagos hotspot, to determine if this pattern of volcanism has been a characteristic of the 

region in the past we need to examine the Northeast Seamounts, a distinct collection of 

volcanoes that lie to the northeast of San Cristobal and are separated from the main, shallow 

platform by ~2000m depth.  These seamounts were mapped and sampled during Leg 2 of the 

1990 PLUME2 expedition of the R/V Thomas Washington and during the 2001 SO158 

MEGAPRINT expedition of the R/V Sonne.  Major- and trace element data of four glass samples 

from MEGAPRINT are reported by Peterson et al. (2017). Data from PLUME2 have been 

reported previously including limited trace element and Sr-Nd-Pb isotopic ratios (Harpp and 
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White, 2001), 
3
He/

4
He ratios (Graham et al., 1993), major and trace geochemistry (Sinton et al., 

2014) and radiometric dating (Christie et al., 1992; Sinton et al., 1996).  However, since the 

original radiometric ages were reported, more precise mass spectrometers and low-blank 

extraction systems have been built to better analyze the low K2O, young basalts that characterize 

this region.  In this paper, we report new radiometric age and geochemical analyses from both 

cruises and then use the new data to constrain the temporal and tectonic evolution of the 

Northeast Seamounts. 

2. Seamount and Sample Descriptions 

There are at least seven identified seamounts in the region northeast of the relatively shallow 

Galápagos Platform (Figure 1). Four of the seamounts were mapped using multibeam sonar and 

dredged at seven sites during PLUME2 and three other seamounts were partly mapped and 

sampled during MEGAPRINT.  Sunray and Fitzroy were named during PLUME2 and here we 

give names to the others.  Descriptions of the morphology and petrology of the dredged samples 

from PLUME2 are published in detail elsewhere (Sinton, 1992; Sinton et al., 2014). Dredge site 

locations and general rock descriptions for each seamount are reported in Table 1 and relevant 

details are described below.   

Sunray Seamount is a truncated cone with a 20 km basal diameter that rises from a depth of 

~2000 meters below sea level (mbsl) to a ~9 km diameter flat-topped peak 370 mbsl. It was 

sampled at two sites during PLUME2 (PL2-9 and -10).  Recovered rocks include glassy, 

vesicular pillow basalts (often with small olivine and Al-rich spinel phenocrysts) and weathered, 

plagioclase-phyric pillow basalts. These make up five distinct lava groups based on petrology 

and geochemistry (Sinton et al., 2014) (Table 1). To the northeast of Sunray lies an E-W 

elongated seamount with a peak depth of 1215 mbsl and is ~20 km in length. This seamount, 

which we are calling Iguana, was sampled at site DR83 during MEGAPRINT, recovering 11 

aphyric basalt fragments, some with small pockets of fresh glass.  The basalt fragments have 

thick alteration haloes with fresh interiors.  

Fitzroy Seamount is another truncated cone that rises from a ~25 km diameter base at ~2300 

mbsl to a ~10 km diameter flat top at 200 mbsl. During PLUME2, Fitzroy was sampled at sites 

PL2-11 and -12, recovering aphyric basalts, olivine-plagioclase phyric basalts and plagioclase 
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ultraphyric basalts (Sinton et al., 2014). Its flat top and the recovery of rounded cobbles indicate 

that the seamount had experienced subaerial erosion and is likely a drowned island (Christie et 

al., 1992). Aligned to the northeast of Fitzroy is a small ~500 m tall volcanic cone and then a 

larger seamount with a ~16 km basal diameter at ~2500 m rising to ~800 mbsl. This seamount, 

here named Beagle Seamount, was dredged on its northeastern flank at site DR80 during 

MEGAPRINT, which recovered six aphyric basalt fragments with Mn-crusts. 

Largo Seamount is a ~42 km long composite structure that trends roughly E-W with a peak that 

lies ~700 m below sea level. It was sampled at two locations (PL2-13 and -14) during PLUME2 

and two sites (DR72 and DR72A) on the western flank during MEGAPRINT. Dredged rocks 

from the PLUME2 sites include aphyric, plagioclase-olivine phyric, and plagioclase ultraphyric 

basalts that all have very depleted geochemical compositions (Sinton et al., 2014, 1993). The 

dredges on the western end of Largo at sites DR72 and DR72A recovered fresh, aphyric and 

non-vesicular pillow basalt fragments with glassy rims.  

Grande Seamount lies to the southwest of Largo Seamount. Its roughly circular base has a 

diameter of ~30 km and rises from ~2000 mbsl to a somewhat flat peak that is at ~250 mbsl and 

approximately 5 km across. It was dredged during MEGAPRINT at one site (DR73) near the 

base of the northern flank, recovering six variably-altered aphyric basalt fragments, some with 

Mn-crusts, and a clastic sediment cobble. 

Pico Seamount is the westernmost of the volcanoes of this study and it lies due north of Isla San 

Cristobal.  It is a cone with a ~12 km basal diameter and a slightly rounded top. The peak rises to 

~800 mbsl from the 1400-1550 mbsl seafloor around it. This seamount was sampled at dredge 

site PL2-16, which recovered three basalt clasts with Mn coatings but no glass.   

3. Methods  

3.1 Major and Trace Element Analysis 

Major elements of whole rock powders for five MEGAPRINT samples (Grande, Beagle, western 

flank of Largo, and Iguana) were determined on fused beads on a Philips X'unique PW 1480 X-

ray fluorescence spectrometer (XRF) at GEOMAR. Rock standards JA-2, JB-2 and JB-3 

measured along with the samples lie within 5% of the working values of Govindaraju (1994) 

except MnO (6%) and P2O5 (7%) for JB-3. Major elements for PL2-16-3 (Pico) were determined 
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using the Philips PW2404 XRF spectrometer at Colgate University with methods described in 

Sinton et al. (2014). Trace elements for the MEGAPRINT samples were measured on an Agilent 

7500 ICP-MS at the Institute of Geosciences (Kiel University) after the methods of Garbe‐

Schönberg (1993). When compared to GEOREM reference values (Jochum et al., 2016) the 

accuracy of rock standards prepared along with the samples lie within 5%, except Ta (9%) for 

BHVO-1 and within 9% for BIR-1 except Ta (12%), Th (11%) and U (15%) (see Appendix). 

Trace elements for sample PL2-16-3 were determined using the Thermo Fisher iCAPQ at 

Middlebury College (Vermont). Solutions were prepared by fusing 0.2g of sample with 1.8g 

lithium metaborate flux in a platinum crucible at 1050
o
C.  The melt was then dissolved in 

ultrapure 5% HNO3.  Cs, Re and Rh internal standard spikes were added and solutions were 

diluted with ultrapure 5% HNO3 to 1000x to analyze Sc, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, 

Ho, Er, Tm, Yb, Lu, Th and U and 2000x solution was used to analyze V, Cr, Co, Ni, Cu, Zn, 

Rb, Sr, Y, Zr, Nb, Ba, Hf, Ta, and Pb. Quality control samples were run after every five samples. 

Calibration curves, used to calculate elemental concentrations in unknowns, were constructed 

from analyses of synthetic standards, including blank, 2.5 ppb, 5.0 ppb, 10.0 ppb, and 50.0 ppb 

solutions and BCR-2 was analyzed as an unknown.  

3.2 Sr-Nd-Pb Isotope Analysis 

Sr-Nd-Pb isotope analyses were performed on one glass sample (DR72-3) and five whole rock 

samples (DR72-1, 72a-1, 73-4, 80-1, and 83-1) recovered during MEGAPRINT. All samples 

were leached in 2N HCl at 70°C for 30 minutes and rinsed three times with ultrapure (u.p.) water 

prior to dissolution in a 5:1 mixture of concentrated HF u.p and HNO3 u.p. The element 

chromatography followed the methods outlined in Hoernle et al. (2008). Sr-Nd isotopic ratios 

were determined on a TRITON thermal ionization mass spectrometer (TIMS) and Pb isotopes on 

a MAT262 RPQ2+ TIMS at GEOMAR. Sr and Nd isotopic ratios are normalized to 
86

Sr/
88

Sr= 

0.1194 and 
146

Nd/
144

Nd= 0.7219 respectively. External errors reported below are 2SD. NBS987 

gave 
87

Sr/
86

Sr = 0.710251 ± 0.000011 (N=44) and La Jolla 
143

Nd/
144

Nd= 0.511845 ± 0.000006 

(N=68). NBS981 (N=37) gave 
206

Pb/
204

Pb = 16.899 ± 0.007, 
207

Pb/
204

Pb = 15.436 ± 0.008, 

208
Pb/

204
Pb = 36.525 ± 0.026. The measured NBS981 values are mass bias corrected to NBS981 

Double Spike (DS) values of Hoernle et al. (2011) and the adjustment factored into the sample 

data. Total chemistry blanks were <100 pg for Sr, Nd and Pb and thus considered negligible. A 
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subset of five whole rock samples (PL2-9-50, 11-7, 12-5, 12-7, and 13-34) from PLUME2 have 

been recently analyzed for Sr-Nd and Pb-DS on the TRITON Plus at GEOMAR. The sample 

data is reported relative to 
87

Sr/
86

Sr = 0.710250 ± 0.000006 (N=7) for NBS987 and La Jolla 

143
Nd/

144
Nd= 0.511850 ± 0.000004 (N=5). Long term DS corrected NBS981 values are 

206
Pb/

204
Pb = 16.9407 ± 0.0019, 

207
Pb/

204
Pb = 15.4977 ± 0.0019 and 

208
Pb/

204
Pb = 36.7199 ± 

0.0047 (N=78, since 2015). 

3.3 
40

Ar/
39

Ar Age Analysis 

40
Ar/

39
Ar step heating analysis was used to determine the eruptions ages of the Northeast 

Seamount samples. However, using dating techniques based on the decay of 
40

K to 
40

Ar to 

analyze the young (<5Ma) submarine basalts in this region is a challenge because of the low K2O 

content of the mostly tholeiitic and often primitive lavas that were recovered.  In fact, some of 

the rock samples, particularly those from site PL2-14 and D72/72a (Largo Seamount), have such 

low K2O (<0.10% wt.) that they are unsuitable for 
40

Ar/
39

Ar analyses because there would be 

insufficient 
40

K to generate measurable radiogenic 
40

Ar. From Largo Seamount, only PL2-13-4 

had K2O content (0.11% wt.) above our cutoff of 0.10%.   

For all the analyses, material was taken from the least altered interiors of the recovered rocks 

then crushed to a 210–300 µm fraction. All crushed material was cleaned by a series of acid 

leaching steps in an ultrasonic bath as follows: 1N HCl (60 min), 6N HCl (60 min), and 1N 

HNO3 (60 min).  This was followed by ultrasonic cleaning in ultrapure deionized water and 

handpicking under a binocular microscope to remove any altered grains and phenocrysts. In this 

study, only groundmass separates free of phenocrysts were used because olivine and plagioclase 

phenocrysts, particularly those with melt inclusions, often contain excess (mantle-derived) 
40

Ar 

that could result in an apparent age that is older than the actual crystallization age (Sharp and 

Renne, 2005). Groundmass is also preferred to plagioclase phenocrysts for submarine basalts 

because, in general, the groundmass has more K2O than the plagioclase (Duncan and Hogan, 

1994). 

40
Ar/

39
Ar radiometric dating was conducted at Oregon State University (OSU) according to the 

procedures described in Koppers et al. (2011). The exception was sample PL2-16-3 which was 

analyzed at the geochronology lab at Lamont-Doherty Earth Observatory (LDEO). 
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Approximately 100 mg of each cleaned sample was wrapped in an aluminum foil disk and 

placed in a vacuum-sealed quartz glass tube with aliquots of the FCT-3 biotite flux monitor 

(28.03 ± 0.18 Ma, 1; (Renne et al., 1998) placed at intermittent heights. Irradiated samples were 

incrementally heated by scanning a defocused CO2 laser. Mass analysis at OSU was completed 

using a Thermo Scientific Model ARGUS VI multi-collector mass spectrometer and mass 

analysis at LDEO was done using a Micromass VG 5400 instrument.  After measuring all 

heating steps, plateau ages and isochron ages were calculated as weighted means with 1/σ
2
 as 

weighting factor (Taylor, 1997) and as YORK2 least squares fits with correlated errors (York, 

1968) using the ArArCALC software from Koppers (2002).  All ages were calculated using the 

decay constant of 5.530 ± 0.097 × 10
−10

 1/yr (2) as reported by Min et al. (2000). Reported 

errors on the 
40

Ar/
39

Ar ages are at the 95% confidence level (2) including 0.3–0.4% standard 

deviation in the J-value.   

4. Results 

4.1 Major, Trace, and Sr-Nd-Pb Isotope Results 

Sinton et al. (2014) noted that the Northeast Seamount lava compositions from the PLUME2 

dredges fall into three general categories: 1) the light rare earth element (LREE) enriched and 

isotopically enriched sample from Pico (PL2-16-3); 2) very slightly LREE-enriched basalt 

groups from Sunray (PL2-9-50) and Fitzroy (PL2-11-5); and 3) incompatible trace element 

depleted tholeiitic basalts that characterize Largo (PL2-13 and -14) and the remaining lavas of 

Sunray and Fitzroy.  Multi incompatible (or spider) element diagrams (Figure 2) of the new data 

normalized to primitive mantle show that the MEGAPRINT lavas from Grande, the western 

flank of Largo, Beagle, and Iguana all fall under the third category of depleted tholeiites. In 

Figure 2A the depleted lavas show a pronounced positive Sr anomaly with the exception of the 

one sample from Grande Seamount. 

The new isotopic analyses for samples from Grande, the western flank of Largo, Beagle, and 

Iguana show depleted signatures with 
87

Sr/
86

Sr ranging from 0.7025 to 0.7026, Nd = 9.20-9.97, 

206
Pb/

204
Pb = 18.34-18.67, 

207
Pb/

204
Pb = 15.50-15.52, and 

208
Pb/

204
Pb = 37.83-38.11 (Figure 3). 

The new isotopic analysis of PLUME2 samples were done to fill in data gaps as there were no 

analyses from the trace element enriched Sunray group nor the depleted lava group from site 

PL2-11 on Fitzroy and to reanalyze samples from Fitzroy (PL2-12) and Largo (PL2-13) reported 
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by Harpp and White (2003) that appeared to have been affected by uncontrolled Pb isotopic 

fractionation. These data are now also consistent with derivation from a depleted mantle source. 

4.2 
40

Ar/
39

Ar radiometric dating 

The results from the 
40

Ar/
39

Ar analyses are presented in Table 3 and plots of the step-age 

plateaus are shown in Figure 4.  We use the following accepted criteria (Koppers et al., 2011; 

Lanphere and Dalrymple, 1976; Pringle, 1993) to determine the reliability of the 
40

Ar/
39

Ar ages:  

 High-temperature plateaus in the age spectra should include more than three 

incremental heating steps and at least 50% of the total amount of 
39

ArK released;  

 the age step plateau and isochron ages should be concordant at the 95% confidence level;  

 the 
40

Ar/
36

Ar intercepts on the isochron diagrams should be concordant with 

the atmospheric value of 295.5 at the 95% confidence level;  

 the mean square of weighted deviations (MSWD) (Roddick, 1978; York, 1968) for age 

step plateau and isochron ages should be (<2) when compared to student’s t test and F 

statistic critical values for significance, respectively. 

Ten analyzed samples gave reliable age information (Table 3 and Figure 4) that meet the above 

criteria.  Pico Seamount (PL2-16-3) was analyzed in duplicate (same irradiation, separate 

aliquots) with both analyses indicating excess 
40

Ar with initial 
40

Ar/
36

Ar from the isochrons 

above the atmospheric value of 295.5.  Both samples have step ages recalculated with the 

respective initial 
40

Ar/
36

Ar ratios determined from the isochrons and these spectra and plateau 

ages are shown in Figure 4. The two plateau ages from Pico are averaged to give an age of 5.2 ± 

0.5 Ma which is concordant with the isochron ages (Table 3).  

5. Discussion 

5.1 Comparison to Prior Age Data 

To use the age data to constrain the magmatic and tectonic history of the Northeast Seamounts, 

we need to first compare the new 
40

Ar/
39

Ar ages to those previously reported for Sunray, Fitzroy, 

and Pico Seamounts by Sinton et al. (1996) (Table 4). For Sunray, the 3.1 ± 0.1 Ma 
40

Ar/
39

Ar 

plateau age reported in this study is younger than the previous 5.7 ± 1.2 Ma (2σ error) and the 

3.8 ± 0.1 Ma 
40

Ar-
39

Ar plateau age for PL2-10-5 reported here is younger than the previous age 

of 5.6 ± 2.8 Ma. For Fitzroy, the three new 
40

Ar/
39

Ar plateau ages from both dredge sites are 
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between 1.7 ± 0.2 Ma to 2.5 ± 0.1 Ma are younger than 3.2 ± 1.0 Ma (2σ error) age from PL2-11 

reported by Sinton et al. (1996). In these instances, the new ages are consistently lower and more 

precise than those previously reported. For Pico Seamount (PL2-16), the age reported here of 5.2 

± 0.5 Ma for PL2-16-3 is within the uncertainty of the 5.6 ± 0.6 Ma (2σ error) previously 

reported for sample PL2-16-2.   

The overall pattern is that the younger, somewhat more depleted samples from Fitzroy and 

Sunray have systematically younger and more precise ages compared to the previously published 

analyses whereas the more enriched and older Pico samples have similar ages. This could be 

explained by a combination of better sample preparation and newer analytical equipment. The 

40
Ar/

39
Ar method is based on the decay of 

40
K to 

40
Ar (half-life 1.251 x 10

9
 m.y.) so young lavas 

with low K2O like those from Sunray and Fitzroy did not have time to generate much radiogenic 

40
Ar. The prior analyses were done using a system with a high volume (and therefore a high 

blank) extraction system with sample heating done with an induction coil and a large sample 

holder so the low amount of radiogenic 
40

Ar from these samples could have been drowned by the 

atmospheric component (Duncan and Hogan, 1994). In addition, the mass analysis was done 

with a low-sensitivity mass analyzer (MS10S) with mass peaks recorded by a stylus on paper. 

The newer ARGUS system uses a much more precise mass analyzer to measure gas from a very 

small, low-blank, all-metal extraction system and sample heating was done by laser. Finally, the 

sample preparation used in the earlier study was not as rigorous as the one employed in this 

work, specifically, the acid leaching steps were not followed and phenocrysts that may contain 

excess 
40

Ar were not removed. It is not clear which of these variables led to a decrease in the 

measured ages from Sunray and Fitzroy, but the result is that we use only the new age data for 

these seamounts in the discussion. Our results suggest that older studies reporting 
40

Ar-
39

Ar 

analyses of young (< 5 Ma), low K2O (< 0.2%) lavas should be reassessed and perhaps 

reanalyzed. 

5.2 Mantle Sources and Petrogenetic Processes 

Prior isotopic studies of Galápagos volcanism have identified multiple distinct mantle sources 

(e.g., Blichert-Toft and White, 2001; Harpp and White, 2001; Hoernle et al., 2000; Kurz and 

Geist, 1999; White et al., 1993): 1) An enriched central Galápagos domain (CGD or PLUME) 

source common to the central-western Galápagos volcanoes that make up Fernandina and most 
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of Isabela; 2) An enriched southern domain (SGD and FLO) component that characterizes 

Floreana that has more radiogenic Pb isotopic ratios than CGD; 2)  a Northern Galápagos 

Domain (NGD or WD) component that is evident in the northwestern islands of Wolf and 

Darwin and is distinguished by having elevated and 
208

Pb/
204

Pb at a given and 
206

Pb/
204

Pb ratio; 

and 4) a depleted eastern Galápagos domain (EGD or DGM) with relatively unradiogenic 

isotopic ratios similar to the depleted upper mantle. A combined Sr-Nd-Pb isotopic dataset that 

includes our new data and those reported by Harpp and White (2003) show that all the Northeast 

Seamount lavas except for the Pico sample are derived from a depleted mantle source and fall 

within or near the EGD (Figure 3). Helium isotopic analysis from Sunray, Fitzroy, and Largo are 

consistent with this conclusion (Graham et al., 1993). Pico has consistently more radiogenic 

isotopic ratios that fall within the CGD.  

 

Within the field of depleted lavas, the plot of 
87

Sr/
86

Sr vs εNd (Figure 3a) shows a relatively 

narrow range of high εNd except PL2-9-50, one of the slightly trace element enriched Sunray 

lavas, has a slightly lower value. 
87

Sr/
86

Sr for some samples is in the lower range of EGD, but 

several samples trend toward increasing values at a given εNd. This could be a due to 

incorporation of seawater or it could be due to interaction with the lithosphere. Saal et al. (2007) 

noted that many Galápagos island and seamount lavas that erupted east of 91.5°W show a similar 

trend in 
87

Sr/
86

Sr combined with a positive Sr anomaly. They attributed this to interactions of the 

melt with plagioclase cumulate during ascent in the lithosphere. While this could explain both 

the higher 
87

Sr/
86

Sr and positive Sr anomalies (Figure 2) that characterize most of the depleted 

Northeast Seamount lavas, not all of the samples with a positive Sr anomaly have higher 

87
Sr/

86
Sr ratios than expected. In any case, we do not use the Sr isotopic ratios to constrain 

mantle source(s).    

 

Incompatible trace element ratios may be used to help constrain the degree of partial melting.  La 

is more incompatible than Sm, so La/Smn ratios can be used as an indicator for the degree of 

partial melting assuming that the mantle source has a constant La/Smn.  Figure 5 shows that there 

are three general groups in La/Smn from highest to lowest: 1) Pico; 2) the slightly incompatible 

element enriched lavas from Fitzroy (PL2-11-5) and Sunray (9-50, -56, -65); and 3) the 

remaining lavas with ratios between 0.2 to 0.6. The middle group generally have depleted Nd-Pb 

ACCEPTED MANUSCRIPT



AC
CEP

TE
D M

AN
USC

RIP
T

11 

isotopic ratios but have very slightly higher radiogenic 
207

Pb/
204

Pb and 9-50 has slightly more 

radiogenic εNd compared to the lower La/Smn samples. A possible explanation for the La/Smn 

pattern is that, except for Pico, the Northeast Seamount lavas came from a common depleted 

mantle and the elevated La/Smn for the Sunray and Fitzroy lavas are from smaller degrees of 

partial melting. 

 

Ratios of Sm/Ybn can be used as a measurement of depth of melting (and lithospheric thickness) 

by taking advantage of the heavy REE being compatible in garnet, and so deeper melting in the 

garnet stability field of the mantle will increase the Sm/Ybn ratio (Gibson and Geist, 2010). If 

lithospheric thickness controls Sm/Ybn ratios, then we would expect the highest values closest to 

the thick lithosphere of the Galápagos Platform and decrease to the northeast toward thinner and 

younger lithosphere (Figure 6). Specifically, we would expect highest Sm/Ybn at Pico followed 

by Grande, Sunray, and Fitzroy, then lowest values from Largo, Beagle, and Iguana. Pico does 

have the highest ratio of 2.2 and the other Northeast Seamount lavas have Sm/Ybn within a range 

of 0.9-1.4. The lowest Sm/Ybn values of 0.8-0.9 are from the western end of Largo (DR72) but 

the other samples from this seamount have higher ratios (~1.2) comparable to the others. Overall, 

there is no discernible spatial pattern of Sm/Ybn and it can vary within individual seamounts, so 

with the exception Pico, the lithospheric thickness may not be appreciably different in the region 

of the other seamounts in this study. In fact, the gravity-based model of Feighner and Richards 

(1994) does not show any data beyond the 8 km line on which Grande, Sunray, and Fitzroy are 

near.  

5.3 Subsidence, Drowned Islands and Paleogeography 

The flat tops of several of the seamounts suggest they may be guyots (drowned islands) but by 

itself a flat top does not necessarily indicate past subaerial erosion, as this feature is evident in 

other Pacific seamounts by sedimentation and filling of surface topography (e.g, Karig et al., 

1970). Another possibility is that the flat top is constructional and not erosional – such 

mechanisms that have been invoked include lava ponding within a caldera and inflation by 

shallow lava injection (e.g., Chaytor et al., 2007; Clague et al., 2000; Fornari et al., 1984). Other 

lines of evidence are used to determine subaerial erosion such as wave cut terraces, oxidized soil 

layers and terrestrial/tidal sediments (Buchs et al., 2018). Christie et al. (1992) reported the 

recovery of rounded cobbles on Fitzroy and two orange, weathered basalt cobbles from dredge 
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PL2-13 near the peak on the eastern end of Largo, leading them to conclude that both had been 

subaerial. Unfortunately, the existing bathymetric mapping does not have high enough resolution 

to distinguish wave cut terraces or beaches and the sample dredging was not designed to recover 

sediments or have any stratigraphic control. Therefore, we rely on subsidence modeling using the 

radiometric ages and accepted subsidence rates for oceanic lithosphere to calculate which 

seamounts were subaerial in the past, i.e., were islands, and estimate their age of submergence.   

 

To model the subsidence, we assume that thermal cooling begins after magmatism has ceased so 

we use the youngest radiometric age for each seamount as the starting point. In order to calculate 

the range of subsidence from that age, we apply two different rates: 1) that of ridge-derived 

oceanic lithosphere d(t) = 365t
1/2

 where t is time in millions of years and d is meters of 

subsidence at time t (Stein and Stein, 1992); and 2) that of the Galápagos Platform (Geist et al., 

2014) using z = -1.14*(age
1/2

) + 933 where z is meters of subsidence and age is years.  We then 

subtract the current seamount peak depth from the total subsidence to estimate the initial 

elevation of the peak of each volcano (Table 5).  The calculated subsidence is greatest using the 

faster platform subsidence rate compared to the ocean lithosphere rate. As a result, the initial 

island peak elevation is highest using the platform subsidence model and lowest with the oceanic 

lithosphere model.  

The results show that Sunray, Fitzroy, Grande, and Pico were islands in the past, consistent with 

their flat tops that could have formed by wave erosion. The oceanic lithosphere subsidence rate 

shows that Sunray, Fitzroy, and Grande were between 300-400 meters above sea level (masl) 

while the platform rate shows 400-900 masl. The calculated elevations appear to be reasonable 

considering that the historically active off-platform islands of Pinta and Marchena are currently 

~600 and ~200 masl, respectively. The calculated initial elevation for Pico Seamount using the 

oceanic lithosphere model is 32 masl so it would have been a small, ~ 2 km diameter island – 

about the same size as Rábida Island located south of Santiago. The platform subsidence-based 

model shows that Pico would have been 870 masl, which seems unrealistically high considering 

that Rabida is 250 masl. Beagle and Iguana Seamounts, which do not display the flat top of a 

guyot, could not have been subaerial as our calculations show that both were never close to the 

sea surface. 
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Neither subsidence model shows that the 1.3 Ma age of a pillow basalt from the eastern peak of 

Largo is enough time for the seamount peak to subside to its current 650 mbsl. If the peak of 

Largo was at some point subaerial it would need to be older than 2 Ma (using the platform 

subsidence rate) to 3.2 Ma (using the oceanic lithosphere subsidence rate). The other possibility 

is that the weathering of the recovered rocks was due to submarine alteration processes 

(palagonitization) and that Largo was never above sealevel.   

The submergence age of the former islands can be estimated using the two subsidence rates and 

the calculated peak elevations (Table 5).  The lifetime of Pico Island could have been as short as 

0.3 m.y. using the oceanic lithosphere model or as long as 2.6 m.y. with the platform model, but 

since we consider the platform model unrealistic for Pico, the former value may be closer to the 

actual timespan. Sunray and Grande were both islands for approximately the same period, from 

3.1-3.3 Ma to 2.2-1 Ma. Fitzroy was emergent at 1.7 Ma and submerged between 0.8-0.3 Ma. 

The three younger and larger seamounts represent a group of three islands of 5-10 km diameter 

(based on the proportions of their flat peaks) that existed north of the main Galápagos platform 

during the period of approximately 3 to 0.5 Ma.      

We can reconstruct the paleogeography of the islands and seamounts over the past 5 m.y. using 

our subsidence calculations and the motion of the Nazca Plate relative to the hotspot reference 

frame (Figure 7). This replaces a similar model that was presented by Sinton et al. (2014) who 

used the older and now discarded radiometric ages and did not include data from Largo, Grande 

and Iguana. We assume that the Nazca Plate has maintained an eastward motion relative to the 

hotspot at a rate of 39 km-my
-1 

since 5 Ma (Sinton et al., 1996) – this velocity is based on the 

oldest radiometric ages from the islands.  This value lies between the 31 km-my
-1 

present day 

absolute plate motion velocity model GSRM-APM-1 based on shear wave splitting (Kreemer, 

2009) and the NNR-MORVEL56 no-net-rotation model value of 56 km-my
-1 

 (Argus et al., 

2011). In our model, we overlay the estimated position of the GSC at different time periods 

(Mittelstaedt et al., 2012; Wilson and Hey, 1995). Pico is the first to erupt on the shallower 

northern edge of the platform at about 5 Ma (Figure 7) when the GSC was close to or over the 

hotspot. At 3.8 Ma, Sunray Island is active to the northeast of the main platform where San 

Cristobal may have been active, although there are no radiometric ages older than 2.3 Ma (White 

et al., 1993).  During the time that Sunray was an active island, Grande Island erupts by 3.1 Ma 
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to the east of Pico.  Between 2.5 Ma and 1.7 Ma, Fitzroy Island and Beagle Seamount were 

active. Fitzroy would have remained an island for possibly a span of ~ 2 m.y. until 0.8 Ma to 0.3 

Ma. Largo Seamount was active at least by 1.3 Ma, which would place it just south of the current 

position of Genovesa Island.  Iguana Seamount (DR83) was the most recent to erupt and the 

furthest to the east. 

In summary, our calculations based on the data presented here indicate that Sunray, Fitzroy, 

Grande and likely Pico are drowned islands. The existence of drowned Galápagos Islands 

(Christie et al., 1992; Sinton et al., 2017; Werner et al., 1999) extends the time available for 

species evolution and inter-island radiation (Benavides et al., 2009; Grant et al., 1996; Parent et 

al., 2008). The islands of Sunray, Fitzroy, and Grande represent a significant cluster of islands 

that existed for ~3 m.y. and this will add to the ongoing study of genetic evolution on the 

archipelago.   

5.4 Evolution of Volcano Morphology  

There is a change in volcano morphology at ~ 1.5 Ma from the generally conical shapes of Pico, 

Sunray, Fitzroy, Beagle, and Grande to the east-west elongated, composite morphology of Largo 

and Iguana (Figure 1). The east-west elongation is also a characteristic of the younger Genovesa 

Ridge to the west (Harpp et al., 2003, p. 2003). Elongation of seamounts and volcanic lineaments 

in the NGVP has been attributed to the lithospheric stress field associated with the Galápagos 

Transform Fault (GTF) (Harpp and Geist, 2002; Harpp et al., 2003) and the extension of the 

southern part of the GTF at ~ 1 Ma (Mittelstaedt et al., 2012). Linear and conical seamounts are 

found in other hotspot settings. For example, (Chaytor et al., 2007) observed that the Cobb and 

Bowie seamounts in the Gulf of Alaska are both conical and linear and suggested that the latter 

are constructed by eruptions along a pre-existing lithospheric weakness such as fossil transform 

fault or ridge segment and that subsequent magmatism may eventually focus to a central location 

and the seamount evolved to a conical shape. Both linear and conical seamounts have been 

observed in the region of the Azores (Lourenço et al., 1998) with the linear volcanoes attributed 

to the regional stress field (Casalbore et al., 2015). 

The pre-existing structure of the lithosphere below the Northeast Seamounts is not well 

constrained. However, if we assume that it formed at an E-W trending GSC, we would expect E-

W parallel zones of weakness from normal faulting and ridge propagation. The cone shape of the 
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older volcanoes suggests that there was either no influence from pre-existing structural weakness 

in the lithosphere and/or there was no dominant direction of regional lithospheric stress. Largo is 

the closest of the seamounts to the GSC and very likely erupted over the youngest lithosphere 

(Figure 6) which is estimated to have an age of 3-4 Ma (Villagómez et al., 2011) so its E-W 

strike could reflect reactivation of normal faulting parallel to the GSC.  However, this does not 

necessarily explain the linearity of Iguana which is the farthest from the ridge axis and 

presumably erupted on older lithosphere.    

5.5 Apparent Eastward Progression of Magmatism 

To determine if there is any temporal-spatial pattern of magmatism of the Northeast Seamounts, 

we plot the oldest age of each seamount versus the longitude of the current location (Figure 8A). 

In this figure, a line represents the expected age progression of volcanoes that erupted at the 

current position of the hotspot under Fernandina (91.5W) assuming that the Nazca plate has 

been moving eastward at a velocity of 39 km-my
-1

 (Sinton et al., 1996). As we established earlier 

in this paper, Pico formed over the hotspot so it lies on this trend but all the other seamounts lie 

well below this line indicating that they erupted east of the current hotspot. There appears to be 

no pattern to the age and position of these volcanoes in Figure 8A. However, if the longitude of 

initial magmatism for each seamount is backtracked to the west (Figure 8B), then a pattern does 

appear. It shows an eastward progression of the location of initial volcanism for all the Northeast 

seamounts except Pico, which is opposite the general trend for the Galápagos Islands. A simple 

linear regression of the trend (excluding Pico) is 0.429 longitude-my
-1

 which at this latitude is 

the equivalent of 47 km-my
-1

, slightly faster than the velocity of the Nazca plate that we use but 

within the range of other models.  Thus, the location of seamount volcanism seems to be related 

to plate movement. 

One observation that could explain this trend is that the Northeast Seamounts are located at the 

transitional edge between the thickened (and likely relatively warm) lithosphere of the Galápagos 

Platform and the thinner, colder surrounding lithosphere (Figure 6). As the platform with its 

thicker keel moves eastward, some of the asthenosphere displaced by the platform keel could 

deflected upward and result in decompression melting. This mechanism is based on the concept 

of shear-driven upwelling (SDU) (Conrad et al., 2010) that has been used to explain non-plume 

intraplate magmatism such as the Pukapuka, Sojourn, and Hotu-Matua volcanic ridges off the 
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East Pacific Rise (Ballmer et al., 2013). In these examples, upwelling of the asthenosphere and 

decompression melting are triggered by horizontal asthenospheric flow in the presence of mantle 

viscosity heterogeneities caused by pockets of geochemically enriched mantle. Mantle viscosity 

heterogeneities that trigger SDU can be differences in mantle temperature, composition, or both 

(Conrad et al., 2011, 2010). If we apply this concept to the Northeast Seamounts, we propose 

that Pico formed by magmatism associated with the Galápagos mantle plume. When it erupted it 

was close to the estimated location of the plume center and its composition is consistent with 

derivation from the CGD/PLUME mantle source (Figures 3 and 7). As the platform migrated 

eastward, SDU along the platform edge could have been triggered by viscosity differences 

between the cooler depleted upper mantle and warmer mantle beneath the platform derived from 

the mantle plume. The slightly incompatible element-enriched lavas from Sunray and Fitzroy 

indicate that there may have been viscosity differences from geochemically enriched material. In 

summary, a combination of higher temperature and geochemical enrichment could have provided 

a viscosity gradient at the boundary between the thick lithosphere of the platform and the thinner 

lithosphere to the northeast. As this boundary moved eastward with the Nazca plate, it 

progressively triggered SDU and the creation of the Northeast seamounts and islands. 
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Figure Captions 

Figure 1. Map of the Galápagos region – the red rectangle shows the extent of the map of the 

Northeast Seamounts, the dashed white line marks the NGVP. Contour line interval is 400 m. 

Dredge sites are shown with white circles. The maps were made using bathymetry from 

GeoMapApp (Ryan et al., 2009).  

Figure 2. Primitive mantle-normalized trace element diagrams for examples of A depleted and B 

enriched lavas of the Northeast Seamounts presented in this paper and from Sinton et al. (2014).  

Normalizing values are from Sun and McDonough (1989). 

Figure 3. Plots of 
87

Sr/
86

Sr vs. Nd and 
206

Pb/
204

Pb vs. 
208

Pb/
204

Pb for the Northeast Seamounts. 

Data are from Table 2 and some PLUME2 (PL) samples are from Harpp and White (2001). Blue 

circles represent samples with depleted incompatible trace elements, black circles are samples 

with moderate trace element enrichment from Sunray and Fitzroy (Figure 2), and the red circle is 

the sample from Pico (PL2-16). The one sample from Pico (PL2-16-3) does not have reported 

87
Sr/

86
Sr so the red line represents the Nd value for that sample. The Eastern Galápagos 

Spreading Center (EGSC) field is composed of data from samples recovered east of the 90.5°W 

transform and west of the 85°W transform (Graham et al., 2014; Schilling et al., 2003). The 

Genovesa field represents data from (Harpp et al., 2014) and White et al. (1993). Stars represent 

the end members for the four mantle sources described by Harpp and White (2001).  Overlain are 

fields for the Eastern Galápagos Domain (EGD), Central Galápagos Domain (CGD), Northern 

Galápagos Domain (NGD), and Southern Galápagos Domain (SGD) (Geldmacher et al., 2003; 

Hoernle et al., 2000; Werner et al., 2003).  

Figure 4. Incremental heating 
40

Ar/
39

Ar age spectra for Galápagos Northeast Seamount basalts. 

The 
40

Ar/
39

Ar “plateau” ages are weighted with errors reported at the 95% confidence level, 

including 0.3–0.5% standard deviations in the J‐value. All ages were calculated based on the flux 

monitor FCT‐3 biotite age of 28.03 ± 0.18 Ma (Renne et al., 1998). These data and isochron ages 

are presented in Table 3. 

Figure 5. Chondrite normalised La/Sm and Sm/Yb ratios from data presented here and from 

Sinton et al. (2014). Blue circles represent samples with depleted incompatible trace elements, 

black circles are samples with moderate trace element enrichment from Sunray and Fitzroy 
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(Figure 2), and the red circle is the sample from Pico (PL2-16). Chondrite values are from Sun 

and McDonough (1989). Lower degrees of partial melting in the spinel lherzolite stability area of 

the shallow mantle will result an increase in La/Smn but have little effect on Sm/Ybn.  Lower 

degrees of partial melting at greater depths where garnet is stable will result in an increase in 

both La/Smn and Sm/Ybn. 

Figure 6. Schematic map showing the modeled crustal thickness (km) based on gravity 

measurements (Feighner and Richards, 1994) and modeled crustal ages based on interpretations 

of magnetic anomalies and plate reconstructions are shown in the colored lines (Villagómez et 

al., 2011). 

Figure 7.  Paleoreconstruction of the Northeast Seamounts and Galápagos Islands from 5 Ma to 

present.  The positions of the islands are based on paleoreconstructions from Geist et al (2014).  

The paleopositions of the GSC are based on Mittelstaedt et al. (2012) for the area west of the 

hotspot and Wilson and Hey (1995) for the area east of the hotspot. The locations of the 

seamounts are based on an eastward motion the Nazca plate at 39 km/m.y (Sinton et al., 1996). 

Active volcanism is noted with the volcano icon with ash plume and an emergent island has a 

horizontal sea-level line. Banco Tuzo is a large, flat-topped seamount south of Marchena that 

appears to have been an island at 1-2 Ma (Sinton et al., 2017). Overlain are fields for the Eastern 

Galápagos Domain (EGD), Central Galápagos Domain (CGD), Northern Galápagos Domain 

(NGD), and Southern Galápagos Domain (SGD) (Geldmacher et al., 2003; Hoernle et al., 2000; 

Werner et al., 2003). Note that Pico formed in the central Galápagos domain consistent with its 

enriched incompatible element and isotopic composition (see Figures 2 and 3). Both Sunray and 

Grande remain islands until sometime between 1-2 Ma, depending on the subsidence model 

used.   

Figure 8. A: Plot of oldest age for each seamount and longitude of the current position. The 

dashed line is the eastward plate motion of the Nazca plate at 39 km/m.y. relative to the hotspot 

(Sinton et al., 1996) assuming zero age is at Fernandina (91.5W). Abbreviated seamount names 

are: PC - Pico; SN - Sunray; GR - Grande; FZ - Fitzroy; BG - Beagle; LG – Largo; IG – Iguana. 

B: Plot of oldest age for each seamount and the calculated longitude of initial eruption using 39 

km/m.y.  
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Table 1.  Dredge Locations and Sample Descriptions for the Northeast Seamounts 

Seamount/

Dredge # 

Dredge 

Location
1

 

Dredge 

Depth
2

 (m) Sample Descriptions
3 

Sunray 

PL2-9 00° 28.13'S 

88° 32.11'W 

1425-935 Three lava groups: 9A (sample 9-50 and -56) high to moderately 

vesicular, aphyric, Lan/Smn 1.0-1.3; 9B moderately vesicular, aphyric 

with higher MgO than 9A, Lan/Smn 1.0-1.3; 9C non-vesicular with 

sparse plagioclase, spinel, and olivine microphenocrysts with spinel 

inclusions, Lan/Smn 0.33.  

PL2-10 00° 34.04'S 

88° 35.44'W 

1141-1006 Two lava groups: 10A weathered, slightly vesicular basalts with 

small olivine phenocrysts and abundant (ultraphyric) 1cm embayed 

plagioclase megacrysts; 10B (sample 10-5) Moderately vesicular; 

small aggregates of plagioclase and olivine; a few skeletal 

plagioclase phenocrysts with spinel inclusions, Lan/Smn 0.56. 

Fitzroy 

PL2-11 00° 11.70'S 

88° 40.10'W 

1309-702 Two lava groups: 11A (sample 11-7) a non-vesicular basalt with 

plagioclase megacrysts and olivine microphenocrysts, Lan/Smn 0.41; 

11B (sample 11-5) highly vesicular, aphyric basalts, Lan/Smn 1.0. 

PL2-12 00° 14.45'S 

88° 38.20'W 

1378-1123 Two lava groups: 12A (sample 12-1 and -5) moderately vesicular 

with plagioclase and olivine phenocrysts, Lan/Smn 0.45; 12B (sample 

12-7 and remainder) moderately vesicular with plagioclase 

phenocrysts/megacrysts and small olivine phenocrysts, primitive 

glass compositions with MgO ~9.5 wt, Lan/Smn 0.33. 

Beagle 

DR80 00° 01.43' S 

88° 30.97' W 
1657-1555 Aphyric pillow basalt fragment with some vesicles in the unaltered 

interior, Lan/Smn 0.41. 

Largo 

PL2-13 00° 05.80'N 

89° 02.90'W 
1400-700 Two lava groups: 13A slightly vesicular, plagioclase ultraphyric 

basalts with primitive glass compositions (MgO ~10 wt.%), Lan/Smn 

0.24; 13B slightly vesicular, aphyric basalts with occasional olivine 

and plagioclase phenocrysts, MgO 8-9 wt.%, Lan/Smn 0.22-0.29. 

PL2-14 00° 06.00'N 

89° 05.80'W 
1639-1090 Nonvesicular basalts with small spinel phenocrysts and up to 25% 

olivine, Lan/Smn 0.22-0.45. 

DR72 00°06.95’ N 

89°17.40’ W 
2129-1325 Aphyric pillow basalt fragments with glassy rims, Lan/Smn 0.33. 

DR72A 00°05.846’ N 

89°15.006’ W 
1557-1325 Aphyric pillow basalt fragments with glassy rims, Lan/Smn 0.24. 

Grande 

DR73 00° 02.82'S 

89° 16.26'W 
1632-1500 Aphyric, nonvesicular pillow basalt fragment with weathered 

exterior and fresh interior, Lan/Smn 0.40. 

Pico 

PL2-16 00° 06.44'S  

89° 49.26'W 

1688-1320 Three basalt fragments, Lan/Smn 1.68. 

Iguana 

DR83 00° 18.90'S 

88° 23.27' W 
1429-1214 Nonvesicular, aphyric basalt fragment with sparse plagioclase 

phenocrysts, Lan/Smn 0.30. 
1

Position on-bottom. 
2
On-bottom to off-bottom depths. 

3
The PL2 dredge descriptions are from Sinton et al. (2014).  
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Table 2: Major and Trace Element and Radiogenic Isotopic Data 

 

DR72-1 DR72-3* DR72a-1 DR73-4 DR80-1 DR83-1 PL2-16-3 

SiO2 47.4 48.71 46.83 47.8 50.18 46.64 46.25 

TiO2 0.80 0.85 0.85 2.02 1.29 0.94 3.07 

Al2O3 17.12 17.00 18.39 14.31 15.32 17.37 15.53 

Fe2O3 10.80 9.87 8.54 13.26 9.68 9.32 14.37 

MnO 0.16 0.19 0.13 0.15 0.17 0.14 0.2 

MgO 8.70 8.81 9.72 5.35 7.03 8.55 5.14 

CaO 11.88 12.23 12.52 11.79 12.9 12.92 11.25 

Na2O 2.47 2.38 2.26 3.27 2.63 2.47 2.9 

K2O 0.05 0.03 0.07 0.15 0.16 0.10 0.34 

P2O5 0.07 0.04 0.08 0.2 0.14 0.09 0.782 

Total 99.45 100.10 99.39 98.30 99.50 98.54 99.85 

Sc 

   

54.2 54.5 40.8 32 

V 

   

358.3 333.8 233.2 335 

Cr 

   

104.0 239.6 305.1 19 

Co 

   

45.6 65.0 51.2 68 

Ni 

   

49.0 131.4 203.3 29 

Cu 

   

77.7 149.6 131.7 69 

Zn 

   

103.4 85.6 67.1  

Rb 0.28 0.14 1.17 3.25 2.07 2.03 3.87 

Sr 93 84 141 149 112 145 341 

Y 22 21 21 45.19 33.58 23.71 44 
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Zr 39 37 47 129.82 75.34 59.30 178 

Nb 0.56 0.76 0.30 1.64 1.21 0.48 22.5 

Ba 5.52 3.75 2.85 9.80 8.45 2.10 95 

La 0.8 0.9 0.7 2.9 1.9 1.1 16.3 

Ce 3.5 3.7 3.7 10.9 6.9 5.2 38.5 

Pr 0.7 0.8 0.8 2.2 1.4 1.1 5.0 

Nd 4.1 4.7 5.1 12.6 7.7 6.6 23.9 

Sm 1.7 1.8 2.0 4.7 2.9 2.4 6.3 

Eu 0.7 0.8 0.9 1.8 1.2 1.0 2.1 

Gd 2.4 2.8 2.6 6.1 4.0 3.2 7.0 

Tb 0.5 0.5 0.5 1.1 0.7 0.6 1.1 

Dy 3.3 3.8 3.2 7.1 5.0 4.1 6.9 

Ho 0.7 0.8 0.7 1.5 1.0 0.9 1.4 

Er 2.0 2.4 1.9 4.0 2.9 2.5 3.7 

Tm 0.3 0.4 0.3 0.6 0.4 0.4 0.5 

Yb 2.0 2.5 1.9 3.8 2.9 2.5 3.2 

Lu 0.3 0.4 0.3 0.6 0.4 0.4 0.5 

Hf 1.0 1.3 1.3 3.2 1.9 1.7 4.6 

Ta 0.04 0.05 0.03 0.11 0.07 0.05  

Pb 0.15 0.28 0.22 0.54 0.39 0.30 1.51 

Th 0.03 0.03 0.02 0.13 0.09 0.04 1.59 

U 0.03 0.01 0.33 0.21 0.10 0.09 0.54 

*major element analysis is from Peterson et al. (2017) 
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Table 2 Cont’d 

 

DR72-1 DR72-3 

DR72a-

1 DR73-4 DR80-1 DR83-1 

PL2-9-

50  

PL2-11-

7 

PL 12-

05  

PL2-12-

7  

PL2-13-

34 

87Sr/86Sr 0.70258

3 

0.70256

7 

0.70252

6 

0.70252

4 

0.70261

8 

0.70253

9 

0.70270

9 

0.70267

1 

0.70257

4 

0.70292

5 

0.70274

8 

143Nd/144N

d 

0.51311

0 

0.51311

8 

0.51314

9 

0.51314

4 

0.51311

4 

0.51314

2 

0.51307

6 

0.51311

1 

0.51312

4 

0.51313

5 

0.51312

2 

Nd 9.20 9.37 9.97 9.87 9.29 9.83 8.55 9.22 9.47 9.69 9.45 

206Pb/204Pb 18.655 18.666 18.337 18.374 18.420 18.384 18.6103 18.5212 18.4408 18.3859 18.4838 

207Pb/204Pb 15.508 15.516 15.495 15.499 15.509 15.500 15.5355 15.5117 15.5085 15.4996 15.5231 

208Pb/204Pb 38.076 38.112 37.833 37.881 37.961 37.855 38.2176 37.9813 37.9451 37.8711 38.0655 
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Table 3: Incremental Heating 
40

Ar-
39

Ar Analyses for Northeast Seamount Basalts 

 

 

Age Spectrum 

Total 

Fusio

n 

Isochron 

Sample 

K2O
a
 

(wt.%

) 

Age ± 2  

39
A

r 

% K/Ca
b 

MSW

D
 

n
c 

N
c 

Age ± 

2  

Ag

e ± 

2  

40
Ar/

36
A

r 

Intercep

t 
MSW

D
 

Sunray  

PL2-9-56 0.32 3.11 ± 

0.07 

76 0.01

0 

0.5 1

0 

2

0 

3.02 ± 

0.08 

3.1 

± 

0.1 

296.3 ± 

2.3 

0.5 

PL2-10-5 

0.21 

3.8 ± 0.1 74 

0.01

1 1.6 8 

1

8 

4.2 ± 

0.1 

3.9 

± 

0.3 

293.0 ± 

10.2 1.8 

Fitzroy 

PL2-11-5 

0.38 

1.89 ± 

0.05 89 

0.04

3 2.0 

1

6 

2

0 

1.86 ± 

0.05 

1.9 

± 

0.1 

295.3 ± 

5.2 2.1 

PL2-11-7 

0.19 

2.5 ± 0.1 87 

0.00

8 1.5 

1

3 

2

0 

2.7 ± 

0.1 

2.4 

± 

0.3 

298.7 ± 

3.8 1.3 

PL2-12-5 

0.20 

1.7 ± 0.2 100 

0.00

4 1.4 

1

8 

1

8 

1.6 ± 

0.2 

1.9 

± 

0.5 

293.1 ± 

6.1 1.5 

Beagle 

DR80-1 

0.16 

2.2 ± 0.1 100 

0.00

5 1.8 

2

0 

2

0 

2.1 ± 

0.1 

2.6 

± 

0.2 

291.1 ± 

2.1 1.0 

Largo 

PL2-13-4 

0.11 

1.3 ± 0.3 80 

0.00

3 1.5 

1

3 

2

0 

1.5 ± 

0.2 

0.9 

± 

0.3 

301.7 ± 

5.6 1.1 

Grande 

DR73-4 

0.15 

3.3 ± 0.2 85 

0.00

5 2.0 

1

4 

2

0 

3.2 ± 

0.2 

3.4 

± 

0.3 

293.8 ± 

2.7 1.9 

Iguana 

DR83-1 

0.10 

0.5 ± 0.3 74 

0.00

2 0.4 

1

5 

2

0 

0.9 ± 

0.3 

0.6 

± 

0.4 

294.3 ± 

2.7 0.4 

Pico 

PL2-16-

3a 

0.34 

5.3 ± 0.5 100 0.24 0.6 8 8 

5.0 ± 

1.1 

5.3 

± 

3.4 

305.3 ± 

10.6 0.2 

PL2-16-

3b 

0.34 

5.1 ± 0.5 100 0.12 0.6 

1

1 

1

1 

4.8 ± 

0.7 

5.1 

± 

1.5 

303.1 ± 

6.1 0.2 
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a
K2O data for the PL2 samples are from Sinton et al., [2014] and unpublished for the DR samples.   

b
K/Ca values were calculated as weighted means for the age spectra or as total fusion K/Ca values by combining the 

gas analyses.   
c
“n” refers to the number of steps  included in the age plateau and isochron calculations and “N” is the  total number 

of incremental heating steps for each analysis.   
d
Age recalculated using the initial 

40
Ar/

36
Ar intercept from the isochron. 
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Table 4: Comparison of New and Previously Reported 
40

Ar-
39

Ar Ages 

Seamount Sample 

New Age ± 2  

(Ma) 

Old Age ± 2 

(Ma) 

Sunray PL2-9-50 3.1 ± 0.1 5.7 ± 1.2 

Sunray PL2-9-56 3.11 ± 0.07 NA 

Sunray PL2-10-5 3.8 ± 0.1 5.6 ± 0.1 
Fitzroy PL2-11-2 & -5 1.89 ± 0.05 3.2 ± 1.0

1 

Fitzroy PL2-11-7 2.5 ± 0.1 NA 

Fitzroy PL2-12-5 1.7 ± 0.2 NA 

Pico PL2-16-2 & -3 5.2 ± 0.5
2
 5.6 ± 0.6 

1
Analyses of PL2-11-2 which has similar chemistry to PL2-11-5 

2
Analysis reported here is from sample PL2-16-3 

  

ACCEPTED MANUSCRIPT



AC
CEP

TE
D M

AN
USC

RIP
T

35 

 

Table 5: Calculation of Subsidence and Initial Elevation of Northeast Seamounts 

Seamount 

Min. 

Age 

(Ma) 

Current 

Peak 

Depth 

(m) 

Oceanic
1
 

subsidence 

(m) 

Platform
2
 

subsidence 

(m) 

Initial 

Elevation
3
 

(masl) 

Submergence 

Age (Ma) 

Pico 5.2 800 832 
1667 

32-867 
4.9-2.6 

Grande 3.3 250 663 
1138 

413-888 
2.2-0.8 

Fitzroy 1.7 150 476 
553 

326-403 
0.8-0.3 

Beagle 2.2 800 541 
758 

submerged 
NA 

Sunray 3.1 370 643 
1074 

273-704 
2.2-1.0 

Largo 1.3 650 416 
367 

submerged 
NA 

Iguana 0.5 1215 258 
127 

submerged 
NA 

1
The total calculated subsidence using the minimum age and the subsidence rate of oceanic lithosphere from Stein 

and Stein (1992). 

2
The total calculated subsidence using the minimum age and the subsidence rate of the Galapagos Platform from 

Geist et al. (2014). 
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Age Progressive Volcanism Opposite Nazca Plate Motion: Insights from Seamounts and 

Drowned Islands on the Northeastern Margin of the Galápagos Platform 

Highlights 

 Four of the seven seamounts northeast of the Galápagos Platform are drowned islands 

 The ages of the seamounts range from 5.2 Ma to 0.5 Ma 

 Seamount morphology changes from conical to elongate at ~1.5 Ma 

 The locus of volcanism appears to migrate eastward at the rate of Nazca plate motion 
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