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General Introduction 
 

The possibility of harnessing useful work from bistable molecular switches led to the 

development of hundreds of compounds with a remarkable degree of sophistication. These 

‘molecular actuators’ display distinct molecular geometries, which can be reversibly 

interconverted in response to some form of chemical or physical stimuli. They include various 

structural switches (e.g. stereoisomers, linkage isomers, etc.) as well as coupled 

electronic/structural switches (e.g. valence tautomers, Jahn Teller switches, etc.) [Feringa and 

Browne, 2011]. The most sophisticated ones (e.g. rotaxanes, catenanes, etc.) are often termed 

as ‘molecular machines’ or ‘molecular muscles’ for their large amplitude of motion [Balzani 

et al., 2003, Sauvage and Amendola, 2001]. Beyond purely mechanical applications, these 

compounds represent a particularly attractive scope for developments of chemomechanical, 

biomimetic and other complex systems [Abendrot et al., 2015]. Their potential application is 

not restricted to the molecular scale, but includes also mesoscopic and truly macroscopic 

systems. Obviously, in each case, the molecules must be properly interfaced with their 

environment in order to produce a useful work and also to allow for external control. This issue 

has been identified long ago as the main bottleneck for the development of useful devices using 

switchable molecules [Coskun et al., 2012]. Yet, the integration of ‘molecular actuators’ into 

functional systems has remained in its infancy and most of the reported examples, despite being 

scientifically frontier, concern rather simple devices and techniques from a technological point 

of view. Among the most remarkable ones one can cite (electro)chemically actuated rotaxane 

coated cantilevers [Juluri et al., 2009], photochromic molecule based polymer actuators [Yu 

et al. 2003], liquid crystalline materials doped with photoswitches [Browne and Feringa et al., 

2006], clamped single crystals of photo responsive molecules [Morimoto et al. 2010], photo 

responsive organic nanostructures [Al-Kayisi et al., 2006], motion controlled 

jumping/twisting/bending molecular crystals [Naumov et al., 2015], muscle-like 

supramolecular polymers [Du et al., 2012] and micro cantilevers functionalized with natural 

polymers [Shu et al., 2005].  

In this context, spin crossover (SCO) molecular actuators can provide not only good actuating 

performance, but they also offer various smart features (e.g. shape memory), a high degree of 

synthetic versatility and multifunctionality, such as the coupling of optical, electrical, magnetic 

and mechanical properties. Furthermore, it has been demonstrated that SCO complexes can 

display useful mechanical response even at the single molecule level [Harzmann et al., 2015] 
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and as such there is no fundamental restriction on their functionality at the nano-scale. As a 

macroscopic proof of concept, the Switchable Molecular Materials team (LCC-CNRS) recently 

studied a bilayer cantilever architecture in which a single crystal of the SCO complex {Fe(3-

CNpy)[Au(CN)2]2}·2/3H2O (py = pyridine) was strongly bonded to a passive metallic coating 

[Shepherd et al., 2013]. The differential expansion of the two strata at the spin transition led 

to dramatically amplified motion at the macroscopic scale. Indeed, the experimentally observed 

volumetric work density (~1 Jcm-3) is several orders of magnitude greater than that expected 

from thermal expansion alone. The versatility of this approach was also demonstrated by using 

different SCO materials embedded in various polymer matrices [Guralskiy et al., 2014]. 

This thesis has been developed with the aim to demonstrate the coupling of SCO molecular 

switches with microelectromechanical systems (MEMS). Since their implementation in the 70’s, 

MEMS based on silicon technologies have shown a remarkable development, primarily for 

sensor and actuator technologies leading to commercial successes. Nevertheless, MEMS are 

still very attractive for the scientific community due to their broad application field and also for 

the possibility of further miniaturization to obtain more sensitive nanoscale devices (NEMS). 

The development of NEMS, however, requires significant challenges to be solved, including 

the integration of smart actuating materials into nanoscale systems [Leondes 2006]. Traditional 

materials used in the fabrication of MEMS are typically limited to silicon, ceramics, metals and 

polymers. However, the challenges associated with size reduction of these technologies means 

that while materials and processes for the construction of MEMS are well established, there 

exist only a few, if any, high-performance materials available for NEMS operation. As the 

demand for smaller systems with ever more complex functionality grows, novel materials with 

diverse properties, capable of operation at small scales will need to be developed. Creating these 

materials is only the first step, understanding and predicting their behavior is crucial to 

optimization of function and requires an intimate knowledge of structure–property relationships. 

Furthermore, the successful integration of novel materials into useful devices requires 

appropriate fabrication protocols tailored to the production and operation of such 

unconventional systems. Thus an interdisciplinary approach to this problem that brings together 

aspects of chemistry, physics and nano-technological engineering is required.  

During this thesis work we thus developed original materials, MEMS fabrication and 

characterization protocols with the aim to (i) demonstrate the possibility of efficient integration 

of SCO molecular actuators into sophisticated microsystems and (ii) extract information on the 

mechanical properties and actuation performance of these materials. 
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Chapter 1 provides an overview of advances and presents the prospects for integrating 

switchable molecular materials as active elements into actuator devices, with particular 

emphasis on micro- and nanoscale mechanical systems.  

Chapter 2 introduces the SCO phenomenon and discusses the different stimuli to trigger it. The 

conventional characterization techniques to detect and measure the SCO are also exposed. Since 

the strain and mechanical properties are the outstanding parameters regarding actuating 

performance, this chapter places a particular emphasis on the structural aspects of the SCO, 

from the molecular to the macroscopic scale and their repercussion on the volume change. 

Chapter 3 gives a brief introduction about the basic principles of MEMS devices. Concepts 

regarding actuation, detection and miniaturization are discussed. The possible strategies for 

integration of SCO actuators into MEMS are also discussed.  

Chapter 4 describes the first achievement of this thesis to integrate spin crossover molecules as 

nanometric thin films into silicon MEMS devices. For this, a high quality thin layer of [FeII 

(H2B(pz)2)2(phen)] (pz = pyrazol-1-yl and phen = 1,10-phenantroline) was deposited by thermal 

evaporation onto freestanding silicon bridges and cantilevers. From the mechanical response of 

the bilayer system it was possible to extract the relevant mechanical properties of the SCO 

material. Additionally, we also demonstrated the light-induced excited spin-state trapping 

(LIEEST) phenomenon by tracking the MEMS resonance frequency.  

As a substantial step towards technological applications, we describe in Chapter 5 a MEMS 

device in which the SCO molecules are not only used to tune the device mechanical properties, 

but also perform controlled and reversible macroscopic work under ambient conditions. To this 

aim we developed and characterized high-quality films of [FeII(HB(tz)3)2] (tz = 1,2,4-triazol-1-

yl) which were deposited by thermal evaporation onto MEMS devices.  

Even though the thermal evaporation technique to integrate SCO materials into MEMS is highly 

efficient, it is limited to a few compounds which can be readily sublimated. Hence in Chapter 

6 a more versatile alternative technique is described. Nanoparticles of the SCO complex 

[FeII(Htrz)2(trz)](BF4) (Htrz = 1H-1,2,4-triazole, trz = 1,2,4-triazolato) were deposited on the 

MEMS devices in the form of polymer nanocomposite material by spray coating. Using this 

approach SCO actuators were efficiently integrated not only in micro-systems, but also into 

macroscopic soft actuators (sic artificial muscles).  
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Chapter 1. Molecular actuators 
 

Molecular switches rely on various physico-chemical phenomena, and in most cases the 

switching event is accompanied by a significant rearrangement of atomic positions. At the 

macroscopic level the long range order of switching molecules usually results in a collective, 

or even cooperative volume change, which can be readily exploited for actuating purposes. 

These molecular (or molecule-based) systems can provide multiple advantages for this type of 

application due, primarily, to their intrinsic chemical and functional versatility and the small 

size of their functional units. This chapter provides an overview of advances and presents the 

prospects for integrating switchable molecular materials as active elements into actuator 

devices, with particular emphasis on micro- and nanoscale mechanical systems.  

 

1.1 What is an actuator? 

 

By definition an actuator is a device that converts a source of energy into motion. From the 

muscle which converts chemical energy in the form of food into bodily motion, to the motors 

that power the machines we rely on, actuators are a fundamental part of everyday life. Actuators 

are indeed created and applied in many different fields of science and technology, including – 

for example – automotive [Eddy et al., 1998], aerospace [Loewy R. G., 1997] and robotic 

[Sreenivasa et al., 2012] applications, but an important driving force of the current 

developments comes from the recent progress of micro- and nano-electro-mechanical systems 

(MEMS/NEMS). MEMS technology involves structures and devices that perform mechanical 

tasks at microscopic scales. Components with moving parts are integrated with 

microelectronics to produce electromechanical systems.  

Since the early conceptual ideas of silicon-based MEMS technology proposed by Petersen in 

1982 [Petersen, 1982], there has been a remarkable development of the materials employed in 

this field: soft technologies based on passive polymers and the use of active materials. 

Piezoelectrics are an example of an active material used in MEMS technology for highly 

accurate positioning and sensing tasks in a wide variety of applications from printing and data 

communications to biological and pressure sensors [Pons, 2005]. Traditional materials used in 

the fabrication of MEMS are typically limited to silicon, ceramics, metals and polymers. 

However, the challenges associated with size reduction of these technologies means that while 
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materials and processes for the construction of MEMS are well established, there exist only a 

few, if any, high-performance materials available for NEMS operation. Any new material 

would have to satisfy a number of disparate requirements in terms of force, displacement, work 

density, operation speed, repeatability and the ability to be integrated into devices; no single 

material is currently able to offer these attributes simultaneously at the nanoscale. As the 

demand for smaller systems with even more complex functionality grows, novel materials with 

diverse properties, capable of operation at small scales will need to be developed. Creating these 

materials is only the first step, understanding and predicting their behavior is crucial to 

optimization of function and requires an intimate knowledge of structure–property relationships. 

Furthermore, the successful integration of novel materials into useful devices requires 

appropriate fabrication protocols tailored to the production and operation of such 

unconventional systems. Thus an interdisciplinary approach to this problem that brings together 

aspects of chemistry, physics and nano-technological engineering is required. In this context 

molecular switches, including photochromic, spin-crossover and many other bistable molecular 

or molecule-based systems, may provide interesting prospects as their properties can be finely 

tuned chemically and they are sensitive to a wide range of stimuli, including light, temperature, 

pressure, magnetic and electric fields. In most cases the molecular switching event is associated 

with the change of various material properties(optical, electrical, magnetic) beyond the 

mechanical strain, which can allow the development of smart systems combining sensor and 

actuator functions, even within the same material. In addition, by virtue of their molecular 

nature, there is no fundamental restriction on their functionality at the nanoscale. Indeed, recent 

work in this field has led to several encouraging prototype actuating devices, even if – to the 

best of our knowledge – none has yet been commercially exploited. This chapter assesses these 

results with the aim of clarifying the real prospects, identifying the main challenges and 

providing a useful guide for future work. 

As a starting point the most significant smart actuating materials currently being investigated 

and their associated technologies are briefly described. Then, switchable molecular materials 

with actuating functionality are reviewed. At this point it is necessary to clarify a few definitions. 

Throughout the literature there is some confusion between the concepts of molecular switches 

and molecular machines. One might consider the requirements of the former as having at least 

two stable molecular states between which one may switch reversibly and in a controlled 

manner. In the case of the latter, we may consider an additional requirement for these molecules 

to perform useful work on their surroundings. With a few notable exceptions, molecular 
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switches have rarely been converted into molecular machines capable of doing useful work. 

Another important point we must mention at the beginning is that the exciting and also very 

challenging field of single molecule machines is not covered by the present work. Here we 

focus on materials based on molecular switches.  

 

1.2. Conventional actuating materials 

 

A large variety of actuator technologies exist, and they can be classified in several different 

ways (Figure 1). For example they could be classified by their application or function (medical 

devices, diagnostics, switches, microrobotics, artificial muscles, etc.), by their material nature 

(polymers, carbon nano-materials, alloys, composites, crystalline inorganic materials, etc.) or 

energy sources (thermo-mechanical, magneto-mechanical, electro-mechanical, fluid-

mechanical, biochemical actuation, etc.). For the purpose of this thesis the classification will be 

made according to the actuation mechanism – by focusing on the technologically most 

important families.  

 

 

 

It is important to note here that traditional actuating technologies (electromagnetic motors, 

pneumatic and hydraulic systems) are not based on a specific material property, but rely usually 

Figure 1: Schematic principles of smart actuators. 
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on a geometric concept (e.g. electrostatic comb actuators or a hydraulic piston-cylinder system), 

while more recent technologies (piezoelectric ceramics, shape memory alloys or thermal 

expansion actuators) are constructed starting from a material attribute. These latter are often 

defined as smart materials, which signifies that they possess in-built sensing and actuating 

capabilities.  

 

 

 

Table 1: Different actuating mechanisms for conventional smart materials. 
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Table 1 summarizes the main actuating mechanisms for conventional smart materials, and 

Figure 2 position them according to their mechanical properties, work density and bandwidth. 

 

1.3. Evaluate actuating performance 

 

Whichever actuation mechanisms and materials are used, they must fulfill a large number of 

disparate specifications. Some of the most important to be considered are power (or work) 

density, energetic efficiency, response time (or frequency bandwidth), maximum achievable 

force and displacement, size/weight, linearity, scaling properties, stability (including 

environmental effects), cost, ease of processing and integration with current fabrication 

technologies, etc. Obviously the relative importance of these requirements will depend on the 

targeted application. Nevertheless, following the proposition of Liu et al. [Liu et al., 2012], a 

very useful classification is possible if one plots the Young’s modulus of the material versus 

the maximum achievable linear strain (Figure 2a).  

Strain (ε) is a very important property because it indicates the amplitude of actuation of a given 

material. On the other hand, the Young’s modulus (E) determines the magnitude of the applied 

force. These two outputs are linked together through the volumetric work density (W/V), i.e. 

the maximum mechanical work output per unit volume of the active material, by Equation 1.  

 

𝑊

𝑉
=  

𝐸휀2

2
 

 

 For example, large forces with small displacements are achieved using piezo-electric materials, 

while large displacements capable of moving small loads would be expected from 

electrostrictive polymers. For many applications in the MEMS/NEMS context it is desirable to 

achieve high work densities due to the space (and mass) limitations. This requirement is 

currently fulfilled only by shape memory alloys, but their further development is hampered by 

the degradation of their properties at sub-micrometric sizes [Liu et al., 2012, Krilevitch et al., 

1996]. Beside stiffness and strain, the speed of response (or frequency bandwidth) is also an 

important attribute in the MEMS/NEMS technology. This property is more elusive in that in 

many cases it is limited by the actual device structure and size besides the material used, but as 

(1) 
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a general guide the typical bandwidth of different active materials is shown in Figure 2b. A 

range of frequencies from a few Hz to a few Mhz can be attained using these actuating 

technologies. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1.4. Molecular switches 

 

A molecule is considered as a molecular switch if it has (at least) two molecular states – or 

isomers – between which a controlled and reversible transformation can be achieved using an 

external stimulus. The two isomers represent two different local minima on the potential energy 

surface and correspond (usually) to a stable and a metastable state (Figure 3). 

By convention we consider the system as a molecular switch if the energy barrier between these 

two potential wells is larger than the thermal energy – at the temperature of observation. This 

rather loose definition gives a large freedom in what can be considered as a molecular switch. 

a) b) 

Figure 2: Actuation performance: a) Young’s Modulus versus linear strain, plot for the selected actuation materials families 

[Adapted from Liu et al., 2012]. The contours of equal volumetric work density are also shown by dashed lines. Encircled 

numbers represent compound. 1-Ruthenium sulfoxide-polymer composite [Jin et al., 2011], 2-diarylethene single crystal 

[Morimoto Et al., 2010], 3-Fe(pyrazine)[Pt(CN)4] single crystal [Felix et al., 2015, Cobo et al., 2008], 4- {Fe(3-

CNpy)[Au(CN)2]2}2/3H2O single crystal [Shepherd et al., 2013], 5-[Co(NH3)5(NO2)]Cl(NO3) single crystal [Naumov et al., 

2013], 6-VO2 single crystal [Liu et al., 2012],  b) Maximum achievable stress versus actuation bandwidth for selected actuator 

materials families [Adapted from Lantada, 2011]. 
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Indeed, molecular switching phenomena comprise a vast variety of molecules (both organic 

and inorganic) and physico-chemical mechanisms. Somewhat arbitrarily we will classify 

molecular switches into four families: (i) Structural switches (ii) Electronic switches and (iii) 

Redox/pH switches.  

 

 

 

 

 

 

1.4.1. Structural switches for actuation 

 

A structural switch implies a change in the spatial arrangement of the atoms in a molecule. If 

this occurs without a change in their connectivity, i.e. the formal “line structure” of the molecule 

remains the same and only the atomic positions change in space the phenomenon is often 

referred to as stereoisomerism or occasionally conformational switching. Probably the most 

famous example of this type of molecular switch is azobenzene [Natanshon et al., 2002]. On 

the other hand, the switching event may involve a molecular rearrangement with bond 

formation and/or breaking. Examples include diarylethenes [Morimoto et al., 2010] and 

naphthalocyanine [Liljeroth 2007]. Linkage isomers are an interesting class of coordination 

complexes, which have one (or more) ligands with switchable connectivity to the metal ion 

[Warren et al., 2014]. In all of the above cases, the two states of the molecule correspond to 

local minima in the ground-state potential energy surface. 

Figure 3: Typical potential energy surfaces of two-state molecular switches exhibiting metastable states either on the 

ground a) or excited b) state potential energy surface. Switching mechanism via higher excited states and analog the 

energy barrier are shown. 
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These compounds have been primarily investigated for their photomechanical properties (i.e. 

light induced actuation). Nevertheless it may be useful to note that other stimuli (temperature, 

pressure, etc.) can be also used in several cases to induce switching. Photochromism is the term 

used for a reversible light-induced color change of a material. In the case of molecular materials 

this is the result of a photo-activated transformation of a molecule between two states with 

distinguishably different absorption spectra in the visible range. The photoproduct usually 

generates a change in the shape and/or volume of the material. [Agolini et al., 1970, Matejka 

et al., 1979, Kim et al., 2014, Priimagi et al., 2014]  

While bulk single crystals of photochromic molecules have in fact been reported to exhibit 

macroscopic deformations upon light irradiation, switching in the bulk form remains often 

difficult due to the large energy barriers, which arise from steric hindrance. Additional 

difficulties with bulk materials may result from the generally very incomplete light penetration 

and the integration of such samples into functional devices is not straightforward either. To 

overcome these problems photochromic units were incorporated on several instances into 

different matrices (liquid crystalline elastomers, cross-linked polymers, etc.) allowing for better 

processability and more complete photo-switching. The most significant trade off with this 

strategy is that the dilution of photochromic units leads to reduced mechanical performance in 

terms of strain, work density, elastic moduli, response time, etc. For example, Jin et al. [Jin 

2011, Jin et al., 2014] reported a dilute, photochromic ruthenium sulfoxide-based polymer 

composite that efficiently deforms at room temperature under laser irradiation (Figure 5a). The 

active material has a rather low concentration within the polymeric structure (2–4%) and a high 

level of crosslinking is present to ensure efficient propagation of the desired photomechanical 

effect. The work density for these materials remains rather moderate when referring to Figure 

2. This can be explained by the small strain (<0.001) and relatively low Young’s modulus (<700 

MPa) of these materials. Interestingly, though not unexpectedly, a photo-induced change of the 

Young’s modulus (up to ∼30%) was also reported [Jin et al., 2011, Jin et al., 2014].  

Light is an interesting energy source for actuating purposes in that it allows for remote control 

with high temporal and (reasonably) high spatial resolution. In addition, other properties of the 

electromagnetic wave (wavelength, polarization, coherence, etc.) may be also exploited. For 

example the polarization direction of light was used to achieve directional motion in photo 

stimulable actuators by Choi et al.  [Choi et al. 2009]. Photo-switchable liquid crystal 

elastomers (LCE) containing azo-benzene moieties have been also reported by several other 

authors who demonstrated various macroscopic motion [Yamada et al 2008, Takashima et 
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al., 2012]. A particular interest of LCE materials is that they are amenable for film fabrication, 

which is an important issue in the MEMS/NEMS context [Eelkema et al., 2006, Li et al., 2003, 

Jia and Li, 2014]. 

 

While the photomechanical response of polymeric systems has been studied for many years, 

single crystal studies are more recent, this is the case of diarylethenes. [Irie et al., 2001, 

Kobatake et al., 2007].  

The Irie group has studied several cases and one of the recent examples involved the photo- 

isomerisation of macroscopic (1–5 mm) diarylethene crystals [Morimoto et al., 2010]. These 

molecules undergo a solid state reaction from an open-ring isomer to a closed-ring isomer under 

irradiation with UV-light. The reverse process is also readily achieved through irradiation at 

visible wavelengths. The change in shape of an individual molecule is relatively small during 

this process; however, the perfect alignment of the molecules in the crystal ensures that all 

individual molecular motions occur in unison, and in the same direction. An interesting feature 

of this type of systems serves to further amplify the motion of these crystals: the isomerization 

reaction occurs only at the surface. The result of this poor penetration of light into the sample 

Figure 4: Examples of some molecular switches: a) azobencene, b) rotaxane,  c) diarylethene,     

d) rutenium sulfoxide and e) spin crossover compound. 
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for the dramatic actuating response may be understood through analogy to bimetallic strips, 

wherein the strain mismatch of the two components leads to the bending of the strip, allowing 

the movement of relatively large loads (Figure 5c) through rapid (<5 μs) and reproducible 

movements over (at least) 250 cycles. A detailed photo-crystallographic study of the sample 

revealed a linear strain of 0.29% along the crystallographic b-axis, which corresponds to the 

long axis of the crystal. The Young’s modulus was determined as high as 11 GPa and the work 

density was calculated to be ca. 0.046 J/cm3. Koshima et al. [Koshima et al., 2009] described 

a similar experiment using an azo-dye crystal. Under UV irradiation of the (0 0 1) surface, the 

crystal bent away from the light source, reaching a maximum deflection after 0.2 s, as measured 

at the tip of the crystal. The bent crystal returned to the initial, straight form 3.8 s after the 

illumination was stopped (Figure 5b). This reversible bending was observed over 100 cycles.  

Optical spectroscopic and crystallographic studies and their correlation with the photoactuation 

properties are obviously very important in this family of materials and have been carried out by 

several groups. For example, Bushuyev et al. [Bushuyev et al., 2013] investigated the influence 

of electronic structure, molecular geometry, long-range crystal packing and macroscopic crystal 

orientation on the photo actuation performance of different azobenzene dyes and established a 

few useful “rules of thumb” for the design of more efficient systems. Photoexcitation conditions 

have been also quite thoroughly investigated and in some cases a rather high degree of spatio-

temporal control of crystal motion could be achieved using sophisticated photoexcitation 

methods [Good et al., 2009]. 

 

 1.4.2. Electronic switches for actuation 

 

An electronic switch is based on a change of the electronic state of the system, i.e. a switch 

between the ground and a close-lying electronic state, separated by a sufficiently large energy 

barrier. We can further classify these systems in different sub-families: Spin-crossover occurs 

in octahedral 3d4–3d7 transition metal complexes wherein switching takes place between the 

high spin (HS) and low spin (LS) states of the central metal ion [Gutlich and Goodwin, 2004, 

Bousseksou et al., 2011]. Jahn-Teller switching results from the distortions of Jahn-Teller 

active ions and involves either a static or dynamic orbital ordering in crystalline solids 

[Halcrow, 2013]. Redox isomerism (touted in a few specific cases also as valence tautomerism) 

leads to a change of the charge distribution within the molecule hence the switching can be 
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described as an intramolecular electron transfer between a donor and accept or moiety of the 

molecule [Pierpont, 2001]. 

To date, the only class of electronic molecular switches that have been investigated and reported 

for actuating applications is spin crossover systems. The spin crossover (SCO) phenomenon 

leads to a redistribution of electrons within the 3d-orbitals of some transition metal complexes, 

which results in weaker metal–ligand bonds in the HS state. Hence the transition from the LS 

to the HS state typically involves a spontaneous increase of a few percent in the volume of the 

material. For example, Young’s modulus up to 15 GPa, linear strain up to 7 % and work 

densities up to 37 Jcm−3 (values 104–105 times greater than that expected from thermal 

expansion alone for a same ΔT) were reported for the SCO complexes Fe(pyrazine)[Pt(CN)4]. 

Such high work density together with the possibility of room temperature operation is obviously 

very appealing for actuation purposes [Cobo et al.,, 2008, Felix et al., 2015].  Starting from 

these facts, in our research group a series of actuating devices were developed from a range of 

spin crossover materials as a macroscopic proof of concept [Shepherd et al.,, 2013]. The 

approach is based on a bilayer cantilever architecture in which an active SCO material is 

strongly bonded to a passive coating. The differential expansion of the two strata as the phase 

transition occurs, results in dramatically amplified motion at the macroscopic scale, as 

demostrated for the case of an actuator that uses a single crystal of the SCO complex{Fe(3-

CNpy)[Au(CN)2]2}·2/3H2O as the active layer [Shepherd et al., 2013]. The versatility of this 

approach was demonstrated by using active layers composed of either single crystals of an SCO 

complex or SCO/polymer composites (Figure 5e-f) [Guralski et al., 2014, Chen et al., 2015, 

Shepherd et al., 2013]. Light-induced actuation was also demonstrated. Indeed, switching 

between HS and LS states is possible in response to several different external stimuli 

(temperature, light, pressure, magnetic field) [Gutlich and Goodwin, 2004]. In addition the 

SCO is often cooperative in the solid state, producing first-order phase transitions with 

hysteresis (i.e. memory effect), but can be also very gradual without hysteresis. As such, SCO 

can be considered as a very versatile transducer, capable of converting many forms of energy 

into motion. Another advantage is the hundreds of known SCO compounds available with a 

variety of active working ranges from cryogenic to ambient temperature. Since this thesis is 

focused on actuators based on SCO materials, chapter 2 is dedicated to describe more in detail 

the main mechanisms, which govern this phenomenon. 
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1.4.3. Redox and pH switches for actuation 

 

Redox switches and pH switches are based on the charging of the molecule by an electron or a 

proton, respectively. These events are usually accompanied by a significant change of the 

geometry and/or the electronic configuration of the molecule, but the distinction with structural 

and electronic switches described above is clear since the latter phenomena are not associated 

with a change of the molecular charge. Strictly speaking in this class of system, switching does 

not take place between two isomers, since the charge (and/or the atomic composition) of the 

molecule is not the same in the two states. Furthermore the definition of this family refers more 

to a stimuli than to the actual change in the state of the molecule. Nevertheless we feel these 

compounds, including rotaxanes, catenates [Bruns and Stoodart, 2014, Durot et al., 2010], 

etc.,are important in the field and thus deserve separate discussion. 

Electrochemical, ion-, pH-, or solvent-driven (i.e. host–guest) molecular switching phenomena 

have been described in different systems, but the development of these switching events toward 

actuating purposes is undoubtedly the most advanced in the field of bistable rotaxane-based 

molecular switches. Rotaxanes are mechanically interlocked molecules typically composed of 

a ring that can reversibly shuttle between two (or more) stations of a dumbbell [Sauvage and 

Amendola, 2001].  

 These systems have been designed to achieve translational motion and very high linear strains 

up to 67% [Liu et al., 2005]. At the molecular scale these systems can be used for example to 

modulate electronic communication between different molecular fragments [Bruns and 

Stoddart, 2014] or can be operated as nanovalves [Saha et al., 2007]. Synthesizing rotaxane 

based molecular muscles has recently become a major focus for several research groups [ Bruns 

and Stoddart, 2014, Jimenez-Molero et al., 2003, Du et al., 2012]. Rotaxane-based molecular 

switches are excellent candidates to build artificial molecular muscles, because their 

architectures possess molecular units similar to the sarcomeric human muscle structure, they 

respond to (electro-) chemical stimuli and they are potentially biocompatible. One of the main 

limitations of rotaxanes, however, is the difficulty to scale up these molecular phenomena and 

create motion at the macroscopic scale. Thus recent investigations have focused on the 

development of “bottom-up” assembly approaches that can produce long-range order of 

molecular units with the aim of achieving their collective motion in nano and microscale 
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devices. This goal was first attained by the Stoddart group [Huang et al., 2004] who self-

assembled redox-switchable rotaxanes on the surface gold-coated silicon cantilevers (500 × 100 

× 1  μm, spring constant 0.02 Nm−1).The rotaxane comprised two rings, which were linked to 

the gold surface by a disulphide moiety. Oxidation/reduction led to the contraction/elongation 

of the inter-ring distance and the concerted motion of these molecular units resulted in the 

macroscopic upward (oxidation) or downward (reduction) bending of the cantilevers (Figure 

5d). 

It should be noted that the molecules were not aligned in the monolayer hence the contribution 

of individual molecules to the bending depends on their relative orientation versus the long axis 

of the cantilever. A more detailed report from the same group later quantified the average force 

per molecule of a similar device at ca. 10 pN [Liu et al., 2005]. In the next step an 

Figure 5: Cantilever switch based on different molecular actuators stimulated by: a)-c) light, d) redox 

reaction and e)-f) temperature [Jin et al., 2014, Koshima et al., 2009, Morimoto et al., 2010, Huang et 

al., 2004, Shepherd et al.,2013, Guralski et al., 2014]. 
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electrochemical cell was used in conjunction with the rotaxane-based cantilever device to 

achieve significantly better control of the redox switching process [Juluri et al., 2009].  

 

This device, using palindromic [Sreenivasa et al., 2012] rotaxane molecules, allowed 

improvement of both the static (force and stroke) as well as the dynamic response of the system, 

paving the way for true MEMS operation. In a completely different approach, rotaxane units 

were linked together through polymerization reactions with the aim of amplifying molecular 

motion and demonstrating thus actuation at mesoscopic scales [Du et al., 2012, Dauwson et 

al., 2008, Clark et al., 2009, Hmadeh et al., 2010].  

 

1.4.4. Macroscopic shape change and motility 

 

There are many examples in the literature where single crystals of molecular compounds 

undergo intricate shape changes when excited by heat or light and some of them exhibits even 

significant motility, a phenomenon which is described as a thermosalient or photosalient  effect 

[Sahoo et al., 2013, Naumov et al. 2015], depending on the excitation source. These different 

phenomena provide obvious visual evidence for the conversion of thermal or photon energy 

into macroscopic work and thus for the amplification of individual molecular movements due 

to the collective behavior of molecules in the crystal. Even if these phenomena remain rather 

case specific and difficult to quantify, the underlying mechanistic and structural aspects have 

recently been investigated more deeply for several different (mainly organic) compounds [Kim 

et al., 2014, Naumov et al., 2015]. Strictly speaking some of the examples are not molecular 

switches because the photo-induced changes are more related to a variation of the crystal 

packing (dimerization, etc.) than to a well-identifiable intramolecular structural change. 

Obviously there is always a coupling between the molecular and crystal structures and the 

distinction between the cause and the effect is not always trivial. In the case of the 9-

anthracenecarboxylic acid UV light irradiation of high aspect ratio micro ribbons led to a 

twisting motion, which is reversible (when the light is turned off the crystal relaxes back to its 

initial shape in ambient conditions) and reproducible [Zuh et al., 2011]. A detailed structural 

analysis revealed that the molecules undergo a reversible photo-dimerization, which drives the 

deformation of the crystal, while the twist period is controlled by the number of absorbed 

photons as well as by the geometry of the ribbon. The authors suggested that this specific shape 
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is the consequence of the coexistence in the structure of photo-reacted dimers and unreacted 

monomers. Jumping and other motility phenomena are ubiquitous in crystals exhibiting phase 

transitions with significant internal stress and strain. Recently, these phenomena have received 

more attention and detailed structural investigations allowed more insight into the physical 

mechanisms behind them to be obtained. For example, Naumov et al. [Naumov et al., 2013] 

reported on various spectacular kinematic effects (splitting, explosion, jumping, etc.) of crystals 

of the coordination complex [Co(NH3)5(NO2)]Cl(NO3) under UV light irradiation.  This 

compound exhibits a nitro–nitrito linkage isomerism, which develops in a homogenous fashion, 

i.e. no phase separation and volume discontinuity is observed. Nevertheless the stress which 

develops as a result of this relatively small structural change (the highest linear strain is ca. 

3.5%) is able to propel millimeter-sized crystals to several tens of centimeters from their initial 

position. 

 

1.5 Prospects of molecular switches for MEMS/NEMS devices  

 

With the advent of the nanotechnology era attention has turned more and more toward the 

fascinating potential for molecular devices in different fields (molecular electronics, molecular 

magnetism, etc.). While custom-designed single molecule device is a captivating idea, for the 

moment this field remains a topic of fundamental nanoscience. On the other hand molecular 

materials may readily find technological applications. Fields as MEMS/NEMS technologies, or 

artificial muscles are areas in which actuators based on active molecular components may find 

useful application. A major point of interest for these systems is their high degree of versatility, 

bolstered by advances in modern synthetic chemistry. Beyond molecular design, efforts are 

increasingly devoted also to rationalization and control over supramolecular organization, 

something which may be key to device integration [Breuning et al., 2000]. The potential to 

graft molecular switches onto polymeric chains, inorganic nanoparticles and surfaces, or even 

on macromolecules of biological interest is certainly a huge advantage over other actuating 

materials. Another key point is their multi functionality, which confers to them appealing smart 

features. Beyond the strain, which always accompanies a molecular switching event, other 

material properties often change in unison (including color, refractive index, magnetic 

susceptibility, conductivity, etc.). This provides interesting possibilities for combining built-in 

actuator and sensor functions and, by appropriate feedback design, a control function can be 

also established.  
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 Beyond smart and specialized features the good overall actuating performance of these 

materials must be also highlighted. The primary material performance meters are stiffness, 

strain, work density and bandwidth. Molecular actuators have moderate to low performance in 

terms of force/stiffness, which is simply related to the (relative) weakness of intermolecular 

forces. On the other hand, they display more promising strain (displacement) and work density 

characteristics. For example, the work density of certain spin crossover complexes is 

comparable with that of shape memory alloys. This arises from a dramatic change in the 

molecular geometry of these systems. The bandwidth in molecular systems can be inherently 

very high, since these molecular switching events occur usually at the ns (structural switches) 

– ps (electronic switches) time scales.  However at the material and device levels this intrinsic 

bandwidth may be significantly reduced [Lorenc et al., 2009].  

One of the main promises of molecular materials is operation at reduced sizes, but this requires 

processing, integration and testing at these scales. A basic requirement for device integration is 

micro- and nanoscale organization and compatibility with silicon-based technologies. The main 

challenge here is to provide approaches that are compatible with the MEMS/NEMS fabrication 

steps (in particular taking into account the fragility of the structures once liberated) and that 

allow the preservation of molecular switching functionality and performance. A straightforward 

way to introduce these molecules into real applications might be through their incorporation 

into polymeric materials, which can be readily processed using well-established methods, such 

as spin coating or micro molding. The recent spectacular advances in the field of spin crossover 

thin films and nano-objects [Bousseksou et al., 2011, Cavallini 2012, Gentili et al., 2014] 

provide some confidence that this can be a viable approach.  

The next step is the analysis of actuating performance of these devices, some-thing that is 

almost completely missing from the current literature, and which may be significantly different 

when compared to the actuating performance of bulk single crystal materials. Indeed, a 

polycrystalline film with randomly oriented active molecules may exhibit significantly reduced 

effective strain; depending on the actuation method the bandwidth and efficiency may also be 

seriously reduced. Other properties such as linearity and stability must be also investigated. 

Rather surprisingly the mechanical properties of molecular switches are also not well 

established. While the strain associated with the switching event is usually well characterized 

by crystallographic methods, the elastic moduli and their correlation with the molecular 

structure have been analyzed only in a very few cases. This is all the more surprising given that 

mechanical properties play often a pivotal role in the switching phenomena. Accumulation of 
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experimental data including nano indentation, atomic force microscopy, inelastic scattering 

techniques and high pressure crystallography would be extremely useful and should be 

accompanied by a more widespread use of computational methods. Recent progress in the study 

of other molecular materials may serve as a useful guide for this task [Reddy et al., 2006, 

Reddy et al., 2010].  

 

Conclusions 

 

In this chapter, some of the main advances of molecular switches as actuators were discussed, 

the parameters to evaluate their actuating performance were set as well as their applicative 

potential with respect to other conventional actuating materials. The different actuating 

mechanisms were exposed (structural, electronic, redox switching). The actuating proof of 

concept for most of them have been already achieved using either single crystals or composite 

materials. The next step is their successful integration into useful devices for future applications. 

In order to succeed, the combination of fundamental principles governing molecular actuators, 

their mechanical performance evaluation and the introduction of appropriate fabrication 

protocols is needed. This thesis is focused on SCO molecular actuators and has been developed 

to advance some of these issues.  
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Chapter 2. The spin crossover phenomenon  
 

Introduction 

 

Among the different types of molecular actuators, spin crossover compounds are well-known 

to display a reversible switching between the high spin (HS) and low spin (LS) states of the 

central metal ion. This phenomenon can be induced by different physical and chemical stimuli. 

The electronic switching is associated with a significant change in molecular volume and shape, 

which can be harnessed to produce useful mechanical work. This chapter introduces the SCO 

phenomenon and discusses the different stimuli to trigger it. The conventional characterization 

techniques to detect and measure the SCO properties are also exposed. Since the strain and 

mechanical properties are the outstanding parameters regarding actuating performance, this 

chapter gives a particular emphasis on structural aspects of the SCO, from the molecular to the 

microscopic scale and their repercussion on the volume change. An overview of the SCO 

mechanical properties is also discussed. 

 

2.1 Spin crossover: general principles 

 

The spin crossover phenomenon occurs in some 3d4 - 3d7 transition metal compounds with a 

pseudo-octahedral molecular symmetry where six donor atoms form an octahedron around the 

metal ion. Depending on the ligand field strength, these metal ions can adopt two spin states 

called low spin (LS) and high spin (HS).  

The SCO phenomenon was observed for the first time in 1931 by Cambi and Gagnasso 

reporting a strange magnetic behavior in a set of compounds of Fe(III) based on the 

dithiocarbamate ligand. They observed a reversible conversion of the spin state as a result of 

temperature variation [Cambi and Gagnasso, 1937]. Twenty years later, in 1956, the notion 

of spin equilibrium behavior was evoked [Griffith, 1956].  The first occurrence of SCO 

phenomenon in an iron(II) complex was reported by Baker et al [Baker and Bobonich, 1964]. 

This finding led to countless other complexes and the effect is currently found in iron(II), 

iron(III), cobalt(II) and less frequently in cobalt(III), manganese(II), chromium(II) and 

manganese(III). However, the majority of the studied complexes have an iron(II) central ion 

[Gutlich and Goodwin, 2004]. For this reason, in the following the general principles which 

govern the spin transition will be discussed for iron(II).  
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2.1.1 Ligand-field theory 

 

If an iron(II) ion is set in a perfectly octahedral coordination, its five d orbitals are split into 

three orbital subsets, dxy, dyz, dxz, which represent the basis of the irreducible representation 

t2g, and another subset of two orbitals, namely dz2 and dx2-y2 which are basis of the eg 

irreducible representation. The t2g orbitals are non-bonding and therefore at lower in energy 

than the antibonding eg orbitals (see Figure 6a). The difference in energy between these two 

levels is given by the ligand field strength 10Dq, and depends on the metal-ligand distance 1/rn, 

with n = 5, 6. In addition to this energy, the electron-electron repulsion, also called the spin 

pairing energy Π has to be taken into account. In the case of iron (II), it is possible to define 

two ground states with different distributions for the six d electrons depending on the 

magnitudes of 10Dq and Π.  

 

 

 

 

 

 

 

 

 

 

a) 

b) 

Figure 6: a) Separation of the d orbitals in an octahedral ligand field induced by the ligand strength 10Dq, b) 

Diagram of the electronic configuration for the two possible ground states for iron (II) in an octahedral 

complex. 
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If Π is larger than 10Dq the electrons will occupy the five d orbitals according to Hund’s rule, 

with maximum spin multiplicity as for the free ion. This results in a paramagnetic state S=2, 

the so-called high-spin 5T2(t2g
4eg

2 ) ground state. In case that 10Dq is larger than Π, the six d 

electrons will pair up in the t2g
 orbitals, resulting in a diamagnetic state S=0, the so-called low-

spin 1A1(t2g
6 ) ground state (Figure 6b). In case Π ≈ 10Dq, the SCO phenomenon can occur 

[Gutlich and Goodwin, 2004].  

During the SCO the metal-ligand bond length changes abruptly and therefore 10Dq changes 

abruptly too. As a general rule, in the case of an octahedron FeN6, the bond lengths are 

approximately rLS = 1.92 -2.00 A° in the LS state and rHS = 2.12 – 2.18 A° in the HS state, 

giving a variation ΔrLS-HS ≈ 0.2 A°  (10 %), which means an increase of 25 % in the octahedral 

volume from the LS to the HS state. For a configurational coordinate diagram (see Figure 7a) 

one can see that the minima of the two potential wells (HS and LS) are displaced, both 

horizontally (rHL) and vertically (𝛥𝐸𝐻𝐿
0 ) to each other.  

 

 

 

 

 

 

 

 

 

 

 

 

Taking into account the bond length dependence of 10Dq and the fact that Π does not vary with, 

the ground state energy 𝛥𝐸𝐻𝐿
0  between the HS and LS states can be estimated as a function of 

a) b) 

Figure 7: a) Adiabatic potentials for the HS and LS states as a function of the totally symmetric metal-ligand stretch 

vibration denoted r(Fe-L). b) Stability regions of the LS and HS states as a function of 10Dq [Gutlich and 

Goodwin, 2004]. 
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10DqHS and 10DqLS respectively, as illustrated in Figure 7b, where three regimes can be 

observed [Gutlich and Goodwin, 2004]:  

i) 10DqHS < 10000cm-1, 𝛥𝐸𝐻𝐿
0  < 0. Here the HS state is the quantum mechanical 

ground state and is thermodynamically stable at all temperatures at atmospheric 

pressure. 

ii) 10DqLS ˃ 23000 cm-1, 𝛥𝐸𝐻𝐿
0  ˃ 2000 cm-1. Here the LS state is the quantum 

mechanical ground state and is thermodynamically stable state up to very high 

temperatures. 

iii) 10DqHS = 11000 – 12500 cm-1, 10DqLS = 19000 – 22000 cm-1 and 𝛥𝐸𝐻𝐿
0 = 0- 2000 

cm-1. This narrow region represents the area where thermal spin crossover may 

occur. 

2.1.2 Different stimuli to induce spin transition. 

 

The spin transition can be triggered by different stimuli, but the most accessible experimentally 

is the thermo-induced spin transition. Nevertheless other stimuli have been also explored such 

as the pressure and light-induced spin state change, which will be briefly discuss below. Let us 

also note that SCO can be also induced by gas/molecule absorption or by an intense magnetic 

field.  

 

2.1.2.1 Thermally-induced spin transition. 

 

The thermally induced spin transition is an entropy driven process. This is the most common 

way to trigger the switch between the LS and HS states. The two spin states are in 

thermodynamic competition. The phase change that can be associated to the spin crossover 

phenomenon can be analyzed through the Gibbs free energy.  

 

𝛥𝐺 =  𝐺𝐻𝑆 −  𝐺𝐿𝑆 =  𝛥𝐻 − 𝑇 𝛥𝑆 

 

𝛥𝐻 = 𝐻𝐻𝑆 − 𝐻𝐿𝑆 

 

𝛥𝑆 = 𝑆𝐻𝑆 − 𝑆𝐿𝑆 

(2a) 

(2b) 

(2c) 
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The equilibrium temperature T½, at which the quantity of molecules in the HS and LS states are 

the same, is defined by: 

𝑇1/2 =
𝛥𝐻

𝛥𝑆
 

 

The complexes will be in the low-spin state at very low temperatures, where the enthalpy term 

dominates. On the other hand at elevated temperatures the entropy-driven almost quantitative 

population of the high-spin state may be observed. The entropy difference between the two 

states is based on two contributions, i) the higher spin multiplicity of the high-spin state, and ii) 

a vibrational contribution due to the generally lower vibrational frequencies and  the resulting 

higher density of vibrational states in the high-spin state. The low-spin state, in fact, remains 

the quantum mechanical ground state at all temperatures, but the high-spin state becomes the 

thermodynamically stable state at elevated temperatures. 

 

 

2.1.2.2 Photo-induced spin transition. 

 

The first occurrence of light induced spin crossover was reported in 1982 by McGrarvey and 

Lawthers [McGravey and Lawthers, 1982], which had a big impact on the spin crossover 

research field. They have shown that by using a pulsed laser they could perturb the equilibrium 

between the two states in several Fe(II) SCO compounds in solution. Later, Decurtis [Decurtis 

et al., 1984] discovered that by irradiating a solid Fe(II) SCO sample with green Ar+ laser (λ = 

514.5 nm) he could excite the LS state into a metastable state until the complete population of 

the HS state, presenting a long lifetime at sufficiently low temperatures (106 s for 

[Fe(ptz)6(BF4)2] at 20 K). This solid state effect was named “Light Induced Excited Spin State 

Trapping” or LIESST effect. The reverse-LIESST effect was soon reported by Hauser [Hauser 

1986], and was obtained by converting the HS state into the LS state using red light (λ = 820 

nm). The Jablonski diagram, illustrates the LIESST and reverse LIESST effects with vertical 

transitions and relaxation processes (see Figure 8). 

The light induced switching process is thought to occur with the excitation of the sample into 

the 1T1 energy level (or MLCT levels – depending on the experimental conditions), followed 

by a first relaxation into the 3T1 level. 

(3) 
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The second relaxation may occur into the 5T2 (HS) state, where the molecule remains trapped 

due to the large energy barrier between the HS and LS states. Because the energy level 3T1 is 

below 5E state for SCO compounds, this suggests a possible reversibility of the LIESST effect. 

This is possible by irradiation with λ = 820 nm, which induces a transition between the 5T2 and 

5E levels, where it relaxes via 3T1 to the 1A1 (LS) state. It is worth underlying that the HS 

trapping is only efficient at cryogenic temperatures (typically below 50 K) because at higher 

temperatures the photo-induced HS state relaxes rapidly to the ground state. (The life time of 

the state at room temperature is typically a few µs-ns. [Hauser, 1991]. 

  

2.1.2.3 Pressure-induced spin transition. 

 

Pressure is another perturbation which can trigger or alter the spin transition. Due to the fact 

that the SCO molecule has a smaller molecular volume in the LS state than in the HS one, 

pressure is favoring the LS state [Gutlich and Goodwin, 2004, Varret et al., 2002]. When low 

- moderate pressures (< 1 - 10 GPa) are applied the potential wells suffer only a relative vertical 

displacement, and the gap between the LS and the HS states increases by pΔV where ΔV 

represents the volume difference in the two spin states (Figure 9). The energy gap between the 

two spin states can be expressed by Equation 2.  

Figure 8: Jabloski diagram showing LIESST and reverse LIESST effects [Hauser, 1991]. 
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𝛥𝐸𝐻𝐿
0 (𝑝) =  𝛥𝐸𝐻𝐿

0 + 𝑝𝛥𝑉𝐻𝐿 

 

For iron(II) compounds the transition temperature variation under hydrostatic pressure is about 

15-20 K/kbar (Slichter 1972). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.2. Methods to detect and measure SCO properties 

 

During the spin transition physical phenomena at different levels may occur (electronic, 

molecular, structural, micro structural) which produce changes of different properties (color, 

volume, magnetic, electrical, etc.) Table 2 lists the properties changes that can be triggered 

during the SCO and the most typical characterization techniques used to determine them.  

For the purpose of this thesis, we will focus on the structural and the mechanical changes and 

how these parameters need to be considered for actuation purposes. For instance, the strain 

during the spin transition is governed by the structural changes and it will determine the 

amplitude of actuation. On the other hand, the Young’s modulus which determines the output 

force is determined mainly by the lattice dynamical properties. Below we discuss how these 

two parameters are affected by the spin transition. 

(2) 

Figure 9: Schematic representation of pressure effect on LS and HS 

potential wells of Fe(II) compounds [Gutlich and Goodwin, 2004]. 
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2.2.1 Strain and cooperativity: Structural and Microstructural aspects 

 

As mentioned before, the SCO is accompanied by significant structural changes.  Up to now 

the main principles has been described from the electronic and thermodynamic perspectives, 

but the bulk physical properties go beyond the electronic or molecular transformation and the 

physical property changes will be a consequence of various phenomena at different structural 

organization scales. Guionneau has discussed this issue based on X-ray diffraction studies 

providing information about the different structural levels to consider during the strain of the 

SCO material (see Figure 10) [Guionneau, 2014]. In the following a summary of these 

structural considerations is given. 

 

2.2.1.1 SCO at the level of coordination octahedron 

 

Since the reversible spin transition triggers length changes between the metal-ligand bonds, 

information about the spin transition itself is provided from this parameter which can be 

Table 2 : Characterization techniques to detect and evaluate SCO properties. 
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determined by the study of the crystal structure, giving information of the atomic position of a 

given metal site. Not only the bond lengths change, but the ligand-metal-ligands angles as well, 

producing a distortion of the octahedron geometry and influencing directly the SCO properties. 

Remarkably for most compounds with Fe(II)N6 core the volume change of the octahedron was 

found nearly the same ΔV ≈ 25 % (13 Å3) [Halcrow, 2011, Guionneau, 2014]. 

 

2.2.1.2 SCO at the molecular level 

 

When the octahedral deformation occurs during the spin transition, this is propagated through 

the whole molecule whose geometry is affected depending on the set of ligands used. The main 

events which can be encountered at the molecular level are: i) an aperture angle producing 

flapping/bending of the ligands, ii) no geometry alteration, iii) dissymmetry and, in some 

extreme cases, iv) metal-ligand bond breaking. The SCO at the molecular level will not be 

affected only by the modifications at the octahedral level, but also by the inter-molecular 

interactions.  

 

 

 

 

 

 

 

 

 

 

 

2.2.1.3 SCO at the inter-molecular level 

 

The influence of the SCO phenomenon at this level is very important since the complexity of 

these materials rely on interactions between molecules. These interactions are mainly hydrogen 

bonds, van der Waals contacts and π-π stacking, which are directly correlated with the 

Figure 10: Multiscale view of possible structural modifications connected with the SCO phenomenon on the 

example of [Fe(PM-BiA)2(NCS)2]. [Adapted from Guionneau, 2014]. 
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cooperativity of the SCO. However, it is difficult to stablish general rules due to the diversity 

of structural situations.  

 

2.2.1.4 SCO and the crystal packing  

 

It is useful to follow the structural modification through the unit cell parameters values. This is 

one of the most used approaches since the unit cell can be determined quickly both from powder 

and single crystal diffraction experiments. In fact, it allows to quantify the final amplitude of 

the SCO breathing on the material. For most of compounds based on Fe(II) the volume change 

ΔV in the unit cell varies from 1 to 5 % and in some special cases, such as for the 

[Fe(Htrz)2(trz)](BF4) and Fe(pyrazine)[Pt(CN)4] compounds, this value can reach 10-13 %. 

This value is significantly smaller than the octahedral volume change because the cell volume 

change is a consequence of the rearrangement of the whole molecule and the crystal packing. 

Moreover it is important to consider the anisotropy changes during the SCO, which may favor 

a specific strain direction. This aspect must be carefully considered during their integration in 

MEMS devices. The X-ray diffraction patters can be also useful to follow the evolution of the 

unit cell during the temperature ramp and deduce accurately the thermal expansion of the 

material far from the SCO [Guionneau, 2014]. 

 

2.2.1.4 SCO at the microscopic and macroscopic levels 

 

The propagation of the SCO strain at the micro and macroscopic scales does not related only to 

the crystal unit cell, but also to the defects and damages in the crystal. Some of the structural 

aspects to take into account during the SCO at the micro and macroscale are the particle size, 

domain size, mosaicicity, crystal defects, and long range damages. For instance the mosaicicity 

of a single crystal is strongly affected during the first thermal cycles. Fatigability has been 

reported in recent research using either Reflectivity measurements, X-ray diffraction or by 

AFM microscopy [Lefter et al., 2015, Guionneau et al., 2012, Grosjean et al., 2016, 

Manrique-Juarez et al., 2016]. All these aspects affect obviously on the SCO performance for 

application purposes. Nevertheless for some cases it seems there is a critical point where SCO 

prevails without no significant further structural modifications [Guionneau et al., 2012]. 

Indeed, interestingly Guionneau et al. noticed that the fatigue of the structure had almost no 
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influence on the transition temperature after a few thermal cycles [Forestier et al., 2009, 

Grosjean et al., 2016], but it still plays an important role for strain harvesting.  

 

2.2.1.5 Cooperativity of the SCO 

 

In the case of a crystalline lattice, the change of volume and shape of a molecule upon its spin 

transition triggers important repercussions to its close environment, but also to the long range 

environment affecting the energy of the whole lattice.  

 

 

 

 

 

 

 

For instance, if a HS molecule in a HS molecular environment switches to the LS state, this will 

lead to important stress and strain (Figure 11) and thus an increase of the elastic energy of the 

crystal lattice. For strong elastic interactions, the intermediate states between the pure LS and 

HS states are very unstable and the material is blocked in its current state until the intake energy 

is large enough to exceed the energy barrier. These collective phenomena are called 

cooperativity. They may lead in some cases to a first-order phase transition with an elastically-

driven memory effect (hysteresis).  

Figure 11: Simplified representation of collective mechanisms in the case of a highly cooperative SCO 

compound a) Molecules in the HS state. b) The central molecule transits towards the LS state, which 

implies a lattice deformation and tensile stress from its neighbors (arrows). As a result, c) either the 

molecule returns to the HS state or d) the neighbors transit towards the LS state [Mikolasek 2016]. 
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Figure 12 shows typical plots of the high spin fraction (ϒHS) vs temperature presenting a large 

diversity of behaviors ranging from gradual to very abrupt transitions with hysteresis as well as 

multi-step or incomplete SCO. The main source of the variety of the presented spin crossover 

curves is the degree of cooperativity between the molecules, which is determined by the lattice 

properties, notably by the way that metal-ligand deformations are propagated through the solid. 

 

One of the most common behavior found in SCO systems is the gradual conversion (Figure 

12a), denoting relatively weak cooperative interactions. If the degree of cooperativity in the 

system is increased, an abrupt transition can be found (Figure 12b). When a high degree of 

cooperativity is present in the system, the transition has a hysteretic behavior as illustrated in 

Figure 12c. For a narrow category of materials, a transition that occurs in two or even more 

steps can be detected (Figure 12d). This behavior happens in systems where the metal ions 

occupy at least two different lattice sites in the material. Alternatively it may also occur in 

systems with single metal site due to the preferential formation of LS-HS pairs caused by the 

competition of long and short range interactions [Bousseksou et al., 1992-1993]. The 

incomplete transition (Figure 12e) can be usually explained by the presence of some defects in 

Figure 12: Representation of a a) gradual, b) abrupt, c) hysteresis, d) multi-step, and e) incomplete 

spin transition [Gutlich and Goodwin, 2004]. 
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the lattice capable of preventing the formation of LS and/or HS species. Another cause may be 

a kinetic effect at low temperatures, when the conversion rate from one state to another becomes 

extremely low or even quenched.  

The link between cooperativity and crystal structure is obvious, but remains extremely difficult 

to quantify. Intermolecular contacts between spin centers can lead to strong cooperativity. 

These contacts might arise through strong or weak hydrogen bonding, from π-π interactions, or 

simply van der Waals forces. Cooperativity is also transmitted mechanically in a molecular 

crystal, between molecules with a high degree of surface contact. Large structural differences 

between the high and low-spin states can lead to strong cooperativity, as long as the lattice is 

sufficiently flexible to accommodate these changes [Halcrow, 2011]. 

 

2.2.2 Mechanical properties of SCO materials 

 

As we have seen above, the knowledge of the elastic constants of SCO materials and their spin-

state dependence is of primary interest since the mechanical properties play an important role 

in the spin-transition behavior of SCO solids. Indeed, cooperative phenomena can be 

rationalized only by taking into account the volume misfit of the HS and LS states and the 

concomitant elastic interactions between the SCO centers [Spiering et al., 1982]. Obviously, 

the use of SCO materials in actuators also requires a detailed knowledge of their mechanical 

properties. Taking into account their central role in the SCO phenomenon, it is thus rather 

surprising to realize that the elastic constants of spin-transition materials have been determined 

only in a few occasions (and usually in only one spin state) using high pressure X-ray diffraction 

[Shepherd et al., 2012, Granier et al., 1993], Brillouin spectroscopy [Jung et al., 1996], AFM 

[Hernandez et al., 2014], and NIS (nuclear inelastic scattering) [Rat et al., 2016a], reporting 

values between ~1.5-8 GPa with E LS→HS variations up to 30%. The main reason of this lack of 

information is that SCO materials are commonly obtained as nanoparticles, powders or 

microscopic crystals, which hinders the extraction of their mechanical properties using 

conventional characterization methods at the macroscopic scale. Additionally the extraction of 

such properties in tunable temperature is not obvious and instrumental challenges need to be 

overcome in order to obtain reliable data. 

As a general rule, in the LS state the SCO molecule occupies smaller volume, has a higher 

density and higher stiffness with respect to the HS state. Due to the lack of complete elastic 
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data, the mechanical properties of SCO materials were often discussed on the basis of the Debye 

model, which assumes a simplified phonon spectrum based on a single parameter, the Debye 

temperature D or the Debye sound velocity vD. In particular 57Fe Mössbauer spectroscopy 

studies revealed approximately 10 % increase of D and vD in the LS state in line with the 

expected stiffening of the lattice [Felix et al., 2015].  In the course of this thesis we used the 

NIS technique to extract mechanical properties of SCO powder samples, while SCO thin films 

and SCO polymer composite samples were analyzed using MEMS and DMA (dynamical 

mechanical analysis), respectively. These methods will be introduced in the next chapters.  

Conclusions 

 

In this chapter a global overview about the main principles governing the thermal, light and 

pressure-induced SCO phenomenon was provided. In particular we highlighted that structural 

aspects at different scales (coordination sphere, molecule, crystal packing …) have important 

consequences on the spin crossover properties in the solid state. The very important volume 

change of the coordination octahedron (ca. 25 %) is strongly attenuated at the macroscopic level, 

but still has significant consequences on the material properties (e. g. cooperativity) and 

provides scope for actuating applications. While the strain associated with the SCO is usually 

well characterized by crystallographic methods, the mechanical properties of these materials 

remain largely unknown. For this reason one of the objectives of this thesis was to develop an 

appropriate methodology to collect mechanical data for different forms of SCO materials. 
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Chapter 3. Microelectromechanical systems  
 

Microelectromechanical systems (MEMS) are microscale devices able to transform a 

mechanical signal into an electrical one and vice-versa. They are widely spread in our daily life, 

but - even if recent technological progress has allowed a considerable advancements of these 

devices - several challenges remain. The coupling of SCO materials with MEMS brings 

promising opportunities not only for MEMS actuation, but also for the exploration of SCO 

mechanical properties. In order to succeed the fusion of these two well-known scientific worlds, 

efficient engineering strategies need to be set first. This chapter gives an introduction about the 

advancements, challenges and general principles of MEMS devices. Key parameters for 

actuation, detection and miniaturization are discussed. The integration of SCO actuators in 

MEMS is also overviewed. 

 

3.1 Miniaturized electromechanical systems 

 

The term of MEMS (micro-electromechanical system) makes reference to a miniaturized device 

which is built of mechanical and electronic components with feature sizes at the microscale. In 

a broad and most complete sense, MEMS devices comprise microfabricated sensors, actuators 

and electronics that function as integrated systems designed to interface directly with their 

environment. Such systems are constructed from materials that exhibit favorable mechanical, 

electrical and/or chemical properties. MEMS devices have significant impact in modern life. 

Some of their application in the commercial sector are vehicle safety, entertainment and 

recreation, healthcare instrumentation, telecommunications and information technologies (see 

an example in Figure 13). Some other technology areas start also to benefit from continuous 

advancements in MEMS technologies including medicine, aerospace, and energy. MEMSs are 

still very attractive for the scientific community due to their broad application field and also for 

the possibility of further miniaturization to obtain more sensitive nanoscale devices (NEMS, 

nanoelectromechanical systems). [Graighead, 2000]. In the following their main functions as 

sensors and actuators are described. 
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3.2 MEMS as sensors 

 

The main function of MEMS sensors is to generate an electrical signal once they are submitted 

to an external perturbation. The nature of the perturbation can be physical, chemical or 

biological. 

MEMS sensors can be classified in different ways: i) by their transduction principle (physical, 

chemical, biological, optical, etc.), ii) by the measured parameter (pressure, acceleration, gas 

concentration) or iii) by their application (automobile, aerospatial or biomedical). For the 

purpose of this thesis, in the following we make reference to mechanical microsensors which 

are defined by their physical transduction. Mechanical microsensors transform a mechanical 

signal (mass, displacement, force, pressure etc.) into an electrical one (voltage, current etc). 

They can operate in two different modes: the dynamical regime and the static regime. In the 

dynamic regime (vibration), the applied perturbation is periodic in time. In the static regime 

(deformation) the perturbation can be considered constant or with slow variation. 

 

 

Figure 13: Simplified view of a smart-phone board integrated by MEMS (in red) [Scansen 

2013]. 
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3.2.1 Operation (Static vs. Dynamic regimes) 

 

3.2.1.1 Static regime 

 

MEMSs (for example a micro-cantilever) operating in the static regime, transform a static 

deformation (surface stress induced by an external perturbation (Figure 14b) into an electrical 

variation of current or voltage. Most of these microsystems require an external detection 

commonly achieved by optical deflection (see Figure 16a).  The sensitivity of MEMS which 

operate in the static regime is closely related to the spring constant (k) of the mechanical part. 

This constant depends of the device geometry and the elastic properties of the integrated 

materials. The deflection amplitude (Δδ) for these systems can be obtained by applying 

Stoney’s equation:  

𝛥𝛿 =  
4 (1 − 𝑣)𝐿2

𝐸ℎ2
𝛥𝜎 

where υ, L, h , E and Δσ are the Poisson’s coefficient, length, thickness, Young’s modulus and 

stress difference, respectively, induced by the external perturbation (molecules absorbed on 

surface, mismatch bilayer properties etc.) [Nicu, 2000, Dezest, 2015, Boisen et al., 2011]   

 

 

 

 

 

 

 

 

 

 

 

(3) 

Figure 14: Schematic representation of the possible mechanisms induced by the SCO phenomenon over a 

microcantilever. a) The elasticity and mechanical losses of the cantilever are modeled by a spring and a damper 

in parallel with spring constant k and damping coefficient η, respectively. Upon the thermally induced spin 

crossover the active compound generates a surface stress, which can be transduced b) as a displacement of the 

equilibrium position or c) as a shift of the resonance frequency of the system. 
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The stress above and under the neutral bending line of a cantilever (the neutral bending line is 

located in the middle of the cantilever system) is responsible for the direction of the deflection, 

because stress causes forces which result in the bending moments. If the sum of the moments 

under the neutral bending line is larger than above, then the deflection is upward, otherwise 

downward. Let us consider the case of a thin film deposited on the upper surface of a cantilever 

(Figure 15). If the film contracts the cantilever bends upwards and the stress in the film is 

tensile (by convention, positive), while the stress in the top side of the cantilever is compressive 

(by convention, negative), i.e. the stress created in the cantilever balances the stress in the thin 

film whose compression is hindered by the supporting cantilever.  Vice versa if the film expands 

the cantilever bends downward, the stress in the film is compressive while the stress on the top 

side of the supporting cantilever is tensile [Boisen et al., 2011, Hollauer, 2007].  

 

 

 

 

 

 

 

 

 

 

 

 

3.2.1.2 Dynamic regime 

 

For MEMS in the dynamic regime (Figure 14c), a resonance shift results from the influence of 

an external excitation over the natural frequency of the mechanical structure. In the spectrum 

of the natural frequency of the system (amplitude vs. frequency) a resonance peak will have 

higher sensitivity if it is associated with a large amplitude and a high quality factor (Q). This 

a) 

b) 

Figure 15: Stress distributions in a fixed cantilever and its respective deflection 

after release of a tensile (a) or compressive (b) stress in the film [Adapted from 

Boisen et al., 2011]. 
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sensitivity is directly related to fr and could be also affected by surface stress effects. The 

resonance frequency depends on the geometry, size and clamping configuration (see Equation 

6). It is essential to be able to indicate or control the external factors (out of the one of interest) 

that can influence the natural resonance of the mechanical device. For instance the damping 

induced by environmental conditions is directly related to the quality factor. On the other hand 

internal stresses can induce a deformation and affect the linearity of the global mechanical 

response of the device. The Q factor characterizes the total stored energy in the system by the 

energy dissipated per radian of vibration during each cycle [Kim et al., 2008]. Q can be 

expressed by Equation 4:   

𝑄 =
2𝜋𝑊𝑠

𝑊𝑑
 

where Ws is the stored vibrational energy and Wd is the energy lost per cycle of vibration. 

Damping mechanisms can include thermoelastic losses, viscous damping and acoustic losses. 

This parameter determines the accuracy of the resonance frequency measurement as it relates 

the slope of the amplitude and phase curves near resonance. Therefore Q is also defined as:  

𝑄 =
𝑓0

𝛥𝑓
 

where f0 is the resonance frequency, Δf is the full-width 3dB down from the resonance 

frequency peak. 

As mentioned above, in the static regime surface stress affects directly the cantilever bending. 

In the case of the dynamic regime this parameter may have different effects depending on the 

system geometry. In the case of a double clamped cantilever the surface stress induces a force 

along the beam axis that modifies the resonance frequency. In contrast, for a single clamped 

cantilever the free end allows deformation and releases most of the stress influence over the 

resonance frequency [Tamayo 2013]. 

In the dynamic regime MEMS sensors can be made with either i) an integrated detection, where 

the mechanical signal is directly converted by the MEMS itself into an electrical signal, or ii) 

with an external detection, where the microsensor requires an external system in order to 

generate the electrical signal. 

(i) Microsensors with external detection in the dynamic regime: Most of these types of 

microsensors are coupled with an optical detection system in order to generate the 

(5) 

 

(4) 
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electrical signal which translates the influence of the external perturbation. For this 

aim two common optical methods are described in literature: Interferometry and 

optical beam deflection. The latter is the most used and consists of a laser beam 

which is focalized over the mechanical vibrating part and it is reflected on a position 

sensitive photodetector. The amplitude variation induces a shift on the detected 

photocurrent. On the other hand in the interferometric method, light from a single 

source is split into two beams that travel through different optical paths which are 

reflected by mirror-like surfaces (e.g. silicon substrate) and combined again to 

produce interferences. The resulting interference fringes give information about the 

difference in the optical path length. This technique is widely used to measure small 

displacements. 

 

 

 

 

 

 

 

 

 

(ii) Microsensors with integrated detection in the dynamic regime: This kind of 

microsensors can use three physical mechanisms: i) direct piezoelectric, ii) 

piezoresistive and iii) capacitive effects. 

 

a. MEMS with piezoelectric effect. The piezoelectric effect represents the 

properties of certain materials to transform an electrical signal into mechanical 

deformation and vice versa. When a piezoelectric film is integrated into the 

mechanical cantilever, the piezoelectric effect allows to induce typically a 

displacement in the order of nanometers and force gradients in the order of nN/m 

[Dezest, 2015]. 

a) b) 

Figure 16: Different optical detection methods used in the dynamical regime: a) beam 

deflection, b) interferometry (Michelson interferometer). 
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b. MEMS with piezoresistive effect. The piezoresistive effect represents the change 

in the resistivity of certain materials under the effect of a mechanical stress. In 

general polysilicon is used as a piezoresistive material. However, it is ca. 10 

times less sensitive than monocrystalline silicon. For this reason, ionic 

implantation is used to diffuse boron atoms in monocrystalline silicon MEMS 

to form the piezoresistive zones and to obtain an optimal efficiency [Dufour et 

al., 2012, Li et al., 2007]. 

c. MEMS with capacitive effect. The principle of capacitive detection is based on 

the measurement of the maximum equivalent admittance of the microsensor. 

The device is integrated by two plane structures suited in a way they can form a 

flat capacitor. One of the structures is static. The second electrode is a 

microcantilever (or bridge) with a weak spring constant (≈10 N/m). The 

vibration of the structure modifies the space between the electrodes of the 

microsensor, therefore also modifies its admittance [Nicu, 2000, Pelesko and 

Berstein 2002]. 

  

3.3 MEMS as actuators 

 

As seen in chapter 1, an actuator can be defined as a device capable to transform a source of 

energy into motion. MEMS actuators are deformable microstructures such as cantilevers, 

bridges or membranes. The most common energy transduction mechanisms in MEMS actuators 

are piezoelectric, magnetic, thermal and capacitive. For the purpose of this thesis we used the 

three former methods which will be briefly described in the following.  

 

3.3.1 Piezoelectric actuation  

 

This actuation method relies on the inverse piezoelectric effect where the materials deforms 

upon an applied electric field. Once a piezoelectric material is submitted to a sinusoidal electric 

field, the material vibrates. This material can be part or independent of the microdevice. If the 

piezoelectric is part of the mechanical device, this can be sandwiched between two electrodes 

on the resonator surface. When a transverse electrical field is applied an axial asymmetric stress 

induces a bending moment with respect to the neutral bending line. In the case of an external 
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piezoelectric drive the MEMS is glued on a piezoelectric transducer ceramic (see Figure 21). 

In comparison with other transduction methods, the piezoelectric approach has several 

advantages in terms of transduction efficiency and low power operation [Dezest, 2015, 

Masmanidis et al., 2007]. 

 

3.3.2 Magnetostatic actuation 

 

In this kind of transduction, an alternative current is passed through a conductive loop, which 

is part of the mechanical structure. The presence of a static magnetic field will then induce a 

Lorenz force leading to the vibration of the microstructure. Depending on the direction of the 

magnetic field, the force can induce in plane or out of plane displacements. The amplitude of 

the excitation force FLorentz is proportional to the intensity of the magnetic field and the applied 

electric current I, as well as the cantilever length (Equation 5). The main advantage of this 

transduction method is that it can achieve frequencies up to the GHz range [Cleland and 

Roukes, 1996].  

𝐹𝐿𝑜𝑟𝑒𝑛𝑡𝑧(𝜔) = 𝐿𝐵𝐼(𝜔) 

3.3.3 Thermal actuation 

 

This kind of actuation relies on the difference of thermal expansion coefficients between two 

different materials in a bilayer system. Upon temperature variation, the thermal expansion 

mismatch between the two different materials is responsible of axial stresses at the origin of the 

bending moment. The heat source can be electro-thermal (Joule effect) or photo-thermal (light 

irradiation) energy. Periodic temperature changes allow to put in vibration the mechanical 

structure. The efficiency of this actuating method relies on the capacity of the system to follow 

the frequency imposed by the excitation source [Bargatin et al., 2007]. The smaller the size of 

the system the higher the cut-off frequency. 

 

3.4 Strategies to integrate SCO materials into MEMS devices 

 

At the beginning of this thesis no single work related to the coupling between MEMS and SCO 

compounds was reported. To our best knowledge, apart from the experiments of the Stoddart 

team with rotaxane molecules (see Chapter 1), no other molecular actuators have been 

(5) 
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interfaced with MEMS devices. A first challenge emerges from this fact since it is necessary to 

assess several technical aspects (active/passive material properties, device dimensions, 

actuation method, detection method, fabrication issues, etc.) to implement efficient strategies 

for the design and evaluation of MEMS-SCO performance (see Figure 17). For instance, a 

MEMS, which is developed to characterize the mechanical properties of SCO compounds 

requires a protocol, which is not appropriate to detect the spin transition and vice versa (see 

Chapter 4). In general, we should consider the following: 

(i) The fabrication method needs to be adapted in order to maintain the integrity of the 

SCO material, but also to avoid the damage of the fragile mechanical parts during 

the microfabrication process.  

(ii) The characterization set-up needs to be adapted to the environmental conditions 

required to induce the SCO (temperature, pressure, light, etc.) and/or preserve the 

material properties.  

In the following we will briefly discuss these issues. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 17: Different parameters involved in the design and development of 

actuator devices. 
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3.4.1 Silicon MEMS and their bulk micromachining 

 

Most MEMS are made of silicon, even if other technologies using ceramics or polymers have 

been also developed. Similar to semiconductor integrated circuit manufacturing, MEMS 

devices are manufactured on a silicon or glass “wafer”. This platform provides an economy of 

scale as hundreds or thousands of devices are manufactured at once in a batch process. In 

addition, many wafers can be processed simultaneously using automated or semi-automated 

equipment. The implementation of efficient ways to produce MEMS at large-scale offers 

significant cost benefit, high reliability and performance. The main steps to produce a standard 

silicon-MEMS process consist of (i) the mask design, (ii) photolithography patterning, and (iii) 

dry and wet etching [Spearing, 2000]. 

 

3.4.2 Alternatives to integrate SCO materials 

 

Different approaches were studied in order to integrate SCO materials into silicon devices. One 

of the main issues to consider is the damage the SCO material may suffer during the silicon- 

MEMS fabrication (plasma cleaning, photoresist deposition, pattern transfer by solvents, 

etching etc. See Annexes A1.3). For this reason the SCO materials cannot be easily integrated 

before the very last stage of the process.   

Some of the available deposition options to use at the final microfabrication step are: drop 

casting, spin coating, dip coating, thermal evaporation, and spray coating, though other 

techniques such as soft patterning or ink-jet may be also feasible. Below are described the 

techniques we used for the preliminary tests of this project. 

 Drop casting: It consists of the deposition of a drop of solution followed by solvent 

evaporation. This technique may be one of the simplest ways to integrate SCO 

compounds whichever is the solvent. Low material waste is also an advantage. 

However, this method produces heterogeneous thickness along the device, which makes 

difficult a reliable mechanical analysis.  

 Spin coating: This technique produces homogeneous depositions with a thickness 

control and reproducibility. However, it works best on flat surfaces. Once the silicon is 

shaped it is difficult to obtain a homogeneous distribution, there is material wasting and 

may produce device stacking and/or breaking (see Annexes A.3.2).  
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 Vacuum thermal evaporation: This technique is based on the sublimation of molecules 

in high-vacuum at high temperature. Evaporated molecules travel in straight lines inside 

the chamber and they condense on the substrate. The growth rate is controlled by tuning 

the temperature and the thickness is monitored with a microbalance. This method 

produces the highest quality nanometric films (See chapters 4-5).The challenge with 

this technique is to conserve the integrity and functionality of the SCO material. Notably 

SCO compounds with counter-ions and/or lattice solvents are not adapted. For this 

reason very few of them are adapted to be integrated by this technique.  

 Dip deposition: This technique may provide quite good uniformity with the possibility 

to produce very thin layers. However, it requires additional surface functionalization for 

a selective growth, material is wasted and the manipulation of the MEMS during the 

dipping process can become difficult. Additionally it may produce material stagnation 

between the device and the substrate or stacking (in particular in the case of silicon-on-

insulator wafers) (see Annexes A.3.3.).    

 

 

 

  
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

a) b) 

c) 
d) 

e) 

Figure 18: Possible deposition methods to integrate SCO materials into MEMS devices: a) drop casting, b) 

spin coating, c) thermal evaporation, d) dip coating and e) spray coating. 
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 Spray coating: This is a technique where wet droplets are sprayed on the substrate and 

merge into a full wet film before drying. It can be used with any substrate of different 

shapes and materials. It generates uniform films analogous to spin-coating with large 

area coverage. Thickness and morphology can be controlled by air pressure, solution 

viscosity, solvent properties, gun tip geometry, distance between nozzle and substrate. 

It is one of the most versatile integration techniques and it is suitable for the fabrication 

of micro and submicrometric films (See Chapter 6). However it is no suitable for the 

integration of homogeneous nanometer thick films. 

 

Conclusions 

 

In this chapter the general operation principles (static and dynamic) of MEMS devices have 

been reviewed, including the most common detection and actuation methods. The main 

challenges and possible approaches to integrate SCO materials into MEMS devices were also 

discussed. From preliminary experiments thermal evaporation and spray coating deposition 

appeared as the most reliable methods to integrate nanometer and micrometer thick SCO films, 

respectively. They will be discussed in chapters 4-6.  
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Chapter 4: MEMS integrating [Fe(H2B(pz)2)2(phen)] compound 
 

The promising applications of SCO materials as actuators require a detailed knowledge of their 

mechanical properties, their effective integration in functional devices and appropriate 

strategies for transduction. In this chapter we describe the first achievement of this thesis to 

integrate spin crossover molecules as nanometric thin films into silicon MEMS devices with 

the aim to i) determine the mechanical properties of the SCO thin film and ii) detect the SCO 

using silicon mechanical devices. For this, a high quality thin layer of [Fe(H2B(pz)2)2(phen)] is 

deposited by thermal evaporation onto freestanding silicon bridges and cantilevers. From the 

mechanical response of the bilayer system in the dynamic regime it was possible to achieve a 

complete characterization of the mechanical properties of the thin layer using an optical 

interferometer. Additionally we also demonstrated the light-induced excited spin-state trapping 

(LIEEST) phenomenon by tracking the MEMS resonance frequency using piezoresistive 

detection. Details regarding the microfabrication process and the characterization set-up are 

discussed for each case. The results described in this chapter allow us to use MEMS for the first 

time as a new SCO detection method and as a straightforward tool to determine the mechanical 

properties of spin transition materials.  

 

4.1 Generalities of [FeII(H2B(pz)2)2(phen)]  

 

 The SCO compound we first integrated in MEMS devices is the [FeII(H2B(pz)2)2(phen)] 1 

complex (Figure 19a). This compound was selected for our experiments because of its ability 

to be conveniently deposited in a micromachining compatible process by thermal evaporation, 

leading to high quality and homogenous films. In addition, the spin-state of 1 can be easily 

altered by light irradiation. 

The iron(II) mixed-ligand complex of formula [FeII(H2B(pz)2)2(phen)] with H2B(pz)2 = 

dihydrobis-1-pyrazolylborate and phen = 1,10-phenanthroline (1) has been synthesized  and 

structurally characterized by Real et al [Real et al., 1997, Thomson et al., 2004].  Magnetic 

susceptibility studies showed that 1 undergoes an abrupt spin transition in the 160−165 K 

temperature region (Figure 19b). Single crystal diffraction data have been recorded for 1 at 200 

K, 100 K, 30 K and at 30 K after irradiation (LIESST). The crystal was found to be in the C2/c 

monoclinic space group at 200 K (HS), but it undergoes a loss of symmetry to a related, 

primitive structure (P ), with unit cell volume approximately half that of the HS structure. This 
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loss of lattice symmetry in the LS state also leads to the loss of the C2 molecular symmetry and 

this dramatic structural change explains the structural damage which is often observed with 

these crystals.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Thin films of complex 1 were deposited by vacuum evaporation first by Naggert et al. [Naggert 

et al., 2011], followed by numerous studies in different teams [Zhang et al., 2014, Gopakumar 

et al., 2012, Pronschinske et al., 2013]. Optical spectroscopy provided evidence that the 

deposited complex exhibits both thermal and light-induced SCO, but in comparison with the 

crystalline state, the transition in the film becomes very gradual, which is likely related to its 

reduced crystallinity [Palamarciuc et al., 2012]. As shown in Figure 19c, upon cooling from 

ca. 200 to 100 K, the HS electronic configuration of the molecules in the film is gradually 

Figure 19: a) Molecular structure of 1 and b) Variable temperature magnetic suceptibility of the 

powder of 1 showing thermal spin transition around 163 K [Real et al., 1997]. c) Variable 

temperature optical absorption of a 500 nm thick  film of 1. The inset shows the thermally  (100-200 

K) and phtotoinduced (<50 K) spin crossover phenomenon between the high spin and low spin states 

in the film in comparison with the bulk sample [Naggert et al., 2011]. 

a) b) 

c) 
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transformed into the ground LS state. However, below ca. 40 K, it is possible to fully depopulate 

the LS state by shining white light on the sample. The lifetime of the photo-induced metastable 

HS state at 10 K in the dark is ca. 11 days, [Moliner et al., 2002] i.e., the system remains 

trapped in the HS state long time after the photoexcitation.  

 

4.2 Determining mechanical properties  
 

4.2.1 Analytical approach to determine the mechanical properties of 1. 

 

The mechanical properties of a monolithic cantilever beam are correlated with its resonance 

frequency fr by Equation 6. In the case of a bilayer system fr  is given by Equation 7a [Hoy-

Benitez et al.,  2012] with λn as the modal coefficient related to the nth vibrational mode, l the 

length, ρ the material density, A the cross-sectional area, ȆI  the flexural rigidity, w the width, t 

the thickness and Ȇ the effective Young´s modulus.  The subscripts Si and SCO refer to the 

silicon substrate and the SCO film, respectively.  

 

 

𝒇𝒏 =
(𝝀𝒏)𝟐

𝟐𝝅𝒍𝟐  √
Ê𝑰̅̅ ̅

𝝆𝑨
 

 

 

𝒇𝒏 =
(𝝀𝒏𝒍)𝟐

𝟐𝝅𝒍𝟐  √
Ê𝑰̅̅ ̅

𝝆𝑺𝒊𝑨𝑺𝒊+ 𝝆𝑺𝑪𝑶𝑨𝑺𝑪𝑶
 

 

 

𝟏

Ê𝑰̅̅ ̅
=  

𝟏𝟐(Ê𝑺𝒊𝒕𝑺𝒊 +  Ê𝑺𝑪𝑶𝒕𝑺𝑪𝑶)

𝒘 (Ê𝑺𝒊
𝟐 𝒕𝑺𝒊

𝟒 +  Ê𝑺𝑪𝑶
𝟐 𝒕𝑺𝑪𝑶

𝟒 +  Ê𝑺𝒊Ê𝑺𝑪𝑶𝒕𝑺𝒊𝒕𝑺𝑪𝑶(𝟒𝒕𝑺𝒊
𝟐 + 𝟔𝒕𝑺𝒊𝒕𝑺𝑪𝑶 + 𝟒𝒕𝑺𝑪𝑶
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Ê =  
𝑬

(𝟏 − 𝒗𝟐)
 

 

(7c) 

(7a) 

(6) 

(7b) 
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The elastic modulus of 1 (ESCO) can be obtained either by solving Equations 7a-b or by using 

the analytical expression (3), which considers a bilayer cantilever of rectangular cross section 

and correlates its experimental resonance frequency before (fs) and after (fbi) SCO deposition 

with the relative values of the elastic modulus (Er = ESCO/ESi), thickness (tr = tSCO/tSi) and density 

(ρr = ρSCO /ρSi) [Hoy-Benitez et al., 2012, Withing et al.,  1995]. 

  

(
𝒇𝒃𝒊

𝒇𝒔
)𝟐 =

(𝑬𝒓𝒕𝒓
𝟑+𝟏)(𝑬𝒓𝒕𝒓+𝟏)+𝟑𝑬𝒓𝒕𝒓 (𝒕𝒓+𝟏)𝟐

(𝝆𝒓𝒕𝒓+𝟏)(𝑬𝒓𝒕𝒓+𝟏)
 

 

Additionally, when the film is deposited on a double clamped cantilever (i.e. on a bridge), the 

residual stress (σ) due to a compressive or a tensile axial force N may lead to a downshift or 

upshift of the experimentally observed resonance frequency fr (N) with respect to the expected 

resonance frequency fr (0). Once ESCO of the film is obtained from Equation 8 using data 

obtained with the cantilever, we are able to quantify the residual stress using data obtained with 

the bridge by adapting the analytical expression described by Bowstra and Geijselaers 

[Bouwstra and Geijselaers, 1991] (Equations 8 and 9a-d) with v as the Poisson ratio and ϒ1 

as coefficient for the contribution of the applied axial force for the first resonance mode.  

𝒇𝒓(𝑵) = 𝒇𝒓(𝟎) √𝟏 + 𝜰𝟏
𝑵𝒍𝟐

𝟏𝟐Ê𝑰
      

 

 𝑵 = (𝟏 − 𝒗𝒃𝒊)𝝈𝒃𝒊𝑨 

 

The Poisson ratio of the bilayer contribution can be expressed as: 

𝝂𝒃𝒊 =
𝒕𝑺𝒊𝝂𝑺𝒊+𝒕𝑺𝑪𝑶𝝂𝑺𝑪𝑶

𝒕𝑺𝒊+𝒕𝑺𝑪𝑶
     

and the stress of the bilayer contribution as: 

𝝈𝒃𝒊 =
𝝈𝑺𝑪𝑶𝒕𝑺𝑪𝑶+𝝈𝑺𝒊𝒕𝑺𝒊

𝒕𝑺𝑪𝑶𝒕𝑺𝒊
 

 

4.2.2 MEMS fabrication and integration of the SCO complex 1 

 

The powder of 1 was synthesized by Sylvain Rat (LCC-CNRS) following the method described 

in ref. [Rat et al., 2016a]. 

(8) 

(9a) 

(9b) 

(9c) 

(9d) 



 
48 

 

The fabrication and characterization of MEMS described in this section were carried out at the 

micro and nanotechnologies platform of LAAS-CNRS, in a clean room with controlled 

particulate concentration, temperature, humidity, and light intensity/spectrum (for certain 

operations), which permits the micro and nanoscale patterning and treatment of materials and 

device prototyping. 

To validate and simplify this study, the most important considerations are the well-shaped 

devices and good dimensional characterization of the whole structure before and after 

deposition of 1. Standard microfabrication process of bridges and cantilevers (9 µm width, 50 

µm length, 2 µm thickness) was achieved using a SOI wafer (2 µm Si, 1 μm SiO2, 400 µm thick 

Si from Soitec). The devices were patterned using UV-photolithography (ECI 3012 photoresist), 

followed by a vertical RIE (reactive ion etching) and wet HF etching. At the final step, 179 nm 

of 1 was deposited by thermal evaporation at 383 K under high vacuum (10-7 mbar) at a rate of 

0.5 A˚s-1 (Figure 20a-d). The device geometry and film quality were controlled by scanning 

electron microscopy (SEM) using a Hitachi S-400 instrument and atomic force microscopy 

(AFM) using a Bruker-Icon in amplitude-modulation mode. Film thickness and density were 

determined by X-ray reflectivity (XRR) and focused ion beam (FIB) using a Bruker-XRD (Cu 

Kα X-ray 1.54 Å) and a HELIOS 600i instrument, respectively. 

As a result, well-shaped cantilevers and bridges were fabricated and high quality deposition 

was obtained (roughness 0.26 nm) (Figure 20f-k). Each chip includes more than 1600 

devices/cm2. At this point it may be worth to note that such high quality devices could be 

obtained only in a second fabrication run (see Annexes A2 and A3 for more details of the 

encountered problems along the microfabrication process and their solutions).  

 

 4.2.3 Mechanical Characterization 

 

4.2.3.1 Fabry-Perot Interferometer 

 

The MEMS chips were mounted on a piezoelectric disk which was electrically actuated before 

and after deposition of 1 and the movement was followed by a Fabry-Perot interferometer at 

room temperature in controlled pressure conditions. Below is given a general description of the 

characterization set-up (Figure 21). 
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In order to produce the mechanical movement, the sample is mounted on a motorized piezo 

stage, this is placed inside a vacuum chamber which allows to reduce the effect of air damping. 

The piezo-shaker actuates in a collective manner all the devices on the chip. 

 

 

The movement detection is based on an optical interferometry which consist on a He-Ne laser 

(30 mW rated power, λ = 632 nm) focalized by a beam expander (X5) and a microscope 

objective (x20, N.A. 0.28). The final position of the laser to the surface of the sample is defined 

by the motorized piezo stage system. The operation is observed on real time by a CMOS camera 

under a DEL (Diode Electro Luminescent) lightening ( λ = 470 nm). The air gap between the 

Figure 20: Microfabrication process of MEMS a) photolitography, b) vertical RIE etching, c) HF wet etching, 

d) thermal evaporation of 1. SEM images of  f) bridges and  g) cantilevers. Zoomed image of cantilever tip h) 

before and i) after the deposition of 1. j) FIB milled cross section of a bilayer cantilever covered with an 

additional metal layer to observe the thickness of the  deposited film of 1. k) AFM topography image of the 

film (image size 10 x 10 µm2). 

Silicon dioxide (1μm)

SCO compound (179 nm)

Positive photoresist

Silicon (top 2μm)

d) RIEb)a)

c)

d)

f) g) 

h) i) 

j) k) 
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resonator and the substrate surface provide a Fabry-Perot cavity. The cantilever/bridge 

mechanical oscillations modify periodically the size of the optical cavity.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The intensity of the resultant beam obtained from the interferences of the reflected beams of 

the two surfaces is then modulated by the vibration frequency of the mechanical structure and 

the amplitude is directly proportional to the resonator displacement. The beam is deflected 

towards a photo-detector (New Focus 1601) from which the AC signal is connected to a 

Figure 21: MEMS characterization set-up, a) vacuum chamber, b) chip mounted on Motorized piezo-

stage, c) Basic scheme of Fabry-Perot interferometer, d) Analysis zone and e) resonance shift before and  

after deposition of 1. 

Resonator (Si)

Interferences

Substrate (Si)

Piezoelectric

(SiO2)

Film (SCO)

Piezoelectric disk

a) b)

c)

chip

d) e) 
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Network Analyzer (Agilent 4395A) to track the response of single cantilevers at the excitation 

frequency [Denis, 2015, Salomon et al., 2012]. 

4.2.3.2 Young’s modulus and Axial stress. 

Table 3 summarizes the different material properties used in this study.  In the case of silicon 

these values are well known from the literature [Hopcroft et al., 2010]. For compound 1, most 

of parameters are obtained from the present study while v is an approximation for these 

materials [Felix et al., 2015]. The density value obtained by XRR for the SCO complex is ≈1.39 

± 0.01 kg/m3 which is in good agreement with the one reported in the case of the powder [Rat 

et al., 2016a]. It is important to notice the mechanical values for 1 correspond to the high spin 

state as they were determined at room temperature. (N.B. The SCO from HS to the LS state 

occurs between 200 and 100 K). As the silicon thickness may vary depending on the analysis 

zone (±0.2µm according to the supplier), we use the experimentally determined value of fr 

before deposition in conjunction with Equation 6 to extract a more accurate thickness tSi. 

 

Table 3 : Material properties and MEMS geometry for devices described in section 4.2.2. 

 Silicon SCOHS (complex 1) 

Density ρ (kgm-3) 2330 
[Hopcroft 2010]

 1.39 ± 0.01      

Young's modulus E 

(GPa) 
169 

[Hopcroft 2010]
 6.9 ± 0.1 

Poisson ratio v 0.22  
[Hopcroft 2010]

 0.3 ± 0.05 
[Felix 2015]

 

Residual stress σ (MPa) N.A. 74.8 

 Cantilever Bridge 

Modal coefficient λ1 1.875  4.71 

Length l (μm) 50 50 

Width w (μm) 9 9 

Thickness tSCO (μm) 0.179 0.179 

Thickness tSi (μm) 2.2 1.7 

Coefficient ϒ1  NA 0.2949 
[Bouwstra and Geijselaers 1991]

 

Resonance frequency 

substrate fs (MHz) 
1.2486 5.8 

Resonance frequency   

bilayer fbi (MHz) 
1.2259 5.728 
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Figure 22 shows the resonance frequency of the cantilever (Figure22a) and bridge (Figure 

22b) before and after the film deposition. 10 different devices were tested and regardless of the 

initial value of fr, all of them present similar shifts of fr_shift = 22.7 kHz (Figure 21e) 

corresponding to a mass addition of 0.113 ng. By using Eq. 3 we were able to extract the elastic 

modulus of the film ESCO = 6.9 ± 0.1 GPa. If we introduce this value into Eq. 2a-b, the theoretical 

fr shift (22.2 kHz) due to SCO deposition is very close to the experimental value (22.11 kHz). 

 When compare the elastic modulus of the film obtained in this thesis  (6.9 GPa) Vs the powder 

obtained by NIS (4.8 GPa) [Rat et al., 2016a], the agreement is reasonable, in particular if one 

takes into account the fact that crystallinity is lost in the films [Palamarciuc et al., 2012].  By 

assuming that the elastic modulus variation between the two spin states is the same for the film 

as for the powder (ca. 8%), we can predict a LS elastic modulus of ESCO = 7.5 GPa.  

 

 

In the case of bridges, as we can observe from Figure 22b, the experimental resonance 

frequency after the film deposition (fr(0) = 5.728 MHz) is higher than the theoretical one (fr(N) 

= 5.698 MHz obtained from Equation 9a) which allows us to evidence a residual stress in the 

material as consequence of an axial tensile force of N = 85.5 μN.  By introducing these values 

in Equations 9c-d, the stress of the SCO film corresponds to σSCO = 74.8 MPa, which is a non-

negligible value. 

 

Figure 22: Resonance frequency curves before and after film deposition for cantilevers a) and bridges b). 

a) b) 
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4.2.3.3 Work density. 

 

Additionally we can also predict the work density which describes the maximum mechanical 

work output per unit volume of the active material (W/V = Eε2/2). For this we consider the 

volume change determined previously for the crystalline powder upon the spin transition (4.5%). 

In the case of the film this change is isotropic (the film is amorphous) and we can expect a 

linear strain of ε = 1.6%. This leads to a work density of   W/V = 0.93 Jcm-3 (LS to HS) and 

W/V = 0.97 Jcm-3 (HS to LS). These values are in good agreement with those obtained for 

similar materials [Shepherd et al., 2013] and confirm their high actuating performance in terms 

of work density.  

 

4.3 SCO Detection by MEMS using light energy. 

4.3.1 MEMS characteristics  

 

4.3.1.1 Electromagnetic Actuation/Piezoresistive Detection 

 

The microelectromechanical devices used for the SCO detection are more complex since they 

integrate the actuation and detection elements into the same system. These devices were 

designed and fabricated by Liviu Nicu and Daisuke Saya (LAAS) in the frame of a parallel 

project. Only a general description about their function is described in this thesis (for more 

details on similar operation and fabrication principles see Alava et al., 2010 and Dufour et al., 

2011).  These devices consist of a silicon chip that includes two cantilevers: one is freestanding, 

thus free to move and vibrate, while the other one is fixed to the substrate (Figure 23). The 

latter serves as a reference to offset the environmental variations over the measurements. The 

general properties of the device are showed in Table 4. 

 

Table 4: MEMS geometry for devices described in section 4.3.1. 

Geometry Free Reference 
Modal coefficient λ

1
 1.875   

Length l (μm) 500 500 

Width w (μm) 120 120 

Thickness t
SCO

 (nm) 200 200 

Thickness t
Si

 (μm) 20 546 
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Figure 23: a) Scheme of the MEMS device and the associated magnetic actuation-piezoresistive 

detection method. b) Scheme of the MEMS device covered with the SCO compound by thermal 

evaporation. c) A representative SEM image of the free-standing and reference cantilevers is also shown 

with a d) zoomed image of the cantilever tip showing the gold path for the actuation current. 

 

Magnetic actuation is used to drive the freestanding cantilever at its resonance frequency. To 

this aim, a sinusoidal current I is applied through a conducting path integrated onto the 

microcantilever, which is placed in the presence of a static magnetic field. The detection of the 

mechanical vibrations is performed by piezoresistors integrated at the clamped-end of the two 

microcantilevers where stress induced by displacement is maximal.   

A home-built vector network analyzer (VNA) card is used to detect the piezoresistive response 

of the cantilever. For this, two complementaries polarization voltages are injected in free (Vfree) 

and reference (Vref) piezoresistances. The VNA card measures the output signal from the 

transimpedance amplifier. This amplified current (iout (ω)) is the result of the sum of both Iref   + 

Ifree (see Equation 10) which corresponds to the variation of the piezoresistance. This is 

transformed in a graphical signal. For a better description of the VNA card see Annexes A4.2. 

  

𝑖𝑜𝑢𝑡 = 𝐼𝑟𝑒𝑓 + 𝐼𝑓𝑟𝑒𝑒 =
𝑉𝑟𝑒𝑓

𝑅𝑟𝑒𝑓
+

𝑉𝑓𝑟𝑒𝑒

𝑅𝑓𝑟𝑒𝑒 + 𝛥𝑅𝑓𝑟𝑒𝑒(𝜔)
 

 

Actuation Current

Piezoresistive 
Polarization

Output 
Current

Active layer 
deposition

500 µm 500 µm

a) b)

c) d)

(10a) 
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4.3.2 Characterization Set-up 

 

The experiments were conducted by placing the MEMS devices, either coated with 1 or 

uncoated, on the cold finger of an Oxford Instruments OptistatCF liquid helium cryostat in a 

static He gas atmosphere. A fiber coupled halogen lamp (100 W) was used to shine white light 

on the device through the upper cryostat window, while a magnet was placed underneath for 

proper MEMS actuation (see figure 24).   

 

Figure 24: Variable temperature MEMS characterization set-up allowing for light irradiation of the 

sample and magnetic actuation of the MEMS. 
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4.3.3 Results and discussion 

 

The advantage of using light excitation in this work is that the mechanical response (resonance 

frequency) of the MEMS cantilevers in the two spin states can be recorded in strictly the same 

temperature/ pressure conditions—before/after light irradiation—thus allowing us to study the 

sole influence of the SCO. Indeed, the resonance frequency of the silicon cantilever is extremely 

sensitive to temperature changes due to the substantial temperature dependence of the density 

and Young’s modulus of Si. Hence, it is practically impossible to separate contributions from 

the temperature and spin-state changes on the mechanical behavior of the MEMS during the 

thermal spin crossover process (See Figure 25).  

 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

To follow the light-induced excited spin-state trapping (LIESST) phenomenon in 1, we used a 

similar procedure as described in [Lefter et al., 2016]. The device was first cooled down from 

240 K to 10 K in the dark. At this temperature the ground state is LS, but the HS state can be 

easily populated by white light irradiation. The lifetime of this metastable HS state at 10 K is 

sufficiently long (several days) so as to characterize it even when the light is turned off. Once 

the temperature (and thus, the freestanding cantilever’s resonance frequency) was stable, light 

was turned ON and OFF several times with intervals of 50 s. The variation of the resonance 

frequency (fr) of the SCO-MEMS device during this experiment is shown in Figure 26. Upon 

the first irradiation cycle, one can observe a ca. 0.52 ± 0.1 Hz remnant drop of the resonant 

frequency (Δfr LIESST in Figure 26a), which persists in the dark and which is not affected by 

further irradiation cycles. We thus assign this change to the LIESST effect.  

Figure 25 : Temperature dependance of the resonance frequency and quality factor for uncoated a) and 

coated b) devices. 

a) b) 
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Figure 26: Resonance frequency tracking of the MEMS at 10 K, 80K and 100 K upon successive light 

irradiation cycles (ON and OFF) for a device coated with a 200 nm thick of 1a)-c) and uncoated device d)-

f). Δfr
LIESST   and Δfr

T    stand for the frequency shifts induced by the light induced spin-state switching (LIESST) 

and photothermal effect respectivelty. 
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An additional, fully reversible resonance shift of 0.68 ± 0.1Hz is also observed during each 

successive irradiation cycle, which we attribute to the photo-thermal effect (Δfr
T in Figure 26a). 

From the temperature dependence of fr (see Figure 25, and more details in Anexes A5.1), we 

can estimate that the magnitude of the photo-thermal effect for this experiment is ca. 0.3–0.5 K. 

Above ca. 40 K, the lifetime of the metastable HS state drops quickly due to the thermal 

activation of the relaxation process [Palamarciuc et al., 2012, Moliner et al., 2002].  

The device was heated up to 240 K to recover its initial state and then repeated the previous 

experiment at 80 K and 100 K where the LIESST effect is not efficient. Indeed, as shown in 

Figure 26b-c at these temperatures only the reversible photo-thermal effect could be detected, 

thus providing support for the assignment of the persistent resonance shift at 10 K to the 

LIESST effect. In order to assert that this phenomenon is related to the presence of the film of 

1, we repeated the three experiments (light irradiation at 10 K, 80 K and 100 K) with an 

uncoated device. This latter exhibited systematically the reversible photo-thermal effect (Δfr 
T) 

upon turning on and off the light source (Figures 26d-f), but we could not observe at any 

temperature the persistent resonance shift (Δfr 
LIESST) characteristic of the coated device. Further 

experiments at 7 K confirmed that the main observations are perfectly reproducible. (See 

Annexes A4.3).  As a final remark, it is worth to compare these results with those we reported 

recently when monitoring the electrical current in thin (10–100 nm) junctions of 1 upon light 

irradiation [Lefter et al., 2016]. Of particular interest is that a persistent current drop in the 

junctions was systematically observed upon the first irradiation cycle at 5 K, while only a 

reversible photocurrent was detected at 100 K. The parallel between the two experiments 

(mechanical device and tunneling junction) is obvious. 

The fact that the resonance frequency of the cantilever decreases when going from the LS to 

the HS state is consistent with the softening of the crystal lattice in the latter phase. Indeed, as 

discussed in Ref. [Rat et al., 2016a] the Young’s modulus of 1 decreases by ca. 8% in the HS 

state. At the same time, the mass density decreases also by 5%. Obviously, this will also impact 

the geometry, primarily the thickness of the film. For a better understanding of the role of these 

different parameters in the coupling of molecular spin-states to the MEMS mechanical behavior, 

we can consider the analytical method described in the previous section Equations 7a-c which 

correlates the resonance frequency with the material properties and geometry in a bilayer beam 

[Hoy-Benitez et al., 2012].  
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Table 5 summarizes the relevant material properties for silicon and compound 1 in both spin 

states. In the case of 1 bulk values were used as a first approximation [Rat et al., 2016a]. Not 

only the material parameters are approximated in our calculations, but also the device geometry 

since we neglect the influence of metallic lines and the SiO2 layer. Nevertheless, the magnitude 

and the sign of the changes should remain reliable.  Indeed the calculated resonance shift 

obtained is -1.3 Hz, which is in fairly good agreement with the experimentally observed value 

(-0.52 Hz). These simple analytical calculations reproduce thus reasonably well the relative 

change of fr since the relative change of ρ and E are expected to be similar for most SCO 

materials. It would be possible to further improve the calculated values by taking into account 

the “real” device geometry and the material parameters of the film, but this would require a 

considerable effort. 

 

Table 5 : Physical properties of bilayer cantilever materials used in the calculations. 

Properties Silicon SCO
HS
 SCO

LS
 

Density ρ (kgm
-3

) 2330 
[Hopcroft 2010] 1398 

[Rat 2016a] 1471 
[Rat 2016a] 

Young's modulus E (GPa) 169   
[Hopcroft 2010] 4.77 5.16 

Poisson ratio v 0.22  [Hopcroft 2010] 0.3 ± 0.05 [Felix 2015] 0.3 ± 0.05 
[Felix 2015] 

Modal coefficient λ
1
 1.875    

 

While the ensemble of these results clearly confirms the good mechanical coupling between the 

SCO molecules and the Si beam, still very significant scope remains to increase the magnitude 

of the resonance shift upon the spin-state switching. In particular, the ratio between the SCO 

and silicon film thickness and the cantilever dimensions can be tuned to achieve this goal.  

Figure 27 shows simulation results based on Equations 7a-c, which allow us to estimate the 

effect of these parameters on the resonance frequency and, even more importantly, on the 

frequency shift associated with the SCO. For instance, if a thicker SCO film is deposited to 

obtain a ratio of 1 (SCO/Si), the SCO-induced resonance shift would be around 360 Hz. 

Even higher sensitivity can be obtained with NEMS, for example, if we change dimensions 

(length: 8 µm, width: 2.5 µm, thickness: 340 nm) and maintain the same SCO film thickness, 

the mechanical device would resonate around 6.676MHz and one would expect a 4.786 kHz 

shift between the HS and LS states. Based on similar considerations, we can also assume that 

large displacements could be obtained with polymer MEMS structures, e.g., membranes or 

cantilevers, and that SCO materials could be particularly well suited for actuation of polymer 

MEMS due to the similarity of their mechanical properties (Young’s modulus, etc). 
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Conclusions 

 

In the first part of this chapter we used a MEMS based methodology to characterize the 

mechanical properties of thin films of the molecular spin crossover compound 

[Fe(H2B(pz)2)2(phen)]. Elastic moduli, residual stress and work density were evaluated. The 

feasibility of this study relied on the high quality of the films and the ‘well-shaped’ geometry 

of monolithic silicon microstructures. This work opens a new way for the analysis of 

mechanical properties of SCO materials for their reliable design in actuating devices. These 

values are later used in the second part of this chapter where the light-induced spin state 

switching of the molecules was correlated with a shift of the resonance frequency of the device. 

This correlation was substantiated by control experiments and analytical calculations. These 

later allowed us also to trace back the frequency shifts to the spontaneous strain and the 

associated softening of the material upon the spin crossover. In addition, they provide simple 

guidelines for more efficient harvesting of molecular motions. Such optimized devices would 

be very useful to assess accurately the mechanical properties of different molecular actuators, 

which, somewhat surprisingly, remain largely ignored in the literature. Based on these 

foundations, the actuating properties of these attractive “artificial molecular machines” could 

be established and optimized for a range of nanomechanical applications. In particular, the 

a) b) 

Figure 27: Simulation results of resonance frequency shifts due to the SCO phenomenon: a) when the thickness 

ratio of the SCO/Si layer is tuned (Si thickness= 20 µm), b) when silicon cantilever dimensions are changed (SCO 

thickness = 200 nm). 
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integration of compounds which exhibit SCO around room temperature or the reverse-LIESST 

effect (from the HS to the LS at low temperatures) is some of the perspectives of this work. 

Even if the volume and stiffness change is a ubiquitous feature of SCO materials, one must note 

that the integration of different compounds calls for a case-by-case tailored fabrication process 

for reliable MEMS operation. In the next chapters some of these propositions are developed, 

either by integrating a room temperature tunable SCO material into smaller devices or a 

polymeric nanocomposite material for more for a more versatile use of these compounds.  
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Chapter 5: MEMS integrating [FeII(HB(tz)3)2] compound 

 

As a substantial step towards technological applications, we describe in this chapter a MEMS 

device in which the SCO molecules are not only used to tune the device mechanical properties, 

but also perform controlled and reversible macroscopic work. Furthermore, this actuation by 

the SCO molecules occurs not in a cryogenic environment, as seen in Chapter 4, but under 

ambient conditions. Whereas SCO compounds which work around room temperature are now 

readily available [Salitros et al., 2009], their deposition on fragile mechanical parts as well as 

their reliable operation represents a substantial challenge. To this aim we developed high-

quality films of [FeII(HB(tz)3)2] 2, which provide significant advantages, since they can be 

deposited by thermal evaporation and they exhibit a fully reversible spin transition above room 

temperature in ambient air upon repeated thermal cycling. The results of this chapter are divided 

in two main sections, i) the synthesis and properties of the high quality thin films of 2 and ii) 

its integration and coupling with MEMS devices.  

 

5.1 Sample preparation and characterization 

 

5.1.1 Generalities on complex 2 

 

The solvent-free crystals 2 crystallize in the orthorhombic space group Pbca with half a complex 

molecule in the asymmetric unit [Rat et al., 2017]. They exhibit a remarkably abrupt spin 

transition around 334 K between the high spin and low spin states (Figure 28). This 

isostructural spin transition is accompanied by a nearly isotropic change of the FeII-N bond 

lengths (8.3 %) and a highly anisotropic unit cell volume change (4.6 %). The very high 

cooperativity of the spin transition in 2 is rather unusual in mononuclear SCO compounds. This 

property can be related to the dense crystal packing and relatively high stiffness of the lattice 

(Debye temperature θD = 198 K), which involves numerous C–H···N hydrogen contacts 

between each molecule with fourteen neighboring molecules. 

 

5.1.2 Sample preparation 

 

Reagents and solvents used in this study are commercially available. The bulk powder 

[FeII(HB(tz)3)2] was synthesized by Sylvain Rat (LCC-CNRS) as described in [Rat et al., 2017]. 

Thin films were grown by Victoria Shalabaeva (LCC-CNRS) by thermal evaporation using a 
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PREVAC thermal deposition system at a base pressure of ca. 2 x 10-7 mbar. The bulk powder 

was heated until 250 °C in a quartz crucible and evaporated at a rate 0.03 A/s. The evaporation 

rate and film thickness were monitored in-situ by a quartz crystal microbalance. The final 

control of the film thickness was carried out by AFM. The films were deposited onto fused 

silica, crystalline silicon (100) and polycrystalline gold (15 nm thickness) substrates, which 

were cleaned with acetone and isopropanol to remove contaminants. 

 

 

 

 

 

 

 

 

 

 

 

 

 

5.1.3 Sample characterization 

 

The grazing incidence X-ray diffraction (GIXRD) experiments were carried out in a 

PANalytical X’Pert PRO MPD system using Cu-Kα radiation (45 kV and 40 mA) with a 

parallel-beam configuration. The incident beam optics consisted of a mirror with a 1/32° 

divergence slit. A parallel plate collimator (0.18°) and Soller slits (0.04°) were mounted on the 

path of the diffracted beam. An X’Celerator detector in receiving slit mode was used for X-ray 

collection. AFM topography measurements were done using a Cypher-ES microscope (Oxford 

Instruments) in amplitude-modulation mode at room temperature. Temperature dependent 

absorbance spectra of the thin films were collected at wavelengths between 250 and 800 nm 

using a Cary 50 (Agilent Technologies) spectrophotometer and a Linkam FTIR-600 liquid 

nitrogen cryostat. The sample chamber was purged by dry nitrogen and spectra were acquired 

Figure 28: a) Variable temperature magnetic behavior and b) structural view of complex 2. 
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in the 293-393 K range with 1 K/min rate. Raman spectra were acquired using an Xplora 

(Horiba) Raman microspectrometer in conjunction with a Linkam THMS600 cryostage. All 

spectra were calibrated with respect to the first order silicon LO phonon peak at 521 cm-1. The 

exciting laser beam (638 nm, 1 mW) was focused on the sample with a 50x (NA: 0.5) objective, 

which was also used to collect the backscattered light. The Rayleigh scattering was removed 

using an edge filter and the Raman scattering was analysed with a resolution of ca. 3 cm-1. 

Magnetic susceptibility measurements were performed using a Quantum Design MPMS-XL 

magnetometer at heating and cooling rates of 2 K/min in a magnetic field of 10 kOe. 

 

5.1.4 Pristine thermally evaporated thin films 

 

The AFM analysis of the as-deposited films showed that the resulting films are smooth and 

continuous, but also rather heterogeneous in terms of morphology and roughness (Figure 29a). 

For example, the characterization of a film of ca. 1 cm2 surface area and 75 nm thickness 

revealed different regions with roughness ranging between ca. 0.5 and 5 nm. Films were 

deposited on fused silica substrates in order to follow the thermal variation of the spin state of 

the complex by temperature dependent optical absorbance measurements. We found that the 

films are transparent in the visible range independently of the temperature, while they exhibit a 

pronounced absorbance change associated with the SCO in the UV (See Figure 29b).  Figure 

29c shows the UV absorbance change at 317 nm for a 75 nm thick pristine film of 2 along four 

heating-cooling cycles between 293 and 383 K. The abrupt spin transition, similar to the bulk 

powder [Rat et al., 2017], is apparent around 337 K. However, contrary to the powder sample, 

the spin transition in the pristine films is poorly reproducible: both the absorbance values and 

the shape of the curves change from cycle to cycle. In order to unveil the origin of this lack of 

stability, the films were further characterized by X-ray diffraction. The results in Figure 29c 

highlight that the freshly prepared films are amorphous. On the other hand, by prolonging the 

storage time (days/weeks) in ambient air, several peaks appear in the XRD pattern, i.e. the films 

evolve to a polycrystalline form. We did not carry out a detailed study of this ageing 

phenomenon, but it was observed repeatedly for different film thicknesses. The amorphous 

nature of the films can probably explain the lack of appreciable spin transition in the as-prepared 

samples, while the structural change observed upon prolonged storage may account for the 

evolving SCO behavior (in time and also from one cycle to another). 
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5.1.5 Crystallization by solvent-vapour annealing 

 

In order to obtain stable films with reproducible SCO behavior, we tried to convert the 

amorphous films to the crystalline form. To this aim thermal and solvent-vapour annealing are 

the most frequently used methods reported in the literature [Jin et al., 2017]. As the films 

undergo a slow crystallization in ambient air, this fact suggested that water vapour (which is a 

moderate solvent for 2) might be used to accelerate this process. (N. B. Other solvents may be 

also used here, but were not tested in our study. On the other hand we tested the possibility to 

recrystallize the films by thermal annealing, but we could not find any appropriate condition 

for this.) Indeed, the exposure of the fresh films of 2 to humid (ca. 75 – 80 %) air at room 

temperature led to their very efficient and fast crystallization. This spectacular process was 

followed by AFM, optical absorption and Raman measurements. The AFM image in Figure 

30a shows the topography of a freshly evaporated film revealing a very low roughness (Ra = 

0.45 nm). Then, a water drop (ca. 20 μL) was added into the AFM chamber and immediately 

another topography scan was acquired. As shown in Figure 30b, at the timescale of the 

measurement (ca. 2-3 min) the film experienced a dramatic morphological transformation: the 

initially rather featureless surface of the film evolved into a nano-crystalline morphology 

displaying well defined grain boundaries and a roughness (Ra) of ca. 6-7 nm. On the other hand, 

the addition of a water drop to another sample with the same thickness (150 nm), which was 

previously exposed to ambient air for 2 hours, did not induce any obvious change in the surface 

morphology (Figure 30c-d).  

This means that ‘irreversible’ changes occur in the films in ambient air and the humidity 

treatment must be carried out on freshly prepared films in order to achieve a high degree of 

crystallinity. It is important to mention that the surface morphology depicted in Figure 30b 

does not represent the final stage of crystallization, as the humidity in the AFM chamber was 

not high enough for a complete transformation. Indeed, when the solvent annealing was carried 

out in a dedicated chamber for 75-80 % relative humidity we could obtain extremely well 

reproducible film morphologies with roughness (Ra) below 2.5 nm (150 nm thickness). 

Perhaps even more importantly, in contrast to the pristine samples, these crystalline films cover 

uniformly the whole substrate surface and their morphology was found stable on storage in 

ambient air for several months (see the inset of Figure 31, and Figure A5.1.1 in Annexes). 
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Figure 29: Characterization of pristine thermally evaporated thin films, a) AFM topography images of 

a 75 nm thick film (images sizes are 10 x 10 µm2, b), UV-vis spectra of a 90 nm crystalline film at 293 

K (LS) and 393 K (HS) deposited on a fused silica substrate. Inset: zoom on the visible spectra range, 

c) Absorbance (λ = 317 nm) of a 75 nm thick film along four heating-cooling cycles, and d) Evolution 

of the XRD pattern for different storage times is ambient air ( film thickness ca. 80 nm) 

 

 

 

a)

b)

c) d)
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Figure 30: AFM imaging of the crystallization of a film of 150 nm thickness. AFM topography of a fresh 

sample before a) and after b) exposure to humidity. The c) and d) images show the same treatment in a 

different film, which was storage previously in ambient air. Image sizes are 10 x 10 µm2. 

  

The increase of the LS absorbance band upon exposure to humidity can be used to follow the 

crystallization process. For fully crystalline films it was found that the absorbance at 317 nm is 

closely proportional to the film thickness (see Figure A5.1.2 in Annexes). Hence it is possible 

to establish quantitatively the degree of crystallinity of the films from a simple room 

temperature UV absorption spectrum (provided the film thickness is known). As an example, 

Figure 31 shows the UV absorbance of two 90 nm thick films, either stored in ambient air or 

annealed in 80 % humidity, revealing a crystallinity of ca. 45 % and 100 %, respectively. 

Samples showing a complete and homogenous crystallization could be obtained with 

thicknesses ranging from approx. 20 to 200 nm. Thicker films crystallized only partially, most 

probably only in the proximity of the surface layers (leaving the underlying ones in 

amorphous/semi-crystalline form), while films with a thickness below ca. 20 nm formed a 

discontinuous layer of grains. Further work on the annealing process (e.g. multi-step annealing, 

etc.) will be required to obtain highly crystalline homogenous films in a broader thickness range. 

The transformation of thin films from the amorphous to the crystalline form was also analyzed 

by Raman spectroscopy, which revealed three different spectral footprints.  

A first spectral modification occurs upon exposure to water vapor, which can be attributed to 

the crystallization process. Then, a slight heating of the film to ca. 313 K allowed us to obtain 

a spectrum, which remained stable and reproducible upon thermal cycling as well as on storage 



 
68 

 

in ambient air. Since this latter spectrum corresponds closely to the spectrum of the bulk sample 

2 [Rat et al., 2017] we can attribute this second spectral change to the loss of water. 

Interestingly, the Raman spectrum of the film in its stable (dehydrated crystalline) form matches 

more closely the spectrum of oriented single crystals of 2 than that of the polycrystalline powder 

[Rat et al., 2017]. 

 

 

 
Figure 31: Absorption spectra acquire at 293 K for 90 nm thick films stored either in 30 % (ambient 

air) or 80 % relative humidity. The inset shows the AFM image of the humidity treated film (image size 

is 10 x10 µm2). 

 

This finding indicates that the crystalline films are possibly also oriented. To further investigate 

the crystallinity and texture of the films we acquired XRD data for humidity treated films. As 

shown in Figure 33 the diffraction pattern of the films consists of a single peak at 2θ = 10.02° 

indicating a preferential crystallographic orientation. (N.B. The very broad peak around 2θ = 

20° ÷ 25° is typical for amorphous fused silica substrates). The peak intensity approximately 

scales with the film thicknesses. This diffraction pattern of the crystalline films can be 

compared with that of the bulk powder, which exhibits a peak at 2θ ~ 10.11° corresponding to 

the 002 reflection [Rat et al., 2017]. It should be noted also that no other 00l diffraction peaks 

have significant intensity in the simulated powder XRD data of 2 [Rat et al., 2017]. 
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Figure 32: Raman spectra of a thin film (138 nm thickness) at three stages of its synthesis: the pristine 

amorphous film, hydrated crystalline film (after humidity treatment) and the final dehydrated crystalline 

film (after annealing at 313 K). 

 

We can thus conclude that the crystalline domains in the films grow preferentially with their 

orthorhombic c-axis normal to the substrate surface. This finding was repeatedly observed for 

different film thicknesses and also for different substrates, such as single crystalline silicon and 

polycrystalline gold substrates (see Annexes A5.1.3). These results will be taken as 

representative guide for the discussion of their behavior when they are grown over silicon 

MEMS devices.  

It is interesting to note that single crystals of 2 tend also to grow naturally with large 00l facets 

suggesting these facets have relatively low surface energy. It is worth to mention also that the 

LS to HS spin transition in 2 leads to a very significant strain (ca. +5.6 %) along the 

orthorhombic c-axis, while in the other directions the changes are smaller or even opposite (a-

axis: -2.3 %, b-axis: +1.0 %) [Rat et al., 2017]. Neglecting other contributions (e.g. micro-

strain), it is possible to estimate the mean size of the ordered (crystalline) domains, which is 

directly linked to the peak broadening in the XRD diffraction patterns through the Scherrer 

Equation [Langford and Wilson., 1978]: 

 

 

(11) 
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where τ is the mean size of the ordered (crystalline) domains, K is a dimensionless shape factor, 

with a value close to unity, λ is the X-ray wavelength, β is the line broadening at half the 

maximum intensity (FWHM), after subtracting the instrumental line broadening, in radians and 

θ is the Bragg angle (in degrees). 

 

 

 
Figure 33: XRD pattern of crystalline thin films of 2 for various thickness. The inset shows the size of 

the crystalline domains as a function of the film thickness. 

 

 As shown in the inset of Figure 33, the size of crystalline domains remains quite similar (from 

43 to 53 nm) for film thicknesses between ca. 45 and 200 nm. One may note that the Scherrer 

analysis of the bulk powder led to ca. 80-100 nm crystalline domain sizes [Rat et al., 2017]. 

https://en.wikipedia.org/wiki/X-ray
https://en.wikipedia.org/wiki/Wavelength
https://en.wikipedia.org/wiki/Intensity_%28physics%29
https://en.wikipedia.org/wiki/Full_width_at_half_maximum
https://en.wikipedia.org/wiki/Radian
https://en.wikipedia.org/wiki/Bragg_diffraction
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5.1.6 Spin crossover properties of crystalline films 

 

To follow the spin transition in a quantitative manner, variable temperature optical absorption 

measurements were performed over four heating - cooling cycles between 293 K and 393 K 

with a rate of 1 K/min. Figure 34a shows the absorbance spectra of a 90 nm thick crystalline 

film at different temperatures in the UV region. The intense absorption bands between 260 and 

340 nm exhibit three maxima around 272, 305 and 317 nm at 293 K (see inset in Figure 34a). 

The absorption coefficients associated with these peaks are ca. 104 cm-1 indicating these are 

strongly allowed charge transfer transitions. These absorption bands are bleached upon 

increasing the temperature to 393 K, which we can obviously assign to the SCO phenomenon. 

Indeed the plot of the absorbance at 317 nm as a function of the temperature (Figure 34b) 

reveals an abrupt change around 338 K with a small hysteresis, which is virtually the same as 

the one observed for the bulk powder [Rat et al., 2017].  

Since the spin transition is virtually complete in both directions (see Annexes A5.1.2 for details) 

and the absorbance at 317 nm is directly proportional to the LS fraction (nLS) the plot in Figure 

34b can be considered as a quantitative spin transition curve (nLS vs. T). It is interesting to note 

that during the first heating the transition temperature (T1/2up = 339.8 K) is slightly higher than 

in the successive cycles, which is the well-known ‘run-in’ phenomenon. However, beyond the 

first heating the transition temperatures (T1/2up = 338.1 K and T1/2down = 337.6 K) become 

perfectly reproducible, which can be well appreciated from the derivatives of the transition 

curves in the inset of Figure 34b. This SCO behaviour observed for the 90 nm thick film was 

perfectly reproduced for all other crystalline films with different thicknesses (see Annexes 

A5.1.4 for a few examples) and no remarkable size effect has been observed. At first sight, this 

result might seem surprising, but actually the size of the crystalline domains in films of different 

thickness is not much different either (see Figure 33). In order to further investigate the SCO 

behaviour, temperature dependent Raman spectra were also acquired (Figure 35).  
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During the spin transition, the Raman spectra of the films undergo characteristic changes in 

intensity and frequency in agreement with the spectra of the bulk powder 2 [Rat et al., 2017]. 

In particular, one can observe the increase in intensity of representative HS peaks around 1407, 

1046, 123 and 102 cm-1, while the LS markers around 1420 and 113 cm-1 loose in intensity. 

Figure 34: Absorbance spectra of a 90 nm crystalline film (deposited on a fused silica 

substrate) acquired at different temperatures in the heating mode. The inset shows 

the peak fitting of the baseline subtracted spectrum at 293 K. b) Temperature 

dependence of the absorbance at 317 nm along four heating-cooling cycles recorded 

at 1K/min scan rate. The inset shows the derivatives of the transitions. 
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Raman spectra enable also the observation of the coexistence of the LS and HS states at 338 K 

and confirm the completeness of the spin transition. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5.2 MEMS: SCO detection and actuation by thermal energy 

 

5.2.1 MEMS characteristics   

 

To integrate compound 2, new MEMS devices were used. They were fabricated by Jean 

Cacheaux from the MEMS team (LAAS) in the frame of his PhD thesis. These devices are 

suitable for the purpose of this project since they follow similar principles in terms of actuation-

detection, as the ones described in section 4.3, the main difference relies on the reduced 

dimensions (200 µm length, 50 µm width, and 2 µm thickness) (see Figure 36a) which confers 

higher sensitivity to detect external perturbations.  

Figure 35: Raman spectra of a 194 nm thick crystalline film acquired at different 

temperatures in the heating mode. 
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A 140 nm thick film of 2 was deposited on the new device.  The film deposition was done by 

thermal evaporation according with the procedure described in section 5.1. After deposition, a 

post annealing during 10 min with a relative humidity of approximately 80 % was carried out 

for the formation of the robust and fully crystalline coatings.  SEM and AFM images of the 

final crystalline film of 2 are shown in Figures 36b-c. The film was smooth (with ca. 2.5 nm 

roughness) and covered the whole device in a uniform and continuous manner. The SCO 

associated changes in the crystal lattice of 2 are schematized in Figure 36d. 

 

 

5.2.2 Characterization set-up 

 

With the help of Fabrice Mathieu (LAAS-CNRS) a new experimental set-up was put in place 

to characterize the MEMS devices covered by the film of 2. The operational principles of this 

new set-up are the same as discuss previously for the set-up used to investigate the films of 1 

(Chapter 4). The most important novelties of this new set-up are listed below and described 

further ahead: 

 Considerable smaller characterization set-up, using a HFS350V (Linkam Scientific) 

cryostage (Figure 37). 

 Possibility to control pressure, which allows maintaining this parameter constant during 

all the experiment. 

Figure 36: Tilted SEM image of the microcantilever, b) AFM image of the film of 2 (z-scale 20nm), and c) 

schematic representation of the packing of molecules of 2 on the cantilever surface in the contracted (LS) 

and expanded (HS) states. 

a) 

b) c) 

d) 



 
75 

 

 Possibility to extract both static and dynamic information in a simultaneous manner. 

  

 

5.2.2.1 Dynamic and Static Measurements 

 

For dynamic measurements, the mechanical device was actuated at its resonance frequency in 

a similar manner as for MEMS in section 4.3, using magnetic actuation and detecting the 

mechanical vibrations by piezoresistors. A reference cantilever was also attached to the 

substrate to offset the variations in the measurements. The home built VNA card (described in 

chapter 4.3) was used to track the mechanical response in terms of resonance frequency fr and 

this time the quality factor Q was also accurately measured.  For the static measurements, some 

considerations had to be taken: the resistance variation of the free cantilever can be affected by 

different external factors, the most important are temperature, mechanical properties and 

dimensional changes. The reference resistance is used to compensate all the environmental 

changes that influence directly over the measurement resistance, but it does not compensate the 

cantilever deformations which arise due to the altered mechanical properties and thermal 

Figure 37:  Set-up for MEMS characterization under controlled temperature and presure, a) 

Photo of the open chamber and b) Scheme of the main parts. 

a) 

b) 
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expansion coefficient of the device covered with the SCO film. Obviously the 

expansion/contraction due to the SCO is not compensated either. 

For the simultaneous static measurements, which represent a real novelty in terms of signal 

processing, a parallel loop was used to control the static polarization state of the piezoresistors 

to maintain a perfect Lorentzian shape by a tuned voltage injected into the piezoresistors and 

generate the output current equal zero (iout = 0, see Equations 10a-c). For this, the injected 

voltage on the reference is maintained fixed during all the experiment while the voltage on the 

free cantilever is tuned. By knowing the voltage on each resistance, it is possible to know the 

evolution of the measurement resistance over the time while SCO occurs. In this way it is 

possible to track and quantify the dynamic and static properties in a proper way.  

For variable-temperature measurements, the device was placed on the heating/cooling block of 

a cryostat (Figure 37), which allowed us to control the sample temperature between 298 and 

383 K at a heating/cooling rate of 2 K/min, while maintaining a constant pressure of 15 mbar 

during the whole experiment. We must stress that the experiments can also be run at higher or 

lower pressure, including atmospheric pressure, the key enabling point for reliable data 

acquisition being constant pressure while changing the temperature.  

 

5.2.2.2 Static calibration 

 

In order to calibrate the static amplitude variation, a similar silicon cantilever was actuated at 

its resonance frequency using our home-made electrical system and the movement was 

followed simultaneously by the piezoresistance variation (integrated on the device) and by an 

external optical interferometer (Polytec Scanning Vibrometer MSA-500). These experiments 

were run at the Institute of Electronics, Microelectronics and Nanotechnology (IEMN) located 

in Lille, France with the help of Olivier Thomas. We worked with an open chamber and an 

uncoated cantilever to obtain a better optical signal (Figure 38b). In a first approximation, we 

assume that the piezoresistance variation in these conditions follows a similar behavior as for 

the coated cantilever.  

The optical detection system consists of a laser-based, non-contact optical interferometer for 

the analysis and visualization of structural vibrations and surface topography. It integrates a 

microscope with a scanning laser Doppler vibrometer, a stroboscopic video microscope and a 

scanning white light interferometer.  The calibration was based on the Peak Hold of the chosen 

frequency taken at the mobile extreme of the cantilever, referring the amplitude of calibration 
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as the maximum amplitude registered on the whole mechanical structure at its resonance 

frequency.  

 

 

 

The amplitude registered by the optical interferometer is correlated to a piezoresistance value 

registered by the electrical system. As shown in Figure 39b the same resonance frequency and 

the same quality factor were registered by the two independent detection systems (optical and 

electric). Information about the 3D mechanical structure was also obtained (see Figure 39a), 

but most importantly we could obtain the calibration of the piezoresistance values in terms of 

amplitude of movement of the cantilever (Figure 39c). 

 

Figure 38 : Coupling of the integrated piezoresistive detection with an external 

optical detection for the amplitude calibration of the MEMS device. 

a) 

b) 
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Figure 39: a) 3D cantilever mapping of three different resonance modes. b) Amplitude of cantilever deflection 

and piezoresistance variation for the first resonance mode extracted from simultaneous optical and electrical 

measurements. c) The final calibration curve (Amplitude vs Resistance variation) obtained from figure b). 

a) 

b) c) 

1st resonance mode

1st torsional mode

2nd resonance mode
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5.2.3 Results and discussion 

 

The SCO properties of the film were monitored by means of variable-temperature UV 

absorption measurements (Figure 40a), which confirmed the occurrence of the spin transition 

around 338 K with a hysteresis of 2 K. These results are comparable to our previous 

measurements on films of 2 deposited on thick glass substrates (Section 5.1.5). The detailed 

temperature dependence of the resonance frequency and the quality factor of our MEMS is 

shown in Figure 40b-c. Data were collected both before and after the deposition of the SCO 

layer. For the uncoated device, both fr and Q decreased in a linear manner as the temperature 

increased. This downshift and broadening of the resonance peak reflects typical thermoelastic 

damping at constant pressure [Kim et al., 2008]. 

The deposition of the SCO layer on the cantilever resulted in a 409 Hz drop in the fr value; the 

change can be attributed to the extra mass (ca. 2.2 ng). Thermal cycling of the coated device 

revealed clearly the spin transition around 338 K. The most important features are the negative 

(vs. positive) jump in fr when the molecules are switched to the HS (vs. LS) state and the 

decrease in the Q factor around the transition temperatures. The spin-state dependence of fr is 

in perfect agreement with our previous results obtained with MEMS coated with compound 1 

(Chapter 4).  

We were able to extract dynamic and static properties of film 2 simultaneously. See Figure 40. 

As mentioned previously, in the dynamic mode a decrease in the resonance frequency of MEMS 

can be expected when going from the LS to the HS state (heating), owing chiefly to the increase 

in the thickness of the SCO film as well as to the concomitant decrease in mass density and 

lattice stiffness. On the other hand, in the static mode a deflection of the cantilever is expected 

to occur due to the SCO, primarily as a result of the transformation strain and associated change 

in the surface stress.  
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In order to extract the fr_shift of the SCO contribution it is possible subtract the value at 298 K 

and 353 K from the resonance curve of cantilever before deposition (see Annexes A5.2.1). 

Remarkably, the frequency shift associated with the spin transition is approximately two orders 

of magnitude higher in the present case (66 vs. 0.5 Hz), presumably as a result of the reduced 

device dimensions. This effect was indeed predicted theoretically in our previous study 

(Chapter 4), and we can use the same analytical calculations to rationalize the spin-state 

dependence of the resonance by taking into account the different properties of the HS and LS 

lattices obtained previously (Section 5.1.4). 

 

  

Figure 40: a) absorbance (317 nm), b) resonance frequency, c) quality factor and d) actuation of film 2 on 

heating (dashed red) and cooling (solid black line). 

a) 

b) 

c) 

d) 

T (K) 
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Table 6: Material properties and MEMS geometry for devices described in section 5.2.1. 

  

Si 

 Complex 2 

(LS)                  (HS) 

Young's 

Modulus (GPa) 

169[Hopcroft 2008] 5.16[Rat 2016a] 4.77[Rat 2016a] 

Poisson’s ratio  0.22[Hopcroft 2008] 0.3[Felix 2015] 0.3[Felix 2015] 

Density (kgm-3) 2330[Hopcroft 2008] 1568[Rat 2017] 1500[Rat 2017] 

Length (μm) 200 200 200 

Width (μm) 50 50 50 

Thickness (μm) 2 0.140 0.146[a] 

[a] To conserve the mass this analysis assumes the total volume 

change (4.5 %) is expanded in the c-direction as a thickness change. 

 

 

As film 2 is deposited on the c-direction and it is highly oriented in the plane (001). Most of the 

volume change due to SCO of the crystal favored this direction (a:-2.3% b=1% and c: 5.6%) 

[Rat et al., 2017].   

By using the bulk material properties extracted from NIS and XRD measurements (Table 6), 

these calculations lead to a theoretical frequency shift of 67 Hz (versus the experimental value 

of 66 Hz). As discussed in Chapter 4 these calculations do not take into account the effect of 

the metallic lines and that of the insulating SiO2 layer. Nevertheless, they confirmed clearly the 

prevailing effect of the relative changes in the geometry (thickness) and mechanical properties 

(density, Young’s modulus) of 2 between the HS and LS states on the shift of the MEMS 

resonance.  

The drop in the quality factor around the transition temperature (Figure 40c) is indicative of 

internal frictions during the spin transition. In analogy with other first-order thermoelastic phase 

transitions, the origin of this dissipation phenomenon is most likely the formation, movement, 

and merging of phase boundaries during the nucleation and growth process. [Perez-Saez et al., 

1998] We can also draw a parallel with a recent study of a hybrid polymer–SCO nanoparticle 

composite material, wherein dynamic mechanical analysis (DMA) provided evidence for a 

maximum of energy dissipation (loss modulus peak) around the spin-transition temperatures 

[Rat et al., 2016b]. 

The static response of the coated MEMS device is shown in Figure 40d and Annexes A5.2.2. 

Far from the spin transition, an increase in temperature leads to a linear increase in the 
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piezoresistance, in a very similar manner as for the uncoated device. On the other hand, the 

spontaneous strain associated with the spin transition gives rise to the opposite behavior. From 

the calibration of our system, the actuating deflection amplitude due to the SCO corresponds to 

-476 nm. This drop in the piezoresistance/amplitude around 338 K corresponds to the upward 

bending of the cantilever, which is indicative of a tensile surface stress. At first sight, this 

finding might seem rather surprising, since a tensile stress denotes the contraction of the SCO 

layer instead of its expansion, which could be expected during the LS to HS spin transition. 

Nevertheless, one has to also take into account the strong anisotropy of the transformation strain. 

Indeed, as it was mentioned previously, the X-ray diffraction study of films of 2 revealed their 

preferential growth with the orthorhombic (Pbca) c axis normal to the surface. The strain along 

this c direction due to the SCO is approximately +5.6%, whereas in the other directions the 

changes are smaller (b axis: +1.0%) or even opposite (a axis: -2.3%) (Figure 41a-d). [Rat et 

al., 2017] If a random lateral orientation of the crystalline domains is assumed, the LS-HS 

transition must lead to a compressive transformational strain of approximately -1.3 % along the 

cantilever length, in good agreement with the experimentally observed upward deflection of the 

cantilever (Figure 40). From Annexes A5.2.2, it is also highlighted the good reproducibility of 

the thermal actuation cycle in terms of the transition temperature and magnitude of actuation. 

Note that the hysteresis width becomes slightly reduced after the first cycle. This phenomenon 

was also observed in our previous optical investigation of films of 2 and most likely occurs as 

a result of the release of residual stress generated during film fabrication. 

 

5.3 Extracting mechanical parameters and actuating performance 

 

5.3.1 Young’s modulus 

 

5.3.1.1 Low Spin 

 

By using the methodology explained in section 4.2 we extracted the Young’s modulus and the 

axial stress for the film of compound 2 at room temperature. Table 7 summarizes the general 

properties of devices prepared for this study. The obtained values for ELS and residual σLS are 

highlighted in bold font. It is interesting to note the relatively high value of E (9.4 GPa) in 

comparison with complex 1 (6.9 GPa). 
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Figure 41: a)-d) Thermal variation of the unit cell parameters and volume extracted from X-ray powder 

diffraction of bulk powder [FeII(HB(tz)3)2] sample in the heating mode. e) Diagram of MEMS deflection 

induced by the expansion or contraction of film of 2 along the cantilever length, when going from LS to 

HS state according to different deposition orientations. 

a) b) 

c) d) 

e) 
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This finding is in line with the reported higher Debye temperature of 2 (198 K) when compared 

to complex 1 (146 K) [Rat et al., 2017]. We can speculate that the origin of this difference 

comes from the dense crystal packing of complex 2. As for the film stress we cannot make such 

comparisons because of the different film fabrication processes. Nevertheless it is interesting 

to note the very high tensile stress (320 MPa) in the films of 2 in comparison with the case of 1 

(75 MPa).  

 

 
Table 7: Material properties and MEMS geometry for devices described in section 5.4. 

 Silicon 
 

Complex 2 
SCOLS  

 
SCOHS (353 K) 

Density ρ (kgm-3) 2330 [Hopcroft 2008]     1568 [Rat 2017]   1500 [Rat 2017] 

Young's modulus E 
(GPa) 

169a [Hopcroft 2008] 9.4 ± 0.2 7.6 

Poisson ratio v 0.22 [Hopcroft 2008] 0.3 ± 0.05 [Felix 2015] 0.3 ± 0.05 [Felix 2015] 

Residual stress σ 
(MPa) 

N.A. 320.4  

 Cantilever Bridge  

Modal coefficient λ1 1.875  4.71  

Length l (μm) 50 50  

Width w (μm) 9.5 9.5  

Thickness tSCO (μm) 0.210 0.200  

Thickness tSi (μm) 2.41 1.74  

Coefficient ϒ1  NA 0.2949 [Bowstra 1991]  

Resonance frequency 
substrate fs (MHz) 

1.3598 5.7227 
 

Resonance frequency   
bilayer fbi (MHz) 

1.1994 6.1783 
 

 
a In this case for a silicon wafer with (100) surface we use E110 = 169 GPa 

 

5.3.1.2 High Spin 

 

The Young’s modulus of the films in the HS state cannot be determined experimentally because 

we have not heating-cooling possibility in our Fabry-Perot set-up. Nevertheless taking into 

account the experimentally determined frequency shift of the MEMS when going from the LS 

to the HS state (Δfr  = -66 Hz, see Figure 40b) as well as the experimental value of the ELS, we 

could obtain using Equations 8 and 7a  EHS = 7.6 GPa. This decrease of the Young’s modulus 

(ΔE = -23.7 %) in the HS state is significantly higher than for compound 1 (ΔE = -8 %), but 
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comparable with other SCO compounds reported in the literature [Felix et al., 2015, 

Hernandez et al., 2014]. 

 

It is of course even more interesting to compare the values of E obtained from the film of 2 with 

those obtained for the corresponding bulk material. To this aim nuclear inelastic scattering 

(NIS) measurements were carried out at the ID18 beamline of ESRF with the help of Mirko 

Mikolasek on 57Fe enriched powder samples of 2. This technique allows us to determine the 

partial (only the iron atoms) vibrational density of states (VDOS) in the two spin states (Figure 

42a). As explained in ref. [Felix et al., 2015] from the low frequency part of the VDOS it is 

possible to extract the Debye sound velocity and then calculate the Young’s modulus. On the 

other hand variable pressure synchrotron X-ray diffraction experiments were carried out on a 

single crystal of 2 at the ID27 beamline of ESRF with the help of Helena Shepherd in order to 

determine the bulk modulus B of our sample (Figure 42b). Then taking into account the 

relationship between the Young’s modulus and the bulk modulus the Poisson’s ratio (v) was 

also determined. Table 8 summarizes these results. 

  

                             Table 8 : Elastic properties of bulk and thin film samples of 2 

 Bulk Thin film 

EHS (GPa) 10.8 9.4 

ELS (GPa) 7.8 7.6 

BLS (GPa) 10.4 - 

vLS 0.32 - 

 

Remarkably both the absolute value and the spin state dependence of the Young’s modulus are 

in excellent agreement between the bulk and the film samples. In fact a closer agreement would 

be purely fortuitous since in the case of the bulk we measure a Young’s modulus which 

corresponds to an average value for all crystallographic orientations, while for the film the 

Young’s modulus extracted from the MEMS data corresponds to a specific crystallographic 

orientation (001). It is important to note also that for the first time we could determine Poisson’s 

number for an SCO compound. The value we find (v = 0.32) confirms our initial hypothesis of 

using a value of 0.3 in our different calculations. 
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5.3.2 Work density 

 

We can also predict the work density (W/V = Eε2/2) as described in section 4.2.3.3. As 

discussed previously (Section 5.2.3), to obtain the strain we can estimate an average 

deformation of ε = 1.3 % along the cantilever length.  This leads to a work density of   W/V = 

0.645 Jcm-3 (LS to HS) and W/V = 0.794 Jcm-3 (HS to LS). This work density is comparable 

with those reported for some electrostrictive polymers and shape memory alloys, confirming 

the expected high actuating performance of our SCO material. 

 

5.3.3 Reactive force  

 

The reactive force induced by the spin transition can be expressed as [Shepherd et al., 2013]: 

 

𝐹 =  
3𝐸𝐼𝛿

𝑙3  

where F is the bending force, EI the flexural rigidity expressed by Equation 7b (Chapter 4), 

𝛿 the deflection amplitude obtained from the static MEMS measurements (476 nm) and L the 

cantilever length (50 µm). 

(12) 

Figure 42: a) Partial (Fe) vibrational density of states of the powder of 2 in the HS (360 K) and LS (295 

K) states obtained from NIS measurements. b) Pressure dependence of the unit cell volume of compound 

2 obtained from single crystal XRD.  
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The reactive force at the end of the cantilever corresponds to 1.07 µN. Since the force depends 

of the length, this will vary along the cantilever. For instance if we consider the position of the 

piezoresistances (l = 40 µm) we obtain a force of ca. 133 µN.  

Conclusions 

 

High quality thin films of the spin crossover complex [Fe(HB(tz)3)2] have been deposited by 

high-vacuum thermal evaporation on different substrate materials with an accurate control of 

the film thickness between ca. 20-200 nm. The detailed temperature dependent UV absorption 

and Raman spectroscopic study demonstrated that the crystalline films display a cooperative, 

complete and tightly reproducible spin transition above room temperature, similar to the bulk 

material. No significant size effect was detected on the spin transition, which was attributed to 

the very similar crystalline domain sizes in the samples with different thickness. All these 

properties make the films of [Fe(HB(tz)3)2] a very attractive candidate for integration into 

MEMS/NEMS and other nanoscale devices. Indeed we could show that spin-crossover 

molecules of [Fe(HB(tz)3)2] can be used to actuate a silicon MEMS device, thus demonstrating 

good mechanical integration of the molecules to produce useful work under a controlled 

external stimulus. The MEMS devices integrating complex 2 exhibited spin-state dependent 

resonance frequency (similar to compound 1) and we could evidence enhanced mechanical 

damping around the spin-transition temperature. The critical parameters for the successful 

integration are the robust, room temperature spin transition, the high quality of the films, the 

possibility to deposit them on delicate mechanical parts by thermal evaporation, the reduced 

and well-reproducible device dimensions, and the tightly controlled experimental conditions, 

including the simultaneous control of pressure and temperature. On the basis of this rigorous  

control of all relevant parameters, a detailed quantitative analysis of the mechanical properties 

and actuating performance (Young’s modulus, work density and reactive force) of 

[Fe(HB(tz)3)2] became possible. We could also obtain mechanical property data for the bulk 

compound 2 allowing us to extract for the first time the Poisson’s number for an SCO complex.  

Additionally the implementation of an original set-up capable of tracking the dynamic and static 

mechanical behavior of MEMS devices opens also interesting technical perspectives. 
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Chapter 6: MEMS and artificial muscles based on SCO-polymer 

nanocomposites   
 

In chapter 4 and 5 we discussed the first efforts to integrate SCO molecules on freestanding 

cantilevers to produce actuation at the microscopic scale. Even though the sublimation 

technique to integrate SCO materials is highly precise, it is limited to a few compounds capable 

to maintain their integrity while the molecules are sublimated. In this chapter a more versatile 

approach, the spray coating deposition is proposed. It consists of spraying micro-droplets of the 

desired material over the prefabricated MEMS device. To this aim we used nanoparticles of the 

SCO complex [FeII(Htrz)2(trz)](BF4) mixed with the polymer SU8 in an appropriate solvent. 

By this approach it is possible to overcome the restriction of the sublimation method and to 

integrate a wide variety of SCO materials. Another advantage is that the nanoparticles are 

efficiently interconnected by the polymeric matrix for a reliable harvesting of their actuating 

properties. Besides MEMS integration we also extended this work for the fabrication of 

macroscopic soft actuators, the so-called artificial muscles. 

 

6.1 SCO Polymeric Nanocomposite (SCO_PNC) 

 

When individual materials and technologies achieve their limits in terms of application needs, 

new technological strategies are introduced to substitute or turn their value into a different 

manner. One of the ways to overcome the drawbacks of a given material is attained by making 

it work in combination with other materials in composites and nanocomposites. This requires 

obviously a more complex, interdisciplinary approach. 

Basically, a composite material is defined as a material made from two or more constituents 

with different properties which, when combined, produce a material with different 

characteristics from the individual components. The individual components remain separate 

and distinct within the finished structure. Two main constituents are distinguished: matrix and 

reinforcement (also called filler or load). The matrix is generally in higher concentration and 

surrounds the reinforcement. The manner by which the individual phases are self-connected is 

described by the concept of connectivity [Akdogan et al., 2005]. 

 Nanocomposites differ from conventional composites due to the exceptionally high surface to 

volume ratio of the reinforcing phase and/or its exceptionally high aspect ratio. In terms of 

https://en.wikipedia.org/wiki/Chemical_property
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performance, nanocomposites are materials with a nanoscale structure that generally improve 

the macroscopic properties of products. For example nanoparticles in a polymeric matrix can 

affect local chemistry, degree of thermoset cure, polymer chain mobility, polymer chain 

conformation, degree of ordering, crystallinity and so forth. 

In the literature several examples have been described wherein actuating materials, such as 

shape memory alloys or piezoelectrics, have been combined with a polymeric matrix [Akdogan 

et al., 2005].  For instance piezoelectric ceramics have been dispersed in polymeric matrices 

with the aim to maximize piezoelectric sensitivity and make the transducer mechanically 

flexible. These soft composite actuators allow for various mechanical and electromechanical 

couplings between the reinforcement and the polymeric matrix opening up several original 

applications for actuation, sensing, energy conversion and self-healing.  

In this context spin crossover-based polymeric composites (SCO_PC) are of special interest for 

artificial muscles since they combine, in principle, the exceptional strain which accompany the 

SCO with the desirable mechanical properties of polymers (flexibility). Using a polymeric 

matrix it becomes possible to integrate virtually any SCO compound in actuating devices 

[Shepherd et al., 2013]. In addition this approach allows to shape SCO materials as micro- or 

macroscopic objects with specific sizes and shapes, which is in general impossible with the 

pure SCO compound [Guralskyi et al., 2014]. When combining SCO particles with a 

polymeric matrix original synergies and complementarities may also appear as a consequence 

of the volume change of the particles. For example, tunable electrical conductivity has been 

achieved either by the stress exerted on a piezoresistive polymer matrix [Koo and Galan-

Mascaros, 2014] or as consequence of the stress induced on a piezoresistive element coupled 

to the SCO_PC in a bimorph object [Chen et al., 2015].  In order to implement these recent 

developments in functional artificial muscles, their actuating efficiency needs to be evaluated 

and proper synthesis and mechanical characterization need to be done. In the continuity of our 

work a polymeric spin crossover nanocomposite was first integrated into silicon MEMS devices 

as a micrometric film. Then this approach was extended to produce artificial muscles in form 

of centimeter scale objects (flowers and cantilevers). 

The film integration method proposed in this chapter is based on spray coating deposition which 

has the advantage to produce homogeneous and high quality films on substrates of different 

type, shape and size. As polymeric matrix we chose the photoresist SU8, the most important 

reasons of this choice being: i) it is compatible with microfabrication technologies, ii) it has 
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physicochemical stability, iii) it has good adherence on the silicon substrate and iv) it has a high 

softening temperature [Ru-Feng and Farris, 2003]. The SU8 also helps to encapsulate and 

protect SCO nanoparticles from the external environment changes (humidity and other 

chemicals) and it is easy to characterize its optical properties by UV-vis spectroscopy due to its 

transparency. As reinforcing active material we have chosen nanoparticles (85 nm ±10 nm) of 

the complex [Fe(Htrz)2(trz)](BF4) 3. This compound is considered as one of the benchmark 

SCO materials [Kahn and Martinez, 1998], mainly due to its robustness, above room 

temperature transition, wide hysteresis loop and large volume change (≈11 %) on the SCO. 

 

6.1.1 Generalities of [Fe(Htrz)2(trz)](BF4) 

 

X-ray diffraction studies [Grosjean et al., 2013] have revealed that 3 contains one-dimensional 

coordination chains that are reinforced by inter-chain BF4
- anions (Figure 43a).  Each FeII 

cation is six-fold coordinated to nitrogen atoms of six triazole ligands in the bridging 1,2-

coordination mode to form infinite 1D chains. The iron-ligand distances vary significantly upon 

the SCO (LS = 1.977 Å at 300 K to HS = 2.192 Å at 420 K), which give rise to a particularly 

large unit cell volume variation (V = 11.5 %).    

This compound is known to exhibit abrupt and complete SCO above room temperature with a 

large thermal hysteresis (≈40 K) (Figure 43b). Its pink to white color change associated to the 

SCO makes easy to characterize its properties by optical methods such as UV-vis absorbance 

and optical reflectivity [Chen et al., 2015, Durand 2013]. 

Compound 3 can be obtained as crystalline powder of different dimensions from the micro to 

the nanoscale. In general particles are formed of several coherent domains whose size was 

shown to be proportional to the particle size [Grosjean et al., 2013]. Remarkably it was shown 

that the cooperativity (hysteresis) in this compound is maintained even in very small objects 

[Coronado et al., 2007, Durand 2013]. Additionally they are able to form stable suspensions 

in organic solvents for longer periods of time [Coronado et al., 2007], which is an advantage 

for this work since the spray deposition involves a relatively long storage time prior to the 

coating. 
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In summary for this project we choose nanoparticles of 3 because they offer i) high percentage 

of volume change, ii) stable suspensions, iii) homogeneous dispersion, iv) robust and abrupt 

spin transition with a wide hysteresis loop and v) the possibility to carry out measurements in 

air without any cryogenic equipment.   

During this thesis we tried to elaborate thin films with particles of 3 without using any 

polymeric matrix. However it became clear that these films will be difficult to use for actuating 

purposes. In fact we observed that the morphology of the particles as well as the structure of 

the films are not stable and change from cycle to cycle [Manrique-Juarez et al. 2016]. 

Different phenomena, such as particle aggregation, stacking and surface degradation have been 

evidenced using variable temperature AFM measurements (see Annexes A6.1-2), which 

discouraged us to pursuit this way.  

In order to profit of the outstanding properties of compound 3, it was necessary combine it with 

a polymeric support (SU8), which helps to stabilize and “freeze” the nanoparticles and at the 

same time it protects it from undesirable environmental effects. The polymer provides also a 

good adhesion to the substrate and helps to transfer the mechanical strain from the particles to 

the structure. 

 

 

Figure 43: a) 1D chain of 3 along the b axis, and b) typical temperature dependence of magnetic 

susceptibility vs. temperature of compound 3. 

a) b) 
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6.1.2 Generalities of SU8 photoresist 

 

In terms of microfabrication SU-8 provides well-defined resist profiles and it is suitable for use 

as permanent structure. It has been widely used in microfabrication processes. Among its 

advantages we can mention chemical inertness, thermal resistance and mechanical stability. Its 

final properties depend on the processing conditions for the specific desired application [Ru-

Feng and Farris, 2003].  

 

6.1.2.1 Chemistry 

 

The SU8 resist is made of C21H24O4 (bisphenol A diglycidyl ether) and consists of a multi-

functional, highly branched polymeric epoxy novolac resin dissolved in an organic solvent, ϒ-

butyrolactone (GBL). Along with the formulation there is a triaryl sulfonium salt which acts as 

photo-acid generator during the UV-light exposure. The resist has an average of 8 epoxy groups 

in each molecule, hence the name SU8 (Figure 44) [Ru-Feng and Farris, 2003].  

A possible reaction mechanism for an epoxy group is represented on Figure 45. Photo-acid 

designated as H+ A- is photo-chemically produced in the solid photoresist film upon light 

absorption. The photo acid acts as catalyst in the subsequent cross-linking reaction that takes 

place during the post-exposure baking (PEB). This means the exposed resists contains acid 

catalyst, while the unexposed does not. The crosslinking reaction which is catalyzed happens 

when each epoxy group can react with another epoxy group, either in the same or different 

molecule and only occurs at high temperatures. The formed network is dense and insoluble in 

the developer (i.e. it is a negative resist).  

 

6.1.2.2 Processing parameters  

 

A complete SU8 process consists of resist coating, soft bake, UV-exposure, PEB and 

development. A controlled hard baking is recommended to further cross-link the SU-8 

structures if they are supposed to remain part of the device. Process conditions are well 

established for commercial SU-8 in order to standardize and obtain the desired properties. 

However when a parameter in the formulation is changed, new protocols need to be established. 



 
93 

 

In our case the optimization of the process was based on the UV-exposure time and the PEB 

temperature. 

 

Figure 44: Molecular structure of SU8  

 

 

Figure 45: Example of crosslinking reaction mechanism of SU8. 
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During the preliminary tests, we observed that when SU8 is mixed with the SCO nanoparticles, 

the standard UV-exposure time required for polymerization was not enough (Figure 46), thus 

exposition time was prolonged as well as the hard baking temperature was increased. Figure 

47 summarizes the final parameters which were used in this work. Since the nanocomposite is 

deposited at the final step of the microfabrication process and the whole device is exposed to 

UV (except the masked electrode zones) no development is necessary. It may be worth to note 

that we used the same UV exposure for all samples independently of their thickness and their 

composition (with or without SCO_NPs).  

 

 

6.1.2.3 Mechanical properties of SU8 

 

One of the advantages when using SU8 is its thermo-mechanical stability after a hard baking 

processing. Several works report Young’s modulus (E) values between 2.4 and 5.5 GPa at room 

temperature, depending on the fabrication and testing conditions. In the case of hard baking the 

reported values of E are in general higher (about 3.5-5 GPa) [Chung and Park, 2013]. SU8 

displays has a Poisson’s ratio (υ) of 0.22 and a glass transition temperature (Tg) of 323 K for 

the unexposed resin. In the case of crosslinked and hard-bake samples Tg can reach values 

above 473 K and a degradation temperature of 553 K, strongly depending on the post exposure 

conditions such as hard baking temperature. Obviously the mechanical properties are 

Figure 46: a) Optical image recorded following polymerization crosslinking and development of a 

mixture of SU8 and SCO nanoparticles. The UV exposure time for  zone1 (zone 2) was more (less) than 

1 min. b)-c) Photolithography in standard conditions using SU8 photoresist and SU8 mixed with 

SCO_NPs. In the former (latter) case one obtains complete (incomplete) polymerization. 
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temperature dependent, which will be important to consider in our work. [Chung and Park, 

2013, Ru-Feng and Farris, 2003].  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6.1.3 Film: synthesis and deposition 

 

For most nanocomposites a high ratio reinforcement/ matrix is required to produce a high 

impact over the desired final properties. Previous works with SCO polymer composites have 

reported up to 50 wt% loading, without much affecting the sample integrity [Guralski et al., 

2014]. However higher concentrations seem also possible under specific preparation conditions 

[Koo and Galan-Mascaros, 2014]. For our work a lower concentration was used in order to 

Figure 47: Process SU-8 protocol for this work. 
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favor the dispersion stability, homogeneity and, therefore, to obtain a good distribution of the 

particles in the matrix. The SCO nanoparticles concentration was then compromised to 30 wt%, 

which we found as an acceptable charge to avoid agglomeration and/or brittleness, while at the 

same time it still allows to obtain a significant strain required for actuation purposes.  

Since the aim of this research was to verify the actuation efficiency rather than the 

reinforcement ratio effect, no further concentrations were tested for actuation purposes. 

However as part of perspectives of this thesis, it will be interesting to analyze carefully this 

parameter, which may impact in a considerable manner not only the mechanical properties, but 

also the SCO properties. 

 

6.1.3.1 Synthesis of SCO_NPs 

 

The SCO nanoparticles of 3 were synthetized by Léa Godard (LCC-CNRS). For the synthesis 

of  SCO_NPs, an aqueous solution of Fe(BF4)2 6H2O (424 mg, 1.25 mmol in 1 mL H2O) was 

added dropwise to a mixture of 3.6 mL of Triton X-100, 3.6 mL pentanol and 8 mL of 

cyclohexane. An identical microemulsion was prepared with a solution of H-trz (262 mg, 3.75 

mmol in 1 mL H2O). These two microemulsions were mixed together and left to stir for 24 h. 

The obtained nanoparticles were separated and washed three times in ethanol. The observed 

average diameter of the SCO_NPs is 85 nm (Figure 48a).   

 

6.1.3.2 Preparation of the SCO_NPs-SU8 solution and spray coating deposition 

 

According to the process diagram presented on Figure 47, a solution of 1.4 g EPONTM SU-8 

(3050) from MicroChem Inc.) and 700 mg SCO_NPs in 80 g acetone was prepared by 

sonication (30 min at 130 kHz). The acetone is used as the liquid medium to allow the spraying. 

The solvent is evaporated during the deposition resulting in a charge of 30 wt% of nanoparticles 

inside the polymeric matrix. In parallel, control samples without nanoparticles were prepared 

as blank. The solution was deposited by a spray coater Delta AltaSpray (SUSS MicroTec). 

During the deposition the flow rate was 1ml/min and the devices were heated in a substrate 

plate at 60 °C to assure the acetone evaporation. The spray coater is designed to spray in four 

different directions during each cycle, which means 4 pass per cycle to assure a homogeneous 
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deposition. Sub micrometric films ≈0.430 μm are formed during each spray coating (≈1.77 μm 

per cycle) and the final thickness depended on the number of deposition cycles. 

Two different depositions and structures were prepared for i) MEMS devices (MEMS-PNC) 

and ii) artificial muscles (Polymer-PNC). In the first case 2 deposition cycles were performed 

achieving a thickness of 3.5 μm over the silicon cantilever structures with 20 µm thickness.  

Only the gold patches are masked. In the second case a bilayer film made of 22 μm SCO_PNC 

/ 50 μm polyester was made. The polyester substrate consists of a commercial, optically 

transparent film (3MTM  8211). It was chosen since it easily adheres on a silicon substrate and 

can be peeled away later when the SCO_PC deposition process is finished. After releasing from 

the silicon substrate, the bilayer-polymeric film can be cut in the desired shape. 

 In both cases, after the spray deposition (before peeling in the second case), samples were 

exposed during 90 s exposed to UV-irradiation using an EVG 620 machine (40mW/cm2 at 365 

nm). Then they were submitted to a PEB of 363 K during 2 minutes, followed by a hard baking 

at 423 K during 3 minutes to assure a complete cross-linking.  

 

6.1.3.3 Sample characterization 

 

The deposited film thickness was measured using a mechanical profiler KLA-Tencor/P-15. The 

film roughness was measured in ambient conditions using an AFM Cypher-ES microscope 

(Oxford Instruments) in tapping mode. Temperature dependent absorbance of the films were 

collected at 310 nm using a Cary 50 (Agilent Technologies) spectrophotometer and a Linkam 

FTIR-600 liquid nitrogen cryostat (equipped with fused silica windows). Spectra were acquired 

in the 293-423 K range.  SEM images were acquired at room temperature using a Hitachi S-

400 instrument. TEM images were acquired using a JEOL JEM-1400 (200 kV) instrument. 

Functional groups and interactions between compound 3 nanoparticles and SU-8 matrix were 

studied by infrared spectroscopy using an FT-IR spectrometer in the attenuated total reflectance 

mode (ATR), in the range of 4000-600 cm-1.  

In order to study the thermomechanical properties of composites two methods were used: i) 

MEMS resonance frequency tracking as described in section 5.2.2.1 and ii) dynamical 

mechanical analysis (DMA) in the case of artificial muscles. For this an ARES G2 rheometer 

from TA Instruments was used to perform DMA testing using a rectangular film tension 

geometry. The sample holder has two screw-down clamps that hold the film in tension while a 
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small amplitude oscillatory strain is applied to it. DMA tests were performed in the temperature 

range between 293 and 403 K with heating/cooling rates of 2 K min-1. Samples were cut in a 

rectangular shape 24 x 7.5 mm with a thickness of 170 µm, and were loaded at a starting gap 

height of 10 mm.  An oscillatory strain of 0.08 % was applied at a frequency of 1 Hz. In tension 

a static axial force of 2 N on the samples was set to be at least 20 % greater than the dynamic 

strain force applied to the film in order to prevent the sample buckling.  Preliminary amplitude 

tests were performed at room temperature in dry nitrogen atmosphere to determine the linear 

viscoelastic range and optimal mechanical conditions. 

 

The thermochromic (i.e. SCO) properties of the film and powder were acquired simultaneously 

by reflectivity measurements using a stereomicroscope and a liquid nitrogen cryostat (Linkam). 

Reflectivity data were acquired in a range between 293-423 K.  

 

6.1.4 SCO properties of polymeric films 

 

The sonicated mixture (polymer-nanoparticles-acetone) produces a good and stable dispersion 

of SCO nanoparticles in the matrix (see Figure 48c) and also attractive SCO properties. A 

smooth surface (Ra = 1 nm) was obtained (Figure 48b). The SCO properties of the composite 

were evaluated by UV-vis absorbance measurements at 310 nm (Figure 48d). The 

transformation from the low-spin to the high-spin state occurs around 389 K (T1/2 up) during 

the first heating, shifting to 386 K in the second and third cycles. On the other hand the reverse 

transition from HS to LS occurs around 328 K (T1/2 down) in all cases (see Annexes A6.3 for 

the three first cycles). Comparing the spin transition of the nanocomposite with reported values 

for similar nanoparticles [Moulet et al., 2016], the composite material displays a hysteresis 

broadening effect of ca. 20-30 K. It appears that the matrix may affects thus the hysteresis width 

similar to what was reported previously by other authors [Tissot et al., 2012, Durand et al., 

2013].  

With the purpose to analyze this particular hysteresis behavior, variable temperature optical 

reflectivity measurements of the SCO nanoparticles both with and without the SU8 matrix were 

carried out simultaneously.  As shown in Figure 48e the spin transition in the nanoparticles 

occurs with a hysteresis of 28 K width, while the same particles in the SU8 matrix display a 

hysteresis of ~58 K in the same experimental conditions. Additional experiments at different 

temperature ramps (1 K/min, 3K/min and 5 K/min) were performed to observe possible kinetic 
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effects on the SCO behavior (see Annexes A6.4), but the hysteresis remains the same in all 

cases. Let us know also other polymeric composite systems have been published by different 

authors using the same compound 3 (see Table 9), but with larger particle sizes, however, they 

do not report this hysteresis discrepancy between the powder and the composite film [Guralsky 

et al., 2014, Chen et al., Rat et al., 2016b]. 

In the case of the work developed by Pierrick Durand et al., the authors report on a very broad 

hysteresis loop of about 65 K in the case of nanoparticles of 3 smaller than 5 nm surrounded by 

a silica matrix, to be compared with the hysteresis of 28 K in the bare nanoparticles. They 

attribute this broadening to an elastic confinement effect on the embedded SCO NPs due to the 

matrix stiffness [Durand et al., 2013]. Besides the stiffness of the silica, the efficient contact 

between the matrix and nanoparticles was considered also as one of the main parameters 

responsible of the elastic interactions. In the case of our work, we used SU8, which is of course 

less stiff than silica, but its elastic modulus is relatively high with respect to other polymers. It  

is important to mention that SU8 crosslinking was made once the nanoparticles were inside the 

resin, which may also favor the mechanical interactions. Additionally the homogeneous particle 

distribution should improve the surface contact between the reinforcement and the matrix.  

 

Table 9: SCO properties of compound 3 inside different kinds of matrices 
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FT-IR was used to try to observe the physico-chemical interactions between the reinforcement 

and the matrix. The room temperature IR spectra of the bare nanoparticles, matrix and 

nanocomposite are shown in Figure 49.   

Figure 48: a) TEM image of SCO nanoparticles of 3, b) AFM images of the SCO-SU8 composite, 

c) SEM image of the cross-section of the SCO-SU8 composite, d) Optical absorbance vs. 

temperature curve  of the SCO-SU8 composite (second cycle), e) Optical reflectivity vs. 

temperature of the SCO-SU8 composite ( triangles) compared with that of the bare SCO (dashed 

line). Heating and cooling are indicated by arrows. 
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Several vibrational modes in the far IR (Fe-N stretching vibrations and FeN6 distortion modes) 

and mid-IR (vibrational modes of the Htrz/Trz ligands) are very sensitive to the FeII spin state. 

This can be followed as a “fingerprint” of the material. Most of the bands observed in the pure 

SU8 and SCO_NPs coexist in the spectrum of the composite material. Several peaks of the 

nanoparticles are masked by the intense peaks of the polymer. More interestingly certain IR 

peaks of the nanoparticles are shifted when the particles are surrounded by the polymer, which 

might indicate the mechanical stress of the matrix over the particles (see Figure in Annexes 

A6.5). However, at this stage of our investigation it is difficult to conclude on the origin of 

Figure 49: FT-IR spectra of SCO nanoparticles of 3 (black line), the SU8 polymeric matrix (blue line) 

and the SCO-SU8 nanocomposite (red line) at room temperature. 
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these spectral variations and further studies using variable temperature, FT-IR and Raman 

spectroscopies will be necessary. 

6.2 MEMS: SCO detection and actuation by thermal energy 

 

Overall we can say that high quality films of the SCO-SU8 nanocomposite could be deposited 

with favorable SCO properties. For the mechanical characterization of these nanocomposite 

films we used silicon MEMS similar to the ones described in section 4.3. As shown in the SEM 

image in Figure 50b the spray coating produces a continuous and smooth coverage on the 

surface of the MEMS. 

 

Figure 50: a) Scheme of spray deposition on silicon cantilevers, b) SEM image of silicon cantilevers 

covered by the nanocomposite (3.5 μm SU8-SCO over 20 μm Si cantilever with 840 μm length 

and 100 μm width). 

(a)

(b)
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The static and dynamical mechanical behavior of the MEMS was followed simultaneously by 

our home-made system as described in section 5.2.2. The temperature of the devices was cycled 

between 293 K and 423 K. Table 10 summarizes the shifts of resonance frequency, quality 

factor, piezo-resistance and amplitude of the static bending detected between the HS and LS 

states. It is important to stress that all measurements were carried-out inside the hysteresis loop 

at the same temperature (353 K). By fixing a temperature inside the hysteresis we can analyze 

the effect of the spin transition on the mechanical properties of the device while discarding any 

temperature effect.    

 

 

 

 

 

 

 

 

 

 6.2.1 Static response 

 

The amplitude variation was calibrated using the procedure described in section 5.2.2.2 (See 

Figure 51a-c). Figure 51d shows the static response of the mechanical device during the 

second heating-cooling cycling. The actuation induced by the spin transition is well identified 

thanks to the characteristic and well reproducible hysteresis loop associated with the SCO. (See 

first 3 cycles for the static and dynamic responses in Annexes A6.6) Ten thermal cycles were 

carried-out to verify the efficiency and reproducibility of the SCO in the static actuation regime. 

After the first cycle, the actuation amplitude becomes stable (≈0.8 Ω = 3.65 μm, see Figure 52). 

It is interesting to note that contrary to compound 2 (see Chapter 5) the LS to HS transition here 

induces a downward bending of the cantilever (i.e. an increase of the piezoresistance) which 

indicates and expansion of the nanocomposite film along the cantilever. This result is in 

agreement with the expected isotropic volumetric dilation of the composite.  

Table 10 : MEMS: Static and dynamic response in the LS and HS states (both at 353 K) 
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Figure 52: Actuation reproducibility 

 

Figure 51: a)-c) Static calibration of MEMS: a) 3D cantilever mapping of the 1st resonance mode, b) the 

corresponding resonance peak detected by both optical (bending amplitude) and electrical (piezoresistances) 

techniques, and c) the final calibration curve. d) The actuating response of the MEMS covered by the SCO_SU8 

nanocomposite. Arrows indicate heating-cooling. 
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6.2.2 Dynamic response and thermomechanical properties (MEMS vs. DMA) 

 

The dynamical-mechanical properties of the SCO-SU8 composite films at the microscopic scale 

were analized using the MEMS devices. These results were compared with the dynamical 

mechanical analysis (DMA) on the bilayer Polyester/SU8-SCO films (see Figure 53 and 

systems without nanoparticles in Annexes A6.7).  

DMA is widely used by the research community of polymeric materials to study their 

viscoelastic properties. Recently Rat et al. [Rat et al., 2016b] used this technique also to explore 

the viscoelastic response of a cellulose - [FeII(Htrz)2(trz)](BF4) composite material and 

observed the variation of viscoelastic properties upon the SCO. DMA consists of applying a 

stress or strain to a sample upon a temperature program and analyzing the response to obtain 

phase angle and deformation data. These data allow the calculation of the damping or tangent 

delta (tanδ) as well as the complex dynamical modulus (E*). The complex modulus is composed 

of the storage modulus E’ (elastic response) and the loss modulus E’’ (viscous response).  

The stiffness of the composite material is directly proportional to the resonance frequency fr in 

MEMS and also to the storage modulus E’ obtained with DMA. As for the energy dissipation 

we can compare the inverse of the quality factor (1/Q) obtained with the MEMS with the loss 

tangent (tanδ) in DMA. Lower the energy loss, higher the quality factor becomes (see sections 

3.2.1.2, Chapter 3).  

Overall, both approaches seem to be in agreement. In the case of the MEMS study, the drop of 

fr is observed during the heating ramp far from the spin transition (Figure 53a), while the 

internal frictions 1/Q increase (Figure 53b). This behavior is well known as the classical 

thermomechanical damping of silicon MEMS devices [Kim et al., 2008]. Overlapped to this 

intrinsic behavior of the silicon MEMS, the response of the system to the SCO is also detected. 

Notably a slight increase of fr is observed at the LS to HS transition (T1/2 up ≈ 387 K), which is 

reversible when the system returns to the LS state (T1/2 down ≈ 328 K).  The variation of 1/Q 

also reproduces the SCO with a clear hysteresis loop and a drop of 1/Q is evident in the HS 

phase (less friction). In the case of the DMA measurements on the bilayer film, T1/2 up is masked 

by a relaxation process in the polyester component. Nevertheless the hysteresis is clearly 

observed through the variation of both E’ and tanδ and T1/2 down is easily detected (Figure 

53c-d). In agreement with previous works on cellulose - [FeII(Htrz)2(trz)](BF4) composites [Rat 

et al., 2016b], one can observe the softening of the matrix (i.e. decrease of E’) while the 
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particles contract during the HS to LS transition. This means that the stiffening (or softening) 

of the polymeric composite is a consequence of the volume expansion (or contraction) of the 

particles, rather than the change of the mechanical properties of the particles as it was observed 

with pure SCO films in Chapters 4 and 5. (N.B. Actually the particles are stiffer in the LS 

phase.)  

 

 

 

6.2.3 Mechanical parameters 

 

 

 

 

 

 

 

 

 

 

 

 

 

It is possible correlate the amplitude of actuation  with the mechanical properties of our active 

layer when the SCO occurs by using the curvature of the cantilever k (Equation 13) and the 

analogy of Timoshenko’s equation for a bimetallic strip [Shepherd et al. 2013]. As the 

amplitude shift between the LS and HS state was measured at the same temperature inside the 

hysteresis curve (353 K), it is possible to exclude the thermal expansion contribution and 

consider only the effect of SCO on the behavior of the cantilever. From this data we can extract 

T(K) 
 

a) b) 

 

c) 

Figure 53 : Thermomechanical response of SCO-SU8 polymer composites detected using MEMS (a-b) 

and DMA (c-d) techniques. Arrows indicate heating and cooling. 

d) 
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the Young’s modulus (E) of the composite material. Timoshenko’s equation can be reduced in 

terms of Equation 14, where m = tSCO-SU8/tSi, n = ESCO-PNC/ESi and h = tSCO-PNC+tSi, t = thickness. 

See Table 11 for the summary of bilayer properties. 

   

Table 11: MEMS properties in the case of SCO-SU8 polymer nanocomposite films 

  
Substrate SCO_PNC 

Length l (μm) 840 840 

Thickness  t (μm) 20 3.5 

Width w (μm) 100 100 

Density ρ (kgm-1) 2330  [Hopcroft 2008] SU8 (1220)/Nps_HS (1778) 

Young’s modulus E (Gpa) 169  [Hopcroft 2008] 1.69   (HS) 

Amplitude δ (LS-HS) (µm) 3.65 3.65    

Linear strain ε (LS-HS) N.A. 0.022  

 Curvature k (m-1) 10.332 10.332 

Work density W/V (Jcm-3) N.A. 0.431 (HS) 

Reactive Force F (µN) N.A. 220 
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6.2.3.1 Linear strain 

 

With the aim to obtain the linear strain ε = Δl/l which arises due the SCO we consider the SCO 

nanoparticles display a volume change of 11 % upon the SCO [Grosjean et al., 2016]. The 

composite contains 30 %wt of nanoparticles. In order to obtain the volume fraction (Vf) for the 

matrix and reinforcement we consider Equation 14:  

 

(13) 

 

(6) 

(14) 

 

(7) 
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𝑉𝑆𝐶𝑂_𝑁𝑝𝑠_𝐿𝑆

𝑉𝑐𝑜𝑚𝑝_𝐿𝑆
=

0.30
𝜌𝑆𝐶𝑂_𝑁𝑝𝑠_𝐿𝑆

0.30
𝜌𝑆𝐶𝑂_𝑁𝑝𝑠_𝐿𝑆

+
0.70
𝜌𝑆𝑈8

 

were 𝑉𝑆𝐶𝑂_𝑁𝑝𝑠_𝐿𝑆 , 𝑉𝑐𝑜𝑚𝑝_𝐿𝑆, 𝜌𝑆𝐶𝑂_𝑁𝑝𝑠_𝐿𝑆, are the volume of the SCO nanoparticles inside the 

matrix, the total volume of the composite material and the density of SCO nanoparticles, 

respectively in the LS state. 𝜌𝑆𝑈8  corresponds to the density of the SU8 matrix. Therefore the 

volume fraction of the nanoparticles and matrix are Vf_Nps = 0.26 and Vf_matrix = 0.74, 

respectively. In order to obtain the total volume of the composite material in the LS and HS 

states (𝑉𝑐𝑜𝑚𝑝_𝐿𝑆 ,𝑉𝑐𝑜𝑚𝑝_𝐻𝑆) we use Equations 15a-b: 

 

𝑉𝑐𝑜𝑚𝑝_𝐿𝑆 = 𝑉𝑆𝑈8 + 𝑉𝑆𝐶𝑂_𝑁𝑝𝑠_𝐿𝑆 

 

𝑉𝑐𝑜𝑚𝑝_𝐻𝑆 = 𝑉𝑆𝑈8 + 1.11 ∗ 𝑉𝑆𝐶𝑂_𝑁𝑝𝑠_𝐿𝑆 

where 𝑉𝑆𝑈8 and 1.11 ∗ 𝑉𝑆𝐶𝑂_𝑁𝑝𝑠_𝐿𝑆 correspond to the total volume of the SU8 matrix and 

that of the SCO nanoparticles in the HS state inside the composite. The total volume change of 

the composite material upon the LS→HS switch (𝛥𝑉𝑐𝑜𝑚𝑝_𝑆𝐶𝑂) is given by: 

 

𝛥𝑉𝑐𝑜𝑚𝑝_𝑆𝐶𝑂 = VfNps ∗ 1.11 ∗ 𝑉𝑐𝑜𝑚𝑝_𝐿𝑆 

 

Then, from Equation 16a-d it is possible to determine the linear strain associated with the 

LS→HS transition (휀𝐿𝑆→𝐻𝑆): 

 

𝑙𝑆𝐶𝑂_𝑁𝑝𝑠_𝐿𝑆 = √Vf_Nps  3 ∗ 𝑙𝐿𝑆 

 

𝑙𝑆𝐶𝑂_𝑁𝑝𝑠_𝐻𝑆 = 𝑙𝑐𝑜𝑚𝑝_𝐿𝑆 ∗ √1.11
3
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𝛥𝑙 = 𝑙𝑆𝐶𝑂_𝑁𝑝𝑠_𝐻𝑆 − 𝑙𝑆𝐶𝑂_𝑁𝑝𝑠_𝐿𝑆 

 

휀𝐿𝑆→𝐻𝑆 =
𝛥𝑙

𝑙𝑐𝑜𝑚𝑝_𝐿𝑆
= 2.2 ∗ 10−2 

where 𝑙𝑐𝑜𝑚𝑝_𝐿𝑆, 𝑙𝑐𝑜𝑚𝑝_𝐻𝑆 are the total length of the composite material in the LS and HS 

states. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6.2.3.2 Young’s Modulus 

 

From Equations 13 and 14 we obtained a Young’s modulus value of 1. 69 GPa for the 

composite material in the HS state. This value seems reasonable if we compare it with the SU8 

mechanical properties (1.2 GPa) at the same temperature [Chung and Park 2013]. Then, using 

the rule of mixtures (Equation 18) it is possible to estimate the Young’s modulus of the SCO 

(17c) 

 

(10c) 

(17d) 
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Figure 55: Scheme to show the different components in a SCO composite and the contribution of 

the linear strain εLS→HS. 
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particles in the HS state (3.0 GPa). This value might seem low for compound 3, but one should 

consider that it corresponds to a relatively high temperature (353 K) and to the softer phase 

(HS). 

 

                                         E_comp =Vf_Nps*E_Nps + Vf_SU8* E_SU8           (18) 

 

6.2.3.3 Work density 

 

As explained in Chapter 4, it is also possible to predict the work density (W/V = Eε2/2) 

associated with the LS to HS transition, leading to a value of W/V = 0.43 J/cm3, which is a 

remarkably high value if one takes into account the moderate volume fraction of the SCO 

nanoparticles (26 %) and the high temperature of the actuation.  

 

6.2.3.4 Reactive Force 

 

From Equation 12 (chapter 5), it is also possible to obtain the reactive force of our device as 

F = 220 µm. 

 

6.3 Actuation versatility 

 

6.3.1 MEMS 

 

The actuation was confirmed for two other silicon devices with the same thickness and width, 

but with different lengths (see Figure 56). They were tested in the static regime and all of them 

displayed similar behavior. Of particular interest is that the piezo-resistance variation ΔR values 

associated with the SCO at 353 K are nearly the same in each device. This means that the stress 

induced in the piezoresistances is nearly independent of the cantilever length. Hence we can 

reasonably assume that the curvature of bending k is similar for each device (k = 10.3325 m-1). 

Then, the resulting bending amplitude δ at the end of the cantilever tip is directly proportional 

to the length (see Equation 13). Finally we obtain δ1 = 1.29 μm (l = 500 μm), δ2 = 3.64 μm (l 

= 840 μm) and δ3 = 40.79 μm (l = 2810 μm).  
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6.3.2 Soft artificial muscles 

 

Two different soft systems, i) six-petal flowers and ii) cantilevers were cut out from the bilayer 

polyester/SCO-SU8 films. During the fabrication process the bilayer was submitted to different 

heat treatments (see scheme in Figure 47). Since the film was well attached to the silicon 

substrate, stresses were induced in the film.  

When the film is released from the substrate and cut to the desired shape (see Figure 57), each 

system is heated from ≈293 K to ≈423 K (approximate temperature since the structure is not in 

direct contact with the heater). The residual stresses due to the fabrication process are released 

after the first thermal cycle and the final shape is obtained (see Figure 57c).  

Thermal cycling of the flower triggers a gradual and reversible petal folding along with the 

characteristic color change between rose (LS) and yellow (HS) (see Figure 58). The yellow-

transparent color in the high spin state can be seen as a camouflage effect. This phenomenon 

together with the thermal-induced petal folding open a perspective for the development of 

biomimetic soft actuators (Whitesides and Grzybowski, 2002).  

For the second system, two cantilevers of the same bilayer composition were actuated, each of 

them in the presence of an additional mass of 4.785 mg and 9.57 mg, respectively. While 

heating, a larger deflection (δ = 2.9 mm vs. δ = 1.78 mm) is observed for the first cantilever as 

a consequence of the lower charge.  

The movement due to the SCO confirms the effectiveness of the actuating system. The intrinsic 

mechanical properties can be estimated from the DMA data (Section 6.2.2.). However, further 

improvements regarding device design and heat distribution will need to be overcome in order 
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to quantify the actuation parameters, since a non-homogeneous heat distribution is encountered 

in these first experiments.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 57 : Flower and cantilever systems based on bilayer polymer composites: a) patterning 

scheme, b) Low spin before any heating, c) Low spin after cycling (i.e. after stress release).  

The violet balls were fixed at the end of the cantilever to provide a load. 
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Conclusions 

 

In this chapter we described a new, versatile approach for the integration of SCO materials into 

actuator devices. This approach is based on the spray coating of SCO nanoparticles in a 

polymeric matrix onto the desired surface. By optimizing the photo-thermal treatment of the 

polymeric matrix we succeeded in elaborating homogeneous and smooth nanocomposite films 

of [FeII(Htrz)2(trz)](BF4) nanoparticles in an SU8 matrix with thicknesses in the micrometer 

range. Interestingly the composite films exhibited SCO with hysteresis loops twice as large as 

the initial nanoparticles. We believe this phenomenon occurs due to the mechanical stresses 

generated during the crosslinking and baking of the SU8 matrix, but this hypothesis awaits 

further investigations. The nanocomposite films were then deposited on silicon MEMS devices, 

which exhibited a well reproducible actuation upon the spin transition. By calibrating the 

actuating amplitude we were able to extract the main actuating properties of the composite 

Figure 59 : Artificial muscles actuated by SCO molecules: a) Flower opening and 

b-c) Cantilever bending with one ball and three balls. The cantilever dimensions 

are: w= 2 mm, t =0.0 75 mm, l = 11 mm. 
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material (linear strain, Young’s modulus, work density, reactive force). Of particular interest is 

the high work density (0.43 J/cm3), which provides realistic scope for applications. Besides 

microsystems we also constructed macroscopic (cm scale) actuator devices based on bilayer 

polymer architecture. These soft actuators displayed large deflections and perceptible color 

changes upon the SCO, which might be exploited in biomimetic artificial muscles. In good 

agreement with the dynamical characterization of MEMS, DMA analysis of the 

thermomechanical properties of the bilayer system evidenced a stiffening of the composite in 

the HS phase and a concomitant decrease of the damping. These findings are somewhat counter-

intuitive at a first glance, but can be explained by the dominant role of the change of volume 

fraction upon the SCO, which has been also reported for other SCO polymer composites in the 

literature. The versatility of the spray coating approach introduce here can be exploited to 

develop SCO based actuators with different compositions, sizes and shapes. A further important 

step towards this direction will be the integration of the thermal excitation into the device via 

Joule heating and assess the temporal behavior as a function of the system size. 
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General conclusions 
 

As recognized also by the 2016 Nobel Prize in Chemistry 

[https://www.nobelprize.org/nobel_prizes/chemistry/laureates/2016/], switchable molecules 

have received many attention recently for the possibility to use them as molecular machines 

and actuators. To achieve this aim one has to be able to integrate and interface the molecules 

with their environment in order to connect them to an external source of energy, which is then 

transduced by the molecules to produce useful work in a controllable manner. In the literature 

several examples have been reported for proof of concept molecule-based actuators, but no 

methodical studies have been conducted in a technologically relevant context, nor the intrinsic 

material mechanical properties have been systematically investigated. The aim of this thesis 

work was to demonstrate that the switchable molecule can be efficiently integrated into state-

of-the-art silicon microelectromechanical systems to produce actuation. Preceding the 

experiments different molecular systems with potentially useful actuating properties have been 

reviewed and the interest of molecular spin crossover complexes in this context has been 

highlighted. Selected spin crossover molecules were then processed, integrated into MEMS 

devices and their actuating performance as well as mechanical properties have been assessed.  

As the first experimental step the well-known sublimable spin crossover complex 

[FeII(H2B(pz)2)2(phen)] was deposited by thermal evaporation on silicon MEMS devices, 

comprising also an integrated piezoresistive detection system. The devices showed spin-state 

dependent mechanical properties: at 10 K the molecules were in the ground low spin state, 

which was transformed by light irradiation through the LIEEST effect into the metastable high 

spin state, resulting in a sizeable and reversible drop of the MEMS resonance frequency. Using 

a straightforward analytical model this phenomenon could be linked to the change of the 

mechanical properties of the spin crossover compound (Young’s modulus, mass density and 

strain). To avoid complications arising from the multilayer MEMS structure monolithic silicon 

MEMS devices (cantilevers and bridges) were also coated by the [FeII(H2B(pz)2)2(phen)] 

complex, which allowed us to determine the Young’s modulus, the residual film stress and the 

work density of the coating. Overall the methodology developed here not only allows for 

detecting the spin crossover phenomenon in nanometric thin films, but provides also unrivaled 

accuracy to evaluate their mechanical properties.  

In order to work at technologically more relevant temperatures thin films of the spin crossover 

complex [FeII(HB(tz)3)2] were synthetized by thermal evaporation, optimized and characterized 
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for their morphology, structure and spin crossover properties. In the bulk this compound 

displays an abrupt spin transition around 333 K, which was also reproduced in the films (for 

thicknesses between 40 and 200 nm). The films were then deposited by thermal evaporation 

onto MEMS devices and their dynamical-mechanical properties were evaluated using the 

previously developed methodology. This study allowed us to determine the mechanical 

properties of the films in both spin states, which were also confirmed by independent 

measurements on the bulk sample leading to a complete set of elastic constants (Young’s 

modulus, bulk modulus and Poisson’s ratio). Notably a ca. 25 % variation of the Young’s 

modulus between the two spin states was determined. Similar to the pyrazolyl derivative the 

resonance frequency of the MEMS decreased in the high spin state and this time we could also 

evidence a transient drop of the quality factor at the spin transition, which we attributed to 

internal frictions during the nucleation and growth phenomena. These experiments were carried 

out using an improved experimental set-up combining several advantages, such as the 

simultaneous control of temperature and pressure, improved resonance tracking and, most 

importantly, the possibility to acquire both dynamic and static mechanical data. Thanks to this 

original set-up we could, for the first time, observe actuation of a micromechanical device by 

spin crossover molecules. Unexpectedly, these experiments revealed an upward bending of the 

cantilever when going from the low spin to the high spin state. This denotes a compressive 

transformational strain along the cantilever, which is contradictory to the intuitive fact that the 

material expands in the high spin state. This apparent contradiction could be resolved using the 

crystallographic data, which showed a highly anisotropic transition, characterized by an 

increase of the film thickness and a concomitant decrease of the film dimensions in the plane 

of the substrate. 

The main advantage of the thermal evaporation technique is that it allows for the deposition of 

very high quality films on the fragile mechanical parts. Yet, the number of evaporable spin 

crossover compounds remains relatively low. To overcome this limitation a method was 

established which used a mixture of spin crossover nanoparticles and an organic polymer in 

conjunction with a spray coating process. An advantage of this method is that it provides a large 

versatility for the choice of active molecules. Using [FeII(Htrz)2(trz)](BF4) nanoparticles and a 

polymeric SU8 matrix we were able to deposit high quality nanocomposite films on the MEMS 

devices and demonstrate well-reproducible actuation. This approach was successfully extended 

also for the fabrication of macroscopic size actuators (artificial muscles). The dynamical-
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mechanical properties of these centimeter scale actuators were characterized by DMA and the 

results were found in good agreement with the MEMS data.  

Figure 60 summarizes and contextualizes the actuating properties of the different spin 

crossover compounds we investigated during this work. This diagram highlights two important 

issues. First of all the anticipated good actuating performance of spin crossover materials is 

confirmed in a technologically relevant context (MEMS). On the other hand it shows also that 

the highest possible actuating performance of the materials was not reached when they were 

integrated into the devices. The reasons vary from case to case: Compound 1 formed an 

amorphous film, while the film of compound 2 crystallized with a preferential orientation and 

compound 3 had to be dispersed in a polymeric matrix,. All these phenomena led to a reduced 

effective strain and/or Young’s modulus. 

 

 

 

 

 

 

 

 

 

 

 

Figure 60: Young’s modulus versus linear strain plot for selected actuation material families [Adapted from 

Liu  et al., 2012]. The contours of equal volumetric work density are also shown by dashed lines. Numbers 

represent the spin crossover compounds investigated in this thesis: 1) [FeII(H2B(pz)2)2(phen)] thin film, 

2), [FeII(HB(tz)3)2] thin film and 3) [FeII(Htrz)2(trz)](BF4)-SU8 nanocomposite. 
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Outlook 

Based on the results of this thesis several appealing perspectives are open. In particular, the 

demonstrated actuating behavior of the spin crossover microcantilevers could be, in the future, 

promising for the integration of SCO-based NEMS devices in ultralow consumption, switch-

type configurations [Loh and Espinosa, 2012]. In addition SCO-based devices provide scope 

for the development of nanoscale cyclic heat engines [Pei et al., 2011] and resonator or 

oscillator type devices [Manca et al., 2017] as well. 

On one hand, the switching property inherent to SCO materials as well as the prospect they 

provide for size reduction are very appealing in the context of mechanical switches. In particular, 

nanoscale (NEMS) switch technologies are very attractive because they offer reduced leakage 

currents due to the physical separation of the components of the switch in the OFF state (Figure 

61). This leads to reduced power consumption and improved ON/OFF ratios. To explore SCO 

materials in switch-type NEMS devices it will be of primary importance to study the size 

reduction capability of the integrated SCO layers by means of a simple nanomechanical 

structure before addressing more complex NEMS devices. To this aim, increasingly accurate 

and efficient modelling will be also indispensable. 

Another outstanding prospect of SCO materials in the MEMS/NEMS context is their 

multifunctionality, including several smart features, such as self-regulating properties. In 

particular it seems possible to elaborate self-regulated mechanical oscillators assisted by SCO 

nanomaterials. The existence of auto-stimulated behavior in the spin transition systems has been 

recently analyzed theoretically [Varret et al.,  2013, Boukheddaden et al.,  2014].  

 

 

 

 

 

 

 

For example, the application of a photothermal effect caused by a steady light irradiation in the 

regime of thermally induced hysteresis loop of SCO compounds should be able to generate the 

Figure 61: Cantilever type SCO switch device in the OFF and ON states. The 

cantilever consists of a bilayer with an active SCO material actuated photothermally. 
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necessary feedback for spatial and/or temporal oscillation phenomena of the spin transition, 

with a periodic switching between HS and LS states and associated material properties (Figure 

62) - in particular the mechanical and structural properties. However, this autocatalytic behavior 

results from a subtle balance between the non-linear relaxation of the excited spin-state and the 

photothermal effect. Therefore, the regime where oscillations can emerge has to be specified in 

a first step. Then, the maximum frequency reached by this type of thermal powered oscillators 

depends on the characteristic size of the mechanical system and the speed at which the heat is 

transferred in/out of the device. Hence the heat dissipation and thus frequency bandwidth need 

to be carefully investigated and optimized using integrated heating/cooling systems. 

 

 

 

 

 

 

 

 

 

 

Figure 62: Theoretical modelling of an oscillator based on a spin crossover compound [Boukheddaden et 

al., 2014]. The self-sustained oscillations of the high-spin fraction emerge spontaneously as a result of a 

subtle balance between the nonlinear relaxation of the HS fraction towards the low-spin state and the 

photothermal effect caused by a steady light excitation matching one of the characteristic absorption bands 

in the LS state of the material. Top (red): Time evolution of the system in the HS fraction (ηHS) - temperature 

(T) plane. Bottom: Time dependence of ηHS showing autocatalytic oscillations under constant light excitation.  
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Annexes 

 

Micro and nanoactuators based on bistable molecular materials 

 

A1.-In the design of MEMS  

 

A1.1 Resonance frequency predictions (1st resonance mode) when cantilever length (L), 

thickness (t) and SCO compound deposition are tuned. 
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A1.2 Mask design with the layout editor Clewin for patterning during the photolithography 

process.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
134 

 

A1.3-Detailed microfabrication process.  

 

-SOI wafer, prepare surface. 

-Spin coating of the positive resin ECI 3012 (1.1 microns), annealing of 90°C during 30s. 

-Light exposure with MA6 (25mW/cm2) during 8s. 

-Post baking 110°C during 60s 

-Revealing patterns with photoresist developer MFCD2 during 25s 

-RIE etching (vertical etching), verify dimensions. 

-Protect wafer with a fi 

-Cut chips 1 cm2. 

-Clean chip with acetone and water followed by plasma O2 (or piranha). (This step is done 

previous the SCO deposition, not before.    

-Wet etching HF 5% (≈3.7 hrs). After HF etching dip the chip immediately in acetone at 

60°C. 

-Verify complete releasing with SEM. 

-Prepare surface before the SCO deposition, a plasma O2 is enough. 
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A2.-Some problems that may appear during the microfabrication process. 

 

A.2.1 Structure stacking due to a bad wet-etching (it is necessary to survey releasing process 

HF-water-acetone 60°C). 

 

A.2.2 No released structures (necessary to optimize HF etching time, however it is also 

important to avoid over etching). 
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A.2.3 Bad shaped cantilevers (proximity artifact: diffraction effects during the 

photolithography process). 

  

A.3 Low quality SCO deposition 

 

A.3.1 Crystal nucleation and growing of compound 1 due to a bad surface preparation which 

induces bad untestable and bad quality deposition. 
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A.3.2 Heterogeneous SCO distribution resulted from spin coating.    

 

 

 

 

 

 

 

 

A.3.3 Bad quality deposition obtained by Dip-coating. 
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A.4. MEMS-Photoswitch [FeII(H2B(pz)2)2(phen)]  

 

A.4.1-Design of MEMS with integrated piezoelectric detection. 

 

 

A.4.2-Scheme of VNA card  
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A.4.3 Photoinduced SCO using MEMS at 7 K: 

Resonance frequency tracking of the MEMS at 7 K, upon successive light irradiation cycles (ON and 

OFF) for a device coated with a 200 nm thick of 1, Δfr
LIESST  and Δfr

T    stand for the frequency shifts 

induced by the light induced spin-state switching (LIESST) and photothermal effect respectively. 

 

 

A.4.4 Light Contribution at different T (with and without SCO material) 

It was observed that the resonance shift due to the light irradiation is not the same at different 

temperatures and it is not related to the magnitude of the resonance frequency neither. These 

observations are important since the mechanical response of the global system at a given 

temperature could play an important role related to the magnitude of the resonance frequency 

shifts under the SCO. Therefore the slight differences between the resonance shift at 7 K (0.56 

Hz) and 10 K (0.52 K) may be as consequence of this phenomenon.  

In the case of light it is observed a relationship with the slope of the resonance at each 

temperature. Both of them has similar tendency (this is true in the case of uncoated cantilevers). 

In the case of the cantilevers coated with SCO compound, the slope at each temperature was 

plotted and the corresponding shift produced by the light should be at least 3Hz but we can 

observe a shift less than 1 Hz for 5, 7 and 10 K. For a similar cantilever are obtained these shifts 

values between 290-75K in this range it seems to be in agreement with the slope tendency of 

its resonance curve.  

 

7 K-Coated with SCO

photoswitch

Δfr_
T

Δfr_
LIESST

f r
(k

H
z)

time (s)
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A.4.4.1 Slope and Light Shifts at different temperatures for uncovered (left) and covered (right) 

with compound 1. 
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A5. MEMS integrating [FeII(HB(tz)3)2] compound 

 

A5.1 Films characterization 

A5.1.1. Selected AFM images of crystalline films obtained by solvent vapour annealing: (a)-(b) 
two different zones of 90 nm film; (c) 90 nm film after 3 months of storage in ambient air;(d) 
150 nm film with roughness 2.5 nm; (e) film thickness evaluation. 

A.4.4.1 Photoresponse of MEMS (fr) at room temperature when the light irradiation intensity 

(I) is tuned. 
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A5.1.2 Evaluation of the degree of crystallinity and the completeness of the spin transition in 
the films. The graph shows the variation in absorbance between the LS and HS states 
(AbsLSAbsHS) for various film thicknesses. The black squares correspond to the experimentally 
measured values, while the red line corresponds to the theoretically expected values for a 
fully complete spin transition. This evaluation is based on the assumption that the 194 nm film 
displays a complete spin transition, which was inferred from the temperature dependent 
Raman analysis of this film. 
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A5.1.3 XRD patterns of solvent annealed films on different substrates (fused silica, single 
crystalline silicon and polycrystalline gold). 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A5.1.4. Temperature dependence of the absorbance at 317 nm along four heating-cooling 
cycles recorded at 1 K/min scan rate for films with thickness of 45 nm (a) and 194 nm (b). 
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A5.2 MEMS: SCO detection and actuation by thermal energy 

 

A5.2.1 Resonance frequency on heating and cooling of MEMS devices before and after the 

SCO film.  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
A5.2.2 Static response upon two cycles heating-cooling of MEMS devices with and without 

deposition of compound 2.  
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 A6. MEMS and artificial muscles based on SCO-polymer nanocomposites 

 

 

A6.1 Stacking a-c) and surface degradation d-f) of 3 particles. 

A6.2. AFM images 3 aquired during a complete thermal cycle, from left to right: LS(353K); 

HS (358K) and LS(353K)states. 
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A6.3 Hysteresis curve at 30 wt% of SCO-SU8 nanocomposite upon the three first thermal 

cycles at 2 K/ min measured by optical absorbance vs. temperature. 

 

 

 

 

 

 

 

 

A6.4 Optical reflectivity vs. temperature measurements for the bare SCO and the 

nanocomposite. They were submitted together at different temperature ramps (1 K/min, 3 

K/min and 5 K/min). For each set of experiments fresh powder and film were used. 
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A6.5 Zoomed FT-IR spectra of SCO nanoparticles of 3 (black line), the SU8 polymeric matrix 

(blue line) and the SCO-SU8 nanocomposite (red line) at room temperature. In the case of the 

nanocomposite, some vibrational modes of the SCO nanoparticles are hidden by the matrix as 

consequence of the particles concentration. Nevertheless other bands result shifted to higher 

wavenumbers in the case of the composite respect to the powder (dashed vertical lines). 
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A6.6 Three first cycles of the thermomechanical response (resonance frequency, quality factor 

and static response) of SCO-SU8 polymer nanocomposites detected using MEMS b-d) 

compared with optical absorbance measurements a).  

 

 

a) b) 

c) d) 
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A6.7 Comparison of the thermomechanical dynamic response of MEMS coated with SU8 and 

SU8-SCO nanoparticles. 
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