
  

tre :

Université Toulouse 3 Paul Sabatier (UT3 Paul Sabatier)

ED BSB : Biotechnologies, Cancérologie

Agnese CRISTINI
Vendredi 13 Novembre

DNA double-strand break formation and signalling in response to
transcription-blocking topoisomerase I complexes

UMR 1037 - CRCT - Equipe 3 "Rho GTPase in tumor progression"

Dr. Olivier SORDET

Dr. Laurent CORCOS, Dr. Philippe PASERO, Dr. Philippe POURQUIER

Dr. Patrick CALSOU (Examinateur)
Pr. Gilles FAVRE (Président du jury)



	  
	  

  



	  
	  

 

 

 

 

 

Ai miei genitori… 

  



	  
	  

  



	  
	  

…Grazie 

	  
 

Merci aux Dr. Laurent Corcos, Dr. Philippe Pasero et Dr. Philippe Pourquier d’avoir accepté 

d’évaluer mon travail de thèse et d’avoir été présent pour ma soutenance. Merci aussi au Dr. Patrick 

Calsou d’avoir accepté d’être examinateur de ma soutenance et merci aussi pour la discussion 

précieuse, les conseils et le matériel que vous nous avez apporté pour ce projet. 

  

Un grand merci à Olivier. Merci d’avoir accepté que je vienne travailler avec toi pour mon stage. 

Merci de m’avoir fait confiance et d’avoir su me faire participer activement aux discussions depuis 

le début. Pourtant mon début n’a pas été « brillant » avec les barrières de la langue, tu as toujours 

été patient et tu as cru en moi. Merci d’avoir été à l’écoute des mes idées, de mes critiques et des 

problématiques du travail en me laissant beaucoup de liberté. Merci surtout pour la discussion 

scientifique constante qu’on a pu avoir pendant ma thèse, ça m’a vraiment beaucoup apporté et je 

pense que c’est extrêmement formateur. Ça a été une « bonne guerre » de discuter chacun avec ses 

idées et son point de vue et j’ai trouvé très fructueux et stimulant le fait de ne pas être forcément 

d’accord. Merci aussi de m’avoir remotivé dans mes moments de pessimisme et de m’avoir calmé 

dans mes moments d’énervement facile. Merci aussi de m’avoir permis de participer à plusieurs 

projets du laboratoire.  

 

Merci au Pr. Gilles Favre de m’avoir accueilli dans votre équipe. Merci aussi pour m’avoir permis 

de partir en congrès au Canada, cela a été pour moi une très belle expérience personnellement et  

scientifiquement, cela m’a permis de voir « la science » au delà de l’océan et de mettre les visages à 

beaucoup de noms que j’ai lu quotidiennement sur PubMed.  J’ai eu beaucoup de chance de pouvoir 

faire cette expérience.  

 

Merci à Giovanni pour m’avoir donné envie en premier de travailler sur les dommages à l’ADN et 

pour avoir accepté de m’encadrer lors de mon stage de M2R. Merci pour avoir cru en moi en 

premier et pour m’avoir « envoyer » chez Olivier quand j’ai demandé de faire une partie de mon 

stage à l’étranger et pourtant je n’étais pas vraiment enthousiaste de partir en France!! Merci aussi 

d’être venu deux fois à Toulouse pendant ma thèse pour suivre mon travail et nous donner de 

précieux conseils. J’espère qu’on pourra continuer à travailler ensemble. Merci aussi aux membres 

de son labo, en particulier Stefano, la Jessica et « le vieu » Davide. 

 



	  
	  

Merci à Gaëlle, pour m’avoir accueilli dans son labo pour m’apprendre « sur le terrain » la ChIP !! 

Merci aussi pour avoir participé à mon comité de thèse et nous avoir aidé dans ce projet. 

 

Merci à Joonette pour sa participation à ce travail. Tu es vraiment quelqu’un de très très gentil, j’ai 

passé des moment très drôles avec toi et j’ai découvert plein de trucs sur la culture asiatique ! 

Dommage que mes plans pour te faire avoir la nationalité française soient tombés à l’eau !! Merci 

pour tes macros « time saving ». Tu es vraiment un petit geek !! 

 

Merci à tous les membres de l’équipe, les anciens, les nouveaux, ceux qui sont passés par là 

quelques temps, en ces 4 ans tous vous m’avez apporté quelque chose de différent, j’ai pu créer de 

très bons rapports et aussi de vrais amitiés. Le persone vanno e vengono ma ci sono quelli che 

restano. 

Un grand merci à Jean-Charles même à la retraite tu es toujours là !! Quand je suis arrivée en stage 

et je ne comprenais rien du tout, tu as toujours été là pour me faire une blague, pour m’expliquer, 

pour m’aider, pour m’intégrer et surtout pour m’appeler pour manger à 11h30 !! Merci pour tes 

conseils toujours utiles du début jusqu’aux révisions du papier… 

Merci à ma Kenzina, merci de m’avoir expliqué et appris plein de choses, clairement en français !! 

Je n’oublie pas que tu m’as toujours parlé en français pour MON bien !! Les fous rire, le BIEN ou 

BIENG ? Le travail pour la gloire ou pour RIENG ! Merci de m’avoir appris la différence entre être 

CHIIIEN et CHIANT avec l’accent, pour nos sorties et pour avoir été un peu la grande sœur 

protectrice (que tu sais bien faire) à mon état de lieu, pour mon concours de l’école doc, pour mes 

débuts au labo. 

Merci à mes amies Margi et Magdu, mes deux petites conasses préférées. Margi, entre nous ça a été 

une histoire de coup de foudre, de voisinage du bureau et des regards qui ne trompent pas.. ahahah 

merci d’avoir été et d’être toujours là pour moi, pour m’écouter et me remonter le moral et me 

calmer quand j’ai « la veine qui pette » !! Merci pour tous les rires, les blagues et les conneries. Je 

sais que ce n’est pas fini, notre histoire tiendra la distance !! Je suis très contente pour ton nouveau 

travaille ! Merci à Magdu, merci d’être toujours prête à partir en guerre à mes côtés ! Merci pour les 

délires et pour mettre l’ambiance et aussi pour toutes les quiescences que tu as induites pour moi les 

dimanches !! Merci de m’avoir appris le polonais (gruba kurwa), ça me servira beaucoup dans ma 

vie future ! Merci de m’avoir autant fait rire avec tes conneries, tes gaffes trop drôles et pour avoir 

été toujours là pour m’aider et me remotiver en particulier pendant la rédaction.. Maintenant, c’est à 

toi, ne te démotives pas et ne te plains pas ok ? Boh je sais que tu ne comprends rien à la biblio mais 

ça ira (ahahah) ! Il ne te reste qu’à faire ton Nature letter avant la fin de décembre, tu as encore du 



	  
	  

temps ne désespère pas !! Merci aussi à Jeremstar et Laurent, clairement… entre la neige et les 

courses, ils ont tous leur mérite !! 

Merci à mon IoIo, merci de m’avoir toujours fait sentir en sécurité à côté de toi, tu as toujours 

chassé les monstres qui hantent le labo et les eaux de Tahiti !! En plus tu es un peu une muse 

inspiratrice pour moi mais aussi pour tout le monde, je trouve que depuis ton départ il y beaucoup 

moins d’imagination dans l’air et on a perdu notre souffre douleur. On a commencé ensemble et 

depuis le métro en panne, avec toi ça a été toujours très drôle (ahahah), ça a continué avec 

l’appendicite, les urgences pour la peur, les histoires de cannibalisme… bref tu me manques IoIo !! 

Merci pour tout et même si tu fais le dur à cuir tu es un gentil et tu m’as aidé plein de fois ! 

Maintenant bouges toi !! 

Merci à Audrey (j’ai pris sur moi stronzina pour ne pas faire semblant de t’oublier), merci de 

m’avoir débloqué sur « mes problèmes western », de m’avoir fait compagnie souvent le weekend et 

d’avoir fait au moins 5 fêtes de départ. Merci à Oliver, le gros poussin, merci beaucoup pour ta 

gentillesse et pour tes nombreux conseils personnels et scientifiques toujours désintéressés, merci 

pour tes blagues et même si tu as 45 ans je trouve que tu restes très jeune dans ta tête. J’espère très 

sincèrement que tu auras ton concours car tu le mérites vraiment et tu as toutes les qualités pour être 

chercheur. Merci à Rémi, le chef Millicù et test Myco, merci de prendre soin de nous et de 

t’occuper si bien de tes responsabilités (!!), merci de ne jamais te vexer quand je te dis « petit con »  

ou « tête de cul », de toute façon c’est très mignon, merci de m’avoir appris plein des mots comme 

« gorette», je te promets de ne jamais l’oublier, merci aussi de nous en apprendre d’avantage sur ta 

culture gipsy et sur tes expériences à la Rocco ART Academy et merci aussi de continuer à me 

parler malgré l’énorme succès de Kenjoue, tu as gardé les pieds sur terre!! 

Merci à Fatumata, de m’avoir appris comment une vrai demoiselle se porte à table (on ne peut pas 

compter sur Magda, c’est clair..), merci aussi de partager avec moi les histoires des Princes de 

l’amour et de m’avoir appris comment regarder avec « les yeux de l’amour », merci aussi pour nos 

discussions scientifiques (eh oui des fois on travaille !). Merci à Bernardo alias Laetitia, merci 

d’avoir fait un stage si long (tu es déjà là depuis plus qu’un an quand même).. Merci pour les bons 

moments, pour les blagues et pour les discussions dans le bus, je te laisse la relève dans le groupe 

« instabilité génomique » et à côté de Magdu comme petite conasse, vous êtes la nouvelle 

génération, je te souhaite bon courage avec Rnd1, la protéine invisible ! Merci à Christine, à Anne-

Laure, à Julia avec ses confitures de figues, à Aurore ma coloc du CRCT et à Sarah pour m’avoir 

appris plein de choses sur les grenouilles et merci à Cathy pour sa folie et ses danses. Merci à Thèo, 

j’espère qu’on continuera à boire des rum e pera et à travailler ensemble, Adriano dal sangue latino, 

bella vita Guillaume, Pauline1 j’espère aussi qu’on continuera à se voir et discuter ensemble, ma 



	  
	  

petite Morgane avec ses histoires « romantiques », Pauline2 et ma petite bisou bisou Marion et 

Charlène.  

Merci à Claire et Patrick pour leur gentillesse et leur intérêt envers les gens, pour faciliter la vie de 

tout le monde en s’occupant et en gérant des tas de choses au labo. Merci aussi à Fafita, Stéphanie, 

Aurélien, Isa et Sylvie pour leurs conseils pendant ces 4 ans. Merci aussi à Jeanine et Marie-Ange 

pour leur aide précieuse. 

 

Merci aux personnes des autres équipes de l’ICR et aussi aux nouveaux du CRCT : merci à Maud, 

on a commencé ensemble et on a fini ensemble à partir de soirées alcooliques de la première année 

jusqu’au stress partagé de la fin de thèse, Julie ma petite Julie Senseo je n’ai absolument pas oublié 

que je te dois une petite vengeance même si on peut dire que tu me nourris tous les jours avec ta 

carte, Pauline et Ada les deux belles découvertes de cette dernière année mais aussi Laure, Perrine, 

Aurèlie, Philippe, Nico, Judith, Mika, Renaud… 

Merci aussi au vigil de l’ICR (Kader) pour ses blagues du dimanche sur les italiens, merci aux 

cuisiniers de la fin de l’ICR pour leurs blagues sur le foot !! 

 

Merci à mes amis de Toulouse hors du labo : merci à Aurèlie d’avoir été toujours là avec ta folie, de 

m’avoir fait autant rire avec ton animation et tes plans improbables, avec ton arbre sur la colline, ta 

tournée des bars pourris, ton gîte dans les villages déserts, ta samba d’halloween, tes randonnées qui 

commencent à 16h de l’aprèm et je pourrais continuer longtemps, tu es vraiment une très bonne 

copine pour moi. Merci à Nicola pour ta surprise, pour ton hospitalité, pour ton exploit vodka-puffo 

et pour être toujours si calme et posé, merci à minchia mia Geremia pour ton trop beau couple avec 

Nicola dommage que tu habites si loin de Toulouse, alla mia mogliettina Sonia pour être toujours là, 

venir me voir à Toulouse, Bologna ou n’importe où, Alessandro et nos rencontres dans les aéroports, 

Roberto et tes très bons barbecues à Rue Bayard, Domenico et le groupe des italiens, Julie et nos 

soirées folles à la coloc, les déguisements et tes conseils, Vincenzo, Gianni, Anna et Nacho, Fabio, 

Alexis. 

Merci à mes amis de toujours éparpillés un peu partout : la Marta, merci pour ton soutien même par 

Skype, pour me connaître si bien et malgré nos caractères et nos disputes pour rester toujours si 

liées, merci al Gabri mon ami de toujours, mon point de repère dès que je rentre, juste toi peux 

m’amener al Green en plein stress de thèse, merci à Bonini, Divano-Bonni avec son super appart da 

scapolo d’oro à Brisbane et tu me manques souvent toi avec tes blagues. Il Lori, l’ami de succès 

dont on peut se vanter devant tout le monde, Niccolin sola per fortuna che posso spiarlo a Bologna, 

Umbi, il Dani poeta sognatore e vicolini, la Claudina regina della moda, le petit macaron Valeghina, 



	  
	  

mes amis de la fac, la Sarina, la Silvia, Claudiano, la Michi. Mes copines lamarine la Gio, la Silvia, 

la Eva, le Giulie, la Chiara, la Cri. 

 

Merci à ma famille, sans laquelle je n’aurais jamais pu en arriver là. Grazie mamma, de m’avoir 

appris l’amour pour la culture mais surtout pour m’avoir toujours aidé en tout, pour être mon 

exemple et pour avoir tout sacrifié pour me permettre de faire l’Université, pour avoir toujours mis 

mes choix devant tes envies. Grazie babbo, c’est pour toi que j’ai voulu travailler dans la recherche 

et en particulier dans la cancérologie, merci pour tout ce que tu m’as appris, je sais que tu es quand 

même là. Grazie alla Lisa e all’Anna, j’aime bien quand on se dispute constamment pour des 

conneries, j’ai l’impression de ne jamais vieillir, merci d’être toujours con la mamma et merci 

d’être venues malgré la grand crainte de l’avion (merci à Alex aussi !!). 

Merci à la famille de Nico, pour m’avoir accueilli si chaleureusement entre eux et pour être venue 

encore une fois sur Toulouse pour ma thèse, merci à son papa, à ses tantes, à Sabrina et à Pauline. 

Et merci à toi Nico, pour être toujours là pour me soutenir, supporter, conseiller, consoler, aider, 

motiver et pour cuisiner (!!). Merci pour tes conseils au labo et hors du labo, pour m’avoir aidé avec 

ma thèse, je pense que tu dois connaître les topoisomerases par coeur !! Toi t’es trop organisé, tu 

sais tout le temps quoi faire et comment, j’espère que ça va se débloquer pour toi, tes papiers, tes 

projets car tu as bossé beaucoup et bien et tu le mérites.. Des fois je me suis demandée pourquoi 

j’avais choisi la recherche, pourquoi je suis venue en France ? Et après je me dis que ça devait être 

comme ça pour se trouver et là j’espère que ça sera de mieux en mieux.. 

Et enfin (par pour importance) merci à mon petit Pico !! Tu as toujours été à côté de moi pour la 

rédaction de ma thèse à me faire compagnie et plein de câlins (et aussi à bouffer mes papiers !!). Il 

faut absolument que tu aies la double nationalité !!    

  



	  
	  

  



	  
	  

 

 

 

 

TABLE OF CONTENTS 

 

  



	  
	  

 

  



	  

	  
	  

ABBREVIATION TABLE _______________________________________________________ 1 

ILLUSTRATION TABLE _______________________________________________________ 6 

INTRODUCTION ______________________________________________________________ 8 
CHAPTER I: Inhibition of Topoisomerase I and transcription ________________________________ 9 

I.1 DNA Topoisomerases _____________________________________________________________ 10 
I.2 Human DNA Topoisomerase I (Top1) _______________________________________________ 12 

I.2.1 Structural domains of Top1 ____________________________________________________________ 12 
I.2.2 Substrate specificity __________________________________________________________________ 14 
I.2.3 Catalytic cycle ______________________________________________________________________ 15 

I.3 Biological functions of Top1 _______________________________________________________ 16 
I.3.1 Relaxation of DNA supercoiling during transcription and replication ___________________________ 16 
I.3.2 Transcriptional roles of Top1 independent of its nicking-closing activity ________________________ 19 
I.3.3 Roles of Top1 in DNA damage signalling/repair ____________________________________________ 20 

I.4 Trapping of Top1 ________________________________________________________________ 21 
I.4.1 Trapping of Top1 by Top1 inhibitors _____________________________________________________ 21 
I.4.2 Trapping of Top1 by DNA modifications _________________________________________________ 24 
I.4.3 Trapping of Top1 during apoptosis ______________________________________________________ 26 

I.5 Cellular consequences of CPT-mediated trapping of Top1cc ____________________________ 27 
I.5.1 Replicational consequences of CPT-mediated trapping of Top1cc ______________________________ 28 
I.5.2 Transcriptional consequences of CPT-mediated trapping of Top1cc ____________________________ 29 

I.5.2.1 General transcription downregulation and alteration of gene expression patterns _______________ 29 
I.5.2.2 Effects on RNA Polymerase II ______________________________________________________ 32 
I.5.2.3 Alteration of mRNA splicing _______________________________________________________ 33 
I.5.2.4 Top1 downregulation _____________________________________________________________ 35 
I.5.2.5 Topological stress and R-loops _____________________________________________________ 42 
I.5.2.6 Induction of antisense transcripts ____________________________________________________ 45 
I.5.2.7 Induction of DNA damage and DDR activation ________________________________________ 46 

I.6 Repair of irreversible Top1cc ______________________________________________________ 50 
I.6.1 Helicase pathway ____________________________________________________________________ 51 
I.6.2 Excision by Tdp1 pathway _____________________________________________________________ 52 

I.6.2.1 Structure and function of the Tdp1 enzyme ____________________________________________ 52 
I.6.2.2 Physiological consequences of Tdp1 mutations: SCAN1 _________________________________ 55 
I.6.2.3 Post-translational modification of Tdp1 _______________________________________________ 56 
I.6.2.4 Stepwise repair by Tdp1 pathway ___________________________________________________ 57 

I.6.3 Excision by the endonuclease pathway ___________________________________________________ 59 
CHAPTER II: DNA Double-Strand Break and DNA Damage Response ________________________ 62 

II.1 Sources of DSBs _________________________________________________________________ 63 
II.2 DDR: sensing DSB and signalling __________________________________________________ 66 
II.3 ATM, ATR and DNA-PKcs: three PI3-Kinases of the DDR ____________________________ 68 

II.3.1 ATM _____________________________________________________________________________ 69 
II.3.2 ATR ______________________________________________________________________________ 74 
II.3.3 DNA-PK __________________________________________________________________________ 76 
II.3.4 Interplay of PIKKs __________________________________________________________________ 79 

II.4 Spatiotemporal dynamics of DDR proteins at DNA break ______________________________ 80 
II.5 Molecular mechanisms of DDR proteins assembly at DNA break ________________________ 81 

II.5.1 Direct recognition of DNA-breaks ______________________________________________________ 81 
II.5.1.1 The MRN complex ______________________________________________________________ 82 
II.5.1.2 PARP _________________________________________________________________________ 83 

II.5.2 Protein-protein interactions ____________________________________________________________ 84 
II.5.3 Post-translational modifications ________________________________________________________ 84 

II.5.3.1 Poly(ADP-ribosyl)ation __________________________________________________________ 84 
II.5.3.2 Phosphorylation _________________________________________________________________ 85 

II.5.3.2.1 Phosphorylation of the histone H2AX: γH2AX ____________________________________ 86 
II.5.3.2.2 MDC1 ____________________________________________________________________ 88 

II.5.3.3 Acetylation ____________________________________________________________________ 89 
II.5.3.4 Ubiquitylation __________________________________________________________________ 90 

II.5.3.4.1 RNF8/RNF168 ubiquitination cascade ___________________________________________ 91 
II.5.3.4.2 Recruitment of BRCA1 and 53BP1 _____________________________________________ 93 



	  

	  
	  

II.5.3.4.3 RNF2-BMI1 ubiquitination cascade _____________________________________________ 95 
II.5.3.4.4 Negative regulation of ubiquitination ____________________________________________ 95 
II.5.3.4.5 Role of proteasome in DDR ___________________________________________________ 96 

II.5.3.5 NEDDylation ___________________________________________________________________ 98 
II.5.3.6 SUMOylation __________________________________________________________________ 99 
II.5.3.7 Methylation ___________________________________________________________________ 100 

II.6 Importance of DDR foci for genome integrity maintenance ____________________________ 102 
II.7 Targeting DDR proteins in cancer _________________________________________________ 103 
II.8 DSBs repair and influence of DDR signalling on repair _______________________________ 105 
II.9 Transcriptional DSBs ___________________________________________________________ 108 

II.9.1 Induction of transcriptional DSBs _____________________________________________________ 109 
II.9.2 γH2AX in active transcribed genes _____________________________________________________ 111 
II.9.3 Role of PARP _____________________________________________________________________ 112 
II.9.4 Role of ATM ______________________________________________________________________ 112 
II.9.5 Role of DNA-PK ___________________________________________________________________ 114 
II.9.6 Role of histone mobilization __________________________________________________________ 115 
II.9.7 Repair ___________________________________________________________________________ 115 

OBJECTIVES _______________________________________________________________ 117 

RESULTS ___________________________________________________________________ 119 

DISCUSSION AND PERSPECTIVES ___________________________________________ 168 

BIBLIOGRAPHY ____________________________________________________________ 187 

APPENDIX __________________________________________________________________ 214 



	   	   	   1 
	  

 

 

 

 

ABBREVIATION TABLE 

 

  



	  



	   	   	   2 
	  

4OHT: 4-hydroxy tamoxifen  

53BP1: tumor protein p53 binding protein 1 

9-1-1: Rad9-Hus1-Rad1 complex 

aa: amino acid 

Abraxas/CCDC98: BRCA1-A complex subunit 

Abraxas 

AID: activation-induced cytidine deaminase 

Alt-NHEJ: alternative NHEJ 

AP: apurinic-apirimidic 

APE1: apurinic-apirimidic endonuclease 

APH: aphidicolin 

APLF: aprataxin-PNK-like factor 

APOBEC: apolipoprotein B mRNA editing enzyme, 

catalytic polypeptide 

AR: androgen receptor 

ASF/SF2: serine/arginine-rich splicing factor 1 

AT: ataxia telangiectasia  

ATLD: AT-like disorder 

ATM: ataxia telangiectasia mutated 

ATMi: ATM inhibitor 

ATMIN: ATM interacting protein 

ATP: adenosine triphosphate 

ATR: ataxia telangiectasia and Rad3-related protein 

ATRIP: ATR-interacting protein 

BARD1: BRCA1-associated ring domain protein 1 

BCL10: B-cell CLL/lymphoma 10 

BER: base excision repair 

BLM: bloom syndrome, RecQ-helicase-like 

BMI1 : murine leukemia viral (Bmi-1) oncogene 

homolog 

bp: base pair 

BRCA1: breast cancer 1 

BRCA2: breast cancer 2 

BRCC36: BRCA1/BRCA2-containing complex 

subunit 36 

BRCC45: BRCA1/BRCA2-containing complex 

subunit 45  

BRCT: breast cancer C-terminal domain 

Bru: bromouride  

BrUTP: 5-bromouridine triphosphate 

CAND1: cullin-associated NEDD8-dissociated 1 

CCT6A: chaperonin containing TCP1, subunit 6A 

Cdk: cyclin-dependent kinases 

CENPA:	  centromere protein A 

CENPF: centromere protein F 

CFTR: cystic fibrosis transmembrane conductance 

regulator 

CHD3: chromodomain helicase DNA binding 

protein 3 

CHFR: checkpoint with forkhead and ring finger 

domains 

ChIP: chromatin immunoprecipitation 

ChIP/DNA: chromatin/DNA immunoprecipitation  

ChIP-Seq: ChIP-sequencing 

Chk1: checkpoint kinase 1 

Chk2: checkpoint kinase 2 

CK2: caseine kinase 2 

CPD: cyclobutane pyrimidine dimers  

CPT: camptothecin  

CS: cockayne syndrome 

CSB: cockayne syndrome group B protein 

CSN: COP9 signalosome	  
CSR: class switch recombination  

CTD: carboxy-terminal domain  

CtIP: carboxy-terminal binding protein-interacting 

protein 

Cul: cullin  

DDR: DNA damage response 

DDRNA: DNA damage response RNAs 

DHFR: dihydrofolate reductase 

DNA-PK: DNA-dependent protein kinase  

DNA-PKcs: DNA-dependent protein kinase 

catalytic subunit 

DNA-PKi: DNA-PK inhibitor 

DRB: 5,6-Dichloro-1-β-D-

ribofuranosylbenzimidazole 

DSB: double-strands break 

dsDNA: double-strand DNA 
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DSEs: double-strands ends 

DSS1: deleted in split hand/split foot protein 1 

DUB: deubiquitylating enzyme  

E1: ubiquitin-activating enzyme 

E2: ubiquitin-conjugating enzyme 

E3: ubiquitin ligase 

ENL: myeloid/lymphoid translocated 

ERCC1: excision repair cross-complementing group 

1 

eRNAs: enhancer RNA 

Et743: ecteinascidin 743 

FA: Fanconi anemia  

FACT: facilitates chromatin transcription 

FDA: US food and drug administration  

FEN1: flap structure-specific endonuclease 1 

FHA: forkhead-associated domain 

FK2: ubiquitinylated proteins 

FLV: flavopiridol  

FRDA: Friedreich ataxia  

FXN: frataxin  

GFP: green fluorescent protein 

GO: gene ontology  

HDAC: histone deacetylase 

HECT: homology to E6AP C-terminus 

HERC2: HECT and RLD domain containing E3 

ubiquitin protein ligase 2 

HIF-1α: hypoxia-inducible factor 1-alpha	  
HIRA: histone regulator A	  
HMGN1: high mobility group nucleosome binding 

domain 1 

hMOF: human ortholog of drosophila males absent 

on the first 

HP1: heterochromatin-binding protein 1 

HR: homologous recombination 

ICC-FISH: immunocytochemistry staining followed 

by fluorescence in situ hybridization 

IgH: immunoglobulin heavy chain 

IKZF1: IKAROS family zinc finger 1 

IR: ionizing radiation 

IRIF: ionizing radiation induced foci 

ISG15: interferon-stimulated gene 15 

JMJD: jumonji domain containing protein 

KAP1: KRAB-associated protein-1 

KD: kinase dead 

L3MBTL1: lethal(3) malignant brain tumour-like 

protein 1 

LCR: locus control region  

LEDGF: lens epithelium-derived growth factor 

LET: linear energy transfer 

Lig3: DNA ligase 3 

Lig4: ligase 4 

MCSZ: microcephaly with early-onset, intractable 

seizures and developmental delay 

MDC1: mediator of DNA-damage checkpoint 1 

MDM2: mouse double minute 2 

MERIT40: mediator of RAP80 interactions and 

targeting subunit of 40 kDa	  
MIU: motifs interacting with ubiquitin domain 

MR: mental retardation  

Mre11: meiotic recombination protein 11 

MRN: Mre11-Rad50-Nbs1 complex 

mRNP: messanger ribonucleoprotein particles  

mTOR: mammalian target of rapamycin 

Mus81: Mus81 endonuclease homolog (yeast) 

NAE1: NEDD8 activating enzyme 

NBS: Nijmegen breakage syndrome  

NBSLD: NBS-like disorder 

ncRNA: non-coding RNA 

NCS: neocarzinostatin 

NEDD8: neural precursor cell expressed 

developmentally downregulated 8 

NER: nucleotide-excision repair  

NHEJ: non-homologous end-joining  

nt: nucleotide 

NuRD: nucleosome remodelling and deacetylase 

OTUB1: OTU deubiquitinase, ubiquitin aldehyde 

binding 1 

P-TEFb: positive transcriptional elongation factor b	  
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p53: tumor protein p53	  
PA200: proteasome activator 200 

PA28: proteasome activator 28 

PARG: PAR-glycohydrolase 

PARP: poly [ADP-ribose] polymerase 

PARPi: PARP inhibitor	  
PAXX: paralog of XRCC4 and XLF	  
PCNA: proliferating cell nuclear antigen 

PI3K: phosphoinositide 3-kinase 

PIAS: protein inhibitor of activate STAT protein  

PIKK: phosphatidylinositol-3-kinase-like kinase 

family  

PLD: phospholipase D  

PNKP: polynucleotide kinase phosphatase 

POH1: 26S proteasome-associated PAD1 homolog 1 

POMP: proteasome maturation protein	  
PP: protein phosphatase 	  
PR-Set7: PR/SET domain-containing protein 07 

PRC: Polycomb repressive complex  

PROMPTs: promoter upstream transcripts 

PSF: protein-associated splicing factor 

PSMD4: proteasome 26S subunit, non-ATPase, 4 

PTIP: PAX transcription activation domain 

interacting protein 1 like 

PTM: post-translation modifications 

Rad: radiation sensitivity abnormal  

Rap80: receptor associated protein 80 

RBM8A: RNA binding motif protein 8 

RBR: ring between ring 

RBX: ring box 1  

rDNA: ribosomal DNA  

REV7: REV7 homolog 

RFC: replication factor C 

RIDDLE: radiosensitivity, immunodeficiency, 

dysmorphic features, and learning difficulties 

RIF1: rap1-interacting factor 1 homolog 

RING: really interesting new gene 

RNAP: RNA polymerase 

RNF: ring finger protein  

ROS: reactive oxygen species 

RC-DSB: replication-coupled DSB  

RPA: replication protein A 

Rpb1: RNA polymerase II subunit B1 

RS-SCID: radiosensitive T-B- severe combined 

immunodeficiency 

SAE1: SUMO1 activating enzyme subunit 1 

SCAN1: spinocerebellar ataxia with axonal 

neuropathy  

SCC1: SCC1 homolog 

SENP: SUMO-specific protease 

Seq: sequencing 

SET2: SET domain containing 2 

SIM: SUMO-interacting motif 

siRNA: small interfering RNA 

SIRT: sirtuin  

SLX: SLX structure-specific endonuclease subunit 

SMARCA2: SWI/SNF related, matrix associated, 

actin dependent regulator of chromatin, subfamily A, 

member 2 

SMG1: suppressor of mutagenesis in genitalia 1  

Sp1: specificity protein 1 

Spo11: sporulation protein 11 

SR: serine arginine rich protein 

SSA: single-strand annealing 

SSB: single strand break  

ssDNA: single strand DNA 

SUMO1/2/3: small ubiquitin-related modifier-1, -2 

or -3 

suv39h1: suppressor of variegation 3-9 homolog 1 

Suv4-20: suppressor of variegation 4-20 homolog 1 

TALEs: transcription activator-like effectors 

TBP: TATA box binding protein 

tBRCT: tandem BRCT domains 

TC-DSB: transcription-coupled DSB 

TCR: transcription-coupled repair 

Tdp1: tyrosyl-DNA phosphodiesterase 1 

TERT: telomerase reverse transcriptase 

TF: transcription factor 



	   	   	   5 
	  

TIP: type 2A-interacting protein 

Tip60: tat interacting protein, 60kDa 

TOBP1: topoisomerase-binding protein 1  

Top1: topoisomerase I  

Top1cc: Top1 cleavage complexes  

Top2: topoisomerase II 

Topors: topoisomerase I-binding RS proteins 

TRF1/2: telomere repeat factor 1 / 2  

TRRAP: transformation/transcription domain-

associated protein 

TSS: transcription start site 

TTF2: transcription termination factor, RNA 

polymerase II 

tTudor: tandem Tudor domains 

Ub: ubiquitin 

UBA: ubiquitin-like modifier activating enzyme  

Ubc: uquiquitin-containing enzyme  

UBD: ubiquitin-binding domains  

UBE: ubiquitin-conjugating enzyme  

UBLs: ubiquitin-like proteins  

UDR: ubiquitylation-dependent recruitment motif 

UIM: motifs interacting with ubiquitin domain-

related ubiquitin-binding domain 

UNG: uracil-DNA glycosylase 

UPS: ubiquitin-proteasome system 

USP: ubiquitin-specific protease  

UV: ultraviolet 

VCP/p97: valosin containing protein 

WIP1: wild-type P53-induced phosphatase 1 

WRN: Werner syndrome, RecQ helicase-like  

WSTF: Williams syndrome transcription factor 

XLF: XRCC4-like factor 

XPA/B/C/D/F/G: xeroderma pigmentosum group-

A/B/C/D/F/G complementing protein 

XRCC: X-ray repair cross-complementing protein  

ZFNs: site-specific zink-finger 

Zn1/2: zinc finger domain 1 / 2  

γH2AX: H2AX phosphorylated 
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I.1 DNA Topoisomerases  

 

DNA topoisomerases are ubiquitous and highly conserved enzymes that relax DNA (Champoux, 

2001; Schoeffler and Berger, 2008; Wang, 2002).  

DNA topoisomerases are molecular machines that regulate the topological state of the DNA in the 

cell. The interest in DNA topoisomerases in recent years derives not only from the recognition of 

their crucial role in managing DNA topology, but also from the wide variety of topoisomerase-

targeting drugs that have been identified. These topoisomerase poisons include both antimicrobials 

and anticancer chemotherapeutics, some of which are approved by US Food and Drug 

Administration (FDA) to treat human cancers or infectious diseases. 	  

Human somatic cells encode six topoisomerases (Table 1). A seventh topoisomerase is Spo11 but 

its expression is restricted to germ cells (Bergerat et al., 1997). Bacteria tend to have a simpler 

organization, with only four topoisomerases in Escherichia coli (Pommier et al., 2010). 

All topoisomerases cleave the DNA phosphodiester backbone by nucleophilic attack from a 

catalytic tyrosine residue that becomes transiently linked to the phosphate end (P-Y) of the DNA 

break. On the base of the number of strand cleaved (I, II) and the polarity of the cleavage, DNA 

topoisomerases are divided into different classes and subfamilies.  

 

Table 1: Classification of human topoisomerases* 

Type Polarity Mechanism Genes Proteins Drugs 

IA 5'-PY Strand passage 
TOP3A Top3α none 

TOP3B Top3β none 

IB 3'-PY Rotation 
TOP1 Top1 anticancer 

TOP1MT Top1mt none 

IIA 5'-PY Strand passage ATPase 
TOP2A Top2α anticancer 

TOP2B Top2β anticancer 
       *(Pommier, 2013) 

 

Topoisomerases that cleave only one strand of the DNA are defined as type I. In particular, if the 

protein is attached to the 5’ phosphate of the DNA (5’ P-Y), it is a type IA subfamily member. If it 

is attached to the 3’ phosphate (3’ P-Y), the enzyme is a type IB subfamily member. Moreover, 

these enzymes also differ for their catalytic mechanisms. Type IA topoisomerases work by passing 

one strand through the single-strand break (SSB) generated by the enzymes (Viard and de la Tour, 

2007) (Figure 1). These topoisomerases are able to relax highly negatively supercoiled substrates 

and to efficiently unknot and decatenate DNAs containing single-stranded regions or nicks 

(hemicatenanes and double-holiday junctions) (Wu and Hickson, 2003). Type IB topoisomerases 
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use a “controlled rotation” mechanism by letting the broken strand rotate around the intact one (see 

section I.2.3) (Champoux, 2001) (Figure 1). These enzymes catalyse the relaxation of both 

negatively and positively supercoiled DNAs (Koster et al., 2005). 

In humans, topoisomerases 3α and 3β (Top3α, Top3β) belong to type IA subfamily whereas the 

nuclear topoisomerase I (Top1) and the mitochondrial topoisomerase I (Top1mt) are members of 

the type IB subfamily (Table 1). 

Topoisomerases that cleave both strands to generate a double-strand break are grouped together in 

the type II family of topoisomerases. Type II topoisomerases are multi-subunit enzymes, and form 

double-strand breaks with enzyme subunits covalently linked to 5’ ends at the DNA cleavage site. 

The enzymes work by passing a second DNA duplex through the cleavage of the first DNA 

segment with a mechanism dependent on ATP and Mg2+ (Liu et al., 1983; Nitiss, 2009) (Figure 1). 

Those topoisomerases act as full decatenases, unlinking pre/catenanes, interlinked DNA products of 

replication (Nitiss, 2009). Type IIA topoisomerases are widespread in nature. Topoisomerase 2α 

and 2β (Top2α, Top2β) are the human type IIA topoisomerase (Table 1). Type IIB enzymes are 

confined to Archaea, plants, and some algae.  

  

                    	  
Figure 1: Different catalytic mechanisms of topoisomerases. Type IA and IIA enzymes act by strand passage with one single-
strand break or one double-strand break, respectively. Type IB acts by controlled rotation. (Pommier, 2013) 

  

Type IA 

Type IB 

Type IIA 
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I.2 Human DNA Topoisomerase I (Top1) 

 

All eukaryotes harbor at least one type IB topoisomerase (Top1). Top1 is a nuclear enzyme, which 

is essential in vertebrates and in Droshophila (Lee et al., 1993) but not in yeast (Goto and Wang, 

1985; Uemura and Yanagida, 1984), probably because it can be substituted by other topoisomerases. 

Top1-null mouse embryos fail to develop (Morham et al., 1996). Cell lines expressing low levels of 

Top1 exist, for example the murine cell line (p388/CPT45) selected for resistance to camptothecin 

(CPT) (Eng et al., 1990; Tuduri et al., 2009) or the human cancer cell lines stably expressing siRNA 

against Top1 (HCT116-siTop1 and MCF-7-siTop1) (Miao et al., 2007). Features of those cells are 

genomic instability, replication defects and altered gene expression (Miao et al., 2007; Tuduri et al., 

2009).  

Top1 expression is constitutive throughout the cell cycle, similar in cycling and non-cycling cells 

(Baker et al., 1995). Although it is expressed throughout the nucleus, it is enriched in the nucleolus 

where it supports high rate of ribosomal DNA (rDNA) transcription (Muller et al., 1985; Zhang et 

al., 1988).  

 

I.2.1 Structural domains of Top1 

 

The human TOP1 gene is located on chromosome 20q11.2-13.1 and encodes a 91 kDa protein that 

has been subdivided into four distinct domains (Figure 2) (Champoux, 1998; Pourquier and 

Pommier, 2001; Stewart et al., 1996): 

- N-terminal domain: It is composed of 214 amino acids and it is the most variable region. 

This domain is dispensable for relaxation activity in vitro. It contains four putative nuclear 

localization signals, from which only two are functional (Mo et al., 2000). This domain also 

possesses sites for interaction with other cellular proteins such as nucleolin, SV40 T-antigen, certain 

transcription factors (TF), p53 and WRN (Werner syndrome, RecQ helicase-like). 

- Core domain: Constituted by 421 amino acids, it is a conserved domain that is required for 

enzyme activity. It contains all the residues required for the catalytic activity of Top1 except the 

active site tyrosine. It can be divided into three subdomains (I, II, III). 

- Linker domain: It is composed of 77 amino acids and it is dispensable for enzyme activity. It 

connects the core domain to the C-terminal domain. 

- C-terminal domain: It possesses 53 amino acids. It is the most conserved domain and it 

contains the active site T723, which covalently binds to DNA end it is essential for relaxation 

activity of Top1.  
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Figure 2: Schematic of Top1 domains. The four main domains of Top1 and catalytic tyrosine (pink) are illustrated. NTS indicates 
the nuclear translocation signals. Arrows correspond to Top1 mutations that are responsible for resistance to Top1 inhibitors (see 
section I.4.1 for details). Adapted from (Pourquier and Lansiaux, 2011). 

 

Several crystal structures of different fragments of the human Top1 covalently or not covalently 

bound to DNA are available (Lesher et al., 2002; Redinbo et al., 2000; Redinbo et al., 1998; Stewart 

et al., 1998). These structures show that Top1 is a bi-lobed protein that tightly encircles the DNA 

like a clamp (Figure 3). One of the lobes represents the “cap” of the protein and it comprises core 

subdomains I and II. Core subdomain III and the C-terminal domain constitute the second lobe that 

forms a base around the DNA. The two lobes are connected by a long α-helix (“connector”). The 

“lips” are pairs of opposing loops positioned on the opposite side to the connector: they allow non-

covalent interactions of the cap with the base of the protein. The break of this interaction and lifting 

of the cap results in the opening and closing of the protein clamp during the catalytic cycle. Finally, 

the linker domain forms a coiled-coil structure protruding from the base of the protein (Champoux, 

2001; Redinbo et al., 2000). 

 



	   	   	   14 
	  

	  	  	  	  	  	  	   	  
Figure 3: Two views of the structure of the human Top1 non-covalently complexed with DNA. The structure of the enzyme 
(PDB entry 1A36) is viewed from the (A) side with the DNA axis horizontally oriented and (B) looking down the axis of the DNA. 
The N-terminal domain is missing from the structure. The cap is composed of core subdomain I (yellow) and core subdomain II 
(blue). The base is composed of core subdomain III containing the long α-helix connector (red) and the C-terminal domain (green) 
containing the active site tyrosine represented in (A) in black and ball stick. The linker forms a coiled-coil structure protruding from 
the base (gold). Lips are indicated in (B) and they are the regions where the protein opens during DNA binding and unbinding. 
Adapted from (Champoux, 2001). 

	  
I.2.2 Substrate specificity 

 

The substrate specificity of Top1 has been determined in relation to both DNA sequence and DNA 

structure. A preference was observed for nucleotides that extend from positions -4 to -1, 5’-

(A/T)(G/C)(A/T)T-3’ with the enzyme covalently attached to the -1 thymine residue (Been et al., 

1984; Bonven et al., 1985; Tanizawa et al., 1993). Occasionally a cytosine residue is found at the -1 

position. 

Based on structural data, the only identified contact Top1-DNA is the interaction by hydrogen-bond 

between K532 of the Top1 and the oxygen in position 2 of the thymine base located at the -1 

position (Redinbo et al., 1998). It appears that additional protein-DNA interactions play an 

important role in cleavage site selection (Champoux, 2001). 

Several studies reveal that Top1 has a preference for binding to double-stranded DNA (Been and 

Champoux, 1984) and most efficiently supercoiled over relaxed DNA in vitro (Camilloni et al., 

1988; Madden et al., 1995; Muller, 1985). Since the enzyme preferentially binds to positive and 

negative supercoiled DNA, it seems likely that the structural feature recognized by Top1 in the 

DNA is a bent DNA segment. Alternatively, the enzymes may recognize the node where two 

duplexes cross; this is the case of replication (Zechiedrich and Osheroff, 1990). 
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I.2.3 Catalytic cycle 

 

The catalytic cycle of Top1 can be divided in four steps (Pommier et al., 1998; Pourquier and 

Pommier, 2001) (Figure 4): 

1) Non-covalent DNA binding. Top1 non-covalently binds DNA at preferred sites (see section 

I.2.2). Before binding, the enzyme is in an open conformation, with the cap and the catalytic Y723 

spreading apart. As Top1 binds to DNA, these domains adopt the clamp configuration around the 

duplex (Redinbo et al., 1998). The binding footprint is approximately 20 bp (base pair) with the 

cleavage site centrally located (Stevnsner et al., 1989). 

2) Cleavage of one strand of the DNA duplex: DNA and Top1 are covalently linked by 

transesterification between the hydroxyl group of the catalytic tyrosine (Y723) and the phosphate of 

the DNA strand (Champoux, 1981). These DNA-Top1 covalent complexes are referred to as “Top1 

cleavage complexes” (Top1cc). 

3) Controlled rotation: Top1 relaxes supercoiled DNA changing its linking number, a 

parameter indicating the number of times the two helical strands are interwound, by step of one. To 

relax DNA, the enzyme allows the rotation of the broken strand around the intact one. A “controlled 

rotation” mechanism has been proposed on the base of biochemical and structural data indicating that 

the structural domains of the Top1 likely control over the rate of rotation (Stewart et al., 1998). In fact, 

rotation is slowed by contacts of DNA with the inner cavity of the enzyme and with the linker.  

4) Religation: Top1 religates the single-strand break by reversing its covalent binding in the 

absence of energy cofactors. This transesterification reaction occurs between the free 5’-OH of the 

broken strand that mediates the nucleophile attack and the Top1-DNA bond. Religation requires the 

alignment of the 5’ end of the cleaved strand with the tyrosine-DNA bond. Under normal conditions, 

Top1cc are transient as religation is favoured (Pourquier and Pommier, 2001). 

The catalytic cycle of Top1 is very fast, up to 6000 cycles per minute (Seol et al., 2013). 

Top1 can also religate exogenous DNA strands harbouring a 5’-OH free end (Christiansen et al., 

1993; Christiansen and Westergaard, 1994; Pourquier et al., 1997a). Misalignment of the 5’-OH 

with the scissile-phosphodiester bond by drugs or by DNA modification results in stabilized Top1cc 

(see section I.4) and increases the probability of illegitimate recombination (Christiansen et al., 

1993; Christiansen and Westergaard, 1994; Pourquier et al., 1997a). 
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Figure 4: Topoisomerase I catalytic cycle. DNA relaxation by Top1 can be divided in four steps: 1) Non-covalent DNA binding, 2) 
Cleavage of one DNA strand, 3) Relaxation by controlled rotation and 4) Religation. See text for details. Figure adapted from 
(Pourquier and Lansiaux, 2011). 

 

I.3 Biological functions of Top1 

 

I.3.1 Relaxation of DNA supercoiling during transcription and replication 

 

The main function of Top1 is to relax DNA supercoiling generated during transcription and 

replication (Champoux, 2001; Wang, 2002). In normal relaxed B-DNA, each strand crosses the 

other once every 10.4 bp with a right-handed turn, therefore DNA twisted in a right-handed fashion 

generates positive supercoiling (crossing < 10.4 bp) whereas DNA twisted in a left-handed fashion 

(crossing > 10.4 bp) generates negative supercoiling (Wang, 2002). 

Top1 is efficient to relax both positively and negatively supercoiled DNA with a preference for 

positive supercoiling (Koster et al., 2007; McClendon and Osheroff, 2006; Wang, 2002). 

 

Replication 

As the replication fork advances during replication, the replication machinery forces the helical 

interwines of the DNA ahead of it and DNA becomes overwound; behind the advancing fork, the 

replicated bubble becomes progressively larger (Wang, 2002). If the replication machinery is 

allowed to rotate around the helical axis of the unreplicated DNA, positive supercoils ahead of the 

ongoing fork are redistributed into the region behind it, leading to the intertwining of the pair of 

duplicated double helix (Wang, 2002). However, because of the size of replication machinery, it is 
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plausible that this complex does not rotate freely around DNA helix consequently leading to 

positively supercoiled DNA upstream of the replication fork.  

Not surprisingly, in the absence of Top1, replication forks are slower (0.7 kb/min in HCT116 

shTop1 cells compared to 1.1 kb/min in HCT116 shControl cells) and pause or stall more 

frequently (Tuduri et al., 2009). 

 

Transcription 

Similarly to replication, during transcription elongation, the transcription complex cannot 

continuously rotate around the DNA helix, which forces the DNA strand to rotate around its own 

helix axis. As a result, positive supercoiling accumulates ahead of the advancing transcriptional 

complex, and negative supercoiling behind it. This is the “twin-supercoiled-domain” model 

proposed by Liu and Wang in 1987 (Liu and Wang, 1987) and further supported by several studies 

(Cook et al., 1992; Leng and McMacken, 2002; Lodge et al., 1989; Lynch and Wang, 1993). Left 

unresolved, this supercoiled DNA can impact transcription in different ways (Blot et al., 2006; 

Drolet, 2006; Gartenberg and Wang, 1992; Peter et al., 2004). For instance, high levels of positive 

supercoiling can inhibit transcription (Drolet, 2006; Gartenberg and Wang, 1992) whereas negative 

supercoils may enhance transcriptional initiation at promoters either by helping RNA Polymerase 

(RNAP) to form an open complex or by helping to recruit transcription factors (Hatfield and 

Benham, 2002; Ma and Wang, 2014; Mizutani et al., 1991a; Mizutani et al., 1991b). In addition, 

negative supercoiling favours the formation of R-loop (Drolet et al., 1994; Drolet et al., 2003; 

Higgins and Vologodskii, 2015) and non-B DNA structures such as Z-DNA (Nordheim et al., 1982), 

both affecting transcription (see section I.5.2.5). 

By removing DNA supercoiling, Top1 is required for proper transcription. This may explain why 

Top1 has been found to bind and cleave preferentially transcribing genes (Gilmour et al., 1986; 

Khobta et al., 2006; Kroeger and Rowe, 1992; Stewart et al., 1990; Zhang et al., 1988). Despite its 

important role in transcription, works in yeast indicate that neither Top1 nor Top2 are essential for 

RNAPII transcription, while ribosomal RNA synthesis is highly reduced in the absence of both 

enzymes (Brill et al., 1987). 

Another source of torsional stress is nucleosome remodelling in active transcribed regions and Top1 

has been implicated in. It has been shown that either Top1 or Top2 is required for efficient 

transcription of a chromatin template, but not for in vitro transcription of naked DNA (Mondal and 

Parvin, 2001; Mondal et al., 2003). Interestingly, repression of transcription was detected without 

topoisomerases when RNA transcripts were above 200 bp (Mondal et al., 2003). Evidences in 

literature suggest that Top1 can affect gene expression through regulation of chromatin structure 
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and histone modifications. For example, a genome-wide analysis in S. pombe reveals that 

topoisomerase activity promotes transcription by modulating histone density. Indeed, absence of 

Top1 and Top2 leads to higher H3 occupancy in the promoter regions of highly transcribed genes 

correlating with reduced RNAPII occupancy and reduced expression profile (Durand-Dubief et al., 

2010).	  Negative supercoiling left by transcribing RNAP favours nucleosome incorporation. Thus, 

authors suggested a function of Top1 (in concert with the chromatin remodeller Hrp1) in 

maintaining a low histone density at promoters to allow for efficient RNAPII recruitment. In 

addition, Top1-Top2 double mutants exhibit increased transcriptional levels in the 3’ transcription 

terminator region of the genes compared to wild-type (Durand-Dubief et al., 2011). These findings 

indicate that Top1 activity also controls supercoiled DNA at 3’ end of the genes thereby 

contributing to nucleosome disassembly and transcriptional termination. Figure 5 illustrates the 

model proposed by the authors for the function of Top1 and Top2 in regulating DNA topological 

state and chromatin structure during transcription initiation, elongation and termination (Durand-

Dubief et al., 2011). Oppositely to this report, another work shows that Top1 activity negatively 

regulates transcription at telomere-proximal regions in S. cerevisiae by favouring a repressed 

chromatin organization (Lotito et al., 2008).  

 
Figure 5: Model of transcriptional regulation in all steps by Top1 and Top2 activity. In the initiation phase and pre-initiation 
complex formation, Top1 removes negative supercoils facilitating nucleosome disassembly at promoter. In the elongation phase, 
Top1 and Top2 act in concert to resolve topological tension generated by ongoing RNAP as predicted by the “twin-supercoiled-
domain” model. Then in transcription termination, topoisomerase activity is required for histone disassembly and transcription 
termination (Durand-Dubief et al., 2011). 

Wild Type!

Top1-Top2 
double mutant!
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Top1 regulates transcription also by acting at enhancer regions (Puc et al., 2015; Rosenberg et al., 

2013). The main mechanism by which enhancers are thought to regulate transcription is through 

DNA looping that brings distant enhancers in contact with promoters (Lam et al., 2014). Enhancers 

are also transcription units that can generate noncoding RNA transcripts identified as eRNAs 

(enhancer RNAs) (De Santa et al., 2010). eRNAs appear to be functionally important for the proper 

formation of chromosomal looping between enhancers and transcription start site (TSS) of 

regulated genes (Lam et al., 2014). DNA looping and eRNA transcription are potential source of 

topological stress. First evidences of Top1 involvement on enhancers’ regulation come from 

chromatin immunoprecipitation experiments (ChIP) showing an enrichment of Top1 at the β-

globulin locus control region (LCR) (Rosenberg et al., 2013). Then, ChIP-Seq (ChIP-sequencing) 

analysis reveals that Top1 is rapidly recruited to several AR (androgen receptor)-regulated 

enhancers in prostate cancer cells (Puc et al., 2015). Top1-depleted cells or cells complemented 

with a catalytically inactive Top1 mutant exhibit reduced production of eRNAs and coding gene 

RNAs for most of these AR-regulated genes. Authors showed that Top1 recruitment to enhancers 

occurs at the same regions of AR in proximity of TSS and causes a SSB that is necessary for eRNA 

synthesis and enhancer activation. This study identifies a novel function of Top1 dependent on its 

catalytic activity in the control of the cell-specific transcriptional program by ligand-driven 

enhancer activation (Puc et al., 2015). 

 

I.3.2 Transcriptional roles of Top1 independent of its nicking-closing activity 

 

Top1 regulates transcription independently of its nicking-closing activity by acting in concert or by 

interacting with transcriptional activators and general transcription factors. Non-canonical Top1 

functions include: 

- Activation/repression of transcription: 

 In vitro studies show that Top1 is able to either repress basal transcription as well as to co-activate 

transcription (Kretzschmar et al., 1993; Merino et al., 1993; Shykind et al., 1997). Top1 seems to 

activate transcription by enhancing the formation of the TFIID-TFIIA-DNA complex at promoters 

(Shykind et al., 1997). This function of Top1 does not require its nicking-closing activity since a 

catalytically inactive Top1 mutant can stimulate transcription as the wild type.  

- Recruitment of RNAP: 

Top1 may also favour the recruitment of RNAPII at transcription sites either directly by its ability 

to bind the C-terminal region of Rpb1 (Carty and Greenleaf, 2002; Rose et al., 1988) or indirectly 

by interacting with Topors (topoisomerase I-binding RS proteins), small nuclear RING-finger 
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proteins harbouring E3 ubiquitin- and SUMO1 (small ubiquitin-related modifier-1)- ligase activities 

(Haluska et al., 1999). A similar model has been proposed for RNAPI recruitment at 

transcriptionally active ribosomal genes either by its direct interaction with Top1 (Rose et al., 1988) 

or nucleolin (Bharti et al., 1996).  

- RNA splicing: 

In higher eukaryotes, Top1 has a specific kinase activity and it can phosphorylate splicing factors 

such as SR proteins (serine/arginine-rich protein, like ASF/SF2) (Rossi et al., 1996), thus promoting 

the formation of messenger ribonucleoprotein particles (mRNPs) and the maturation of nascent 

RNA (Rossi et al., 1996; Soret et al., 2003). The interaction between Top1 and ASF/SF2 seems to 

inhibit Top1 relaxation activity (Andersen et al., 2002). Top1 has also been reported to interact with 

PSF (protein-associated splicing factor), a co-factor of RNA splicing, which in complex with the 

RNA-binding protein p54 stimulates Top1 relaxing activity (Straub et al., 1998). In Drosophila, 

Top1 associates with and phosphorylates the SR protein B52 (Juge et al., 2010). This interaction is 

important to target Top1 to RNAPII-active chromatin loci. Furthermore, a proteomic analysis of 

Top1-containing complexes reveals that 10 out of the 36 proteins identified as Top1 partners are 

involved in RNA splicing (Czubaty et al., 2005).  

- Suppression of transcription-associated replication stress: 

A function of Top1 in mammalian cells, which is dependent on both its nicking-closing activity and 

its kinase activity, is to suppress the transcription-associated replication stress in an ASF/SF2-

dependent manner (Tuduri et al., 2009). Top1 and mRNPs biogenesis avoid interference between 

replication and transcription and the formation of R-loop-mediated genome instability in S-phase 

(Tuduri et al., 2009). 

 

I.3.3 Roles of Top1 in DNA damage signalling/repair  

 

As Top1 can be trapped by a number of DNA modifications (see section I.4.2), it has been 

speculated that Top1 could play a role in DNA damage signalling and/or repair in response to DNA 

lesions. For instance, ultraviolet (UV) -induced DNA damage stimulates Top1cc formation in vivo 

(Subramanian et al., 1998). The authors suggested that UV-induced Top1cc may result from (i) 

cyclobutane pyrimidine dimers (CPD) and photoproducts, which alter the DNA local conformation 

causing a misalignement of the 5’ broken end impeding the religation step or (ii) active recruitment 

of Top1 at DNA lesions. Two hypothesis, mutually not exclusive, have been proposed for the 

possible roles of trapped Top1 at DNA lesions (reviewed in (Leppard and Champoux, 2005; 

Pourquier and Lansiaux, 2011)):  
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1) Targeting repair proteins to DNA damage:  

Top1 may act as a “sensor” of DNA damage, which recruits repair proteins to damaged chromatin. 

Accordingly with this possibility, Mao et al. show Top1’s involvement in nucleotide-excision repair 

(NER) (Mao et al., 2000a). Indeed, the repair of UV lesions and the recruitment of the NER factor 

PCNA (proliferating cell nuclear antigen) are reduced in Top1 depleted cells. Another evidence 

suggesting a role of Top1cc in DNA repair is its ability to interact with DNA damage response 

proteins (DDR) such as p53 (Albor et al., 1998; Mao et al., 2000a; Smith and Grosovsky, 1999) and 

PARP1 (Poly [ADP-ribose] polymerase 1) (Czubaty et al., 2005; Drew and Plummer, 2009). In 

particular, the interaction of Top1 with p53 stimulates Top1 catalytic activity and Top1 recruitment 

at UV-induced lesions (Mao et al., 2000a). Finally, a recent report shows that the recruitment of 

Top1 at AR-regulated enhancers is kinetically accompanied by the recruitment of the MRN 

complex (Mre11-Rad50-Nbs1 complex, see section II.5.1.1) and ATR (ataxia telangiectasia and 

Rad3-related protein, see section II.3.2), followed by additional components of the DDR (Puc et al., 

2015). 

2) Induction of apoptosis:  

Top1 may promote apoptosis when DNA damage persists and cannot be repaired. Accordingly with 

this hypothesis, Top1 depletion reduces some apoptotic nuclear features and it has been suggested 

that Top1 might act as a nuclear effector of apoptosis (see section I.4.3). Furthermore, the 

association of Top1 trapped at UV-lesions with p53 might support a possible role for Top1 in the 

p53-dependent apoptosis in response to DNA damage (Mao et al., 2000a). 

 

I.4 Trapping of Top1 

 

Despite their frequency throughout the genome, in physiological conditions, Top1cc are extremely 

transient and almost undetectable. These complexes can be stabilized generally by 5’-OH DNA-end 

misalignment that prohibits religation. Top1cc can be stabilized by camptothecins and non-

campthotecins Top1 inhibitors (Pommier, 2006; Pommier, 2013), by DNA alterations (Pommier et 

al., 2006), by ribonucleotide misincorporation (Kim et al., 2011) and during apoptosis (Sordet and 

Solier, 2012). 

 

I.4.1 Trapping of Top1 by Top1 inhibitors 

 

Camptothecin and Camptothecin-like Top1 inhibitors 

Camptothecin (CPT) and CPT-like inhibitors block the religation step of the Top1 catalytical cycle. 
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More precisely, they inhibit the second transesterification reaction (Hsiang et al., 1985) (Figure 

6A). CPT is an alkaloid compound isolated from the bark of the Chinese tree Camptotheca 

acuminata in 1966 (Wall, 1966). CPT was tested clinically in the 1970s, showing anticancer 

activity and SSB induction that rapidly disappear as the drug is removed (Gottlieb et al., 1970; 

Horwitz et al., 1971; Kessel, 1971; Kessel et al., 1972; Muggia et al., 1972; Spataro and Kessel, 

1972). However, the severe side effects discouraged the clinical development. The discovery that 

Top1 is the cellular target of CPT came 10 years after (Eng et al., 1988; Hsiang et al., 1985; Nitiss 

and Wang, 1988) and led to the development of CPT derivatives. 

A key feature of CPT is that Top1 is its only cellular target (Pommier, 2006; Pommier et al., 2010): 

(i) only the natural 20-S enantiomer is active (Hsiang et al., 1989b; Jaxel et al., 1989), (ii) yeasts 

deleted for TOP1 (Top1Δ) are completely resistant to CPT (Eng et al., 1988; Nitiss and Wang, 

1988), (iii) cells selected for CPT resistance bear single point mutations in the TOP1 gene 

(Pommier et al., 1999), (iv) plants producing CPT harbour a point mutation in TOP1 gene 

(Sirikantaramas et al., 2008) that renders Top1 refractory to the drug (Fujimori et al., 1995). 

Chemically, CPT is a 5-ring heterocyclic containing a α-hydroxylactone within its E-ring (Figure 

6A). 

Mechanistically, CPT traps Top1cc by docking at the enzyme-DNA interface (Figure 7A). Hence, 

it represents a paradigm for “interfacial inhibitors” (Jaxel et al., 1991; Marchand et al., 2006). The 

formation of this ternary complex (DNA-CPT-Top1) was initially suggested by DNA-sequencing 

experiments (Capranico and Binaschi, 1998; Capranico et al., 1990; Jaxel et al., 1991; Pommier et 

al., 1991) and by the stereospecific nature of CPT activity. Then, it was confirmed by 

crystallographic data (Ioanoviciu et al., 2005; Staker et al., 2005; Staker et al., 2002). CPT binds 

simultaneously both to DNA by hydrophobic stacking interaction and to Top1 by three hydrogen 

bonds involving R364, D533 and N722 (Marchand et al., 2006). CPT traps only a subset of Top1cc, 

those with a thymine at the -1 position and a guanine at the +1 position (Jaxel et al., 1991). Another 

key feature of CPT is the reversible nature of its binding to Top1cc (Covey et al., 1989). 

Some of the characteristics that render CPT a powerful pharmacological tool are also the causes of 

its clinical limitations (Pommier, 2006; Pommier, 2013; Tomicic and Kaina): (i) long infusions as 

Top1cc are rapidly reverted upon drug removal, (ii) chemical instability due to its inactivation at 

physiological pH by lactone E-ring opening (Figure 6A), (iii) relatively low potency and despite its 

selectivity, CPT has to be applied at µM concentration, (iv) dose-limiting side effects because of the 

destruction of bone narrow progenitors, (v) cross-resistance in cells expressing the drug efflux 

membrane ABC transporters. 

Three water-soluble CPT derivatives are approved for clinical use: topotecan, irinotecan and 
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belotecan (in South Corea) (Figure 6A). Topotecan is approved for ovarian cancer and recurrent 

small cell lung cancer. Irinotecan, which is a prodrug converted to its active metabolite SN-38 by 

plasma and cellular carboxylesterases, is used in colon and rectal cancer. Both drugs are also used 

in glioblastomas, sarcomas and cancer of the cervix (Pommier, 2013).  

Different modifications of CPT and water-soluble CPT derivatives have been produced to improve 

solubility, clinical tolerability and allow oral administration (such as gimatecan, lurtotecan and 

exatecan). Two approaches have been used to overcome the chemicals instability of CPTs: the 

addition of a methylene group as in homocamptothecins (Lavergne et al., 1998) or the substitution 

of the E-ring with a five-member ring as S39625 (Takagi et al., 2007). 

 

 
Figure 6: Structures of some Top1 inhibitors. (A) Camptothecins. (B) Non-camptothecin Top1 inhibitors in clinical trials. 
Adapted from (Pommier, 2013). 

 

Non- Camptothecin Top1 inhibitors 

After the discovery that Top1 is the selective target of CPT, the search for Top1 inhibitors not based 

on the structure of CPT began. Screening of chemical library and natural products led to the 

discovery of various compounds (Meng et al., 2003). There are three classes of non-CPT Top1 

inhibitors (Teicher, 2008) (Figure 6B):  

- Indolocarbazoles: Edotecarin reached Phase III clinical trials but like other 

indolocarbazoles, it has been found unselective (Urasaki et al., 2001)  

- Phenanthridine derivatives: ARC-111 compound has been entered in Phase I clinical trials  

- Indenoisoquinoline derivatives: they are selective for Top1, chemically stable, they trap 

Top1cc at different sites of CPT, they are not substrate of ABC transporters and they show the same 

antiproliferative activity of CPT (Antony et al., 2007a; Antony et al., 2003; Antony et al., 2005; 

Tanizawa et al., 1994). Indotecan (LMP400) and indimitecan (LMP776) are in Phase I clinical 
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trials.  

 

Top1 catalytic inhibitors  

Unlike Top1 poisons, catalytic inhibitors do not trap the Top1cc. They interact with free enzyme or 

with DNA impeding Top1 to bind or cleave DNA (for review see (Bailly, 2000)) (Figure 7B). 

Those inhibitors are generally unselective and they need to be used at elevated concentration (> 1 

µM) (Pourquier and Lansiaux, 2011). Currently, there is no specific Top1 catalytic inhibitor known.  

 

Figure 7: Mechanism of action of CPTs and non-CPT Top1 inhibitors and Top1 catalytic inhibitors. (A) CPTs and non-CPTs 
inhibitors trap Top1cc by blocking DNA religation. (B) Top1 catalytic inhibitors block the binding and/or the cleavage of DNA by 
Top1. Adapted from (Pourquier and Lansiaux, 2011). 

 

I.4.2 Trapping of Top1 by DNA modifications 

 

Top1 may encounter damage and alternative structures of DNA with high frequency by virtue of its 

abundant and ubiquitous nature. Table 2 summarizes different lesions and DNA alterations from 

endogenous or exogenous sources that can trap Top1cc (reviewed in (Pommier et al., 2006; 

Pommier et al., 2014; Pourquier and Pommier, 2001)). Top1cc trapping is likely to be frequent and 

biologically important, in particular in neurons that are characterized by high oxidative metabolism 

and long transcripts (Huang et al., 2012; Powell et al., 2013). Spontaneous abasic sites have been 

estimated at a frequency of ≈ 104 per cell per day (Lindahl and Nyberg, 1972). The accumulation of 

Top1cc is generally associated to religation inhibition because of 5’-OH- end misalignment (see 

section I.2.3) but it can also be due to an enhancement of Top1 binding or of its cleavage reaction 

(Pommier et al., 2006). The localization of the DNA alteration is another parameter determining 

Top1 outcome (reviewed in (Pourquier and Pommier, 2001)). In general, single lesions at position 
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+1, +2 or +3 from the cleavage site lead to Top1cc accumulation whereas lesions at position -1, -2 

and -3 (and to lesser extent abasic sites at -4, -5 and -6) suppress Top1-mediated DNA cleavage.  

Moreover, DNA modifications can produce reversible or irreversible Top1cc. Irreversible Top1cc 

are constituted by a break on one or both strands in association with Top1 covalently bound to the 3’ 

DNA-end. These complexes are termed “suicide complexes”.   

Recently, different works investigated a special form of abortive Top1cc related to the RNA nicking 

activity of Top1 (Kim et al., 2011; Sparks and Burgers, 2015; Williams et al., 2013). This 

endoribonuclease activity has been at first described in vitro (Sekiguchi and Shuman, 1997) and it 

consists in the conversion of a ribonucleotide embedded in cellular DNA into a 2’-3’-cyclic 

phosphate nick by Top1 (Kim et al., 2011; Sparks and Burgers, 2015). This activity of Top1 could 

represent an alternative repair pathway to RNaseH2 for misincorporated ribonucleotides during 

DNA replication. However, it can also promote genomic instability. The endoribonuclease activity 

of Top1 has been linked to Top1-mediated mutations in yeast by initiating short base deletions and 

by creating nicks or cyclic phosphate intermediates (Kim et al., 2011; Sparks and Burgers, 2015).  

 
Table 2: Endogenous and exogenous factors able to produce Top1cc (Pommier et al., 2006) 

Type of DNA modification Mechanism(a) Reversibility(b) References 

Endogenous factors 

Single base mismatches T
(c) 

r
(f)

 
(Pourquier and Pommier, 2001; Pourquier 
et al., 1997b) 

Mismatched loops  T ir
(g)

 (Pourquier et al., 1997b)  

Abasic sites  T Ir (Pourquier et al., 1997b) 

8-oxoguanosine B
(d)

 R (Lesher et al., 2002) 

5-hydroxycytosine ? R (Lesher et al., 2002) 

SSB T Ir 
(Pourquier et al., 1997a; Wang et al., 
1998) 

Cytosine methylation F
(e)

+T R (Leteurtre et al., 1994) 

Triple helix formation F+T R (Antony et al., 2004a) 

Apoptotic chromatin fragmentation B+T Ir 
(Sordet et al., 2003; Sordet et al., 2004a; 
Sordet et al., 2004b; Sordet et al., 2004c) 

Exogenous factors 

UV lesions ? ? 
(Lanza et al., 1996; Subramanian et al., 
1998) 

IR lesions T Ir (Pourquier et al., 1997a) 

O6-methylguanine T R (Pourquier et al., 2001) 

O6-dA-benzo[a]pyrene adducts T R (Pommier et al., 2000b) 

O6-dG-benzo[a]pyrene adducts F Ir 
(Pommier et al., 2000a) (Pommier et al., 
2002)  

O6-dG-benzo[c]phenantrhrene adducts T R (Pommier et al., 2002)  

N6-Ethanoadenine T R (Pourquier et al., 1998) 

N2-dG-ethyl adducts T R (Antony et al., 2004b) 

N2-dG-crotonaldehyde adducts T Ir (Dexheimer et al., 2008) 
(a)

Mechanism for Top1cc accumulation:
 (c)

T, Inhibition of religation; 
(d)

B, enhancement of binding; 
(e)

F, enhancement of cleavage. 
(b)

Reversibility of Top1cc: 
(f)

r, reversible; 
(f)

ir, irreversible. 
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I.4.3 Trapping of Top1 during apoptosis 

 

Top1cc are also stabilized in cells undergoing apoptosis. These complexes, referred to as “apoptotic 

Top1cc”, have been described in different mammalian cell lines exposed to various apoptotic-

inducing agents that do not have direct effect on Top1 (Table 3) (Ganguly et al., 2007; Rockstroh et 

al., 2007; Soe et al., 2004; Sordet et al., 2006; Sordet et al., 2008a; Sordet et al., 2004a; Sordet et al., 

2004c). Apoptotic-Top1ccs are found on the genome with an average of approximately 1/100 kbp 

in early phases and 1/10 kbp in late phases of apoptosis (Rockstroh et al., 2007; Sordet et al., 

2008a). 

 

Table 3: Agents known to induce apoptotic Top1cc (Sordet and Solier, 2012) 

Agents Cellular target(s) References 

Etoposide  
Doxorubicin   

m-AMSA 
Stabilization of Top2 cleavage complex (Sordet et al., 2006) 

Vinblatin  
Taxol  

Colcemid 
Insertion at the interface of the tubulin heterodimer 

(Sordet et al., 2006) 
(Rockstroh et al., 2007) 

TRAIL Activates the plasma memebran receptors DR4 DR5 
(Rockstroh et al., 2007) 

(Sordet et al., 2008a) 
Fas ligand Activates the plasma membrane receptor Fas 

TNF-α Activates the plasma membrane receptor TNFR1 

Antimycin 
 BH3I-2' 

BH3 mimetics that bind to and inhibit the antiapoptotic 
effect of Bcl-xL at the mitochondria 

(Sordet et al., 2008a) 

Arsenic trioxide Induces the intracellular accumulation of ROS (Sordet et al., 2004c) 

Staurosporine Inhibitor of protein kinases: Chk1, Chk2, PDK1, PKC 
(Sordet et al., 2004a) 

(Ganguly et al., 2007; Sen et 
al., 2007) 

UV radiation Production of pyrimidine dimers, 4,6-photoproducts and 
oxidative DNA lesions 

(Soe et al., 2004) 

 

In the current model, the common mechanism to trap Top1cc during apoptosis is the ROS (reactive 

oxygen species)-dependent formation of oxidative DNA lesions (Sordet et al., 2006; Sordet et al., 

2008a; Sordet et al., 2004a; Sordet et al., 2004b). Most apoptotic stimuli activate the apoptotic 

mitochondrial pathway and subsequently caspase-3, both responsible for ROS intracellular 

accumulation. Along with its contribution to ROS production, caspase-3 also cleaves Top1 

generating an 80 kDa-truncated form that is still able to form Top1cc (Samejima et al., 1999) and 

rather it is the preferred form producing apoptotic-Top1cc (Sordet et al., 2008a). 

Several studies, in particular experiments performed in cells depleted for Top1 (by siRNA or 

shRNA), show that Top1 participates in the execution of apoptosis by contributing to the apoptotic-

associated nuclear modifications, such as nuclear fission, apoptotic body release and chromatin 
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condensation (Ganguly et al., 2007; Sordet et al., 2008a; Sordet et al., 2004a; Sordet et al., 2004c). 

Currently it is not clear if the role of Top1 in apoptosis is dependent or not on its catalytic activity.  

Taken together these finding propose a role for Top1 in the apoptotic program. It remains to be 

elucidated if Top1 participates to apoptosis like an apoptotic endonuclease, if it functions 

amplifying the apoptotic process or if it contributes to the proper recognition and elimination of 

apoptotic cells (for review see (Sordet et al., 2003; Sordet et al., 2004b; Sordet and Solier, 2012)). 

 

I.5 Cellular consequences of CPT-mediated trapping of Top1cc 

 

The cellular consequences of CPT-mediated trapping of Top1 are related to (i) the induction of 

protein-linked DNA nicks (Covey et al., 1989) and (ii) the inhibition of Top1 activity and 

topological stress (Duann et al., 1999; Koster et al., 2007). 

CPT-stabilized Top1cc are normally rapidly reversed, as CPT does not cause directly a 

misalignment of the 5’-OH DNA-end. Early experiments demonstrated that short exposures (less 

than 60 minutes in cell culture) to CPT are relatively non-cytotoxic (Holm et al., 1989; Horwitz et 

al., 1971; O'Connor et al., 1991). The cytotoxicity of CPT is not the direct consequence of Top1 

inhibition, it is rather associated to the conversion of the reversible Top1cc into irreversible 

complexes and DNA damage after processing by replication and transcription machineries 

(Pommier, 2006). These observations are consistent with a time-dependent production of Top1-

suicide complexes and cytotoxicity. The probability for forming irreversible Top1cc is enhanced by 

CPT treatment because Top1 religation activity is slowed down.  

The relative contribution of DNA replication and transcription depends on CPT concentration, cell 

type and proliferation status. In highly proliferative cancer cells, replication-induced DNA damage 

(notably DNA double-strand breaks, DSBs, see section I.5.1) is the main responsible for 

cytotoxicity, which is achieved at low CPT doses (Holm et al., 1989). In contrast, transcription 

contributes to cytotoxicity at high doses of CPT in slowly and non-proliferating cells (Hsiang et al., 

1989b; Huang et al., 2010). Exceptions are given by non-dividing neurons and lymphocytes that can 

be killed in a transcription-dependent manner at pharmacological concentrations (Morris and Geller, 

1996; Stefanis et al., 1999). 
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I.5.1 Replicational consequences of CPT-mediated trapping of Top1cc 

 

The two main replicational consequences of CPT-mediated stabilization of Top1cc are (i) inhibition 

of DNA synthesis and (ii) production of replication-coupled DSBs (RC-DSBs). 

After CPT treatment, inhibition of DNA synthesis is intense (≥80%), rapid (within minutes) and 

persistent (up to 8h) after drug removal (Shao et al., 1999). The mechanisms leading to DNA 

duplication arrest may include: (i) collision between replication machinery and Top1cc that directly 

blocks fork progression (Snapka, 1986; Strumberg et al., 2000; Tsao et al., 1993), (ii) inhibition of 

thymidine kinase (Voeller et al., 2000) and (iii) S-phase checkpoint activation (Shao et al., 1999) 

(Seiler et al., 2007).  

Top1cc can be converted in RC-DSBs by its collision with the ongoing replication forks (Pommier, 

2006). Such RC-DSBs are the primary cytotoxic mechanism of Top1 inhibitors in proliferating cells. 

Indeed, cells tend to be immune to CPT when they are outside of S-phases or when replication is 

arrested by aphidicolin treatment (Borovitskaya and D'Arpa, 1998; Horwitz and Horwitz, 1973). At 

least two mechanisms have been described for the production of RC-DSBs by Top1cc: (i) the 

“replication run-off” (Hsiang et al., 1989a; Strumberg et al., 2000) and (ii) the Mus81-Eme1 

cleavage (Regairaz et al., 2011) (Figure 8). 

Analysis of the broken ends by ligation-mediated PCR in the ribosomal RNA gene cluster in 

mammalian cells shows the extension of the leading strand up to the last nucleotide at the 5’ end of 

the Top1cc resulting in 5’ phosphorylated blunt-ended DSBs (also called DNA double-strands ends, 

DSEs) by “replication run-off” (Strumberg et al., 2000) (Figure 8A). Since the 5’-OH terminus 

enables the reversibility of the Top1cc, the 5’ phosphorylation should prevent religation by Top1 

itself (Strumberg et al., 2000).  

RC-DSBs can also be mediated by the 3’ flap endonuclease Mus81-Eme1 (Regairaz et al., 2011). 

Mus81-deficient cells have a reduced level of CPT-induced DSBs. Regairaz and coworkers 

proposed that DSEs could be the result of the Mus81-Eme1-dependent cleavage of replication fork 

stalled by trapped Top1cc. Although Mus81-Eme1-cleaveage leads to DSBs production, the 

primary function of this pathway is to dissipate the excess of positive supercoils resulting from 

CPT-induced Top1 inhibition and to promote replication fork recovery and cell survival. Indeed, 

Mus81-deficient cells are hypersensitive to CPT (Figure 8B). 

CPT-induced RC-DSBs initiate a pleiotropic DDR with checkpoint activation, DNA repair and 

apoptosis (reviewed in (Pommier et al., 2006; Sordet et al., 2003; Tomicic and Kaina)). This DDR 

includes the activation of the ATR-Chk1 (ataxia telangiectasia Rad3-related protein - checkpoint 

Kinase 1), ATM-Chk2-p53 (ataxia telangiectasia mutated - checkpoint kinase 2 - tumour protein 
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P53) pathways, the DNA-dependent protein kinase (DNA-PK) and the phosphorylation of H2AX 

(γH2AX) and RPA (replication protein A) (see Chapter II). Defects in these pathways sensitize 

cancer cells to Top1-mediated DNA damage (reviewed in (Pommier et al., 2006; Tomicic and 

Kaina)). Although both Chk1 and Chk2 are rapidly activated upon exposure to low doses of CPTs, 

it seems that the ATR-Chk1 axis is the predominant pathway in response to RC-DSBs (Furuta et al., 

2003; Huang et al., 2010), which are the predominant lesions in replicating cells treated with 

pharmacological doses of CPT. ATR-Chk1 activation induces Cdc25A degradation and consequent 

S-phase delay and G2/M arrest (Xiao et al., 2003).  

 

	  
Figure 8: Mechanisms of production of replication coupled DSBs (RC-DSBs) by Top1cc. (A) Replication run off (Strumberg et 
al., 2000). (B) Mus81-Eme1 cleavage of the stalled replication fork (Regairaz et al., 2011). Adapted from (Regairaz et al., 2011). 

 

I.5.2 Transcriptional consequences of CPT-mediated trapping of Top1cc 

 

Since Top1 is enriched at transcribed regions (Gilmour et al., 1986; Khobta et al., 2006; Kroeger 

and Rowe, 1992; Stewart et al., 1990; Zhang et al., 1988) where it exerts several functions that are 

both dependent- and independent- of its catalytic activity (see section I.3.1 and I.3.2), Top1 

poisoning may occur primarily in actively transcribed regions and can uncouple transcriptional 

regulation processes leading to multiple cellular consequences. 

 

I.5.2.1 General transcription downregulation and alteration of gene expression patterns 

 

An immediate effect of CPT in cultured cells is the broad and general inhibition of both 

nucleoplasmic (mRNA) and nucleolar (rRNA) transcription elongation (Alagoz et al., 2013; Desai 
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et al., 2003; Horwitz et al., 1971; Kann and Kohn, 1972; Lin et al., 2013). In vitro studies suggested 

that this inhibition can result from the physical blockage of the RNAPII elongation complexes by 

Top1cc (Bendixen et al., 1990) and/or by the accumulation of DNA supercoils by ongoing 

transcription (Darzacq et al., 2007; Garg et al., 1987). 3(H)uridine incorporation measurements 

show that transcription is reduced to 20%, within 10 minutes of CPT treatment (Desai et al., 2003; 

Horwitz et al., 1971).  

Although the overall level of transcripts decreases quickly after CPT treatment, topoisomerase 

inhibition differently affects the gene expression. One of the first evidences of the alteration of gene 

expression patterns is given by the study of Collins et al. (Collins et al., 2001). The authors showed 

that CPT enhances the expression of C-FOS, downregulates C-MYC and does not impact the 

transcription of the HSP70 and GADPH genes. Later works have allowed the measurements of 

global changes in gene expression patterns induced by CPT-stabilized Top1cc by using microarray 

technology (Lotito et al., 2009; Solier et al., 2013; Zhou et al., 2002). Zhou et al. highlighted the 

different changes in gene expression profiles associated with high and low concentrations of CPT 

(Zhou et al., 2002). Low CPT concentrations are associated with the downregulation of cell cycle-

related genes whereas high CPT concentrations induce up-regulation of p53-related stress genes 

(Zhou et al., 2002). Lotito and coworkers analysed the CPT-induced alteration of gene expression in 

yeast (Lotito et al., 2009). 73 genes, mainly related to Gene Ontology (GO) components such as 

vesicle-mediated transport, organelle and cell wall organisation and protein modifications, were 

downregulated by CPT. The authors also reported the up-regulation of 22 genes mainly related to 

cell cycle, mitosis and DNA replication which are regulated by the transcription factors Mbp1 and 

Swi4 (Lotito et al., 2009). In human cells, the genome-wide transcriptional response to CPT has 

been recently characterized by two independent groups employing different technologies. The 

group of Pommier performed the genome-wide analysis of CPT-treated cells at exon resolution by 

using the exon array platform (Solier et al., 2013). They found that in response to CPT, 20% of the 

analysed genes are downregulated while 5% are upregulated (by at least 2-fold). CPT-induced 

Top1cc preferentially downregulate genes highly expressed at basal level and upregulate lowly 

expressed genes. The probability for a gene to be downregulated increases with the increasing of 

both the gene length and the exons’ number. Interestingly, downregulation of a large number of 

genes is mediated by the upregulation of at least one specific miRNA, miR-142-3p, in response to 

CPT. Among the most significant GO category for the downregulated genes, the authors found the 

ubiquitin- and RNA degradation-related pathways genes (Solier et al., 2013). The importance of 

gene length was confirmed by Ljungman’s group employing the Bru-Seq method, which consists in 

the metabolic labelling of RNA using bromouridine (Bru) followed by specific isolation of Bru-
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labeled nascent RNA and genome-wide analysis (Veloso et al., 2013). The authors reported also 

that CPT affects transcriptional termination by stimulating transcriptional read-through past the 3’ 

end of small genes and it enhances the expression of eRNA from certain enhancer elements. In 

addition, this work highlights the effect of CPT in shifting the balance of apoptosis-regulated genes 

by reducing the relative transcription rate of large anti-apoptotic genes and enhancing the 

expression of a set of smaller pro-apoptotic genes (Veloso et al., 2013).  

Another recent RNA-Seq analysis has been performed to survey changes in gene expression in mice 

cortical neurons after a 3-day topotecan treatment (King et al., 2013). This study shows that, like in 

cancer cells (Solier et al., 2013; Veloso et al., 2013), topotecan reduces the transcription of long 

genes (>200 kb) in post mitotic neurons by impairing transcription elongation (King et al., 2013). 

Importantly, the topotecan-downregulated genes are related to GO components of synapses, cell 

adhesion and neurotransmission and a number of these genes are associated with autism (King et al., 

2013). The transcriptional downregulation of these genes is accompanied by the depletion of 

multiple synaptic proteins and the suppression of the excitatory and inhibitory synaptic activity in 

topotecan-treated neurons (Mabb et al., 2014). These studies highlight the role of Top1 in post-

mitotic neurons in maintaining proper synaptic function. For instance, a de novo Top1 mutation has 

been found in individuals with autism spectrum disorder (Iossifov et al., 2012; Neale et al., 2012). 

By contrast to replication, transcription inhibition recovers rapidly. The transcriptional recovery 

starts after 15 min of CPT exposure and continues gradually during the next 4h (Desai et al., 2003). 

Following removal of CPT, the rate of RNA synthesis reaches the 90% of the control sample within 

minutes (Horwitz et al., 1971). Indeed, transcription spreads as a wave in a 5’ to 3’ direction with 

no recovery of transcription apparent from RNAPII stalled in the body of genes (Ljungman and 

Hanawalt, 1996; Veloso et al., 2013). The inability of cells to resume elongation from within the 

body of genes suggested that blocked RNAPII are discarded rather than recycled.  

However, transcription recovers with a reduced elongation rate (around 1.1-1.3 kb/min after CPT 

removal compared to 2 kb/min in untreated cells). It is possible that this reduced elongation rate is 

due to a requirement for repair of Top1cc-associated DNA damage to take place before 

transcription can resume (see section I.5.2.7) (Veloso et al., 2013). 

Importantly, the recovery of RNA synthesis depends on Top1 degradation (see section I.5.2.4) 

(Alagoz et al., 2013; Desai et al., 2003). The requirement of transcription-coupled nucleotide 

excision repair (TCR) for transcription resumption is controversial. Some studies have shown that 

Cockayne syndrome (CS) cells that are deficient in TCR (CSB factor) are hypersensitive to CPT 

and have defects in RNA synthesis recovery (Desai et al., 2003; Squires et al., 1993), while others 

studies have found no defects (Sakai et al., 2012; Veloso et al., 2013). 
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I.5.2.2 Effects on RNA Polymerase II  

 

CPT-induced Top1cc have immediate and specific effects on RNAPII: 

- Hyperphosphorylation of RNAPII: 

Within few minutes, CPT triggers the hyperphosphorylation of the largest subunit (Rpb1) of 

RNAPII in both primary and transformed cancer cells (Amente et al., 2009; Desai et al., 2003; 

Dutertre et al., 2010; Khobta et al., 2006; Sordet et al., 2008b). Indeed, the conserved heptapeptide 

repeats of the carboxy-terminal domain (CTD) of Rpb1 (YSPTSPD) is 

phosphorylated/dephosphorylated during the transcription cycle and the hyperphosphorylated form 

of the RNAPII corresponds to the transcriptionally active polymerase (Sims et al., 2004). RNAPII 

phosphorylated at serine 5 (S5) peaks early in the transcription cycle and decreases towards the 3’ 

end of the gene correlating with transcription initiation and early elongation (promoter clearance). 

By contrast, phosphorylation at serine 2 (S2) predominates in the body and toward the 3’ end of the 

gene correlating with productive elongation (Sims et al., 2004). 

CPT produces selectively hyperphosphorylation on the S5 that is mediated by Cdk7, a component 

of the transcription factor TFIIH (Sordet et al., 2008b). Although Cdk9 mainly induces S2 

phosphorylation, the implication of Cdk9 in CPT-induced S5 hyperphosphorylation cannot be 

completely excluded. Indeed, Cdk9 can phosphorylate RNAPII at S5 (Ramanathan et al., 2001) and 

CPT triggers the activation of the P-TEFb complex containing the Cdk9 kinase activity (Amente et 

al., 2009). The hyperphosphorylation of Rpb1 on S5 is consistent with others studies proposing that 

CPT-induced Top1cc block elongation and stimulate RNAPII transcription initiation (Khobta et al., 

2006; Ljungman and Hanawalt, 1996). However, the study of Dutertre et al. reports that 1 h of CPT 

induces also hyperphosphorylation of RNAPII on S2 and that this form of hyperphosphorylated 

RNAPII is slightly enriched at the 3’ end of the MDM2 (mouse double minute 2) gene (Dutertre et 

al., 2010). 

- Redistribution of chromatin-bound RNAPII: 

A second immediate effect of CPT on RNAPII is the redistribution of chromatin-bound RNAPII 

along transcribed genes in human cells in a manner dependent on Cdk activity (Baranello et al., 

2010; Khobta et al., 2006). The Capranico’s group reported that RNAPII levels are reduced at 

promoter pause site and are transiently increased at internal exons in response to CPT (Capranico et 

al., 2007; Khobta et al., 2006). The authors provided evidences that CPT-induced Top1cc trigger 

the escape of RNAPII from promoter-proximal pause site of the HIF-1α (hypoxia-inducible factor 

1α) gene and suggested a new role for Top1 in regulating RNAPII pausing (Baranello et al., 2010; 

Capranico et al., 2010). Before starting the productive elongation, RNAPII synthesizes a short RNA 
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and pauses partially at 20-50 bases from TSS. This pausing step functions as checkpoint for 

elongation and assures the recruitment of the capping and splicing factors to promote RNA 

processing (Sims et al., 2004). The proposed model is that Top1 facilitates the polymerase pausing 

thus; Top1 inhibition by CPT activates PTEF-b, which in turns phosphorylates the CTD of RNAPII 

favouring pausing escape (Baranello et al., 2010; Capranico et al., 2010). Others studies are 

consistent with this model. 3(H)uridine pulse labelling and nuclear run-on measurements of the 

transcription rate in the rodent DHFR (dihydrofolate reductase) gene and genome-wide Bru-Seq 

data in human cells show that CPT enhances transcription signal from the 5’ ends of the genes 

while reduces transcription signal at promoter-distal sequences (Ljungman and Hanawalt, 1996; 

Veloso et al., 2013). A kinetic analysis of RNAPII transcription at a gene-array locus reveals that 

RNAPII often pauses during elongation. CPT increases the efficiency of intragenic pausing without 

affecting the pausing time that results in a reduction of the elongation rate (to ¼ of the normal rate) 

but not in a complete inhibition of elongation (Darzacq et al., 2007). The authors explained the 

effect of CPT by the slower DNA unwinding related to the inhibition of Top1 activity rather than to 

the physical block of RNAPII by Top1cc (the collision model).  

- RNAPII degradation: 

Another effect of CPT on RNAPII that has been described by Desai et al. is the proteasomal 

degradation of Rpb1 (Desai et al., 2003). UV light, cisplatin, ecteinascidin 743 (Et743) and 

hydrogen peroxide also induce RNAPII degradation (Aune et al., 2008; Inukai et al., 2004; Jung 

and Lippard, 2006; Somesh et al., 2005) suggesting that, in a similar manner, Top1cc-induced 

stalled RNAPII complexes are targeted to degradation. However, CPT induces 

hyperphosphorylation of CTD at S5 (Sordet et al., 2008b) and this phosphorylation, but not 

phosphorylation on S2, has been described to protect RNAPII from ubiquitylation in response to 

UV (Somesh et al., 2005). Furthermore, compared to RNAPII degradation-induced by UV, Et743 

or hydrogen peroxide that is a rapid and massive event, CPT-induced RNAPII degradation is a 

relatively late (6h) and modest event. Stalled RNAPII may be recognized and ubiquitinated 

differentially depending on the types of DNA lesions. Hence, further studies are needed to 

characterize mechanistically the fate of RNAPII stalled by transcription-blocking Top1cc. 

 

I.5.2.3 Alteration of mRNA splicing  

 

Several studies have involved Top1 in splicing because of its catalytic activity and its ability to 

interact with and phosphorylate splicing factors (see section I.3.2). Thus, it is not surprising that 

CPT profoundly affects splicing events. CPT blocks the SR-kinase activity of Top1 (Rossi et al., 
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1996). However, two different studies suggest that the splicing effects of CPT are unrelated to 

defects of Top1 relaxation and/or kinase activity (Dutertre et al., 2010; Solier et al., 2010).   

Different studies have reported that CPT alters the splicing of single genes resulting in alternative 

splicing (Baranello et al., 2010; Dujardin et al., 2014; Dutertre et al., 2010; Eisenreich et al., 2009; 

Listerman et al., 2006; Shkreta et al., 2008; Solier et al., 2010; Solier et al., 2008; Solier et al., 

2004). Alternative splicing is the regulation of splice-site selection and it seems to occur in 50%-

70% of human genes resulting in the transcriptome diversity produced by a limited number of genes 

(Stamm et al., 2005).   

Listerman et al. studied the impact of CPT in the Fos pre-mRNA (Listerman et al., 2006). CPT 

enhances splicing factors accumulation on the FOS gene but not on intronless genes and this 

accumulation correlates with higher levels of cotranscriptional splicing. The authors suggested that 

CPT, by slowing down RNAPII elongation, allows more time for the splicing factors to bind to the 

nascent RNA. The decrease in RNAPII elongation rate by CPT has also been described to promote 

the skipping of exon 9 (E9) of the CFTR (cystic fibrosis transmembrane conductance regulator) 

gene by opening a time window to the negative splicing factor ETR-3 to be recruited (Dujardin et 

al., 2014). Interestingly, this study shows that the changes in the E9 splicing induced by CPT are 

not caused by an alteration of the abundance or phosphorylation of the SR proteins, likely excluding 

an effect dependent on the kinase activity of Top1 (Dujardin et al., 2014). Another example of 

alternative splicing driven by CPT is given by MDM2 (Dutertre et al., 2010). In unstressed cells, 

MDM2 expression is positively regulated by p53 and then, MDM2 negatively regulates p53 by 

suppressing p53-transcriptional activity (Oliner et al., 1993) or by targeting p53 for proteasomal 

degradation (Haupt et al., 1997). CPT induces cotranscriptional skipping of several MDM2 exons 

leading to numerous alternative transcripts that do not give rise to stable protein isoforms. However, 

CPT removal suppresses alternatively spliced variants of MDM2 and the protein is expressed again. 

In response to CPT, p53 is activated (Ljungman and Lane, 2004; Ljungman et al., 2001). Hence, the 

CPT-induced MDM2 exon skipping may be a mechanism to prevent the accumulation of the 

MDM2 protein thus avoiding p53 degradation (Dutertre et al., 2010). 

In addition to the study of the effects of CPT in the alternative splicing of some specific genes, two 

reports analyse the consequences of CPT on splicing at global genome level in human cells 

(Dutertre et al., 2010; Solier et al., 2010). Both studies agree that CPT is able to induce both exon 

skipping and exon inclusion. Solier et al. describe a time-dependent effect of splicing in response to 

CPT (Solier et al., 2010). While the appearance of novel exons is an early (1 h, 2 h and 4 h) and a 

late event (15 h and 20 h), the exons skipping is mostly a late event. Splice events occur all along 

the transcripts and tend to augment with the length of the transcript (Solier et al., 2010). Genes that 



	   	   	   35 
	  

are downregulated in response to CPT have a higher probability to be spliced compared to 

unchanged and upregulated genes (Solier et al., 2013). Three genes categories are more affected by 

the CPT-induced alternative splicing: genes encoding splicing factors, genes related to mitosis and 

genes related to methylation (Solier et al., 2010). These data open the possibility that the splicing 

alterations of several genes in response to Top1cc could be due to the effect of CPT on genes 

encoding splicing factors. Solier et al. proposed that CPT-induced RNAPII hyperphosphorylation 

could trigger alternative splicing by affecting RNAPII pausing and splicing site selection and/or 

modulating the interaction with splicing factors. Accordingly to this hypothesis, DRB (5,6-dichloro-

1-β-D-ribofuranosylbenzimidazole), which inhibits Cdk9 and RNAPII phosphorylation, prevented 

CPT-mediated alternative splicing of RBM8A (RNA binding motif protein 8) and caspase-2 genes 

(Solier et al., 2010). By contrast, Dutertre et al. found that DRB does not suppress CPT-induced 

alternative MDM2 transcripts indicating that RNAPII phosphorylation-independent mechanisms 

also exist in response to CPT (Dutertre et al., 2010). The authors suggested that exon skipping 

induced by CPT could be caused by the de-coupling of transcription and splicing. In particular, they 

showed that CPT disrupts the interaction between the transcriptional coregulator EWS and the 

spliceosome-associated factor YB-1. The depletion of those factors reproduces the exons skipping 

induced by CPT in eight genes, including MDM2 (Dutertre et al., 2010).   

In addition to these two mechanisms, a recent paper shows that CPT treatment causes selective 

chromatin displacement of late-stage spliceosomes in non-replicating cells (Tresini et al., 2015). 

This spliceosome displacement may be another mechanism by which CPT promotes alternative 

splicing. 

 

I.5.2.4 Top1 downregulation 

 

Top1 downregulation corresponds to the reduction of Top1 cellular content during prolonged CPT 

treatment and it has been described for the first time by Beidler and Cheng in 1995 (Beidler and 

Cheng, 1995). The protein level of Top1 is strongly reduced in a time-dependent manner in less 

than 6 h of CPT treatment (Desai et al., 2003) with Top1 half-life dropping from 10-16 h down to 1-

2 h (Desai et al., 1997). CPT-induced Top1 downregulation correlates with Top1cc formation 

(Beidler and Cheng, 1995; Desai et al., 2003) suggesting that Top1 trapping triggers Top1 

downregulation (Desai et al., 2003). 

Top1 downregulation is part of the transcriptional response to CPT since it is selectively dependent 

on transcription and independent on replication. Indeed, it is suppressed by the transcription 

inhibitors DRB and α-amanitin but not by the replication inhibitor aphidicolin (Beidler and Cheng, 
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1995; Desai et al., 1997; Desai et al., 2003; Huang et al., 2010; Lin et al., 2008; Sakasai et al., 

2010a; Sordet et al., 2008b). Similarly, cycloheximide, that inhibits protein synthesis, does not 

prevent CPT-induced Top1 downregulation excluding the involvement of a reduced de novo 

synthesis (Desai et al., 1997). Top1 downregulation appears to be specific of CPT-induced Top1cc, 

since UV-trapped Top1 is not downregulated (Subramanian et al., 1998). 

The Liu’s laboratory has shown that CPT-induced transcriptional Top1 downregulation is the result 

of Top1 K48-polyubiquitylation and degradation by the 26S proteasome (Ban et al., 2013; Desai et 

al., 2001; Desai et al., 1997; Desai et al., 2003; Lin et al., 2008). Several evidences support this 

conclusion: 

1- Proteasome inhibitors (MG132, lactacystin) prevent Top1 downregulation and Top1cc 

decreasing after prolonged CPT exposure (Desai et al., 2001; Desai et al., 1997; Desai et al., 2003; 

Huang et al., 2010; Lin et al., 2008; Sordet et al., 2008b). 

2- siRNA against POMP (proteasome maturation protein), a factor which promotes the 20S 

proteasome assembly (Fricke et al., 2007), abolish Top1 downregulation (Ban et al., 2013; Lin et al., 

2009). 

3- siRNA against ATPases and non ATPases 19S components hinder Top1 degradation  (Ban 

et al., 2013). 

4- CPT induces the formation of Top1-ubiquitin conjugates (Ban et al., 2013; Desai et al., 

2001; Katyal et al., 2014; Kerzendorfer et al., 2010; Lin et al., 2008; Lin et al., 2009; Zhang et al., 

2004) in a transcription-dependent manner (Lin et al., 2008). 

5- The ubiquitin isopeptidase inhibitor G5, which depletes the free ubiquitin pool (Aleo et al., 

2006), blocks Top1 downregulation (Lin et al., 2008). 

6- Top1 downregulation is inhibited in the temperature-sensitive E1 activating enzyme mutant 

cell line ts85 (Finley et al., 1984) at the restrictive temperature that triggers UBA1 (ubiquitin-like 

modifier activating enzyme 1) degradation (Ban et al., 2013; Desai et al., 1997). 

7- Transfection of cells with the dominant-negative mutant, K48R-Ub (K48 is mutated to R on 

HA-Ub) but neither K29R-Ub nor K63R-Ub, suppresses Top1 downregulation (Ban et al., 2013; 

Lin et al., 2008). 

More recently, the same laboratory has reported a new ubiquitin-independent mechanism for the 

degradation of etoposide-induced Top2β-DNA cleavage complexes colliding with elongating 

RNAPII (Ban et al., 2013). Degradation of Top2β roadblocks requires only 19S ATPases and 20S 

proteasome (Ban et al., 2013). Based on the new findings on Top2β and on previous studies 

demonstrating that 19S ATPases are associated with elongating RNAPII (Ferdous et al., 2001; 

Ferdous et al., 2002; Gillette et al., 2004; Gonzalez et al., 2002; Muratani and Tansey, 2003), the 
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authors speculated about a possible new model for Top1 degradation depending on Top1cc polarity 

(Ban et al., 2013) (Figure 9): (i) Top1cc in the non-template strand could be unfolded by 19S 

ATPases leading elongating RNAPII to read-through Top1cc and Top1 to be ubiquitinated or (ii) 

Top1cc in the template strand could arrest elongating RNAPII leading to Top1 degradation by the 

same ubiquitin-independent pathway as for Top2β. Even if authors suggested that ubiquitin-

dependency may simply reflect a higher rate of ubiquitin-dependent degradation of Top1; currently 

there is no evidence supporting a possible ubiquitin-independent degradation pathway for Top1cc.   

 

	  
Figure 9: Proposed model for CPT-induced Top1 degradation based on Top1cc polarity. Top1cc on the non-template strand are 
proposed to be degraded by an ubiquitin-dependent mechanism whereas Top1cc on the template strand could be degraded by an 
ubiquitin-independent mechanism similarly to Top2β degradation in response to etoposide (Ban et al., 2013). 

 

Top1 ubiquitination  

The ubiquitination cascade is carried out by the sequential action of three enzymes: E1 (ubiquitin-

activating enzyme), E2 ubiquitin-conjugating enzyme and E3 ubiquitin-ligase (see section II.5.3.4 

and Figure 29). Defects in Top1 downregulation in ts85 cells treated with CPT (Ban et al., 2013; 

Desai et al., 1997) suggest that the E1 enzyme responsible for Top1 ubiquitylation is UBA1 as in 

these cells, UBA1 is rapidly degraded at restrictive temperature (Baugh et al., 2009). Four E3 

ligases have been described as potential E3 candidates for Top1 ubiquitylation: Cullin 3 (Cul3) (Lin 

et al., 2009; Zhang et al., 2004), BRCA1 (breast cancer 1) (Sordet et al., 2008b), Cullin 4A (Cul4A) 

and Cullin 4B (Cul4B) (Kerzendorfer et al., 2010). Depletion of one of these E3’s activity is able to 

prevent, at least partially, Top1 downregulation in response to CPT. Modulating the protein level of 
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Cul3, Cul4A or Cul4B by overexpression or depletion is able to reduce or enhance Top1cc and 

Top1 ubiquitin-conjugates, respectively (Kerzendorfer et al., 2010; Zhang et al., 2004). 

Interestingly, Cul4B is one of the most commonly mutated genes in X-linked mental retardation 

(MR) patients (Tarpey et al., 2007). Those patients present some clinical features similar to SCAN1 

(spinocerebellar ataxia with axonal neuropathy) patients and MR-derived cells show increased level 

of CPT-induced SSBs similar to that of SCAN1 cells (Kerzendorfer et al., 2010). Although 

published data suggest that all four E3 ligases can act on Top1 ubiquitylation, additional studies are 

needed to show whether those E3 ligases can directly ubiquitylate Top1 in vitro and in vivo and on 

which residues.  

Top1-ubiquitin conjugates are discernible after DNAse treatment of cell lysates following Top1 

immunoprecipitation, suggesting that Top1cc are ubiquitylated on the DNA (Desai et al., 2003). 

However, it is not known whether ubiquitylated Top1 is degraded on DNA and/or it is released 

from chromatin and then degraded away. The first possibility is supported by the action of Tdp1 

(tyrosyl-DNA phosphodiesterase 1), which removes Top1 from DNA more efficiently when it is 

proteolysed (Debethune et al., 2002) and by recent finding showing that etoposide treatment 

induces the accumulation of 19S factors into chromatin in a transcription-dependent manner (Ban et 

al., 2013).  

 

Impact of ubiquitin-like modifications of Top1 on Top1 downregulation  

In addition to ubiquitin, two others ubiquitin-like proteins (UBLs), SUMO1/2/3 (see section 

II.5.3.6) and ISG15 (interferon-stimulated gene 15), has been proposed to influence Top1 

downregulation (Desai et al., 2008; Kanagasabai et al., 2009; Mao et al., 2000b). UBLs are post-

translational modifications of target protein substrates and have been described on the base of their 

structural similarity and sequence homology to ubiquitin (for review see (Streich and Lima, 2014)). 

UBLs are conjugated to target proteins in a way similar to ubiquitin but using distinct E1, E2 and 

E3 enzymes (Streich and Lima, 2014). 

The SUMO-conjugates of Top1, have been originally visualized, but erroneously interpreted as 

ubiquitin-conjugates, by Desai et al. (Desai et al., 1997) and later characterized by Mao et al. (Mao 

et al., 2000b). Similarly to ubiquitylation, Top1 is SUMOylated in response to CPT and it has been 

proposed that the Top1cc, rather than Top1 undergoes SUMO-conjugation (Desai et al., 2003; Mao 

et al., 2000b). Unlike Top1 ubiquitination, Top1 SUMOylation is transcription- and replication-

independent (Mao et al., 2000b). Top1 can be conjugated to SUMO1 (Desai et al., 2001; Desai et al., 

2003; Horie et al., 2002; Katyal et al., 2014; Mao et al., 2000b) or to SUMO2/3 (Kanagasabai et al., 

2009). Horie et al. proposed that SUMO1 conjugation to Top1 amplifies the formation of Top1cc in 
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response to CPT (Horie et al., 2002). SUMO1 conjugation to substrates has been suggested to 

antagonizes their ubiquitination and to prevent their proteolysis by the 26S proteasome (Muller et 

al., 2001). Thereby, it is possible that SUMO1 may serve to prevent Top1 ubiquitination. Another 

group showed that purified CPT-induced Top1cc are enriched in SUMO2/3 chains and ubiquitin 

(Kanagasabai et al., 2009). Since SUMO2/3 polychains serve as a signal for polyubiquitylation and 

proteasome-dependent proteolysis (Weisshaar et al., 2008) and since SUMOylation and 

ubiquitylation coexist in Top1cc, SUMOylation with SUMO2/3 has been proposed to target Top1cc 

for ubiquitylation and proteolysis (Kanagasabai et al., 2009). However, further studies are needed to 

clearly show the role of SUMOylation in Top1 downregulation.  

Desai et al. showed that ISGylation is elevated in many tumours and interferes with the 

ubiquitin/26S proteasome pathway, leading to altered degradation of many cellular targets likely by 

hampering ubiquitylation through substrate competition at the E2/E3 level (Desai et al., 2006). 

Accordingly to these finding, depletion of ISG15 or UbcH8 (retinoic acid-induced gene B protein, 

the major E2 for ISG15) in breast cancer ZR-75-1 cells results in increased rate of Top1 

downregulation without affecting the level of CPT-induced Top1cc (Desai et al., 2008).  

 

Impact of DDR/Repair proteins on Top1 downregulation  

In addition to BRCA1, other DDR and repair proteins have been described to promote Top1 

downregulation in response to CPT (Alagoz et al., 2013; Christmann et al., 2008; Katyal et al., 

2014; Tomicic et al., 2005). Failure of Top1 degradation in response to topotecan was observed in 

cells deficient for WRN (Tomicic et al., 2005) or for p53 (Christmann et al., 2008). Both WRN 

(Laine et al., 2003) and p53 (Mao et al., 2000a) can directly interact with Top1. However, the 

physical interaction Top1-p53 is unlikely the regulator of Top1 downregulation because inhibition 

of p53 transcriptional activity by pifithrin-α also blocks Top1 degradation suggesting that p53 may 

control the transcription of a factor, which mediates Top1 degradation (Tomicic et al., 2005). 

Recently, the DDR kinase ATM (see section II.3.1) has also been implicated in Top1 

downregulation (Alagoz et al., 2013; Katyal et al., 2014). Human and mouse cells knockout for 

ATM accumulate CPT-induced Top1cc, are defective for Top1 downregulation and fail to recover 

transcription after CPT removal (Alagoz et al., 2013; Katyal et al., 2014). ATM deficiency leads to 

a marked reduction of Top1-ubiquitin and -SUMO1 conjugates induced by CPT (Katyal et al., 

2014). How ATM deficiency impairs Top1 ubiquitylation and SUMOylation in response to CPT 

remains to be established. However, AT (ataxia telangiectasia) cells, that are deficient for ATM, 

also display elevated expression of the ISG15 conjugation pathway that correlate with impaired 

proteasome-mediated protein degradation (Wood et al., 2011). 



	   	   	   40 
	  

Cellular function of Top1 downregulation  

The functional meaning of Top1 downregulation has been linked to: (i) repair of Top1cc and then 

recovery of RNA synthesis by exposing the Top1-DNA binding to be processed by Tdp1 (see 

section I.6.2) (Debethune et al., 2002; Desai et al., 2003; Lin et al., 2008); (ii) decrease of the total 

cellular pool of Top1 consequently limiting further trapping of Top1 and Top1cc-induced DNA 

damage (see section I.5.2.7) (Beidler and Cheng, 1995; Desai et al., 2001).   

In agreement with these possibilities, CPT-induced downregulation of Top1 appears to be a 

mechanism of cellular resistance to avoid accumulation of Top1cc and DNA damage. Indeed, cell 

lines selected for CPT resistance have reduced amount of Top1 (Chang et al., 1992) and the extent 

of CPT-induced Top1 downregulation correlates with CPT resistance in some cancer cells (Desai et 

al., 2001). Moreover, modulating factors that influence Top1 downregulation (Figure 10) results in 

altered CPT sensitivity: 

- Proteasome inhibition, which blocks Top1 degradation, increases tumour cell sensitivity to 

CPT (Desai et al., 2001), particularly in S-phase (Zhang et al., 2004). 

- Overexpression of Cul3, which increases Top1 downregulation, confers resistance to CPT 

(Zhang et al., 2004). 

- BRCA1-deficient cells are defective for Top1 degradation and hypersensitive to CPT 

(Fedier et al., 2003; Sordet et al., 2008b).  

- Cell lines from patients with CUL4B mutations exhibit reduced Top1 ubiquitylation and 

increased CPT sensitivity (Kerzendorfer et al., 2010). 

- siRNA depletion of Cul4A decreases Top1 downregulation and enhances CPT sensitivity 

(Kerzendorfer et al., 2010) 

- Cell lines selected for CPT resistance downregulate ISG15 expression and siRNA depletion 

of ISG15 or UbcH8 increases Top1 downregulation and decreases CPT sensitivity (Desai et al., 

2008). 
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Figure 10: Model of Top1cc degradation. The diagram depicts factors described to promote (green arrows) or to inhibit (red 
arrows) Top1 degradation and cellular consequences of Top1 downregulation. Adapted from (Sordet et al., 2008b). 

 

CPT-induced Top1 downregulation occurs in normal cells but it is defective in many tumour cells 

(Desai et al., 2001). Cancer cells with impaired Top1 downregulation are hypersensitive to CPT 

(Desai et al., 2001). Similarly, in a nude mouse model, topotecan treatment causes Top1 

downregulation in many normal tissues (as blood, brain, kidney, liver, and skin) but not in 

xenografted MDA-MB-435 breast cancer cells (Desai et al., 2003). Furthermore, patients receiving 

topotecan therapy also display reduced Top1 levels in normal peripheral blood cells but not in 

leukemic cells (Hochster et al., 1997; Rubin et al., 1995). Most tumour cells are defective in CPT-

induced Top1 downregulation, which could explain in part the increased sensitivity of tumour cells 

to CPT (Desai et al., 2001). The molecular basis for the defective degradation of Top1 in many 

cancer cells is not clear. It could be related to BRCA1 inactivating mutations that occur frequently 

during tumorigenesis (Silver and Livingston, 2012) or to mutations in cullins and cofactors proteins 

(Carlucci and D'Angiolella, 2015). 	  
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I.5.2.5 Topological stress and R-loops 

 

According to the “twin-supercoiled-domain” model (see section I.3.1), RNAP would generate 

approximately seven supercoils per second depending on the rate of transcription, the length of the 

transcribed unit and the arrangement of promoters (for example, divergent transcription) (Darzacq 

et al., 2007). These supercoils are resolved by DNA topoisomerases, and if not dissipated, they 

create a torsional stress (Kouzine et al., 2013). Several studies in bacteria, yeast and human cells 

have shown that deletion of Top1 increases supercoiling in front of the elongating RNAP and leads 

to melting of the DNA and the formation of R-loops behind the RNAP (Drolet, 2006; Drolet et al., 

1994; El Hage et al., 2010; Masse and Drolet, 1999a; Tuduri et al., 2009). Less works have 

investigated the topological stress induced specifically by CPTs. Koster and colleagues measured 

the real-time uncoiling rate of human Top1 in the presence of topotecan in the context of a single-

molecule (Koster et al., 2007). They reported both in vitro and in cellulo (yeast) that topotecan 

significantly hinders Top1-dependent DNA uncoiling, with a more important impact on the removal 

of positive versus negative supercoils thus showing that topotecan induces an accumulation of 

positive supercoils (Koster et al., 2007). More recently, the Levens’s lab mapped transcription-

dependent dynamic supercoiling in human cells by using psoralen photobinding and they clearly 

demonstrated that both Top1 and Top2 prevent the build-up of negative supercoiling in promoter 

regions in cellulo (Kouzine et al., 2013). Five min of CPT treatment strongly increases negative 

supercoils at the TSS and upstream of all genes, indicating a broad requirement for Top1 activity at 

promoters, but the effect of CPT is stronger in moderately expressed genes than in highly expressed 

genes. Effectively, moderately expressed genes depend only on Top1 whereas highly expressed 

genes recruit Top2 additionally to Top1 (Kouzine et al., 2013). Interestingly, Bru-Seq in response to 

CPT reveals a strong enrichment in PROMPTs (promoter upstream transcripts) (Veloso et al., 2013), 

that are a product of divergent transcription (Kapusta and Feschotte, 2014). The activity of 

divergent promoters may be mechanically coupled through dynamic supercoiling thus, a possible 

scenario is that the negative supercoiling induced by CPT at promoter could facilitate DNA melting, 

open complex formation and divergent transcription (Kouzine et al., 2013). 

The accumulation of negative supercoiling can promote the formation of non-B DNA structures 

such as Z-DNA, cruciforms and most likely R-loops that can affect gene expression (Drolet, 2006). 

R-loops are three-stranded structures formed by an RNA-DNA hybrid plus a displaced single strand 

DNA (ssDNA), identical to the RNA molecule (Aguilera and Garcia-Muse, 2012) (Figure 11).  

The first R-loops were characterized in vitro in 1976 (Thomas et al., 1976), in cellulo in bacteria in 

1994 (Drolet et al., 1994) and then showed in different organisms (reviewed in (Aguilera and 
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Garcia-Muse, 2012; Groh and Gromak, 2014; Hamperl and Cimprich, 2014; Skourti-Stathaki and 

Proudfoot, 2014)). In living cells, R-loops can form in cis during transcription (co-transcriptional R-

loop). The first model for R-loop formation envisages that R-loops are a direct extension of the 

RNA-DNA hybrid within the transcription bubble (“extended RNA-DNA hybrid” model) but this 

scenario is not consistent with the crystallographic structure of RNAPII (Westover et al., 2004). The 

most accepted mechanism is the “thread back” model, in which the nascent RNA transcript passes 

through the exit pore of the RNA polymerase before threading back to anneal with the template 

DNA (Roy et al., 2008). However, recently the Konsland’s laboratory has shown that R-loops can 

be formed in trans (away from the initial transcription point) since RNA transcribed at one locus 

can invade an homologous DNA at another locus and this mechanism is dependent on Rad51 

(Wahba et al., 2013). 

 

	  
Figure 11: Inhibition of Top1 activity by CPT promotes R-loop formation. Trapping of Top1 by CPT results in SSB formation 
and accumulation of positive supercoils ahead of transcribing RNAPII and negative supercoils behind it. Negative supercoiling 
triggers partial unwinding of the DNA double helix, thereby facilitating the intrusion and the annealing of the nascent RNA with the 
complementary DNA strand (Adapted from (Hamperl and Cimprich, 2014)). 

 

Transcription-dependent topological state and DNA sequence are important features controlling R-

loop generation. The initial formation of an R-loop is facilitated in vitro by G clusters and DNA 

nicks downstream of the promoter on the non-template DNA strand, whereas negative supercoils 

and high G density promote the stabilisation and the elongation of the RNA-DNA hybrid (Roy et al., 

2010). Once formed, R-loops are particularly stable since RNA-DNA hybrids are 

thermodynamically more stable than double-strand DNA (dsDNA) (Roberts and Crothers, 1992).  

R-loops can be both beneficial and deleterious to cells. The programmed formation of R-loops is 

implicated in important biological processes, such as immunoglobulin class switch recombination 

(CSR) (Yu et al., 2003), regulation of gene expression (Tous and Aguilera, 2007), transcription 

termination (Skourti-Stathaki et al., 2011) and epigenetic mechanisms (Ginno et al., 2012). 

However, unscheduled R-loops can be a dangerous source of DNA damage because of the exposure 

of the ssDNA resulting from the RNA-DNA hybridization. ssDNA is chemically more unstable and 
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vulnerable to DNA-damaging agents than duplex DNA, thereby R-loops can promote genome 

instability or change the transcriptional landscape (for review (Aguilera and Garcia-Muse, 2012; 

Hamperl and Cimprich, 2014; Sollier and Cimprich, 2015)). Topoisomerases and RNA processing 

factors (such mRNA biogenesis factors) prevent R-loop formation while the RNaseH enzymes and 

RNA-DNA helicases act to remove R-loops (Hamperl and Cimprich, 2014; Skourti-Stathaki and 

Proudfoot, 2014). 

The role of Top1 in preventing R-loop has been initially investigated in E. coli (Drolet, 2006; 

Drolet et al., 1994; Drolet et al., 1995; Masse and Drolet, 1999a; Masse and Drolet, 1999b). In E. 

coli the topology of its circular DNA is regulated by the concerted action of DNA gyrase that 

introduces negative supercoils and Topoisomerase 1 (TopA) that relaxes them. Transcription-

dependent supercoils accumulate in TopA mutants and are responsible for defects in full-length 

RNA synthesis, metabolism and growth (Drolet et al., 1995). The phenotype of E. coli TopA 

mutants is reversed by RNAseH1 overexpression (Drolet et al., 1995). In yeast, the role of Top1 has 

been analysed in the highly transcribed ribosomal DNA cluster (El Hage et al., 2010). Yeast Top1 

mainly resolves negative supercoils behind RNAPI, whereas Top2 resolves positive supercoils in 

front of it. Chromatin/DNA immunoprecipitation (ChIP/DNA) experiments by using the 

monoclonal antibody S9.6 directed against RNA-DNA hybrids reveal that R-loops form in the wild 

type yeast, in particular over the 18S 5’ region. Those R-loops are significantly increased in yeast 

mutants lacking Top1 and/or Top2. The sites where R-loops accumulate correlate with truncated 

fragments of pre-rRNA and with piled up RNAPI in Top1 mutants (El Hage et al., 2010). Finally, 

human and murine cells expressing low to undetectable levels of Top1 display replication 

impairment at gene-rich regions. RNaseH overexpression suppresses this phenotype indicating that 

Top1 avoids R-loops accumulation coordinating supercoils relaxation and splicing thus preventing 

interference between replication and transcription (Tuduri et al., 2009). 

CPT, by inhibiting the activity of Top1 and by triggering the accumulation of negative supercoiling, 

may have the same effect as Top1 downregulation in R-loop formation. RNaseH1 overexpression 

decreases the induction of γH2AX following CPT treatment in post-mitotic primary rat neurons and 

in replication-blocked and replicating HeLa cells (Sollier et al., 2014; Sordet et al., 2009). The 

direct impact of CPT treatment in accumulating and stabilizing R-loops in cellulo has also been 

shown by recent studies (Groh et al., 2014; Marinello et al., 2013; Powell et al., 2013; Stuckey et al., 

2015). In response to CPT, R-loops, visualized by immunofluorescence with the S9.6 antibody, are 

rapidly stabilized at nucleoli and mitochondria in human cells with a kinetic that closely correlates 

with Top1cc formation (Marinello et al., 2013). By using ChIP/DNA Powell et al. show that 

topotecan increases R-loop levels over the Snord116 paternal locus (Powell et al., 2013) (Figure 
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12). This R-loop accumulation causes chromatin decondensation and inhibition of RNAPII 

elongation resulting in the inhibited expression of the non-coding RNA (ncRNA) Ube3a-ATS and 

the expression of the paternal Ube3a gene, which is normally silenced by Ube3a-ATS. This study 

holds promise for using topotecan to treat Angelman syndrome, a neurodevelopmental disorder 

characterized by the loss of function of the expressed maternal Ube3a (Powell et al., 2013). CPT 

also enhances R-loop formation over expanded GAA in frataxin (FXN) gene in cells from 

Friedreich ataxia (FRDA), another neurodegenerative disorder (Groh et al., 2014). These R-loops 

are responsible for FXN transcriptional repression and promote formation of repressive H3K9me2 

marks suggesting a molecular mechanism of the FRDA pathology (Groh et al., 2014).  

 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	   	  
Figure 12: Topotecan-dependent reactivation of paternal Ube3a allele. ncRNA Ube3a-ATS expression represses paternal Ube3a 
in cis. Topotecan inhibits Top1 catalytic activity leading to R-loops accumulation over the Snord116 locus that results in chromatin 
decondensation, inhibition of Ube3a-ATS transcription and reactivation of paternal Ube3a expression (Groh and Gromak, 2014; 
Powell et al., 2013). 

 

I.5.2.6 Induction of antisense transcripts 

 

A number of works from Capranico’s laboratory have described a transcriptional response to 

prolonged CPT treatment (4 h) likely linked to sustained CPT interference with RNAPII regulation 

(for review see (Capranico et al., 2010)). This response involves a more accessible chromatin 

conformation and the induction of low-abundance antisense transcripts (Baranello et al., 2010; 
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Bertozzi et al., 2011; Marinello et al., 2013). CPT triggers an increase of antisense transcripts at the 

5’ and 3’ ends of the human HIF1α gene. These antisense transcripts overlap with the primary sense 

transcript of HIF1α gene and their expression correlates with a reduction of the mRNA (Baranello 

et al., 2010). The 5’ antisense HIF1α localizes mainly at the nuclear membrane close to the nuclear 

pore protein Nup62 suggesting a role in the nucleus-cytoplasm transporting machinery (Bertozzi et 

al., 2011). Although antisense transcripts have been suggested to trigger silent chromatin assembly 

(Grewal and Moazed, 2003), the increasing level of HIF1α antisense transcripts is not associated 

with H3K9me2 repressive chromatin mark, but to a more accessible chromatin structure (Baranello 

et al., 2010). Those observations have suggested that CPT induces an imbalance of sense/antisense 

transcripts.  

More recently, RNA-sequencing analysis in response to CPT (4 h) has revealed that Top1cc 

specifically enhance antisense transcripts at CpG island promoters of intermediate activity in 

different human cell types (Marinello et al., 2013). Those promoter-associated antisense transcripts 

have features of divergent promoters: symmetrical chromatin architecture with two peaks of paused 

RNAPII, and two domains of the active H3K4me3 and H3K27ac marks. CPT-induced antisense 

transcripts are Cdk9-dependent and replication-independent. Since bidirectional promoters have a 

higher rate of transcription-generated negative supercoils, it is possible that the accumulation of R-

loops and/or torsional stress at CpG island promoters of moderately expressed genes may lead to 

antisense transcript accumulation. However, the torsional stress generated by the inhibition of Top1 

activity is not sufficient to explain the induction of antisense transcripts by CPT because depletion 

of Top1 by siRNA or shRNA decreases the levels of antisense transcripts indicating that their 

induction is dependent on Top1cc (Baranello et al., 2010; Marinello et al., 2013). Indeed, K+SDS 

immunoprecipitation to map Top1cc at TSS-proximal regions of active divergent promoters shows 

a rapid burst of Top1cc that correlate with a transient RNAPII block at promoter (Marinello et al., 

2013). 

 

I.5.2.7 Induction of DNA damage and DDR activation 

 

Similarly to replication, Top1cc stabilized by CPT can be converted into irreversible Top1cc upon 

collision with the transcriptional machinery, which determines DNA end misalignement and 

precludes end religation (Pommier, 2006; Wu and Liu, 1997). This collision results in the 

production of (i) Top1-linked SSBs (Hsiang et al., 1985) (Figure 13A), for review see (Ashour et 

al., 2015) and (ii) DSBs (Sordet et al., 2010; Sordet et al., 2009) (Figure 13B). 
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The Liu’s laboratory initially demonstrated the involvement of transcription in CPT-induced DNA 

damage (Wu and Liu, 1997). They showed that the conversion of reversible Top1cc into 

irreversible Top1cc by transcription occurs primarily on the template strand within the transcribed 

region with a maximal frequency near the promoter (Wu and Liu, 1997). This is in agreement with 

a gradual decrease in transcriptional activity at sites distal from the promoter (Bendixen et al., 1990; 

Khobta et al., 2006) (see section I.5.2.2). However, the authors also reported the generation of a 

number of transcription-dependent irreversible Top1cc in the non-template strand located upstream 

of the promoter (Wu and Liu, 1997). 

In non-proliferative cells, CPT induces SSBs that can be visualized by alkaline comet assay in a 

replication-independent but transcription-dependent manner (Huang et al., 2010; Katyal et al., 2014; 

Lin et al., 2008). Those CPT-induced SSBs can be enhanced by inhibition of PARylation (Lin et al., 

2008). 

The other type of transcription-dependent lesions produced by CPT-stabilized Top1cc are 

transcription-coupled DSBs (TC-DSBs) (see Chapter II for description of DSBs). The production 

of TC-DSBs was first reported by Sordet et al. in post-mitotic primary neurons and lymphocytes 

and in EdU-negative cycling cells (cells outside of S-phase) (Sordet et al., 2010; Sordet et al., 2009) 

and then confirmed by several studies in different cellular models (Das et al., 2009; Huang et al., 

2010; Katyal et al., 2014; Regairaz et al., 2011; Sakai et al., 2012; Sakasai et al., 2010a; Tian et al., 

2009; Zhang et al., 2011). The nature of transcription-mediated DNA damage and downstream 

cellular responses is less well characterized than that of replication-induced damage. 

The presence of DSBs can be monitored by the induction of comet tail moment in neutral condition 

and by the activation of DDR. In post-mitotic primary neurons and lymphocytes, CPT produces 

DSBs and activates DDR leading to the formation of large nuclear DDR foci containing activated 

ATM, γH2AX, activated Chk2, MDC1 (mediator of DNA-damage checkpoint 1) and 53BP1 (tumor 

protein p53 binding protein 1) (Sordet et al., 2009). Those replication-independent DSBs are 

dependent on RNAPII transcription as inhibition of transcription by DRB, flavopiridol (FLV) or α-

amanitin suppresses DSB induction and the activation of the ATM-DDR pathway (Sordet et al., 

2009). In addition, those TC-DSBs are located inside transcription factories since they colocalize 

with the euchromatin marker H3K9ac and S5-phosphorylated RNAPII (Sordet et al., 2009). 

CPT-induced TC-DSBs form foci that have specific characteristics that make them different from 

replicational foci. In asynchronously growing cancer cells, Sakasai et al. distinguish 53BP1 foci 

associated to TC-DSBs from 53BP1 foci associated with RC-DSBs (Sakai et al., 2012; Sakasai et 

al., 2010a). The transcriptional 53BP1 foci are large foci compared to the smaller replicational foci 

characteristic of S-phase, they are completely dependent on ATM, they do not colocalize with RPA 



	   	   	   48 
	  

and they appear only at CPT concentration > 1 µM. In addition, these foci are formed with a slower 

kinetic compared to replicational foci but are repaired more rapidly (Sakai et al., 2012). 

The other key feature of CPT-induced TC-DSBs is the strong activation of ATM and the ATM-

dependent DDR pathway (Huang et al., 2010; Katyal et al., 2014; Lin et al., 2008; Sakai et al., 

2012; Sakasai et al., 2010a; Sordet et al., 2010; Sordet et al., 2009; Tian et al., 2009). In non-

replicating cells, CPT-induced ATM activation is dependent on transcription (Huang et al., 2010; 

Katyal et al., 2014; Lin et al., 2008; Sakasai et al., 2010a; Sordet et al., 2009) and on proteasome 

activity (Huang et al., 2010; Katyal et al., 2014; Lin et al., 2008) and independent of replication. 

The DDR response to TC-DSBs is also dependent on ATM: γH2AX (Katyal et al., 2014; Sordet et 

al., 2009), 53BP1 (Sakasai et al., 2010a; Sordet et al., 2009), p53 (Tian et al., 2009) and Chk2-T68 

(Sordet et al., 2009). This CPT-induced ATM-dependent DDR pathway can be enhanced by 

inhibition of PARylation (Lin et al., 2008; Sakai et al., 2012; Zhang et al., 2011) or depletion of 

Tdp1 (Das et al., 2009; Katyal et al., 2014). 

In CPT-treated post mitotic cells, the induction of γH2AX foci has been described to be completely 

dependent of ATM (Katyal et al., 2014; Sordet et al., 2009) but independent of Nbs1 (Katyal et al., 

2014), a component of the MRN complex, which acts as ATM cofactor (see Table 6 and section 

II.5.1.1). In those cells, the kinase DNA-PK (see section II.3.3) is also activated in an ATM-

dependent manner (Sordet et al., 2009) but the role of this activation is not known yet. DNA-PK 

inhibition does not impact CPT-induced γH2AX foci in post mitotic neurons (Katyal et al., 2014; 

Sordet et al., 2009). However, the maintaining of γH2AX foci after CPT removal is dependent on 

DNA-PK activity indicating a role for DNA-PK in the response to TC-DSBs that remain to 

characterize (Katyal et al., 2014). By contrast, the ATR kinase (see section II.3.2) is likely not 

implicated in the response to TC-DSBs since it is not or only weakly expressed in post mitotic cells 

(Jones et al., 2004; Sordet et al., 2009). 

Mechanistically, the production of TC-DSBs involves R-loops (see section I.5.2.5) as RNaseH1 

overexpression reduces the CPT-induced γH2AX foci in both post mitotic neurons treated with CPT 

as well as in HeLa cells in which replication was blocked before treatment with CPT (Sordet et al., 

2009).  

As discussed above, R-loops may form as negative supercoiling accumulates behind the 

transcription complexes arrested by Top1cc (Drolet et al., 1994) or by a possible interference with 

splicing regulated by the SR-kinase activity of Top1, which is also known to promote R-loops (Li 

and Manley, 2005; Soret et al., 2003). How DSBs arise from a transcription-blocked Top1cc and an 

R-loop remains to be established. Recently, it has been reported that R-loops can be converted in 

DNA damage by the TCR through the activity of the endonucleases XPF and XPG (xeroderma 
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pigmentosum group-F/G complementing protein) and the participation of the NER factors XPA, 

XPB, XPD and CSB (Sollier et al., 2014). Indeed, XPG depletion reduces γH2AX foci in 

replicating cells treated with CPT (Sollier et al., 2014). Further studies will be necessary to 

elucidate the mechanism of production of TC-DSBs and the role of R-loops and R-loop processing 

factors in TC-DSB production. 

The R-loop-dependent nature of CPT-induced TC-DSBs raises the question whether TC-DSBs 

occur at specific genomic sites with features that promote R-loop formation. The co-staining of 

γH2AX foci and IgH locus by ICC-FISH experiments (immunocytochemistry staining followed by 

fluorescence in situ hybridization) shows an enrichment of γH2AX at those sites in unstimulated 

splenocytes treated by CPT (Sordet et al., 2010). IgH corresponds to immunoglobulin heavy chain 

locus where CSR occurs (Petersen et al., 2001). CSR is a process enabling mature B cells to change 

antibody isotypes and it involves transcription, R-loops and DSB production (Chaudhuri and Alt, 

2004). Therefore, authors suggested that CPT-induced TC-DSBs may form at specific genomic 

sites (Sordet et al., 2010). 

 

	  
Figure 13: Schematic representation of the conversion of CPT-stabilized Top1cc in DNA damage by transcription. Top1cc 
trapped by CPT in the template strand collides with transcribing RNAPII. The collision converts reversible Top1cc into irreversible 
Top1cc resulting in the production of (A) Top1-linked SSBs or (B) DSBs by an R-loop dependent mechanism and activation of the 
ATM-DDR pathway (Adapted from (Sordet et al., 2009)).  
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In addition to replication-associated cytotoxicity, transcription-induced DNA damage can 

participate to CPT cytotoxicity (Katyal et al., 2014; Morris and Geller, 1996; Morris et al., 2001; 

Sakasai et al., 2010a; Stefanis et al., 1999). In cancer cells, CPT cytotoxicity becomes not only 

dependent on replication at high (>1 µM) concentrations (Holm et al., 1989; O'Connor et al., 1991). 

However, CPT induces cell-death in post-mitotic cells by inducing apoptosis in a transcription-

dependent manner (Morris and Geller, 1996; Morris et al., 2001; Stefanis et al., 1999). In neurons, 

CPT-induced cell death is mediated by the activation of a Cdk5-ATM-p53 pathway, which triggers 

cell-cycle re-entry and expression of the p53 target genes related to death such as Puma and Bax 

(Tian et al., 2009). Although the ATM-dependent pathway controls cell fate, the ATM-mediated 

response appears to be different in post mitotic and cycling cells treated with CPT. Indeed, ATM 

promotes cellular survival in G1-phase cells exposed to CPT by activating the G1/S and S-phase 

checkpoint and by protecting cells from DNA-PK-induced cell killing (Sakasai et al., 2010a). The 

authors suggested two possible explanations for their observations: (i) the ATM-dependent 

checkpoint activation in G1 limits the number of DSBs by avoiding the entering of damaged cells in 

S-phase and the replication-dependent conversion of SSBs in DSBs that massively activate DNA-

PK in S-phase or (ii) a complex cross-regulation between the two kinases exists (Sakasai et al., 

2010a). In any case, transcription-dependent processing of the Top1cc may lead to the generation of 

an intermediate that is lethal to cells but the nature of this intermediate is not known. 

It appears clearly that ATM signalling coordinates the response to DNA damage induced by 

transcription-dependent Top1cc by controlling Top1 degradation (Alagoz et al., 2013; Katyal et al., 

2014), by promoting the activity of Tdp1 (Das et al., 2009), by regulating the level of ROS (Guo et 

al., 2010; Ito et al., 2004; Okuno et al., 2012) that can further trap Top1 (Daroui et al., 2004; 

Pourquier and Pommier, 2001), by regulating transcription in presence of damaged DNA (Alagoz et 

al., 2013; Shanbhag et al., 2010), by activating DDR response to transcriptional DSBs (Sordet et al., 

2009) and by controlling cell’s fate (Sakasai et al., 2010a; Tian et al., 2009). 

 

I.6 Repair of irreversible Top1cc 

 

As mentioned above, a trapped Top1cc creates a SSB associated with a covalently-linked Top1 

molecule at the 3’ end of the break and a free 5’ end generally associated with a complementary 

strand. In the case of transcription-mediated Top1cc, the resulting double-strand termini are DNA-

RNA hybrids, whereas in the case of replication-mediated Top1cc, the DNA-DSEs are composed of 

the DNA template and the newly synthesized leading strand. In the case of Top1cc formed by an 

SSB or by a neighbouring Top1cc on the opposing strand from the Top1 scissile strand, a staggered 
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DSB is formed. Those DNA termini are not suitable for repair as the proper substrate for DNA 

ligases are a 3’-hydroxyl and a 5’-phosphate. 

Thus, the “cleaning” of DNA ends by removing Top1 covalent complexes is the requirement to 

repair the DNA damage associated with irreversible Top1cc and to allow transcription and 

replication restart. Deciphering the biochemical pathways involved in the repair of Top1 suicide 

complex started in yeast. The human orthologs of many of the yeast genes identified for Top1 repair 

are mutated in hereditary diseases predisposing to cancer and sensitize cells to CPT (for gene list, 

see (Pommier, 2006; Pommier et al., 2006)). The three main pathways (reviewed in (Ashour et al., 

2015; Pommier et al., 2006; Pommier et al., 2003; Xu, 2015)) for irreversible Top1cc repair are: (i) 

the helicase pathway, (ii) Top1 excision by Tdp1, (iii) Top1 excision by nucleases. The apparent 

redundancy of the Top1 repair pathways is consistent with the formation of irreversible Top1cc 

under physiological conditions (Pourquier and Pommier, 2001). It seems that each pathway is 

preferentially used for a particular Top1cc (for example transcription mediated-Top1cc or 

replication-mediated Top1cc), and in a specific cellular context (for example replicating or post-

mitotic cells). The choice of the pathway is at least in part determined by the nature of the DNA 

lesion. Further studies are necessary to clarify this point but the working model is: the preferential 

repair of transcriptional-Top1cc by the Tdp1 excision pathway and the preferential repair of 

replicational-Top1cc by the helicases or the endonucleases pathway. 

 

I.6.1 Helicase pathway 

 

This pathway is not possible for Top1cc produced by lesions affecting the 5’ end of the broken 

DNA, since it relays on the efficacy of Top1 in religating a 5’-OH to the Top1cc. Top1 religation 

becomes possible in the case of replication- or transcription- dependent Top1cc following 

regression of the replication or transcription complexes (Pommier et al., 2006). 

Replication fork regression leads to the formation of a “chicken foot” DNA structure by newly 

synthesized strands, which is topologically equivalent to a Holiday junction. These structures can be 

resolved by RecQ helicases, such as BLM (bloom syndrome, RecQ-helicase-like) and WRN, and 

Top3α (for review see (Pommier et al., 2006; Pommier et al., 2003)). WRN deficient cells are 

hypersensitive to Top1 inhibitors, show enhanced DNA replication block and S-phase arrest and 

accumulate DSBs suggesting a role of WRN in the resolution of stalled replication forks induced by 

trapped Top1 (Christmann et al., 2008). Recently, it has been shown that CPT-induced fork slowing 

and reversal is promoted by PARP1 activity, which inhibits the helicase RECQ1 locally, thereby 

restraining the restart of reversed forks until Top1cc repair is complete (Berti et al., 2013; Ray 
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Chaudhuri et al., 2012) (Figure 16A). 

A similar mechanism may be also hypothesized for transcription following RNAP backtracking.   

Top1 can also religate a non-homologous DNA strand bearing a 5’-hydroxyl end, which results in 

non-homologous recombination (Pommier et al., 1995). 

 

I.6.2 Excision by Tdp1 pathway 

 

I.6.2.1 Structure and function of the Tdp1 enzyme 

 

Tdp1 was discovered in 1996 by Nash and coworkers in Saccharomyces cerevisiae as the enzyme 

capable of hydrolysing the covalent bond between the Top1 catalytic tyrosine and the 3’ end of the 

DNA (Pouliot et al., 1999; Yang et al., 1996). This activity was named tyrosyl-DNA 

phosphodiesterase 1. Tdp1 generates a 3’-phosphate, which is further processed by a 3’-

phosphatase, such as PNKP (polynucleotide kinase phosphatase) (Whitehouse et al., 2001). 

Tdp1 is highly conserved in eukaryotes and belongs to the phospholipase D (PLD) superfamily 

(Interthal et al., 2001), which comprises a heterogeneous group of enzymes that catalyse phosphoryl 

transfer reaction. Human Tdp1 is a 68-kDa polypeptide ubiquitously expressed. Human Tdp1 has 

an analogous 3’-phosphotyrosyl processing activity to its yeast counterpart (Interthal et al., 2001), 

while having only about 15% sequence identity (Cheng et al., 2002). Human Tdp1 is constituted by 

608 amino acids organised in two domains (Interthal et al., 2001; Pommier et al., 2014) (Figure 

14A): 

- N-terminal domain (1-148 aa): It is the poorly conserved domain or absent in lower 

eukaryotes. It is dispensable for enzymatic activity, yet it regulates Tdp1 recruitment and protein 

stability by receiving post-translational modifications (see section I.6.2.3). 

- C-terminal domain: It is the catalytic domain belonging to the PLD family as it contains two 

catalytic HKN motifs (amino acids 262-289 the first HKN and 492-522 the second HKN), the most 

conserved regions among the Tdp1 orthologs, separated from each other by 210 amino acid 

residues. Differently from the other PLD family members, the aspartates in the HKD motifs are 

replaced by asparagines (HKN motifs) in Tdp1. Mutations of histidine (H263A) or lysine (K265S) 

in the first HKN motif results in complete loss of Tdp1 activity, whereas analogous mutations 

(H493A/R/N or K495S) in the second HKN motif lead to a strong decrease in Tdp1 activity 

(Interthal et al., 2001; Raymond et al., 2004). 
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Figure 14: Schematic of Tdp1 and Tdp1 physiological substrates. (A) Representation of N-Terminal (white) and C-terminal 
(pink) domains of Tdp1. HKN motifs and the sites of phosphorylation (S81) and SUMOylation (K111) are indicated. Adapted from 
(Pommier et al., 2014). (B) Some DNA adducts that can be processed by Tdp1 are represented. Adapted from (Ashour et al., 2015).  

 

Crystal structures demonstrate that Tdp1 acts as a monomer with the two HKN motifs in close 

proximity to form the catalytic site located inside an asymmetric substrate-binding channel (Davies 

et al., 2002a; Davies et al., 2002b; Davies et al., 2003). This “binding channel” is relatively narrow 

and positively charged to bind the single-stranded DNA substrate. The DNA substrate is stabilized 

by hydrophobic or polar interactions thereby the binding of Tdp1 to DNA is not restricted to 

particular base sequences. This is consistent with the ubiquitous nature of Top1cc on the genome 

and with the requirement of Tdp1 action irrespective of the DNA sequence environment. In addition, 

the characteristics of Tdp1 “binding channel” make Tdp1 able to resolve a broad spectrum of 3’-

blocking termini (Figure 14B): 

- 3’-phosphotyrosine/phosphotyrosyl peptide: Tdp1 hydrolyses 3’-tyrosine in a variety of 

DNA structures, including dsDNA with 3’-tyrosine at a nick or a gap and 3’-tyrosine at blunt, 

frayed or tailed ends but with a preference for ssDNA (Raymond et al., 2004; Yang et al., 1996).  

Tdp1 can process 3’-peptides ranging from one to more than 100 aa and DNA fragments consisting 
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of at least 4 nucleotides with a major efficiency for longer oligonucleotides and shorter peptides 

(Debethune et al., 2002; Interthal and Champoux, 2011; Interthal et al., 2005a). The ability of Tdp1 

to hydrolyse 3’-phosphotyrosyl linkage is consistent with a role for the enzyme in protecting cells 

against cytotoxic Top1-associated DNA damage. To be a good substrate for Tdp1, Top1 covalently 

linked to DNA has to be prior denatured or proteolyzed (see section I.5.2.4) (Debethune et al., 

2002; Interthal et al., 2005a). Yeast Tdp1 has been reported to resolve 5’-phosphotyrosyl linkage 

(Nitiss et al., 2006) and recently a similar action has also been characterized in vitro for human 

Tdp1 (Murai et al., 2012) indicating a possible back-up role for Tdp1 in Top2cc repair.   

- 3’-phosphoglycolate: Tdp1 can process 3’-phosphoglycolate ends that are commonly 

produced by oxidative DNA damage or by radiotherapy (El-Khamisy et al., 2007; Inamdar et al., 

2002). 

- 3’-deoxyribose phosphate: The nucleosidase activity of Tdp1 can remove a single 

nucleoside from the 3’ end of DNA or RNA molecules where they are not 3’-phosphorylated 

(Interthal et al., 2005a). This action of Tdp1 results in the generation of one nucleotide shorter 

polymer bearing a 3’-phosphate group. Tdp1 can remove the abasic mimic tetrahydrofuran moiety 

(Interthal et al., 2005a) and the anti-viral and anti-cancer chain-terminating nucleoside analogues 

such as acyclovir, zidovudine and cytarabine (Huang et al., 2013). Tdp1 also processes 3'-

deoxyribose lesions generated by alkylating agents after the apurinic or apyrimidinic lyase 

processing such in the case of methylmethanesulfonate and temozolomide (Alagoz et al., 2014; 

Lebedeva et al., 2011; Murai et al., 2012). 

- 3’-synthetic DNA adducts: Tdp1 can resolve a wide range of 3’-synthetic DNA adducts such 

as biotin and a variety of fluorophores. This Tdp1 property has been used for screening Tdp1 

inhibitors and for mechanistic studies (Antony et al., 2007b; Dexheimer et al., 2010; Rideout et al., 

2004). 

 

To process its substrates, Tdp1 proceeds via a two step-reaction without nucleotide cofactor or 

metal (Interthal et al., 2001; Pommier et al., 2014) (Figure 15). The first step consists in a 

nucleophilic attack of the Top1-DNA phosphotyrosyl bond by H263 of the first HKN motif 

resulting in the liberation of Top1 and in the formation of a Tdp1-DNA covalent intermediate. This 

intermediate is resolved by a hydrolytic reaction driven by H493 of the second HKN motif leading 

to the liberation of Tdp1 and to a 3’-phosphate terminus. 
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Figure 15: Tdp1 catalytic cycle. The nucleophilic attack of the phosphodiester bond Top1-DNA by H263 of Tdp1 results in the 
release of Top1 and the formation of a covalent Tdp1-DNA intermediate. Then, a second nucleophilic attack via an activated H2O 
molecule by H493 of Tdp1 allows the release of Tdp1 and the generation of an unligatable 3’-phosphate (3’-P) end. Adapted from 
(Ashour et al., 2015). 

 

I.6.2.2 Physiological consequences of Tdp1 mutations: SCAN1  

 

Tdp1 is physiologically important since a mutation in the enzyme is responsible for an autosomal 

recessive called spinocerebellar ataxia with axonal neuropathy (SCAN1) (Takashima et al., 2002). 

To date, SCAN1 is restricted to nine patients from a single Saudi Arabian family. Clinically, 

affected individuals suffer from early onset ataxia (≈ 15 years), cerebellum atrophy and peripheral 

neuropathy but without involving cognitive decline (Takashima et al., 2002; Walton et al., 2010). 

SCAN1 patients lack extra-neurological symptoms like chromosomal instability and cancer 

predisposition that are found in individuals affected by other DNA repair-related disorders such as 

ataxia telangiectasia (Rass et al., 2007).  

To date, the only mutation known to be associated with SCAN1 is a homozygous mutation resulting 

in the substitution of histidine by arginine (H493R) within the second HKN motif of the Tdp1 

active site (Takashima et al., 2002). Recombinant mutated Tdp1 is ≈ 25-fold less active of wild-

type (Interthal et al., 2001) and SCAN1 cell extracts display a Tdp1 activity reduced of ≈ 100 fold 

(Interthal et al., 2005b). The greater defect in SCAN1 extracts is likely to reflect the 2-3- fold 

reduction in Tdp1 protein level likely linked to instability of the mutant protein. The H493R 

mutation affects primarily the second step of Tdp1 catalytic reaction (Figure 15) thus leading to the 

liberation of Top1 adducts and the accumulation of Tdp1-DNA covalent intermediates (Interthal et 

al., 2005b). Wild-type Tdp1 can hydrolyse Tdp1-DNA covalent complex, which explains why 

heterozygote carriers for H493R mutation do not display SCAN1 symptoms (Interthal et al., 2005a). 

However, the relative proportion of unprocessed (and therefore Top1-associated) versus partially 

processed (and therefore Tdp1-associated) termini that accumulate in SCAN1 cells is unclear. 
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Consequently, the relative contribution of these covalent complexes to the SCAN1 phenotype is 

unknown.  

Consistently, features of SCAN1 cells are hypersensitivity to CPT and defective repair of CPT-

induced Top1cc associated with accumulation of SSBs, Top1-DNA and Tdp1-DNA covalent 

complexes (Barthelmes et al., 2004; El-Khamisy et al., 2005; Interthal et al., 2005b; Miao et al., 

2006). The deficiencies in the repair of Top1cc have been proposed to be responsible for the 

neurodegenerative phenotype of SCAN1 patients but further studies are necessary to understand the 

molecular mechanism leading to neurodegeneration. 

 

I.6.2.3 Post-translational modification of Tdp1  

 

The action of Tdp1 is tightly regulated by post-translational modifications on its N-terminal 

domain: 

- Phosphorylation: ATM and DNA-PK are able to phosphorylate Tdp1 on S81 (Chiang et al., 

2010; Das et al., 2009). S81 phosphorylation is not required for Tdp1 enzymatic activity (Antony et 

al., 2007b; Chiang et al., 2010) but it promotes Tdp1 stability and controls its subcellular 

distribution (Chiang et al., 2010; Das et al., 2009). In response to CPT and IR, phosphorylated S81-

Tdp1 forms foci that colocalize with γH2AX and with X-ray repair cross-complementing protein 1 

(XRCC1) foci (Das et al., 2009). Indeed, S81 phosphorylation enhances the interaction with DNA 

ligase 3α (Lig3α) and XRCC1 (Chiang et al., 2010; Das et al., 2009) thereby promoting the 

formation of stable Tdp1 complex at Top1-linked damage sites that facilitate Top1cc repair and cell 

survival in response to CPT- and IR-induced DNA damage. The formation of S81-Tdp1 foci 

induced by CPT is prevented by both aphidicolin (APH) and DRB indicating that they are 

dependent on RC-DSBs and TC-DSBs (Das et al., 2009). Yet, it is still unclear whether S81 

phosphorylation impacts both SSB and DSB repair, since the phosphorylation appears to be driven 

by DSB formation. 

- SUMOylation: Tdp1 is SUMOylated at K111 in a DNA damage-independent manner 

(Hudson et al., 2012). K111R mutants do not display defects in Tdp1 catalytic activity and in Lig3α 

interaction but they show accumulation of SSBs and decreasing Tdp1 concentration at sites of DNA 

damage in response to CPT (Das et al., 2014; Hudson et al., 2012). In addition, upon transcription 

inhibition by DRB, the higher level of SSBs in Tdp1 K111R mutants treated with CPT, are 

decreased to a level comparable to wild-type Tdp1 cells (Hudson et al., 2012). These results 

indicate that the function of Tdp1 K111-SUMOylation is to promote Tdp1 accumulation at 

transcription-dependent Top1cc sites, which is consistent with the role of Tdp1 in protecting post-
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mitotic neurons against Top1cc-induced damage. 

- PARylation: PARP1 directly binds the N-terminal domain of Tdp1, and PARylates Tdp1 

without affecting its catalytic activity (Das et al., 2014). The functional role of PARylation is to 

stabilize Tdp1 in response to Top1cc-induced DNA damage and to promote the recruitment of both 

Tdp1 and XRCC1 at Top1cc-induced DNA damage sites (Das et al., 2014). Tdp1 and PARP1 form 

complexes independently of DNA damage. PARP1 activation by Top1cc drives Tdp1 at damage 

sites acting as a molecular switch that channels Top1-DNA covalent complexes to the Tdp1 

pathway, and it might protect DNA from non-specific endonucleolytic cleavage. This role of PARP 

explains the hypersensitization of PARP1 KO and PARP inhibitor-treated cells to CPTs (Bowman 

et al., 2001; Chatterjee et al., 1989; Patel et al., 2012; Zhang et al., 2011) and the absence of 

additional sensitization by Tdp1 depletion (Alagoz et al., 2014; Das et al., 2014). 

 

I.6.2.4 Stepwise repair by Tdp1 pathway  

 

The Tdp1 excision pathway is a sub-pathway of SSBR (SSB Repair) (for review see (Caldecott, 

2008)), in which Tdp1 works with BER factors to carry out the detection, the excision of the 3’-

phosphotyrosyl linkage Top1-DNA and the repair of the damage (Figure 16B).  

Based on recent findings, a working model is that Tdp1 detects Top1-mediated DNA damage 

through PARP1, as Tdp1 and PARP1 form complexes in physiological conditions (Das et al., 2014). 

Once activated by Top1cc-associated SSBs (Bowman et al., 2001; Chatterjee et al., 1989; Das et al., 

2014; Patel et al., 2012; Zhang et al., 2011), PARP1 catalyses PARylation at DNA lesions 

favouring the recruitment of repair complexes (such as XRCC1) and the release of PARP1 from 

DNA to facilitate DNA repair (Das et al., 2014). XRCC1 functions as a loading dock, which 

stabilizes, stimulates and facilitates the accumulation of SSB repair factors. XRCC1 is able to bind 

Tdp1 (Das et al., 2014; El-Khamisy et al., 2005; Plo et al., 2003), PARP1 (Das et al., 2014), PNKP, 

Polymerase β and Lig3α (Caldecott, 2008; El-Khamisy et al., 2005; Whitehouse et al., 2001).  

Tdp1 accumulates at sites of Top1cc-associated damages (Das et al., 2009) and hydrolyses the 

phosphodiester bond Top1-DNA that is exposed after the proteasome-mediated degradation of 

Top1 (Desai et al., 1997; Desai et al., 2003).  Tdp1 generates 3’-phosphate ends that cannot be 

directly religated to the 5’-OH. PNKP converts 3’-phosphate to 3’-OH and also 5’-OH to 5’-

phosphate, making ends compatible for extension by a polymerase or directly for religation with no 

base loss (Yang et al., 1996). The rejoining of the 3’-OH and the 5’-phosphate ends is mainly 

mediated by Lig3α.        

The requirement of end-processing by PNKP after Top1 excision explains why PNKP-defective 
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human cells and SCAN1 cells accrue similar levels of CPT-induced DNA damage (El-Khamisy et 

al., 2005). Multiple mutations in the PNKP gene have been recently identified by genome-wide 

linkage analysis to be tied to the hereditary disease, MCSZ, microcephaly with early-onset, 

intractable seizures and developmental delay (Shen et al., 2010). MCSZ is primarily a 

neurodevelopment disease, highlighting a key role for the DNA processing activity of PNKP in 

non-replicating cells (Reynolds et al., 2012). 

The Tdp1 excision pathway is thought to repair preferentially transcription-mediated Top1cc (El-

Khamisy et al., 2005; Hudson et al., 2012; Miao et al., 2006). First, Tdp1 action requires prior 

proteolysis of Top1 (Debethune et al., 2002) and Top1 proteasomal degradation is dependent on 

transcription and independent on replication (Desai et al., 2003; Sordet et al., 2008b). Second, the 

defective repair of CPT-induced Top1cc in SCAN1 cells is independent on replication whereas 

DRB pre-treatment reduces CPT-induced SSBs in these cells (El-Khamisy et al., 2005; Miao et al., 

2006). These observations suggest that Top1cc accumulated in CPT-treated SCAN1 cells are likely 

to be transcription-associated lesions predominantly (Miao et al., 2006). Finally, Tdp1 exists in 

equilibrium between unmodified (the majority) and a SUMOylated version (a tiny proportion) (see 

section I.6.2.3). This SUMOylated Tdp1 has been shown to be, at least in part, engaged in resolving 

Top1-dependent transcription-blocking lesions (Hudson et al., 2012).  

Tdp1 is an attractive target for cancer therapy. SCAN1 cells (Das et al., 2009; El-Khamisy et al., 

2005; Interthal et al., 2005b; Miao et al., 2006), cancer cells treated with siTdp1 (Das et al., 2009) 

and Tdp1 knockout mice (Hirano et al., 2007; Katyal et al., 2007) are hypersensitive to CPT. In 

addition, the broad spectrum of Tdp1 substrates open the possibility that inactivation of Tdp1 might 

enhance the anticancer effect of IR or chemotherapy. Another reason that makes Tdp1 a good target 

is that Tdp1 knockout mice are viable and they present a mild phenotype suggesting that the 

pharmacological inhibition of Tdp1 may be well tolerated. However, to date any Tdp1 inhibitors 

have progressed to clinical trials because of their poor physiochemical properties (Huang et al., 

2011). 
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Figure 16: Schematic representation of the three main pathways for Top1cc repair. (A) Helicase pathway. Top1cc are reversed 
by 5’ end religation after regression of the replication fork. Fork regression and restart requires helicase activity. (B) Tdp1 excision 
pathway. Top1 is degraded by the proteasome and the phosphodiester bond is cleaved by Tdp1. Tdp1 generates 3’-P ends that are 
processed by PNKP and religated by Lig3α. Tdp1, PNKP and Lig3α are part of the XRCC1 complex. (C) Endonuclease pathway. 
Top1cc are processed by non-specific nucleolitic cleavage of DNA, releasing Top1 and a fragment of DNA. Several endonucleases 
have been implicated. The resulting DNA lesions are likely processed by HR or by NHEJ. Adapted from (Ashour et al., 2015). 

 

I.6.3 Excision by the endonuclease pathway 

 

In addition to Tdp1, Top1-DNA lesions can be excised by 3’-flap endonuclease complexes (Figure 

16C). It is not clear how the pathway choice is determined, but recent evidences highlight a 

possible role of PARP1 in channelling Top1cc repair to the Tdp1 excision pathway (Alagoz et al., 

2014; Das et al., 2014). It is also not clear whether Top1 degradation has a role in the endonucleases 

pathway and in the pathway choice. The activity of the endonucleases is highly dependent on the 

structure of the Top1-associated DNA lesion and usually multiple nucleases are required to excise 

the DNA on the scissile strand to release Top1 and a fragment of DNA.  

The endonuclease pathway has initially emerged from studies using genetically altered yeast strains 

to identify genes that function in CPT repair in the absence of Tdp1 (Deng et al., 2005; Pommier et 

al., 2006; Vance and Wilson, 2002). The budding yeast Tdp1 KO is viable and relatively insensitive 

to CPT (Pouliot et al., 1999) and it acquires CPT sensitivity only in the presence of additional 

mutations in other DNA repair/checkpoint genes or specific endonucleases. Some endonucleases 

identified for the repair of Top1cc in yeast and/or in vertebrates are: 

- XPF/ERCC1 (ortholog of yeast Rad1/Rad10) (Vance and Wilson, 2002): XPF forms a 

heterodimer with its non-catalytic partner ERCC1 (excision repair cross-complementing group 1) to 

generate a structure-specific endonuclease, which cleaves the duplex DNA segment immediately 5’ 
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from the damaged region where the two DNA strands are separated (3’-flap, splayed arm or bubble) 

corresponding at about 3-4 nucleotides away from the 3’ end (Ciccia et al., 2008). XPF/ERCC1 

works in the NER pathway. Inactivation of the XPF/ERCC1 pathway increases the cytotoxicity of 

PARP inhibitors in CPT-treated mammalian cells (Zhang et al., 2011). In addition, siRNA 

downregulation of XPF reduces transcription- and replication-dependent γH2AX foci in response to 

CPT (Zhang et al., 2011). 

- Mus81/Eme1 (ortholog of yeast Mus81-Mms4) (Liu et al., 2002; Vance and Wilson, 2002): 

The heterodimer Mus81/Eme1 cleaves flap or branched DNA intermediates, but typically cleaves 3-

6 base pairs 5’ of the 3’ single strand/duplex transition and requires the presence of a 5’ end of 

DNA at the flap junction (Ciccia et al., 2008). Thereby it preferentially cleaves substrates 

mimicking stalled replication forks and nicked Holliday junctions. Recently it has been shown that 

Mus81/Eme1 is not involved in the direct excision of Top1cc in mammalian cells but rather 

participates in the repair and recovery of Top1cc-induced stalled replication forks (Zhang et al., 

2011). 

- MRN complex (ortholog of yeast MRX complex) (Deng et al., 2005; Liu et al., 2002): The 

nuclease of the MRN complex is Mre11 (see section II.5.1.1) and it preferentially cleaves 3’-single 

strand branched structures and requires a single-strand gap between the 3’ end to be processed and 

the 5’ end of the DNA (D'Amours and Jackson, 2002). The yeast MRX complex has a well-

established role in the nucleolytic removal of Spo11 (Hartsuiker et al., 2009) and it has also been 

implicated in the removal of both trapped Top1 and Top2 from DNA independently of its function 

in DSB repair and meiosis (Hamilton and Maizels, 2010; Hartsuiker et al., 2009).  

- SLX4-SLX1 (ortholog of yeast Slx4-Slx1): The dimeric complex has a strong endonuclease 

activity in 3’ flap and other substrates (Fricke and Brill, 2003). They have been identified in yeast 

as an alternative pathway to the Tdp1 excision pathway for protection against CPT (Deng Brown 

2005). In addition, SLX4 (SLX4 structure-specific endonuclease subunit) is involved in the repair 

of CPT-induced Top1cc in mammalian cells working as a scaffold protein for SLX1 (SLX1 

structure-specific endonuclease subunit), Mus81-Eme1 and XPF (Kim et al., 2013). 

- CtIP (ortholog of yeast Sae2): CtIP (carboxy-terminal binding protein-interacting protein) is 

a 5’ flap endonuclease that recognizes and cleaves branched DNA structures (Makharashvili et al., 

2014). CtIP functions at the 5’ DNA resection during homologous recombination (HR) (Sartori et 

al., 2007) and in the removal of Spo11 with the MRN complex (Hartsuiker et al., 2009). In yeast, 

Sae2 and MRX collaborate to remove Top2cc from DNA (Hartsuiker et al., 2009). In vertebrate, the 

BRCA1-CtIP interaction, which is dispensable for HR, plays a role in the nuclease mediated 

elimination of oligonucleotides covalently bound to polypeptides from DSBs, thus facilitating DSB 
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repair in response to Top1 and Top2 inhibitors (Nakamura et al., 2010). Consistently, CtIP S322A 

mutant DT40 cells deficient for BRCA1 interaction are hypersensitive to CPT (Nakamura et al., 

2010) and CtIP S322A-Tdp1 KO DT40 double mutants have greater than additive sensitivity to 

CPT (Das et al., 2014).  

- FEN1 (the ortholog of yeast Rad27): FEN1 (flap structure-specific endonuclease 1) is a 5’ 

flap endonuclease (Hiraoka et al., 1995). Deletion of yeast Rad27 causes mild sensitivity to CPT 

(Deng et al., 2005; Zheng et al., 2005) and this phenotype is rescued by human FEN1 (Zheng et al., 

2005). The implication of FEN1 in Top1cc removal could be related to FEN1 ability to directly 

cleave stalled replication forks in complex with WRN (Zheng et al., 2005). 
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CHAPTER II: DNA Double-Strand Break and  

DNA Damage Response 
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II.1 Sources of DSBs  
 

DNA is constantly assaulted by endogenous and environmental agents responsible for many 

thousands of DNA damages per cell every day (Lindahl and Barnes, 2000). The most severe form 

of DNA lesions are the double-strand breaks because they do not leave an intact complementary 

strand to be used as a template for DNA repair. A DSB is formed when both strands of the DNA 

duplex are severed by a break in the phosphodiester backbone at opposite sites within 10 bp. If left 

unrepaired, DSBs can lead to mutagenesis, chromosome breakage and rearrangement ultimately 

resulting in developmental defects, neurodegeneration, immunodeficiency, radiosensitivity, sterility, 

and cancer predisposition (Jackson and Bartek, 2009). 

DSBs can be very different from each other since they can have multiple origins.  

 

Endogenous DSBs 

In various specialized contexts, DSBs are programmed by the cell. During meiosis, the Top2-

related enzyme, Spo11 generates DSBs to promote exchange of genetic information between 

parental chromosomes by HR (Neale and Keeney, 2006). During immune system development, 

DSB-induced rearrangements at immunoglobulin genes, in the context of V(D)J recombination and 

CSR, occur in lymphoid cells to generate immunoglobulin and T-cell receptor diversity and for 

antigen-stimulated B-cell differentiation (Bassing and Alt, 2004; Chaudhuri and Alt, 2004). 

Telomeres also possess DNA ends that are sequestrated in the Shelterin complex to prevent them 

from being recognized as DNA damage and from fusions (de Lange, 2005). In addition, 

spontaneous DSBs can arise as a consequence of endogenous processes, such as DNA oxidation, 

generation of ROS, nitrogen species, reactive carbonyl species, oestrogen and cholesterol 

metabolites (Hoeijmakers, 2009). ROS are formed continuously in the cell as products of metabolic 

activities (Bonner et al., 2008; De Bont and van Larebeke, 2004). ROS are estimated to be 

responsible for about 5x103 SSBs per cell per day, about 1% of which may lead to DSBs by the 

close proximity of two SSBs or by replication (Tanaka et al., 2006). The encounter of DNA 

replication fork with unrepaired DNA lesions is the major source of endogenous DSBs. The 

slowing or the stalling of the replication fork progression is defined as replication stress and in cell 

there are several sources of replication stress (reviewed in (Magdalou et al., 2014; Zeman and 

Cimprich, 2014)), including obstacles to fork progression (nicks, gaps, AP sites, DNA secondary 

structures, protein-DNA complexes…) (Lambert and Carr, 2013), interferences between replication 

and transcription (R-loops, early replicating fragile sites, topological stress,…) (Lin and Pasero, 

2012), depletion of nucleotides or replication machinery components (Bester et al., 2011), 



	   	   	   64 
	  

ribonucleotides misincorporation (Dalgaard, 2012), inappropriate firing of replication origins 

(common fragile sites) (Debatisse et al., 2012) or DNA accessibility (Zeman and Cimprich, 2014). 

The frequency of replication-associated DSBs is so high that the synthesis of both leading- and 

lagging-strand in vivo is considered to be discontinuous (Lehmann and Fuchs, 2006). 

 

Exogenous DSBs 

Exogenous DSBs can be produced directly by physical or chemical agents or as a secondary lesion 

upon collision with replication and transcription or as a by-product of repair. UV light from sun is 

an example of physical source of DNA damage. A single day of sun exposure can induce up to 105 

UV photoproducts per cell to which inflammation-induced ROS damage can be sum up 

(Hoeijmakers, 2009). Another example of physical genotoxics that produce DSBs is ionizing 

radiation (IR) that can result from radioactive decay of naturally radioactive compounds or from 

medical treatment employing X-ray or radiotherapy. Chemical agents used in cancer chemotherapy 

can also produce DSBs. Among them, Top2 inhibitors (etoposide, doxorubicin...) that can produce 

DSBs directly or alkylating agent (methyl methanesulfonate, temozolomide…) and crosslinking 

agents that can produce DSBs indirectly. Today, one of the most prevalent environmental chemical 

than can induce a variety of adducts and ROS-dependent damages is cigarette smoking, on average 

≈ 45-1000 aromatic DNA adducts per cell per day in the lung of smokers (Ciccia and Elledge, 

2010). 

Table 4 and Figure 17 summarize the mechanisms of action and the amount of DSBs produced by 

some exogenous agents.  
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Table 4: Examples of DNA DSB inducing agents, mechanisms and amount of DSB induction 

Agents 
Characteristics and mechanism of 

DSB induction 
Amount of DSBs References 

IR 

γ-Irradiation DNA damage by IR is formed by both direct 
energy deposition on DNA (especially 

particulate IR) and by indirect action in the 
surrounding environment, in particular, 
reactions with diffusible water radicals 

(especially for γ- and x-ray). The biological 
effects of IR arise from the production of 

DSBs and clustered DNA damage (lesions 
within 10 bp separation) randomly on the 
genome. IR generate a mixture of DNA 

lesions, ≈ 4-5% of them are DSBs. 

1 Gy: 1 DSB/0.2x102 bp 
(≈ 30-60 DSBs/cell)a 

(Cedervall et al., 1995; 
Ruiz de Almodóvar et 

al., 1994) 

α-particles, 
heavy ions 

1 Gy: 41-73 DSBs/cell 
using α-particles with 

LET of 110 KeV/µMb or 
nitrogen ions with LET 

80-225 KeV/µMb 

(Claesson et al., 2007; 
Löbrich et al., 1996; 

Radulescu et al., 2004) 

X-ray 
1 Gy: 0.8 DSB/0.2x102 

bp (≈ 25 DSB/cell) 
(Elmroth et al., 2003b) 

UV 

UVA Photons of UV light are in the energy range 
of chemical bond and then alter the 

molecules that absorb energy. UVC (240-290 
nm), UVB (290-230 nm) and UVA (320-400 

nm) predominantly induce pyrimidine 
dimers. UVA and UVB produce SSBs and 
DSBs indirectly by reaction with oxygen 

molecules (generally replication-dependent 
DSBs). 

1 DSB/0.95x106 bp with 
laser 364nm + 

Hoechst33342; 90-180 
DSBs/stripe (equals to 3 
Gy γ-Irradiation) with 
laser 337nm + BrdU. 

Laser generates a high 
number of breaks in a 
small nuclear volume 

(Bekker-Jensen et al., 
2006) (Kruhlak et al., 

2006) 

UVB __ (Peak and Peak, 1990) 

UVC 

UVC through filters 
0.0156: 6-

4photoproducts + 0.05 
cyclobutane pyrimidine 

dimers/10Kb/J/m2. 
Number of DSBs not 

determined. 

(van Hoffen et al., 
1995) 

Drugs 

Radiomimetics 

DNA damage is directly induced by free 
radical attack on deoxyribose moieties in 

both DNA strands. They produce replication-
independent DSBs, SSBs and base damage. 
Examples of radiomimetics are bleomycin, 
neocarzinostatin (NCS), calichemicin, C-

1027, kedarcidin 

Bleomycin: 10% of the 
induced lesions are 

DSBs; NCS: 20% of the 
induced lesions are 

DSBs; calicheamicin: 
30% of the induced 
lesions are DSBs 

(Elmroth et al., 2003a; 
Povirk, 1996) 

Bifunctional 
alkylators 

Bifunctional alkylators have two reactive 
sites and they crosslink DNA with proteins or 
two DNA bases within the same DNA strand 
(intra-strand crosslinks) or on opposite DNA 
strands (inter-strand crosslinks). Examples 

are nitrogen mustard, mitomycin C and 
cisplatin. They can produce DSBs, DNA 
cross-links, replicative lesions and bulky 

adducts. 

__ 
(Helleday et al., 2008) 
(Woods and Turchi, 

2013) 

Replication 
inhibitors 

These inhibitors target DNA synthesis. 
Aphidicolin directly inhibits DNA 

polymerase activity. Hydroxyurea inhibits 
ribonucleotide reductase. They can generate 

DSBs and replicative lesions. 

__ (Saintigny et al., 2001) 

Topoisomerase 
inhibitors 

These inhibitors trap topoisomerases in 
complex with DNA producing DSBs. They 
produce also SSBs and replicative lesions. 

__ 
(Muslimović et al., 

2009) 

aAssuming 6x109 bp x diploid cell 
bLET (Linear	  Energy	  Transfer) is defined as the average energy that an ionizing particle deposits per unit length of track (KeV/µm) 
as it traverses matter 
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Figure 17: DNA damage in endogenous conditions or induced by genotoxic agents. DSBs are detected by γH2AX staining and 
cyclobutane pyrimidine dimers (CPD) are detected by antibody against CPD. (A) Non-treated HeLa cells. (B) U2OS cells 1 h after 
treatment with 10 Gy γ-Irradiation. (C) HeLa cells treated with 25 ng/ml NCS. (D) Human fibroblasts irradiated with UVC through a 
3 µM pore-filter. (E) Human fibroblasts 15 min after carbon ion irradiation. (F) PA-GFP-H2AX in MEFs H2AX KO irradiated with 
344 nm laser followed by Hoechst sensitization. (G) U2OS cells irradiated with 405 nm laser followed by BrdU 
(bromodeoxyuridine) sensitization. (H) Cells irradiated by a 3-photon NIR laser. (I) HeLa cells expressing I-SceI endonuclease. (J) 
Leukemic cells treated with etoposide. (K) Colon cancer cells treated with CPT. (L) Eroded telomeres in ageing cells. Telomeric 
DNA (red) and γH2AX (green) staining. Eroded telomeres display γH2AX foci but are too short to bind telomeric probe. DNA is 
blue for images (A-I and L) and red for images (J, K). γH2AX is green for all images. Adapted from (Nagy and Soutoglou, 2009) 
and (Bonner et al., 2008). 

 

II.2 DDR: sensing DSB and signalling 

	  

The DNA damage response (DDR) is the global signalling network set up by cells to maintain 

genome integrity. DDR senses different types of DNA damages to mount a coordinated and 

multifaceted response.	  	  

DDR is most vigorously activated by DSBs. DDR proteins are classically divided in four categories 

according to their role: sensors, mediators, transducers and effectors. However, DDR proteins have 

a broad activity and this classification is for convenience and can vary from author to author. DNA 

damage is detected by sensors proteins. The signals are transmitted to transducers that, aided by the 

!!

(j)          etoposide! (k)    campthotecin! (l)           telomeres!
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mediators, amplify the signal and transmit it to the effectors in numerous downstream pathways 

(Niida and Nakanishi, 2006) (Table 5). These pathways slow down or stop the cell cycle 

progression at critical stages before (G1/S checkpoint) or during (intra-S checkpoint) DNA 

duplication and before cell division (G2/M checkpoint) giving time to the cell for DSB repair before 

replication and mitosis, respectively. In parallel, DDR stimulates the re-localization and the 

transcriptional and post-transcriptional regulation of DNA repair proteins enhancing repair (Harper 

and Elledge, 2007). 	  

If DNA is efficiently repaired, DDR is inactivated and normal cell functioning can be restored. 

Alternatively, maintained DDR signalling activates apoptosis or senescence, both of which have 

potential antitumor functions (Figure 18).  

 

Table 5: Main factors involved in DNA damage signalling 

Functions Class Proteins 

Sensors 

RFC-like Rad17, RFC2 

PCNA-like Rad9-Rad1-Hus1 (9-1-1 complex) 

DSB recognition/repair Mre11-Rad50-Nbs1 (MRN complex), RPA 

Mediators 

BRCT-containing (ATM signalling) BRCA1, 53BP1, MDC1, MCPH1, PTIP 

BRCT-containing (ATR signalling) Top1BP1 

Non-BRCT-containing (ATR signalling) Claspin 

Transducers 
PI3K kinase-like protein ATM, ATR, DNA-PK 

PIKK binding protein kinase ATRIP, Chk1, Chk2 

Effectors 

Transcription factor p53, p21 

Phosphatase Cdc25A,B,C 

Protein kinase Cdks, Cdc7 
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II.3 ATM, ATR and DNA-PKcs: three PI3-Kinases of the DDR 

 

In mammalian cells, the ATM, ATR and DNA-PKcs are the most apical DDR kinases. These 

proteins are members of the phosphatidylinositol-3-kinase-like kinase family (PIKKs). Other 

members of this group are SMG1 (suppressor of mutagenesis in genitalia 1), mTOR (mammalian 

TOR) and TRRAP (transformation/transcription domain-associated protein). 

The PIKKs are large proteins (between 2547 and 4128 amino acids) that share a similar domain 

organization. From the N-terminus to the C-terminus (Lempiäinen and Halazonetis, 2009; Lovejoy 

and Cortez, 2009) (Figure 19): 

- FAT domain: the FRAP-ATR-TRAAP domain consisting of α-helical HEAT repeats (helix-

turn-helix motifs). 

- PI3K-like domain: the serine/threonine kinase domain, preferential phosphorylation of S/T-

Q motifs. 

- PRD domain: the PIKK-regulatory domain, its C-terminal half appears to be a site of post-

translational modifications or protein–protein interactions that enhance PIKK kinase activity. 

- FATC domain: the small (32 amino acids) and highly conserved FAT C-terminus domain 

that is required for PIKK kinase activity. 

Modulation of protein activity, 
stability and interactions 

Translocation of proteins 
and RNA species 

Modulation of 
gene expression 

DNA repair 

Cell survival 

Effectors

Transducers 

Cell death 

Cell cycle 
checkpoints 

Modulation of signalling 
and metabolic pathways 

Activation of cell death or 
senescence pathways 

DSB 

Sensors 

Mediators 

Figure 18: The DDR cascade. Schematic representation of the signal transduction of checkpoint responses and activation of cell 
survival or cell death pathways ensued. Figure adapted from (Shiloh and Ziv, 2013). 
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Figure 19: Schematic representation of the functional PIKK 
domains showing the locations of the kinase, PRD, FAT, and 
FATC domains (Lovejoy and Cortez, 2009). 

 

 

The large N-terminal region of PIKKs is composed of numerous HEAT repeats with little sequence 

similarity between the kinases and may serve as a protein–protein interaction surface. 

The precise functions of these PIKK domains remain unclear. This is related to the lack of structural 

data because of PIKK’s size that challenges crystallization. However, the crystal structure of DNA-

PKcs was obtained (6.6 Å resolution) (Sibanda et al., 2010). The domain structure of the others 

PIKKs comes principally from electron microscopy studies (Llorca et al., 2003; Unsal-Kaçmaz et 

al., 2002) and superposition of PIKK domains on PI3K three-dimensional structure. 

 

II.3.1 ATM  

 

The gene coding for the ATM kinase is localized to chromosome 11q22-23 and Shiloh and 

colleagues have discovered it in 1995 (Savitsky et al., 1995). ATM gene is mutated in Ataxia-

Telangiectasia (AT), a rare autosomal recessive disorder. AT patients display progressive 

neurodegeneration, telangiectasia, immunodeficiency, extensive problems related to fertility and 

metabolism and increased risk of cancer (for review see (Lavin, 2008)).  

AT cells show increased chromosome instability, premature senescence of cultured primary 

fibroblasts, high sensitivity to DSBs and defective signalling response such as cell cycle checkpoint 

and apoptosis that clearly contribute to cancer predisposition. 

Not surprisingly, ATM is a key player in DDR and it has long been known that its activity is 

enhanced by DSBs (Banin et al., 1998; Canman et al., 1998). However, evidences have 

accumulated showing that ATM is part of many other signalling networks, including cell 

metabolism and growth, oxidative stress, and chromatin remodelling (reviewed in (Cremona and 

Behrens, 2014; Shiloh, 2014; Shiloh and Ziv, 2013; Stracker et al., 2013)). 

 

The three main elements that drive ATM in response to DSBs are: re-localization, activation and 

chromatin retention.  

Activation: In undamaged cells, ATM is present in a dimeric or multimeric configuration that, after 

damage, releases highly active ATM monomers (Bakkenist and Kastan, 2003). During this process, 

ATM undergoes autophosphorylation on at least four sites (S367, S1893, S1981 and S2996) 
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(Kozlov et al., 2006) (Figure 20). Autophosphorylation after DNA damage is required for 

monomerization (Bakkenist and Kastan, 2003) and mutations of the autophosphorylation sites to 

alanine result in defects in ATM-dependent phosphorylation and increased radiosensitivity (Kozlov 

et al., 2006). ATM autophosphorylation at S1981 is widely used as a read-out of ATM activation. 

ATM phosphorylation is regulated by different phosphatases (see Table 6). In particular, inactive 

dimeric ATM associates with protein phosphatase 2A (PP2A). This phosphatase seems to 

constitutively dephosphorylate ATM under physiological conditions (Goodarzi et al., 2004). Upon 

DSB induction, ATM-PP2A interaction is abolished and trans-phosphorylation of ATM ensues. 

Phosphorylation is not the only post-translational modification that modulates ATM activity. Sun et 

al. showed that DSBs induce Tip60 (tat interacting protein, 60kDa) -mediated acetylation of ATM 

at K3016 (near the FATC domain) of ATM (Sun et al., 2005; Sun et al., 2007)  (Figure 20). SiRNA 

depletion of Tip60 causes defects in ATM autophosphorylation and mutations on K3016 inhibit 

monomerization of inactive ATM, prevent the upregulation of ATM activity by DNA damage and 

the ATM-dependent p53 and Chk2 phosphorylation. 

 

Re-localization: Upon DSB induction, the total amount of ATM does not change, but a portion of 

nuclear ATM is rapidly recruited to DSB sites, whereas another portion remains nucleoplasmic. 

Using live cell imaging of fluorescently-tagged ATM, Davis and colleagues showed that in 

response to laser-generated DSBs, ATM localizes at chromatin after 60 seconds reaching its 

maximal level in 10 minutes (Davis et al., 2010). ATM autophosphorylation is required for its 

association to chromatin (Berkovich et al., 2007) but at the same time, ATM recruitment to 

chromatin is an important part of its activation process. Kitagawa et al. showed that Nbs1 (a part of 

the MRN complex) and BRCA1 migrate to the sites of DSBs independently of ATM activation, but 

their presence is required to recruit activated ATM to chromatin (Kitagawa et al., 2004). Berkovich 

et al. showed that Nbs1 is required for ATM autophosphorylation as well as for the association of 

active ATM with chromatin after the induction of endonuclease-generated DSBs (Berkovich et al., 

2007). The MRN complex has been shown by several groups in in vitro and in cellulo studies to be 

absolutely required for the ATM signalling pathway in response to DSBs (Table 6) (Lee and Paull, 

2007). 

 

Retention: The retention of ATM and other DDR proteins on chromatin is a crucial part of DDR 

signalling. Stable binding of single factors of the DDR machinery to chromatin is sufficient to 

induce the DNA damage response in the absence of DSBs (Soutoglou and Misteli, 2008).  
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YFP-tagged ATM is retained for a long-time at the site of laser-generated DSBs. Two hours after 

irradiation, the fluorescence intensity of ATM is still at 60% of its maximal level (Davis et al., 

2010). In this work, the authors suggested that ATM is retained at chromatin to assist in processes 

of chromatin remodelling and to participate to DSB repair. Data showing that ATM is required for 

DSB repair in the heterochromatin by phosphorylating KAP1 (KRAB-associated protein-1) (see 

section II.8) support this hypothesis (Goodarzi et al., 2008). In addition, ATM autophosphorylation 

is shown to be required for sustained retention of ATM to DSBs. In particular, autophosphorylation 

at S1981 promotes ATM retention by allowing its interaction with the mediator protein MDC1. 

 

	  
 

Figure 20: Schematic representation of ATM. The major domains, the sites of PTMs (post-translational modifications) and the 
proteins responsible for these modifications are represented. Figure is adapted from (Shiloh and Ziv, 2013) 

 

Several questions remain opened about the mechanism of ATM activation: the nature of the initial 

signal that activates ATM and promotes its monomerization, the role of ATM recruitment to 

chromatin and the role of different PTMs. A huge amount of literature discusses and debates these 

open questions and sometime experimental results are contradictory depending on models, 

experimental conditions and the nature of the stimulus (reviewed in (Cremona and Behrens, 2014; 

Lavin, 2008; Shiloh, 2006; Shiloh and Ziv, 2013)).  

There is growing agreement that the initial stimulus for ATM activation is a chromatin 

conformational change but the mechanism of action is still unclear. The importance of chromatin 

status is supported by the activation of ATM in response to chromatin changes in the absence of 

DNA damage (Bakkenist and Kastan, 2003). Chloroquine, histone deacetylase inhibitors or 
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hypotonic buffer activate ATM and induce p53 phosphorylation. However, activated ATM by these 

factors does not form nuclear foci and fails to phosphorylate its substrates bound to chromatin.  

The importance of autophosphorylation in the ATM activation process in human cells is also a 

shared issue. On the other hand, studies in other organisms and in vitro have shown that 

autophosphorylation is dispensable for ATM monomerization and activation. For example, the 

expression of a non-phosphorylatable mutant S1987A (the mouse equivalent for S1981A) in ATM 

KO mice yields normal ATM-dependent phosphorylation of substrates and localization and 

retention at DSB sites (Pellegrini et al., 2006). Another report showed that autophosphorylation is 

accessory for the initial recruitment of ATM to DSB sites in Xenopus egg extracts (Dupré et al., 

2006). Furthermore, in vitro studies using purified human components show that activation of ATM 

does not need its autophosphorylation (Lee and Paull, 2005). Despite these differences, it is likely 

that in human cells there are cellular factors that render autophosphorylation essential. Table 6 

summarizes several proteins described to regulate ATM activation. 
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Table 6: Some human cellular factors known to regulate ATM 

Proteins Characteristics ATM regulation Type of DSB References 

Activators 

MRN 
complex 

Mre11-Rad50-
Nbs1 DSB sensor 

complex 

MRN interacts with ATM in response to 
DSBs. Nbs1 is required for activation and 

recruitment of ATM to chromatin 

Endonuclease-
generated 
DSBs, IR, 

NCS 

(Berkovich et al., 
2007; Girard et al., 
2002; Kitagawa et 
al., 2004; Uziel et 

al., 2003) 

Tip60 
Histone 

acetyltransferase 

Tip60 interacts constitutively with ATM. 
Tip60 activated by DSBs acetylates ATM 

(K3016) at chromatin in an MRN-dependent 
manner. Role in ATM activation 

 

IR, Bleomycin 
(Sun et al., 2005; 
Sun et al., 2007) 

MDC1 
DDR mediator 

protein 

Interaction with phospho-S1981-ATM. Role 
in ATM activation and retention at 

chromatin 
 

IR, laser-
irradiation, γ-

irradiation 

(Mochan et al., 
2003; So et al., 

2009) 

53BP1 
DDR mediator 

protein 

SiRNA against 53BP1 decrease ATM kinase 
activity, the phenotype is more pronounced 

in cells lacking Nbs1 
 

IR 

(DiTullio et al., 
2002; Mochan et 

al., 2003; Wang et 
al., 2002) 

BRCA1 
DDR mediator 

protein, E3 
Ubiquitin ligase 

It is required for ATM localization at 
chromatin and facilitates ATM-mediated 
phosphorylation of some ATM substrates 

 

IR, UV 
(Foray et al., 2003; 

Kitagawa et al., 
2004) 

HMGN1 
Nucleosome-

binding protein 

It regulates ATM activity by modulating 
histone H3 acetylation 

 
IR (Kim et al., 2009) 

RNF8 
and 

CHFR 
E3 Ubiquitin ligase 

Regulators of ATM activity by synergic 
modulation of histone H4 acetylation 

 
IR (Wu et al., 2011) 

RNF2 
and 

BMI1 

Ubiquitin E3 ligase 
complex 

It promotes the localization of activated 
ATM at chromatin by ubiquitinating H2A(X)  

 
IR 

(Facchino et al., 
2010; Pan et al., 

2011) 

hMOF 
Histone 

acetyltransferase 

Acetylation of H4. SiRNA against hMOF 
decreases ATM kinase activity 

 
IR (Gupta et al., 2005) 

PARP1 
NAD+ ADP-

ribosyltransferase 

PARP1 rybosylates ATM in response to IR. 
ATM rybosylation seems required for ATM 

localization at chromatin but not for its 
autophosphorylation at S1981 

 

IR, γ-
irradiation 

(Aguilar-Quesada 
et al., 2007; Haince 

et al., 2007) 

TIP 
Negative regulator 

of PP2A 

TIP positively regulates ATM 
autophosphorylation by interaction and 

inhibition of PP2A phosphatase 
 

No DSBs: 
physiological 

conditions 

(McConnell et al., 
2007) 

PP5 Phosphatase 

PP5 interacts with ATM in a DNA damage-
inducible manner and stimulates its 

autophosphorylation 
 

NCS, IR (Ali et al., 2004) 

Inactivators 

PP2A Phosphatase 

It prevents ATM autophosphorylation by 
interacting with ATM under physiological 

conditions. It dissociates upon DSBs 
 

No DSBs: 
Okadaic Acid, 

IR 

(Goodarzi et al., 
2004) 

Wip1 Phosphatase 

ATM activity regulator. Wip1 
dephosphorylates ATM S1981 in response to 

DSBs 
 

IR 
(Shreeram et al., 

2006) 

Cofactors ATMIN ATM cofactor ATM activity regulator in the absence of 
DSBs. It interacts with ATM in response to 
chromatin conformational changes in Nbs1-

independent manner 
 

No DSBs: 
Cloroquine, 
hypotonic 
conditions 

(Kanu and 
Behrens, 2007) 
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II.3.2 ATR 

 

ATR has been discovered in 1996 in the human genome database as a gene with sequence 

homology to ATM and SpRad3, hence the name ATR (Cimprich et al., 1996). 

ATR deficiency in mice results in early embryonic lethality (Brown and Baltimore, 2000). 

Individuals with hypomorphic mutations of ATR, causing a partial loss of its activity, develop the 

rare Seckel syndrome, which is characterized by microcephaly and growth retardation.  

The primary signal for ATR activation is ssDNA coated with the ssDNA-binding protein RPA. 

ssDNA occurs predominantly at stalled or collapsed replication forks but ssDNA can be produced 

also by the processing of certain DNA lesions, such as pyrimidine dimers or nuclease-mediated 

resection of DSBs. In physiological conditions, the sources of replication stress are abundant. For 

example, in mammals, the rate of sister chromatid exchange suggests that ≈ 10 DSBs form at 

replication forks per cell division (Haber, 1999). The frequency of fork stalling is much higher 

because of the numerous sources of replication stress (see section II.1). This is the reason why, 

unlike ATM, ATR is essential. ATR is probably activated during every S-phase to regulate the 

firing of replication origins, the repair of damaged replication forks and to prevent premature entry 

into mitosis.  

Once RPA-coated ssDNA appears, a canonical ATR signalling pathway is organised in four steps 

(Nam and Cortez, 2011) (Figure 21): 

1) Recruitment of ATR via ATR-interacting protein (ATRIP) to RPA-coated ssDNA: ATRIP 

binds directly RPA to allow ATR recruitment at chromatin.  

2) ATR-independent recruitment of Rad9-Hus1-Rad1 proteins (9-1-1 complex) and 

topoisomerase-binding protein 1 (TOBP1): the junction of ssDNA/dsDNA is recognized by Rad17- 

replication factor C (RFC2) clamp loader that in turn, loads the 9-1-1 clamp at the 5’ primer 

junction. This loading brings the ATR activator, TOBP1 to the damage site through the interaction 

with the phosphorylated Rad9.  

3) TOBP1-mediated activation of ATR: TOBP1 binds and activates ATR in an ATRIP-

dependent manner. The mechanism of ATR activation by TOBP1 is unknown. A proposed model 

envisages that TOPB1 binding to ATR induces a conformational change of ATR that increases its 

kinase activity and/or its affinity for substrates (Mordes and Cortez, 2008).  

4) Phosphorylation of ATR substrates: Chk1 and other ATR effectors are phosphorylated by 

active ATR. Currently, the most common measure of ATR activation is the phosphorylation of 

Chk1 on S317 and S345. ATR is phosphorylated at S428, S435, and T1989 and possibly at S436 

and S437 (Daub et al., 2008; Dephoure et al., 2008; Liu et al., 2011; Nam et al., 2011). However, at 
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present only the phosphorylation at T1989 has been linked to ATR activation (Liu et al., 2011). 

An important feature of the regulation of ATR signalling pathway is the independent recruitment of 

ATR-ATRIP and TOBP1. This characteristic represents a molecular version of the “two-man rule” 

for ATR activation (Cimprich and Cortez, 2008): by requiring multiple complexes to sense the 

problem, inappropriate launching of the checkpoint might be prevented.  

	  
Figure 21: Canonical ATR signalling pathway. ssDNA coated by RPA induces the independent recruitment of ATR-ATRIP and 
TOBP1. TOBP1 activates ATR kinase, which in turn phosphorylates numerous substrates including Chk1 to regulate cellular 
responses to DNA damage and replication stress. Figure adapted from (Cimprich and Cortez, 2008). 

 

Although a good model for ATR activation has emerged from the current body of work, much is 

still unclear. The recruitment of ATR to DNA damage sites and its mechanism of activation are 

poorly understood. In addition, a number of mechanisms of ATR regulation that do not fit into the 

canonical ATR signalling pathways are emerging. For example, DNA alkylating agents seem to 

activate ATR in an RPA-independent and mismatch repair-dependent mode (Yoshioka et al., 2006). 

Similarly, DSBs can induce ATM-dependent ATR activation in S and G2 phases of the cell cycle 

via the ATM and Mre11-mediated DSB-end resection (Jazayeri et al., 2006; Myers and Cortez, 

2006). In addition, Derheimer et al. showed that the ATR pathway is also activated in response to 

transcriptional stress (Derheimer et al., 2007). Stalled elongating RNAPII complexes induce RPA-

dependent ATR activation and accumulation of phosphorylated p53 (S15). The authors 

hypothesized that a region of ssDNA is formed after the blockage of transcription elongation that 

becomes coated with RPA, leading to the recruitment of ATR. 
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II.3.3 DNA-PK 

 

The first clue that cells contain a DNA-activated protein kinase came from the work of Andersons 

and colleagues (Walker et al., 1985) and then DNA-PK was discovered in 1990 as part of the 

transcriptional complex Sp1 (specificity protein 1) (Jackson et al., 1990). Today, the best 

characterized function of DNA-PK is in the response to DSBs and in particular in the non-

homologous end-joining (NHEJ) pathway for DSB repair. However, new cellular roles of DNA-PK 

are emerging in mitosis, transcription, viral infection and telomere maintenance (for review see 

(Goodwin and Knudsen, 2014; Jette and Lees-Miller, 2015)). DNA-PK is a holoenzyme composed 

of a large catalytic subunit (DNA-PKcs) and the DNA-end binding heterodimer Ku. 

 

Ku 

The heterodimer Ku was initially discovered as an auto-antigen, consisting of two subunits of 70 

(Ku70) and 83 (Ku80) kDa (Mimori et al., 1986). Mice deficient for Ku display severe 

immunodeficiency, growth retardation and a hypersensitivity to IR (Manis et al., 1998; 

Nussenzweig et al., 1997). Ku heterodimer is extremely abundant in cells (≈ 4x106 molecules per 

cell) (Woodgett, 1993) and its stability depends on the presence of the two components: the 

depletion of Ku70 leads to Ku80 depletion (Gu et al., 1997) and vice versa (Boubnov et al., 1995). 

Ku shows high affinity for dsDNA ends (Kd ≈ 2.4x10-9 – 5x10-10 M) (Blier et al., 1993) and binds 

DNA in a sequence-independent manner. Ku has a ring structure that encircles DNA for 

approximately two turns of helix (Walker et al., 2001).  

The main function of Ku is to detect DNA free ends and to target DNA-PKcs to them. In addition, 

Ku has a 5’-deoxyribose-5-phosphate/AP lyase activity (excision of 5’-terminal abasic sites) 

(Roberts et al., 2010). This activity is maximal at DSB ends suggesting that Ku may process DSB 

ends for ligation (Strande et al., 2012). 

 

DNA-PKcs 

The cDNA of DNA-PK has been isolated in 1995 by Jackson and colleagues (Hartley et al., 1995). 

The only germline missense mutation of the gene encoding DNA-PK has been described in a RS-

SCID (radiosensitive T-B- severe combined immunodeficiency) patient (van der Burg et al., 2009). 

Like Ku, DNA-PKcs is extremely abundant in human cells (≈ 5x106 molecules per cell) (Woods 

and Turchi, 2013). 

The X-ray structure of DNA-PKcs displays that the protein is composed of a “head” and an 

“arms/palm” domain organized in a pincer-shaped structure surrounding an open, central channel 
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proposed to bind dsDNA (Sibanda et al., 2010) (Figure 22A). Some characteristics of the “arms” 

domain suggest that it may be able to open and close around the central DNA binding channel and 

the phosphorylation of DNA-PKcs may modulate this process.  

In physiological conditions, the activation of the kinase activity of DNA-PKcs requires its 

association with both the Ku heterodimer and a DNA terminus. Once activated, DNA-PKcs can 

phosphorylate different substrates including factors of NHEJ, histone H2AX and DNA-PKcs itself 

(reviewed in (Jette and Lees-Miller, 2015)). 

In vitro, autophosphorylation of DNA-PKcs results in the inactivation of its kinase activity and the 

dissociation of DNA-PKcs from the Ku-DNA complex (Chan and Lees-Miller, 1996). DNA-PKcs 

can be phosphorylated at more than 40 sites in vitro and at 37 sites in vivo (Dobbs et al., 2010) 

(Figure 22B). The most studied DNA-PKcs phosphorylation sites are located in its N-terminal 

domain and have been termed the ABCDE (T2609, S2612, T2620, S2624, T2638, T2647) and PQR 

(S2023, S2029, S2041, S2053, S2056) clusters. These clusters have been studied by generating 

non-phosphorylatable mutants at each site. Ablation of only 1 or 2 sites in either cluster has little or 

no functional effect. However, complete ablation of ABCDE phosphorylation leads to a severe 

radiosensitive phenotype (Ding et al., 2003). In contrast, ablation of PQR phosphorylation imparts 

only a modestly radiosensitive phenotype (Cui et al., 2005). In the two cases, the complete mutation 

of those clusters does not impact the kinase activity but deregulates the end processing. 

Functionally, the two clusters seem to work in an opposite direction: phosphorylation of ABCDE 

promotes end access for NHEJ while phosphorylation of PQR inhibits it (Cui et al., 2005). In 

addition, mutation of the T2609 and S2056 residues leads to the increased stabilization of DNA-

PKcs into DNA that interferes with NHEJ (Uematsu et al., 2007). Together these data support a 

model in which DNA-PKcs phosphorylation facilitates NHEJ by destabilizing the interaction of 

DNA-PKcs with DNA ends and is required for release of DNA-PKcs from damaged DNA in vivo 

(Dobbs et al., 2010) . ABCDE cluster can be also phosphorylated at T2609 and T2647 by ATM in 

vivo (Chen et al., 2007; Jiang et al., 2015).  

Other phosphorylation sites that have functional importance include the JK (T976/S1104) and the N 

(S51/S72) clusters. In addition, phosphorylation of T3950, which is located in the catalytic domain, 

likely modulates the kinase activity (Douglas et al., 2007). 
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Figure 22: Model for structure, domains and trans-activation of DNA-PKcs. (A) Model of DNA-PKcs’ structure: the “head” 
(yellow and purple) and arms/palm (green) with the DNA binding cavity in the center of the molecule before and after 
autophosphorylation. (B) Schematic representation of DNA-PKcs showing the main phosphorylation sites in vivo. A and B are 
adapted from (Wang and Lees-Miller, 2013) (C) Cartoon model of the trans-activation of DNA-PK (Woods and Turchi, 2013). 

 

Activation of DNA-PK 

In response to laser microirradiation fluorescent-tagged DNA-PKcs rapidly localizes to DSBs 

reaching its maximal level in ≈ 10 minutes (Davis et al., 2010). Precisely, how DNA-PKcs is 

recruited to Ku and how this recruitment leads to kinase activation remains unclear, but the binding 

of DNA-PKcs to Ku, enables Ku to translocate inward into the dsDNA allowing DNA-PKcs to bind 

the terminus of a DNA end (Frit et al., 2000).  

A current model of DNA-PK’s activation envisages the following steps (for review see (Meek et al., 

2008)): 

 

1) Ku recognizes and binds the two ends of a DSB. 

2) DNA-PKcs is recruited at each end via Ku. DNA binding induces a conformational change 

in DNA-PKcs that results in closer association of the head and the palm domains. 

3) Two DNA-PK molecules on adjacent sides of the DSB end can interact and form a synaptic 

complex (Figure 22C). These structures likely maintain broken ends in proximity and provide a 

platform for NHEJ factors, blocking access to nucleolytic activities. 

4) Synapses favour the autophosphorylation of DNA-PKcs. It has been shown that 

autophosphorylation within the two major clusters occurs in trans (Meek et al., 2007) but the 

mechanism of all phosphorylation’s events in vivo is still unclear (in trans, in cis or even on both 
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sides of the synapsis). ABCDE autophosphorylation in trans promotes access of DNA ends to end 

modifying factors (including the nuclease Artemis). 

5) End alignment is “sensed” by DNA-PK resulting in PQR autophosphorylation that “locks” 

the two ends in aligned position favouring NHEJ. 

6) Additional autophosphorylation occurs at undefined sites to facilitate the final step in NHEJ 

and to release DNA-PKcs. 

7) After dissociation, DNA-PKcs is dephosphorylated and can be recycled. The question of 

how Ku is removed from the DNA remained unclear. Ku is ubiquitylated in response to DSBs 

(Brown et al., 2015). Hence, it has been suggested that Ku may be ubiquitylated and then degraded 

and/or released from chromatin and degraded (Brown et al., 2015; Feng and Chen, 2012). 

 

II.3.4 Interplay of PIKKs 

 

Although ATM, ATR and DNA-PK have distinct DNA damage specificities, convincing evidences 

are accumulating about their cross talk (Cimprich and Cortez, 2008; Shrivastav et al., 2009; Woods 

and Turchi, 2013). 

PIKKs can regulate each other directly: 

- Decreased expression of DNA-PK is associated with downregulation of ATM protein levels 

in various cellular models (Chan et al., 1998; Gately et al., 1998; Peng et al., 2005).  

- DNA-PK can phosphorylate ATM on S1981 in apoptotic cells (Solier et al., 2009). 

- ATM can phosphorylate DNA-PK on T2609 in response to IR (Chen et al., 2007) and 

during apoptosis (Solier et al., 2009). ATM-mediated DNA-PK phosphorylation is critical 

for the DSB repair activity of DNA-PK and radioresistance (Chen et al., 2007). In particular, 

it regulates end-processing at the step of Artemis recruitment (Jiang et al., 2015).  

- ATR can phosphorylate DNA-PK on T2609 and T2647 in S-phase cells in response to UV 

(Chen et al., 2007; Yajima et al., 2006). However, the impact of these phosphorylations on 

DNA repair has not been evaluated. 

In addition to the direct mechanisms of regulation, PIKKs can regulate each other indirectly by 

activating signalling pathways that in turn activate other PIKKs. For example, DNA-PK contributes 

to sustain ATR signalling in the presence of limited amount of ssDNA (Vidal-Eychenie et al., 2013). 

ATM can also promote the activation of ATR by phosphorylating TOPBP1 (Yoo et al., 2009) and 

by favouring the processing of DSBs to generate RPA-coated ssDNA (Jazayeri et al., 2006). Other 

important evidence of PIKKs’s crosstalk is the overlap in substrates specificity. Most substrates are 

shared by PIKKs, the best example is given by H2AX (see section II.5.3.2.1). 



	   	   	   80 
	  

II.4 Spatiotemporal dynamics of DDR proteins at DNA break 

 

One important aspect that determines the effectiveness of DDR signalling in mammals is the tight 

spatiotemporal coordination of DDR factors at DSBs: they have to relocate to the right place at the 

right time. Unlike bacteria that activate a global transcriptional program to increase the availability 

of DDR proteins, eukaryotes primarily respond with a local up-concentration of DDR components 

already present in the cell. This local and sequential accumulation of DDR factors at DSBs usually 

leads to the formation of microscopically detectable foci, also referred as IRIF (ionizing radiation 

induced foci), that are widely used as marker of DSB presence and location (Figure 23A) (Lukas et 

al., 2011b).  

The “spatial map” of IRIFs reveals two distinct compartments: the DSB-flanking chromatin and the 

ssDNA micro-compartment (Bekker-Jensen et al., 2006; Bekker-Jensen and Mailand). The proteins 

associated with DSB flanking chromatin, such as γH2AX (for details see Figure 23B), are able to 

spread out for megabases from the initial DSB and they can assemble throughout most of the cell 

cycle. The second compartment is much smaller and cytologically visible like “microfoci”. It 

localizes at RPA-coated ssDNA that forms after resection of the DSB. Accumulation of DDR 

proteins in this compartment is restricted to S- and G2-phases (Figure 23C). There is another group 

of proteins that is able to interact with DNA but the transient nature of this interaction (for example, 

Chk1 and Chk2) or the low concentration at DSBs (DNA-PK, NHEJ factors) technically challenges 

microscopy detection. Recently, Britton and colleagues developed a method, based on combined 

ribonuclease treatment, detergent pre-extraction and high-resolution microscopy, to visualize Ku 

and others NHEJ factors at DSBs (Britton et al., 2013). Interestingly, ATM, ATR and DNA-PK are 

located in distinct compartments: ATM in DSB-flanking chromatin, ATR in ssDNA micro-

compartment and DNA-PK at unprocessed DSB ends.  

 



	   	   	   81 
	  

 
Figure 23: Spatiotemporal properties of DDR. (A) Example of the DDR proteins’ foci organization after DSB induction: 53BP1 
(red), γH2AX (green), DNA (blue) and merge (yellow). Each focus represents at least a DSB. (B) “Spatial map” of DDR proteins 
around DSBs. (C) Cell cycle regulation of DDR foci formation. Efficient foci formation is represented with solid lines and 
weak/undetectable foci are represented by a dashed line. Figure B and C are adapted from (Bekker-Jensen et al., 2006; Polo and 
Jackson, 2011).  

 

II.5 Molecular mechanisms of DDR proteins assembly at DNA break 

 

The mechanisms driving the highly coordinated spatiotemporal recruitment of DDR proteins at 

DSB sites are based on (1) direct recognition of DNA-breaks, (2) protein-protein interaction and (3) 

post-translation modifications. 

 

II.5.1 Direct recognition of DNA-breaks 

 

DDR factors that act as DSB sensors are the first proteins recruited to DSBs. Such proteins are able 

to directly recognize and bind broken DNA in a sequence-independent manner. The Ku heterodimer 

(see section II.3.3), the MRN complex, RPA (see section II.3.2) and the proteins PARP1 and 

PARP2 belong to this category.  
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II.5.1.1 The MRN complex 

 

The MRN complex (Mre11/Rad50/Nbs1) consists of dimers of each subunit and structurally it can 

be divided into distinct “head”, “coil”, “hook” and “flexible adapters” domains (Figure 24) 

(Williams et al., 2010). The “head” is the DNA-binding and processing core of MRN, containing 

two Mre11 molecules and two ATPase domains of Rad50. Mre11 can bind DNA with the specific 

ability to synapse DSB ends and it has endonuclease and 3’→5’ exonuclease activities (the opposite 

polarity from what is required for HR in vivo). Rad50 provides ATPase and adenylate-kinase 

activities and can also bind/unwind DNA. Rad50 also forms an anti-parallel coiled-coil (“coil”) that 

terminates with a zinc hook motif (“hook”) (Hopfner et al., 2002). The “coil” is a flexible structure 

projected away from the DNA that can mediate long-range tethering of two DNA molecules by 

oligomerization via its zinc hook. Nbs1 constitutes the “flexible adapter” domain of MRN 

providing a regulatory and protein-protein interaction module. Nbs1 does not possess a known 

enzymatic activity itself. However, it is essential for the nuclear localization of the MRN complex 

(Desai-Mehta et al., 2001) and stimulates its DNA-binding and its nuclease activities (Paull and 

Gellert, 1999).  

 

	  

Figure 24: Scheme of MRN structure and domains. MRN can assemble as a heterohexamer with head, coils, hook and flexible 
adapter domains. 
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The MRN complex plays a role in both signalling and repair of DSBs (reviewed in (Lamarche et al., 

2010; Riches et al., 2008)), in particular it participates to: 

- Very early DSB detection and recruitment of ATM at chromatin 

- Retention of ATM to DSB to achieve signal propagation 

- Activation of ATR by contributing to the early step of end resection at breaks 

- DNA tethering to bridge the ends of broken chromosomes 

These multiple roles in DDR are reflected by human disorders associated with MRN mutations. 

Hypomorphic mutations in the NBS1 gene result in Nijmegen breakage syndrome (NBS), an 

autosomal recessive disorder characterized by microcephaly, immunodeficiency and cancer 

predisposition (Lavin, 2008). Mutations in MRE11 lead to AT-like disorder (ATLD) that resembles 

to the phenotypes of ATM deficiency (Lavin, 2008). Recently, a patient with hypomorphic 

mutation in RAD50 has been described to have a phenotype similar to NBS (NBSLD, NBS-like 

disorder) (Waltes et al., 2009). Cells from NBS, ATLD and NBSLD patients show increased 

radiosensitivity and checkpoint’s defects.  

 

II.5.1.2 PARP 

 

PARP1, PARP2 and PARP3 are the members of the PARP family found to be induced in response 

to DNA damage. PARPs catalyse the polymerization of ADP-ribose units from donor NAD+ 

molecules on Glutamate, Lysine or Aspartate residues of target proteins, resulting in the attachment 

of linear or branched polymers. PARP1 can be activated by different types of damage such as SSBs, 

DSBs, DNA crosslinks and stalled replication forks while currently, PARP2 seems able to detect 

gaps and flap structures and PARP3 DSBs (Beck et al., 2014). Structurally and mechanistically the 

best characterized PARP member is PARP1. PARP1 can act like a DNA damage sensor by virtue of 

its DNA-binding domain, composed of two zinc finger domains (Zn1 and Zn2). A substantial body 

of data suggests a model for PARP recognition of DNA damage and activation (Ali et al., 2012). 

PARP1 is constitutively associated with chromatin likely via the weak interaction of Zn1 with the 

sugar-phosphate backbone and it has a very low basal activity. A discontinuity in the DNA 

backbone allows the binding of Zn2 and the formation of a functional break-recognition module via 

dimerization with a second PARP1 molecule thereby facilitating activation by trans-modification. 

The absence or the inhibition of PARP1 sensitizes cells to chemical drug-inducing DSBs and delays 

their repair (Boulton et al., 1999; Smith et al., 2005). This is in agreement with different key roles 

of PARP1 in DDR: 

- PARylation targets DDR proteins to DNA breaks for DSB signalling 
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- PARP1 responds to collapsed replication fork facilitating HR repair (Bryant et al., 2009)  

- PARP1 operates in the alternative-NHEJ repair pathway (Wang et al., 2006). 

PARylation is negatively regulated by PARG (PAR-glycohydrolase) that hydrolyses the glycosidic 

linkage between the ADP-ribose units producing free ADP-ribose (Kim et al., 2005). 

 

II.5.2 Protein-protein interactions 

 

Downstream from DSB sensors, other DDR factors assemble to damage sites in a highly 

coordinated manner by protein-protein interactions. An example is given by MDC1, which 

constitutes a molecular binding platform for DDR components at DSB sites (see section II.5.3.2.2). 

Similarly, the apical DDR kinases, ATM, ATR and DNA-PK, are recruited to sites of DNA damage 

through analogous mechanisms involving a conserved C-terminal region present in Nbs1, ATRIP 

and Ku80, respectively (Falck et al., 2005). 

 

II.5.3 Post-translational modifications 

 

Along with protein-protein interaction the sequential protein assembly at DNA breaks is achieved 

by post-translational modifications. PTMs regulate recruitment, dissociation and/or retention of 

DDR proteins and drive the DNA damage-induced chromatin responses. 

 

II.5.3.1 Poly(ADP-ribosyl)ation 

 

PARylation (see section II.5.1.2) is one of the earliest modifications detectable at sites of DSBs and 

PAR chains are quickly removed by PARG providing a transient response lasting minutes (Ciccia 

and Elledge, 2010; Schreiber et al., 2006) (Figure 25). In response to DSBs, PARP1 PARylates 

target proteins, including histone H1 and H2B and PARP1 itself. PAR structures act as platforms to 

recruit factors that locally remodel chromatin at DNA damage sites to promote DSB signalling 

and/or repair. For instance, PAR-dependent recruitment of the NuRD (nucleosome remodelling and 

deacetylase) complex, the Polycomb histone-modifying complex and the histone variant macroH2A 

(via APLF, aprataxin-PNK-like factor), promotes transcriptional silencing and chromatin 

compaction around DNA lesions thereby minimizing the probability of encounter between 

transcriptional and repair machineries (Lukas et al., 2011b). In addition, PARylation plays a variety 

of different roles in DSB signalling such as the regulation of the exchange of histone variant H2AX 

with conventional H2A by inhibiting the exchange regulator FACT (facilitates chromatin 
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transcription) (Heo et al., 2008) and the ATM activation in response to IR (Aguilar-Quesada et al., 

2007). Recently, a new mechanism by which PARylated proteins at DNA damage sites coordinate 

the spatiotemporal recruitment of DDR factors has been described (Altmeyer et al., 2015; Hyman et 

al., 2014; Patel et al., 2015). PARylated proteins at damaged sites trigger the rapid accumulation of 

intrinsically disordered proteins that results in the phase separation into liquid droplets (referred to 

as liquid demixing) and in the creation of a liquid-like compartment. This PAR-seeded 

compartment filters the access of DDR proteins to chromatin regulating the early phase of DDR, for 

example MDC1 can penetrate while 53BP1 is excluded.   

 

Figure 25: Poly(ADP-ribosyl)ation 
in response to DSBs. Proteins 
depicted in green determine alteration 
of chromatin status. See text for 
details. Figure from (Lukas et al., 
2011b). 

 

 

II.5.3.2 Phosphorylation 

 

The importance of phosphorylation and dephosphorylation events in DDR is displayed by the large 

number of phosphorylation sites (more than 900 over 700 proteins) identified by mass 

spectrometry-based screens (Bennetzen et al., 2010; Matsuoka et al., 2007). The roles of this PTM 

are to: 

- Directly regulate the activity or the structure of the target proteins 

- Regulate the sequential recruitment of DDR factors having phospho-binding domains such 

as BRCT (breast cancer C-terminal) or FHA (forkhead-associated) domains 

Phosphorylation can also promote the dissociation of proteins from the DSB sites. Examples are 

given by (i) DNA-PKcs autophosphorylation (as discussed before in section II.3.3), which triggers 

its dissociation from Ku (Chan and Lees-Miller, 1996), (ii) KAP1 that is released from 

heterochromatin upon ATM phosphorylation (Goodarzi et al., 2008) (see section II.8) or (iii) Chk1 

and Chk2 that, after ATR or ATM phosphorylation, are able to migrate from chromatin to 

nucleoplasm to phosphorylate their substrates (Lukas et al., 2003; Smits et al., 2006). 

The key role of phosphorylation in DDR is primarily exemplified by H2AX phosphorylation.  
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II.5.3.2.1 Phosphorylation of the histone H2AX: γH2AX 

H2AX is a member of the histone H2A family. In mammalian cells, it comprises 2-25% of the H2A 

pool, depending on organism and cell types (Bonner et al., 2008; Rogakou et al., 1998). It exists as 

a component of the nucleosome core structure, constituted of eight histone proteins, two from each 

of the H2A, H2B, H3 and H4 families, and it is present in every fifth nucleosome on average.  

H2AX consists of 143 amino acids and structurally, it is similar to other H2A species and in general 

to all histone core proteins. It is composed of a central globular highly conserved “histone fold” 

domain containing three α-helices connected by two loops and flanked by terminal “tails” that have 

very little secondary or tertiary structure. The “histone fold” domain is the site of interaction for 

H2A/H2B dimer formation and it provides stability to the nucleosome while, the “tails” protrude 

from the core and possess sites for a variety of post-translational modifications. Respect to the bulk 

H2A species, H2AX has an extended C-terminal tail with an SQEY phosphorylatable motif 

(Fernandez-Capetillo et al., 2004; Li et al., 2005).  

The phosphorylation of the serine 139 (S139) of this motif is an early and key event in the response 

to DSBs. The phosphorylated form of H2AX, referred as γH2AX, appears within minutes after 

DSB induction (Rogakou et al., 1999) and leads to the formation of large foci detectable by 

immunofluorescence. The first studies of the Bonner laboratory (Rogakou et al., 1999; Rogakou et 

al., 1998) and recent studies using chromatin immunoprecipitation of γH2AX around sequence-

specific DSBs (Iacovoni et al., 2010; Savic et al., 2009), provide a quite complete landscape of 

γH2AX distribution around a DSB. H2AX phosphorylation occurs over large domain from 0.5 to 2 

Mb surrounding the DSB and the percentage of H2AX phosphorylated around the break is constant, 

≈ 0.03% in yeast and mammals. Mapping of the γH2AX domains reveals also characteristically 

locus-specific, bidirectional, discontinuous and asymmetric distributions of γH2AX flanking DSB 

sites with a marked depletion in the ≈ 1 Kb proximal to the DSB (Berkovich et al., 2007; Iacovoni 

et al., 2010) (Figure 26). γH2AX propagation is spatially confined by domain boundaries but what 

defines these boundaries is still not completely understood.  

In response to DSBs, ATM, ATR or DNA-PK can phosphorylate H2AX. A rough generalization is 

that H2AX phosphorylation is carried out by ATM and DNA-PK in a partially redundant way (Stiff 

et al., 2004) and by ATR in response to UV radiations or replicative stress (Ward and Chen, 2001). 

The real scenario is likely more complex. In normal cells, H2AX is primarily phosphorylated by 

ATM while in the absence of ATM, DNA-PK appears to be the primary H2AX kinase (Stiff et al., 

2004). Another aspect to consider is the different mechanism of ATM and DNA-PK activation. 

Upon DSB induction, ATM is activated and distributed between soluble and chromatin-bound pools 

(Andegeko et al., 2001). This dynamism might make ATM able to phosphorylate H2AX within 
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large domains. DNA-PKcs, on the other hand, becomes active through its interaction with Ku and 

DNA ends and probably it has a reduced phosphorylation range requiring longer times for H2AX 

phosphorylation at longer distances (Kinner et al., 2008; Savic et al., 2009).   

 

Figure 26: Distribution of the DDR proteins around a DSB. Distribution of γH2AX, ATM and Nbs1 around a I-Ppo-induced DSB 
assessed by ChIP. Nbs1 localizes at the DSB site, whereas γH2AX is depleted at DSB site and accumulates in adjacent regions. ATM 
distribution follows both γH2AX and Nbs1 distributions. From (Berkovich et al., 2007).  

 

γH2AX must be removed to allow the repair and the restoration of pre-lesion chromatin status 

(Chowdhury et al., 2005). Currently, two non-exclusive mechanisms are proposed for γH2AX 

removal: γH2AX dephosphorylation or γH2AX replacement by histone exchange (Heo et al., 2008). 

Dephosphorylation seems to be the predominant mechanism in mammals. γH2AX 

dephosphorylation can take place in chromatin (Chowdhury et al., 2005) and several γH2AX 

phosphatases have been identified, such as PP2A (Chowdhury et al., 2005), PP1 (Nazarov et al., 

2003), PP4 (Chowdhury et al., 2008), PP6 (Douglas et al., 2010) and Wip1 (Moon et al., 2010). 

Another residue is phosphorylated in the C-terminal tail of H2AX, the tyrosine 142 (Y142) (Cook 

et al., 2009). This phosphorylation is deposited by the chromatin-remodelling factor WSTF 

(williams syndrome transcription factor) (Xiao et al., 2009) under basal conditions and it is 

removed by EYA phosphatase (EYA1 and EYA3) in response to DNA damage when the S139 site 

becomes phosphorylated (Cook et al., 2009). Persistent phosphorylation of Y142 promotes an 

apoptotic response over repair. 

The H2AX gene is not essential. H2AX knockout mice survive well in unstressed conditions but 

they have defects in DSB repair, are radiosensitive and present increased chromosomal 

abnormalities (Bassing et al., 2002; Celeste et al., 2002). Similarly, studies in H2AX knockout cells 

show that the key function of γH2AX is to maintain and accumulate DDR components at DSBs 

(such as Nbs1, BRCA1 and 53BP1) while it is dispensable for their initial recruitment (Celeste et al., 

2003).  

ATM 

NBS1 

H2AX 

–10 –8 –6 –4 2 4 6 8 

0.04 

0.02 

0 
–2  0 

Distance 
(kb) 

0.18 

0.16 

0.14 

0.12 

0.1 

0.08 

0.06 

Lo
g 

 (
re

la
tiv

e 
IP

) 
2 

Site-specific DSB 

!H
2A

X
 

D
A

P
I 

ATM +/+ ATM -/- DNA-PKcs -/- ATM -/-  
+ DNA-PKi 

2 Gy 15 minutes 

!" #"



	   	   	   88 
	  

Currently, γH2AX is the most popular DSB marker suitable for measuring induction and repair of 

DSBs in cells exposed to various genotoxic agents. It is accepted that a γH2AX foci represents at 

least a DSB. However, other cellular processes or genotoxic stresses can induce H2AX 

phosphorylation even if usually they do not form a focal pattern. Examples are given by UVC 

radiations that induce a γH2AX pan-nuclear staining in non-S-phase cells (Marti et al., 2006) or by 

apoptosis that can be marked by a γH2AX ring in early phases, followed by a nuclear pan staining 

and apoptotic bodies in late phases (Solier et al., 2009). 

 

II.5.3.2.2 MDC1 

The mediator protein MDC1 is a large protein principally constituted by three distinct interaction-

domains: an N-terminal FHA domain, a central Proline/Serine/Threonine repeat domain (PST 

repeat) and a C-terminal tandem BRCT domain (tBRCT) (Coster and Goldberg, 2010) (Figure 

27A).  

MDC1 can bind several DDR proteins, including γH2AX (Stucki et al., 2005), the MRN complex 

(Chapman and Jackson, 2008), ATM (So et al., 2009), 53BP1 (Eliezer et al., 2009), RNF8 (Huen et 

al., 2007) and DNA-PK (Lou et al., 2004). 

Upon DSB induction, γH2AX acts as a docking site for the tBRCT of MDC1 and this interaction 

protects γH2AX from dephosphorylation and mediates the γH2AX-dependent DDR signal. Since 

MDC1-deficient mice recapitulate many phenotypes of H2AX deficiency (Lou et al., 2003), it is 

proposed that the major role of MDC1 is to promote the γH2AX-dependent chromatin retention of 

DDR factors. In particular, MDC1 is required for the recruitment and the chromatin retention of 

ATM (Lou et al., 2006) and it drives the ATM-mediated spreading of γH2AX. Indeed, MDC1 can 

recruit ATM both directly by binding ATM phosphorylated on S1981 (So et al., 2009) or indirectly 

via Nbs1 (Chapman and Jackson, 2008). MDC1 constitutively interacts with Nbs1 through CK2-

mediated phosphorylation of MDC1 (Chapman and Jackson, 2008). Thus, MDC1-Nbs1 interaction 

brings the recruitment of Nbs1-ATM dimers in regions flanking DSBs thereby triggering H2AX 

phosphorylation in distal regions (Figure 27B).  

In the case of replication stresses, MDC1 promotes also the ATR-dependent spreading of γH2AX 

by recruiting TOBP1 (Wang et al., 2011).  

Moreover, ATM-mediated phosphorylation of MDC1 in TQXF motifs, allows the interaction 

between MDC1 and the ubiquitin E3 ligase RNF8 (Huen et al., 2007), which drives the ubiquitin-

dependent DDR signalling (see section II.5.3.4).  
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Figure 27: Schematic representation of MDC1 and model of MDC1-mediated γH2AX signalling. (A) Organization of MDC1’s 
main domains showing the in vivo phosphorylation sites and MDC1 major partners. Adapted from (Coster and Goldberg, 2010) (B) 
Model of γH2AX recruitment of MDC1 and MDC1-mediated γH2AX spreading (Lukas et al., 2011b). 

 

II.5.3.3 Acetylation 

 

Histone acetylation regulates local chromatin structure on domains contiguous to DSBs, directly by 

modulating chromatin compaction or indirectly by recruiting chromatin-remodelling factors. Lysine 

acetylation facilitates the formation of open chromatin by neutralizing the negative charge on 

lysines and therefore decreasing both histone-DNA and histone-histone interactions within the 

nucleosomes. The formation of localized relaxed chromatin at the break sites may increase the 

accessibility of DNA for signalling and repair (reviewed in (Xu and Price, 2011)).  

Tip60 has been identified has one of the first acetyltrasferases involved in DDR and DSB repair 

(Figure 28). Tip60 is recruited to DSBs via its interaction with the constitutively methylated K9 of 

histone H3 (H3K9me3) (Sun et al., 2009). H3K9me3 is “unmasked” by the transient release of HP1 

(heterochromatin-binding protein 1) following DNA damage (Sun et al., 2009). Once activated, two 

main functions of Tip60 are to (i) acetylate ATM thus promoting its activation (Sun et al., 2005; 

Sun et al., 2007) and (ii) acetylate histones H2A and H4 at DSBs thus promoting chromatin 

relaxation and HR (Bird et al., 2002; Downs et al., 2004; Murr et al., 2006). Chromatin remodelling 
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frequently combines histone acetylation with the use of large motor ATPases to modify the 

chromatin architecture. An example is given by the SWI/SNF DNA-dependent ATPase p400. p400 

is recruited to DSBs where it is required (i) for RNF8-dependent ubiquitination of histones and for 

the subsequent recruitment of 53BP1 and BRCA1 (see section II.5.3.4.2) (Xu et al., 2010) and (ii) 

for HR (Courilleau et al., 2012).  

Histone deacetylases, like HDAC1, HDAC2 (histone deacetylase 1 and 2), SIRT1 and SIRT6 

(sirtuin 1 and 6), also accumulate at chromatin in response to DSBs. HDAC1 and HDAC2 regulate 

deacetylation of histones H3 and H4 stimulating NHEJ (Miller et al., 2010), while SIRT1 and 

SIRT6 stimulate Rad51 foci formation promoting DSB repair by HR (Kaidi et al., 2010; 

Oberdoerffer et al., 2008). 

 

Figure 28: Acetylation in 
response to DSBs. Proteins 
depicted in green determine 
alteration of chromatin 
status. See text for details. 
Figure from (Lukas et al., 
2011b). 

	  
 

 

II.5.3.4 Ubiquitylation 

 

Ubiquitylation is the covalent attack of ubiquitin, a highly conserved 76 amino acid polypeptide, to 

a lysine residue on a target protein. It is a three-step process involving an ubiquitin-activating 

enzyme (E1), an ubiquitin-conjugating enzyme (E2) and an ubiquitin ligase (E3) (Figure 29). In 

humans, there are eight known E1s, two of which (UBA1 and UBA6) are specific for ubiquitin 

(Schulman and Harper, 2009), 35 active E2s (van Wijk and Timmers, 2010) and more than 1000 

E3s divided in three major families, RING (really interesting new gene), HECT (homology to 

E6AP C-terminus) and RBR (ring between ring) (Berndsen and Wolberger, 2014). The biological 

outcomes of ubiquitin ligation to a protein are dictated by the fashion in which the ubiquitin chains 

are assembled and attached to the substrate: single ubiquitin monomer (monoubiquitylation), 

multiple ubiquitin monomer (multi-monoubiquitylation) or ubiquitin polymers (polyubiquitylation) 

linked via one of the seven lysines of ubiquitin (K6, K11, K27, K29, K33, K48, K63). The linkage 

specificity is largely determined by the pairing of specific E2s and E3s. 
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In response to DSBs, various protein-ubiquitin conjugates have been detected at DSBs sites 

(reviewed in (Brown and Jackson, 2015; Pinder et al., 2013)). The functions of this modification 

are: 

- Target proteins for proteasomal degradation (usually at least four ubiquitin moiety linked by 

K48 or K11) 

- Create docking sites to recruit DDR proteins (usually monoubiquitylation or K63-chains) 

containing ubiquitin-binding domains (UBDs), like MIU (motifs interacting with ubiquitin 

domain) and UIM (MIU-related ubiquitin-binding domain) domains. 

	  
Figure 29: Schematic representation of ubiquitylation cascade. In an ATP dependent reaction, the E1 enzyme binds the GG-motif 
of ubiquitin (Ub) via its catalytic cysteine forming an E1-Ub intermediate. In the case of UBA1 a second Ub molecule is loaded on 
the E1. An E2 conjugating enzyme recognizes the ubiquitin-charged E1 and Ub is transferred to the catalytic cysteine of the E2. Then, 
the Ub is conjugated to the lysine of the substrate by the concerted action of E2 and E3 enzymes. Ring E3 ligases catalyse the Ub 
transfer from the E2 to the substrate by positioning the Ub moiety for conjugation. In the case of HECT and RBR E3 ligases, Ub is 
transferred from the E2 to the active cysteine of the E3 and then to the substrate. Ubiquitylation can be reversed by deubiquitylating 
enzymes (DUBs). Image from (Brown and Jackson, 2015). 

 

II.5.3.4.1 RNF8/RNF168 ubiquitination cascade 

The major players in ubiquitination cascade are the two E3 ligases RNF8 and RNF168. RNF8 

consists of a N-terminal FHA domain and a C-terminal RING finger motif, while RNF168 

possesses a N-terminal RING finger domain and two ubiquitin-binding domains (MIU1 and MIU2). 

Homozygous or biallelic heterozygous nonsense mutations in RNF168 gene have been identified as 

responsible for the RIDDLE (radiosensitivity, immunodeficiency, dysmorphic features, and 

learning difficulties) syndrome, which is a novel “AT-mimicking syndrome” (Devgan et al., 2011; 

Stewart et al., 2007). Cells from RIDDLE patients display an impaired accumulation of 53BP1 and 

BRCA1 at DSBs. 
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RNF8 binds ATM-phosphorylated MDC1 via RNF8-FHA domain (Huen et al., 2007; Kolas et al., 

2007; Mailand et al., 2007), which allows the recruitment of RNF168 though RNF168-MIU 

domains (Doil et al., 2009; Stewart et al., 2009). The two E3 ligases act in concert to catalyse K63-

ubiquitylation of H2A(X) on K13 and K15 (Gatti et al., 2012; Mattiroli et al., 2012). This 

polyubiquitination is required for focal accumulation of downstream DDR factors such as BRCA1 

and 53BP1 but it does not impact on the formation of γH2AX, MDC1 and Nbs1 foci (Doil et al., 

2009; Huen et al., 2007; Mattiroli et al., 2012). After the discovery of RNF8 and RNF168, the first 

model envisaged that RNF8 initiates the H2A(X) ubiquitylation on chromatin around the break and 

then RNF168 binds and amplifies the ubiquitin conjugates initiated by RNF8 (Bekker-Jensen and 

Mailand; Ciccia and Elledge, 2010; Lukas et al., 2011b; Polo and Jackson, 2011). The work of 

Mattiroli and colleagues challenges this hierarchy (Mattiroli et al., 2012). They show that, although 

the recruitment of RNF168 is dependent on its MIU domains and on RNF8 catalytic activity (Doil 

et al., 2009; Stewart et al., 2009), RNF168 is the priming ubiquitin ligase for histones. Therefore 

RNF8 may allow the ubiquitin-mediated recruitment of RNF168 by ubiquitinating another non-

histone substrate. Even if this protein has not yet been identified, RNF8 is able to ubiquitylate other 

DDR proteins at DSB sites including Nbs1 (Lu et al., 2012), JMJD2A (jumonjii-domain containing 

protein 2A) (Mallette et al., 2012) and BCL10 (B-cell CLL/lymphoma 10) (Zhao et al., 2014). Once 

RNF168 recruited, it initiates H2A(X) ubiquitination on K13 and K15, which leads to K63-

polyubiquitination on these lysines by RNF168 and/or RNF8 (Mattiroli et al., 2012) (Figure 30).  

The others members of the RNF8/RNF168 ubiquitin cascade have also been identified: 

- E1 enzyme: UBA1 (Moudry et al., 2012) 

- E2 enzyme: Ubc13 (ubiquitin-containing enzyme E2N) (Huen et al., 2007; Kolas et al., 

2007; Stewart et al., 2009), which is the only E2 ligase known to exclusively catalyse K63-linked 

ubiquitin chains  

- E3 enzyme: HERC2 (HECT and RLD domain containing E3 ubiquitin protein ligase 2) (in 

addition to RNF8 and RNF168) (Bekker-Jensen et al., 2010). HERC2 is phosphorylated by ATM in 

response to DSBs. Phosphorylated HERC2 interacts with RNF8 and stabilizes RNF8-Ubc13 

association providing specificity to E2-E3 interaction and promoting K63-linked ubiquitin chain 

formation. In addition, HERC2 stabilizes RNF168 protein level. 
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Figure 30: RNF8/RNF168-dependent signalling at DSBs. (A) Proposed model for RNF8/RNF168 ubiquitination cascade at DSBs. 
RNF168 is recruited to DSBs by the activity of RNF8 toward a non-nucleosomal substrate. RNF168 mono-ubiquitinates H2A-type 
histones on K13, K15 and this leads to K63-polyubiquitination on these lysines. Independently, RNF2-BMI1 monoubiquitinates 
H2A/H2AX on K119, K120. Adapted from (Mattiroli et al., 2012).  

 

II.5.3.4.2 Recruitment of BRCA1 and 53BP1 

BRCA1: K63-linked ubiquitin chains on histones surrounding DSBs constitute the specific signal 

for BRCA1 recruitment. BRCA1 is a tumour suppressor protein playing a central role in the 

maintenance of genome integrity (reviewed in (Silver and Livingston, 2012)). BRCA1 is a large 

protein (1863 amino acids) containing a C-terminal tandem BRCT (tBRCT) domain and a N-

terminal RING-finger domain. Mutations in both domains of BRCA1 predispose to cancer 

(Rostagno et al., 2003). 

The cellular levels of BRCA1 fluctuate in a cell cycle-dependent manner. BRCA1 is abundant in S- 

and G2-phase cells while it reaches a low steady-state level in G0/G1 cells. This process is 

regulated by both transcriptional mechanisms and ubiquitin proteasome-dependent degradation 

(Chen et al., 1996; Choudhury et al., 2004). 

BRCA1 forms a stable heterodimer with BARD1 (BRCA1-associated ring domain protein 1) via its 

RING motif. BRCA1-BARD1 heterodimer is a functional ubiquitin E3 ligase, which catalyses the 

formation of K6-ubiquitin chains in complex with E2 UBCH5C (ubiquitin-conjugating enzyme 

E2D 3) (Nishikawa et al., 2004; Wu-Baer et al., 2003). BRCA1 is present in distinct biochemical 

complexes and it localizes at DSBs as member of the BRCA1-A complex (Rap80, 

Abraxas/CCDC98, BRCC36, BRCC45, MERIT40) (Feng et al., 2009; Kim et al., 2007; Wang et al., 

2007). Abraxas interacts specifically with the BRCT domain of BRCA1 bridging it with Rap80. 

Rap80 recognizes and binds K63-ubiquitinated histones via two UIM motifs (Sobhian et al., 2007; 

Wang et al., 2007). Rap80 also binds SUMO at DNA damage sites via SIM motif (SUMO-

interacting motif) (Guzzo et al., 2012) (see paragraph II.5.3.6). Interestingly, BRCC36 
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(BRCA1/BRCA2-containing complex subunit 36) possesses a deubiquitylating activity raising the 

possibility of a dynamic regulation of BRCA1 functions at DSBs (Sobhian et al., 2007). 

53BP1: 53BP1 is a large protein (1972 amino acids) with not apparent enzymatic activity. 53BP1 

functions in maintaining genomic integrity. Mice lacking 53BP1 show similar defects to ATM null 

mice and 53BP1 knockout cells have defects in checkpoint activation (Ward et al., 2003). 

Structurally, 53BP1 contains a C-terminal tBRCT domain, an ubiquitylation-dependent recruitment 

motif (UDR), a tandem Tudor domains (tTudor) and a N-terminal S/T-Q site, which can be 

phosphorylated by ATM (or ATR) (Jowsey et al., 2007). In response to DSBs, 53BP1 accumulates 

at DNA lesions and forms foci (Anderson et al., 2001). γH2AX is dispensable for the initial 

recruitment of 53BP1 but γH2AX-dependent RNF8-RNF168 ubiquitination cascade is necessary 

for its retention (Celeste et al., 2003; Stewart et al., 2009). How 53BP1 is recruited to DSB has been 

a longstanding question. Several studies have provided new insights revealing a mechanism based 

in a specific combination of histone marks at damaged chromatin: 

- Recognition of H4K20: 53BP1 binds H4K20me1 (monomethylated) and H4K20me2 

(dimethylated) via its Tudor domains and this interaction is essential for 53BP1 foci formation 

(Huyen et al., 2004). In undamaged chromatin, H4K20me2 is masked by the Polycomb protein 

L3MBTL1 (lethal(3) malignant brain tumour-like protein 1) and by the demethylase JMJD2A (Lee 

et al., 2008; Min et al., 2007). Upon DSB induction, RNF8/RNF168 are required for 53BP1 

recruitment at chromatin. Ubiquitylation of H2AK15 helps to expose the H4K20me2 mark, 

ubiquitylation of L3MBTL1 allows its eviction from chromatin by p97/VCP (valosin containing 

protein) and ubiquitylation of JMJD2A targets it to proteasome for degradation (Mallette et al., 

2012; Meerang et al., 2011). Increased acetylation of H4K16 decreases the binding of 53BP1 to 

chromatin (Tang et al., 2013). Therefore, 53BP1 recruitment at DSBs is regulated by the 

antagonistic activities of Tip60 and HDAC1/HDAC2 (Hsiao and Mizzen, 2013). 

- Recognition of H2AK15ub: The binding of 53BP1 to H4K20me2 is necessary but not 

sufficient for 53BP1 foci formation. 53BP1 needs to interact with H2AK15ub via its UDR motif 

(Fradet-Turcotte et al., 2013). 

53BP1 only binds nucleosomes that have both H2AK20me2 and H2AK15ub marks.  

 

It is emerging that 53BP1 and BRCA1 have an antagonistic relationship during DSB repair pathway 

choice. 53BP1 promotes NHEJ-mediated DSB repair protecting DSB ends from end-resection 

during G1 phase while BRCA1 favours HR during S and G2 phases probably by evicting 53BP1 

and NHEJ factors (Chapman et al., 2013; Escribano-Diaz et al., 2013) (see also section II.8).  

 



	   	   	   95 
	  

II.5.3.4.3 RNF2-BMI1 ubiquitination cascade 

Another E3 ligase participates to DSB response, RNF2 with its co-activator BMI1 (Facchino et al., 

2010; Ismail et al., 2010; Pan et al., 2011). RNF2 and BMI1, together with another E3 ligase, RNF1, 

form the RING domain-containing proteins of the Polycomb repressive complex 1 (PRC1) (Ginjala 

et al., 2011; Ismail et al., 2010). PRC1 ubiquitinates H2A and silences transcription (Wang et al., 

2004).  

The involvement of E3 ligases other than RNF8/RNF168 in H2A(X) ubiquitylation was initially 

suggested by the fact that depletion of RNF8 abrogates γH2AX polyubiquitylation without 

preventing the IR-induced γH2AX monoubiquitylation (Huen et al., 2007). This 

monoubiquitylation of H2AX at K119 and K120 (K118 and K119 in H2A) in response to DSBs is 

catalysed by RNF2–BMI1 (Facchino et al., 2010; Ismail et al., 2010; Pan et al., 2011). RNF2–BMI1 

complex is recruited early (within minutes) at chromatin, forms foci that colocalize with DDR 

proteins and co-immunoprecipitates with DDR factors including H2AX, ATM, Nbs1, MDC1 and 

DNA-PK (Facchino et al., 2010; Ismail et al., 2010; Pan et al., 2011). Blocking the 

monoubiquitination of H2AX by downregulation of one component of RNF2-BMI1 complex or by 

using H2AX K119R/K120R mutants does not affect ATM activation (Pan et al., 2011) but impairs 

the recruitment of activated ATM at DSB sites (Facchino et al., 2010; Pan et al., 2011) and the 

subsequent foci formation of γH2AX and MDC1 (Facchino et al., 2010; Pan et al., 2011) and the 

downstream DDR response (FK2, 53BP1, BRCA1, pChk2) (Ismail et al., 2010). 

Interestingly, BRCA1-BARD1 heterodimer is able to monoubiquitylate H2A in vitro (Xia et al., 

2003). Zhu and co-workers demonstrated that BRCA1 E3 ligase activity is necessary for the 

maintenance of the monoubiquitinated H2A (Ub-H2A) within constitutive heterochromatic regions 

in mouse and human cells (Zhu et al., 2011). To date, it is not known if BRCA1-dependent 

monoubiquitylation of H2A could have a role in the response to DNA damage. However, cells 

lacking BRCA1 E3 ligase activity do not exhibit defects in HR (Reid et al., 2008) but expression of 

constitutive Ub-H2A in BRCA1 null cells is able to rescue about 50% of HR defects measured with 

the HR GFP reporter system after I-SceI expression (Zhu et al., 2011). 

 

II.5.3.4.4 Negative regulation of ubiquitination 

Ubiquitination process in DSB response is also negatively regulated. This opposite activity seems to 

be important in the context of DSB repair and repair pathway choice. Three mechanisms have been 

described to antagonize ubiquitin-dependent signalling at DSBs: 

1) Deubiquitylation: Several deubiquitylating enzymes (DUBs) have been implicated in the 

clearing of DDR signal (for review see (Jacq et al., 2013)), including USP3 (ubiquitin-specific 
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protease 3) which deubiquitylates H2A and H2B (Nicassio et al., 2007), BRCC36 (Shao et al., 

2009) and POH1 (26S proteasome-associated PAD1 homolog 1) that both antagonize RNF8 by 

removing ubiquitin residues induced by RNF8 (Butler et al., 2012). Interestingly, OTUB1 (OTU 

deubiquitinase, ubiquitin aldehyde binding 1), another DUB, opposes DSB-induced ubiquitylation 

by suppressing the activity of RNF168 through interaction and inhibition of Ubc13 rather than by 

using its catalytic activity (Nakada et al., 2010).  

2) Ejection of ubiquitinated proteins: Ubiquitinated proteins can be ejected from chromatin by 

ubiquitin-directed segregases, such as p97/VCP (Meerang et al., 2011) (for review see (Ramadan, 

2012; Vaz et al., 2013)). 

3) Competition: RNF169, a RNF168 paralog, competes with UBD-binding proteins (53BP1 

and Rap80) at DSB sites, thus inhibiting RNF8/RNF168-dependent signalling (Chen et al., 2012; 

Panier et al., 2012; Poulsen et al., 2012). 

 

II.5.3.4.5 Role of proteasome in DDR 

Ubiquitylation is a key component of DDR signalling but polyubiquitin chains (in particular K48 

and K11), when associated with an unfolded protein region, also constitute a signal (also known as 

degron) for proteasomal degradation (for review see (Bhattacharyya et al., 2014)).    

The 26S proteasome comprises a catalytic core particle (20S) containing the proteolytic active sites 

capped by one or two regulatory particle (19S). The 20S forms a compact cylinder composed of 

four stacked rings enclosing the catalytic sites that can be reached only by unfolded proteins 

through a very narrow pore. This pore is generally close in the 20S free particle and can be opened 

after docking of activators to the core particle (Groll et al., 2000). The 19S is a 20S activator 

complex composed by a “lid” working in the poly-Ub substrate recognition, binding and 

deubiquitylation and a “base” harbouring the ATPase function. The large 26S proteasome is 

localized in both the cytoplasm and the nucleus of all eukaryotic cells (Bhattacharyya et al., 2014). 

In addition to 19S cap, others proteasome activators have been identified and can form a complex 

with the 20S core: (i) the 11S cap, also known as PA28 (proteasome activator 28) (Dubiel et al., 

1992), (ii) PA200 (proteasome activator 200) (Ustrell et al., 2002) and (iii) p97/VCP (Barthelme 

and Sauer, 2012; Barthelme and Sauer, 2013).  

The proteasome is involved at different levels in the DSB response. First, the proteasome is 

required indirectly for ubiquitin signalling. Indeed, inhibition of the 20S catalytic activities (such as 

by MG132 or bortezomib) induces the accumulation of poly-Ub proteins, thus preventing the 

recycling of ubiquitin (Dantuma et al., 2006). Accumulation of ubiquitylated substrates coincides 

with the reduction of the nuclear free ubiquitin pool and of the histone-conjugated ubiquitin 
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(Dantuma et al., 2006). Thereby, in the presence of DSBs, the inhibition of the proteasome results 

in persistence of MDC1 foci, impairment of phospho-ATM, FK2, 53BP1 and BRCA1 foci 

formation and inhibition of both HR and NHEJ repair pathways (Butler et al., 2012; Cron et al., 

2013; Galanty et al., 2012; Gudmundsdottir et al., 2007; Jacquemont and Taniguchi, 2007; Mailand 

et al., 2007; Meerang et al., 2011; Murakawa et al., 2007; Takeshita et al., 2009). Consistently, 

introduction of exogenous ubiquitin upon proteasome inhibition is able to rescue the production of 

53BP1 foci in presence of DSBs (Butler et al., 2012). 

The proteasome may also be implicated more directly in DDR, since several studies have revealed 

that 20S and 19S proteasome subunits, PA200, PA28 and p97/VCP accumulate at DSBs created by 

different sources (Ban et al., 2013; Blickwedehl et al., 2008; Blickwedehl et al., 2007; Butler et al., 

2012; Galanty et al., 2012; Levy-Barda et al., 2011; Livingstone et al., 2005; Meerang et al., 2011; 

Ustrell et al., 2002) and can interact with DDR proteins (Brown et al., 2015; Butler et al., 2012; 

Galanty et al., 2012). In addition, some proteasome components are regulated by DDR proteins 

following DNA damage induction: 19S subunit PSMD4 (proteasome 26S subunit, non-ATPase, 4) 

is phosphorylated by the DDR protein kinases ATM and/or ATR (Matsuoka et al., 2007), PA28 is a 

target of ATM (Levy-Barda et al., 2011), DNA-PK activity drives the PA200-associated 

proteasome recruitment at chromatin (Blickwedehl et al., 2008) and p97/VCP can be 

phosphorylated by ATM and/or DNA-PK (Livingstone et al., 2005). The role of proteasome at 

DSBs is not clearly understood but different possibilities are emerging (reviewed in (Stone and 

Morris, 2014)): 

- Degradation of DDR proteins: Degradation of DDR proteins can be part of the DDR 

cascade and DSB repair. For instance, MDC1 turnover is controlled by the proteasome (Luo et al., 

2012), JMJD2 degradation is necessary for 53BP1 recruitment (Mallette et al., 2012) and BRCA1 is 

also degraded by the proteasome (Choudhury et al., 2004). If the proteasome degrades ubiquitylated 

proteins in situ or after their eviction from chromatin by p97/VCP, remains to be established. 

- Restriction of K63-Ub conjugates at DSBs: The 19S deubiquitylating enzyme POH1 

processes K63-Ub conjugates to restrain 53BP1 assembly at DSBs (Butler et al., 2012). 

- Participation in DSB repair: The proteasome could be directly implicated in DSB repair. 

For example, DSS1 (deleted in split hand/split foot protein 1) is a component of the 19S proteasome 

(Wei et al., 2008) and a co-factor of BRCA2 (Marston et al., 1999). DSS1 is recruited to DSBs in a 

POH1-dependent manner (Butler et al., 2012) and the depletion of DSS1 impairs HR (Kristensen et 

al., 2010). 
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II.5.3.5 NEDDylation 

 

NEDD8 (neural precursor cell expressed developmentally downregulated 8) is a member of the 

UBL family. Among the UBLs, NEDD8 is the most highly related to the ubiquitin at sequence and 

secondary structure level (reviewed in (Enchev et al., 2015)). NEDD8 is conjugated to a lysine 

using E1, E2 and E3 enzymes distinct to ubiquitin. The well-described conjugation pathway for 

NEDD8 involves the NAE1 (NEDD8 activating enzyme) as E1 enzyme, UBE2M or UBE2F 

(ubiquitin-conjugating enzyme E2M or E2F) as E2 enzyme and RBX1 or RBX2 (ring box 1 or 2) as 

E3 (Enchev et al., 2015). NEDD8 and neddylation-pathway components rapidly accumulate at DSB 

sites and colocalize with γH2AX (Brown et al., 2015; Ma et al., 2013). The role of neddylation in 

DDR is tightly connected to ubiquitylation. The predominant substrates of NEDD8 are the E3 

ubiquitin ligase cullins. Neddylation of the cullins results in the activation of their ubiquitin transfer 

activity. A recent report from the Jackson’s laboratory shows that neddylation is required for 

ubiquitylation of Ku, probably mediated by cullins, and for the removal of Ku and NHEJ factors 

from DSBs (Brown et al., 2015) (Figure 31). The persistence of NHEJ factors at chromatin after 

completion of DSB repair could be the cause of the hypersensitivity to IR of cells deficient for 

neddylation processes (Brown and Jackson, 2015; Brown et al., 2015). In the last years, several 

non-cullin substrates of neddylation have also been reported including proteins involved in DDR 

such as p53 (Xirodimas et al., 2004), RNF168 (Li et al., 2014) and histone H4 (Ma et al., 2013) and 

H2A (Li et al., 2014). However, the presence of non-cullin substrates in vivo is debated, because of 

the redundancy between neddylation and ubiquitylation that makes the ubiquitin machinery able to 

catalyse neddylation in some experimental conditions (Brown and Jackson, 2015; Enchev et al., 

2015). 

Neddylation is negatively regulated by deneddylase enzymes, among them CSN (COP9 

signalosome) is the predominant (Enchev et al., 2012). In the case of cullins, CAND1 (cullin-

associated NEDD8-dissociated 1) acts also as a negative regulator since it binds deneddylated 

cullins and promotes their dissociation from the substrate (Zheng et al., 2002). 
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Figure 31: Model for neddylation-dependent ubiquitylation and release of Ku from chromatin. After DSB repair by NHEJ, 
cullin proteins are neddylated and ubiquitylate Ku favouring the release of Ku and NHEJ factors from chromatin. Figure from 
(Brown et al., 2015).  

 

II.5.3.6 SUMOylation 

 

SUMOylation reaction consists in the covalent attachment of a SUMO group to a lysine of a target 

protein. Similarly to ubiquitylation, SUMOylation involves a SUMO-activating enzyme (E1), a 

SUMO-conjugating enzyme (E2) and a SUMO-ligase (E3), which is not always required. In 

humans, the only known SUMO E1 and E2 are the heterodimer SAE1-UBA2 (SUMO1 activating 

enzyme subunit 1- ubiquitin-like modifier activating enzyme 2) and Ubc9 (ubiquitin-conjugating 

enzyme E2I), respectively whereas several SUMO E3 ligases exist (Desterro et al., 1999). Unlike 

ubiquitin, at least four SUMO isoforms have been described: SUMO1 is mostly associated with 

mono-SUMOylation, SUMO2/3 (so called because of their sequence similarities) can form poly-

SUMO chains and SUMO4 appears to function in the cytoplasm with tissue-specificities. SUMO-

modified proteins can be recognized by and interact with partners having SIMs motifs. Moreover, 

SUMOylation can be reversed by SUMO-specific proteases (SENPs). 

SUMO1 and SUMO2/3 conjugates accumulate at DSB sites, form foci that colocalize with 53BP1 

and persist at breaks for several hours after damage (Galanty et al., 2009; Morris et al., 2009). 

Similarly, SAE1, Ubc9 and the SUMO E3 ligases PIAS1 and PIAS4 (protein inhibitor of activate 

STAT protein 1 or 4) are also recruited at damaged chromatin and are required for SUMOylation at 
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DSBs. PIAS4 is necessary for 53BP1 SUMOylation and recruitment at DSBs while both PIAS1 and 

PIAS4 SUMOylate BRCA1 and favour BRCA1 focal accumulation (Galanty et al., 2009; Morris et 

al., 2009). The function of 53BP1 SUMOylation remains to be determined while SUMOylation of 

BRCA1 stimulates its E3 ligase activity in vitro (Morris et al., 2009). 

In addition, several evidences suggest that SUMOylation may promote DSB-induced 

ubiquitylation: 

- PIAS4 is needed for effective RNF168-mediated formation of ubiquitin-adducts at site of 

DNA damage (Galanty et al., 2009). 

- HERC2 and RNF168 are DNA damage-dependent SUMOylation targets. SUMOylation of 

HERC2 is required to interact with RNF8 and to stabilize the RNF8-Ubc13 complex (Danielsen et 

al., 2012). 

- RNF4 is an E3 ubiquitin ligase, harbouring SIMs motifs that enable its specific interaction 

with SUMOylated proteins at DSB sites where it functions to ubiquitylate and target proteins for 

removal by proteasome and/or by p97/VCP (Galanty et al., 2012). RNF4 localizes at DSBs sites 

and it is required for proper recruitment of Rap80, BRCA1 and Rad51 and for DSB repair (Galanty 

et al., 2012; Guzzo et al., 2012; Luo et al., 2012; Vyas et al., 2013). RNF4 is also important in 

controlling the turnover of MDC1 (Luo et al., 2012). Indeed, RNF4 ubiquitinates SUMOylated-

MDC1 targeting it for proteasomal degradation, a process that promotes HR (Luo et al., 2012) (see 

also section II.5.3.7 and Figure 32). 

 

II.5.3.7 Methylation 

 

Protein methylation consists in the addition of a methyl group to a lysine (up to three methyl 

groups) or to an arginine (up to two methyl groups) on a target protein. Methylation of a protein can 

promote its recognition by partners having Tudors domains, PDH finger domains or 

chromodomains, or it can modulate its biological activity. In the context of DDR, methylation can 

interest histone and non-histone proteins and it is catalysed by methyltransferases.  

53BP1 and Tip60 give two intriguing examples displaying the importance of methylation in the 

DDR.  

The requirement of H4K20me2 for 53BP1 recruitment has already been described in section 

II.5.3.4.2. H4K20 is constitutively methylated but different methyltrasferases can regulate this 

“mark” in response to DSBs. For instance, MMSET methyltrasferase is phosphorylated by ATM 

and recruited in an MDC1-dependent manner to chromatin where it increases the local H4K20 

methylation and favours 53BP1 recruitment (Pei et al., 2011). Recently, the concerted activities of 
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two others methyltransferases PR-Set7 (PR/SET domain-containing protein 07) and Suv4-20 

(suppressor of variegation 4-20 homolog 1) in catalysing H4K20me2 at DSBs have been identified 

as determinant for 53BP1 focal accumulation and proficient NHEJ repair (Tuzon et al., 2014). 

Tip60 is activated by binding to H3K9me3 when HP1 dissociates from damaged sites (Sun et al., 

2009). A recent work of Ayrapetov et al. shows that Tip60 can be activated upon DSB-induction in 

regions of euchromatin with low H3K9me3 density by a transient increase in H3K9me3 (Ayrapetov 

et al., 2014). They demonstrate that the methyltrasferase suv39h1 (suppressor of variegation 3-9 

homolog 1) in complex with KAP1 and HP1 is rapidly loaded onto chromatin flanking DSBs where 

it catalyses tri-methylation of H3K9. The nascent H3K9me3 in turn recruits additional 

KAP1/HP1/suv39h1 complexes determining the spreading of H3K9me3 around the break. These 

H3K9me3 domains are transient, since they rapidly activate Tip60 and consequently ATM, which 

promote the release of KAP1/HP1/suv39h1 complex by phosphorylating KAP1 (see section II.8). 

The methylation of H3K36 is also emerging as an important histone mark regulating DSB repair. 

The H3K36 di-methylation operated by the methyltransferase Metnase seems facilitate the DSB 

repair by NHEJ (Fnu et al., 2011) while the SET2 (SET domain containing 2)-dependent tri-

methylation may promote DSB resection and HR (Aymard et al., 2014; Pfister et al., 2014).  

Methylation is negatively regulated by demethylases (Mosammaparast and Shi, 2010). An example 

of demethylase functioning in DDR is JMJD1C (jumonji domain containing 1C), which participates 

to MDC1 regulation in response to DNA damage (Lu and Matunis, 2013; Watanabe et al., 2013). 

JMJD1C selectively promotes the recruitment of BRCA1 shuttling DSB repair toward HR pathway 

(Watanabe et al., 2013). Indeed, mechanistically, JMJD1C demethylates MDC1 at K45 thereby 

promoting MDC1-RNF8 interaction. This interaction favours the RNF8-mediated ubiquitylation of 

MDC1 and the recruitment of BRCA1 to the polyubiquitylated MDC1 (Figure 32).  

 



	   	   	   102 
	  

Figure 32: Methylation, SUMOylation and ubiquitylation regulate MDC1 and DSB repair pathway choice. Recruitment of 
PIAS1/4 at sites of DSBs leads to MDC1 SUMOylation and recruitment of JMJD1C results in demethylation of MDC1 at K45. 
MDC1 demethylation promotes RNF8-mediated ubiquitylation of MDC1. In addition to RNF8, RNF4 can also ubiquitinate SUMO-
modified MDC1. The RAP80–BRCA1 complex is subsequently recruited through interactions with K63-linked polyubiquitin chains 
attached to MDC1. Alternatively, 53BP1 recruitment to MDC1 leads to NHEJ repair. Figure from (Lu and Matunis, 2013). 

 

II.6 Importance of DDR foci for genome integrity maintenance 

 

Despite the considerable advances in elucidating mechanistic and spatiotemporal regulation of DDR 

foci assembly, the understanding of the functional importance of these structures remains still 

limited. Kinetic modelling suggests that it is unlikely that all the molecules of a given factor 

immobilized near DNA lesions are directly involved in repair (Dinant et al., 2009). However, the 

evolutionary conservation of many proteins and motifs triggering focal assembly and the various 

pathologies associated with defects in DDR proteins (Jackson and Bartek, 2009) suggest a clear 

importance for DDR foci in the maintenance of genome stability. Notably, emerging and proposed 

roles for DDR foci include: 

- Amplify the DNA damage signalling. In support of this idea, local chromatin immobilization 

of DDR factors was shown to be sufficient to trigger, amplify and maintain robust DDR activation 

in a damage-independent fashion (Soutoglou and Misteli, 2008). Amplification of DNA damage 
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signalling may have a particular importance in physiological conditions to efficient checkpoint 

activation at low levels of DSBs.  

- Promote DSB repair in regions where DNA repair is difficult to achieve like 

heterochromatin (Goodarzi et al., 2011; Goodarzi et al., 2008) (see section II.8).  

- Stabilize broken ends and protect them from decay and/or illegitimate resection and repair 

processes. For example, 53BP1 collaborating with Rif1 (rap1-interacting factor 1 homolog) and 

PTIP (PAX transcription activation domain interacting protein 1 like) prevents DSB resection in G1 

(Chapman et al., 2013; Zimmermann et al., 2013). Similarly, the BRCA1-Rap80 complex restricts 

Mre11-CtIP-dependent end resection preventing excessive and deleterious end processing in S/G2 

(Coleman and Greenberg, 2011). 

- DSB storage. A clear example is given by 53BP1 nuclear bodies in G1-phase cells. They 

represent DSBs produced during mitosis by unresolved replication intermediates, particularly 

common at fragile sites that are chromosomal regions prone to breakage upon replication stress. 

Large chromatin domains enriched in 53BP1 sequestrate these DSBs transmitted to daughter cells 

and protect them from nucleases until repair mechanisms become available (Harrigan et al., 2011; 

Lukas et al., 2011a). 

- Coordination of DSB repair with other DNA metabolic activities such as transcription and 

replication. Spreading of histone modifications, such H2A(X) monoubiquitination (Pan et al., 2011) 

and γH2AX (Iacovoni et al., 2010), along the chromatin around the site of break may indirectly 

affect repair by suppressing accidental ‘intrusions’ of advancing RNAPII into the sites of active 

repair. Indeed, transcription is negatively regulated when DSBs occur in expressed genes (see 

section II.9) (Shanbhag et al., 2010). 

 

II.7 Targeting DDR proteins in cancer 

 

Due to the important roles of DDR in maintaining genome stability, it is not surprising that defects 

in this pathway are associated with tumorigenesis. Loss of certain DDR components appears to be 

selected in early stages of tumorigenesis.  

The connection between defects of DDR and tumours is the cornerstone of many anticancer-

therapies. Other than surgery, the most prevalent cancer therapies are radiotherapy and 

chemotherapies that function by generating DNA damage. This implies that tumours with defects in 

DDR may be more vulnerable to genotoxic agents and it opens up the possibility of exploiting 

“synthetic lethality” in oncology. Because different repair pathways can overlap in function, the 

inhibition of the remaining pathway(s) in cancer cells should, in some cases, induces a greater 
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toxicity on the cancer cells compared to normal cells that can still rely on “back-up” pathways 

(Figure 33).  

 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  

Figure 33: Synthetic lethality relationship. Normal cells have two DDR pathways, A and B. The elimination of pathway B results 
in genomic instability and eventually in cancer. Inhibition of the pathway B triggers cancer cells to death while normal cells, that still 
retain an active pathway A, survive (Jacq et al., 2013). 

 

A paradigm of synthetic lethality is provided by PARP inhibitors that cause selective killing of 

tumours deficient in BRCA1 or BRCA2 with relatively low toxicity in normal cells (Bryant et al., 

2009; Farmer et al., 2005). Inhibitors of PARP activity block SSB repair and also cause PARP to 

become trapped on DNA repair intermediates, resulting in DNA replication-associated DSBs that 

cannot be repaired correctly by HR in BRCA1/2 defective cells (Helleday, 2011). Similarly, 

inhibiting ATM seems a promising strategy to induce synthetic lethality in cancer having 

deficiencies in the Fanconi Anemia pathway (FA) (Kennedy et al., 2007; Landais et al., 2009). 

Despite these results, specific ATM inhibitors have currently not reached any clinical trials.  

Table 7 illustrates some selected DDR inhibitors undergoing clinical trials (clinical trials 

information come from www.clinicaltrials.gov). 

These therapies based on DDR deficiencies display the importance of understanding the stepwise 

cellular responses to DNA damage and the genotype of a specific tumour (Basu et al., 2012; Biss 

and Xiao, 2012; Jackson and Bartek, 2009; Jacq et al., 2013).  
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Table 7: Examples of DDR inhibitors undergoing or entered in clinical trials (www.clinicaltrials.gov) 

Target Inhibitors Phase Indications 

DNA-
PK/mTOR 

CC-115 I 
Solid tumours and hematologic malignancies 

DNA-PK 
CC-122 I/II Solid tumours, non-Hodgkin lymphoma, multiple myeloma 

MSC2490484A I Solid tumours and hematologic malignancies 

ATR 
AZD6738 I/II Solid tumours, leukaemia, lymphoma and ATM deficient adenocarcinoma 

VX-970 I/II Solid tumours 

Chk1/Chk2 LY2606368 I/II Solid tumours, ovarian and breast cancer with BRCA1/2 mutations 

Chk1 SCH900776 I/II Leukaemia, lymphoma, solid tumours 

PARP 

Olaparib 
(AZD2281) 

I/II/III and 
FDA/EMA 
Approved 

Approved for advanced ovarian cancers with BRCA1/2 mutations. Clinical 
trials for solid tumours 

Veliparib 
(ABT-888) 

I/II/III 
Solid tumours, leukaemia, lymphoma. In particular in association with 

germline or sporadic BRCA1/2 mutations 
Rucaparib (AG-

014699) 
I/II/III 

Advanced solid tumours, breast cancer, ovarian cancer. In particular in 
association with germline or sporadic BRCA1/2 mutations 

Niraparib I/II/III 
Ovarian cancer, prostate cancer, Ewing sarcoma, breast cancer BRCA1/2 

mutated, Ewing sarcoma 

 

II.8 DSBs repair and influence of DDR signalling on repair 

 

Eukaryotic cells have evolved two main pathways to repair DSBs and thereby suppress genomic 

instability: the NHEJ and the HR. NHEJ promotes direct ligation of broken ends. It primarily 

involves the DNA-PK complex to recognize and tether broken ends and Artemis and other end-

processing factors to prepare ends for ligation by XRCC4-XLF-Lig4 (X-ray repair cross-

complementing protein 4 -	  XRCC4-like factor - ligase 4) complex and a new NHEJ component, 

PAXX (paralog of XRCC4 and XLF) (Ochi et al., 2015). NHEJ represents the major DSB repair 

pathway in mammalian cells. It is active throughout the cell cycle but it is of particular importance 

during G0/G1-phase (reviewed in (Grabarz et al., 2012; Hartlerode and Scully, 2009; Wyman and 

Kanaar, 2006)).  

HR pathway uses a homologous undamaged sequence, such as a sister chromatid, as template. This 

process is normally accurate but requires an available sister chromatid generated by duplication and 

therefore it is generally restricted to cells in S- and G2-phases. HR starts with the resection of DNA 

ends by the concerted action of the helicase BLM and several nucleases (including CtIP, MRN 

complex, Exo1, Dna2) to yield 3’-ssDNA overhangs coated by RPA. The other key steps in HR 

consist in Rad51-mediated displacement of RPA with the help of mediator proteins (including 

BRCA1 and BRCA2), search for homology, DNA pairing and strand exchange (reviewed in 

(Grabarz et al., 2012; Hartlerode and Scully, 2009; Wyman and Kanaar, 2006)). 
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Along with these pathways, other “error-prone” processes have been described. Alt-NHEJ 

(alternative NHEJ) derives from NHEJ and is highly mutagenic and frequently uses micro-

homologies distant from the break (Weinstock et al., 2007). Similarly, a derivative of HR pathway 

is the SSA (single-strand annealing). It always starts with resection but this step is not followed by 

strand invasion. In some cases it can lead to translocations (Richardson and Jasin, 2000). 

An intense objet of current studies is the choice of DSB repair pathway and the molecular 

mechanism regulating this choice (reviewed in (Chapman et al., 2012b)). The major factor 

determining pathway’s choice is the resection, such that long 3’-ssDNA ends become destined for 

HR. The primary mechanism regulating resection is the cell cycle. In particular, a phospho-

dependent switch seems to turn on resection at G1/S transition. For instance, specific cyclin-

dependent kinases (Cdks) are responsible for the phosphorylation and the activation of CtIP (Liu 

and Lee, 2006) and for the recruitment of Dna2 (Chen et al., 2011). CtIP is also degraded by the 

proteasome in G1 (Germani et al., 2003). However, HR and NHEJ coexist in S- and G2-phases 

indicating that other factors participate to the pathway’s choice in addition to cell cycle. For 

example, DSBs’ chromatin context drives the choice of DSB repair pathway, thereby 

transcriptionally active genes rich in H3K36me3 are repaired by HR (Aymard et al., 2014).  

DDR signalling and repair are strictly connected each-other and some examples of DDR signalling 

components also implicated in DSBs repair are discussed below:  

 

ATM is required for DSB repair in heterochromatin regions 

Heterochromatin is a barrier to DSB repair and ATM is necessary to facilitate the repair in these 

regions. Indeed, loss of ATM activity results in persistent DSBs localized at the periphery of 

heterochromatin (Goodarzi et al., 2008). Mechanistically, ATM triggers localized heterochromatin 

relaxation to promote DSB repair by phosphorylating KAP1, a transcriptional co-repressor 

associated with the maintenance of heterochromatin structure. KAP1 is a SUMO E3 ligase, which 

undergoes auto-SUMOylation (Ivanov et al., 2007) and by virtue of this modification, it interacts 

with the SIM domain of CHD3 (chromodomain helicase DNA binding protein 3), a subunit of the 

NuRD complex, promoting ATP-dependent chromatin compaction. Upon DSB induction, ATM is 

activated and phosphorylates KAP1 at S824 (Goodarzi et al., 2011). This phosphorylation event 

interferes with the SUMOylated KAP1-CHD3 interaction and causes the release of CHD3 leading 

to the relaxation of the chromatin surrounding the DSB sites. Formation of phospho-KAP1 foci 

coincides with localized chromatin relaxation (Goodarzi et al., 2011; Noon et al., 2010) (Figure 34).  
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Figure 34: Model of ATM-dependent repair of DSBs in heterochromatin. A DSB in heterochromatin activates ATM. Activated 
ATM phosphorylates KAP1 and determines its dissociation from CHD3. In the absence of CHD3, the chromatin surrounding the 
DSB site relaxes allowing DSB repair by NHEJ or HR (Goodarzi and Jeggo, 2012).  

	  
53BP1 and BRCA1 oppositely regulate resection 

53BP1 negatively regulates resection in G1 (Bothmer et al., 2010), while BRCA1 promotes 53BP1 

removal and resection in S/G2 (Bunting et al., 2010). Deletion of 53BP1 restores HR and Rad51 

foci in BRCA1 deficient cells (Bouwman et al., 2010; Bunting et al., 2010) demonstrating that 

53BP1 and BRCA1 oppositely regulate HR. 53BP1 promotes NHEJ with the help of cofactors, 

RIF1 (Chapman et al., 2013; Zimmermann et al., 2013), PTIP (Callen et al., 2013) and the newly 

identified REV7 (REV7 homolog) (Boersma et al., 2015; Xu et al., 2015). The mechanisms by 

which 53BP1 blocks resection have not been elucidated. Super resolution microscopy gives 

architectural information about the antagonistic relationship between 53BP1 and BRCA1 at DSB 

foci (Chapman et al., 2012a). In G1 phase, 53BP1 occupies the core of IRIF probably correlating 

with NHEJ repair, while in S/G2-phase, 53BP1 is pushed to the periphery of the focus and the core 

is filled by BRCA1. The mechanism by which BRCA1 displaces 53BP1 is not known but it is likely 

that phosphorylated CtIP is the key mediator of this processes. BRCA1 can form a complex with 

CtIP and MRN (BRCA1-C complex) and one possibility is that this complex mediates the removal 

of 53BP1 (Daley and Sung, 2014).  
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Ku and DNA-PKcs 

The binding of Ku heterodimer to broken ends represents the first engagement for NHEJ. Binding 

of Ku occurs during all phases of the cell cycle and Ku removal is necessary for resection (Shao et 

al., 2012). DNA-PKcs is also a strong inhibitor of resection since knockdown of DNA-PKcs leads 

to increased ssDNA formation at DSBs sites (Zhou et al., 2014). 

 
II.9 Transcriptional DSBs 

 

Transcriptional DSBs can be defined as DSBs produced in actively transcribed genes and/or by a 

transcription-dependent process. Compared to replication-dependent DSBs, transcriptional DSBs, 

both endogenous and exogenous, are a minority and their contributions to the cytotoxicity of DNA 

damage-inducing agents generally have not been characterized. In addition, the tumour selectivity 

and the cytotoxicity of the majority of chemotherapeutics are associated with replication. Despite 

this apparent minor role, DSBs in transcriptional units that remain unrepaired, or repaired by error-

prone pathways, can have catastrophic consequences for the cell functioning, such as deleterious 

mutations in coding region, aberrant transcripts or prolonged transcription inhibition. For all these 

reasons, the study of the interplay between transcription and DSBs has recently emerged as a 

central topic of interest.  

Knowledge on transcriptional lesions comes primarily from studies focused on UV-induced 

photoproducts and bulky adducts that have led to the identification of the TCR pathway. TCR is a 

sub-pathway of NER that targets DNA alterations interfering with the translocation of RNAP 

through expressed genes (Hanawalt and Spivak, 2008). A number of outcomes are possible 

following RNAPII arrest (Hanawalt and Spivak, 2008): (i) RNAPII can bypass the lesion possibly 

resulting in transcriptional mutagenesis, (ii) RNAPII can be displaced from the lesion (RNAPII 

backtracking), (iii) RNAPII can be ubiquitinated and degraded by the proteasome or (iv) prolonged 

RNAPII arrest can activate cell cycle checkpoints possibly leading to apoptosis.  

However, different mechanisms of transcriptional regulation may exist at bulky adducts and DSBs. 

For instance, IR does not result in RNAPII ubiquitylation, unlike UV-induced damage (Bregman et 

al., 1996). UV damage or bulky adducts directly block RNAPII while the arrest at DSBs sites is 

controlled by DDR proteins, including ATM (Kakarougkas et al., 2014; Kruhlak et al., 2007; 

Shanbhag et al., 2010; Ui et al., 2015), DNA-PK (Pankotai et al., 2012), ATR (Jiang and Sancar, 

2006), and PARP (Chou et al., 2010) and by chromatin modifications (Adam and Polo, 2014; 

Oliveira et al., 2014). Different studies often propose different models of response to transcriptional 

DSBs which might be related to the complexity of lesions, the localization of lesions (promoter or 
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body of the gene), the length of the gene, the transcription rate and the pre-existing transcriptional 

state of chromatin in which the break occurs. In general, transcriptional DSBs result in transient 

transcriptional inhibition in damaged chromatin that may be important to prevent interference 

between transcription and repair (Svejstrup, 2010). However, recent studies show that this 

inhibition does not concern all the transcripts. Indeed small non-coding RNAs are produced at DSB 

sites and regulate DSB signalling and repair; these RNAs are called DDRNA (DNA damage 

response RNAs) (Francia et al., 2012; Wei et al., 2012). 

Some DDR proteins associate with the transcription apparatus, such as DNA-PK and BRCA1. In 

the case of DNA-PK, it has been shown that (i) the Ku heterodimer interacts with the elongating 

RNAPII (Mo and Dynan, 2002) (ii) DNA-PKcs has been initially identified in complex with the 

transcriptional factor Sp1 (Jackson et al., 1990) and (iii) DNA-PKcs efficiently phosphorylates 

RNAPII and the transcription factors TBP (TATA box binding protein) and TFIIB in vitro 

stimulating basal transcription (Chibazakura et al., 1997; Dvir et al., 1992; Maldonado et al., 1996).  

In response to UV exposure, the heterodimer BRCA1-BARD1 ubiquitinates Rpb1 thus, initiating 

the proteasome-dependent RNAPII degradation (Kleiman et al., 2005; Starita et al., 2005). Hence, it 

is tempting to speculate that the association of DDR proteins with the transcriptional machinery 

may help to promote genome stability. When a DSB occurs, the signalling and repair machineries 

are immediately present and alerted to promote transcription arrest and repair.  

 

II.9.1 Induction of transcriptional DSBs  

 

In vivo transcriptional DSBs are produced by generation of site-specific DSBs or by drugs targeting 

transcription: 

 

Site-specific DSBs 

Site-specific nucleases generate DSBs at different and known genomic loci and thus, also in 

transcription units. This field was pioneered with yeast mating-type switch (HO) endonuclease 

(Rudin and Haber, 1988) and translated into mammalian cells by using I-SceI (Jasin, 1996) and I-

PpoI (Berkovich et al., 2007) endonucleases. More recently, Legube’s laboratory has developed a 

mammalian system stably expressing the bacterial AsiSI restriction enzyme that recognizes a 8 bp 

sequence and generates approximately 150 sequence-specific DSBs distributed across the genome 

(Iacovoni et al., 2010). Site-specific DSBs can also be produced by the artificial engineering of site-

specific zinc-finger (ZFNs) or TALEs (transcription activator-like effectors) DNA binding domain 

fused to the non-specific cleavage domain of Fok1 (Shanbhag et al., 2010). 
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Characteristics of these systems are, (i) the exclusive generation of DSBs, (ii) the generation of 

DSBs of the same complexity and (iii) the possibility to create inducible systems. For instance, the 

AsiSI restriction enzyme is fused to a modified oestrogen receptor hormone-binding domain that 

responds to the synthetic analog 4-hydroxy tamoxifen (4OHT). Treatment with 4OHT induces 

nuclear localization of AsiSI-ER enzyme and generate DSBs. Site-specific DSBs can be studied by 

using ChIP, which enables the detection of proteins strictly recruited to DSB ends and not forming 

foci and also enables the study of DDR spreading around a break. A major limit of these systems is 

that they must be turned off to study DSB repair (Aymard et al., 2014).    

 

Drugs targeting transcription 

Transcriptional DSBs can also be produced by drugs through mechanisms implicating transcription 

or through direct targeting of transcriptional machinery components. Drug-induced lesions that can 

be converted in DSBs by transcription usually can be also converted by replication thus, generating 

a mixture of TC- and RC-DSBs in cycling cells. Unlike to site-specific DSBs, drug-induced 

transcriptional DSBs are often not compatible with ChIP analysis, as their genomic localisation is 

not known. Usually the removal of drugs allows the study of DSB repair kinetics. 

Table 8 shows the drugs currently known to produce transcriptional DSBs. 

 

Table 8: Examples of drugs producing transcriptional-DSBs 

Drug 
Type 

of 
DSBs 

DDR Remarks References 

Ecteinascidin 
743 (Et743) 

TC- 
and 
RC-

DSBs 

TC- DSBs induce γH2AX, 
53BP1, Mre11, pATM foci and 

activation of DNA-PK and 
Chk2. γH2AX phosphorylation 
by DNA-PK is required for full 

ATM activation. 

TC-DSBs are dependent on TCR and MRN. 
Et743 induces RNAPII degradation. Et743 is 
an FDA approved drug for treatment of soft 

tissue sarcoma. 

(Aune et al., 2008; 
Erba et al., 2001; 
Guirouilh-Barbat 

et al., 2008) 

Pyridostatin 

TC- 
and 
RC-

DSBs 
DSBs induce γH2AX foci, and 

phosphorylation of KAP1, 
Chk1, RPA and DNA-PK. 

Pyridostatin stabilizes G-quadruplex structures 
at specific genomic loci. Telomeres loci are 

targeted at high concentration and non-
telomere at low concentration. Functionally, 

pyridostatin leads to cell-cycle arrest and 
transcription downregulation of several genes. 

(Rodriguez et al., 
2012) 

Camptothecin 
(CPT) 

TC- 
and 
RC-

DSBs 

TC-DSBs induce γH2AX, 
53BP1, MDC1, pATM foci 
and activation of Chk2 and 

DNA-PK. 

See details in Chapter I. Campthotecin’s 
derivatives are FDA-approved drugs. 

(Huang et al., 
2010; Sakasai et 

al., 2010a; Sordet 
et al., 2009) 

Etoposide 
(VP16) 

TC- 
and 
RC-

DSBs 

DSBs induce γH2AX, pATM, 
MDC1 and RPA foci and 
activation of DNA-PK. Etoposide is an FDA-approved drug. 

(Soubeyrand et al., 
2010; Tammaro et 
al.; Zhang et al., 

2006) 
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II.9.2 γH2AX in active transcribed genes 

 

High-resolution mapping of γH2AX in chromatin surrounding DBSs induced by the restriction 

enzyme AsiSI displays a discontinuous signal, consisting of a series of “peaks” and “holes” 

(Iacovoni et al., 2010). Holes correspond to active genes rich in RNAPII in which transcription 

remains unchanged, indicating that undamaged active coding regions are refractory to γH2AX 

(Figure 35A). These observations agree with immunofluorescence data showing that transcription, 

monitored by in vivo incorporation of 5-bromouridine triphosphate (BrUTP), does not colocalize 

with IR-induced γH2AX foci (Solovjeva et al., 2007). The Legube’s laboratory has also shown that 

cohesin plays an antagonist role to γH2AX spreading (Caron et al., 2012). Cohesin is a multisubunit 

complex that participates in DSB repair and in transcriptional control by connecting the enhancers 

to the promoters of active genes (Kagey et al., 2010). Cohesin may play a role in isolating actively 

transcribed genes from the γH2AX response in the chromatin surrounding-DSBs and a tempting 

model is that cohesin may loop active genes outside of γH2AX foci. Indeed, depletion of the 

cohesin component SCC1 (SCC1 homolog) triggers an accumulation of γH2AX at cohesin-bound 

genes and a reduction of their transcriptional activity (Figure 35B). This protective effect is not 

induced by DSBs but rather the binding of cohesin to active genes seems to be constitutive (Caron 

et al., 2012).  

 

 

Figure 35: Transcription and 
cohesin antagonize γH2AX 
enrichment. (A) γH2AX and RNAPII 
profiling obtained by ChIP 
experiments after DSB induction by 
the endonuclease AsiSI in U2OS (for 
technical details see (Iacovoni et al., 
2010)). The γH2AX/H2AX ratio is 
plotted relatively to transcription start 
site (TSS) from 368 genes located 
within γH2AX domains. RNAPII 
distribution is also plotted in the same 
way. (B) The γH2AX/input signal in 
the same system than (A) is plotted 
relatively to the TSS from 359 genes 
located within γH2AX domains. The 
panel 1 shows the distribution in 
control cells and the panel 2 shows the 
distribution in SCC1 depleted cells 
(for technical details see (Caron et al., 
2012)). 
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II.9.3 Role of PARP 

 

Chou et al described a role of PARP in setting up a repressive chromatin structure to block 

transcription at sites adjacent to DNA breaks in response to UV laser microirradiation (Chou et al., 

2010). Transcriptional silencing is mediated by PARP-dependent recruitment at damaged chromatin 

of Polycomb group and NuRD complexes, which negatively regulate transcription. Indeed, by using 

an anti-7-methylguanosine antibody recognizing the cap structure of nascent RNA, the authors 

displayed the rapid loss of nascent transcripts at sites of γH2AX and this loss was further enhanced 

following PARG inhibition. In addition, elongating RNAPII is also lost at laser microirradiation-

induced “stripe” as consequence of PARG inhibition.  

 

II.9.4 Role of ATM 

 

ATM plays a key role in repressing transcription in response to DSBs (Shanbhag et al., 2010). 

ATM-dependent inhibition of transcription in response to DSBs seems to favour recruitment of 

DSB repair factors and consequent DSB repair (Ui et al., 2015). 

The Greenberg’s laboratory showed that the ATM-dependent transcription silencing spreads for 

kilobases of chromatin in cis to euchromatic DSBs (Shanbhag et al., 2010). They used a single-cell 

assay based in a transcriptional reporter system, which allows the simultaneous visualization of 

DDR and nascent transcription on a contiguous stretch of chromatin. By generating a DSB (induced 

by FokI nuclease) distal to the reporter gene promoter (4-13 kb), the authors found that ATM 

activity is responsible for the spreading of H2A monoubiquitinated at K119 (H2AK119ub) that 

mechanistically leads to the removal of the elongating RNAPII from the transcribed region. The 

reversal of silencing relies on the H2AK119ub deubiquitylating enzyme USP16. DSB induced-H2A 

monoubiquitination at K119 and the consequent transcription silencing are mediated by the 

Polycomb complexes (PRC1 and PRC2) (Kakarougkas et al., 2014; Mattiroli et al., 2012; Ui et al., 

2015) (Figure 36). It is still unclear how ATM promotes Polycomb-mediated H2AK119ub. 

However, two ATM substrates have been recently involved in the ATM-mediated transcriptional 

repression by promoting H2AK119ub: (i) the SWI/SNF chromatin remodelling complex, PBAF 

(Kakarougkas et al., 2014) and (ii) the transcriptional elongation factor ENL (myeloid/lymphoid 

translocated) (Ui et al., 2015). ATM can phosphorylate PBAF (Matsuoka et al., 2007) and ENL (Ui 

et al., 2015) in response to DNA damage. It seems that the ATM-mediated phosphorylation of 

PBAF is responsible for the role of PBAF in transcriptional silencing (Kakarougkas et al., 2014). 

The ATM-dependent phosphorylation of ENL increases the interaction between ENL and PCR1 in 
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response to DSB, favouring the recruitment of PCR1 at transcriptional DSBs and the ubiquitination 

of H2A (Ui et al., 2015). 

H2B monoubiquitination on K120 (H2BK120ub) is another histone mark associated with 

transcription elongation in unstressed cells and dependent on ATM in response to DSBs (Moyal et 

al., 2011). Monoubiquitination of H2B relies on the ATM-dependent phosphorylation of the E3 

ligase RNF20-RNF140 heterodimer and its recruitment to DSB sites (Moyal et al., 2011). However, 

the primary role of H2BK120ub appears to be in DSB repair (Chernikova et al., 2010; Moyal et al., 

2011; Nakamura et al., 2011) and this process seems to be uncoupled with transcription 

(Chernikova et al., 2010; Moyal et al., 2011; Nakamura et al., 2011; Shiloh et al., 2011). 

Finally, along with the role of ATM in regulating RNAPII, ATM has been also described in 

controlling RNAPI transcription in presence of persistent DSBs within the rDNA (Harding et al., 

2015; Kruhlak et al., 2007). IR- and etoposide-induced DNA damages result in ATM-dependent 

transient inhibition of both the assembly of RNAPI initiation complex and the elongation in the 

nucleolus (Kruhlak et al., 2007). This ATM-dependent transcriptional silencing induces nucleolar 

reorganization and the recognition of rDNA DSBs at the nucleolar periphery by the DDR factors 

(Harding et al., 2015). 
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Figure 36: ATM-dependent DSB-induced silencing in cis. Working model representing how ATM regulates gene silencing: when 
a DSB is introduced at an actively transcribed region, ATM is activated and phosphorylates H2AX. ATM promotes H2A/H2AX 
monoubiquitination in K119 by phosphorylating the remodelling complex PBAF and the transcriptional elongation factor ENL. ENL 
interacts with PCR1 and triggers its recruitment at DSBs. PCR1 and PCR2 Polycomb repressive complexes ubiquitinate H2A. After 
DSB repair or recovery from DNA-damage signal, USP16 deubiquitinates H2A. Adapted from (Huen and Chen, 2010). 

 

II.9.5 Role of DNA-PK 

 

Pankotai et al reported a role for DNA-PK in transcriptional DSBs (Pankotai et al., 2012; Pankotai 

and Soutoglou, 2013). They analysed the impact of a single DSB encountered during RNAPII 

transcriptional elongation. Introduction of a single site-specific DSB in a transcribed gene by the 

meganuclease I-PpoI results in transient transcription arrest followed by re-initiation. In presence of 

a DNA-PK inhibitor, RNAPII remains associated with the promoter and the body of the transcribed 

gene and the same results are obtained by depletion of Ku heterodimer or DNA-PKcs. These data 

demonstrate that in the absence of DNA-PK, RNAPII can bypass the break and continues to 

elongate. Moreover, DNA-PK-dependent RNAPII removal requires the proteasome as proteasome 

inhibition or depletion of PSMD4 (19S subunit), rescues the transcriptional defect similarly to 
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DNA-PK inhibition. The authors speculated that a-yet unidentified protein might undergo DNA-

PK-dependent phosphorylation and proteosomal degradation to remove RNAPII from the DSB site 

thus, preventing the synthesis of a mutant transcript (Pankotai et al., 2012; Pankotai and Soutoglou, 

2013).  

 

II.9.6 Role of histone mobilization 

 

Recently, transcription chaperones, that mobilize histones in and out of chromatin, have been 

shown as key elements in transcription re-initiation after UV damage in human cells. In particular, 

the histone chaperones HIRA (histone regulator A) and FACT have been involved in transcription 

resumption and they are also recruited at DSB sites (Adam et al., 2013; Dinant et al., 2013; Yang et 

al., 2013). HIRA deposits newly synthetized H3.3 histones at sites of UV lesions and HIRA 

downregulation significantly inhibits transcription recovery. Mechanistically, the process is not 

completely understood but H3.3 histones generally carry posttranslational modifications that render 

chromatin permissive to transcription at sites of DNA damage (Adam et al., 2013). At 

endonuclease-induced DSB sites, HIRA is also known to depose H3.3 histones, which in turn 

promotes HR. However, the role of HIRA in transcription restart has not been addressed (Yang et 

al., 2013). 

Similarly to HIRA, FACT is an H2A-H2B chaperone, which accelerates the exchange of H2A and 

H2B and favours transcription restart after DNA repair of the lesions blocking transcription (Dinant 

et al., 2013). In addition, FACT promotes HR-mediated repair of DSBs by localizing RNF20 at 

damaged chromatin (Oliveira et al., 2014) suggesting that FACT may be important for transcription 

resumption also at DSBs. Finally, FACT has an important function in the resolution of R-loop-

mediated transcription-replication conflicts thus protecting cells against transcription-induced DNA 

damage (Herrera-Moyano et al., 2014). 

 

II.9.7 Repair 

 

Different works point up transcribed loci as regions particularly prone to chromosomal 

rearrangements (Gunn et al., 2011; Mathas and Misteli, 2009). Some critical factors that could 

favour chromosomal rearrangements are the incorrect end use during NHEJ repair of multiple DSBs, 

R-loops and exchange between chromosomal loci located in close spatial proximity at the time of 

DSB production (Nikiforova et al., 2000). By using a reporter system for NHEJ repair of multiple 
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DSBs located downstream from an inducible promoter, the Stark’s laboratory showed a higher 

frequency of incorrect end use during end-joining in active transcription units (Gunn et al., 2011).  

Aymard and colleagues demonstrated that DSBs in actively transcribed human genes are 

preferentially repaired by HR. Active transcribed regions are marked by the transcription 

elongation-associated histone modification H3K36me3 that is probably recognized by LEDGF (lens 

epithelium-derived growth factor), which interacts with CtIP and initiates end-resection (Aymard et 

al., 2014). In parallel, two other groups, working on yeast models, have shown the importance of 

H3K36me3 histone mark and the methyltransferase Set2 (SETD2 in humans), responsible for this 

modification, in driving repair pathway choice (Jha and Strahl, 2014; Pai et al., 2014). Interestingly, 

in agreement with literature, Aymard et al. identified about 15% of the DSBs as HR-repaired in G2. 

They also found that XRCC4 depletion does not impair DSB repair at transcribed genes in G1 

suggesting that these transcriptional-DSBs are not processed by NHEJ (Aymard et al., 2014). One 

possibility could be that these DSBs are repaired by HR as cells progress to S-phase. Furthermore, a 

recent work shows that in G0/G1 cells, homologous chromosomes frequently contact each other at 

the sites of DSBs produced by the restriction enzyme I-PpoI in coding regions, but not in intergenic 

regions (Gandhi et al., 2013; Gandhi et al., 2012). The authors suggested that this contact might 

have a role in DSB repair, since it requires ATM kinase activity. They also speculated the 

possibility that it could be a specialized DSB repair pathway operating in active genes that uses a 

homologous chromosome as a repair template and that could involve sequence-specific RNA 

molecules in homology searching. 

In addition, in yeast a novel Rad52-dependent mechanism of DNA repair and HR has been 

characterised, in which endogenous transcript RNA is used as a template for DSB repair (Keskin et 

al., 2014). Human Rad52 can also promote RNA-DNA annealing in vitro raising the possibility that 

transcript-RNA-templated DNA repair could occur in human cells at highly transcribed loci and/or 

in non-dividing cells (Keskin et al., 2014). 
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Top1 removes DNA supercoiling generated during transcription and replication by producing Top1-

DNA cleavage complexes (Top1cc). These transient Top1cc can be stabilized by common DNA 

alterations and by CPT, from which anticancer drugs are derived.  

One of the best-characterized consequences of Top1cc stabilization is the production of DSBs 

during replication. However, stabilized Top1cc are also potent transcription-blocking lesions and 

our understanding regarding the molecular processes resulting from the stalling of transcription 

complexes by Top1cc is currently limited. The laboratory has shown that stabilized Top1cc can lead 

to the production of transcriptional DSBs with activation of the ATM-dependent DDR pathway in 

post-mitotic cells (Sordet et al., 2009).  

Hence, the main objective of my PhD was to characterize those transcriptional DSBs produced as a 

result of Top1cc stabilization. I used primarily serum-starved quiescent cells treated with CPT as a 

model to induce specifically transcription-blocking Top1cc and to determine:  

 

1 – The mechanism of DSB production: The first objective of my PhD has been to decipher how 

stabilized Top1cc lead to DSB production by a transcription-dependent mechanism.  

2 – The DSB signalling: The second objective has been to characterize the DDR signalling pathway 

that is activated by transcriptional DSBs and its role in Top1cc repair and cell survival. 

3 – The cellular relevance of transcriptional DSBs: The third objective has been to investigate if 

transcriptional DSBs are cytotoxic to gain insights into their relevance in the context of (i) 

stabilized Top1cc that accumulate spontaneously in the case of deficiencies in Top1cc repair or 

DSB signalling such as in the neurodegenerative syndromes SCAN1 (Tdp1 deficiency) and AT 

(ATM deficiency) or (ii) Top1cc stabilized by CPT derivatives during chemotherapy. 

4 – The genomic distribution of transcriptional DSBs: Finally, the last objective has been to test 

whether CPT-induced transcriptional DSBs were preferentially produced at specific genomic 

regions or at specific genes across the genome. This work has been initiated in collaboration with 

the groups of William Bonner (NIH, USA) and Giovanni Capranico (University of Bologna, Italy).  
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Ubiquitination triggers DNA double-strand break formation and signalling in 
response to transcription-blocking topoisomerase-I lesions  
 
Agnese Cristini, Joon-Hyung Park, Giovanni Capranico, Gaëlle Legube, Gilles Favre, Olivier 
Sordet 
 
 

Previous work by Sordet and coworkers (Sordet et al., 2009) has shown that stabilized Top1cc 

produce transcription-dependent DSBs that activate the ATM-DDR pathway.  

In this report, we characterize these DSBs by investigating the mechanisms of DSB production and 

signalling. To induce specifically transcription-blocking Top1cc, we used serum-starved quiescent 

cells treated with CPT and we showed that: 

 

1- CPT-induced transcriptional DSBs are generated as a result of defective repair of Top1 

associated SSBs: after Top1 proteolysis and before the action of Tdp1 and PARP. 

2- CPT-induced transcriptional DSBs activate the ATM signalling pathway leading to the 

phosphorylation of ATM substrates such as H2AX and 53BP1. 

3- ATM also activates DNA-PK, which promotes ubiquitination of H2A and H2AX that may 

in turn favour the proper assembly of activated ATM in nuclear foci. DNA-PK also 

promotes Top1cc degradation suggesting that DSB signalling further enhances Top1cc 

repair. 

4- CPT-induced transcriptional DSBs can kill non-replicating cells and inhibition of DDR 

signalling hypersensitizes these cells to CPT. 

 

Our study reveals a new mechanism of DSB production in response to stabilized Top1cc as well as 

a new function of DNA-PK in promoting ubiquitin signalling. These findings should prime further 

investigations on the cellular relevance of those transcriptional DSBs as we show that Tdp1, whose 

deficiency leads to the neurodegenerative syndrome SCAN1 with phenotypic similarities to AT, 

protects non-replicating cells against DSB formation. 
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ABSTRACT  

Although defective repair of DNA double-strand breaks (DSBs) leads to neurodegenerative diseases, 

the processes underlying their production and signaling in non-replicating cells are largely unknown. 

Stabilized topoisomerase-1 cleavage complexes (Top1cc) by natural compounds or common DNA 

alterations are transcription-blocking lesions whose repair depends primarily on Top1 proteolysis and 

excision by tyrosyl-DNA phosphodiesterase-1 (TDP1). We previously reported that stabilized Top1cc 

produce transcription-dependent DSBs that activate ATM in neurons. Here we use camptothecin 

(CPT)-treated quiescent cells to induce transcription-blocking Top1cc and show that those DSBs are 

generated during Top1cc repair from Top1 peptide-linked DNA single-strand breaks generated after 

Top1 proteolysis and before excision by TDP1. Following DSB induction, ATM activates DNA-PK 

whose inhibition suppresses H2AX and H2A ubiquitination and the later assembly of activated ATM 

into nuclear foci. Inhibition of DNA-PK also reduces Top1 proteolysis suggesting that DSB signaling 

further enhances Top1cc repair. Finally, we show that co-transcriptional DSBs kill quiescent cells. 

Together, these new findings reveal that DSB production and signaling by transcription-blocking Top1 

lesions impact on non-replicating cell fate and provide insights on the molecular pathogenesis of 

neurodegenerative diseases such as SCAN1 and AT syndromes, which are caused by TDP1 and 

ATM deficiency, respectively. 

INTRODUCTION 

Topoisomerase I (Top1) is required to remove DNA supercoiling generated during transcription. It 

relaxes DNA by producing transient Top1 cleavage complexes (Top1cc), which are Top1-linked DNA 

single-strand breaks (SSB) (1). After DNA relaxation, Top1cc reverse rapidly, and Top1 is released as 

the DNA religates. The rapid resealing of Top1cc is inhibited by common DNA base alterations, 

carcinogenic adducts, DNA nicks and ribonucleotides misincorporated into DNA (2-4). Top1cc can 

also be trapped selectively by camptothecin (CPT) and its derivatives used to treat cancers, which 

bind at the Top1-DNA interface (1). Stabilized Top1cc are potent transcription-blocking DNA lesions 

(5,6) and their repair (removal) depends primarily on the tyrosyl-DNA phosphodiesterase I (TDP1) 

excision pathway. Top1cc excision by TDP1 requires prior proteolysis of Top1 by the 

mailto:olivier.sordet@inserm.fr
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ubiquitin/proteasome system (7-14). Defective repair of Top1cc by inactivating mutation of TDP1 

leads to the hereditary spinocerebellar ataxia with axonal neuropathy-1 (SCAN1) syndrome (15,16), 

indicating the importance of removing transcription-blocking Top1cc in non-replicating cells. A 

consequence of transcription-blocking Top1cc is the production of DSBs. These co-transcriptional 

DSBs have been detected in post-mitotic neurons and lymphocytes as well as in replicating cells out 

of the S-phase (17-19). Their production involves the formation of R-loops, a three-strand nucleic acid 

structure consisting of an RNA:DNA hybrid and displaced single-stranded DNA (20,21). Whether the 

Top1cc repair process is involved in the production of co-transcriptional DSBs is an unresolved 

question.   

DNA double-strand breaks (DSBs) are among the most severe genomic lesions, and their repair 

requires the recruitment of DNA damage response (DDR) proteins in the vicinity of damaged 

chromatin, where they form discrete nuclear foci (22). The serine/threonine kinase ATM is critical for 

DDR (23) and its deficiency leads to the hereditary ataxia telangiectasia (AT) syndrome, which is 

primarily a neurodegenerative disease (15,24). ATM is readily activated by DSBs and phosphorylates 

various DDR proteins at damaged sites such as histone H2AX and MDC1. Phosphorylated H2AX 

(known as γH2AX) binds MDC1, which amplifies the damage signal around the break by recruiting 

additional ATM molecules (23). Accumulating studies indicate that histone ubiquitination regulates 

DDR both upstream and downstream of ATM. Ubiquitination of H2AX by the E3 ligase activity of 

RNF2-BMI1 complex triggers recruitment of activated ATM to DSBs allowing ATM to phosphorylates 

its targets at damaged sites (25,26). Then, ATM-mediated phosphorylation of MDC1 provides a 

binding site for the E3 ligase RNF8, which permits the recruitment of the E3 ligase RNF168. The 

concerted action of RNF8 and RNF168 allows ubiquitination of H2AX and H2A leading to the further 

recruitment of repair proteins such as 53BP1 and the BRCA1 complex (27-32). DNA-PK is also 

rapidly recruited at DSBs where it mediates repair by non-homologous end-joining (NHEJ) (33). 

Although DNA-PK can phosphorylate H2AX in response to DSBs (34), it is not clear whether it 

participates to DDR signaling asides from its role in DSB repair.  

Here, we use serum-starved quiescent cells treated with CPT as a model to induce specifically 

transcription-blocking Top1cc and get molecular insights into the processes underlying both the 

production and signaling of DSBs. We found that those DSBs are produced during Top1cc repair from 

Top1 peptide-linked DNA single-strand breaks generated after Top1 proteolysis and before excision 

by TDP1. These data provide the first demonstration that TDP1, whose deficiency leads to 

neurodegeneration, protects non-cycling cells against the formation of DSBs. Analysis of DSBs 

signaling further reveals a novel function of DNA-PK in promoting protein ubiquitination leading to 

enhancement of Top1 proteolysis in a feedback look as well as to full ATM activity at DSB sites. 

Lastly, we found that those co-transcriptional DSBs kill quiescent cells indicating that the cellular 

response to transcription-blocking Top1 lesions impact on non-proliferative cell fate. Together, these 

findings provide new insights on the molecular pathogenesis of neurodegenerative diseases. 

MATERIAL AND METHODS 

Drugs and chemical reagents 



 3 

BrdU, CPT, FLV, MG132 and Pyr-41 (35) were obtained from Sigma-Aldrich; lactacystin, G5 (36), 

KU55933 (37) and VE-821 (38) from Millipore; bortezomib, veliparib and olaparib from Selleckchem; 

and NU7441 (39) from Tocris.  

 

Cell lines, culture and treatments 

Primary human lung embryonic WI38 fibroblasts immortalized with hTERT were obtained from Estelle 

Nicolas (LBCMCP, Toulouse, France) and Carl Mann (CEA, Gif-sur-Yvette, France) (40). Cells were 

cultured in modified Eagle's medium (MEM) supplemented with 10% (v/v) fetal bovine serum, 1  mM 

sodium pyruvate, 2 mM glutamine and 0.1  mM non-essential amino acids. NHDF cells were isolated 

from healthy patients, as described previously (41), and human primary lung IMR90 fibroblasts were 

from ATCC. NHDF and IMR90 cells were cultured in Dulbecco’s modified Eagle’s medium (DMEM) 

supplemented with 10% (v/v) fetal bovine serum. To induce quiescence, cells were washed twice with 

serum-free medium and cultured for 72 in medium supplemented as described above but with 0.2% 

(v/v) serum instead of 10%. U2OS EV28 cells, stably expressing AsiSI-ER-HA enzyme (Iacovoni et al. 

2010) were grown in DMEM supplemented with 10% (v/v) fetal bovine serum and 1 μg/ml puromycine. 

To induce DSBs, U2OS EV28 cells were treated with 300 nM 4-hydroxitamoxifen (Sigma-Aldrich) for 

4 h. In Figure 3A and B, cells were gamma-irradiated with Gamma-cell Exactor 40 at 0.8 Gy. In all the 

experiments, untreated cells correspond to cells treated with the vehicle only. 

 

Immunofluorescence microscopy, foci quantification and graphical representation 

Cells were seeded in poly-L-lysine-coated Lab-TekTM RS chamber slides (NalgeNunc). After treatment, 

cells were washed twice with PBS and immunofluorescence was carried out as described previously 

(17). Where indicated, cells were pre-extracted with CSK buffer (10 mM Pipes (pH 6.8), 100 mM NaCl, 

300 mM sucrose, 3 mM MgCl2, 0.5% (v/v) Triton X-100) for 3 min at room temperature. Following two 

washes in PBS, cells were fixed with 2% (v/v) formaldehyde for 12 min at room temperature and 

washed three times. Cells were incubated with the primary antibody in PBS with 5% (v/v) fetal bovine 

serum for 1 h. Anti-ubiquityl-H2A antibody was incubated overnight at 4°C. Cells were washed twice 

and incubated with the appropriate secondary antibody coupled to Alexa Fluor 488, 594 or 568 (Life 

Technologies). After three washes, slides were mounted using Mowiol® 4-88 (Millipore) containing 

4’,6’-diamino-2-phenylindole (DAPI). Slides were visualized at room temperature by using a 

fluorescence microscope (Eclipse 90i, Nikon) or an inverted confocal microscope (LSM 710 or LSM 

780; Carl Zeiss). Pictures were analyzed with Photoshop CS3 (Adobe) or ImageJ (version 1.48v). 

Primary antibodies used for microscopy were rabbit anti-53BP1 (NB100-305; Novus), rabbit anti-

53BP1-pS1778 (2675; Cell Signaling), mouse anti-ATM-pS1981 (4526; Cell Signaling), mouse anti-

BrdU (clone B44; BD Biosciences), mouse anti-γH2AX (05-636; Millipore), rabbit anti-γH2AX (NB100-

384; Novus), mouse anti-DNA-PK-pT2609 (ab18356; Abcam), rabbit anti-MDC1 (ab11169; Abcam), 

mouse anti-ubiquityl-H2A (Ub-H2A; 05-678; Millipore), and mouse anti-ubiquitinated proteins (Ub-

proteins; clone FK2, 04-263; Millipore).  
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Nuclear foci were counted manually and for nucleus with more than 20 foci, we set a default value 

of 25 foci. For Figure 4, nuclear foci were counted with imageJ software (version 1.48v). For graphical 

representation of foci distribution, we used box-and-whisker plots using GraphPad Prism 6 software 

with the following settings: boxes: 25-75 percentile range; whiskers: 10-90 percentile range; horizontal 

bars: median number of γH2AX foci. Each dot indicates an individual nucleus that is not in the 10-90 

percentile range.  

 

Cell extracts and Immunoblotting 

Whole-cell extracts were obtained by lysing cells in 1% SDS and 10 mM Tris-HCl (pH 7.4) 

supplemented with protease (Sigma-Aldrich) and phosphatase (Halt phosphatase inhibitor cocktail; 

Thermo Scientific) inhibitors. Viscosity of the samples was reduced by brief sonication. For detection 

of ATM, ATM-pS1981, DNA-PK and DNA-PK-pS2056, cells were lysed for 15 min in buffer containing 

50 mM Tris-HCl (pH 8.0), 300 mM NaCl, 0.4% NP-40, 10 mM MgCl2 and 5 mM DTT, supplemented 

with protease (Sigma-Aldrich) and phosphatase (Halt phosphatase inhibitor cocktail; Thermo 

Scientific) inhibitors. After centrifugation (10,000 x g, 20 min), supernatants were diluted (v/v) in 50 

mM Tris-HCl (pH 8.0), 0.4% NP-40 and 5 mM DTT. Proteins were separated by SDS-PAGE and 

immunoblotted with the following antibodies: anti-actin (MAB1501; Millipore), anti-ATM (sc-23921; 

Santa-Cruz), anti-ATM-pS1981 (ab81292; Abcam), anti-ATR (ab2905; Abcam), anti-caspase-3 (9662; 

Cell Signaling), anti-cleaved caspase-3 (9661; Cell Signaling), anti-Chk2 (2662; Cell Signaling), anti-

Chk2-pT68 (2661; Cell Signaling), anti-cullin 3 (ab108407; Abcam), anti-cullin 4B (A303-863A; Bethyl), 

anti-DNA-PK (NA57; Millipore, or ab18192; Abcam), anti-DNA-PK-pS2056 (ab18192; Abcam), anti-

γH2AX (NB100-384; Novus), anti-H2AX (ab11175; Abcam), anti-histone H3 (ab1791; Abcam), anti-

KAP1 (A300-274A; Bethyl), anti-KAP1-pS824 (A300-767A, Bethyl), anti-PARP (9542; Cell Signaling), 

anti-PSMA6 (2459; Cell Signaling), anti-p53 (DO-7, DakoCytomation), anti-p53-pS15 (9284; Cell 

Signaling), anti-topoisomerase I (ab109374; Abcam), anti-αTubulin (T5168; Sigma-Aldrich), anti-

UBA1 (4890; Cell Signaling), anti-XLF (2854; Cell Signaling) and anti-XRCC4 (from Patrick Calsou, 

IPBS, Toulouse, France). Immunoblotting was revealed by chemiluminescence using autoradiography 

or a ChemiDoc MP System (Bio-Rad). Quantification of protein levels was done by using ImageJ 

(version 1.48v) in Figure 5E and with Image Lab software (version 4.1) in the other figures.  

 

Cellular fractionation 

Chromatin-bound proteins were isolated as described previously (42). Briefly, cells were extracted 

twice by lysis in extraction buffer (50 mM Hepes (pH 7.5), 150 mM NaCl, 1 mM EDTA) containing 

0.1% (v/v) Triton X-100 supplemented with protease (Sigma-Aldrich) and phosphatase (Halt 

phosphatase inhibitor cocktail; Thermo Scientific) inhibitors for 15 min at 4°C followed by 

centrifugation at 14,000 x g for 3 min to separate soluble proteins. The collected supernatant was the 

fraction S1. The pellet was further resuspended in extraction buffer without Triton X-100 

supplemented with 200 μg/ml RNAse A (Roche) for 30 min at 25°C under agitation. The fraction S2 

was collected after centrifugation at 14,000 x g for 3 min. The remaining pellet was resuspended in 
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buffer containing 1% SDS and 10 mM Tris-HCl (pH 7.4) supplemented with protease (Sigma-Aldrich) 

and phosphatase inhibitors (Halt phosphatase inhibitor cocktail; Thermo Scientific) and sonicated. 

 

Comet assays 

Neutral Comet assays were performed according to the manufacturer’s instructions (Trevigen), except 

that electrophoresis was performed at 4°C. Comet tail moments were measured with ImageJ software 

(version 1.48v) using a macro provided by Robert Bagnell 

(https://www.med.unc.edu/microscopy/resources/imagej-plugins-and-macros/comet-assay) or with the 

plugin OpenComet (http://opencomet.org/). 

 

Detection of Top1-DNA cleavage complexes 

Cellular Top1-DNA cleavage complexes (Top1cc) were detected as previously described (43), except 

that immunoblotting was revealed with a rabbit monoclonal anti-Top1 antibody from Abcam 

(ab109374) and with a ChemiDoc MP System (Bio-Rad).  

 

Cell viability assays 

Cell survival in Figure 8A was determined at times and conditions indicated in the text by counting 

adherent cells with Z1 Coulter Counter® (Beckman Coulter).   

 

Chromatin immunoprecipitation (ChIP) 

Chromatin immunoprecipitation was performed as described previously (Iacovoni et al. 2010) using a 

rabbit polyclonal anti-γH2AX antibody (ab81299) or a rabbit nonimmune antibody (control IgG) 

(catalogue number 02-6102, Life Technologies). ChIP were analyzed by real-time QPCR using 

primers proximal to two sites for the restriction enzyme AsiSI located inside genes (chr20:42089225-

42089433: Gene 1-FW: AAAAGTCGCTCCCGGTAAAT, Gene 1-RV: CCGATCAGACTTGGGCTTAG; 

chr17:61847852-61848028: Gene 2-FW: TGCAAGGCATTCGACAATAA, Gene 2-RV: 

ATGGAAGCCATAATGCAAGC) or primers distal to AsiSI sites (chr21:25081874-25082075: Control-

FW: TGGCTGGAACTGCTTTCTTT, Control-RV: GGTGAGTGAATGAGCTGCAA). All samples were 

analyzed in triplicates and data normalized to the maximal recovery in each experiment, which was 

set equal to 1.   

 

Proteasome activity assay 

P2 fractions were isolated as described above (Cellular fractionation). At each step of fractionation, 

the extraction buffer was supplemented with 10% (v/v) glycerol and 50 mM ATP without the addition 

of protease and phosphatases inhibitors. P2 fractions were solubilized in extraction buffer and briefly 

sonicated. Following centrifugation at 14,000 x g for 3 min, 30 μg of the collected supernatant were 

used to perform proteasome activity assay by using the Proteasome Activity Assay Kit (ab107921) 

according to the manufacturer’s protocol. The chymotrypsin-like activity of proteasome was measured 

by the cleavage of a synthetic proteasome substrate linked to methyl coumarin amid (MCA). 

Cleavage of MCA in the presence or absence of the proteasome inhibitor MG132 was detected by 

https://www.med.unc.edu/microscopy/resources/imagej-plugins-and-macros/comet-assay
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fluorescence emission using a SynergyTM2 Multi-Mode Microplate Reader (Bio-Tek). Proteasome 

activity (U/ml) was calculated by subtracting for each sample, the background fluorescence given by 

the presence of the proteasome inhibitor MG132 (except in Supplementary Figure S5H) and by using 

an MCA standard curve.  

 

siRNA transfection 

Cells were transfected with siRNA duplexes using Dharmafect 4 transfection reagent (GE Healthcare) 

for 24 h before inducing quiescence for 72 h. siRNAs used are directed against cullin 3 (Silencer® 

Pre-designed siRNA CUL3, ID#217187, Ambion), cullin 4B (Silencer® Pre-designed siRNA CUL4B, 

ID#13299, Ambion), DNA-PK (M-005030-01, GE Healthcare), TDP1 (M-016112-01, GE Healthcare), 

XLF (5’-CGCUGAUUCGAGAUCGAUUGAdTdT-3’; Eurogentec), XRCC4 (5’-

AUAUGUUGGUGAACUGAGAdTdT-3’; Qiagen) or a nontargeting sequence (SR-CL000-005; 

Eurogentec).  

 

Statistics 

Unless indicated otherwise, experimental differences were tested for significance using one-way 

ANOVA Tukey’s multiple comparisons test with GraphPad Prism 6 software.  

RESULTS 

Top1cc stabilization induces transcription-dependent DSBs in quiescent cells  

To investigate the production and signaling of transcription-dependent DSBs, we used primary human 

WI38 fibroblasts immortalized with hTERT (40). Non transformed cells normally have low genomic 

instability (44) and can be induced in quiescence following serum deprivation (45,46), thus allowing 

the analysis of replication-independent damage produced by stabilized Top1cc. 

Microscopy analysis of bromodeoxyuridine (BrdU) incorporation showed that the percentage of 

WI38 hTERT cells in S-phase decreased from 26% to approximately 3% after a 3-day serum 

deprivation (0.2% serum) (Figure 1A and B), indicating that they efficiently entered quiescence. To 

determine whether CPT can induce replication-independent DSBs in those cells, we examined the 

phosphorylated histone H2AX on S139 (known as γH2AX) and its accumulation in nuclear foci. A 

single γH2AX focus reflects hundreds to thousands of γH2AX proteins that are concentrated around at 

least one DSB (47). We found that CPT induced γH2AX foci within 1 h, with an average of 2 to 10 foci 

per nucleus at CPT concentrations ranging from 1 to 25 µM, respectively (Figure 1C-E). Almost all 

cells formed at least 2 γH2AX foci at concentrations ≥ at 10 µM (Figure 1C and D). Similar results 

were obtained in serum-starved quiescent human IMR90 primary lung fibroblasts (Supplementary 

Figure S1A-D) and in serum-starved quiescent normal human dermal fibroblasts (NHDF) 

(Supplementary Figure S1E-H). These γH2AX foci colocalized with 53BP1, another DDR protein 

(Figure 1F), and a neutral Comet assay provided direct evidence for the presence of DSBs (Figure 1H 

and I). These results indicate that CPT induces replication-independent DSBs in quiescent cells.  

To determine whether these breaks depend on transcription, we used the transcription inhibitor 

flavopiridol (FLV). Figure 1F and G show that FLV suppressed γH2AX and 53BP1 foci in CPT-treated 
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quiescent WI38 hTERT cells. To test whether FLV prevented DSBs or prevented DDR signaling by 

some other mechanisms, we performed neutral Comet assays. The significant decrease in Comet tail 

moment we observed in quiescent cells co-treated with FLV and CPT provides direct evidence for 

DSB suppression (Figure 1H and I). Together these results indicate that CPT induces transcription-

dependent DSBs in quiescent cells, providing a robust model to further study their production and 

their signaling.  

 

The formation of co-transcriptional DSBs requires Top1 proteolysis 

Top1cc-mediated transcription block triggers Top1 degradation by the ubiquitin/proteasome system 

(12,13,48). Hence, we examined whether Top1 degradation would contribute to the formation of 

transcription-dependent DSBs. As expected, inhibition of transcription (FLV), ubiquitin (isopeptidase 

inhibitor G5) or proteasome (MG132) prevented Top1 degradation in CPT-treated quiescent WI38 

hTERT cells (Supplementary Figure S2A-C). Then, we assessed whether inhibiting the 

ubiquitin/proteasome system would prevent DDR signaling. We found that the proteasome inhibitors 

MG132, lactacystin and bortezomib (also called PS-341) (Figure 2A and B) as well as the ubiquitin 

inhibitors G5 and Pyr41 (Figure 2D and E) prevented the induction of γH2AX and 53BP1 foci. Western 

blot analysis confirmed the suppressive effect of MG132 and G5 on γH2AX (Figure 2C and F). 

Importantly, DSB formation was also reduced by MG132, as indicated by a neutral Comet assay 

(Figure 2G and H). These results indicate that the ubiquitin/proteasome system is required for the 

formation of DSBs in CPT-treated quiescent cells.  

Top1 is degraded selectively in response to CPT (1). To evaluate whether defective Top1 

degradation accounts for the lack of DSBs following inhibition of the ubiquitin/proteasome system, we 

inhibited cullin 3 and cullin 4B, which targets Top1 for proteosomal degradation in CPT-treated cells 

(49,50). We observed that siRNA-mediated depletion of cullin 3 and cullin 4B in quiescent WI38 

hTERT cells (Figure 3A) reduced CPT-induced Top1 degradation (Figure 3B) and γH2AX foci (Figure 

3C). To further assess the role of Top1 degradation, we induced DSBs with ionizing radiation (IR) and 

the restriction enzyme AsiSI (51), which do not trigger Top1 degradation (Supplementary Figure S2D 

and E). We found that MG132 did not suppress γH2AX foci induced by IR in quiescent WI38 hTERT 

cells (Figure 3D and E) and by AsiSI in cycling U2OS cells (Figure 3F) indicating that genotoxics that 

do not promote Top1 degradation produce proteasome-independent DSBs. As expected, MG132, 

which causes depletion of free nuclear ubiquitin (52), prevented the ubiquitin-dependent focal 

accumulation of 53BP1 at DSB sites (31) in response to IR (Figure 3D) and AsiSI (Figure 3F). IR and 

AsiSI produce DSBs in both transcribed and non-transcribed regions whereas CPT likely produces 

co-transcriptional DSBs solely in transcribed regions. To assess whether proteasome activity is 

required simply because DSBs are located at transcribed regions, we analyzed γH2AX by chromatin 

immunoprecipitation (ChIP) at AsiSI sites located in genes. We found that MG132 did not suppress 

the induction of γH2AX in the two genes analyzed (Figure 3G). These results suggest that the 

requirement of proteasome activity for CPT-induced co-transcriptional DSBs is not only because 

these breaks are produced at transcribed regions but also because Top1cc are stabilized on 

chromatin. Altogether, these findings strongly suggest that the ubiquitin/proteasome-dependent 
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degradation of Top1 is required for the production of transcription-dependent DSBs following CPT 

treatment.  

 

Co-transcriptional DSBs arise from SSB intermediates generated after Top1 proteolysis and 

before TDP1 action 

Top1 degradation primes the repair of transcription-blocking Top1cc by TDP1. Top1cc excision by 

TDP1 requires prior proteolysis of Top1 to expose the covalent bond between the Top1 catalytic 

tyrosine and the 3’-end of the DNA to be attacked. TDP1 generates a 3’-phosphate, which is 

hydrolyzed by the polynucleotide kinase 3’-phosphatase (PNKP) before religation by ligase III (see 

Supplementary Figure S2F) (8-11,14). Because TDP1 deficient cells accumulate Top1 peptide-linked 

SSBs and causes hypersensitivity to CPTs (9,53,54), we examined whether transcription-dependent 

DSBs would arise from these SSB intermediates generated before TDP1 action.  

We found that depletion of TDP1 with siRNA markedly increased the number of γH2AX and 53BP1 

foci in CPT-treated quiescent WI38 hTERT cells (Figure 4A and B and Supplementary Figure S2G). 

Previous work showed that Top1cc excision by TDP1 requires PARP1 (10,55). PARP1 binds to and 

PARylates TDP1 leading to TDP1 stabilization and its recruitment at Top1cc-induced DNA damage 

sites. We therefore assessed whether inhibition of PARP1 would also increase DSBs in CPT-treated 

quiescent cells. We found that the PARP inhibitors veliparib (also called ABT-888) and olaparib (also 

called AZD-2281), both increased the number of γH2AX and 53BP1 foci (Figure 4C and D and 

Supplementary Figure S2H and I). DSB formation was also increased by veliparib, as indicated by a 

neutral Comet assay (Figure 4E). Inhibition of transcription (FLV) or proteasome (MG132), which 

prevented CPT-induced Top1 degradation (Supplementary Figure S2A and C), also prevented CPT-

induced accumulation of γH2AX and 53BP1 foci following TDP1 depletion (Figure 4A and B) and 

PARP inhibition (Figure 4C and D), indicating that those breaks depend on Top1 degradation. To 

determine whether TDP1 and PARP1 are in the same pathway to prevent DSBs, we compared the 

number of γH2AX foci following co-treatment with CPT and PARP inhibitors when TDP1 is expressed 

or not. Figure 4F shows that TDP1 suppression with siRNA did not further increase the number of 

γH2AX foci in quiescent WI38 hTERT cells exposed to CPT and veliparib or CPT and olaparib, 

indicating that TDP1 and PARP1 are in the same pathway. Together, these results indicate that co-

transcriptional DSBs produced in CPT-treated quiescent cells arise from SSB intermediates 

generated after Top1 proteolysis and before TDP1 action. 

 

Activation of ATM and DNA-PK by co-transcriptional DSBs  

Next, we studied the signaling of these co-transcriptional DSBs to gain insight into their functional 

relevance. To that end, we examined which kinases phosphorylate H2AX. ATM, ATR and DNA-PK 

are the main kinases for H2AX in response to DNA damage (47). To identify which of them induces 

γH2AX, we assessed whether γH2AX foci formation is prevented by specific chemical inhibitors of 

these kinases in CPT-treated quiescent WI38 hTERT cells; the ATM inhibitor (ATMi) KU55933, the 

DNA-PK inhibitor (DNA-PKi) NU7441 and the ATR inhibitor (ATRi) VE-821. We found that ATMi 

completely suppressed γH2AX foci and that DNA-PKi markedly reduced their number and size (Figure 
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5A and B and Supplementary Figure S3A and B). Analysis of DSBs by neutral Comet assays showed 

that ATMi and DNA-PKi did not decrease the Comet tail moment induced by CPT (Figure 5C), which 

exclude the possibility that fewer DSBs account for the reduced γH2AX levels. Similar results were 

obtained in quiescent IMR90 cells (Supplementary Figure S1A-D) and in quiescent NHDF cells 

(Supplementary Figure S1E-H). By contrast, ATRi did not reduce the number of γH2AX foci induced 

by CPT in quiescent WI38 hTERT cells (Figure 5A) under conditions where it prevented 

phosphorylation of the ATR substrate Chk1 in replicating cells (Supplementary Figure S3C). This is 

consistent with ATR being primarily activated by replication stress (56) and that it is expressed at low 

levels in non-cycling cells (Supplementary Figure S3D) (17,57). These data suggest that ATM and 

DNA-PK but not ATR are implicated in the induction of γH2AX in CPT-treated quiescent cells.  

We therefore assessed whether ATM and DNA-PK are activated under conditions where γH2AX is 

induced. ATM autophosphorylation on S1981 (ATM-pS1981) marks activated ATM (58). In quiescent 

WI38 hTERT cells, we found that CPT induced ATM-pS1981 that colocalized with γH2AX foci (Figure 

5D and Supplementary Figure S3E). We also observed phosphorylation of the ATM targets KAP1, 

Chk2 and p53 (Supplementary Figure S3E) (23). Similar to ATM, DNA-PK phosphorylation status 

regulates its activity. DNA-PK autophosphorylation on both S2056 and T2609 is required for the repair 

of DSBs by NHEJ (59,60). We found that CPT induced DNA-PK phosphorylation on both residues in 

quiescent WI38 hTERT cells (Figure 5D and E). Immunofluorescence microscopy further revealed 

that DNA-PK phosphorylated on T2609 formed discreet nuclear foci that colocalized with γH2AX 

(Figure 5D), indicating that similar to ATM, DNA-PK is activated at DSB sites. Previous work showed 

that ATM can phosphorylate DNA-PK on T2609 following IR (61). We found that inhibition of ATM 

prevented CPT-induced DNA-PK phosphorylation on T2609 and also on S2056 in quiescent WI38 

hTERT cells (Figure 5D and E). Together these data suggest that in CPT-treated quiescent cells, 

transcription-dependent DSBs activate ATM, which in turn activates DNA-PK.  

 

DNA-PK promotes the assembly of activated ATM in nuclear foci 

Next, we considered whether cross talk between ATM and DNA-PK is mutual or limited to one 

direction in which ATM activates DNA-PK. To test this, we asked whether inhibiting DNA-PK would 

prevent MDC1 and 53BP1 foci, which depends, at least in part, on ATM (23). Supplementary Figure 

S3F shows that DNA-PKi suppressed CPT-induced MDC1 and 53BP1 foci in quiescent WI38 hTERT 

cells. To test more directly the role of DNA-PK on ATM, we analyzed the impact of DNA-PK inhibition 

on the induction of ATM-pS1981 and on its accumulation in nuclear foci. We found that DNA-PKi only 

slightly reduced CPT-induced ATM-pS1981 levels (Figure 5E), indicating that DNA-PK does not 

markedly contribute to ATM activation. Microscopy analysis confirmed that DNA-PKi did not suppress 

ATM-pS1981 following CPT treatment (Figure 5F, top panels). However, it revealed a pan staining for 

ATM-pS1981 rather than well-defined foci (Figure 5F, top panels), suggesting that activated ATM is 

not localized at damaged sites. Previous work showed that ATM associated with sites of DSBs was 

resistant to detergent extraction while unbound ATM was removed (62). Thus, we treated cells with a 

detergent-based extraction buffer known as cytosqueleton (CSK) buffer (63) before 

immunofluorescence staining for ATM-pS1981. We found that CSK buffer suppressed the pan-
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staining signal for ATM-pS1981 in cells co-treated with DNA-PKi and CPT under conditions where it 

did not affect ATM-pS1981 foci in cells treated with CPT alone (Figure 5F bottom panels and G). 

Together, these data suggest that DNA-PK promotes the assembly of activated ATM into nuclear foci 

in CPT-treated quiescent cells.  

To assess whether the role of DNA-PK on ATM foci formation is related to its function in DSB 

repair, we inhibited XLF and XRCC4, which mediate DNA-PK-dependent NHEJ (33). We found that 

contrary to DNA-PK inhibition, depletion of XLF or XRCC4 with siRNAs did not prevent CPT-induced 

ATM-pS1981 foci in quiescent WI38 hTERT cells (Supplementary Figure S4). These results suggest 

that the role of DNA-PK on ATM foci formation is independent of its function in DSB repair.  

 

DNA-PK promotes ubiquitination of H2AX and H2A at DSB sites  

H2AX and H2A are ubiquitinated in response to DSBs (27-32). Previous work showed that defective 

monoubiquitination of H2AX at K119/K120 in IR-exposed cells impaired the recruitment of ATM-

pS1981 to DSBs and thereby reduced γH2AX and MDC1 foci formation (25,26), effects similar to 

those observed following DNA-PK inhibition in CPT-treated quiescent cells (Figure 5 and 

Supplementary Figure S3F). We therefore tested whether DNA-PK inhibition would prevent CPT-

induced H2AX monoubiquitination in quiescent cells. 

Western blot analysis using an antibody against H2AX showed that CPT did not significantly 

increase global H2AX monoubiquitination in quiescent WI38 hTERT cells (Supplementary Figure 

S5A). We though it might be because H2AX is monoubiquitinated only at damaged sites in response 

to DSBs (26), and CPT induced only few γH2AX foci in quiescent cells (Figure 1). Consistent with this 

hypothesis, detection of H2AX monoubiquitination by Western blot was previously reported at high 

doses of IR, typically 4 to 10 Gy (26,64). To examine specifically H2AX monoubiquitination at DSB 

sites, we analyzed γH2AX monoubiquitination. We found that CPT induced γH2AX monoubiquitination 

in quiescent WI38 hTERT cells, which was prevented by DNA-PKi (Figure 6A). To analyze more 

directly histone monoubiquitination at DSB sites, we performed immunofluorescence microscopy with 

an antibody against H2A monoubiquitinated at K119 (Ub-H2A). We found that CPT induced Ub-H2A 

foci that colocalized with the p53BP1 foci, and that those Ub-H2A foci were completely prevented by 

DNA-PKi (Figure 6B and C). Consistent with these results, CPT also induced DNA-PK-dependent 

FK2 foci (Figure 6D and E), which mark ubiquitinated proteins at DNA damage sites (65). siRNA-

mediated depletion of DNA-PK confirmed the suppressive effect of DNA-PKi on FK2 foci formation 

(Supplementary Figure S5B and C). Altogether, these results indicate that DNA-PK promotes 

monoubiquitination of H2AX and H2A at site of co-transcriptional DSBs in CPT-treated quiescent cells. 

This in turn may favor the recruitment of activated ATM and phosphorylation of its downstream 

substrates. 

 

DNA-PK promotes ubiquitin/proteasome-dependent Top1cc removal  

Based on our results that DNA-PK promotes ubiquitination processes (Figure 6) and the fact that 

transcription-blocking Top1cc are removed following ubiquitination and proteosomal degradation of 

Top1 (Supplementary Figure S2A-C) (12,13,48), we examined the possibility that DNA-PK could 
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promote Top1 degradation. Figure 7A shows that DNA-PKi markedly decreased CPT-induced Top1 

degradation in quiescent WI38 hTERT cells. Similar results were obtained in quiescent IMR90 and 

NHDF cells (Supplementary Figure S5D). Analysis of endogenous Top1cc confirmed that defective 

Top1 degradation following DNA-PK inhibition reflected defective Top1cc removal (Figure 7B). The 

role of DNA-PK in promoting Top1 degradation is unlikely related to its function in NHEJ repair as 

depletion of XRCC4 or XPF with siRNAs did not affect CPT-induced Top1 degradation in quiescent 

WI38 hTERT cells (Supplementary Figure S5E). Because we found that ATM activates DNA-PK 

(Figure 5), we examined whether ATM inhibition would also prevent Top1 degradation. 

Supplementary Figure S5F shows that ATMi also decreased CPT-induced Top1 degradation in 

quiescent WI38 hTERT cells.  

Consistent with the ubiquitin/proteasome-dependent removal of Top1cc, we found that the E1 

ubiquitin ligase UBA1 and the 20S-proteasome subunit PSMA6, which are both involved in DDR 

(66,67), tended to accumulate in chromatin-bound fraction (P2 fraction, see Supplementary Figure 

S5G) in CPT-treated quiescent WI38 hTERT cells (Figure 7C). Under these conditions, the global 

expression of PSMA6 remained unchanged while that of UBA1 slightly increased (Figure 7D). 

Accumulation of UBA1 and PSMA6 in P2 fraction was further associated with an increased activity of 

proteasome (Figure 7E). DNA-PKi suppressed the CPT-induced UBA1 and PSMA6 accumulation and 

proteasome activity in P2 fraction (Figure 7C-E). As a control, we showed that DNA-PKi is not a direct 

proteasome inhibitor (Supplementary Figure S5H). Altogether, these results suggest that DNA-PK 

promotes ubiquitin/proteasome-dependent removal of Top1cc in CPT-treated quiescent cells.  

 

Transcription- and proteasome-dependent apoptosis of quiescent cells by stabilized Top1cc 

To assess whether transcription-dependent DSBs can kill non-replicative cells, we analyzed the 

percentage of quiescent cells that remained attached to the culture flask following CPT treatment. 

Typically, cells detach as they undergo apoptosis. We found that CPT decreased the number of 

quiescent WI38 hTERT cells attached to the culture flask by approximately 70 % after 24 h (Figure 

8A). This was associated with the appearance of biochemical markers of apoptosis such as the 

cleavage of caspase-3 and PARP, and the massive induction of γH2AX, which was reported in cells 

undergoing apoptosis (68) (Figure 8B). All these apoptotic marks were suppressed by the 

transcription inhibitor FLV (Figure 8A and B), suggesting that transcription-dependent DSBs are the 

initiating events for apoptosis induction. Consistent with this hypothesis, inhibition of CPT-induced 

DSBs with lactacystin (Figure 2A and B) also prevented caspase-3 and PARP cleavage and γH2AX 

induction (Figure 8C). By contrast, increased CPT-induced DSBs with veliparib or olaparib (Figure 4C-

F and Supplementary Figure S2H and I) also increased PARP cleavage (Figure 8D).  

To analyze the impact of DDR signaling on CPT-induced apoptosis of quiescent cells, we inhibited 

ATM and DNA-PK. Figure 8E and F shows that ATMi and DNA-PKi, both increased CPT-induced 

caspase-3 and PARP cleavage, indicating that the predominant role of ATM- and DNA-PK-dependent 

signaling is likely to promote cell survival after CPT-induced transcription-dependent DSBs.  

DISCUSSION 



 12 

Although defective repair of DSBs can lead to neurodegenerative diseases, the molecular processes 

of their production and signaling in non-replicating cells are largely unknown. Here we analyzed the 

transcription-dependent DSBs that form in non-replicating cells as a consequence of Top1cc 

stabilization (17). Our data support a model depicted in Figure 9 in which Top1cc stabilization blocks 

transcription elongation, which triggers partial Top1 proteolysis and the generation of a Top1 peptide-

linked SSB, which is a substrate for TDP1. Defective repair of this SSB intermediate by TDP1 can 

give rise to a DSB, which leads to ATM activation and phosphorylation of its substrates such as H2AX 

and 53BP1. ATM also activates DNA-PK, which promotes H2AX and H2A monoubiquitination and the 

assembly of activated ATM into nuclear foci. ATM and DNA-PK also increase Top1 proteolysis 

suggesting that this pathway further enhances Top1cc repair after DSB induction. This is consistent 

with recent work showing that ATM deficiency increases Top1cc levels in CPT-treated quiescent 

astrocytes (69,70). Because we found that Top1 proteolysis primes DSB formation, DNA-PK could 

therefore increases DSB production in a feedback loop. This might be however compensated as 

DNA-PK can also phosphorylate TDP1, which increases its repair activity towards Top1cc (71). 

Nevertheless, we did not find that DNA-PK inhibition reduced the amount of DSBs in CPT-treated 

quiescent cells measured by a neutral Comet assay. DSBs event tend to accumulate, which might be 

related to the function of DNA-PK that we report here in promoting ATM signaling but also on its 

function in NHEJ repair (33). 

Transcription-blocking Top1cc seem primarily repaired by the TDP1 excision pathway. Indeed, our 

study and previous reports indicate that Top1 degradation is transcription dependent following CPT 

exposure (12,13,48) and that TDP1 primarily repairs transcription-blocking Top1cc as compared to 

replication-blocking Top1cc (8,9). Consistent with the involvement of the TDP1 pathway in the repair 

of transcription-blocking Top1cc, Top1 degradation has been suggested to promote resumption of 

RNA synthesis (12). Our findings that DSBs produced in CPT-treated quiescent cells depend both on 

transcription and on Top1 degradation suggest that they arise during the repair of Top1cc. A further 

support to this is that inhibition of TDP1 or PARP1 (which is required for TDP1 activity (10,55)), 

increases transcription-dependent DSBs following Top1cc stabilization. Because TDP1 deficient cells 

accumulate Top1 peptide-linked SSB intermediates (9,53,54), our results suggest that transcription-

dependent DSBs arise from these intermediates if TDP1 fails to repair them. How a Top1 peptide-

linked SSB can give rise to a DSB is still an unresolved question. A DSB may result from two nearby 

SSBs on opposing DNA strands. It is also possible that the second SSB is caused by R-loop 

processing. Indeed, reduced Top1 activity causes R-loop formation (72) and we showed that CPT-

induced R-loops are involved in the formation of transcription-dependent DSBs in post-mitotic cells 

(17). Also, a recent work showed that R-loops formed in response to CPT are cleaved by the 

endonuclease XPG (21).  

It is now well documented that DNA-PK functions in cellular processes other than NHEJ such as 

gene regulation (73,74) and mitosis (75-77). Here we report a novel function of DNA-PK in the 

regulation of protein ubiquitination. Previous work suggested connection between DNA-PK and the 

proteasome. In the presence of DSBs, DNA-PK was reported to induce transcription arrest by a 

mechanism that depends on proteasome activity (78). Also, DNA-PK inhibition prevents the 
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accumulation of the proteasome activator PA200 on chromatin in response to IR (79). 

Phosphorylation is known to regulate protein ubiquitination in two main ways (80). First, substrate 

phosphorylation can create a recognition signal for binding of an E3 ligase. Second, phosphorylation 

of an E3 ligase can stimulate its ubiquitin transfer activity. Hence, it is possible that DNA-PK 

phosphorylates H2AX, H2A and Top1 and/or their respective E3 ligases following CPT treatment. The 

first possibility is plausible as the N-terminal domain of Top1 binds to DNA-PK (81) and possesses a 

potential phosphorylation site for DNA-PK (SQ motif on S10). DNA-PK can also phosphorylate H2AX 

on S139 (γH2AX) (34) but it is unlikely that this is what primes H2AX for ubiquitination because H2A 

lacks S139 but is also ubiquitinated in response to DSBs. Several E3 ubiquitin ligases have been 

reported for H2AX and H2A (RNF2, RNF8, RNF168) (25-31) and for Top1 (Cullin3, Cullin4A, Cullin4B, 

BRCA1) (13,49,50) but it is not known whether they can be phosphorylated by DNA-PK. It is also 

possible that DNA-PK favors the recruitment of the E1 ligase UBA1 at damaged sites as we found 

that DNA-PK inhibition prevented CPT-induced UBA1 accumulation on chromatin. 

Lastly, our analysis demonstrates that co-transcriptional DSBs can kill non-replicating cells 

following CPT treatment. Co-transcriptional DSBs might occur spontaneously in cells as Top1cc are 

stabilized by common alterations of DNA (2-4) and therefore they may have a marked impact on non-

replicating cell fate. Neurodegenerative diseases can arise from defective repair of Top1cc (SCAN1 

caused by TDP1 deficiency) (16) as well as from defective response to DSBs (AT caused by ATM 

deficiency) (24). Neurons might be particularly prone to produce co-transcriptional DSBs as a result of 

high rates of oxygen consumption, which produces reactive oxygen species that can stabilize Top1cc 

(1,3,82). Hence, our findings raise the possibility that accumulation of co-transcriptional DSBs and the 

defective response to those breaks might contribute to the neurodegenerative phenotype of SCAN1 

and AT patients, respectively. 
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FIGURE LEGENDS 

Figure 1. Induction of transcription-dependent DSBs in quiescent WI38 hTERT cells in response to 

CPT. (A,B) Cells were cultured in 10% serum or in 0.2% serum for 3 days to induce quiescence. Cells 

were then exposed to 100 µM BrdU for 30 min before staining for BrdU (green). DNA was 

counterstained with DAPI (blue). (A) Representative images. Bars: 50 µm. (B) Percentages of BrdU-

positive cells from one representative experiment (> 300 cells were analyzed for each treatment) out 

of two. (C-E) Serum-starved cells were treated with the indicated CPT concentrations for 1 h before 

staining for γH2AX (green). DNA was counterstained with DAPI (blue). (C) Representative images. 

Numbers are the percentage of nuclei with at least 2 γH2AX foci (bottom) and the average foci per 

nucleus (top). Bars: 10 µm. (D) Number of γH2AX foci per nucleus. ****, P < 0.0001. (E) Quantification 
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of γH2AX fluorescence intensity per nucleus. Quantifications in panels C to E are from two 

independent experiments (209-246 nuclei were analyzed for each treatment). (F,G) Serum-starved 

cells were treated with FLV (1 µM) for 1 h before the addition of CPT (25 µM) for 1 h and then co-

stained for γH2AX (green) and 53BP1 (red). (F) Representative pictures. Images were merged to 

determine colocalization (yellow). Nuclear contours, identified by DAPI staining (not shown), are 

indicated by dashed lines. Bars: 10 µm. (G) Number of γH2AX foci per nucleus from one 

representative experiment (99-133 nuclei were analyzed for each treatment) out of four. ****, P < 

0.0001. (H,I) Detection of DSBs by neutral Comet assays in serum-starved cells treated with FLV (1 

µM) for 1 h before the addition of CPT (7.5 µM) for 1 h. (H) Representative pictures of nuclei. (I) 

Quantification of neutral Comet tail moments from one representative experiment (101-106 nuclei 

were analyzed for each treatment) out of three. ****, P < 0.0001.   

 

Figure 2. Induction of ubiquitin/proteasome-dependent DSBs in CPT-treated quiescent WI38 hTERT 

cells. (A-F) Serum-starved cells were treated with MG132 (50 µM, 1 h), lactacystin (10 µM, 1 h), 

bortezomib (1 µM, 4 h), G5 (1.5 µM, 0.5 h) or Pyr-41 (9 µM, 0.5 h) before the addition of CPT (25 µM) 

for 1 h and then co-stained for γH2AX (green) and 53BP1 (red) or analyzed by Western blot. (A,D) 

Representative pictures. Nuclear contours, identified by DAPI staining (not shown), are indicated by 

dashed lines. Bars: 10 µm. (B,E) Number of γH2AX foci per nucleus from two independent 

experiments (147-153 nuclei were analyzed for each treatment). ****, P < 0.0001. (C,F) Western blot 

of γH2AX. αTubulin: loading control. Dashed lines indicate that intervening wells have been spliced 

out. The top panels show quantification of γH2AX expression normalized to αTubulin (means ± SEM, 

n = 4 in panel C, n=3 in panel F). ***, P < 0.001; **, P < 0.01. (G,H) Detection of DSBs by neutral 

Comet assays in serum-starved cells treated with MG132 (25 µM) for 1 h before the addition of CPT 

for 1 h (7.5 µM for experiments (Exp) I and II; 5 and 7.5 µM for Exp III). (G) Representative pictures of 

nuclei from Exp I. (H) Quantification of neutral Comet tail moments for three independent experiments 

(95-133 nuclei were analyzed for each treatment in each experiment). ***, P < 0.001; ****, P < 0.0001. 

The untreated and CPT data from Exp I are from the same experiment as that of Figure 1I.  

 

Figure 3. The production of DSBs depends on Top1 degradation in CPT-treated quiescent cells. 

(A-C) Serum-starved WI38 hTERT cells were co-transfected with siRNAs against cullin 3 and cullin 

4B or against a control sequence and then treated with CPT (25 µM) for 1 h. (A,B) Western blotting of 

the indicated proteins. αTubulin: loading control. (C) Number of γH2AX foci per nucleus from one 

representative experiment (246-348 nuclei were analyzed for each treatment) out of three. ***, P < 

0.001. (D,E) Serum-starved WI38 hTERT cells were treated with MG132 (50 µM) for 1 h before 

exposure to 0.8 Gy IR. One hour post-irradiation, cells were co-stained for γH2AX (green) and 53BP1 

(red). (D) Representative pictures. (E) Number of γH2AX foci per nucleus from one representative 

experiment (162-180 nuclei were analyzed for each treatment) out of three. Ns: not significant. (F,G) 

U2OS EV28 cells were treated with MG132 (10 µM) for 1 h before the addition of 300 nM 4-

hydroxitamoxifen (4OHT) for 4 h to express AsiSI in the nucleus (51). (F) Representative pictures of 

cells co-stained for γH2AX (green) and 53BP1 (red). (G) ChIP analysis using an anti-γH2AX antibody 
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(black) or a non-immune antibody (IgG, grey). Enrichment was assessed by QPCR amplification using 

primers proximal to two AsiSI sites located inside two genes (Gene I: SFRS6, Gene II: CCD47) and 

primers distal to an AsiSI site (Control). Enrichment was normalized to the maximum recovery for 

each experiment (means ± SEM, n = 3). Ns: not significant; *, P < 0.05. In the microscopic images, 

nuclear contours, identified by DAPI staining (not shown), are indicated by dashed lines. Bars: 10 µm. 

 

Figure 4. Inhibition of TDP1 or PARP increases CPT-induced DSBs in quiescent WI38 hTERT cells. 

(A,B) Serum-starved cells were transfected with TDP1-targeting or nontargeting (Control) siRNAs and 

then treated with MG312 (25 µM) or FLV (1 µM) for 1 h before the addition of CPT (25 µM) for 1 h. 

Cells were then co-stained for γH2AX (green) and 53BP1 (red). (A) Representative pictures. (B) 

Number of γH2AX foci per nucleus from one representative experiment (152-233 nuclei were 

analyzed for each treatment) out of two to four. ****, P < 0.0001. (C,D) Serum-starved cells were 

treated for 1 h with veliparib (5 µM), either alone or in combination with MG132 (25 µM) or FLV (1 µM), 

before the addition of CPT (25 µM) for 1 h. Cells were then co-stained for γH2AX (green) and 53BP1 

(red). (C) Representative pictures. (D) Number of γH2AX foci per nucleus from one representative 

experiment (120-223 nuclei were analyzed for each treatment) out of two. ****, P < 0.0001. (E) 

Detection of DSBs by neutral Comet assays in serum-starved cells treated with veliparib (5 µM) 

before the addition of CPT (7.5 µM). Data show the quantification of one representative experiment 

(226-249 nuclei were analyzed for each treatment) out of three. ****, P < 0.0001. (F) Serum-starved 

cells were transfected with TDP1-targeting or nontargeting (Control) siRNAs and then treated for 1 h 

with veliparib (5 µM) or olaparib (10 µM) before the addition of CPT (25 µM) for 1 h. Cells were then 

stained for γH2AX. The number of γH2AX foci per nucleus from one representative experiment (105-

215 nuclei were analyzed for each treatment) out of two is shown. ****, P < 0.0001; ns, not significant. 

In the microscopic images, nuclear contours, identified by DAPI staining (not shown), are indicated by 

dashed lines. Bars: 10 µm.  

 

Figure 5. Inhibition of DNA-PK prevents the formation of ATM-pS1981 foci in CPT-treated quiescent 

WI38 hTERT cells. (A,B) Serum-starved cells were treated with ATMi (10 µM), DNA-PKi (10 µM) or 

ATRi (10 µM) for 1 h before the addition of CPT (25 µM) for 1 h. Cells were then stained for γH2AX 

(green) and DNA was counterstained with DAPI (blue). (A) Representative pictures. Numbers are the 

percentage of nuclei with at least 2 γH2AX foci (bottom) and the average number of foci per nuclei 

(top). (B) Number of γH2AX foci per nucleus. Quantifications in panels A and B are from one 

representative experiment (159-306 nuclei were analyzed for each treatment) out of three. ****, P < 

0.0001. (C) Detection of DSBs by neutral Comet assays in serum-starved cells treated with ATMi (10 

µM) or DNA-PKi (10 µM) for 1 h before the addition of CPT (7.5 µM) for 1 h. Data show the 

quantification of one representative experiment out of two for ATMi (226-428 nuclei were analyzed for 

each treatment) and out of four for DNA-PKi (102-120 nuclei were analyzed for each treatment). ****, 

P < 0.0001; *, P < 0.05. The untreated and CPT data from the experiment with ATMi are from the 

same experiment as that of Figure 4E. (D) Right panels: colocalization of ATM-pS1981 foci (red) with 

γH2AX foci (green) in serum-starved cells treated with CPT (25 µM) for 1 h before staining. Similar 
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data were obtained in > 10 independent experiments. Left panels: serum-starved cells were treated 

with DNA-PKi (10 µM) or ATMi (10 µM) for 1 h before the addition of CPT (25 µM) for 1 h and then co-

stained for DNA-PK-pT2609 (red) and γH2AX (green). Similar data were obtained in two independent 

experiments. Images were merged to determine colocalization (yellow). (E) Western blot of ATM-

pS1981 and DNA-PK-pS2056 in serum-starved cells treated as described for panel D. The top panel 

shows quantification of ATM-pS1981 expression (means ± SD, n = 3). **, P < 0.01; ****, P < 0.0001. 

(F) Serum-starved cells were treated with DNA-PKi (10 µM) for 1 h before the addition of CPT (25 µM) 

for 1. Nucleosoluble proteins were then removed (lower panels) or not (top panels) with CSK buffer 

before co-staining for ATM-pS1981 (red) and γH2AX (green). Representative images are shown. The 

zoomed images are x4 magnifications of the main images. The yellow boxes indicate areas of 

magnification. (G) Quantification of ATM-pS1981 fluorescence intensity per nucleus shown in lower 

panel F (means ± SD, n= 3, 70-100 nuclei were analyzed for each treatment in each experiment). ****, 

P < 0.0001. In the microscopic images, nuclear contours, identified by DAPI staining (not shown), are 

indicated by dashed lines. Bars: 10 µm. 

 

Figure 6. Inhibition of DNA-PK prevents monoubiquitination of H2AX and H2A in CPT-treated 

quiescent WI38 hTERT cells. (A-E) Serum-starved cells were treated with DNA-PKi (10 µM) for 1 h 

before the addition of CPT (25 µM) for 1 h. (A) Western blot of γH2AX. +Ub1 indicates γH2AX 

monoubiquitinated. The top panel shows quantification of Ub1-γH2AX expression normalized to 

αTubulin (means ± SEM, n = 4). **, P < 0.01. (B,C) Cells were pre-extracted with CSK buffer before 

co-staining for Ub-H2A (red) and 53BP1 phosphorylated on S1778 (p53BP1) (green). (B) 

Representative pictures. Images were merged to determine colocalization (yellow). The large Ub-

H2AX focus at the periphery of the nuclei of untreated and CPT-treated cells may marks the inactive 

X chromosome as reported (83). (C) Percentages of nuclei with at least 5 Ub-H2A foci (means ± SEM, 

n = 3, 100 nuclei were analyzed for each treatment in each experiment). ***, P < 0.001. (D,E) Cells 

were co-stained for ubiquitinated proteins (FK2, red) and γH2AX (green). (D) Representative pictures. 

Images were merged to determine colocalization (yellow). (E) Number of FK2 foci per nucleus from 

one representative experiment (76-111 nuclei were analyzed for each treatment) out of three. ****, P < 

0.0001. In the microscopic images, nuclear contours, identified by DAPI staining (blue in the merge 

images at bottom), are indicated by dashed lines. Bars: 10 µm.  

 

Figure 7. Inhibition of DNA-PK prevents Top1 degradation and proteasome activity in CPT-treated 

quiescent WI38 hTERT cells. (A-E) Serum-starved cells were treated with DNA-PKi (10 µM) for 1 h 

before the addition of CPT (25 µM) for the indicated times. (A) Western blot of Top1. The top panel 

shows quantification of Top1 expression normalized to αTubulin (means ± SEM, n = 4). **, P < 0.01. 

(B) Detection of Top1-DNA cleavage complexes (Top1cc). Three concentrations of genomic DNA (5, 

2.5, and 1.25 µg) were probed with an anti-Top1 antibody. Dashed lines indicate where panels have 

been reorganized to facilitate reading. (C) Western blot of UBA1, PSMA6 and Top1 in the P2 fraction 

(see Supplementary Figure S5G). Dashed lines in the UBA1 blot indicate that intervening wells have 

been spliced out. The top panel shows quantification of UBA1, PSMA6 and Top1 expression in the P2 
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fraction normalized to histone H3 (mean ± SEM; n = 4 for PSMA6 and Top1, n = 3 for UBA1). (D) 

Western blot of UBA1 (top) and PSMA6 (bottom) in whole cell extracts (WCE). (E) Chymotrypsin-like 

activity assessment in the P2 fraction (means ± SD of triplicates; each time point is representative of 

at least two independent experiments). αTubulin and histone H3 were the loading controls for 

Western blot experiments.  

 

Figure 8. CPT induces transcription- and proteasome-dependent apoptosis in quiescent WI38 hTERT 

cells. (A) Serum-starved cells were treated with FLV (1 µM) for 1 h before the addition of CPT (25 µM) 

for 16 and 24 h. Cell survivals are percentages of cells that remained attached to culture flasks 

(means ± SD of quadruplicates). (B-F) Western blot of the indicated proteins in serum-starved cells 

treated for 1 h with FLV (1 µM) (B), lactacystin (10 µM) (C), veliparib (5 µM) or olaparib (10 µM) (D), 

ATMi (10 µM) (E) or DNA-PKi (10 µM) (F) before the addition of CPT (25 µM) for the indicated times. 

Data shown are representatives from two to three experiments. PARPCL: cleaved PARP. H2AX and 

αTubulin were the loading controls  

 

Figure 9. Proposed molecular pathways for the production and signaling of DSBs by transcription-

blocking Top1 lesions. “Y” is the catalytic tyrosine of Top1 covalently bound to the 3’-end of the 

broken DNA. Asterisks indicate proteins whose deficiency induces neurodegenerative diseases 

(TDP1 deficiency: SCAN1 syndrome; ATM deficiency: AT syndrome).  

 



9.7

99.0%

7.1

97.1%

2.2

55.6%

0.4

7.5%

25101–
CPT concentration (µM)A C

BrdU

DAPI

10% serum 0.2% serum

B

0
5

10
15
20
25
30

10
%

 se
ru

m

0.2
%

 se
ru

m%
 o

f B
rd

U
 p

os
iti

ve
ce

lls
 

γH
2A

X
  D

A
P

I

D E

CPT (µM)

0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1– 10 25

γH
2A

X
 in

te
ns

ity
 p

er
 n

uc
le

us
 (

a.
u.

)

1– 10 25

CPT (µM)

0

5

10

15

20

25

γH
2A

X
 fo

ci
 p

er
 n

uc
le

us
 

************

H I
Untreated CPT

FLV FLV + CPT

Untr
ea

ted CPT
FLV

FLV
 +

 C
PT

0

10

20

30

40

N
eu

tr
al

 C
om

et
 ta

il 
m

om
en

t (
a.

u.
)

********

Untr
ea

ted CPT
FLV

FLV
 +

 C
PT

γH
2A

X
 fo

ci
 p

er
 n

uc
le

us
 

G

53BP1

γH2AX

CPTUntreated FLV + CPTFLVF

Merge

********

0

5

10

15

20

25

Figure 1



A

53BP1

γH2AX

CPTUntreated
Lactacystin

+ CPT
MG132
+ CPT

Bortezomib
+ CPT

B C

0

0.2

0.4

0.6

0.8

1.0

1.2

γH
2A

X
 e

xp
re

ss
io

n 
(a

.u
.)

αTubulin

γH2AX

CPT
MG132

- + - +
- - + +

15 kD

50 kD

***

γH
2A

X
 fo

ci
 p

er
 n

uc
le

us
 

0

5

10

15

20

25

Untr
ea

ted CPT

MG13
2 +

 C
PT

La
cta

cy
sti

n 
+ 

CPT

Bor
tez

om
ib 

+ 
CPT

****
****

****

15 kD
50 kD

0

0.2

0.4

0.6

0.8

1.0

1.2

γH
2A

X
 e

xp
re

ss
io

n 
(a

.u
.)

αTubulin

γH2AX

CPT
G5

- + - +
- - + +

CPTUntreated
Pyr-41
+ CPT

G5
+ CPT

D

γH
2A

X
 fo

ci
 p

er
 n

uc
le

us
 

0

5

10

15

20

25

Untr
ea

ted CPT

G5 +
 C

PT

Pyr-
41

 +
 C

PT

E F

53BP1

γH2AX

**
****

****

G

Untreated CPT

MG132 MG132 + CPT

H

Untr
ea

ted

MG13
2

MG13
2 +

 C
PT

Untr
ea

ted

0

Exp I

N
eu

tr
al

 C
om

et
 ta

il 
m

om
en

t (
a.

u.
)

CPT

MG13
2 +

 C
PT

CPT

10

20

30

40

Untr
ea

ted

MG13
2

MG13
2 +

 C
PT

CPT

**** **** **** **** **** ****
**** ***

Exp II Exp III

Figure 2



53BP1

γH2AX IRUntreated

53BP1

γH2AX

MG132 + IR

4OHTUntreated
MG132 + 

4OHT

F

53BP1

γH2AX

0

0.2

0.4

0.6

0.8

1.0

Gene I Gene II Control

C
hI

P
 e

ffi
ci

en
cy

 (
a.

u.
)

Untr
ea

ted

4O
HT

MG13
2

MG13
2 +

 4O
HT

IgG

γH2AX

G

Untr
ea

ted

4O
HT

MG13
2

MG13
2 +

 4O
HT

Untr
ea

ted

4O
HT

MG13
2

MG13
2 +

 4O
HT

ns *

75 kD

αTubulin

100 kD

50 kD

Cullin 4B

Cullin 3

siC
on

tro
l

siC
ull

in 
3 +

 4B

D E
γH

2A
X

 fo
ci

 p
er

 n
uc

le
us

 

IR

0

5

10

15

20

25

Untr
ea

ted

MG13
2 +

 IR

ns

100 kD

50 kD

siC
on

tro
l

siC
ull

in 
3 +

 4B

CPT

- + - +

Top1

αTubulin

γH
2A

X
 fo

ci
 p

er
 n

uc
le

us
 

0

5

10

15

20

30

25

***
siC

on
tro

l

siC
ull

in 
3 +

 4B

CPT

- + - +

A B C

Figure 3



A

C

CPTUntreated

Untreated CPT Untreated CPT

siControl siTDP1

53BP1

γH2AX
MG132 +CPT FLV +CPT

Untreated CPT

+ Veliparib

MG132 +CPT FLV +CPT

53BP1

γH2AX

D

B

γH
2A

X
 fo

ci
 p

er
 n

uc
le

us
 

Untr
ea

ted CPT

MG13
2 +

 C
PT

0

10

20

40

30

siControl

FLV
 +

 C
PT

50

********
**** ****

****

Untr
ea

ted CPT

MG13
2 +

 C
PT

FLV
 +

 C
PT

siTDP1

γH
2A

X
 fo

ci
 p

er
 n

uc
le

us
 

Untr
ea

ted CPT

MG13
2 +

 C
PT

0

75

100

150

125

FLV
 +

 C
PT

175

Untr
ea

ted CPT

MG13
2 +

 C
PT

FLV
 +

 C
PT

+ Veliparib

50

25

********
**** ****

****

F

0

25

50

75

100

125

γH
2A

X
 fo

ci
 p

er
 n

uc
le

us
 

CPT

siRNA:

- + - + - + - + - + - +

Control TDP1 Control TDP1 Control TDP1

+ Veliparib + Olaparib

**** ns ns

E

0

10

20

30

40

50

N
eu

tr
al

 C
om

et
 ta

il 
m

om
en

t (
a.

u.
) ****

+ Veliparib

Untr
ea

ted CPT

Untr
ea

ted CPT

****

Figure 4



Untreated CPT
ATMi
+ CPT

DNA-PKi
+ CPT

ATRi
+CPT

3.8

68.6%

10.2

96.3%

0.7

8.3%

0.2

3.4%

12.2

99.4%
γH2AX ; DAPI

CPTUntreated
DNA-PKi
+ CPT

γH2AX

DNA-PK-
pT2609

ATMi
+ CPT

Merge

γH2AX

CPT
ATM-
pS1981

Merge

A D

B C

γH
2A

X
 fo

ci
 p

er
 n

uc
le

us
 

0

5

10

15

20

25

CPT

ATMi +
 C

PT

DNA-P
Ki +

 C
PT

E

G

250 kD

250 kD
ATM-pS1981

ATM

0
0.2
0.4
0.6
0.8
1.0
1.2

A
T

M
-p

S
19

81
ex

pr
es

si
on

 (
a.

u.
)

CPT

ATMi +
 C

PT

Untr
ea

ted

DNA-P
Ki +

 C
PT

DNA-PK-pS2056

DNA-PK

250 kD

250 kD

**
****

+ CSK extraction 

0

0.2

0.4

0.6

0.8

1.0

1.2

A
T

M
-p

S
19

81
 in

te
ns

ity
 p

er
 n

uc
le

us
 (

a.
u.

)

CPT

DNA-P
Ki

Untr
ea

ted

DNA-P
Ki +

 C
PT

**** ****

F

Untreated CPT DNA-PKi
DNA-PKi +

CPT

1

2ATM-
pS1981

ATM-
pS1981

γH2AX

γH2AX

3

4

1

2

4

3

+ 
C

S
K

 e
xt

ra
ct

io
n 

Zoom
x4

Untr
ea

ted

****
****

N
eu

tr
al

 C
om

et
 ta

il
 m

om
en

t (
a.

u.
) 

0

10

20

30

40

50

CPT
ATMi

ATMi +
 C

PT

Untr
ea

ted CPT

DNA-P
Ki

DNA-P
Ki +

 C
PT

Untr
ea

ted

******** *****

Figure 5



E

0

20

40

60

80

%
 c

el
ls

 w
ith

 U
b-

H
2A

 fo
ci

CPT

Untr
ea

ted

DNA-P
Ki

DNA-P
Ki +

 C
PT

p5
3B

P
1

U
b-

H
2A

M
er

ge

B
Untreated CPT DNA-PKi

DNA-PKi
+ CPT

M
er

ge
   

   
   

   
 D

A
P

I

D

F
K

2
(U

b-
pr

ot
ei

ns
)

γH
2A

X
M

er
ge

Untreated CPT DNA-PKi
DNA-PKi
+ CPT

M
er

ge
   

   
   

   
   

   
 D

A
P

I

A

53BP1-pS1778

15 γH2AX (high exp)

+Ub120
25

γH2AX (low exp)

αTubulin

S
iz

e 
(k

D
)

50

15

U
b 1

-γ
H

2A
X

ex
pr

es
si

on
 (

a.
u.

)

0

0.2

0.4

0.6

0.8

1.0

Untr
ea

ted

DNA-P
Ki

CPT

DNA-P
Ki +

 C
PT

C

F
K

2 
fo

ci
 p

er
 n

uc
le

us
 

CPT

0

5

10

15

20

25

Untr
ea

ted

DNA-P
Ki

DNA-P
Ki +

 C
PT

N

C

N

C

**** ****

** **

*** ***

Figure 6



100 kD

αTubulin

Top1

Time (h)– 4 6 – 4 6

A
T

op
1 

ex
pr

es
si

on
 (

a.
u.

) + DNA-PKi B

Top1 trapping

D
N

A
D

N
A

 + DNA-PKi

– 1 6

CPT 

Time (h)

CPT

Top1

Histone H3

PSMA6

Time (h)– 4 6 4 6

CPT

P
2 

fr
ac

tio
n

C

0

0.2

0.4

0.6

0.8

1.0

1.2

D

0
0.2
0.4
0.6
0.8
1.0

0
0.5
1.0
1.5
2.0
2.5

T
op

1
P

S
M

A
6

+ DNA-PKi

0

1.0

2.0

3.0

U
B

A
1

UBA1

E

0

0.5

1.0

1.5

2.0

2.5

3

C
hy

m
ot

ry
ps

in
-li

ke
pr

ot
ea

so
m

e 
ac

tiv
ity

in
 P

2 
fr

ac
tio

n 
(a

.u
.)

Time (h)2 4 – 2 4

CPT 

–

+ DNA-PKi

50 kD

100 kD

100 kD

15 kD

25 kD

CPT 

CPT 

αTubulin

PSMA6

Time (h)– 4 6 – 4 61 1

W
C

E

+ DNA-PKi

50 kD

25 kD

αTubulin

UBA1

Time (h)– 4 6 – 4 6

+ DNA-PKi

50 kD

100 kD

W
C

E

** **

Figure 7



B

100 PARP

75 PARPCL

20

15

Cleaved
Caspase-3

Caspase-3
37

15 γH2AX

15 H2AX

S
iz

e 
(k

D
)

+ FLV

Time (h)– 16 24 16 24

CPT

50

Cleaved
Caspase-3

20
15

–

CPT

16

+ Lactacystin

100 PARP
PARPCL

75

15 γH2AX

αTubulin

S
iz

e 
(k

D
)

–16 Time (h)

C

Time (h)

0

20

40

60

80

100

0 10 20

S
ur

vi
va

l (
%

 o
f c

on
tr

ol
)

FLV + CPT
FLV

CPT

A

100

Cleaved
Caspase-3

PARP
PARPCL

75

20
15

–

CPT

16 –16

+ DNA-PKi

S
iz

e 
(k

D
)

Time (h)

F

PARPCL
100
75

20
15

Cleaved
Caspase-3

PARP

– 16 24

CPT

16 24

+ ATMi

ATMi

17 25 Time (h)

S
iz

e 
(k

D
)

E

100
75

D

 +
 O

lap
ar

ib

 +
 V

eli
pa

rib

– 20 20

CPT

– 20 – Time (h)

50S
iz

e 
(k

D
) PARP

PARPCL

αTubulin

Figure 8



Ubiquitin

ATM*

γH2AX
53BP1

DNA-PK

Proteasome

Repair DSB

TDP1*-PARP1

Death

Survival

Top1

P

Y

5’

DSB focus

Top1 Pol II

5’

Camptothecin

Transcript

Transcription-blockingTop1cc

Figure 9



	  



Supplementary Data 

Ubiquitination triggers DNA double-strand break formation and 
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lesions  
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SUPPLEMENTARY FIGURE LEGENDS 

Figure S1. ATM- and DNA-PK-dependent induction of γH2AX in quiescent IMR90 and NHDF 
cells in response to CPT. Data in IMR90 cells are shown in panels A-D and data in NHFD cells are 
shown in panels E-H. (A,E) Cells cultured in 10% or 0.2% serum for 3 days were exposed to 100 µM 
BrdU for 30 min before staining for BrdU. Percentage of BrdU positive cells (> 300 cells were analyzed 
for each treatment). (B-D, F-H) Serum-starved cells were treated with ATMi (10 µM) or DNA-PKi (10 
µM) for 1 h before the addition of CPT (25 µM) for 1 h. Cells were then stained for γH2AX (green) and 
DNA was counterstained with DAPI (blue). (B,F) Representative pictures. Numbers indicate the 
average number of foci per nucleus. Bars: 10 µM. (C,G) Number of γH2AX foci per nucleus (122-167 
nuclei were analyzed for each treatment in panel C and 111-169 in panel G); ****, P < 0.0001. (D,H) 
Quantification of γH2AX fluorescence intensity per nucleus (means ± SD, 182-209 cells were 
examined per condition in panel D and 208-267 in panel H).  
 
Figure S2. Top1 is degraded in response to CPT but not IR or AsiSI, and PARP inhibition 
increases γH2AX/53BP1 foci in CPT-treated quiescent cells. (A-C) Western blot of Top1 in serum-
starved WI38 hTERT cells treated with FLV (1 µM, 1 h), G5 (1.5 µM, 0.5 h) or MG132 (10 µM, 1 h) 
before the addition of CPT (25 µM) for the indicated times in panels A and C or for 4 h in panel B. (D) 
Western blot of Top1 in serum-starved WI38 hTERT cells 4 and 6 h post-irradiation with 0.8 Gy IR. (E) 
Western blot of Top1 in U2OS EV28 cells treated with 300 nM 4OHT for the indicated times. (F) 
Schematic representation of the repair of a Top1cc. Top1 is partially proteolyzed by the 
ubiquitin/proteasome system to expose the covalent bond between the Top1 catalytic tyrosine and the 
3’-end of the DNA to be attacked by TDP1. Top1cc excision by TDP1 requires PARP1. TDP1 
generates a 3’-phosphate, which is hydrolyzed by PNKP before religation by ligase III. (G) Western 
blot of TDP1 in serum-starved WI38 hTERT cells transfected with TDP1-targeting or nontargeting 
(Control) siRNAs. αTubulin: loading control. (H,I) Serum-starved WI38 hTERT cells were treated for 1 
h with olaparib (10 µM) before the addition of CPT (25 µM) for 1 h. Cells were then co-stained for 
γH2AX (green) and 53BP1 (red). (H) Representative pictures. Nuclear contours, identified by DAPI 
staining (not shown), are indicated by dashed lines. Bars: 10 µm. (I) Number of γH2AX foci per 
nucleus from one representative experiment (131-151 nuclei were analyzed for each treatment) out of 
two; ****, P < 0.0001. 
 
Figure S3. Activation of ATM signaling and its prevention following DNA-PK inhibition in CPT-
treated quiescent WI38 hTERT cells. (A,B) Serum-starved WI38 hTERT cells were treated with 
ATMi (10 µM) or DNA-PKi (10 µM) for 1 h before the addition of CPT (25 µM) for 1 h and stained for 
γH2AX (green). Representative pictures are shown in Figure 5A. (A) Quantification of γH2AX 
fluorescence intensity per nucleus (means ± SD, 172-307 nuclei were examined for each treatment). 
(B) Size of γH2AX foci (means ± SD, n = 3, > 320 foci from 50-70 cells were analyzed for each 
treatment in each experiment).**, P < 0.01; t-test. (C) Western blot of Chk1 phosphorylated on S345 
(Chk1-pS345) and total Chk1 in replicating WI38 hTERT cells treated with ATRi (10 µM) for 1 h before 
the addition of CPT (25 µM) for the indicated times. (D) Western blot of ATM, DNA-PK and ATR in 
WI38 hTERT cells cultured in 10% serum or in 0.2 % serum for 3 days. (E) Phosphorylation of ATM on 
S1981 (ATM-pS1981), KAP1 on S824 (KAP1-pS824), Chk2 on T68 (Chk2-pT68) and p53 on S15 
(p53-pS15) was determined by Western blot in serum-starved WI38 hTERT cells treated with the 
indicated concentrations of CPT for 1 h. Total ATM, KAP1, Chk2 and p53 were examined in parallel. 
(F) Serum-starved WI38 hTERT cells were treated with DNA-PKi (10 µM) for 1 h before the addition of 
CPT (25 µM) for 1 h and stained for 53BP1, 53BP1 phosphorylated on S1778 (p53BP1) or MDC1. 
Representative pictures from one experiment out of two. Nuclear contours, identified by DAPI staining 
(not shown), are indicated by dashed lines. Bars: 10 µm.   



 
Figure S4. Inhibition of XLF or XRCC4 does not prevent the formation of ATM-pS1981 and 
γH2AX foci in CPT-treated quiescent WI38 hTERT cells. (A,B) Serum-starved WI38 hTERT cells 
were transfected with XLF-targeting or nontargeting (Control) siRNAs. (A) Western blot showing the 
efficiency of XLF silencing. Actin: loading control. (B) siRNA-transfected cells were treated with CPT 
(25 µM) for 1 h and pre-extracted with CSK buffer before co-staining for ATM-pS1981 (red) and 
γH2AX (green). Representative pictures. Nuclear contours, identified by DAPI staining (not shown), 
are indicated by dashed lines. Bars: 10 µm. (C,D) Similar experiments were performed following 
siRNA-mediated depletion of XRCC4.  
 
Figure S5. Inhibition of DNA-PK or ATM but not XLF or XRCC4 prevents CPT-induced Top1 
degradation in quiescent cells. (A) Western blot of H2AX in serum-starved WI38 hTERT cells 
treated with CPT (25 µM) for 1 h. +Ub1 indicates monoubiquitinated H2AX. (B,C) Serum-starved WI38 
hTERT cells were transfected with DNA-PK-targeting or nontargeting (Control) siRNAs. (B) Western 
blot showing DNA-PK silencing. αTubulin: loading control. (C) siRNA-transfected cells were treated 
with CPT (25 µM) for 1 h before staining for ubiquitinated proteins (FK2). Number of FK2 foci per 
nucleus from two experiments (156-171 nuclei were analyzed for each treatment). ****, P < 0.0001, t-
test. (D) Western blot of Top1 in serum-starved IMR90 cells (top) and serum-starved NHDF cells 
(bottom) treated with DNA-PKi (10 µM) for 1 h before the addition of CPT (25 µM) for the indicated 
times. αTubulin: loading control. (E) Western blot of Top1, XLF and XRCC4 in serum-starved WI38 
hTERT cells transfected with siRNAs against XLF, XRCC4 or a nontargeting sequence (Control) 
before treatment with CPT (25 µM) for 6 h. Actin: loading control. (F) Western blot of Top1 in serum-
starved WI38 hTERT cells treated with ATMi (10 µM) for 1 h before the addition of CPT (25 µM) for 
the indicated times. αTubulin: loading control. (G) Serum-starved WI38 hTERT cells were subjected to 
fractionation and proteins from whole cell extracts (WCE), 150 mM NaCl/0.1% Triton X-100 
supernatant (S1), 150 mM NaCl/RNAse A supernatant (S2) and pellets (P2) were analyzed by 
Western blot. αTubulin and histone H3 control the S1 and P2 fractions, respectively. (H) DNA-PKi (10 
µM) or MG132 (10 µM) were incubated with the P2 fraction of serum-starved WI38 hTERT cells and 
proteasome chymotrypsin-like activity was measured  (means ± SEM, n = 3).  
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Supplementary Results 
 
We have previously shown that transcriptional DSBs can arise during the repair of Top1 trapped 

into chromatin by CPT in serum-starved quiescent cells. We have proposed that Top1cc 

stabilization by CPT blocks transcription elongation, which triggers partial Top1 proteolysis and the 

generation of a Top1 peptide-linked SSB which is a substrate for Tdp1. Defective repair of this SSB 

intermediate by Tdp1 can give rise to a DSB (see Figure 9, paper). The unresolved question is how 

this SSB can be converted into a DSB in the absence of replication. To address this question, we are 

currently investigating the following points:  

- Determine whether transcriptional DSBs that are produced during the repair of Top1cc arise 

specifically from Top1 peptide-linked SSBs or also by the other SSBs generated downstream of 

Tdp1 action (see the Top1cc repair pathway in Figure S2F, paper). 

- Determine whether the second SSB is created by an endonuclease. 

- Determine whether transcriptional DSBs are produced at hot-spot regions across the genome 

to gain insight into the mechanism of their production and signalling. 

- Determine whether the mechanism of DSB production that we identified in serum-starved 

quiescent cells can be extended to replicating cells outside of S-phase. If so, that will allow the use 

of genetically modified cell lines that cannot be induced in quiescence for further studies.  

 

Transcriptional DSBs arise from SSB intermediates generated during Top1cc repair by the 

Tdp1 excision pathway  

To gain mechanistic insights in the production of transcriptional DSBs, we asked whether the nature 

of the SSB intermediate is important for DSB production. Indeed, DSBs may arise specifically from 

the Top1 peptide-linked SSBs or also from the other SSBs generated downstream from Tdp1. 

Following Tdp1 action, the Top1 peptide-linked SSB is converted into a 3’-phosphate SSB, which 

is hydrolysed by PNKP to generate a 3’-hydroxyl SSB, which is a substrate for LIG3 (Figure S2F, 

paper). To answer this point, we measured γH2AX foci upon inhibition of PNKP and LIG3, which 

increases the amount of 3’-phosphate- and 3’-hydroxyl-SSB intermediates, respectively, in CPT-

treated cells. We found that depletion of PNKP or LIG3 with siRNAs increased the number of 

γH2AX foci in CPT-treated quiescent WI38 hTERT cells (Figure IC and D), under conditions 

where they also increased the amount of SSBs measured by alkaline comet assay (Figure IE and 

F). These results indicate that co-transcriptional DSBs produced in CPT-treated quiescent cells arise 

from SSB intermediates generated during Top1cc repair, independently of the nature of the SSB. 

The production of transcriptional DSBs requires the endonuclease XPF  
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It has been previously reported that transcriptional DSBs are produced by a mechanism dependent 

on R-loops in post-mitotic cells treated by CPT (Sordet et al., 2009). More recently, it has been 

reported that R-loops can be cleaved by the TCR endonucleases XPF and XPG (Sollier et al., 2014). 

We therefore tested the possibility that XPF-dependent cleavage of R-loops could be implicated in 

the generation of the second SSB on the opposite strand to the first SSB produced by Top1cc repair 

then, leading to the production of a DSB.  

We found that depletion of XPF with siRNA significantly decreased the number of γH2AX and 

53BP1 foci in CPT-treated quiescent WI38 hTERT cells (Figure IIA-C). To get additional 

evidence of the role of XPF in the production of transcription-dependent DSBs, we assessed 

whether its depletion also reduced CPT-induced DSBs under conditions where Tdp1 or PARP are 

inhibited. Figure IIB-E show that XPF depletion with siRNA reduced the number of γH2AX and 

53BP1 foci induced by CPT in quiescent WI38 hTERT cells where Tdp1 was depleted with siRNA 

or PARP was inhibited with olaparib. Together, these results indicate that XPF contributes to the 

production of transcription-dependent DSBs in CPT-treated cells and further raise the possibility 

that it could mediate a SSB in the R-loop at the proximity of a SSB generated during Top1cc repair 

on the opposing DNA strand.  

 
Transcriptional DSBs are preferentially formed at subtelomeric regions  

To get insights into the mechanism of production of CPT-induced transcriptional DSBs, we 

wondered if it would be possible to identify some loci or regions where transcription-dependent 

DSBs are preferentially produced. To map the genomic localization of CPT-induced transcriptional 

DSBs, we analysed the distribution of γH2AX in post-mitotic human lymphocytes and serum-

starved WI38 hTERT fibroblasts treated with CPT. As subtelomeric regions are highly rich in 

transcribed genes and have G-rich sequences that may be prone to R-loop formation (Duquette et al., 

2004), we tested the hypothesis that the production of transcriptional DSBs could be favoured at 

subtelomeres. By using immunocytochemistry staining followed by DNA fluorescence in situ 

hybridization (ICC/DNA-FISH) to simultaneously visualize γH2AX and telomeres, in collaboration 

with William Bonner’s group (NIH, USA), we found that approximately 70% of γH2AX foci were 

localized in proximity of telomeres in post-mitotic human lymphocytes treated with CPT (Figure 

IIIA and B). In the same conditions, only 25% of γH2AX foci localized near telomeres in 

lymphocytes exposed to IR at a dose that induced approximately 2 γH2AX foci per cell (as 25 µM 

of CPT in those cells). As a control, we showed that γH2AX foci did not localize near centromeres 

in lymphocytes treated with CPT. Then, we confirmed these observations by assessing γH2AX 

enrichment by ChIP in CPT-treated lymphocytes. We found that γH2AX was enriched at 
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subtelomeres (Actin β, SMARCA2, Telomere I), while it was not enriched at centromeres (TTF2, 

CCT6A, IKZF1) (Figure IIIC). In addition, γH2AX enrichment at subtelomeric regions was 

dependent on transcription since it was completely suppressed by the transcription inhibitor 

flavopiridol (Figure IIIC). 

Then, we investigated whether the CPT-induced transcriptional DSBs were preferentially formed at 

subtelomeres also in serum-starved quiescent fibroblasts. By co-staining γH2AX foci with the 

telomeric markers TRF1 or TRF2 (telomeric-binding protein 1 or 2) as described (Rodriguez et al., 

2012) or with the centromeric marker CENPA, we found that approximately 60-70% of γH2AX 

foci formed in proximity of telomeres (Figure IIIF and G). The specificity of the immunostaining 

and the percentage of foci that colocalized by chance were evaluated by co-staining CENPA with 

TRF2 and TRF1 with TRF2 (Figure IIID and E). Taken together, these results suggest that 

transcriptional-DSBs induced by CPT are not randomly distributed across the genome and give a 

rational to determine more precisely where they are formed for example by using ChIP-sequencing 

analyses of γH2AX. 

 

The production of transcriptional DSBs in G1- and G2-phase cells requires Top1 proteolysis  

It has been reported that CPT-induced transcriptional DSBs are also produced in EdU-negative 

replicating cells (Regairaz et al., 2011; Sordet et al., 2009; Zhang et al., 2011). We wondered 

whether transcriptional DSBs are produced by the same mechanism in replicating cells outside of S-

phase than in serum-starved quiescent cells. To answer this point, at first, we analysed the 

production of transcriptional DSBs in G1- and G2- phase cells treated with CPT. We showed the 

production of DSBs by analysing the induction of γH2AX and p53BP1 foci in response to CPT in 

asynchronously growing WI38 hTERT cells (Figure IVA and B). In response to CPT, G1- and G2- 

phase cells can be distinguished from S-phase cells by a dotted instead of a pan-nuclear γH2AX 

staining as described (Bonner et al., 2008). Then, G2 cells can be distinguished from G1 cells 

because they are positive for CENP-F staining and they have a high DAPI signal compared to G1 

cells as described (Beucher et al., 2009). To determine if DSBs are produced by the same 

mechanism in replicating cells outside of S-phase than in quiescent cells, we checked whether 

inhibiting Top1 proteolysis by the inhibition of the ubiquitin/proteasome system would prevent 

DDR signalling. We found that the proteasome inhibitor MG132, prevented the induction of 

γH2AX foci in G1- and G2- cells and decreased γH2AX signal in S-phase cells (Figure IVC). 

Inhibition of ubiquitination by G5 also decreased CPT-induced γH2AX signal analysed by western 

blot (Figure IVE), under conditions where it prevented Top1 degradation (Figure IVD). These 

results indicate that the ubiquitin/proteasome system is required for the formation of DSBs in CPT-
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treated cells outside of S-phase and strongly suggest that CPT-induced transcriptional DSBs are 

produced by a general mechanism that is not limited to serum-starved quiescent cells. These 

findings also give the rational for the use of genetically modified cell lines that cannot be induced in 

quiescence by serum-starvation for further mechanistic studies.  

 

FIGURE LEGENDS 
 
Figure I. Inhibition of PNKP or LIG3 increases CPT-induced DSBs in quiescent WI38 
hTERT cells. (A-F) Serum-starved cells were transfected with PNKP- or LIG3-targeting or 
nontargeting (Ctrl) siRNAs and then treated with CPT (25 µM) for 1 h. (A,B) Western blotting of 

the indicated proteins. αTubulin or KAP1: loading control. (C,D) Detection of SSBs by alkaline 
comet assays. (C) Representative pictures of nuclei. (D) Quantification of alkaline comet tail 
moments from one representative experiment (60-249 nuclei were analysed for each treatment) out 

of three. ***, P < 0.001; ****, P < 0.0001. (E,F) Co-staining of γH2AX (green) and 53BP1 (red). 

(E) Representative pictures. (F) Number of γH2AX foci per nucleus from one representative 
experiment (152-233 nuclei were analysed for each treatment) out of three. ****, P < 0.0001. In the 
microscopic images, nuclear contours, identified by DAPI staining (not shown), are indicated by 
dashed lines. Bars: 10 µm. 
 
Figure II. Inhibition of XPF decreases CPT-induced DSBs in quiescent WI38 hTERT cells. 
(A) Serum-starved cells were transfected with XPF-targeting or nontargeting (Ctrl) siRNAs. 

Western blotting of XPF. αTubulin: loading control. (B,C) Serum-starved cells were transfected 
with XPF- and/or Tdp1- targeting or nontargeting (Ctrl) siRNAs, treated with CPT (25 µM) for 1 h 

and then co-stained for γH2AX (green) and 53BP1 (red). (B) Representative pictures. (C) Number 

of γH2AX foci per nucleus from one experiment (113-300 nuclei were analysed for each treatment) 
out of one to four. ****, P < 0.0001. (D,E) Serum-starved cells were transfected with XPF-
targeting or nontargeting (Ctrl) siRNAs and treated for 1 h with olaparib (10 µM) before the 

addition of CPT (25 µM) for 1 h. Cells were then co-stained for γH2AX (green) and 53BP1 (red). 

(D) Representative pictures. (E) Number of γH2AX foci per nucleus from one experiment (116-439 
nuclei were analysed for each treatment). ****, P < 0.0001. In the microscopic images, nuclear 
contours, identified by DAPI staining (not shown), are indicated by dashed lines. Bars: 10 µm. 
 
Figure III. Preferential formation of γH2AX foci at subtelomeric regions after CPT treatment 
in post-mitotic human lymphocytes and serum-starved quiescent human cells. (A) Left and 
middle panels: representative confocal microscopy images of immunostaining of γH2AX (green) 
and fluorescence in situ hybridization of telomeres (red) in lymphocytes after treatment with CPT 
(25 µM, 1 h) or after ionizing radiation (IR: 0.2 Gy, 30 min). DNA was counterstained with DAPI 
(blue). Both treatments induce the production of approximately 2 γH2AX foci per nucleus. Images 
show the preferential localization of γH2AX foci at the proximity of telomeres in response to CPT 
but not in response to IR. Right panel: co-staining of CPT-treated lymphocytes (25 µM, 1 h) for 
γH2AX (green) and CENPA (red, centromeric marker) show that γH2AX foci do not form at the 
proximity of centromeric regions. (B) Percentages of γH2AX foci that form at the proximity 
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(proximal, black bars) or at distance (distal, grey bars) of telomeres (Telomeric-FISH) or 
centromeres (CENPA). The data show the average of two independent experiments ± SD, 30-40 
cells were counted for each experiment. (C) Lymphocytes treated or not with flavopiridol (FLV, 1 
µM) for 1 h before the addition of CPT (25 µM, 1 h) were sonicated to generate long chromatin 

fragments (> 1 Kb with high variability) and then immunoprecipitated by using an anti-γH2AX 

antibody. γH2AX enrichment was assessed by qPCR amplification using primers localized in 
subtelomeric (Actβ, SMARCA2, Telomere I) or pericentromeric (TTF2, CCT6A, IKZF1) regions. 
DNA recovery is calculated by setting untreated samples to 1. Data show the average ± SD of 
triplicates. ChIP analysis was performed in parallel by using a non-immune antibody (IgG) as 
negative control and an anti-H3 antibody as positive control (data not shown). For qPCR 
amplification, primers recognizing α-satellite regions at centromere were also used as negative 
control (data not shown). (D-G) Serum-starved WI38 hTERT cells were treated with CPT (10 µM, 
1 h) before staining for the indicated proteins. DNA was counterstained with DAPI (blue). Bars: 10 
µm. (D) Representative confocal microscopy images of immunostaining of CENPA (green, 
centromeric marker, left panel) or TRF1 (green, telomeric marker, right panel) with TRF2 (red, 
telomeric marker). Images show the specificity of antibody staining, CENPA and TRF2 do not 
colocalize while TRF1 and TRF2 perfectly merged (yellow). (E) Percentages of TRF2 foci that 
form at the proximity (proximal, black bars) or at distance (distal, grey bars) of centromeres 
(CENPA) or telomeres (TRF1). The percentage of TRF2 foci proximal to CENPA gives a measure 
of colocalization by chance. Data show the average of TRF2 foci per cell ± s.e.m. , 181-265 TRF2 
foci were counted per condition. (F) Representative confocal microscopy images of 
immunostaining of γH2AX (green) whit TRF1 (red, left panel) or TRF2 (red, middle panel) or 
CENPA (red, right panel). Images show that γH2AX foci form preferentially at the proximity of 
telomeric regions. (G) Percentages of γH2AX foci that form at the proximity (proximal, black bars) 
or at distance (distal, grey bars) of centromeres (CENPA) or telomeres (TRF1 and TRF2). Data 
show the average of γH2AX foci per cell ± s.e.m. , 201-365 γH2AX foci were counted per 
condition. 
 
Figure IV. The production of CPT-induced DSBs is dependent on proteasome activity in 
replicating WI38 hTERT cells in G1 and G2 phases. (A) Identification of the cell cycle phases in 

WI38 cells treated with CPT (25 µM) for 1 h and then co-stained for γH2AX (green) and CENP-F 
(red). DNA is counter-stained with DAPI (blue). S-phase cells are CENP-F positive and exhibited a 

pan-nuclear staining of γH2AX. G1- and G2-phase cells were distinguished from S-phase cells by 

their dotted γH2AX staining. G1 cells are negative for CENP-F and have a low DAPI content. G2 
cells are positive for CENP-F and have high DAPI content. (B) Representative pictures of co-

staining with γH2AX (green) and 53BP1 phosphorylated on S1778 (p53BP1) (red). DNA is 
counter-stained with DAPI (blue). Images were merged to determine colocalization (yellow). (C) 
Representative pictures of replicating WI38 cells treated with MG132 (50 µM, 1 h) before the 

addition of CPT (25 µM) for 1 h and then co-stained with γH2AX (green) and CENP-F (red). DNA 
is counter-stained with DAPI (blue). (D) Replicating WI38 cells were treated with G5 (1.5 µM, 0.5 
h) before the addition of CPT (25 µM) for 1 h and then analysed by western blotting for the 

indicated proteins. αTubulin: loading control. In the microscopic images, nuclear contours, 
identified by DAPI staining are indicated by dashed lines. Bars: 10 µm. 
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My PhD’s work has been focused on the study of DSBs produced by CPT-induced transcription-

blocking Top1cc in the aim of uncovering their mechanisms of production and signalling. These 

DSBs are particular because: 

- They are generated by Top1 covalently linked to DNA 

- They are accompanied by an inhibition of the enzymatic activity of Top1, which results 

from Top1 trapping 

- They are transcriptional DSBs: their production is dependent on transcription and they likely 

occur in actively transcribed regions.  

The interest in characterizing these co-transcriptional DSBs is linked to the fact that they can be 

produced (i) endogenously as a result of Top1cc trapping by common DNA alterations or (ii) during 

chemotherapy as a result of selective Top1cc trapping by CPT derivatives. Our work reveals a new 

mechanism and a preferential genomic location of DSB production in response to stabilized Top1cc 

as well as a new function of DNA-PK in promoting ubiquitin signalling.  

In the following section, we will discuss the main findings of this work in the context of literature, 

the open questions, the perspectives arising from this work and the possible relevance of 

transcriptional DSBs produced endogenously or during chemotherapy from transcription-blocking 

Top1cc. 

 

1. The choice of quiescent cells as cellular model  

 

To overcome the replication-related consequences of CPT treatment, we have chosen to use human 

primary WI38 fibroblasts immortalized with hTERT induced in quiescence by serum deprivation 

(Figure 1A and B, paper). Firstly, we have chosen primary cells because they have low genomic 

instability (Lobrich et al., 2010). Second, working in G1- and G2-phase cells requires the use of 

synchronization protocols that can potentially induce DNA damage or the use of cell cycle markers 

in asynchronously growing cells (Figure IVA) that are compatible with microscopy analyses (albeit 

not with multiple co-staining) but not with western blot experiments. Finally, post-mitotic cells also 

constitute a good model to study transcriptional DSBs (Sordet et al., 2009) but the available 

material is limited since they cannot be grown in culture. Another good model in complement to 

serum-starved quiescent cells for further experiments could be the SH-SY5Y neuroblastoma cell 

line. Different protocols can be used to differentiate SH-SY5Y in neuron-like cells that arrest to 

proliferate, form long neurites, express neuronal markers (Dwane et al., 2013) and behave like 

neurons in response to CPT (Tian et al., 2009).  
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2. Correlations between γH2AX foci and DSBs  

 

γH2AX foci are the most common and used marker to detect DSBs, however the use of γH2AX has 

been debated as γH2AX can also reveal damage other than DSBs (Bonner et al., 2008; Lobrich et 

al., 2010). In our study we clearly demonstrated that CPT induces DSBs in non-cycling cells as (i) 

γH2AX foci colocalize with the other DDR proteins 53BP1 and MDC1 foci, (ii) neutral comet tail 

moment is increased, and (iii) ATM, DNA-PK and the downstream DDR pathway are activated. 

In agreement with the literature (Sakai et al., 2012; Sakasai et al., 2010a; Sordet et al., 2009; Tian et 

al., 2009), TC-DSBs associate with large γH2AX and 53BP1 foci (Figure 1F, paper) compared 

with RC-DSBs or AsiSi-induced DSBs (Figure 3F, paper). A number of studies have shown a 

nearly one-to-one correlation between γH2AX foci and DSBs (Kinner et al., 2008; Lobrich et al., 

2010). However, in our model few DSBs (≈3-5 foci/cells with 5-7.5 µM CPT, respectively) are able 

to increase the tail moment in neutral comet assay (Figure 1I, paper). This was unexpected as the 

limit of sensitivity of the neutral comet assay has been estimated to approximately 12.5-50 

DSBs/cell depending on the cellular type (Olive and Banath, 2006; Redon et al., 2009; Wang et al., 

2013). A tempting hypothesis might be that one large transcription-dependent γH2AX focus 

contains more than one DSB. For instance, multiple DSBs might occur simultaneously in a 

transcription factory as in the case of etoposide-induced DSBs (Cowell et al., 2012). To test 

whether one γH2AX focus corresponds to more than one DSB, it would be interesting to analyse 

the CPT-induced Ku and/or XRCC4 foci in serum-starved quiescent cells and determine how many 

Ku or XRCC4 foci are present in a single γH2AX focus as described (Britton et al., 2013). 

Detection of Ku foci would also be of interest in the context of DDR inhibition to directly visualize 

DSBs in the absence of γH2AX foci. Indeed, neutral comet assay shows an increase in DSBs in 

response to CPT upon ATM or DNA-PK inhibition (Figure 5C, paper) that cannot be studied by 

analysing DDR foci. 

 

3. How are CPT-induced transcriptional DSBs produced?  

 

Our results show that CPT-induced transcriptional DSBs produced in serum-starved quiescent cells 

arise from SSB intermediates generated during Top1cc repair by the Tdp1 excision pathway, 

independently of the nature of the SSBs (Figure 2 and 4, paper and Figure IE and F). Our model 

is consistent with previous works showing that: (i) CPT-induced Top1 downregulation is 

transcription and proteasome-dependent (Desai et al., 2001; Desai et al., 2003), (ii) Tdp1 primarily 

repairs transcription-blocking Top1cc (El-Khamisy et al., 2005; Miao et al., 2006) and requires 
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prior Top1 proteolysis (Debethune et al., 2002), (iii) proteasome inhibition prevents the activation 

of ATM in CPT-treated quiescent cells (Lin et al., 2008), and (iv) PARP inhibition or Tdp1 

depletion increases the number of γH2AX and 53BP1 foci in response to CPT in post-mitotic and 

cycling cells (Katyal et al., 2014; Sakai et al., 2012; Zhang et al., 2011). 

We have shown that similar to quiescent cells, CPT induces proteasome-dependent γH2AX foci in 

both G1- and G2-phase cells (Figure IVA and B). These observations strongly suggest that in 

replicating cells, transcriptional DSBs are produced during Top1cc repair by the same mechanism 

identified for quiescent cells. The results of Zhang et al. also support this possibility as PARP 

inhibition increases the number of γH2AX foci in response to CPT in the EdU negative population 

of replicating cells (Zhang et al., 2011). It would be interesting to further confirm the role of 

Top1cc repair in DSB production by analysing CPT-induced γH2AX foci in G1- and G2-phases in 

presence or not of transcription or proteasome inhibitors in genetically modified cell lines deficient 

for component of the Tdp1-excision pathway such as Tdp1 KO, PARP1 KO and Tdp1/PARP1 KO 

DT40 cells (Das et al., 2014; Murai et al., 2012) and PNKP shRNA human cells (Rasouli-Nia et al., 

2004). 

 
How to pass from a SSB to a DSB in the absence of replication?  
 
 
How a SSB can give rise to a DSB in the absence of replication is still an unresolved question. 

Many scenarios are possible but our data clearly indicate that a required step for DSB production is 

the generation of a SSB during the repair of Top1cc and after Top1 proteolysis. Different 

hypothesis could be envisaged for DSB production: 

- A Top1-linked SSB opposite to a nicked DNA 

It has been shown that a DSB can arise by a CPT-induced Top1cc opposite to nicks or short gaps at 

positions -1/+1 or between the position +2/+6 from the Top1cc on the nonscissile strand (Pourquier 

et al., 1997a). Given the high rate of DNA damage per cell per day (Lindahl and Barnes, 2000), one 

possibility is that a DSB is generated by a nick or a gap in proximity of a Top1cc located in the 

opposite strand (Figure 37A). 

- Two nearby Top1cc 

A DSB may result from two nearby Top1cc-dependent SSBs within 10 bp (Pommier et al., 2014; 

Pourquier et al., 1997a; Wu and Liu, 1997) on opposing DNA strands. At least three possible 

configurations can be envisaged (Figure 37B-D): (i) two opposite SSBs generated after Top1 

proteolysis (Figure 37B), (ii) one SSB generated after Top1 proteolysis and one SSB generated by 

an endonuclease (either to excise a Top1cc or not) (Figure 37D) (iii) one SSB generated after Top1 
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proteolysis and one unprocessed Top1cc (non-degraded Top1-linked SSB) (Figure 37C). The 

hypothesis that two Top1cc could be close to each other on opposing DNA strands is plausible 

because Top1 nicking-closing activity is increased in transcribed regions. It is also possible that two 

Top1cc on opposing DNA strands result from convergent transcription. To get insights into these 

hypotheses, it would be very helpful to determine where CPT-induced transcriptional DSBs are 

produced across the genome.  

- R-loop-dependent mechanism 

The second SSB may be caused by R-loop processing. A number of evidences support a 

participation of R-loops in the production of CPT-induced transcriptional DSBs: (i) Reduced Top1 

activity causes R-loop formation (Drolet et al., 1994; Drolet et al., 1995; Tuduri et al., 2009) and 

CPT treatment increases R-loops in vivo (Groh et al., 2014; Marinello et al., 2013; Powell et al., 

2013), (ii) RNaseH1 overexpression significantly reduces CPT-induced γH2AX signal in post-

mitotic cells (Sordet et al., 2009) and (iii) R-loops formed in response to CPT are cleaved by the 

endonuclease XPG in replicating cells (Sollier et al., 2014).  

To test if R-loops are implicated in DSB production in CPT-treated quiescent cells, we tried to 

overexpress RNaseH1 and analyse γH2AX. Unfortunately, we failed to overexpress RNaseH1 

probably because of low transfection rate and/or low transcriptional rate of quiescent cells. 

Experiments are ongoing in the laboratory to deplete RNaseH1 by using siRNA as described (Groh 

et al., 2014; Tresini et al., 2015) and analyse the impact of RNAseH1 depletion in CPT-induced 

γH2AX foci in quiescent cells. In addition, it should be interesting to determine whether R-loops 

are in the same pathway of Top1cc’s repair in the production of DSBs. 

As the mechanism of DSB production seems to be the same in replicating cells outside of S-phase, 

we are planning to analyse the role of R-loops in cycling cells by using an ArrayScan Operetta. This 

could enable to avoid the employ of a cell-phase marker by using DAPI intensity to discriminate 

cell cycle phases. We could overexpress RNAseH1 in replicating cells and/or use cell lines 

inducible for WT or mutated RNAseH1 (Britton et al., 2014).  

If R-loops are responsible for the production of the second SSB, the arising question is: how this 

second SSB is produced in the R-loop? 

The ssDNA that is exposed during R-loop formation is particularly vulnerable to nucleases and 

other enzymes. The TCR flap endonucleases, XPF and XPG, have been recently identified as 

factors able to cleave R-loops (Sollier et al., 2014) (Figure 37E and F). Preliminary experiments in 

CPT-treated quiescent cells show that depletion of XPF significantly reduces the number of γH2AX 

foci (Figure IIB and C). Tdp1-excision pathway and XPF processing seem to contribute to DSB 

production by a common pathway, as XPF depletion decreases CPT-induced γH2AX foci in 
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quiescent cells depleted for Tdp1 or treated with PARP inhibitors (Figure IIB-E). Currently, we 

did not find consistent results for XPG depletion (data not shown). It will be interesting to confirm 

these observations by using other siRNA targeting XPF or XPG, by depleting ERCC1, the non-

catalytic partner of XPF, and by using XPG- and XPF-deficient fibroblasts complemented with the 

wild type or the nuclease-dead proteins (as described (Sollier et al., 2014)) after serum-starvation.  

However, in addition to the TCR pathway to process R-loop structures (Sollier et al., 2014), XPF 

can also work in the nuclease excision pathway to repair Top1cc (Vance and Wilson, 2002). It 

would be interesting to investigate the role of these cellular pathways in DSB production as both 

could account for the contribution of XPF to transcriptional DSBs that we observed (Figure 37D 

and E). To test the potential participation of TCR in CPT-induced transcriptional DSB, we could 

analyse the impact of CSB depletion in CPT-induced γH2AX foci, as CSB is also required for R-

loop processing (Sollier et al., 2014). The work of Sakai et al. shows that CSB depletion partially 

decreases the number of transcriptional 53BP1 foci in response to CPT (Sakai et al., 2012) 

supporting this  possibility. To investigate whether the role of XPF in CPT-induced transcriptional 

DSB depends on its role in Top1cc repair, we could analyse the impact of XPF depletion on Top1cc 

repair directly by measuring Top1cc levels or indirectly by measuring transcription resumption.   
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Figure 37: Possible mechanisms for generation of CPT-induced transcriptional-DSBs from a Top1cc. Formation of a DSB by a 
Top1cc-associated SSB and a second SSB created by (A) a pre-existing nick in the opposite strand, (B-D) another Top1cc in the 
opposite strand (see text for details), (E) the processing of the ssDNA exposed in a R-loop by the endonuclease XPF or (F) XPG or 
(G) by the deamination of a cytidine by an APOBEC protein followed by the generation of an AP site by UNG and the cleavage by 
the endonuclease APE1 or Mre11. Top1 is shown not proteolysed (full circle) or partially proteolysed (crescent-shaped). Red arrows 
indicate the cleavage of endonucleases and asterisk indicates the processing of a cytidine residue by the AID-UNG-APE1/Mre11 
pathway. 

 

In addition to TCR endonucleases, the ssDNA on the R-loop might be “attacked” by a cytidine 

deaminase member of the APOBEC (apolipoprotein B mRNA editing enzyme, catalytic 

polypeptide) family, of which AID (activation-induced cytidine deaminase) is a member. During 

CSR, AID promotes the conversion of cytidine to uracil specifically on ssDNA in co-transcriptional 

R-loops formed over the S (switch) regions at the Ig locus (Yu et al., 2003). Deamynated cytidine is 

deglycosylated by uracil-DNA glycosylase UNG with the subsequent creation of an abasic site, 

which can be converted in SSB by APE1 (apurinic-apirimidic endonuclease) or Mre11 

endonucleases. In B-lymphocytes, AID can initiate DSBs in a small subset of non-Ig genes (Chiarle 

et al., 2011). It has been proposed that other APOBEC members might act in a similar manner in 
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cells that do not express AID (Burns et al., 2013; Sollier and Cimprich, 2015). Hence, we may 

consider also a possible participation of this mechanism to transcriptional DSBs (Figure 37G). 

- Other factors 

We can’t exclude the participation of other factors, in particular nucleases that might cleave the 

opposite strand to Top1cc. Indeed, in post mitotic cells RNaseH1 overexpression only partially 

prevents γH2AX signal (about ≈50%) (Sordet et al., 2009) suggesting that other mechanisms in 

addition to R-loops should contribute to DSB formation. Similarly, XPF depletion does not 

completely prevent CPT-induced γH2AX foci in serum-starved quiescent cells. Therefore, it would 

be interesting to perform a siRNA screening to identify potential other factors implicated in DSB 

production.   

 

4. Genomic localization of CPT-induced transcriptional DSBs 

 

Our results show that transcriptional DSBs induced by CPT tend to form at subtelomeric regions in 

post-mitotic lymphocytes and quiescent WI38 fibroblasts (Figure III). Why CPT-induced 

transcriptional DSBs should be produced preferentially at subtelomeres? 

Subtelomeric regions can be defined as the terminal 500 Kb of each euchromatic chromosome arm 

and they are highly enriched in transcripts (Riethman et al., 2005). Thus, one possibility is that 

CPT-induced transcriptional DSBs could be preferentially localized at those regions simply because 

of the high transcriptional rate that increases the probability of collisions of stabilized Top1cc with 

ongoing RNAPII.  

Another possibility is that the sequence’s characteristics of these regions may promote CPT-

induced transcriptional DSBs. For instance, telomeric repeats may constitute a high concentration 

of nested Top1 cleavage sites, as each telomeric repeat represents a potential Top1 cleavage site in 

vivo (Kang et al., 2004). Indeed, Top1 can cleaves efficiently 5’-TT*AGGG-3’ (cleavage site 

marked by *) telomeric repeats in the presence of CPT in vitro and Top1cc have also been detected 

at telomeric repeats in vivo in CPT-treated cells (Kang et al., 2004). Subtelomeric regions are 

enriched about 25-fold in (TTAGGG)n repeats compared to elsewhere in the genome (Riethman et 

al., 2005). Subtelomeres are also G-rich regions (Riethman et al., 2005) and G clusters and G 

density are two factors that promote the formation and the stabilization of R-loops (Roy et al., 

2010). As R-loops are involved in DSBs production (Sordet et al., 2009), regions prone to R-loops 

formation may be enriched in DSBs.  

A third possibility is that transcription-associated DSBs induced by Top1cc tend to form not 

generically at subtelomeric regions but at some specific genes localized at subtelomeric regions. 
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Consistently with this hypothesis, γH2AX foci have been found enriched at IgH locus, which is 

known to form R-loops during CSR, in unstimulated splenocytes treated with CPT (Sordet et al., 

2010). The IgH genes constitute one of the subtelomeric gene families (Riethman et al., 2005).  

The precise identification of some genes or regions where transcriptional-DSBs are produced across 

the genome should be extremely useful to understand the mechanism of DSB production and 

signalling: 

- The analysis of the loci where DSBs are preferentially formed should give precious 

mechanistic information such as, for example, if DSBs are produced at convergent transcription 

units.  

- DSB localization will allow the use of ChIP or ICC/DNA-FISH at specific sites. For 

instance, it should allow the mapping of the position of RNAPII and Top1cc relatively to the DSB. 

According to the “collision model”, TC-DSBs have been predicted to occur in the 5’ region of 

actively transcribed gene not far from the promoter (Wu and Liu, 1997) as Top1cc arrests RNAPII 

early in transcription (Khobta et al., 2006). Interestingly, nucleases XPF and XPG are enriched at 

promoter of particular genes, where they induce DNA breaks, DNA demethylation and the 

establishment of active chromatin marks required for gene expression (Le May et al., 2012). Thus, 

it should be interesting to analyse directly by ChIP at a single site, factors that mechanistically may 

promote DSB production from a transcription-blocking Top1cc.  

- DNA sequence’s characteristics should give insights about the correlation between DSB 

formation and the presence of R-loops or alternative DNA structures (such as G-quadruplex). The 

availability of antibodies against anti DNA-RNA hybrids (S9.6) (Boguslawski et al., 1986) or anti 

G-quadruplex (Biffi et al., 2013; Henderson et al., 2014), should then allow the direct detection of 

those structures at sites where γH2AX is enriched after CPT-treatment by ChIP/DNA or 

immunofluorescence experiments.  

Experiments are ongoing in the laboratory to map transcriptional DSBs based on γH2AX genomic 

distribution in CPT-treated quiescent cells by using ChIP-sequencing approach. 

 

5. What are the components of the ubiquitin-proteasome system that degrade Top1? 

 

As already described in literature (Desai et al., 2003), we confirmed that CPT induces proteasomal 

degradation of Top1 in a transcription-dependent manner (Figure S2A-C, paper). Deciphering the 

ubiquitination cascade and the component of the UPS (ubiquitin-proteasome system) involved in 

Top1 downregulation is important in understanding the response of cancer cells to CPTs as 

deficient Top1 downregulation is a feature of many cancers and hypersensitizes cells to CPT (Desai 
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et al., 2001). We found that CPT treatment triggers accumulation of the E1-activating enzyme 

UBA1 (Figure 7C, paper) at chromatin supporting a role of UBA1 in catalysing Top1 

ubiquitylation as previously suggested by defects in Top1 degradation in ts85 cells (Ban et al., 

2013; Desai et al., 1997). While E2-ubiquitin conjugating enzymes for Top1 are not known, several 

E3 ligases have been implicated such as Cul3 (Lin et al., 2009; Zhang et al., 2004), Cul4A and 

Cul4B (Kerzendorfer et al., 2010). Our data confirmed that depletion of Cul3 and Cul4B prevents 

Top1 downregulation, but the effect is only partial (Figure 3A and B, paper) suggesting that other 

E3s may regulate Top1 ubiquitylation in addition to cullins. To evaluate the implication of cullins 

versus non-cullins E3-ligases, a new approach could be the use of the neddylation inhibitor 

MLN4924, which inhibits cullins’ activity (Soucy et al., 2009). siRNA or shRNA-based approaches 

do not inhibit cullins’ activity to a level comparable with MLN4924 (Brown et al., 2015). This 

could also explain the moderate effect in the prevention of Top1 degradation and γH2AX induction 

that we found with siRNA against Cul3 and Cul4B (Figure 3A-C, paper). If MLN4924 does not 

completely prevent Top1 degradation, it should mean that non-cullin E3 ligases might also directly 

ubiquitylate Top1. Accordingly with this possibility, BRCA1 depletion impairs Top1 

downregulation (Sordet et al., 2008b) and BARD1 can interact with Top1 (Trzcinska et al., 2002). 

Similarly, we observe that siRNA against RNF2 prevent Top1 degradation of the same extent than 

that one found upon cullin’s depletion (data not shown). Moreover, RNF2 can interact with Top1 

(Cao et al., 2014). BMI-RNF1, that work in the same complex of RNF2 (PCR1) (Ismail et al., 

2010), have also been described to ubiquitylate and to induce the degradation of Top2α in response 

to teniposide (Alchanati et al., 2009). Further studies should directly analyse whether 

BRCA1/BARD1 or RNF2/BMI1/RNF1 ubiquitinate Top1 in response to CPT in vivo. As 

alternative to siRNA approaches, PRT4165, an inhibitor of RNF1 and RNF2 recently described 

(Alchanati et al., 2009), could be used.  

We also report for the first time the enrichment in the chromatin fraction of the 20S proteasomal 

subunit PSMA6 and of the proteasomal activity in response to CPT (Figure 7C and 7E, paper). It 

has already been described in literature that proteasome is recruited to chromatin in response to 

DSBs (Blickwedehl et al., 2007; Butler et al., 2012; Galanty et al., 2012; Levy-Barda et al., 2011). 

Proteasome subunits also accumulate at chromatin in response to etoposide and it has been 

proposed that this recruitment is dependent on Top2cc (Ban et al., 2013). Hence, the recruitment of 

proteasome at chromatin in response to CPT may be triggered by DSB production or it may depend 

on trapped Top1cc. We tried to analyse by immunofluorescence microscopy after detergent 

extraction the co-staining of PSMA6 and γH2AX. Although PSMA6 and γH2AX colocalize into 

laser “strip” (Levy-Barda et al., 2011), we were not able to detect a signal for PSMA6 in response 
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to CPT. Then, given the low level of DSBs in our system compared to laser microirradiation and 

given the massive Top1 degradation triggered by CPT, it can be speculated that the observed 

enrichment of proteasome at chromatin may be driven by Top1 trapping rather than by DSBs.  

Proteasome accumulation at chromatin together with the requirement of Top1 proteolysis for Tdp1 

to cleave the covalent bond between the Top1 catalytic tyrosine and the 3’ end of the DNA support 

a model in which Top1 is degraded, at least in part, directly at chromatin. However, it should be 

interesting to evaluate whether the p97/VCP segregase also participates to Top1 downregulation by 

extracting Top1cc from chromatin and delivering them to the proteasome. Indeed, recently 

p97/VCP has been reported to extract Cul3/Cul4B K48-polyubiquitylated substrates from 

chromatin at UV lesion sites (Puumalainen et al., 2014). Thereby, Top1cc could be a potential 

p97/VCP substrate and the interaction between Top1 and p97/VCP has been already described (Yu 

et al., 2013). Interestingly, p97/VCP can also interact with BRCA1 (Zhang et al., 2000) and WRN 

(Indig et al., 2004) and can be phosphorylated by DNA-PK in response to DNA damage 

(Livingstone et al., 2005), all factors that control Top1 degradation (Christmann et al., 2008; Sordet 

et al., 2008b) (Figure 7A and B, paper). 

 

6. DDR signalling of CPT-induced transcriptional DSBs  

 

To study the DDR signalling activated by CPT-induced transcriptional DSBs, we analysed the three 

main kinases involved in H2AX phosphorylation, ATM, ATR and DNA-PK (Bonner et al., 2008). 

We found that ATR is not implicated in the formation of γH2AX foci in response to CPT in 

quiescent cells (Figure 5A, paper). This is consistent with ATR being expressed at low levels in 

non-cycling cells (Sordet et al., 2009) (Figure S3D, paper). In addition, although it has been 

reported that ATR can be activated by a transcriptional stress (Derheimer et al., 2007), the main role 

of ATR is in the response to replication stress (Cimprich and Cortez, 2008; Zeman and Cimprich, 

2014).  

By contrast, CPT activates both ATM and DNA-PK and their inhibition impairs γH2AX foci 

formation without preventing DSB induction as measured by neutral comet assay (Figure 5A-E, 

paper). In agreement with previous findings in post-mitotic cells, ATM is the main transducer of 

TC-DSBs (Katyal et al., 2014; Sordet et al., 2009). Although ATM and DNA-PK function 

redundantly to phosphorylate H2AX (Stiff et al., 2004), in post-mitotic cells, DNA-PK is activated 

but it does not impact γH2AX foci in response to CPT (Katyal et al., 2014; Sordet et al., 2009) 

suggesting that its role may be different in serum-starved quiescent cells versus post-mitotic cells. 

However, after CPT removal, the maintaining of γH2AX foci is dependent on DNA-PK activity in 
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quiescent astrocytes (Katyal et al., 2014) indicating that DNA-PK may be implicated in DDR also 

in post-mitotic cells.  

The functional relationship between ATM and DNA-PK in the DSB response is complex. 

ATM can phosphorylate DNA-PK in T2609 (ABCDE cluster) in response to IR (Chen et al., 2007) 

and during apoptosis (Solier et al., 2009). In post-mitotic cells (Sordet et al., 2009) and in serum-

starved quiescent cells (Figure 5D and E, paper) the activation of DNA-PK is dependent on ATM. 

We found that, in serum-starved quiescent cells, ATMi also blocks S2056 phosphorylation (Figure 

5E, paper). By contrast, we found that CPT induces DNA-PK phosphorylation on S2056 in cycling 

WI38 hTERT cells in the presence of ATMi (data not shown), as already described in HeLa cells 

(Sakasai et al., 2010b). 

The crosstalk between ATM and DNA-PK is mutual. Indeed, it has been described that depletion of 

DNA-PKcs triggers downregulation of ATM protein level (Chan et al., 1998; Gately et al., 1998; 

Peng et al., 2005). DNA-PK can also phosphorylate ATM on S1981 in apoptotic cells (Solier et al., 

2009). Moreover, we describe a new role of DNA-PK in promoting ATM localization at chromatin 

in response to CPT (Figure 5F-G, paper). DNA-PK activity is not required for ATM activation in 

response to CPT (Figure 5E, paper), but it is required for the assembly of activated ATM into 

nuclear foci and for the phosphorylation of ATM substrates (Figure 5F-G and S3F, paper). This 

role of DNA-PK is independent of its function in NHEJ (Figure S4, paper) and it is likely related 

to the function of DNA-PK in promoting H2AX and H2A ubiquitylation (Figure 6, paper), which 

is required for ATM foci formation (Facchino et al., 2010; Pan et al., 2011). 

Furthers studies are needed to clarify the complex interplay between ATM and DNA-PK and the 

differences in their reciprocal regulation in quiescent cells versus replicating cells. 

 

7. A new function of DNA-PK in promoting ubiquitylation 

 

To our knowledge, our work describes for the first time a function of DNA-PK in promoting 

ubiquitylation. We found that in response to CPT, DNA-PK activity stimulates ubiquitylation of 

histones H2A, H2AX (Figure 6A-C, paper) and Top1 proteolysis (Figure 7A and B, paper) and 

in addition, it favours the accumulation of ubiquitin-proteasome components and proteasome 

activity at chromatin (Figure 7C and E, paper). Previous studies have already suggested a possible 

connection between DNA-PK and proteasome. DNA-PK arrests transcription when the RNAPII 

machinery comes across a single DSB by a mechanism dependent on proteasome activity (Pankotai 

et al., 2012). DNA-PK activity is also required to recruit the coactivator PA200 and the 20S subunit 

of proteasome in response to high doses of IR (Blickwedehl et al., 2008). Furthermore, the 
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inhibition of proteasome by bortezomib has been reported to inhibit the formation of ATM foci in 

response to IR without blocking ATM activation (Jacquemont and Taniguchi, 2007), the same 

phenotype that we observe upon DNA-PK inhibition (Figure 5E-G, paper). This could be 

explained by a depletion of nuclear free ubiquitin pool driven by proteasome inhibition (Dantuma et 

al., 2006) that consequently leads to the loss of H2A and H2AX monoubiquitination on K119/K120 

necessary for the assembly of activated ATM into foci (Facchino et al., 2010; Pan et al., 2011). 

Some works show that the absence of H2A(X) monoubiquitination impairs foci formation of early 

DDR proteins such as γH2AX and MDC1 (Facchino et al., 2010; Pan et al., 2011) while others 

show the detection of these early markers (Ismail et al., 2010). Pan et al. explain this apparent 

discrepancy by showing that in the absence of H2A(X) monoubiquitination, the kinetic of γH2AX 

foci is just delayed after IR since at later time points (also 1 hour) H2AX is phosphorylated in a 

DNA-PK-dependent manner (Pan et al., 2011). This is consistent with our experiments: in presence 

of DNA-PKi, H2A and H2AX are not ubiquitylated, activated ATM fails to accumulate to 

chromatin and to phosphorylate H2AX and inhibited DNA-PK cannot compensate for H2AX 

phosphorylation resulting in a defect in γH2AX foci (Figure 5A-C, paper). By contrary, although 

proteasome inhibition leads to a defect in H2A(X) monoubiquitination (Dantuma et al., 2006), it 

does not impact γH2AX foci formation in response to IR and to AsiSI (Figure 3D-G, paper) as 

DNA-PK may compensate for the defect of ATM activity. 

 

How DNA-PK promotes ubiquitylation in response to CPT? 
 

It would be interesting to determine how DNA-PK regulates protein ubiquitylation. 

Phosphorylation is known to regulate protein ubiquitylation mainly in two ways (Hunter, 2007): 

- Regulation of E3 ubiquitin-ligase activity 

Phosphorylation of E3 ligases positively or negatively regulates their ubiquitin transfer activity. 

Several E3 ubiquitin ligases have been implicated in the ubiquitylation of H2AX and H2A (RNF2, 

RNF8, RNF168, BRCA1) (Doil et al., 2009; Huen et al., 2007; Pan et al., 2011; Zhu et al., 2011) 

and of Top1 (Cul3, Cul4A, Cul4B, BRCA1) (Kerzendorfer et al., 2010; Sordet et al., 2008b; Zhang 

et al., 2004). Our preliminary results show also a possible implication of RNF2 in Top1 degradation 

(data not shown). To our knowledge, it is not known whether these ligases can be phosphorylated 

by DNA-PK in vivo. One attractive hypothesis is that DNA-PK by phosphorylating RNF2 and/or 

BRCA1 may positively regulate their activity and then, these E3 ligases may ubiquitinate H2A 

and/or Top1. Some evidences in literature could support this scenario: 
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(i) RNF2 and BRCA1 can form an E3-ligase complex (RNF2-BMI1 and BARD1-BRCA1) 

(Ismail et al., 2010; Nishikawa et al., 2004), participate to DSB response and are 

recruited to chromatin (Ismail et al., 2010; Wang et al., 2007). 

(ii) RNF2 and BRCA1 can catalyse monoubiquitylation of H2A(X) (Pan et al., 2011; Zhu et 

al., 2011) and promote Top1 downregulation (data not shown) (Sordet et al., 2008b) 

(iii) RNF2 (Cao et al., 2014) and BARD1 (Trzcinska et al., 2002) can interact with Top1 

(analysed by using BioGRID v3.4 database, http://thebiogrid.org/) 

(iv) BMI1 co-purify with DNA-PK (Facchino et al., 2010). In addition, RNF2 contains three 

putative phosphorylation sites for DNA-PK in its N-terminal region (S2, T10, S20)  

(predicted by using NetPhosK v1.0, http://www.cbs.dtu.dk/services/NetPhosK/). 

BRCA1 interacts with DNA-PK via its tBRCT domains (Davis et al., 2014) and it can 

be phosphorylated by DNA-PK in vitro on S1387 and S1466 (Kim et al., 1999).  

Hence, it should be interesting to investigate whether DNA-PK can phosphorylate BRCA1 and 

RNF2 in vitro and in vivo and then, the eventual role of these phosphorylations in H2A and Top1 

ubiquitination in response to CPT. 

- Regulation of E3 ubiquitin-ligase substrate selection: creation of a phosphodegron 

Phosphorylation itself can create a recognition signal for binding of an E3 ligase thereby it is 

possible that DNA-PK phosphorylates H2A(X) and Top1 targeting them for ubiquitylation. 

Effectively, DNA-PK can phosphorylate H2AX (Stiff et al., 2004) but it is unlikely that this is what 

primes H2AX for ubiquitination because H2A lacks S139 but is also ubiquitinated in response to 

DSBs (Mosammaparast et al., 2013). By contrast this scenario is plausible for Top1. Firstly, Top1 

phosphorylation has been reported in vitro and in vivo and it seems to interest the first N-terminal 

amino acids of Top1 (Durban et al., 1985; Pommier et al., 1990). Secondly, DNA-PK interacts with 

the N-terminal domain of Top1 (Czubaty et al., 2005), which presents a potential phosphorylation 

site for DNA-PK (SQ motif on S10) (predicted by using NetPhosK v1.0). Top1 overexpressing 

cells are characterized by a lack of additional sensitivity compared to control cells and by the 

elimination of the hyperphosphorylated form of Top1 (St-Amant et al., 2006). As Top1 degradation 

is a potential mechanism of CPT resistance (Desai et al., 2001), one hypothesis is that 

phosphorylated Top1 might be targeted to degradation leading to CPT resistance. Further studies 

should be done to elucidate the role and the potential relevance of Top1 phosphorylation. Indeed, 

Top1 immunoprecipitation in presence or not of DNA-PKi and immunoblotting with an antibody 

recognizing phosphorylated serine should give a first information about the implication of DNA-PK 

in Top1 phosphorylation. If DNA-PK inhibition decreases the phosphorylation of Top1, it could be 
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interesting to generate a Top1 mutant non-phosphorylatable on S10 and analyse its ubiquitylation 

and its degradation in response to CPT. 

 

These two mechanisms of regulation are both plausible and they are not mutually exclusive. 

Furthermore, other scenarios cannot be excluded: 

- Phosphorylation can also regulates ubiquitination by regulating substrate/ligase interaction at the 

level of subcellular localization. For example, phosphorylation of p27Kip1 on S10 triggers nuclear 

export, allowing p27Kip1 to be degraded by cytoplasmic E3 ligases (Besson et al., 2006).  

- E1 and/or E2 enzyme may also be regulated by DNA-PK phosphorylation or recruited by 

phosphorylation of the substrates, as we found that DNA-PK favours the recruitment of UBA1 at 

chromatin in response to CPT (Figure 7C, paper). As the specificity of ubiquitylation reaction is 

given by E3 ligases while few E1 and E2 enzymes regulate more substrates, the DNA-PK 

dependent regulation of an E1 or an E2 should mean that DNA-PK regulates ubiquitination of many 

cellular substrates by a general mechanism.  

- Finally, phosphorylation may regulate the activity of DUBs (Villamil et al., 2012). Indeed, large-

scale phosphoproteomic analyses of human DUBs have revealed that 37 of 55 USPs are 

phosphorylated (Olsen et al., 2006).  

 

Does DNA-PK regulate the fate of stalled RNAPII at transcriptional DSBs produced by CPT? 
 

DNA-PK might also regulate RNAPII turnover in the presence of transcription-blocking DSBs. One 

possible hypothesis is that DNA-PK phosphorylates RNAPII blocked by a CPT-induced TC-DSB 

targeting it for degradation. This possibility is compatible with data of Pankotai et al. showing that 

DNA-PK controls transcription inhibition in the presence of a single endonuclease-generated 

transcriptional DSB by a proteasome-dependent mechanism (Pankotai et al., 2012). Furthermore, 

DNA-PK is able to phosphorylate RNAPII in vitro (Dvir et al., 1992). RNAPII is also rapidly 

hyperphosphorylated in response to CPT on S5 (Sordet et al., 2008b) and S2 (Dutertre et al., 2010) 

and modestly degraded at later time point (6 h) (Desai et al., 2003). As expected, our preliminary 

observations confirm that 1 h of CPT treatment induces an increase of the hyperphosphorylated 

form of RNAPII and of the S5 phosphorylation. Hyperphosphorylation of both total RNAPII and 

S5 are decreased in presence of the DNA-PK inhibitor (data not shown). However, in response to 

UV, S5 phosphorylation of the CTD blocks RNAPII ubiquitination, whereas S2 phosphorylation 

promotes its ubiquitination (Somesh et al., 2005). Hence, it should be interesting to analyse the 

effect of DNA-PK inhibition on S2 phosphorylation in response to CPT. Further studies should 
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elucidate the fate of RNAPII stalling at CPT-induced transcriptional DSBs and the mechanism of 

RNAPII degradation induced at later time points. In particular, the identification of a site where a 

CPT-induced DSB is preferentially produced may be helpful in determining where and when 

RNAPII is degraded in response to CPT and whether degradation is controlled by DNA-PK 

dependent phosphorylation.   

 

8. Caveats in studying the role of DNA-PK in the signalling of transcriptional-DSBs  

 

To study the role of DNA-PK in DDR signalling of CPT-induced transcriptional DSBs in our 

system we used NU7441, a specific inhibitor of the DNA-PK kinase activity (Leahy et al., 2004). 

DNA-PKcs autophosphorylation is required for releasing DNA-PKcs from chromatin (Uematsu et 

al., 2007). Consistently, DNA-PKi leads to strong persistence of IR-induced Ku foci (Britton et al., 

2013). During our work, we wondered whether the function of DNA-PK in CPT-induced DDR was 

related to the physical persistence of DNA-PK at DSBs as result of DNA-PK inhibition. However, 

it is not easy to answer to this point. We tried to deplete DNA-PKcs (Figure S5B, paper) or Ku70 

(data not shown) by siRNAs. In both case, given the extremely abundance of these two proteins in 

cells, siRNAs downregulate protein level only at a little extent (approximately of 40-50%). 

Furthermore, consistently with literature (Peng et al., 2005), siRNAs against DNA-PK strongly 

decrease ATM protein level making difficult to decouple ATM- and DNA-PK-dependent DDR 

signalling (data not shown). The same problem is given by the use of DNA-PK deficient cells, like 

MO59J cells (Gately et al., 1998). A good possibility will be to use DNA-PK kinase dead (KD) 

cells to confirm the results obtained by using DNA-PKi. CHO and MEFs DNA-PK-KD are 

available (Jiang et al., 2015; Shrivastav et al., 2009). Furthermore, MEFs can be induced in 

quiescence by serum-starvation (Lin et al., 2008; Lin et al., 2013).  

 

9. The cytotoxicity of CPT-induced transcriptional-DSBs 

 

Our results show that CPT-induced DSBs can kill quiescent cells by apoptosis (Figure 8, paper). 

Our findings are consistent with published studies showing that CPT induces apoptosis in a 

transcription-dependent manner in neurons (Morris and Geller, 1996; Morris et al., 2001; Stefanis et 

al., 1999). We showed for the first time that this cytotoxicity is due to transcriptional DSBs. Indeed, 

by modulating the amount of DSBs it was possible to modulate the induction of apoptosis: blocking 

DSB production by inhibiting transcription or proteasome completely prevented apoptosis (Figure 
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7A-C, paper), while increasing the number of DSBs by inhibiting PARP enhanced apoptosis 

(Figure 7D, paper). 

We also found that the main function of CPT-induced transcriptional DSB signalling is likely to 

promote cells survival as ATM or DNA-PK inhibition increases apoptosis (Figure 7E and F, 

paper). Interestingly, ATM-dependent signalling in quiescent cells has the same function in 

promoting cell survival than in G1-phase cycling cells (Sakasai et al., 2010a) while in neurons 

ATM promotes cell-cycle re-entry and apoptosis (Tian et al., 2009).  

 

Speculations about the possible implication of our findings in neurodegenerative syndromes  

 

Transcriptional DSBs might occur spontaneously in cells as Top1cc are stabilized by common DNA 

alterations such as DNA nicks, gaps, mismatches, abasic sites or misincorporated ribonucleotides 

(Kim et al., 2011; Pourquier and Pommier, 2001). Therefore, stabilized Top1cc may have a marked 

impact on non-replicating cell fate. Hence, it could be speculated that defective repair of Top1cc 

could lead to the accumulation of transcriptional DSBs that may be involved in neuronal death in 

AT (ATM deficiency) and SCAN1 (Tdp1 deficiency) patients. Indeed, these syndromes are both 

characterized by neurodegeneration and apparition of neurological defects relatively late, in 

childhood for AT and in the teenage years for SCAN1 patients (Rass et al., 2007). Neurons may be 

more relying on Top1cc-repair by the Tdp1 excision pathway compared to replicating cells and they 

may have particular tissue-specific features that increase the probability of Top1 trapping, such as 

(i) the high oxygen consumption that results in the high level of oxidative stress that can stabilize 

Top1, (ii) the high transcriptional rate which may increase the conversion of reversible Top1cc into 

suicide complex and (iii) the lack of replication that may impede to repair Top1cc by other repair 

pathways during replication such as helicase pathway, HR or NHEJ (Rass et al., 2007). We can 

speculate that AT and SCAN1 patients might accumulate unrepaired Top1cc trapped by 

endogenous DNA alterations that may be converted at very low frequencies into cytotoxic 

transcriptional-DSBs that accumulate over years.  

This hypothesis is consistent with our data showing that Tdp1 depletion increases the induction of 

transcriptional DSBs produced by stabilized Top1cc (Figure 4A and B, paper) and that few DSBs 

are able to kill quiescent cells (Figure 8, paper). Evidences in literature could also be consistent 

with this possibility, (i) both Tdp1 and ATM participate to Top1cc repair (Alagoz et al., 2013; El-

Khamisy et al., 2005) (ii) Tdp1 or ATM deficient neural tissues accumulate endogenous Top1cc 

compared to control tissues (Katyal et al., 2014), (iii) AT cells have higher endogenous level of 

Top1cc that are dependent on both transcription and ROS (Alagoz et al., 2013), (iv) ATM regulates 
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the level of ROS (Guo et al., 2010; Ito et al., 2004) and (v) DSBs in neurons can physiologically be 

produced as result of brain activity (Suberbielle et al., 2013). 

Hence, it will be interesting to test the possible involvement of transcriptional DSBs in AT and 

SCAN1 pathologies by using neurons, neurons-like cells or astrocytes as cellular model.  

 

Speculations about the possible implication of our findings in cancer therapy  

 

In highly proliferative cancer cells, replication-induced DSBs are the primary cytotoxic mechanism 

of Top1 inhibitors (Holm et al., 1989; Horwitz and Horwitz, 1973). Hence, at clinical 

concentrations it is unlikely that transcriptional DSBs per se contribute to CPTs cytotoxicity in 

cancer cells (Borovitskaya and D'Arpa, 1998). Furthermore, the RC-DSBs-dependent cytotoxicity 

of CPT allows a S-phase-selective targeting of highly replicating tumour cells limiting side effects 

on slow-cycling nontransformed cells. Nevertheless, transcriptional implications associated with 

CPT-induced Top1 trapping may be relevant in cancer therapy:  

- Top1 proteolysis: As already discussed, CPT-induced Top1 degradation is a mechanism of 

CPT resistance (Desai et al., 2001). Cancer cells are often deficient in Top1 degradation and more 

sensible to Top1 inhibitors (Desai et al., 2001). Deficiencies in Top1 degradation pathway should 

trigger a hypersensitivity to CPTs. For instance, CPT treatment may likely be beneficial in tumour 

with deficiencies in ATM or DNA-PK activity, not only because of the role of ATM and DNA-PK 

in DSB signalling and repair but also for their possible role in Top1 downregulation. Thus, it should 

be interesting to test whether ATM or DNA-PK depletion prevents Top1 downregulation in 

replicating cells such as in quiescent cells (Figure 7A and B, S5D and F, paper) (Alagoz et al., 

2013; Katyal et al., 2014).  

- Transcriptional-DSBs: The proteasome inhibitor bortezomib (Velcade) is approved in 

therapy for the treatment of multiple myeloma and lymphoma. Proteasome inhibition by bortezomib 

potentiates specifically CPT- (or irinotecan-) induced S-phase cytotoxicity (Zhang et al., 2004). By 

contrast, we show that proteasome inhibition blocks CPT-induced apoptosis in quiescent fibroblasts 

(Figure 8C, paper). It should be speculated that combining bortezomib with CPT derivatives might 

kill more tumours cells increasing CPT selectivity. A number of clinical trials have been done or are 

ongoing for this combination in different types of tumours (clinicaltrials.gov). It would be also 

interesting to test the combination of bortezomib, CPTs and olaparib, a PARP inhibitor recently 

approved in cancer therapy. PARP inhibitors (PARPi) potentiate the cytotoxicity of CPT in cancer 

cells (Zhang et al., 2011). We show that PARP inhibition also enhances CPT-dependent apoptosis 

in quiescent cells (Figure 8D, paper) by increasing the amount of transcriptional-DSBs (Figure 4C 
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and D, paper) and our preliminary experiments suggest that DSBs could be produced by the same 

mechanism in G1- and G2-phase cells (Figure IVC-E). Inhibiting proteasome may prevent CPT 

and PARPi cytotoxicity in non-S-phase cells thereby leading to enhanced cell killing specifically in 

S-phase.   

- CPT-induced transcriptional-SSBs during replication: It could be also possible that some 

replication-coupled DSBs produced in response to CPT are dependent on transcription. 

Transcriptional-SSBs generated during Tdp1-excision pathway could be converted in DSBs during 

replication. This scenario is consistent with evidences in literature: (i) Tdp1 deficiency or PARP 

inhibition results in CPT hypersensitivity in replicating cells (Interthal et al., 2005b; Miao et al., 

2006; Zhang et al., 2011), (ii) deficient Top1 proteolysis decreases the induction of RC-DSBs and 

γH2AX signal in response to CPT in replicating cells (Lin et al., 2009) (Figure IVC-E) and (iii) 

transcription-dependent activation of ATM activates the G1/S checkpoint in response to CPT likely 

to avoid the conversion of transcriptional-SSBs carried over from G1 to S-phase in DSBs during 

replication (Sakasai et al., 2010a). Furthermore, cells depleted for Top1 accumulate DSBs in 

particular in actively transcribed genes as a result of the frequent interference between replication 

and transcription (Tuduri et al., 2009). 
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3. ABSTRACT  

 

Topoisomerase I-DNA-cleavage complexes (Top1cc) stabilized by camptothecin (CPT) have 

specific effects at transcriptional levels. We recently reported that Top1cc increase antisense 

transcript levels (aRNAs) at bidirectional CpG-island promoters (CGI) and, transiently, DNA/RNA 

hybrids (R-loop) in nuclear and mitochondrial genomes of colon cancer HCT116 cells. However, 

the relationship between R-loops and aRNAs was not established. Here, we show that aRNAs can 

form R-loops under physiological conditions in HCT116 cells, and that Top1cc stabilize promoter-

associated R-loops immediately upon cell exposure to CPT. In contrast, persistent Top1cc reduce 

the majority of R-loops suggesting that CPT-accumulated aRNAs are not commonly involved in R-

loops. The enhancement of aRNAs by Top1ccs is present both in human colon cancer HCT116 cells  

and WI38 fibroblasts suggesting a common response of cancer and normal cells. Although Top1ccs 

lead to DSB and DDR activation, we do not reveal a correlation between aRNA accumulation and 

ATM or DNAPK activity. Moreover, the cell response to persistent Top1cc can involve an 

impairment of aRNA turnover rather than a higher synthesis rate. Finally, a genome-wide analysis 

shows that persistent Top1cc also determine an accumulation of sense transcripts at 5’-end gene 

regions suggesting an increased occurrence of truncated transcripts. Taken together, these results 

indicate that Top1 may regulate transcription initiation by modulating RNA polymerase-generated 

negative supercoils, which can in turn favor R-loop formation at promoters, and that transcript 

accumulation at TSS is a response to persistent transcriptional stress by Top1 poisoning. 
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5. INTRODUCTION 

 

Topoisomerase I (Top1) is a fundamental enzyme regulating DNA superhelicity, and its activity is 

required for a proper progression of transcription and replication machineries in mammalian cells. 

Enzyme activity can essentially be divided in four steps: substrate binding, DNA cleavage, 

controlled rotation of the cut strand around the other one, and DNA resealing. Top1 poisons, such 

as camptothecin (CPT), inhibit Top1 by binding at the interface of a Top1-DNA complex forming a 

ternary structure (Top1cc) in which the drug molecule prevents DNA resealing and leaves Top1 

covalently bound to a DNA strand (Pommier, 2006). Top1cc can lead to irreversible DNA damage 

when a collision occurs with replication forks or elongating RNA polymerases (RNA Pol) 

(Capranico et al., 2010; Pommier et al., 2006). The replication-dependent irreversible DNA damage 

is commonly considered the molecular mechanisms of CPT cytotoxicity and hence antitumor 

activity, as it can act as a potent inducer of apoptosis of cancer cells (Li and Liu, 2001).  

 In addition to the cell killing activity, Top1 poisons have specific effects at transcriptional 

levels that may impact gene expression profiles of normal and/or cancer cells contributing to drug 

therapeutic outcomes (Baranello et al., 2009; Capranico et al., 2010; Marinello et al., 2013; Solier et 

al., 2013; Sordet et al., 2008; Veloso et al., 2013). Recently, treatments with Top1 poisons have 

been shown to de-repress the paternal Ube3A allele in an Angelman disease murine model (Huang 

et al., 2011) providing an interesting case in which CPT derivatives can permanently change the 

expression of a specific gene in mammalian cells. Thus, understanding the mechanisms of Top1 

regulation of gene expression and the interference of Top1 inhibitors with them can provide 

significant insights to discover new anticancer therapeutics. 

 Top1 is a very active enzyme at transcribed regions (Champoux, 2001; Khobta et al., 2006; 

Wang, 2002). Recently, it has been reported that Top1 mainly regulates DNA superhelicity at 

intermediately-active genes as its inhibition by CPT increased local negative supercoils at their 

promoters (Kouzine et al., 2013). Interestingly, we have demonstrated that CPT impacts 

transcription regulation with characteristic and specific effects on RNA Pol II recruitment and 

pausing, nucleosome density and promoter-associated antisense RNA levels (Baranello et al., 2009; 

Bertozzi et al., 2011; Capranico et al., 2010). In particular, a genome-wide analysis revealed that 

CPT increases antisense transcripts levels at active divergent CpG-island promoters (CGI) in a 

manner dependent on Top1cc formation at the promoter (Marinello et al., 2013). Whether the 

increase in negative DNA supercoils at promoters is mechanistically linked to the specific effects on 

RNA PolII and antisense transcripts was left to be defined. 
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 Top1 silencing is known to increase non-B DNA structures, such as R loops, that are prone to 

DNA damage and genome instability (Costantino and Koshland, 2015; El Hage et al., 2010; Groh 

and Gromak, 2014). R loops are three-strand structures constituted by a DNA-RNA hybrid duplex 

and a displaced DNA strand. Stable R-loops exist in living prokaryotic and eukaryotic cells at origin 

of replication where they have a role in the regulation of replication initiation (Lombrana et al., 

2015; Sollier and Cimprich, 2015; Stuckey et al., 2015). R loops also constitute a necessary step of 

the immunoglobulin recombination mechanism as they form at IgG class switch regions where they 

can extend over a kilobase (Roy et al., 2008; Yu et al., 2003). Moreover, differential stabilization of 

R-loops could influence gene expression in many organisms. For instance, R-loop structures allow 

the presence of the substrate for a single-strand DNA binding protein that represses the expression 

of COOLAIR ncRNA in Arabidopsis (Sun et al., 2013). In addition, R-loops can be enriched over 

human CGI and involved in maintaining their hypomethylated state (Ginno et al., 2012). Gene 

mutations affecting nucleic acid degradation have recently been shown to cause global DNA 

hypomethylation and R-loop accumulation in fibroblasts of patients with autoimmune disorders 

(Lim et al., 2015). Interestingly, Top1 poisoning by CPT can induce specific double-stranded DNA 

cleavage in post-mitotic cells that can be suppressed by the overexpression of RNaseH1, suggesting 

the involvement of transcriptionally-linked R loops in CPT induction of DNA damage (Sordet et 

al., 2009). Increased R-loop levels by CPT have been shown at specific loci such as Angelman 

imprinting locus and Fragile X syndrome site (Groh et al., 2014; Powell et al., 2013). With a time 

course analysis in human colon cancer cells by confocal cell microscopy, we showed that CPT 

effects on R-loops are highly dynamic as it triggers a transient increase of global R-loops in the 

nuclear and mitochondrial genomes (Marinello et al., 2013). However, the genomic location of such 

dynamic R-loop structures and their relationships with aRNA have not been established yet.  

 Therefore, we have here asked whether CPT-increased antisense transcripts can form R loops 

with DNA template at promoters. Our findings show that Top1 inhibition by CPT specifically 

impacts on RNA Pol II activity at promoters by affecting R-loop formation and that antisense and 

sense transcripts are likely accumulated by persistent Top1ccs due to the inhibition of their 

degradation.  
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6. MATERIALS AND METHODS 

 

Cell Lines. The cancer cell lines HCT116 and N-Tera-2 cl.D1 were purchased from ATCC (LGC 

Standards S.r.l., Milan, Italy) and were grown in DMEM medium with 10% fetal bovine serum 

(Carlo Erba, Milan, Italy). Cells were maintained at 37° C in a humidified incubator containing 

20% O2 and 5% CO2. Cell line identity was certified with Cell ID System (Promega) by BMR 

Genomics Srl (Padova, Italy). Immortalized WI-38 human embryonic fibroblasts (WI-38hTERT) 

were obtained from Carl Mann (CEA, Gif-sur-Yvette, France) and Estelle Nicolas (Université de 

Toulouse, Toulouse, France) (Jeanblanc et al., 2012).  WI-38hTERT cells were cultured in modified 

Eagle's medium (MEM) supplemented with 10% fetal bovine serum, 1 mM sodium pyruvate, 2 mM 

L-glutamine and 0.1 mM MEM non-essential amino acids (Life Technologies). For quiescence 

induction, cells were washed twice with serum-free medium and grown in MEM with 0.2% serum 

for 72 h.  

 

Drugs and cell treatments. CPT and flavopiridol were purchased from Sigma-Aldrich. ATM 

inhibitor (KU55933) and DNA-PK inhibitor (NU7441) were obtained from Calbiochem and Tocris 

respectively. Serum-starved or exponentially growing cells were exposed to 10 μM CPT for the 

indicated time at 37° C, unless specified otherwise. In case of co-treatments, cells were previously 

incubated with various inhibitors for 1 h before the addition of CPT to the medium for further 4 

hours. 

 

RNA extraction and cDNA preparation. Total cellular RNA was purified with the acid phenol 

method  (Bertozzi et al., 2011; Bertozzi et al., 2013) and quantified by UV absorbance. After 

verifying its quality on a 1% agarose gel, 1 µg of total RNA was used to prepare cDNA using 

SuperScript III (Invitrogen) following the manufacturer’s instruction. Random (N6) and poly(T) 

primers were used for total RNA retrotranscription. Reactions included a 25°C pre-annealing step 

for 5 min, and then retrotranscription was performed at 50°C for 50 min. 

 

Quantitative Real-Time PCR. Real-time PCR were performed using Applied Biosystems StepOne 

and SYBR Select Master Mix for CFX (Applied Biosystems). Quantification and melting curve 

analyses were performed using StepOne Software v2.2.3 as indicated by the supplier. Specificity of 

PCR products was routinely controlled by melting curve analysis and agarose gel electrophoresis. 
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Expression and purification of MBP-RNAse H1 (D145N). Protocol was obtained from Ginno et al 

2012 (Ginno et al., 2012) and the plasmid expressing a mutated and inactive RNAseH1 was kindly 

provided by F. Chedin (University of California, DAVIS). In particular, transformed Rosetta 

2(DE3) cells of  E. coli were inoculated in LB medium  supplemented with 2 g/L of glucose, 100 

μg/mL of ampicillin, and 30 μg/mL of chloramphenicol. After induction for 4 hours with IPTG, 

cells were pelletted and lysed using for 80 ml of cell culture, 1.2 ml of lysis buffer [200 mM NaCl; 

20 mM Tris-HCl (pH 7.5); 1 mM EDTA; 10 mM DTT; Aprotinin 2 μg/ml; Leupeptin 1 μg/ml; 

Pepstatin 1 μg/ml; PMSF 1 mM and Lysozym 200 μg/ml]. Lysate was sonicated for 10 min with 30 

sec on/off cycles and finally centrifuged at 4°C, 14000g for 20’. The isolation of MBP-fusion 

protein was performed with Amylose Magnetic Beads (New England Biolabs). In particular 100 µl 

of beads suspension were equilibrated twice with 500 µl of MBP column buffer [200 mM NaCl; 20 

mM Tris-HCl (pH 7.4); 1 mM EDTA and 1 mM DTT] thus incubated with 500 µl of cell culture 

supernatant at 4° C with agitation for 1 hour. Supernatant was discarded and beads washed three 

times with 500 µl of MBP column buffer. The purified MBP-RNAse H1 (D145N) was eluted from 

the beads twice with 50 µl of MBP column buffer containing 10 mM maltose for 10 minutes at 4° C 

with agitation. Alternatively MBP-RNAse H1 (D145N) was purified using Amylose Resin (New 

England Biolabs). In particular, 1 ml resin was poured in a column and washed with 5 column 

volumes of MBP column buffer. Crude extract was loaded after 1:1 dilution with MBP column 

buffer and the resin was washed with 12 column volumes of MBP column buffer. Elution of the 

fusion protein was performed with 5 volumes MBP column buffer containing 10 mM maltose. 

Purified protein was concentrated with a centrifugal filter unit (Millipore). 

 

DRIVE (DNA:RNA In Vitro Enrichment). The procedure was performed as in Ginno et al (Ginno 

et al., 2012). In particular, lysis of ~4x106 NTera-2 cl.D1 cells was performed with 1.6 ml TE-SDS 

Lysis Buffer  [10 mM Tris-HCl (pH 8.0); 1mM EDTA and 0.5% SDS] at 37° C for 5 min. 

Proteinase K was then added (125 ng/µl) and samples incubated for 5 h at 37° C. An equal volume 

of phenol (pH 8.0) was added and the samples were mixed gently, thus centrifuged at 3000g for 2 

min. The upper phase was collected and an equal volume of chloroform/isoamylic alcohol (24:1) 

was added to it, then mixed gently and centrifuged again at 3000g for 2 min. Genomic DNA was 

precipitated with 2.5 volumes of ethanol 100% and 1/10 volume of NaOAc 3M (pH 5.2), in 

presence of glycogen. Using a hooked glass rod, DNA were spooled out and washed several times 

with 70% EtOH. Genomic DNA was resuspended in 500µl of TE buffer [10 mM Tris-HCl (pH 

8.0); 1 mM EDTA] avoiding vortexing to preserve RNA/DNA hybrids. Genomic DNA was then 

digested O/N at 37° C in TANGO BUFFER 2X with 2 mM Spermidine and a cocktail of restriction 

http://www.google.it/url?sa=t&rct=j&q=&esrc=s&source=web&cd=3&ved=0CF4QFjAC&url=http%3A%2F%2Fwww.jazdlifesciences.com%2Fpharmatech%2Fcompany%2FNew-England-Biolabs%2FAmylose-Magnetic-Beads.htm%3FsupplierId%3D30005320%26productId%3D1260459&ei=uSWnUcOXGaX64QT9kIHgAw&usg=AFQjCNFIfRRguC1QVumeCA-jb0M7sSZ8dw&bvm=bv.47244034,d.bGE
http://www.google.it/url?sa=t&rct=j&q=&esrc=s&source=web&cd=3&ved=0CF4QFjAC&url=http%3A%2F%2Fwww.jazdlifesciences.com%2Fpharmatech%2Fcompany%2FNew-England-Biolabs%2FAmylose-Magnetic-Beads.htm%3FsupplierId%3D30005320%26productId%3D1260459&ei=uSWnUcOXGaX64QT9kIHgAw&usg=AFQjCNFIfRRguC1QVumeCA-jb0M7sSZ8dw&bvm=bv.47244034,d.bGE
http://www.google.it/url?sa=t&rct=j&q=&esrc=s&source=web&cd=3&ved=0CF4QFjAC&url=http%3A%2F%2Fwww.jazdlifesciences.com%2Fpharmatech%2Fcompany%2FNew-England-Biolabs%2FAmylose-Magnetic-Beads.htm%3FsupplierId%3D30005320%26productId%3D1260459&ei=uSWnUcOXGaX64QT9kIHgAw&usg=AFQjCNFIfRRguC1QVumeCA-jb0M7sSZ8dw&bvm=bv.47244034,d.bGE
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enzymes: 20 U EcoRI; 20 U Xbal; 20 U Hind III; 20 U SspI and 20 U BsrG1 (ThermoFisher 

Scientific). Each sample was thus splitted in three: 1,5 µg were used as input, 1,5 µg were incubated 

for 2 hours at 37° C with 10U of RNAse H and 1,5 µg were incubated for 2 hours at 37° C without 

RNAse H (Life Technologies). Samples incubated with or without RNAseH were added of 50 µl of 

Binding Buffer 10x [100 mM Na2PO4 (pH 7.0); 1.4 M NaCl; 0.5% Triton X-100], MBP-RNAse H 

D145N (w/w ratio according titration) and TE buffer (pH 7.4) to final volume of 500 µl. RNAse H 

D145N was allowed to bind specifically for 2 hours at 4° C on agitation. 50 µl/sample Amylose 

Magnetic Beads (New England Biolabs) were equilibrated twice with 500 µl of MBP column buffer 

[200 mM NaCl; 20 mM Tris-HCl (pH 7.4); 1 mM EDTA and 1 mM DTT], then incubated with 500 

µl of reaction mix at 4° C with agitation for 75 min. Supernatant was discarded and beads washed 

three times with 500 µl of MBP column buffer.  The purified MBP-RNAse H1 (D145N) bound to 

RNA/DNA hybrid was eluted from the beads twice with 100 µl of MBP column buffer containing 

10 mM maltose for 10 minutes at 4° C with agitation. TE (pH 7.4) and SDS (final concentration 

0.5%) were added to a final volume of 250 µl. 140 µg of Proteinase K were added  and samples 

incubated at 55° C for 45 min. Samples, included inputs, were thus brought to 300 µl final volume 

with BDW and phenol/chloroform extraction was performed. To allow precipitation 2,5 volumes of 

ethanol 100%, 1/10 volume of NaOAc 3M (pH 5.2) and glycogen were added and samples were 

incubated O/N at -20° C. For data analysis, RNA/DNA hybrid enrichment of each sample is 

calculated as “% of Input” after subtracting the background signal, as determined by the same 

sample treated with RNAseH1 before DRIVE precipitation. Then the enrichment value is 

normalized against the 2-min CPT sample of the RPL13A amplicon of the same experiment. 

 

Bioinformatics analysis. Due to update versions of specific softwares for RNA-Seq analysis, we re-

align raw data of previous published experiments (Marinello et al., 2013) to improve revious 

results. Then, we checked the quality of each sequenced sample using FastQC 

(http://www.bioinformatics.babraham.ac.uk/projects/fastqc/). Low-quality sequenced bases were 

filtered out using Trimmomatic v0.33 (Bolger et al., 2014). The bisulfite-treated paired reads were 

then mapped twice to the hg19 human genome assembly in which all the cytosines were mutated in 

thymines (CT-hg19) or all the guanine in adenine (GA-hg19) to identify the strand originating the 

sequence fragment. Sequences coming from positive strand transcripts align to the CT-hg19, 

whereas negative strand transcripts align to the GA-hg19. The read alignment was carried out with 

Bowtie2 v2.2.0 (Langmead and Salzberg, 2012) and TopHat v2.0.10 (Kim et al., 2013; Trapnell et 

al., 2009) to identify known transcripts. For each of the four experiments, reads that aligned to both 

CT-hg19 and GA-hg19 were discarded. Cufflinks package v2.2.0 (Trapnell et al., 2010) was used to 

http://www.google.it/url?sa=t&rct=j&q=&esrc=s&source=web&cd=3&ved=0CF4QFjAC&url=http%3A%2F%2Fwww.jazdlifesciences.com%2Fpharmatech%2Fcompany%2FNew-England-Biolabs%2FAmylose-Magnetic-Beads.htm%3FsupplierId%3D30005320%26productId%3D1260459&ei=uSWnUcOXGaX64QT9kIHgAw&usg=AFQjCNFIfRRguC1QVumeCA-jb0M7sSZ8dw&bvm=bv.47244034,d.bGE
http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
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assemble and identify novel transcripts, using modified reference genomes (CT-hg19 and GA-

hg19). Gene expression levels were estimated in FPKM units (expected number of Fragments Per 

Kilobase of transcript sequence per Millions of sequenced nucleotides) using Cufflinks. Sense tags 

distribution, along non-overlapping Refseq genes, were analyzed in a region from 2000 bases 

upstream the TSS (Transcription Start Site) to 2000 bases downstream the TES using NGSplot 

software v2.41 (Shen et al., 2014).  
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7. RESULTS 

 

Increased antisense transcripts form R-loops in untreated cells. Both immunofluorescence 

imaging and RNAseH1 overexpression experiments have previously demonstrated that CPT-

trapped Top1ccs induce a significant increase of R-loop structures that likely mediate drug-induced 

genome instability (Marinello et al., 2013; Sordet et al., 2009). However, the genomic sites of such 

R-loops are not known. Here, we used the DRIVE technique (Ginno et al., 2013; Ginno et al., 2012) 

to determine whether or not R-loops form under physiological conditions at divergent promoters in 

human NTERA-2 cells. First of all, we analyzed previously-published R-loop positive and negative 

loci (Ginno et al., 2012) to check the DRIVE method. Figure 1A (white bars) shows we could 

clearly discriminate between regions known to form (RPL13A, BTBD19 and MYADM) and those 

depleted of (SNRPN and a-Sat) R-loops as a significant recovery is shown at the former rather than 

the latter loci. Moreover, we determined R-loop levels at the D-loop region of mitochondrial 

genome (mtDNA), where a well-known and stable R-loop is implicated in replication priming of 

mtDNA (Xu and Clayton, 1996). Of the three selected regions, the RB31-R3 amplicon corresponds 

exactly to the R-loop-forming site while 1A-1B and 4A-4B amplicons correspond to the D-loop and 

a more distant region, respectively (Figure1B, map). The two non R-loop-forming regions show a 

recovery significantly lower as compared with RB31-R3 (Figure 1B). Overall, the data showed that 

we can accurately detect R-loops with the DRIVE technique in mitochondrial and nuclear genomes. 

Next, we asked whether divergent promoters might form R-loops under physiological 

conditions in untreated NTERA-2 cells. To that purpose, promoters were selected on the basis of 

their ability to show increase of antisense transcripts after Top1 inhibition by CPT, as reported in 

Fig. 1C. Therefore, we investigated 8 promoters (TAF4, POLR2K, SP2, GPC1, MDM2, PCIF1, 

ATF1, SMARCA4) showing an increase of aRNA and one negative promoter (TNIK) with no 

aRNA increase (Fig. 1C)(Marinello et al., 2013). The results show that we can detect R-loops in 

untreated cells at all positive promoters, though at different levels, whereas no signal was present at 

the TNIK promoter (Fig. 1A). Even though DNA enrichment values for the 8 promoter regions are 

lower than mtDNA sites and other positive controls (RPL13A, BTBD19 and MYADM), they are 

consistently higher than negative controls (SNRPN, a-Sat and TNIK). We may notice that the 

studied sites correspond to promoter regions upstream to the TSS (Transcription Start Site) where 

we detected antisense transcripts in control untreated cells, the levels of which are marked lower 

than mRNAs (Marinello et al., 2013). In contrast, the RPL13A, BTBD19 and MYADM control 

regions correspond to the first intron of transcribed genes, hence, in the latter case R-loops are at 

regions of higher transcription rates. As these R-loops are likely associated with the transcription 
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process (Ginno et al., 2012), the results may suggest that R-loop formation rate correlates with 

transcription levels in the studied regions. 

Taken together, the results show that antisense transcripts of the studied divergent promoters 

are able to form R-loops in untreated cells that are likely in the opposite orientation as compared 

with mRNAs transcription. 

 

Promoter-associated antisense R loops can be transiently increased by CPT and then 

markedly reduced with longer treatment times. Next, we have investigated whether Top1 inhibition 

by CPT increases R-loop levels at the studied promoters and control regions. We found that the R-

loop signal increases after 2-10 minutes from drug addition, and R-loops are maintained up to 4 

hours of CPT treatment at the mitochondrial replication origin (Fig. 2A). Mitochondrial non-R-

loop-forming regions show recoveries unchanged by CPT and significantly lower than the R-loop-

forming region. Therefore, the R loop at the mitochondrial replication origin is substantially stable 

in the presence of a Top1 poison, which can even increase its level at short treatment times. 

A different pattern was observed for R-loops at the transcribed RPL13A, BTBD19 and 

MYADM nuclear loci. Here, R-loops are maintained, or slightly increased, after short times (2 and 

10 minutes), whereas they are markedly reduced after longer time of treatment (4 hours) (Figure 

2A). Similarly, antisense R-loops at the studied divergent promoters show an increase of their levels 

after short treatment time whereas they are completely lost after 4 hours of treatment, with the 

exception of TAF4 promoter (Fig. 2A). Thus, Top1 inhibition by CPT can stabilize antisense and 

sense R-loops at active divergent promoters but only for a short time. 

We next wondered whether CPT treatment could affect the length of the DNA-RNA hybrid. 

Thus, we investigated close regions at two of the studied promoters: TAF4 and PCIF1 (Figure 2B). 

These two gene promoters were chosen as they also present GC skew segments that can be prone to 

R-loop formation (Ginno et al., 2013). Interestingly, at short times of treatment, CPT determines an 

extension of R loops or formation of new R-loops, as after 2 minutes the R-loop signal was also 

detected in TAF4(4) and PCIF1(2) amplicons (Figure 2B). Therefore, CPT can likely modulate R-

loops length at these two promoters. Taken together, our findings show that following a short time 

of treatments, CPT can modify R-loops present in untreated cells while longer CPT treatments 

almost fully abolish R-loops at the studied transcribed genes. The results thus suggest that Top1 

may modulate R-loop levels by controlling the levels of negative supercoils at promoter regions 

(Kouzine et al., 2013). 

Therefore, all the above results show that Top1ccs likely stabilize and extend antisense R-

loops for a very short time at the studied divergent promoters. With persistent Top1ccs, the majority 
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of R-loops are mostly reduced at these loci suggesting that the accumulated antisense transcripts are 

not generally involved in R-loop structures. As CPT inhibits transcription elongation with high 

efficacy and R loops are formed by newly synthesized RNAs, the marked reduction of R loops at 

active regions is likely due to persistent inhibition of transcription by CPT. Interestingly, our data 

show exceptions to that as R-loops can persist for long times of CPT treatment at certain genomic 

loci (TAF4 and mtDNA). 

 

Antisense transcripts are increased by CPT in human resting normal WI38 cells and are 

dependent on ongoing transcription. Next, we further characterized aRNAs. In particular we asked 

if their induction was dependent or not on transcription and specific of cancer vs normal cells, and 

finally if their increase was dependent on Top1cc DSBs formation. To understand whether ongoing 

transcription is critical for increased levels of promoter-associated antisense RNAs, we have 

investigated CPT effects in resting cells and in the presence of flavopiridol (FLV), a specific 

inhibitor of cdk9 and RNA PolII transcription. As Top1ccs specifically increase antisense 

transcripts upstream to the TSS of divergent CGI promoters in human colon cancer HTC116 cells 

(Marinello et al., 2013), here we extended the study to human fibroblast-like embryonic cells 

(WI38) at genomic loci selected on previous findings (Marinello et al., 2013). Treatments with 10 

µM CPT in replicating WI38 cells stimulates antisense accumulation in four out of seven of the 

selected loci (Fig 3), showing that CPT stimulates antisense transcription in non-cancer cells as 

well. However, the promoter pattern of antisense accumulation is different between the two cell 

lines, and the CPT effects are lower in WI38 than HCT116 cells at the selected loci. 

To evaluate the role of replication on drug effects, we studied the CPT response in serum-

starved quiescent WI38 cells (Figure 3, quiescent WI38). Among the studied loci, ATF1 gene 

promoter accumulates antisense transcripts at the highest levels in both proliferating and resting 

cells. As in resting cells the enhancement of antisense transcript levels was partially reduced and 

this reduction could be due to a lower transcription rate in quiescent as compared with replicating 

cells, we suggest that the CPT effect may be independent from DNA replication. In serum-starved 

quiescent WI38 cells, we performed a drug dose-response after 1 and 4 hours of treatment 

(Supplementary Figure 1) showing some increase over time. To determine the role of transcription 

on CPT effects, we pretreated for 1 hour quiescent WI38 cells with FLV. Under these conditions, 

no increase of antisense transcript could be detected at the selected loci (Supplementary Figure 2), 

showing that the drug effect is highly dependent on active transcription in resting human cells. 

As transcription-blocking Top1ccs produce DSBs and activate ATM in post-mitotic neurons 

and lymphocytes (Sordet et al., 2010; Sordet et al., 2009), we next investigated if accumulation of 
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antisense RNAs could potentially be due to activation of selected kinases (DNA-PK and ATM) of 

the DNA damage response (DDR) after Top1cc interference with transcription. Cells were first 

exposed to ATM inhibitor or DNAPK inhibitor for 1 hour, and then CPT was added to the medium 

for additional 4 hours, in both HCT116 and WI38 cell lines. In all tested conditions, inhibition of 

the studied DDR kinases did not significantly alter CPT effects on antisense accumulation 

(Supplementary Figure 3). Therefore, the data suggest that ATM or DNA-PK activation is not 

apparently required for CPT effects. The data did not allow us to establish a direct connection 

between increased antisense RNAs and DDR pathways, however, we cannot exclude that other 

DDR proteins are involved or that the studied kinases act redundantly in the mechanisms of 

antisense accumulation. 

To determine if CPT actively modify the turnover of antisense RNAs, we treated HCT116 

cell with CPT for 4 hours, and then determine the levels of the studied transcripts at different times 

to evaluate their degradation rates. The experiments were performed adding FLV at the end of the 4 

hour period of CPT treatment to block transcription. Under these conditions, the degradation rates 

of TDG and TAF4 antisense transcripts (Fig. 4) and others (see Supplementary figure 5) are lower 

in the presence of CPT and the transcripts are lost faster in drug-free medium (Supplementary 

figure 4). Thus, the data clearly show that CPT seems to stabilize antisense RNAs, likely preventing 

their fast removal and degradation. 

 

CPT determines the accumulation of truncated sense transcripts at 5’-end regions of 

intermediately active genes. The above findings show that persistent Top1 inhibition by CPT 

promotes the stabilization of antisense transcripts upstream to the TSS and a general reduction of 

antisense R-loops at those loci after long treatment time. As R-loops have been shown to form also 

downstream the TSS (Ginno et al., 2013; Ginno et al., 2012) (see also Fig 1A), we have then 

investigated whether CPT induced the accumulation of sense transcripts at the 5’-end of genes as 

well. We have then mapped paired sequence tags obtained from total cellular RNA depleted of 

ribosomal RNAs and treated with bisulfite to maintain the information of strand direction 

(Marinello et al., 2013). Non overlapping genes were grouped depending on their FPKM in four 

categories from low to high expression levels, and we focused on gene regions from -2000 bases 

upstream the TSS to +2000 bases downstream the TES (transcription end site) in both CPT-treated 

and control HCT116 cells. Then we plotted the distribution of the sense reads along these genes. 

Sense tag levels of all non-overlapping genes were clearly dependent on gene expression 

levels, however they were similar among expressed gene sets (Supplementary Figs. 6 and 7). Tag 

distribution of control cells almost overlapped with that of CPT-treated cells with the exception of 
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the region immediately downstream to the TSS in HCT116 cells (Supplementary Fig. 6). In 

particular, sense tags were increased at the 5’-end of genes of the two intermediate expression 

categories following CPT treatment (Supplementary Fig. 6). The increased was lower in HCT116-

shRNATop1 cells indicating that it was dependent on the cellular level of Top1 in response to CPT 

(Supplementary Fig. 7).  

Thus, as the intermediately active genes show such a drug effect, we selected genes showing 

an increase of sense reads within the first 1000 bases downstream the TSS as well as reduced or 

equal levels of sense reads 1000 bases upstream the TES (Figure 5). For these genes we observed a 

marked and specific increase of sense tags (Figure 5) in the two gene sets that was clearly 

dependent on Top1 as in HCT116-shRNATop1 CPT had a lower effect (Fig. 5). The specific 

accumulation of sense tags at 5’-end regions was then confirmed at specific loci by rtqPCR 

(Supplementary Figures 8 and 9). Gene ontology analyses of the two gene sets did not reveal any 

significant gene attribute enriched in the studied groups (splice variants were enriched but with a 

low p-value), suggesting the lack of a simple common functional or structural characteristic among 

them. 
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8. DISCUSSION 

A fine regulation of Top1 activity at active genes is essential to maintain a proper transcription 

process as Top1 deficient cells show impaired transcriptional processes and accumulate abortive 

transcripts by RNA PolI (El Hage et al., 2010). We have previously demonstrated that Top1 

inhibition by CPT leads to unbalanced sense/antisense transcript levels at bidirectional CpG-island 

promoters (Marinello et al., 2013). The newly-identified antisense transcripts, with a median size of 

about 800 bases, are accumulated during drug treatment in a Top1-dependent manner mainly at 

promoters of intermediate activity. In the present work, we aimed to better characterize these aRNA 

and to establish a relationship between them and R-loop formation at divergent promoters. Our data 

show that aRNAs can form antisense R-loops at promoters in unperturbed NTERA-2 cells and that, 

immediately after Top1 inhibition by CPT, the physiological R-loops can be extended in size or 

new R-loops can be formed at active TSS. In contrast, persistent CPT inhibition of Top1 markedly 

reduces R-loop structures and accumulates truncated sense transcripts at 5’ ends of intermediately 

active genes. Thus, the findings indicate that Top1 may regulate transcription initiation by 

regulating RNA Pol II-generated negative supercoils, which in turn can favor R loop formation at 

promoters, and that transcript accumulation at TSS is a transcriptional response to persistent Top1 

poisoning. The proposed role of Top1 at promoters is in agreement with previous findings on the 

effects of Top1 deletion (El Hage et al., 2010; Kouzine et al., 2013). 

 As R-loops can either trigger genome instability or mediate transcription regulation (Ginno 

et al., 2012; Sollier and Cimprich, 2015), we have defined whether or not transcriptional stress 

induced by Top1 inhibition could be mediated by formation of R-loops at active regions. The results 

show that R-loop can likely form in the antisense orientation at the studied divergent CGI promoters 

in untreated cells. Interestingly, CPT perturbs R-loops immediately upon addition to the growth 

medium as short CPT treatments (2-10 minutes) extend or generate new R-loops at the studied 

promoters whereas the Top1 poison completely abolishes R-loops at most of the studied promoters 

following longer treatment times. Therefore, it is likely that Top1 inhibition has a direct and rapid 

effect on R loop formation favored by excess negative supercoils behind elongating RNA Pol II, 

which has not be relieved by Top1. This increase is indeed transient as other homeostatic control of 

DNA superhelicity (for instance, by other DNA topoisomerases) can likely restore default levels of 

template supercoils. This is in agreement with a recent paper (Kouzine et al., 2013) showing that 

Top1 is most efficiently recruited at promoters of intermediate activity and that a short CPT 

treatment determines increased negative supercoils upstream and immediately adjacent to the TSS. 

Such an increase of negative supercoiling of the DNA template would likely favor both stabilization 

and extention of R-loop structures at active promoters.  



 16 

 Our findings also show that when Top1 is persistently inhibited by CPT then R-loop 

formation is also reduced at promoters of active genes. As R-loop levels are dependent on active 

transcription, then persistent CPT treatments, which are known to strongly inhibit transcription 

elongation (Capranico et al., 2007), may preclude the formation of R loops. Nevertheless, CPT may 

have more dynamic effects on R loops in relation to their genomic location, as we observed that R 

loops persistent even after 4 hour of CPT treatment at mitochondrial replication origin and at TAF4 

promoter. In postmitotic neurons, persistent CPT treatments have been shown to affect cell viability 

(Morris and Geller, 1996) and induce transcriptional DSBs in an R-loop-dependent manner (Sordet 

et al., 2009). Thus, it can be speculated that R-loops formed at specific genomic location may be 

stabilized by CPT leading to irreversible double-strand breakage and apoptosis. Here, we have 

attempted to evaluate if the increase of antisense RNAs at promoters is downstream to DDR 

pathway activated by CPT, and our findings show that antisense transcript increase is not simply 

related to either ATM or DNAPK activation in HCT116 and WI38 human cells. However, it 

remains to be established whether DSBs themselves or other DDR proteins or a combination of 

both may be implicated in aRNA induction in response to CPT. 

The increase of antisense and sense transcripts may in principle be originated by an 

enhanced  synthesis and/or a reduced degradation of them. We previously reported that CPT still 

determines a similar increase rate of promoter-associated transcripts when transcription was 

inhibited by DRB as compared with the absence of DRB (Marinello et al., 2013), suggesting that an 

enhanced synthesis of antisense RNA is unlikely even if we cannot rule out completely this 

possibility. In agreement with these data, the present findings show that CPT impairs degradation of 

antisense transcripts. As exosome silencing has been shown to increase the levels of cryptic 

antisense RNA at promoters (Preker et al., 2011), our findings suggest that exosome activity may be 

somewhat reduced in cells treated with CPT. 

The present findings have established that antisense transcripts can form antisense R-loops 

at the studied divergent promoters, and that Top1 inhibition by CPT have dynamic and site-specific 

effects on them. In particular, immediately upon addition, CPT can favor R-loop formation 

whereas, at longer time of treatment, CPT markedly reduces R-loop levels. Interestingly, R-loops 

persist at certain active promoters and other genomic loci along with a more general induction of 

truncated sense and antisense RNAs at active TSS. The findings define new aspects of the specific 

CPT effects at transcriptional levels in human cancer and normal cells. 
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13. FIGURE LEGENDS 

 

Figure 1. R-loop formation  at the studied genomic and mitochondrial regions in untreated control 

NTERA-2 cl.D1 cells. DNA enrichment of each sample is subtracted of the enrichment value of the 

same sample treated with RNAseH1 before DRIVE precipitation. Then the enrichment value is 

normalized against the 2-min CPT sample (see figure 2) of the RPL13A amplicon of the same 

experiment. Values are means ±SEM of two to four independent experiments. The data show a 

higher SEM than commonly published as we report median values of several experiments and not a 

single representative one. (A) DRIVE assay was performed to determine R-loop levels downstream 

TSS (white bars) and upstream TSS (black bars). Three negative loci for R-loop formation are also 

reported (SNRPN, a-SAT, TNIK). (B) Mitochondrial DNA was analyzed with DRIVE assay. Three 

regions of interest were selected: red for the r-loop forming region (RB31-R3), green for the D-loop 

region (1A-1B) and blue for the non-D-loop region (4A-4B). Map on the right of the panel shows 

the heavy (H) and the light (L) strands of mitochondrial DNA, with the three Conserved Sequence 

Blocks (CSB) and the studied regions (in red, green and blue respectively). (C) Antisense 

transcription after CPT treatment in NTERA-2 cl.D1 cells. Promoter-associated antisense 

transcripts were evaluated by rtqPCR after 4 hours CPT treatment at 10 µM. PCR determinations 

were normalized to cytochrome b mRNA and to untreated cells (dotted line). Values are means +/− 

SEM of two determinations from at least two independent experiments. 

 

Figure 2. R-loops are transiently stabilized and extended by Top1 inhibition by CPT. DNA 

enrichment of each sample is subtracted of the enrichment value of the same sample treated with 

RNAseH1 before DRIVE precipitation. Then the enrichment value is normalized against the 2-min 

CPT sample of the RPL13A amplicon of the same experiment. Values are means ±SEM of two to 

four independent experiments. (A) DRIVE assay was performed to determine R-loop levels at 

genomic regions (on the left) and at mitochondrial regions (on the right) respectively after 2 min, 10 

min and 4 hours with 10 µM CPT. Control cells are reported from Figs. 1A and 1B to better 

appreciate any variation after drug treatment. (B) Scan by DRIVE assay of R-loop formation around 

transcription start site of TAF4 and PCIF1 genes after a time course treatment with CPT. Genome 

browser view show the genomic localization of the analyzed regions (right panel). The pattern of 

enzyme digestion used for DRIVE experiment guarantee the regions are properly separated during 

r-loop recovery and are therefore reported for clearness on the maps. One representative experiment 

for each locus is here reported. 
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Figure 3. Antisense transcript levels induced by CPT in replicating HCT116 and WI38, and in 

quiescent WI38 cells. Promoter-associated antisense transcripts were evaluated by rtqPCR after 4 

hours CPT treatment at 10 µM. PCR determinations were normalized to cytochrome b mRNA and 

to untreated cells (dotted line). Values are means +/− SEM of two determinations from at least two 

independent experiments.  

 

Figure 4. Turnover of aRNAs is influenced by CPT. Cells where firstly stimulated for antisense 

accumulation by a 4 hours treatment with CPT. Then FLV was added to block transcription in 

absence (solid lines) and in presence (dotted lines) of CPT, and antisense transcript levels 

determined by rtqPCR after additional 20, 40 and 60 minutes. PCR determinations were normalized 

to cytochrome b mRNA and to aRNAs levels before FLV addition (time 0). A representative 

experiment is here reported. 

 

Figure 5. Sense tags distribution, along non-overlapping Refseq genes of HCT116 cells and 

HCT116-shRNATop1 cells, were analyzed in a region from 2000 bases upstream the TSS to 2000 

bases downstream the TES using NGSplot software. Here, genes have been divided in two groups 

based on their FPKM. These genes have been selected for an accumulation of sense reads in the 5’ 

region (CPT-reads minus Control-reads: 10 ≥ 100) and a reduction of sense reads at the 3’ region 

(CPT-reads minus Control-reads: ≤ 5). Furthermore, genes selected have a fold change above 2 and 

a minimum number of sense reads above 5 in the 5’ region of CPT treated sample. Reads were 

normalized to the length of each region (1000 bp). Control reads are reported in gray dotted line and 

CPT reads in black line. Black arrows indicate an accumulation of reads at 5’ level after CPT 

treatment (10 µM for 4 hours). 
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Supplementary Figure 1: Time course and dose response in quiescent WI38 cells. Promoter-
associated antisense transcripts were evaluated by rtqPCR after 1 and 4 hours of CPT treatment at 
different doses (2, 5 and 10 µM). PCR determinations were normalized to cytochrome b mRNA and 
to untreated cells (dotted line). Values are means +/− SEM of at two determinations of at least two 
independent experiments. 
 

 

 

 

 



 

 

Supplementary Figure 2: Effect of FLV treatment on antisense transcription. Promoter-associated 
antisense transcripts were evaluated by rtqPCR after 4 hours of CPT treatment (10 µM) in presence 
of FLV (gray bars). PCR determinations were normalized to cytochrome b mRNA and to untreated 
cells (dotted line). Values are means +/− SEM of at two determinations of at least two independent 
experiments. 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Supplementary Figure 3: DDR activation effect on antisense transcription. Promoter-associated 
antisense transcripts were evaluated by rtqPCR after 4 hours of CPT treatment (10 µM) in presence 
of ATM (gray bars) and DNAPK (white bars) inhibitors. PCR determinations were normalized to 
cytochrome b mRNA and to untreated cells (dotted line). Values are means +/− SEM of at two 
determinations of at least two independent experiments. 



 

Supplementary Figure 4: Degradation rates of aRNAs. Cells where firstly stimulated for antisense 
accumulation by a 4 hours treatment with CPT. Then the drug was removed (blu lines) or 
maintained (red lines) for additional 60 minutes, and antisense transcript levels determined by 
rtqPCR. PCR determinations were normalized to cytochrome b mRNA and to aRNAs levels at time 
0. A representative experiment is here reported. 



 

Supplementary Figure 5: Degradation rates of aRNAs. Cells where firstly stimulated for antisense 
accumulation by a 4 hours treatment with CPT. Then FLV was added to block transcription in 
absence (blu lines) and in presence (red lines) of CPT, and antisense transcript levels determined by 
rtqPCR after additional 20, 40 and 60 minutes. PCR determinations were normalized to cytochrome 
b mRNA and to aRNAs levels before FLV addition (time 0). A representative experiment is here 
reported. 



 

 

 
Supplementary Figure 6: Sense tags distribution, along non-overlapping Refseq genes of HCT116 
cells, were analyzed in a region from 2000 bases upstream the TSS to 2000 bases downstream the 
TES using NGSplot software. Here are reported genes whose FPKM value is below 0,3 up to 500 
divided in four groups. Control reads are reported in gray dotted line and CPT reads in black line. 
Black arrows indicate an accumulation or not of reads in the 5’ region after CPT treatment (10 µM 
for 4h). 
 

 



 

 

Supplementary Figure 7: Sense tags distribution, along non-overlapping Refseq genes of HCT116-
shRNATop1 cells, were analyzed in a region from 2000 bases upstream the TSS to 2000 bases 
downstream the TES using NGSplot software. Here are reported genes whose FPKM value is below 
0,3 up to 500 divided in four groups. Control reads are reported in gray dotted line and CPT reads in 
black line. Black arrows indicate an accumulation or not of reads in the 5’ region after CPT 
treatment (10 µM for 4h). 
 

 



 

 
 
Supplementary Figure 8: The accumulation of sense transcripts in the 5’ region and the reduction of 
sense transcripts in 3’ region of selected genes were determined by rtPCR in the HCT116 cells and 
were evaluated after treatment of the indicated cell lines with CPT 10 µM for 4h. The selected 
genes showed a CPT-increased in the 5’ region and a reduction in the 3’ region tag clusters as 
determined with RNA-seq data, with the exception of KLHL22 gene that had a sense transcript 
reduced by CPT. PCR determinations were normalized to cytochrome b mRNA and to untreated 
cells (dotted line). Values are means ± SEM of at least four determinations of six independent 
experiments for each panel. 

 
 

 

 

 

 

 

 



 

 

Supplementary Figure 9: The accumulation of sense transcripts in the 5’ region and the reduction of 
sense transcripts in 3’ region of selected genes were determined by rtPCR in the HCT116-
shRNATop1 cells and were evaluated after treatment of the indicated cell line with CPT 10 µM for 
4h. The selected genes showed a lower CPT-increased in the 5’ region and a lower reduction in the 
3’ region tag clusters as determined with RNA-seq data, with the exception of AEN gene that had a 
higher sense transcript increased by CPT, taking into account the HCT116 cells line. PCR 
determinations were normalized to cytochrome b mRNA and to untreated cells (dotted line).Values 
are means ± SEM of at least four determinations of two independent experiments. 
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Unlike other Rho GTPases, RhoB is rapidly induced by DNA damage, and its expression level decreases during cancer progres-
sion. Because inefficient repair of DNA double-strand breaks (DSBs) can lead to cancer, we investigated whether camptothecin,
an anticancer drug that produces DSBs, induces RhoB expression and examined its role in the camptothecin-induced DNA dam-
age response. We show that in camptothecin-treated cells, DSBs induce RhoB expression by a mechanism that depends notably
on Chk2 and its substrate HuR, which binds to RhoB mRNA and protects it against degradation. RhoB-deficient cells fail to de-
phosphorylate �H2AX following camptothecin removal and show reduced efficiency of DSB repair by homologous recombina-
tion. These cells also show decreased activity of protein phosphatase 2A (PP2A), a phosphatase for �H2AX and other DNA dam-
age and repair proteins. Thus, we propose that DSBs activate a Chk2-HuR-RhoB pathway that promotes PP2A-mediated
dephosphorylation of �H2AX and DSB repair. Finally, we show that RhoB-deficient cells accumulate endogenous �H2AX and
chromosomal abnormalities, suggesting that RhoB loss increases DSB-mediated genomic instability and tumor progression.

RhoB is a small GTPase from the Rho family of proteins impli-
cated in various intracellular functions, including actin cyto-

skeletal organization (1). Besides its well-established roles, RhoB
emerged as an early DNA damage-inducible gene. RhoB is readily
induced in response to various genotoxic agents, including UV
and cisplatin (2, 3), although the molecular mechanisms of induc-
tion and functional relevance remain unclear. RhoB also differs
from other Rho proteins, as it possesses tumor suppressor func-
tions. The RhoB expression level decreases during the progression
of various tumors, and loss of RhoB promotes cell proliferation,
invasion, and metastasis (4–8).

DNA double-strand breaks (DSBs) are among the most severe
lesions, and their inefficient repair can initiate genomic instability,
ultimately leading to cancer (9–11). DSB repair requires the re-
cruitment of DNA damage response (DDR) proteins in the vicin-
ity of damaged chromatin (12). The serine/threonine kinases
ATM, ATR, and DNA-dependent protein kinase (DNA-PK) are
readily activated by DSBs and phosphorylate various DDR pro-
teins, including histone H2AX and checkpoint kinase 2 (Chk2).
Phosphorylation of these proteins is critical for efficient DDR and
repair (10, 13). These phosphorylations are reversible and re-
moved by specific serine/threonine phosphatases, including pro-
tein phosphatase 2A (PP2A), PP4, PP1, PP6, and Wip1 (14). Ac-
cumulating studies indicate that the timely dephosphorylation of
DDR proteins is required for DSB repair (15–17).

Topoisomerase I (Top1) removes DNA torsional stress gener-
ated during replication and transcription. It relaxes DNA by pro-
ducing transient Top1-DNA cleavage complexes (Top1cc), which
are Top1-linked DNA single-strand breaks (18). The rapid reseal-
ing of Top1cc is inhibited by camptothecin (CPT) and its deriva-
tives, which are used to treat cancers and which bind selectively at
the Top1-DNA interface (18). Stabilized Top1cc interfere with the
progression of replication and transcription complexes, which re-
sults in the production of DSBs (19–21). CPT is a sharp tool to
dissect the cellular response to DSBs, as it has no other target
besides Top1. CPT also has the advantage of trapping Top1cc

reversibly. Indeed, Top1cc reverse fully within minutes after
washing out CPT (18). Here we used CPT to determine whether
DSBs induce RhoB and examined both the mechanisms of induc-
tion and its functional relevance.

MATERIALS AND METHODS
Drugs, chemical reagents, and cell culture. CPT, okadaic acid, fostriecin,
and the DNA-PK inhibitor NU7026 were obtained from Sigma-Aldrich.
Human osteosarcoma (U2OS) and colon carcinoma (HCT116 and
HCT15) cells were obtained from the American Type Culture Collection
(ATCC). HCT15 cells stably expressing wild-type Chk2 (Chk2-WT) or a
kinase-dead Chk2 D347A mutant (Chk2-KD) were obtained from Yves
Pommier (NIH, Bethesda, MD) (22, 23). WT and RhoB�/� E6-immor-
talized mouse embryonic fibroblast (MEF) cells were established in the
laboratory from SV129 mice obtained from G. C. Prendergast (Lankenau
Institute for Medical Research) by using a protocol described previously
(24). WT and RhoB�/� primary mouse dermal fibroblast (MDF) cells
were isolated from SKH1 mice (established in the laboratory from SV129
mice), as described previously (25), and cultured for a maximum of 9
passages. The subline RG37, containing the homologous recombination
substrate (pDR-GFP), was made as described previously (26). The subline
GC92, containing the nonhomologous end joining (NHEJ) substrate
(pCOH-CD4), was made as described previously (27). All of the above-
described cells were cultured in Dulbecco’s modified Eagle’s medium sup-
plemented with 10% fetal bovine serum.

Western blotting. Whole-cell extracts were obtained by lysing cells in
buffer (1% SDS, 10 mM Tris-HCl [pH 7.4]) supplemented with protease
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(Complete; Roche Diagnostics) and phosphatase (Cocktail 3; Sigma-Al-
drich) inhibitors. Viscosity of the samples was reduced by brief sonica-
tion, and proteins were separated by SDS-PAGE and immunoblotted with
the following antibodies: anti-Chk2 (catalog number 2662; Cell Signal-
ing), anti-Chk2-pS516 (catalog number 2669; Cell Signaling), anti-Chk2-
pT68 (catalog number 2661; Cell Signaling), anti-H2AX (catalog number
ab11175; Abcam), anti-�H2AX (catalog number 05-636; Millipore), anti-
HuR (catalog number sc-5261; Santa Cruz), anti-PP2A(C) (catalog num-
ber 1512-1; Epitomics), anti-Rad51 (catalog number PC-130; Millipore),
anti-RhoA (catalog number sc-418; Santa Cruz), anti-RhoB (catalog
number sc-180; Santa Cruz), and anti-�-tubulin (catalog number T5168;
Sigma-Aldrich). Immunoblotting was revealed by chemiluminescence
using autoradiography or a ChemiDoc MP system (Bio-Rad). Quantifi-
cation of protein levels was done by using ImageJ (version 1.40g) in Fig. 1E
and 3F and with Image Lab software (version 4.1) in Fig. 3L and 5D.

RNA immunoprecipitation (RIP). Immunoprecipitation of HuR-as-
sociated RNAs was done as described previously (28), with minor modi-
fications. Forty million cells were lysed for 30 min at 4°C in 750 �l buffer
containing 25 mM Tris-HCl (pH 7.4), 150 mM KCl, 0.5% NP-40, 2 mM
EDTA, 1 mM NaF, and 0.5 mM dithiothreitol (DTT), supplemented with
0.2 U RNasin (Promega) and protease inhibitors (Complete; Roche Di-
agnostics). After centrifugation at 10,000 � g for 10 min, supernatants
were precleared for 30 min at 4°C with 20 �l of protein A/G-agarose beads
(Sigma-Aldrich) previously blocked for 5 h at 4°C in washing buffer (300
mM KCl, 50 mM Tris-HCl [pH 7.4], 1 mM MgCl2, 0.1% NP-40) contain-
ing 5 �g/�l yeast tRNA (Invitrogen), 1 �g/�l acetylated bovine serum
albumin (BSA; Sigma-Aldrich), and protease inhibitors (Complete;
Roche Diagnostics). Beads (20 �l) were coupled with 15 �g of mouse
anti-HuR antibody (catalog number sc-5261; Santa Cruz) or 15 �g of
mouse nonimmune antibody (control IgG) (catalog number 02-6502;
Invitrogen) for 4 h at 4°C and incubated with 2 mg precleared cell lysate
overnight at 4°C. After several washes in washing buffer and proteinase K
(Roche Diagnostics) treatment, immunoprecipitated RNAs were ex-
tracted by using TRIzol LS reagent (Invitrogen) and treated with Turbo
DNase (Ambion) before quantitative reverse transcription-PCR (RT-
qPCR) experiments.

Quantitative reverse transcription-PCR. Total RNAs (MasterPure
RNA purification kit; Epicentre) were subjected to RT by using the iScript
cDNA synthesis kit (Bio-Rad). qPCR analyses were performed on a
CFX96 real-time system device (Bio-Rad) by using IQ SYBR green Super-
mix (Bio-Rad) according to the manufacturer’s instructions. All samples
were analyzed in triplicate, and �-actin mRNA was used as an endogenous
control in the ��CT analysis. The primer pairs used were RhoA-FW (5=-
TGG AAG ATG GCA TAA CCT GTC-3=) and RhoA-RV (5=-AAC TGG
TGG CTC CTC TGG-3=), RhoB-FW (5=-TTG TGC CTG TCC TAG AAG
TG-3=) and RhoB-RV (5=-CAA GTG TGG TCA GAA TGC TAC-3=),
RhoC-FW (5=-TGT CAT CCT CAT GTG CTT CTC-3=) and RhoC-RV
(5=-GTG CTC GTC TTG CCT CAG-3=), RhoE-FW (5=-CCT GCT CCT
CTC GCT CTC-3=) and RhoE-RV (5=-TCT GGC TGG CTC TTC TCT
C-3=), and �-actin-FW (5=-TCC CTG GAG AGG AGC TAC GA-3=) and
�-actin-RV (5=-AGG AAG GAA GGC TGG AAG AG-3=).

Cell transfection (siRNAs and plasmids). For cell transfection with
small interfering RNAs (siRNAs), cells were transfected with HuR-,
Rad51-, or RhoB-targeting siRNAs or nontargeting siRNAs (Eurogentec)
by using Oligofectamine transfection reagent (Invitrogen) according to
the manufacturer’s protocol. Target DNA sequences were 5=-GAG GCA
ATT ACC AGT TTC A-3= for HuR, 5=-GAA GCT ATG TTC GCC ATT
A-3= for Rad51, 5=-GGC ATT CTC TAA AGC TAT G-3= for siRNA
RhoB#1, 5=-GTC CAA GAA ACT GAT GTT A-3= for siRNA RhoB#2,
5=-GCT AAG ATG GTG TTA TTT A-3= for siRNA RhoB#3, and 5=-GAC
GTG GGA CTG AAG GGG T-3= for nontargeting siRNA. Experiments
were performed 48 h after transfection. siRNA RhoB#1 was used in Fig. 4B
and G, siRNA RhoB#2 was used in Fig. 4B to E and G and 5D, and siRNA
RhoB#3 was used in Fig. 3G and H. For cell transfection with plasmids,
cells were transfected with a plasmid encoding hemagglutinin (HA)-RhoB

(29) by using jetPEI DNA transfection reagent (Polyplus transfection)
according to the manufacturer’s protocol. Experiments were performed
24 h after transfection.

Neutral Comet assays. Neutral Comet assays were performed accord-
ing to the manufacturer’s instructions (Trevigen), except that electropho-
resis was performed at 4°C. Comet tail moments were measured by using
ImageJ (version 1.47v) using a macro provided by Robert Bagnell (https:
//www.med.unc.edu/microscopy/resources/imagej-plugins-and-macros
/comet-assay).

DSB repair assays. RG37 and GC92 cells, for homologous recombi-
nation and end joining assays, respectively, were plated at 5 � 105 cells per
well into six-well plates and transfected after 24 h with nontargeting or
RhoB-targeting siRNAs. Forty-eight hours after siRNA transfection, cells
were transfected with 1 �g of an I-SceI-encoding plasmid (pBASCe-ISceI)
by using JetPEI reagent. Cells were collected 72 h later with phosphate-
buffered saline (PBS)–50 mM EDTA and fixed in PBS–2% paraformalde-
hyde for 15 min at room temperature. Green fluorescent protein (GFP)-
positive RG37 cells were detected by flow cytometry using a FACSCalibur
instrument. For NHEJ assays, GC92 cells were incubated with PBS and 2%
(wt/vol) BSA and then stained for 15 min with 1 �l of anti-CD4-phyco-
erythrin (PE) (Miltenyi Biotech) in PBS–1% (wt/vol) BSA. The cells were
washed in PBS before fluorescence-activated cell sorter (FACS) analysis.

WST-1 cell viability assays. WT and RhoB�/� MEF cells were seeded
in triplicate into 96-well microplates at a density of 1,000 cells per well.
Twenty-four hours after plating, cells were treated with various concen-
trations of CPT (from 1.6 nM to 50 �M) and cultured for 72 h. The WST-1
reagent (Roche Diagnostics) was then applied for 1 h at 37°C. The formazan
dye was quantified at 450 nm by using a plate reader (LabSystems Multiskan).
Data are expressed as the percentage of cell survival (mean 	 standard devi-
ation [SD] of treated cells normalized to the mean 	 SD of untreated cells,
which was set to 100%).

Protein phosphatase 2A activity assays. Protein phosphatase 2A
(PP2A) activity was assayed by using a PP2A immunoprecipitation phos-
phatase assay kit (Upstate) according to the manufacturer’s protocol.
Briefly, cells were lysed on ice in phosphatase extraction buffer (20 mM
imidazole-HCl [pH 7.0], 2 mM EDTA, 2 mM EGTA) supplemented with
a protease inhibitor cocktail (Sigma-Aldrich). The cell lysate (500 �g) was
incubated for 2 h at 4°C with protein A-agarose beads coupled with 4 �g
of mouse anti-PP2A(C) antibody (clone 1D6; Upstate) or mouse nonim-
mune antibody (control IgG) (catalog number 02-6502; Invitrogen).
Phosphatase activity was assayed by incubating the immunoprecipitated
proteins with the synthetic threonine phosphopeptide K-R-pT-I-R-R at
30°C for 10 min prior to detection with malachite green phosphate detec-
tion solution. After 15 min, free phosphate was quantified by measuring
the absorbance at 620 nm in a microplate reader. Phosphatase activity was
calculated by using a phosphate standard curve. All samples were analyzed
in triplicate.

Detection of Top1-DNA cleavage complexes. Cellular Top1-DNA
cleavage complexes (Top1cc) were detected as previously described (30),
except that immunoblotting was revealed with a rabbit monoclonal anti-
Top1 antibody from Abcam (ab109374) and by chemiluminescence using
autoradiography or a ChemiDoc MP system (Bio-Rad). Quantification
for Fig. 3L was performed by using Image Lab software (version 4.1).

Immunofluorescence microscopy. Immunofluorescence micros-
copy of �H2AX was performed, as described previously (20), with an
anti-�H2AX antibody from Millipore (catalog number 05-636). Immu-
nofluorescence microscopy of Rad51 was performed as described previ-
ously (31) by using an anti-Rad51 antibody from Millipore (catalog num-
ber PC-130), except that cells were fixed/permeabilized with ice-cold
methanol for 15 min at 4°C and further permeabilized with 0.5% Triton
X-100 for 5 min at room temperature. Slides were visualized by using a
fluorescence microscope (Eclipse 90i; Nikon), and pictures were analyzed
with Photoshop CS3 (Adobe).
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DNA extraction and comparative genomic hybridization (CGH) ar-
rays. Genomic DNA was extracted from WT and RhoB�/� primary MDF
cells by using the QIAamp DNA kit (Qiagen). DNA from WT and
RhoB�/� cells was labeled with Cy3 and Cy5 (Dual color labeling kit;
Roche-Nimblegen), respectively, before hybridization on 720K whole-
genome tiling arrays (Roche-Nimblegen). Slides were scanned by using
the MS200 scanner (Tecan), and images were analyzed by using DEVA 2.1
software (Roche-Nimblegen) with segmentation and background correc-
tion. Amplification and deletion were considered significant events when
at least 5 consecutive probes had a log2 value of �0.3 (amplification) or a
log2 value of ��0.4 (deletion). We determined the genomic instability
index with the formula (number of deletions 
 number of amplifica-
tions)2/number of altered chromosomes, as previously described (32).
Sexual chromosomes were excluded from the analysis.

RhoB and RhoA activity assays. The Rho binding domain (RBD) of
rhotekin, an effector of Rho proteins that selectively binds to the GTP-
loaded form, was expressed as a recombinant fusion with glutathione
S-transferase (GST) in Escherichia coli and purified through binding to
glutathione (GSH)-Sepharose beads. Cells (8 � 106) were lysed on ice in
800 �l lysis buffer (50 mM Tris-HCl [pH 7.5], 500 mM NaCl, 10 mM
MgCl2, 1% Triton X-100, 10 mM DTT) supplemented with a protease
inhibitor cocktail (Sigma-Aldrich) and phosphatase inhibitors (Halt
phosphatase inhibitor cocktail; Thermo Scientific). GST-RBD beads (30
�l) were incubated with the cell lysate for 30 min at 4°C. An aliquot from
each lysate was removed as a control for equivalent input for the assay.
After three washes in ice-cold washing buffer (50 mM Tris-HCl [pH 7.5],
500 mM NaCl, 10 mM MgCl2, 1% Triton X-100), bound Rho proteins
were eluted from the beads with SDS-PAGE sample buffer at 95°C and ana-
lyzed by Western blotting with anti-RhoB (catalog number sc-180; Santa
Cruz) or anti-RhoA (catalog number sc-418; Santa Cruz) antibodies.

RhoB promoter activity. U2OS cells were cotransfected with a plas-
mid encoding the RhoB promoter linked to the firefly luciferase reporter
gene and a plasmid encoding the cytomegalovirus (CMV) promoter

linked to the Renilla luciferase reporter gene (internal control), as de-
scribed previously (2). Luciferase activities were measured 48 h after
transfection by using the Dual Luciferase assay system (Promega), and
results were expressed as the ratio of the activity of the firefly luciferase to
the activity of the Renilla luciferase.

BrdU incorporation assays. Cells were incubated with 30 �M bro-
modeoxyuridine (BrdU; Sigma-Aldrich) for 30 min and labeled with anti-
BrdU antibody according to the manufacturer’s protocol (clone B44; BD
Biosciences). Cells were analyzed on a Becton, Dickinson FACScan flow
cytometer (BD Biosciences).

RESULTS
RhoB is rapidly and selectively induced in response to DSBs.
Exposure of human cancer cells to 25 �M CPT revealed a 2-fold
increase of the RhoB mRNA level within 30 min (Fig. 1A). At this
CPT concentration, the levels of RhoB mRNA reached a maxi-
mum 5-fold increase after 2 h (Fig. 1A). To investigate whether the
induction of RhoB mRNA was dose dependent, cells were treated
for 4 h with increasing CPT concentrations. RhoB induction was
clearly detected at 1 �M and increased with increasing CPT con-
centrations (Fig. 1B). In contrast, the two RhoB homologs RhoA
and RhoC were not induced after short exposures to CPT (Fig.
1C). RhoE, another member of the Rho family, has been identified
as a p53-inducible gene in response to genotoxic agents (33). The
authors of that study focused on upregulation of RhoE mRNA
after long exposures to genotoxic agents, typically 12 h or longer.
Figure 1C shows no increase in the RhoE mRNA level after short
exposures to CPT in p53 wild-type U2OS cells under conditions
where RhoB mRNA levels reached a maximum increase.

The increase in the RhoB mRNA level was associated with an
increase in the RhoB protein level that was detectable 1 h after CPT

FIG 1 Rapid and selective increase of RhoB by CPT-induced DSBs. (A and B) RhoB mRNA was analyzed by RT-qPCR in cells treated for the indicated times with
25 �M CPT (U2OS cells) (A) and with the indicated CPT concentrations for 4 h (HCT15/Chk2-WT cells) (B). Data shown are means 	 SD for triplicate samples.
(C) The indicated transcripts were analyzed by RT-qPCR in U2OS cells treated with 25 �M CPT (means 	 SD for three independent experiments). (D) Western
blotting of RhoB, RhoA, and �H2AX in U2OS cells treated with 25 �M CPT. �-Tubulin was the loading control. (E) Quantification of RhoB and RhoA protein
levels by Western blotting in U2OS cells treated with CPT (25 �M for 4.5 h). Data shown are the means 	 SD for three independent experiments. **, P � 0.01
by t test. (F) Active (GTP-bound) Rho proteins were pulled down with GST-rhotekin-RBD (Rho binding domain) beads in extracts from U2OS cells treated with
25 �M CPT for 4 h. The active forms of RhoB and RhoA were detected by Western blotting with antibodies against RhoB and RhoA, respectively. Total RhoB and
RhoA protein levels were examined in the extracts before pulldown (input). (G) HCT15/Chk2-WT cells were treated with the replication inhibitor aphidicolin
(APH) (1 �M for 15 min) before the addition of CPT (1 �M for 2 h). (Top) RT-qPCR analysis of RhoB mRNA. Data shown are means 	 SD for three
independent experiments. The asterisk denotes a significant difference from CPT-treated cells without APH (P � 0.05 by t test). (Bottom) Western blotting of
�H2AX and H2AX.
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treatment (Fig. 1D and E). Pulldown of active (GTP-bound) Rho
proteins followed by immunoblotting with an anti-RhoB anti-
body indicated that CPT induced both total and active RhoB pro-
teins (Fig. 1F), although it is still unclear whether these two events
are connected. Under these conditions, the levels of total and ac-
tive RhoA remained unchanged (Fig. 1D to F), which is consistent
with the lack of induction of RhoA mRNA after CPT treatment
(Fig. 1C).

Because DSBs are readily produced in CPT-treated cells (18),
we tested whether they could be the initiating events for RhoB
induction. Figure 1D shows that the increase in the level of RhoB
protein coincided with the phosphorylation of H2AX at Ser139
(referred to as �H2AX), a marker for DSBs (9). To assess more
directly the role of DSBs, we prevented their production in CPT-
treated cells. DSBs are primarily produced during DNA replica-
tion at low concentrations (�1 �M) of CPT (18). As expected
(19), inhibition of replication with aphidicolin prevented the in-
duction of �H2AX in response to CPT (Fig. 1G, bottom). Under
these conditions, aphidicolin also prevented the induction of
RhoB mRNA (Fig. 1G, top). These results suggest that DSBs pro-
mote RhoB upregulation.

Although RhoB can be induced in cells undergoing apoptosis
(34), it is unlikely that the early increase in the level of RhoB
induced by CPT resulted from the activation of apoptotic path-
ways. The increase of the RhoB level preceded the caspase-depen-
dent cleavage of poly(ADP-ribose) polymerase (PARP) by sev-
eral hours and was not prevented by the pancaspase inhibitor
benzyloxycarbonyl-Val-Ala-DL-Asp(OMe)-fluoromethyl ketone
(zVAD-fmk) (data not shown). Together, these results indicate
that RhoB is induced rapidly and selectively in response to CPT-
induced DSBs prior to and independently of apoptosis.

HuR-dependent stabilization of RhoB mRNA in CPT-
treated cells. Increases of both transcription and transcript stabil-
ity have been involved in the upregulation of RhoB mRNA in
UV-exposed cells (2, 35). To examine RhoB transcription, we
linked its promoter to a luciferase reporter gene. Figure 2A shows
that CPT did not increase luciferase activity in cells transfected
with this construct, indicating that transcription is unlikely to
account for the upregulation of RhoB mRNA. Next, we compared
the stability of RhoB mRNA between untreated and CPT-treated
cells. Experiments performed in the presence of the transcription
inhibitor flavopiridol revealed that the half-life of RhoB mRNA
was greatly prolonged in CPT-treated cells (Fig. 2B).

The RNA binding protein HuR is known to bind to and stabi-
lize target mRNAs (36). RhoB mRNA contains a HuR binding site
in its 3= untranslated region (UTR) (28), and a constitutive HuR-
RhoB mRNA interaction has been found by RNA immunopre-
cipitation coupled with microarray analyses (RIP-chip) (37, 38).
To test the potential role of HuR in the enhanced stability of RhoB
mRNA, we tested whether HuR inhibition affected CPT-induced
RhoB mRNA. Figure 2C shows that siRNA-mediated depletion of
HuR decreased the induction of RhoB mRNA. To further impli-
cate HuR, we examined its binding to RhoB mRNA by RIP exper-
iments. Endogenous HuR was immunoprecipitated, and the levels
of coimmunoprecipitated RhoB mRNA were analyzed by RT-
qPCR. In untreated cells, RhoB transcripts were enriched in HuR
immunoprecipitates compared with those in control IgG immu-
noprecipitates (Fig. 2D), indicating that HuR binds to RhoB
mRNA under normal conditions, as expected (37, 38). Cellular
exposure to CPT resulted in a further enrichment of RhoB mRNA

in HuR immunoprecipitates, which was detected within 30 min
and increased with the time of CPT exposure (Fig. 2D). A similar
increase in HuR-RhoB mRNA interactions has been observed af-
ter short exposures to UV (35), suggesting that HuR-dependent
stabilization of RhoB mRNA is a common mechanism for the
early induction of RhoB by genotoxic agents.

Chk2-dependent HuR-RhoB mRNA interaction in response
to DSBs. Chk2 is a serine/threonine kinase readily activated by
DSBs (39). Active Chk2 phosphorylates HuR with RNA recogni-
tion motifs and modulates HuR binding to target mRNAs (37,
40–42). As expected (43), CPT induced rapid phosphorylation of
Chk2 at Thr68 (Fig. 2E), which reflects its activation (44). Chk2
Thr68 phosphorylation was detected 30 min after CPT treatment
(Fig. 2E) and coincided with the increased association of HuR
with RhoB mRNA (Fig. 2D).

To assess directly the involvement of Chk2, we used HCT15
cells (Chk2 deficient) stably expressing wild-type Chk2 (Chk2-
WT) or kinase-dead Chk2 (Chk2-KD). The levels of HuR protein
were comparable in Chk2-WT and Chk2-KD cells and were un-
affected by CPT treatment (Fig. 2H). Figure 2F shows that HuR
binding to RhoB mRNA was reduced in Chk2-KD cells compared
to Chk2-WT cells in response to CPT. These results led us to test
whether the level of CPT-induced RhoB was also reduced in
Chk2-KD cells. The induction of RhoB mRNA (Fig. 2G) and pro-
tein (Fig. 2H) was defective in Chk2-KD cells treated with CPT. As
a control, parental HCT15 cells (Chk2 deficient) exhibited a sim-
ilar induction defect in RhoB mRNA (data not shown) as that of
Chk2-KD cells (Fig. 2G). Both WT and Chk2-KD cells showed
identical induction of �H2AX in response to CPT (Fig. 2H), indi-
cating that the defective response of Chk2-KD cells is not caused
by a decreased amount of DSBs.

RhoB facilitates �H2AX dephosphorylation in CPT-treated
cells. To assess the potential role of RhoB in the cellular response
to CPT, we compared survival of WT and RhoB-deficient
(RhoB�/�) E6-immortalized MEF cells after CPT treatment. Cells
were treated with increasing concentrations of CPT, and CPT sen-
sitivity was assessed by WST-1 survival assays. Figure 3A shows
that RhoB�/� cells are more sensitive to CPT than are WT cells,
indicating that RhoB participates in the cellular response to CPT.

Because the cytotoxicity of CPT depends on Top1-linked DNA
single-strand break (Top1cc)-induced DSBs (18), we analyzed the
influence of RhoB on both the formation of Top1cc and the pro-
duction of DSBs. Primary cells (WT and RhoB�/�) were used, as
they normally have low background levels of �H2AX (45). Our
results indicated that CPT-induced Top1cc (Fig. 3B) and �H2AX
(Fig. 3C) levels were similar in WT and RhoB�/� cells.

We therefore hypothesized that the hypersensitivity of
RhoB�/� cells could instead result from a defect in the repair of
these DSBs. To determine the kinetics of DSB repair, we analyzed
the kinetics of �H2AX dephosphorylation (45). WT and RhoB�/�

cells were exposed to CPT for 1 h and washed, and �H2AX de-
phosphorylation was monitored post-CPT treatment (release)
(Fig. 3D). Unlike continuous exposure to CPT, this protocol al-
lows the study of DSB repair, as Top1cc reverse fully within min-
utes after washing out CPT (18), and DSBs are then no longer
produced. After termination of the CPT treatment, �H2AX levels
decreased by approximately 70% within 7 h in WT cells (Fig. 3E
and F), which is consistent with the kinetics and magnitude of
�H2AX focus loss after exposure to ionizing radiation (46). Under
these conditions, �H2AX levels were not significantly reduced in
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RhoB�/� cells (Fig. 3E and F). Immunofluorescence microscopy
confirmed the pronounced defect of �H2AX dephosphorylation
in RhoB�/� cells after removal of CPT (data not shown). In addi-
tion, siRNA-mediated depletion of RhoB in human HCT116 cells
(Fig. 3G) also resulted in a marked reduction of �H2AX dephos-
phorylation after removal of CPT (Fig. 3H). Neutral Comet assays
confirmed that the persistence of �H2AX in RhoB-deficient cells
post-CPT treatment corresponded to unrepaired DSBs (Fig. 3I
and J). Analysis of endogenous Top1cc showed that they reversed
efficiently in both WT and RhoB�/� cells after removal of CPT

(Fig. 3K and L). Thus, it is unlikely that the persistent �H2AX
signal in RhoB�/� cells resulted simply from the further produc-
tion of DSBs after termination of the CPT treatment. These results
indicate that RhoB promotes �H2AX dephosphorylation and
DSB repair.

RhoB promotes DSB repair by homologous recombination.
Homologous recombination and nonhomologous end joining
(NHEJ) are the prevalent pathways for the repair of DSBs (47). To
assess directly the involvement of RhoB in DSB repair, we used
human RG37 fibroblast cells that contain a single chromosomally

FIG 2 Chk2- and HuR-dependent stabilization of RhoB mRNA in response to CPT. (A) RhoB promoter activity was determined after transfection of U2OS cells
with a RhoB promoter-luciferase reporter gene construct before treatment with 25 �M CPT. Data shown are means 	 SD for three independent experiments.
The positive control (
) was cells treated with trichostatin A (1 �M for 15 h). (B) U2OS cells were left untreated (Ctrl) or were treated with CPT (25 �M for 2
h) before the addition of the transcription inhibitor flavopiridol (FLV) (1 �M). RhoB mRNA was analyzed by RT-qPCR and normalized to the level at the time
of flavopiridol addition, which was set to 100% (averages of data from two independent experiments). The half-life (t1/2) of RhoB mRNA is indicated. (C)
HCT116 cells were transfected with HuR-targeting or nontargeting (control) siRNAs before treatment with CPT (25 �M for 6 h). (Top) RT-qPCR analysis of
RhoB mRNA (means 	 SD for triplicate samples). (Bottom) Western blotting showing the efficiency of HuR silencing. �-Tubulin was the loading control. (D)
Increased HuR-RhoB mRNA interaction upon CPT treatment. HuR was immunoprecipitated (IP) from HCT15/Chk2-WT cells treated with 25 �M CPT. The
control was immunoprecipitation with nonimmune IgG. Coimmunoprecipitated RhoB mRNA was analyzed by RT-qPCR relative to �-actin mRNA levels in the
input samples (means 	 SD for triplicate samples). (E) Phosphorylation of Chk2 on Thr68 was examined by Western blotting in HCT15/Chk2-WT cells treated
with 25 �M CPT. Chk2 and HuR were examined in parallel. (F) Chk2-dependent binding of HuR to RhoB mRNA. HCT15/Chk2-WT and HCT15/Chk2-KD cells
were treated with 25 �M CPT for 4 h, and RhoB mRNA was analyzed in HuR immunoprecipitations, as described above for panel D. (G and H) HCT15/
Chk2-WT and HCT15/Chk2-KD cells were treated with 25 �M CPT. (G) RhoB mRNA was analyzed by RT-qPCR (means 	 SD for triplicate samples). (H)
Western blotting of the indicated proteins. Phosphorylation of Chk2 on Ser516, which is an autophosphorylation site in response to DNA damage (64), was used
to control Chk2 kinase activity in cells expressing WT or kinase-dead Chk2.
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FIG 3 RhoB-deficient cells are defective for �H2AX dephosphorylation after CPT removal. (A) WT and RhoB�/� MEF cells were treated with the indicated
concentrations of CPT for 72 h, and cell survival was analyzed by a WST-1 assay (means 	 SD for triplicate samples). (B) Detection of Top1-DNA cleavage
complexes (Top1cc) in WT and RhoB�/� primary mouse dermal fibroblast (MDF) cells treated with CPT (25 �M for 1 h). Different amounts of genomic DNA
(5, 2.5, and 1.25 �g) were probed with an anti-Top1 antibody. (C) Western blotting of �H2AX and H2AX in WT and RhoB�/� primary MDF cells treated with
CPT (25 �M for 1 h). (D) Cell treatment protocol for the study of �H2AX dephosphorylation (E to H), DSB repair (I and J), and Top1cc reversal (K and L) in
response to CPT. Cells were treated with CPT for 1 h and washed (W) and cultured in CPT-free medium (release) for the indicated times. (E and F) Western
blotting of �H2AX and H2AX in WT and RhoB�/� primary MDF cells (CPT, 25 �M). (E) Representative experiment. (F) Quantification of �H2AX protein levels
(means 	 SD for three independent experiments). *, P � 0.05; ***, P � 0.001 (by t test). (G and H) HCT116 cells were transfected with RhoB-targeting or
nontargeting (control) siRNAs. (G) Western blotting showing the efficiency of RhoB silencing in two independent experiments. �-Tubulin was the loading
control. (H) Western blotting of �H2AX and H2AX (CPT, 1 �M; release, 6 h). Lines indicate that intervening wells have been spliced out. (I and J) Detection of
DSBs by a neutral Comet assay in WT and RhoB�/� primary MDF cells (CPT, 25 �M; release, 1 h). (I) Representative pictures of nuclei. (J) Quantification of
Comet tail moment (averages 	 standard errors of the means). Sixty cells were examined per group. (K and L) Detection of Top1cc in MEF cells treated with 25
�M CPT for 1 h. R30= and R60= indicate cells harvested 30 and 60 min after CPT removal, respectively. Different amounts of genomic DNA (5, 2.5, and 1.25 �g)
were probed with an anti-Top1 antibody. (K) Representative experiment. Dashed lines indicate where panels have been reorganized to facilitate reading. (L)
Quantification of Top1cc normalized to values for CPT-treated cells (means 	 SD for three independent experiments). The dashed line indicates Top1cc levels
in WT untreated cells.
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FIG 4 RhoB-deficient cells are defective for DSB repair by homologous recombination. (A) Substrate and strategy used to measure DSB-induced homologous
recombination (26, 48). The pDR-GFP substrate contains two inactive genes coding for GFP under the control of a promoter (P). The 5= gene is inactive because
of the insertion of a cleavage site for I-SceI. The 3= gene is inactive because it is deleted in both the 5= and 3= directions. When a DSB is produced by I-SceI,
recombination between these two inactive genes (specifically gene conversion) restores a functional GFP coding sequence by either intrachromatid homologous
recombination (represented) or unequal sister chromatid exchange (not represented). (B) RG37 cells stably expressing the pDR-GFP substrate were transfected
with RhoB-targeting or nontargeting (control) siRNAs for 2 days and then transfected with an I-SceI plasmid for an additional 3 days. Cells transfected with
Rad51-targeting siRNAs were used as a control for the pDR-GFP substrate. “No I-SceI” corresponds to cells transfected with an empty plasmid for 3 days. (Top)
Percentages of GFP-positive recombinant cells determined by flow cytometry and normalized to the level of cells cotransfected with control siRNAs and I-SceI,
which was set to a value of 1. Data shown are means 	 standard errors of the means for five (with RhoB#1 siRNA) or three (with RhoB#2 and Rad51 siRNAs)
independent experiments. ***, P � 0.001; **, P � 0.01 (by t test). (Bottom) Western blotting of RhoB and Rad51. �-Tubulin was the loading control. (C and D)
HCT15/Chk2-WT cells were transfected with RhoB-targeting or nontargeting (control) siRNAs and left untreated or were treated with 1 �M CPT for 1 h. Rad51
foci were analyzed by immunofluorescence microscopy at 6 h post-CPT treatment (Release) (see protocol described in the legend to Fig. 3D). (C) Representative
images. DAPI, 4=,6-diamidino-2-phenylindole. Bar, 10 �m. (D) Percentages of cells with at least five Rad51 foci. At least 200 cells were analyzed in each group
(means 	 standard errors of the means). (E) HCT15/Chk2-WT cells were transfected with RhoB-targeting or nontargeting (control) siRNAs, labeled with 30 �M
BrdU for 30 min, and analyzed by flow cytometry. Numbers indicate percentages of BrdU-positive cells (means 	 SD for three experiments). Unlabeled cells were
used as negative controls for anti-BrdU staining. PI, propidium iodide. (F) Substrate and strategy used to measure DSB-induced end joining (49). The
pCOH-CD4 substrate contains genes coding for the membrane antigens H2Kd, CD8, and CD4. The only expressed gene is H2Kd. CD8 is not expressed because
it is in an inverted orientation, and CD4 is not expressed because it is too far from the promoter (P). Two cleavage sites for I-SceI are present in noncoding
sequences, which are in direct orientation generating cohesive ends between the two sites. When two DSBs are produced by I-SceI, the internal fragment
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integrated copy of the pDR-GFP substrate (26) (Fig. 4A). This
substrate allows the monitoring of homologous recombination,
specifically gene conversion, induced by a DSB produced by the
nuclease I-SceI (48). Plasmid pDR-GFP consists of a tandem re-
peat of two inactive GFP genes, one of them containing a cleavage
site for I-SceI. Transient expression of I-SceI produces a DSB in
the chromosomal recombination substrate, which can induce ho-
mologous recombination and recreates a functional GFP (Fig.
4A). The recombinant cells become fluorescent and can be de-
tected by flow cytometry. In RG37 cells, siRNA-mediated deple-
tion of RhoB decreased the induction of GFP-positive recombi-
nant cells in response to I-SceI expression (Fig. 4B). In agreement
with these results, siRNA-mediated depletion of RhoB also pre-
vented the formation of Rad51 foci post-CPT treatment (Fig. 4C
and D), a key protein in homologous recombination that is re-
cruited at DSB sites (47). Flow cytometry analysis of BrdU incor-
poration versus DNA content showed that the percentages of
S-phase cells were similar in cells transfected with control and
RhoB-targeting siRNAs (Fig. 4E) as well as in WT and RhoB�/�

MEF cells (WT cells, 46.3% 	 2%; RhoB�/� cells 45.0% 	 0.7%)
(data not shown). Thus, RhoB deficiency did not result in a lower
proportion of S-phase cells, which excludes the possibility that
fewer cells in S phase account for the reduced DSB repair by ho-
mologous recombination.

To assess the potential involvement of RhoB in NHEJ repair,
we used human GC92 fibroblast cells stably expressing the pCOH-
CD4 substrate (27, 49, 50) (Fig. 4F). This substrate contains genes
encoding the membrane antigens H2Kd, CD8, and CD4. Before
expression of I-SceI, neither CD8 nor CD4 is expressed. I-SceI
expression produces the excision of the H2Kd/CD8 fragment, and
rejoining of the DNA ends leads to the expression of the CD4 gene
(Fig. 4F). Cells expressing CD4 at the plasma membrane can be
detected by flow cytometry using an anti-CD4 antibody. Figure
4G shows that siRNA-mediated depletion of RhoB did not signif-
icantly affect the induction of CD4-positive cells in response to
I-SceI expression. Together, these results indicate that RhoB is
involved in DSB repair primarily by homologous recombination.

RhoB-deficient cells are defective for PP2A activity. Inhibi-
tion of PP2A is known to impair DSB repair by homologous re-
combination (16). In addition, although several serine/threonine
phosphatases (PP2A, PP4, PP1, PP6, and Wip1) can dephosphor-
ylate �H2AX (14), PP2A seems to be the main phosphatase for
�H2AX in response to CPT (15). PP2A inhibition induces persis-
tent �H2AX and DSBs in CPT-treated cells and increases cellular
sensitivity to CPT (15), effects similar to those observed in RhoB-
deficient cells (Fig. 3). We therefore examined whether RhoB in-
hibition could affect PP2A activity.

Consistent with the prevalent role of PP2A in removing
�H2AX in CPT-treated cells (15), inhibition of PP2A with fostrie-
cin or okadaic acid completely prevented �H2AX dephosphory-
lation following removal of CPT (Fig. 5A). Next, we measured
PP2A activity in WT, RhoB�/�, and RhoB�/� cells complemented

with HA-RhoB. The levels of PP2A(C) protein were similar in all
cell populations (Fig. 5B). Figure 5C shows that PP2A activity was
reduced in RhoB�/� cells compared to WT and RhoB�/� cells
complemented with HA-RhoB. To determine whether RhoB and
PP2A are in the same pathway to dephosphorylate �H2AX, we
compared the levels of �H2AX post-CPT treatment when RhoB is
expressed or not under conditions where PP2A activity is inhib-
ited. Figure 5D shows that RhoB suppression with siRNA did not
further increase the level of �H2AX in cells exposed to okadaic
acid post-CPT treatment. From these results, we propose that
RhoB promotes PP2A activity and DSB repair.

RhoB-deficient cells reveal endogenous �H2AX foci and
genomic instability. Because we found that RhoB promotes DSB
repair, we examined whether RhoB-deficient cells would accumu-

H2Kd/CD8 is excised, and rejoining of the DNA ends leads to the expression of the CD4 gene. (G) GC92 cells stably expressing the pCOH-CD4 substrate were
transfected as described above for panel B, and percentages of CD4-positive cells were determined by flow cytometry using an anti-CD4 antibody. Nontargeting-
siRNA-transfected cells treated with the DNA-PK inhibitor NU7026 (DNA-PKi) (10 �M) at the time of transfection with the I-SceI plasmid were used as a
control for the pCOH-CD4 substrate. Data shown are means 	 standard errors of the means for seven (with siRNA RhoB#1) or three (with siRNA RhoB#2 and
the siRNA control plus the DNA-PK inhibitor) independent experiments. ns, nonsignificant (P � 0.15 [with siRNA RhoB#1] and P � 0.14 [with siRNA
RhoB#2]); ***, P � 0.001 (by t test).

FIG 5 RhoB-deficient cells are defective for PP2A activity. (A) Western blot-
ting of �H2AX and H2AX in HCT15/Chk2-WT cells treated with 1 �M CPT
for 1 h and washed and cultured in CPT-free medium for 5 h (release). Okadaic
acid (OA) (100 nM) (lane 4) and fostriecin (100 nM) (lane 5) were added
immediately after CPT removal (washes). See also the treatment protocol de-
scribed in the legend of Fig. 3D. (B and C) Primary MDF cells of each genotype
were analyzed for RhoB and PP2A(C) expression by Western blotting (B) and
for PP2A activity after PP2A(C) immunoprecipitation (IP) using the Thr
phosphopeptide K-R-pT-I-R-R as a substrate (C). Data shown are means 	
SD for three independent experiments. *, P � 0.05; ***, P � 0.001 (by t test).
IB, immunoblotting. (D) HCT15/Chk2-WT cells were transfected with RhoB-
targeting or nontargeting (control) siRNAs before treatment, as described
above for panel A. Western blotting of �H2AX and H2AX. The top panel
shows quantification of �H2AX expression normalized to the expression level
of H2AX, shown at the bottom.
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late endogenous DSBs. We analyzed �H2AX nuclear foci by im-
munofluorescence microcopy in WT and RhoB�/� cells in the
absence of treatment. This technique is much more sensitive than
Western blotting, as it can detect a single DSB focus per cell (9).
Figure 6A reveals increased numbers of �H2AX foci in RhoB�/�

cells compared to WT cells. Quantitative analyses of the micros-
copy images showed that approximately 25% of RhoB�/� nuclei
formed 15 �H2AX foci, compared to 3% in WT cells (Fig. 6B).

Inefficient repair of DSBs can initiate genomic instability (9,
10). To evaluate genomic instability in RhoB�/� cells, we per-
formed comparative genomic hybridization (CGH) whole-ge-
nome tiling arrays. Genomic DNA of primary mouse dermal fi-
broblast (MDF) cells from RhoB�/� mice was compared to a pool
of genomic DNA of MDF cells from four WT syngeneic mice. As a
control for genomic alterations due to interindividual variability,
genomic DNA of MDF cells from a WT mouse was compared to
the pool of WT genomic DNA (Fig. 6C). The three RhoB�/� mice
analyzed revealed an increased number of chromosomal amplifi-

cation and deletion events compared to the WT mouse (Fig. 6D).
A representative chromosome is shown in Fig. 6E. In accordance
with these results, the total length of chromosomal alterations and
the genomic instability index, which reflects the number of alter-
ations per chromosome (32), were also higher in RhoB�/� mice
(Fig. 6D). Together, these experiments suggest that RhoB loss in-
creases the number of endogenous DSBs and genomic instability.

DISCUSSION

Here we identify RhoB as the first GTPase involved in the signaling
and repair of DSBs. Our data support a model in which DSBs
activate a Chk2-HuR-RhoB pathway that promotes PP2A-medi-
ated dephosphorylation of �H2AX and repair (Fig. 7). DSBs are
likely the initiating events for RhoB upregulation, as inhibition of
CPT-induced DSBs by blocking of replication suppressed the in-
duction of RhoB mRNA (Fig. 1G). Also, the induction of RhoB
depends on Chk2 (Fig. 2), a checkpoint kinase readily activated by
DSBs (39). Other parallel pathways besides Chk2 probably also

FIG 6 RhoB loss is accompanied by increased �H2AX levels and chromosomal abnormalities. (A) Representative images of WT and RhoB�/� primary MDF
cells after staining for �H2AX. DNA was counterstained with DAPI (blue). Bar, 10 �m. (B) Quantification of the number of �H2AX foci per nucleus. A minimum
of 500 nuclei was analyzed per cell type (means 	 SD for three independent experiments). (C) Design of the CGH array analysis. Genomic DNA of RhoB�/� MDF
cells was compared to a pool of genomic DNA of MDF cells from four different WT syngeneic mice. As a control, to determine the number of genomic alterations
due to interindividual variability, genomic DNA of WT MDF cells was compared to the pool of genomic DNA from WT mice. (D) Table showing whole-genome
chromosomal amplification and deletion events as well as the total length (in kbp) of chromosomal alterations in RhoB�/� MDF cells compared to WT MDF cells
analyzed by CGH arrays. The genomic instability index was calculated with the formula (number of deletions 
 number of amplifications)2/number of altered
chromosomes, as previously described (32). (E) Chromosome plots for chromosome 15 of RhoB�/� MDF cells from mouse 2 compared to the pool of WT MDF
cells, as determined by a CGH array. This chromosome is representative of the mean numbers of amplification and deletion events in RhoB�/� MDF cells.
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contribute to RhoB induction, as Chk2-KD cells are not com-
pletely defective for HuR-RhoB mRNA interaction (Fig. 2F) and
RhoB induction in response to CPT (Fig. 2G and H). The Chk2-
independent induction of RhoB (Fig. 7) may be sufficient to pro-
mote �H2AX dephosphorylation, as Chk2-KD cells dephosphor-
ylate �H2AX with an efficiency similar to that of Chk2-WT cells 5
h after CPT removal (data not shown). Moreover, because Chk2 is
a major player in DSB repair (it phosphorylates/activates Brca1,
p53, and PP2A) (39), these results also raise the possibility that
Chk2-KD cells have evolved and compensate by increasing Chk2-
independent pathways to repair DSBs. Such pathways may impli-
cate Chk1. Indeed, CPT is known to activate the ATR-Chk1 path-
way (18, 19), and Chk1 can promote HuR-dependent stabilization
of mRNAs by inhibiting Cdk1-mediated phosphorylation of HuR
(51, 52). Moreover, Chk1 can also promote DSB repair by phos-
phorylating the repair factor Rad51 (53). In addition, the effect of
Chk2 loss seems to be less pronounced on HuR-RhoB mRNA
interactions than on RhoB mRNA levels after CPT treatment, which
raises the possibility that other pathways besides HuR also participate
in the induction of RhoB mRNA by Chk2. Further support for the
role of DSBs is provided by independent studies showing that RhoB is
also upregulated early in response to UV and cisplatin (2, 3), which
can produce DSBs in replicating cells (54–56).

RhoB appears to be implicated in the repair of DSBs from
different origins. Indeed, RhoB-deficient cells maintain elevated
�H2AX levels in response to CPT (Fig. 3), which produces DSBs
indirectly during replication (19) and transcription (20) as well as
in response to endogenous DSBs (Fig. 6). RhoB-deficient cells are
also defective in the repair of DSBs that are produced directly by
the endonuclease I-SceI (Fig. 4). DSBs are potentially lethal DNA
lesions if not repaired (9). In agreement with the involvement of
RhoB in DSB repair, RhoB-deficient cells are hypersensitive to
CPT (Fig. 3A) and other genotoxic agents that can also induce
DSBs, such as ionizing radiation (57) and UV (2).

It is now well documented that inhibition of PP2A activity
impairs DSB repair (15–17). Hence, our finding that RhoB-defi-
cient cells are defective for PP2A activity (Fig. 5) links RhoB ex-
pression to DSB repair. Although RhoB can bind PP2A(C) (58), it
is not known whether this interaction is important for PP2A ac-
tivity. PP2A may stimulate DSB repair by the timely dephosphor-

ylation of �H2AX (15). Our analysis showing that RhoB-deficient
cells are defective for DSB repair by homologous recombination
but not for DSB repair by end joining (Fig. 4) further suggests that
�H2AX dephosphorylation might be specifically required for ho-
mologous recombination. In line with this possibility, it has been
reported that �H2AX dephosphorylation (removal) is required
for efficient DNA end resection, which is a prerequisite for homol-
ogy-mediated DSB repair (59). Besides RhoB promoting DSB re-
pair by PP2A-mediated �H2AX dephosphorylation (Fig. 7), it is
possible that RhoB also promotes DSB repair by PP2A-indepen-
dent pathways, which may in turn further increase PP2A-medi-
ated �H2AX dephosphorylation. PP2A may also stimulate DSB
repair by homologous recombination by dephosphorylating non-
DDR proteins such as Akt1 (60). Indeed, phosphorylated/active
Akt1 has been reported to inhibit homologous recombination by
inducing cytoplasmic retention of Brca1 and Rad51 (61). It is
therefore possible that RhoB inhibition prevents DSB repair by
inhibiting the PP2A-dependent dephosphorylation of Akt1. This
hypothesis is concordant with our previous and current findings
that the loss of RhoB expression promotes the activation of Akt1
(7) and prevents DSB repair by homologous recombination (Fig.
4). Besides �H2AX (and Akt), it is likely that RhoB loss affected
other PP2A substrates, as RhoB loss decreased the global activity
of PP2A, which was measured by using a nonspecific threonine
phosphopeptide (Fig. 5C). Although PP2A can also promote DSB
repair by NHEJ by dephosphorylating Ku70, Ku80, and DNA-
PKcs (17), RhoB downregulation did not significantly affect end-
joining-repair events (Fig. 4). Hence, the predominant role of
RhoB-dependent PP2A activity is likely to promote DSB repair by
homologous recombination. Besides PP2A, it is possible that
RhoB loss also decrease a PP4 activity. Indeed, PP4 loss is primar-
ily involved in the basal increase in the level of �H2AX (62), and
we found that RhoB-deficient cells have elevated endogenous
�H2AX levels (Fig. 6).

RhoB expression commonly decreases during tumor progres-
sion (4–8), and RhoB knockout (KO) mice are more susceptible to
tumor formation and/or progression in response to UVB (63) and
7,12-dimethylbenz[a]anthracene (DMBA), whose metabolites in-
duce DNA damage (24). However, very little is known about the
molecular mechanisms by which the loss of RhoB promotes tu-
mor progression. We show here that RhoB-deficient cells are de-
fective for DSB repair (Fig. 3 and 4) and that, consistent with this,
they have elevated endogenous �H2AX levels and chromosomal
abnormalities (Fig. 6). We recently reported that RhoB-deficient
human skin tumors also have elevated �H2AX levels compared to
RhoB-proficient tumors (63). Hence, our findings suggest that
loss of RhoB could promote oncogenesis by increasing DSB-me-
diated genomic instability.
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FIG 7 Proposed molecular pathways for the role of RhoB in the DDR and
repair. The gray box indicates that PP2A promotes DSB repair by dephosphor-
ylating �H2AX ([1]) and/or non-DDR proteins ([2]) (see Discussion).
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RhoB Promotes Cancer Initiation by Protecting
Keratinocytes from UVB-Induced Apoptosis but
Limits Tumor Aggressiveness
Nicolas Meyer1,2,3,7, Alexis Peyret-Lacombe1,2,7, Bruno Canguilhem1,2, Claire Médale-Giamarchi1,2,
Kenza Mamouni1,2, Agnese Cristini1,2, Sylvie Monferran1,2, Laurence Lamant1,2,4, Thomas Filleron5,
Anne Pradines1,2,6, Olivier Sordet1,2 and Gilles Favre1,2,6

The role of UVB-induced apoptosis in the formation of squamous cell carcinoma (SCC) is recognized. We
previously identified the small RhoB (Ras homolog gene family, member B) GTPase, an early response gene to
cellular stress, as a critical protein controlling apoptosis of human keratinocytes after UVB exposure. Here we
generated SKH1 (hairless immunocompetent mouse) mice invalidated for RhoB to evaluate its role in UVB-
induced skin carcinogenesis in vivo. We show that rhob� /� mice have a lower risk of developing UVB-induced
keratotic tumors and actinic keratosis that is associated with a higher sensitivity of UVB-exposed keratinocytes to
apoptosis. We extend this observation to primary cultures of normal human keratinocytes in which RhoB was
downregulated with small interfering RNA (siRNA) and further show that the hypersensitivity to apoptosis
depends on B-cell lymphoma 2 (Bcl-2) downregulation. In rhob� /� mice, the UVB-induced tumors were
preferentially undifferentiated and highly proliferative. Finally, we show in humans an almost constant loss of
RhoB expression in undifferentiated SCCs. These undifferentiated and RhoB-deficient tumors have elevated
phosphorylated histone H2AX (gH2AX) and 53BP1, two markers of DNA double-strand breaks. Together, our
results indicate that UVB-induced RhoB expression participates in in vivo SCC initiation by increasing
keratinocyte survival. Conversely, RhoB may limit tumor aggressiveness as loss of RhoB expression in tumor
cells is associated with tumor progression.

Journal of Investigative Dermatology (2014) 134, 203–212; doi:10.1038/jid.2013.278; published online 18 July 2013

INTRODUCTION
Cutaneous squamous cell carcinomas (SCCs) represent one of
the most common human cancer type (Madan et al., 2010).
Approximately 85% of SCCs are cured by surgery, whereas the
remaining 15% display poor prognosis. Currently, there are no
specific markers to predict tumor aggressiveness and risk of
recurrence in patients.

It is largely admitted that UVB plays a crucial role in the
development of SCC (Goodwin et al., 2004). The response of

keratinocytes to UVB is complex and depends upon a
balance between cell death and survival pathways.
Deregulation of genes controlling this balance is considered
as a key factor in the early phases of photocarcinogenesis
(De Gruijl and Voskamp, 2009). We previously identified
the GTPase RhoB (Ras homolog gene family, member B)
as a key regulator of the apoptotic response of human
HaCaT keratinocytes to UVB. We demonstrated that RhoB is
critical for EGFR-induced cell survival after UVB exposure
through regulation of Ak thymoma (AKT) phosphorylation
(Canguilhem et al., 2005).

RhoB belongs to the Rho GTPase family, a group of proteins
controlling many cellular functions such as cell survival and
migration, the deregulation of which are implicated in cancer
initiation and progression (Karlsson et al., 2009). rhob is an
early inducible gene activated by cellular stress including
hypoxia (Skuli et al., 2006), ionizing radiation (Milia et al.,
2005; Monferran et al., 2008), cytotoxic agents (Liu et al.,
2001), and UV irradiation (Fritz and Kaina, 2001; Canguilhem
et al., 2005). When activated, RhoB triggers a signaling
cascade promoting the activation of AKT and NF-kB survival
pathways (Mazières et al., 2005). Moreover, RhoB displays
tumor-suppressor gene functions in many cell types as well
as in mouse models (Chen et al., 2000; Liu et al., 2001;
Prendergast, 2001; Jiang et al., 2004). RhoB expression
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decreases during the progression of various tumors. Loss of
RhoB expression was shown to promote cell proliferation,
invasion, and metastasis.

Here, we develop hairless immunocompetent mice
(SKH1) invalidated for rhob to study its in vivo role in
UVB-induced photocarcinogenesis in mice. We also
evaluated the relevance of RhoB in humans using primary
cultures of human keratinocytes and human SCC tumor
samples. Altogether, our work emphasizes the critical
role of RhoB in both the initiation and the progression of
skin SCC.

RESULTS
rhob� /� mice experience a lower incidence of SCC precursor
tumors following chronic exposure to UVB

To evaluate in vivo the influence of RhoB on UVB-induced
skin carcinogenesis, we crossed the SKH1 mouse that mimics
UVB-induced photocarcinogenesis in humans (De Gruijl and
Forbes, 1995; Benavides et al., 2009; Sharma et al., 2011)
with rhob knockout (rhob� /� ) mice (Liu et al., 2001). The
SKH1 mice rhob� /� , rhobþ /� , and rhobþ /þ were
exposed daily to 0.1 J cm� 2 UVB, corresponding to one
minimal erythemal dose. Animals started to develop actinic
keratosis (AK)–like lesions after 12 weeks of chronic UVB
exposure and all mice exhibited at least one AK at 24 weeks.
AKs are precursors of SCC (Salasche, 2000). Mice also
developed small keratotic and large ulcerated tumors that
have a similar appearance to human SCC (De Gruijl and
Forbes, 1995). Notably, the relative distribution of AKs and
tumors varied, with mice developing primarily numerous AKs
together with a prevalence of small keratotic tumors, whereas
others only few AKs with primarily large ulcerated tumors
(Supplementary Figure S1 online).

The primary assessment of the extent of AKs in mice was
performed after 17 weeks of daily UVB exposure. Animals
were categorized as highly sensitive to UVB-induced photo-
carcinogenesis if they had AKs covering 450% of the dorsal
skin (group A). Animals experiencing o50% of their dorsal
skin covered by AKs were included in the low sensitivity
(group B; Figure 1a and Supplementary Figure S1 online; also
see Materials and Methods). Figure 1b shows that the mice
with high sensitivity to UVB-induced photocarcinogenesis
were almost exclusively the þ /þ and þ /� rhob mice,
whereas mice presenting lower sensitivity were mainly
rhob� /� . In rhob� /� mice, the lower occurrence of AKs
was associated with a reduced total number of skin tumors
(Figure 1c and Supplementary Figure S2 online). These results
were confirmed in a second set of experiments (Supple-
mentary Figure S3a and b online). Analysis of the tumor type
revealed that small keratotic tumors were less prevalent in
rhob� /� mice (Figure 1d and Supplementary Figure S4a
online), whereas the prevalence of large ulcerated tumors was
not significantly different in rhobþ /þ and rhob� /� mice
(Figure 1e). We concluded that the absence of RhoB is
associated with a reduction in the occurrence of AKs and
small keratotic tumors upon chronic exposure to UVB without
significantly affecting the induction of large ulcerated tumors
(Supplementary Figure S4b online).

UVB irradiation induces RhoB expression in normal human skin
tissues

Because SCCs develop from the stratum spinosum in response
to UVB (Ratushny et al., 2012), we analyzed RhoB expression in
the human epidermis. After surgical excision, human skin tissues
from two healthy donors were left untreated or exposed to
0.4 J cm�2 UVB. At 8hours after irradiation, expression of RhoB
was analyzed by immunohistochemistry (Figure 2a and b and
Supplementary Figure S5 online). In the absence of treatment,
RhoB was expressed at very low levels at the suprabasal layers
of the epidermis and was mostly detected at the basal layer
(Figure 2a and b). Keratinocytes from the basal layer are the
replicating cells ensuring renewal of suprabasal layers. Follow-
ing UVB exposure, RhoB expression was markedly increased at
the suprabasal layers of the epidermis (Figure 2b). Altogether,
these results suggest that the induction of RhoB at the suprabasal
layers of the epidermis in response to UVB may be involved in
the development of AKs and small keratotic tumors.

Keratinocytes of rhob� /� mice are hypersensitive to
UVB-induced apoptosis

To gain insight into the mechanism of RhoB-induced skin
carcinogenesis, we analyzed the role of RhoB in the apoptotic
response to UVB. Apoptosis is a major anticancer
barrier (Lowe and Lin, 2000; Wong, 2011). We have
previously shown that knocking down RhoB in human
HaCaT cells confers hypersensitivity to UVB-induced apop-
tosis (Canguilhem et al., 2005). It is also clearly demonstrated
that RhoB is involved in the apoptotic response to genotoxics,
including ionizing radiation (Fritz and Kaina, 2001; Liu et al.,
2001; Jiang et al., 2004; Milia et al., 2005). To test whether
the reduced number of AKs and small keratotic tumors in
rhob� /� mice could be related to an excess of apoptosis,
we compared UVB-induced apoptosis of rhobþ /þ and
rhob� /� mice keratinocytes. Mice were exposed to
0.2 J cm�2 UVB and apoptotic DNA fragmentation was
assessed 24 hours later by TUNEL assay (Samejima and
Earnshaw, 2005) on formalin-fixed, paraffin-embedded
(FFPE) skin samples by microscopy. Figure 3a shows that
the percentage of TUNEL-positive keratinocytes was signifi-
cantly higher in rhob� /� mice than in rhobþ /þ mice.

We also tested whether tumoral keratinocytes of rhob� /�
mice were more sensitive to UVB-induced apoptosis. All FFPE
tumor samples collected after chronic UVB exposure of
rhobþ /þ (n¼17) and rhob� /� (n¼23) mice were
assessed for apoptosis by cleaved caspase-3 immunostaining
(Supplementary Figure S6 online). A significantly higher
proportion of cleaved caspase-3-positive keratinocytes was
found in rhob� /� mice tumors compared with rhobþ /þ
mice tumors (Figure 3b). Together, these results indicate that
RhoB deficiency confers hypersensitivity of both normal and
tumoral keratinocytes to UVB-induced apoptosis, which could
protect rhob� /� mice against UVB-induced tumor initiation.

RhoB protects human keratinocytes from UVB-induced
apoptosis through Bax/Bcl-2 ratio modulation

To determine whether these results could be extended to
humans, we isolated normal human keratinocytes (NHKs)
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from healthy donors. RhoB expression was downregulated by
transient transfection with small interfering RNA (siRNA)
duplexes. Then, cells were exposed to 0.4 J cm� 2 UVB and
apoptosis was assessed after 24 hours. The siRNA-mediated
depletion of RhoB in human NHK (Supplementary Figure S7
online) resulted in marked increase of cleaved caspase-3

(Figure 3c), caspase-3-dependent cleavage of poly (ADP-
ribose) polymerase (Figure 3d), and apoptotic DNA fragmen-
tation (Figure 3e).

It has been demonstrated that the Bax/B-cell lymphoma 2
(Bcl-2) ratio, a critical element determining cell death
or cell survival, increases after UVB exposure in HaCaT
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(Reagan-Shaw et al., 2006) and NHK cells (Afaq et al., 2007).
UVB irradiation (0.4 J cm�2) of NHKs increased Bax expres-
sion and decreased Bcl-2 expression, causing a 3-fold increase
in the Bax/Bcl-2 ratio after 24 hours (Figure 4a and b).
Under these conditions, RhoB downregulation with siRNA
further decreased Bcl-2 expression without changing Bax
expression (Figure 4a and b), leading to a 15-fold increase
in the Bax/Bcl-2 ratio.

Because Bcl-2 expression can be regulated by many
survival proteins including AKT (Maddika et al., 2007), we
investigated the role of RhoB on AKT phosphorylation/
activation in NHKs exposed to UVB. Figure 4c shows that
RhoB downregulation with siRNA prevented UVB-induced
AKT phosphorylation on serine 473 after 4 and 8 hours.
This was associated with a reduction of Bcl-2 expression
(Figure 4c). These data suggest that RhoB favors NHK survival
after UVB through upregulation of the AKT/Bcl-2 pathway,
leading to a decrease in the Bax/Bcl-2 ratio. It is unlikely that
the protective effect of RhoB on apoptosis could be related to
p53 because its expression was not affected in both
RhoB-deficient cells (Supplementary Figure S8a online) and

RhoB- deficient mouse tumors (Supplementary Figure S8b
online). Moreover, p53 and RhoB expressions were not
correlated in human tumors (Supplementary Table S1 online).

RhoB loss is associated with the preferential induction of
undifferentiated tumors
Tumor differentiation is inversely related to tumor progression
and metastatic potential. Undifferentiated tumors frequently
display a higher proliferative and invasive potential (Spector
et al., 2011). To evaluate the levels of differentiation of
individual tumors from rhobþ /þ and rhob� /� mice, all
FFPE tumor samples collected after chronic exposure were
divided into two categories as exemplified in Figure 5a: mild-
to-well-differentiated tumors were defined as tumors with
organoid differentiation without significant cytokeratin-8
expression, whereas low-differentiated to undifferentiated
tumors were tumors without organoid differentiation and
without significant cytokeratin-1 expression. Figure 5b
shows that the proportion of low-to-undifferentiated
tumors was higher in rhob� /� than in rhobþ /þ mice.
Tumors from rhob� /� mice showed a higher proportion of
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cells positive for the proliferation marker Ki67 (Figure 5c)
(Batinac et al., 2006). These results are in agreement with
rhob� /� mice developing less small keratotic tumors
(Figure 1d), which are normally more differentiated than
ulcerated tumors, and suggest that RhoB deficiency increases
tumor aggressiveness.

We then analyzed RhoB expression in individual tumors
from rhobþ /þ mice, depending on their differentiation
grade. Reverse transcriptase–quantitative PCR analyses

revealed that levels of RhoB transcripts were markedly
reduced in mildly differentiated tumors as compared with
well-differentiated tumors (Figure 5d), suggesting that RhoB
expression decreases during progression of skin tumors upon
chronic UVB exposure. Although we demonstrated that
oncogenic ras mutants downregulated RhoB expression in
lung tumors (Bousquet et al., 2009), we did not find
any mutations in H-ras, N-ras, and K-ras genes in rhobþ /þ
and rhob� /� mice SCCs.
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RhoB loss is associated with increased levels of DNA
double-strand breaks

To determine whether these results could be extended to
humans, we analyzed RhoB expression on human invasive
SCC by immunohistochemistry and microscopy. A total of
80 tumor samples were selected according to their level of
differentiation (as described above for mice tumors) in the
tumor bank of Toulouse-Purpan Hospital. Two groups were
constituted: the first group with 40 well-differentiated SCCs,
and the second one with 40 undifferentiated SCCs. We
observed that almost all undifferentiated human SCCs did not
express RhoB (Figure 6a and Supplementary Figure S9 online).

On these human tumor samples, we also analyzed the
expression of phosphorylated histone H2AX (referred to as
gH2AX), a marker for DNA double-strand breaks (DSBs)
(Bonner et al., 2008). DSBs are severe lesions and their
inefficient/inaccurate repair can contribute to genomic
instability and cancer progression (Bonner et al., 2008).
Figure 6b shows that the undifferentiated and RhoB-deficient

human skin tumors have elevated gH2AX expression; RhoB
and gH2AX expression were inversely correlated (Spearman’s
r ¼ �0.50; 95% confidence interval: �0.77 to � 0.06).
Besides gH2AX, we analyzed p53 binding protein 1 (53BP1),
another DNA damage response protein that accumulates at
sites of DSBs (Lukas et al., 2011). Figure 6c shows that
undifferentiated human skin tumors have elevated expression
of 53BP1. Consistent with these results, tumors from
rhob� /� mice show elevated gH2AX- and 53BP1-positive
cells compared with tumors from rhobþ /þ mice (Figure 6d
and 6e and Supplementary Figure S10a, b online). These
results suggest that loss of RhoB expression increases the levels
of endogenous DSBs. To test more directly this hypothesis, we
compared gH2AX expression of rhobþ /þ and rhob� /�
basal layer keratinocytes from normal skin tissues. We
observed a significant increase of gH2AX labeling in kerati-
nocytes from rhob� /� mice (Figure 6f and Supplementary
Figure S10c online). Immunofluorescence microscopy experi-
ments further show that gH2AX-positive cells from rhob� /�
skin tissues were also positive for 53BP1 (Figure 6g). Because
rhobþ /þ and rhob� /� cells have similar proliferation rate
(Supplementary Figure S11 online), it is unlikely that the
increase of gH2AX in rhob� /� skin tissues simply resulted
from increased DNA replication. Together, these results
indicate that RhoB deficiency is accompanied with increased
levels of DSBs, suggesting that loss of RhoB expression might
contribute to genomic instability and skin tumor progression.

DISCUSSION
This study provides insights, which to our knowledge are
previously unreported, in the understanding of UVB-induced
keratinocyte carcinogenesis in vivo, emphasizing the role of
RhoB. We demonstrate that UVB-induced RhoB expression
participates in maintaining cell survival, thus favoring the
development of SCCs. Our data clearly show that keratino-
cytes from RhoB-deficient mice are more sensitive to UVB-
induced apoptosis and that these mice develop fewer AKs and
keratotic tumors than the wild-type counterparts. These results
are consistent with our previous work showing that RhoB
downregulation sensitized HaCaT immortalized keratinocytes
to UVB-induced apoptosis (Canguilhem et al., 2005). We
further extended these observations to human keratinocytes
isolated from the skin of healthy donors. In addition, we show
that basal expression of RhoB in human skin is almost only
detectable in keratinocytes from the basal layer, and that UVB
exposure induces a strong holoepidermic expression of RhoB.
Together, these observations support the possibility that UVB-
induced RhoB expression protects UVB-exposed keratino-
cytes from apoptosis, thereby promoting the initiation of
carcinogenesis. RhoB may protect keratinocytes from UVB-
induced apoptosis by activating cell survival pathways.
Indeed, we have previously demonstrated that UVB-induced
EGFR survival pathway depends on RhoB in HaCaT cells
through regulation of AKT phosphorylation (Canguilhem et al.,
2005). Increased Bcl-2 expression has been reported to favor
photocarcinogenesis by preventing apoptosis (Nakagawa
et al., 1994; Delehedde et al., 1999). We demonstrate here
that RhoB is a critical determinant for Bcl-2 expression after
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UVB exposure (0.4 J cm�2). (b) Bax/Bcl-2 band density ratio (meanþ SEM).

(c) NHKs were treated with siRNA RhoB 1 (si 1) or 2 (si 2) or Ctrl for 24 hours.

Western blotting analyses of phospho-AKT (ser472/473/474), AKT, and Bcl-2

at 4 and 8 hours after UVB exposure (0.4 J cm�2). The presented blots are

representative of two independent experiments on NHK primary cultures from

two different donors.

N Meyer et al.
RhoB Promotes UVB-Induced Carcinogenesis

208 Journal of Investigative Dermatology (2014), Volume 134



UVB exposure (Figure 4) and therefore suggest that the RhoB/
Bcl-2 axis is involved in early phase of UVB-induced
carcinogenesis.

RhoB also participates in the control of skin tumor
progression. This is supported by three lines of evidence: (1)
rhob� /� mice are prone to the development of UVB-
induced aggressive SCCs, (2) in rhobþ /þ mice exposed to
UVB, RhoB expression is downregulated in poorly differen-
tiated and thereby aggressive SCCs (Figure 5d), and (3) RhoB
expression is also selectively lost in undifferentiated human
skin tumors (Figure 6a). Moreover, because the number of
ulcerated tumors is similar in the rhobþ /þ and rhob� /�
genotypes (Figure 1e), it is likely that RhoB does not prevent
the occurrence of undifferentiated tumors. This is in agreement
with our hypothesis that tumor progression requires loss of
RhoB expression. These results are in agreement with our

previous work on lung cancer showing that loss of RhoB
occurs in the most aggressive tumors (Mazieres et al., 2004)
and promotes invasion of human bronchial cancer cells
(Bousquet et al., 2009). Consistently, Adnane et al (2002).
reported loss of RhoB expression in invasive human SCCs of
the head and neck. Although the tumor-suppressor role of
RhoB is now well documented, its mechanism remains to be
elucidated. Our experiments indicate that RhoB-deficient cells
have elevated endogenous DSBs (Figure 6), and therefore
suggest that loss of RhoB expression during progression of skin
tumors (this study) and potentially the above-mentioned
tumors (Adnane et al., 2002; Mazieres et al., 2004;
Bousquet et al., 2009) could promote oncogenesis by
increasing DSB-mediated genomic instability. Further studies
will be required to determine the molecular mechanisms by
which loss of RhoB enhances endogenous DSBs.
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Our results support the hypothesis that RhoB plays a
double-edged role in oncogenesis. Beside its role as a
negative regulator of tumor progression, we report here
a new aspect of the role of RhoB in skin oncogenesis in
promoting tumor initiation through survival of UVB-exposed
cells. RhoB could favor early stages of oncogenesis but
at the same time could limit tumor aggressiveness. In this

model, alteration of gene expression leading to RhoB down-
regulation would then become necessary for tumor progres-
sion. These results are in agreement with our previous
report on lung cancer (Mazieres et al., 2004), in which we
observed the expression of RhoB in in situ carcinoma of
the lung and subsequent loss of RhoB expression in invasive
cancers.
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Understanding the role of RhoB in photocarcinogenesis
could help to find novel strategies into routine clinical
practice for the 15% of human SCCs displaying poor
prognosis. Indeed, our results suggest that loss of RhoB
may be considered a negative prognostic marker of
human SCCs of the skin. Further studies are needed
to assess the prognostic value of RhoB expression on large
cohorts of patients with SCCs. Deciphering the RhoB
pathway involved in the control of skin photocarcinogenesis
may help the development of new therapeutic strategies
against SCCs.

In conclusion, our results show that RhoB is a critical
determinant for SCC initiation and that loss of RhoB
expression in SCCs may predict tumor aggressiveness.

MATERIALS AND METHODS
Mice

SKH1 mice (Charles River, L’Arbresle, France) were crossed with

Sv129/rhob� /� mice (Supplementary Figure S1 online) (Liu et al.,

2001). The Claudius Regaud Institute animal ethic committee

approval (no. ICR-2009-016) was obtained for the use of the animal

model and the study protocols.

UV exposure

Protocols of mice and cells UVB exposure are described in

Supplementary Materials and Methods online.

Definition of the UV-induced phenotypes

A clinical evaluation of the mice at week 17 was performed on

standardized photographs. Mice were separated in two groups

according to the extent (4 or o50%) of UV-induced AK on the

dorsal skin defined as the skin between the base of the neck and the

base of the tail (Figure 1a and Supplementary Figure S1 online). The

17-week UVB exposure end point for assessment of the effect of UVB

on the occurrence of SCC precursors was chosen as the latest time at

which all mice were alive. No consensus definition exists on the

severity categorization of AK in humans or mice. The threshold of

50% for AK coverage of the dorsal skin of mice was chosen as an

indicator of high UVB-induced skin damage.

NHK culture and siRNA transfection

NHK primary cultures were prepared from skin explants from patients

undergoing mammary plastic surgery (see Supplementary Materials

and Methods online). Transfection of NHKs by siRNAs (10 nM)

(described in Canguilhem et al., 2005) was performed using

Oligofectamine (Life Technologies SAS, Saint Aubin, France) in

keratinocyte serum-free medium according to the manufacturer’s

instructions on cells at 30–50% confluence in 60-mm cell culture

dishes and seeded 24 hours before experiments.

Immunoblot analysis

Immunoblot analysis of RhoB was performed as previously described

(Canguilhem et al., 2005), see Supplementary Materials and Methods

online.

Pathological examination of the tumors

FFPE mouse tumor samples were cut in 4-mm-thick sections. Sections

were incubated at 100 1C for 15 minutes and then deparaffinized with

xylene and rehydrated. Sections were stained with hematoxylin and

eosin, and read by a trained dermatopathologist.

Human SCCs of the skin

A total of 80 FFPE human SCCs were obtained from the tumor bank of

the department of pathology (Toulouse-Purpan Hospital, France) after

written informed consent. The specimens consisted of 40 mild-to-

well-differentiated and 40 low-to-undifferentiated invasive SCCs of

the skin.

Immunostaining of tissues

Immunostainings were performed as described in Supplementary

Materials and Methods online.

Immunofluorescent staining of tissues

Sections of cryoconserved tumor samples were fixed in 3% paraf-

ormaldehyde and permeabilized with 0.1% Triton X-100. After a

saturation step in 3% BSA/phosphate-buffered saline, cells were

incubated with mAb against gH2AX (9718, Cell Signaling, Danvers,

MA) and then with Alexa Fluor 488 antibody (Life Technologies SAS).

Coverslips were mounted on slides with Mowiol solution containing

40,6-diamidino-2-phenylindole. Staining was detected by fluores-

cence microscopy.

Flow cytometry analyses of cleaved caspase-3 in NHKs

The phycoerythrin-conjugated Polyclonal Active Caspase-3 Antibody

Apoptosis Kit (BD Pharmingen, Franklin Lakes, NJ) was used accord-

ing to the manufacturer’s instructions. Fluorescence was analyzed by

flow cytometry on a BD-FACS Calibur (Le Pont de Claix, France).

Quantitative reverse transcribed–PCR

Flash-frozen tissue (50 mg) was homogenized in a TissueLyser system

(Qiagen, Courtaboeuf, France). RNA was isolated using miRNeasy kit

following the manufacturer’s instructions (Qiagen) and reverse tran-

scribed using iScript cDNA Synthesis kit (Bio-Rad, Hercules, CA).

Quantitative PCR was performed with a CFx-96 real-time system

(Bio-Rad). The specific murine primer pairs are described in

Supplementary Materials and Methods online.

Statistical analysis

Comparisons of percentages were made using the w2 test. For mean

comparisons between groups the two-sample t-test and the Mann–

Whitney test were used as appropriate. The Kaplan–Meier method

was used to estimate the distribution time taken to reach 10 tumors or

5 keratotic tumors, and differences among the groups were tested by

the log-rank test. All tests were two sided with an a risk of 5%.
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Research and Therapeutic Innovation in Cancer (RTIC) Foundation. We thank
GC Prendergast (The Lankenau Institute for Medical Research, Wynnewood,
PA) for kindly providing the rhob� /� mice, Philippe Rochaix for his technical
contribution and fruitful discussions, S Cabantous for reading the manuscript,
and D Berg for technical assistance.

N Meyer et al.
RhoB Promotes UVB-Induced Carcinogenesis

www.jidonline.org 211

http://www.jidonline.org


SUPPLEMENTARY MATERIAL

Supplementary material is linked to the online version of the paper at http://
www.nature.com/jid

REFERENCES

Adnane J, Muro-Cacho C, Mathews L et al. (2002) Suppression of rho B
expression in invasive carcinoma from head and neck cancer patients.
Clin Cancer Res 8:2225–32

Afaq F, Syed DN, Malik A et al. (2007) Delphinidin, an anthocyanidin in
pigmented fruits and vegetables, protects human HaCaT keratinocytes
and mouse skin against UVB-mediated oxidative stress and apoptosis.
J Invest Dermatol 127:222–32

Batinac T, Zamolo G, Coklo M et al. (2006) Expression of cell cycle and
apoptosis regulatory proteins in keratoacanthoma and squamous cell
carcinoma. Pathol Res Pract 202:599–607

Benavides F, Oberyszyn TM, VanBuskirk AM et al. (2009) The hairless mouse
in skin research. J Dermatol Sci 53:10–8

Bonner WM, Redon CE, Dickey JS et al. (2008) GammaH2AX and cancer. Nat
Rev Cancer 8:957–67

Bousquet E, Mazières J, Privat M et al. (2009) Loss of RhoB expression
promotes migration and invasion of human bronchial cells via activation
of AKT1. Cancer Res 69:6092–9

Canguilhem B, Pradines A, Baudouin C et al. (2005) RhoB protects human
keratinocytes from UVB-induced apoptosis through epidermal growth
factor receptor signaling. J Biol Chem 280:43257–63

Chen Z, Sun J, Pradines A et al. (2000) Both farnesylated and geranylger-
anylated RhoB inhibit malignant transformation and suppress human
tumor growth in nude mice. J Biol Chem 275:17974–8

Delehedde M, Cho SH, Sarkiss M et al. (1999) Altered expression of bcl-2
family member proteins in nonmelanoma skin cancer. Cancer 85:1514–22

Fritz G, Kaina B (2001) Transcriptional activation of the small GTPase gene
rhoB by genetoxic stress is regulated via CCAAT element. Nucleic Acids
Res 29:792–8

Goodwin RG, Holme SA, Roberts DL (2004) Variations in registration of skin
cancer in the United Kingdom. Clin Exp Dermatol 29:328–30

De Gruijl FR, Forbes PD (1995) UV-induced skin cancer in a hairless mouse
model. Bioessays 17:651–60

De Gruijl FR, Voskamp P (2009) Photocarcinogenesis–DNA damage and gene
mutations. Cancer Treat Res 146:101–8

Jiang K, Sun J, Cheng J et al. (2004) Akt mediates Ras downregulation of RhoB,
a suppressor of transformation, invasion, and metastasis. Mol Cell Biol
24:5565–76

Karlsson R, Pedersen ED, Wang Z et al. (2009) Rho GTPase function in
tumorigenesis. Biochim Biophys Acta 1796:91–8

Liu Ax, Cerniglia GJ, Bernhard EJ et al. (2001) RhoB is required to mediate
apoptosis in neoplastically transformed cells after DNA damage. Proc
Natl Acad Sci USA 98:6192–7

Lowe SW, Lin AW (2000) Apoptosis in cancer. Carcinogenesis 21:
485–95

Lukas J, Lukas C, Bartek J (2011) More than just a focus: the chromatin
response to DNA damage and its role in genome integrity maintenance.
Nat Cell Biol 13:1161–9

Madan V, Lear JT, Szeimies R-M (2010) Non-melanoma skin cancer. Lancet
375:673–85

Maddika S, Ande SR, Panigrahi S et al. (2007) Cell survival, cell death and cell
cycle pathways are interconnected: implications for cancer therapy. Drug
Resist Updat 10:13–29

Mazieres J, Antonia T, Daste G et al. (2004) Loss of RhoB expression in human
lung cancer progression. Clin Cancer Res 10:2742–50

Mazières J, Tillement V, Allal C et al. (2005) Geranylgeranylated, but not
farnesylated, RhoB suppresses Ras transformation of NIH-3T3 cells. Exp
Cell Res 304:354–64

Milia J, Teyssier F, Dalenc F et al. (2005) Farnesylated RhoB inhibits radiation-
induced mitotic cell death and controls radiation-induced centrosome
overduplication. Cell Death Differ 12:492–501

Monferran S, Skuli N, Delmas C et al. (2008) Alphavbeta3 and alphavbeta5
integrins control glioma cell response to ionising radiation through iLK
and RhoB. Int J Cancer 123:357–64

Nakagawa K, Yamamura K, Maeda S et al. (1994) bcl-2 expression in
epidermal keratinocytic diseases. Cancer 74:1720–4

Prendergast GC (2001) Actin’ up: RhoB in cancer and apoptosis. Nat Rev
Cancer 1:162–8

Ratushny V, Gober MD, Hick R et al. (2012) From keratinocyte to cancer: the
pathogenesis and modeling of cutaneous squamous cell carcinoma. J Clin
Invest 122:464–72

Reagan-Shaw S, Breur J, Ahmad N (2006) Enhancement of UVB radiation-
mediated apoptosis by sanguinarine in HaCaT human immortalized
keratinocytes. Mol Cancer Ther 5:418–29

Salasche SJ (2000) Epidemiology of actinic keratoses and squamous cell
carcinoma. J Am Acad Dermatol 42:4–7

Samejima K, Earnshaw WC (2005) Trashing the genome: the role of nucleases
during apoptosis. Nat Rev Mol Cell Biol 6:677–88

Sharma MR, Werth B, Werth VP (2011) Animal models of acute photodamage:
comparisons of anatomic, cellular and molecular responses in C57BL/6J,
SKH1 and Balb/c mice. Photochem Photobiol 87:690–8

Skuli N, Monferran S, Delmas C et al. (2006) Activation of RhoB by
hypoxia controls hypoxia-inducible factor-1alpha stabilization through
glycogen synthase kinase-3 in U87 glioblastoma cells. Cancer Res
66:482–9

Spector ME, Wilson KF, Light E et al. (2011) Clinical and pathologic predictors
of recurrence and survival in spindle cell squamous cell carcinoma.
Otolaryngol Head Neck Surg 145:242–7

Wong RSY (2011) Apoptosis in cancer: from pathogenesis to treatment. J Exp
Clin Cancer Res 30:87

N Meyer et al.
RhoB Promotes UVB-Induced Carcinogenesis

212 Journal of Investigative Dermatology (2014), Volume 134

http://www.nature.com/jid
http://www.nature.com/jid


	  



	   	   	    
	  

Author: Agnese CRISTINI 
 
PhD Director: Dr. Olivier SORDET 
 
TITLE: DNA double-strand break formation and signalling in response to transcription-blocking 
topoisomerase I complexes  
 
Summary 
 
Topoisomerase I (Top1) removes DNA supercoiling generated during transcription by producing Top1-DNA 
cleavage complexes (Top1cc). These transient Top1cc can be stabilized by camptothecins, from which 
anticancer drugs are derived, and by common DNA alterations. Although stabilized Top1cc are potent 
transcription-blocking lesions, our understanding regarding the molecular processes resulting from the 
stalling of transcription complexes by Top1cc is currently limited. Previous work showed that stabilized 
Top1cc produce transcription-dependent DNA double-strand breaks (DSBs) that activate ATM signalling. In 
this project, we used camptothecin-treated quiescent cells to induce transcription-blocking Top1cc and study 
the mechanisms of DSB production and signalling. We show that DSBs form preferentially at subtelomeric 
regions during the repair of transcription-blocking Top1cc from DNA single-strand breaks generated after 
Top1 proteolysis and before Tdp1 action. Analysis of DSB signalling reveals a novel function of DNA-PK in 
promoting protein ubiquitination leading (i) to full ATM activity at DSB sites by promoting H2AX and H2A 
ubiquitination, and (ii) to enhancement of Top1cc repair by promoting Top1 proteolysis. Finally, we show 
that co-transcriptional DSBs kill quiescent cells. Together, these findings provide new insights into the 
cellular responses to camptothecins and further suggest that DSBs arising from transcription-blocking 
Top1cc may contribute to the pathogenesis of the neurodegenerative SCAN1 syndrome, which is caused by 
Tdp1 deficiency. 
 
TITRE: Formation et signalisation des cassures double-brin de l’ADN lors d’un blocage de la 
transcription par les complexes topoisomerase I-ADN 
 
Résumé  
 
La topoisomérase I (Top1) élimine les surenroulements de l’ADN générés lors de la transcription en 
produisant transitoirement des complexes de clivage Top1-ADN (Top1cc). Ces Top1cc transitoires peuvent 
être stabilisés par les camptothécines, dont sont dérivés des agents anticancéreux, et par les fréquentes 
altérations de l’ADN. Bien que les Top1cc stabilisés soient des lésions qui bloquent efficacement la 
transcription, la compréhension des processus moléculaires qui résultent du blocage des complexes 
transcriptionnels par les Top1cc est encore limitée. Des travaux précédents ont montré que les Top1cc 
stabilisés produisent des cassures double-brin (DSBs) de l’ADN dépendantes de la transcription qui activent 
ATM. Dans ce projet, nous avons utilisé des cellules quiescentes traitées avec la camptothécine pour induire 
des Top1cc bloquant la transcription et nous avons étudié les mécanismes de la production et de la 
signalisation des DSBs. Nous montrons que les DSBs sont produites préférentiellement dans les régions sub-
télomériques lors de la réparation des Top1cc bloquant la transcription par les cassures simple-brin de 
l’ADN générées après la protéolyse de la Top1 et avant l’action de Tdp1. L’analyse de la signalisation de ces 
DSBs révèle une nouvelle fonction de DNA-PK  dans la promotion de l’ubiquitinylation conduisant (i) à 
l’activité complète d’ATM aux sites des DSBs en favorisant l’ubiquitination d’H2AX et H2A, et (ii) à 
l’augmentation de la réparation des Top1cc en favorisant la protéolyse de la Top1. Enfin, nous montrons que 
les DSBs co-transcriptionnelles induisent la mort des cellules quiescentes. L’ensemble de ces résultats  
apportent un nouvel aperçu des réponses cellulaires aux camptothécines, et suggèrent que les DSBs qui 
résultent des Top1cc bloquant la transcription puissent contribuer à la pathogénèse du syndrome 
neurodégénératif SCAN1, qui est causé par une déficience en Tdp1.  
 
 
Keywords: Topoisomerase, double-strand breaks, DNA-PK, ubiquitin, camptothecin, transcription, Tdp1, 
DNA damage 
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