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Abstract: This paper discusses the passivity of the port-Hamiltonian formulation of a
multivariable impedance matching boundary feedback of fractional order, expressed through
diffusive representation. It is first shown in the 1D-wave equation case that the impedance
matching boundary feedback can be written as a passive feedback on the boundary port
variables. In the Euler-Bernoulli case, the impedance matching feedback matrix involves
fractional derivatives and integrals. It is shown that the usual diffusive representation of such
feedback is not formally a dissipative port-Hamiltonian system, even if from a frequency point
of view this feedback proves passive.
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1. INTRODUCTION

Boundary control of distributed parameter systems is of
great interest for engineering applications, since actuators
and sensors are generally distributed over the boundary
of the spatial domain. It is especially the case for the
control of compliant structures, acoustic systems and flu-
idic systems. An appealing control strategy when trav-
elling waves are involved in the dynamics of the system
is the impedance matching approach (von Flotow and
Schäfer, 1986; Matsuda and Fujii, 1993). It consists in
designing in the frequency domain a controller that is
able to attenuate the wave propagation in one direction.
Such a control strategy has been succesfully applied in the
context of 1D Single Input Single Output (SISO) wave
propagation (Mbodje and Montseny, 1995), and also 1D
Multi Input Multi Output (MIMO) Euler-Bernoulli beam
equation (Montseny et al., 1997). Extensions to the 2D
wave propagation case have been proposed for different
geometries, either rectangular (Montseny et al., 2000) or
circular (Levadoux and Montseny, 2003).

In this paper, we discuss the port-Hamiltonian (pHs) for-
mulation of this impedance matching boundary control of
the wave equation in the one dimensional spatial domain.
In the 1D case, a simple frequency analysis allows to de-
rive a scalar absorbing boundary control. This well-known
result can be recast in the port-Hamiltonian framework,
as soon as the boundary port-variables are adequately
defined. It is then straightforward to show that this feed-
back is passive. In the case of the Euler Bernoulli beam

? This work was supported by French projects HAMECMOPSYS
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equation, absorbing boundary control induces the use of
a MIMO feedback with fractional integral and derivative
operators of order 1

2 . As long as the analysis of solutions
is concerned, the use of diffusive input-output realization
of Abel fractional integral operator allows to represent
the system as an abstract linear system with infinitesimal
generator of a semigroup on a convenient Hilbert space.

In this latter case, the passivity of the diffusive realiza-
tion of the feedback has been admitted and the stability
analysis could be carried out, at least formally, only when
the cross-coupling terms in the feedback were neglected
(Montseny et al., 1997). In the present paper we show
that these cross-coupling terms are important and that
their impact on the passivity of the diffusive realization
cannot be neglected.

The paper is organized as follows. In Section 2, the 1D
wave equation with impedance matching boundary control
is treated. In Section 3, Euler-Bernoulli beam model is
detailed, and the validity of scalar diffusive representations
of the feedback with respect to passivity is discussed. In
Section 4, some conclusions and perspectives are given.

2. THE 1D WAVE EQUATION

We first consider the boundary controlled 1D wave equa-
tion: 

∂2t2θ − ∂2z2θ = 0, z ∈ [0, 1]
θ(z, 0) = θ0(z)
∂tθ(z, 0) = θ1(z)

∂tθ(0, t) = 0
∂zθ(1, t) = u1(t)



with observation y1 at the boundary:

y1(t) = ∂tθ(1, t) .

The total energy is given by:

E(t) :=
1

2

ˆ 1

0

(
(∂tθ)

2
+ (∂zθ)

2
)

dz ,

and the energy balance by:
dE

dt
= y1(t)u1(t) .

The objective below is to derive the classical scalar
impedance relations and to design in the frequency domain
a boundary feedback ensuring no forward propagation
waves.

2.1 Model and derivation of the matched impedance: SISO
case

Looking for harmonic solutions of the form exp(i(ωt−kz))
for the wave equation alone, without taking into account
any boundary condition, one can find the necessary dis-
persion relation:

ω2 = k2 ,
with two solutions, k(ω) = ±ω. The elementary solutions
are travelling waves, either forward exp(iω(t − z)) or
backward exp(iω(t+ z)).

From this preliminary analysis, we can compute the
matched impedance Z(ω), which ensures that no wave be
transmitted at the boundary z = 1. Let us suppose the
following structure for the solution:

θ = 1.ei(ωt−ωz) + Ee(iωt+ωz) . (1)

where E is a scalar to be determined from the boundary
conditions. After some straightforward computation, the
input and output of the system can be written:

y1(t) = ∂tθ(1, t) = iω
(
−e−iω + Eeiω

)
eiωt ,

u1(t) = ∂zθ(1, t) = iω
(
e−iω + Eeiω

)
eiωt .

We look for a scalar feedback impedance of the form Z(ω),
such that y = Zu. The goal now is to compute this
unique frequency-dependent coefficient, in order to cancel
the forward traveling wave, i.e. to ensure E = 0 in (1),
whatever the value of the input amplitude 1. Defining
E1 := Ee2iω, a straightforward computation leads to:

Z(ω) :=
E1 − 1

E1 + 1
.

Thus, it is easy to see that E1 = 0 ⇔ Z = −1, ∀ω ∈ R.
Then, there are no forward travelling waves.

In the frequency domain, y1 = −u1, ∀ω ∈ R, whereas in
the time domain y1 = −u1, that is ∂tθ(1, t) = −∂zθ(1, t).

2.2 Some useful properties

First note that the feedback is constant or of differential
nature, so it is very easy to implement! Moreover, one can
notice that if absorbing boundary conditions are searched
for (i.e. not necessarily matched impedance), they are
easily characterized as follows:

|E| ≤ 1⇔ <e(Z) ≤ 0 .

Once again, the relation reads in the time domain
∂tθ(1, t) = Z ∂xθ(1, t), with Z ≤ 0. Two limiting cases
can be easily inspected: either Z = 0 ⇔ E = 1, or
Z = −∞⇔ E = −1.

2.3 A port-Hamiltonian formulation

An interesting idea is thus to rewrite the previous feedback
in the pHs setting. The system can be written

dx

dt
=

 0
∂

∂z
∂

∂z
0

x = P1
∂

∂z
x ,

with P1 =

(
0 1
1 0

)
and x =

(
∂zθ
∂tθ

)
. The boundary port-

variables can be defined from (Le Gorrec et al., 2005):(
f∂
e∂

)
=

(
P1 −P1

I I

)(
x(1)
x(0)

)
,

or equivalently(
f∂
e∂

)
=

 ∂tθ(1)− ∂tθ(0)
∂zθ(1)− ∂zθ(0)
∂zθ(1) + ∂zθ(0)
∂tθ(1) + ∂tθ(0)

 .

One can choose as input

u =

(
u1
u0

)
= W

(
f∂
e∂

)
=

(
0 1 1 0
−1 0 0 1

)(
f∂
e∂

)
,

and as output

y =

(
y1
y0

)
= W̃

(
f∂
e∂

)
=

(
1 0 0 1
0 1 −1 0

)(
f∂
e∂

)
.

We have

WΣWT = 0 = W̃ΣW̃T and WΣW̃T = I = W̃ΣWT ,

and then from (Le Gorrec et al., 2005):

dE

dt
=

d

dt
‖x‖2 = yTu .

In this case, the matched impedance expressed from:

∂zθ(1) = −∂tθ(1) ,

considered with ∂tθ(0) = 0 is equivalent to u1 = −y1 and
u0 = 0 then

d

dt
‖x‖2 = −y21 ≤ 0 .

3. EULER-BERNOULLI BEAM

We consider now the boundary controls u1 = (u11, u12)T

of the beam equation:

∂2t2θ + ∂4z4θ = 0, z ∈ [0, 1]
θ(z, 0) = θ0(z)
∂tθ(z, 0) = θ1(z)

θ(0, t) = 0
∂zθ(0, t) = 0
∂2zθ(1, t) = u11(t)
∂3zθ(1, t) = u12(t)

(2)

with observations y1 = (y11, y12)T at the boundary:

y1 =

(
y11
y12

)
=

(
∂t∂zθ(1, t)
−∂tθ(1, t)

)
.

The total energy is given by:

E(t) =
1

2

ˆ 1

0

(
(∂tθ)

2
+
(
∂2z2θ

)2)
dz ,

and the energy balance by

dE

dt
(t) = yT1 (t)u1(t) .



In § 2 for waves, it was said that the objective was to derive
the classical scalar impedance relations and to design in
the frequency domain a boundary feedback ensuring no
forward propagation waves: it was quite straightforward,
and we ended up with a scalar impedance, which was
constant coefficient; hence, going back to the time domain
was an easy task.
Now in § 3 for beams, the analogous objective below is
to derive the not so classical impedance matrix relations
in order to define in the frequency domain a dynamic
boundary feedback that is able to eliminate the forward
wave propagation (exact impedance matching), or to damp
it (passivation): the novelty will be first that this feedback
is a matrix-valued impedance, and second that it involves
non-integer powers of the frequency variable ω; hence
converting it back into the time domain will give rise
to fractional differential operators, which are a special
subclass of pseudo-differential operators.

Thus, the outline of this more technically involved sec-
tion is as follows. In § 3.1, the goal is to compute the
matched impedance: to this end, we decompose the general
harmonic solution of the beam PDE into four elementary
components, and we look for those solutions which lead
to no transmitted wave at the boundary z = 1, whatever
the amplitudes of the incoming waves (both travelling and
nearfield). In § 3.2, we study the properties of the obtained
impedance matrix, and point out some of it specificities.
Finally, § 3.3 is devoted to an equivalent port-Hamiltonian
formulation of the global system, i.e. beam together with
the matched impedance.

3.1 Model and derivation of the matched impedance:
MIMO case

Looking for harmonic solutions of the form exp(i(ωt−kz))
for the beam equation alone, without taking into account
any boundary condition, one can find the necessary dis-
persion relation :

ω2 = k4 ,

with four solutions, k(ω) = ±
√
ω and k(ω) = ±i

√
ω. The

first two elementary solutions are travelling waves, either
forward exp(i(ωt−

√
ωz)) or backward exp(i(ωt+

√
ωz)),

whereas the last two are nearfield waves, either forward
exp(iωt−

√
ωz) or backward exp(iωt+

√
ωz).

From this preliminary analysis, we compute the impedance
matrix Z(ω) of the boundary feedback which ensures that
no wave is transmitted at the boundary z = 1. Let us
suppose the following structure for the solution:

θ = ei(ωt−
√
ωz) + σeiωt−

√
ωz + Eei(ωt+

√
ωz) + Feiωt+

√
ωz .

where σ,E and F are scalars to be determined from the
boundary conditions. After some straightforward compu-
tation, the input and output of the system can be written:
u11 = ∂2

z2
θ(1) = ω

(
−e−i

√
ω + σe−

√
ω − Eei

√
ω + Fe

√
ω
)
eiωt ,

u12 = ∂3
z3
θ(1) = ω

3
2

(
ie−i

√
ω − σe−

√
ω − iEei

√
ω + Fe

√
ω
)
eiωt ,

y11 = ∂t∂zθ(1) = iω
√
ω
(
−ie−i

√
ω − σe−

√
ω + iEei

√
ω + Fe

√
ω
)
eiωt ,

y12 = −∂tθ(1) = −iω
(
e−i
√
ω + σe−

√
ω + Eei

√
ω + Fe

√
ω
)
eiωt .

We look for a 2× 2 feedback matrix Z(ω) of the form(
u11
u12

)
=

(
A B
C D

)(
y11
y12

)
.

The goal now is to compute these four frequency-
dependent coefficients in order to prevent waves from prop-
agating forward, i.e. in order to ensure that both outgoing
wave amplitudes E = 0 and F = 0, whatever the value of
the incoming wave amplitudes, 1 and σ. First, we get(

ω
(
−e−i

√
ω + σe−

√
ω − Eei

√
ω + Fe

√
ω
)

ω
3
2

(
ie−i

√
ω − σe−

√
ω − iEei

√
ω + Fe

√
ω
) ) =(

A B
C D

)(
iω
√
ω
(
−ie−i

√
ω − σe−

√
ω + iEei

√
ω + Fe

√
ω
)

−iω
(
e−i
√
ω + σe−

√
ω + Eei

√
ω + Fe

√
ω
) )

(3)

Second, using a change of unknowns: Ã := Aω
1
2 , D̃ :=

Dω−
1
2 , E1 := Ee2i

√
ω, F1 := Fe(

√
ω+i
√
ω), and σ1 :=

σe(−
√
ω+i
√
ω), we have:[

1− Ã− iB −1 + iÃ− iB
i− C − iD̃ −1 + iC − iD̃

][
E1

F1

]
=

[
−1− Ã+ iB 1 + iÃ+ iB

i− C + iD̃ −1 + iC + iD̃

][
1
σ1

]
. (4)

We are now looking for values of (Ã, B,C, D̃) that ensure
that (E1, F1) equal zero ∀ω ∈ R. For that purpose, we

compute (Ã, B,C, D̃) such that the right hand side of (4)
vanishes and check that in this case the premultiplying
matrix of (E1, F1) is full rank. It is the case if we choose:

Ã = − (1− i) , B = 1, C = 1, D̃ = − (1 + i)

Indeed, in this case[
1− Ã− iB −1 + iÃ− iB
i− C − iD̃ −1 + iC − iD̃

] [
E1

F1

]
= 0 ,

and [
1− i −i− 1
i− 1 i− 1

] [
E1

F1

]
= 0 ,

then, there are no forward nearfield nor travelling waves.

The corresponding feedback is given by:(
A B
C D

)
=

(
− (1− i)ω− 1

2 1

1 − (1 + i)ω
1
2

)
.

Since (1− i) =
√

2e−i
π
4 , and (1 + i) =

√
2ei

π
4 , then we get

in the frequency domain:(
A B
C D

)
=

(
−
√

2e−i
π
4 ω−

1
2 1

1 −
√

2ei
π
4 ω

1
2

)

=

− √2√
iω

1

1 −
√

2
√
iω

 := Z(ω) ,

and in the time domain:(
u11
u12

)
=

(
−
√

2I
1
2 1

1 −
√

2D
1
2

)(
y11
y12

)
. (5)

The above notation is: Iβ is Riemann-Liouville fractional
integral operator of order β ∈ (0, 1), the Fourier transform
of which is (i ω)−β , and Dα is Riemann-Liouville fractional
derivative operator of order α ∈ (0, 1), the Fourier trans-
form of which is (i ω)α, see e.g. (Oldam and Spanier, 1985;
Matignon, 1998).

3.2 Some useful properties

First note that the feedback is of pseudo-differential na-
ture, involving non-local operators in time. Note also, that



a strong coupling occurs between the variables, due to the
presence of 1 in positions Z12 and Z21: since they have the
same sign, symmetrising will not make them disappear
and will not give rise to a diagonal matrix, with fractional
integrals and derivatives only. Namely:

R(ω) :=
Z + ZH

2
=

(
−
√
2|ω|−

1
2 cos(

π

4
) 1

1 −
√
2|ω|+

1
2 cos(

π

4
)

)
.

The real symmetric matrix R(ω) is negative, since its

eigenvalues are r0 = 0 and r1 = −(|ω|+ 1
2 + |ω|− 1

2 ). Hence,
this matched impedance is an absorbing feedback. This
result is in adequation with the more general result stated
in (Haddar and Matignon, sept 2004) for an impedance
matrix with fractional integrals and derivatives of arbi-
trary order α and arbitraty numerical coefficients.

In the following we propose to study the diffusive repre-
sentation of the feedback (5).

3.3 A port-Hamiltonian formulation

This last subsection aims at finding an equivalent port-
Hamiltonian formulation of the global system, i.e. beam
together with the matched impedance. To this end, in
§ 3.3.1, we recall the natural port variables associated
to Euler-Bernoulli beam equation. And since fractional
integrals and derivatives are to be found in the expression
of the matched impedance, an equivalent so-called diffusive
representation is needed, and presented in § 3.3.2.

3.3.1. Euler-Bernoulli beam By choosing as state vari-

ables the energy variables x =

(
x1
x2

)
=

(
∂2zθ
∂tθ

)
, the sys-

tem can be recast into the port-Hamiltonian framework,
as

dx

dt
=

 0
∂2

∂z2

− ∂2

∂z2
0

x = P2
∂2

∂z2
x ,

with P2 =

(
0 1
−1 0

)
. Then the boundary port-variables

can be defined from:(
f∂
e∂

)
=

1√
2

(
Q −Q
I I

) x(1)
∂zx(1)
x(0)
∂zx(0)

 ,

with

Q =

(
P1 P2

−P2 0

)
=

 0 0 0 1
0 0 −1 0
0 −1 0 0
1 0 0 0

 ,

(
f∂
e∂

)
=

1√
2



∂zx2(1)− ∂zx2(0)
−∂zx1(1) + ∂zx1(0)
−x2(1) + x2(0)
x1(1)− x1(0)
x1(1) + x1(0)
x2(1) + x2(0)

∂zx1(1) + ∂zx1(0)
∂zx2(1) + ∂zx2(0)


.

Let us now consider the boundary control system defined
by:

u = W

(
f∂
e∂

)
, y = W̃

(
f∂
e∂

)
,

with

W =

√
2

2

 0 0 0 1 1 0 0 0
0 −1 0 0 0 0 1 0
0 0 1 0 0 1 0 0
−1 0 0 0 0 0 0 1

 ,

W̃ =

√
2

2

 1 0 0 0 0 0 0 1
0 0 1 0 0 −1 0 0
0 1 0 0 0 0 1 0
0 0 0 1 −1 0 0 0

 .

In this case:

u =

(
u1
u0

)
=

 ∂2zθ(1)
∂3zθ(1)
∂tθ(0)
∂z∂tθ(0)

 , y =

(
y1
y0

)
=

 ∂z∂tθ(1)
−∂tθ(1)
∂3zθ(0)
−∂2zθ(0)

 ,

and

WΣWT = 0 = W̃ΣW̃T and WΣW̃T = I = W̃ΣWT ,

then

d

dt
‖x‖2 = yT u .

3.3.2. Impedance matching boundary control: a diffusive
representation The boundary control feedback is of the
form (

yc1
yc2

)
=

(
−
√

2I
1
2 1

1 −
√

2∂
1
2
t

)(
uc1
uc2

)
. (6)

The idea is to use the diffusive representation of fractional
derivative and integrals to express the feedback control
and the closed-loop system under an abstract system
formulation. Then, it is possible to apply semigroup theory
and associated tools in order to derive existence of solution
and stability properties, see e.g. (Matignon and Prieur,
2014). It is usually admitted that the controller expressed
using a diffusive representation is passive. We shall see
from its port-Hamiltonian formulation that this property
is not straightforward at all.

In what follows, we use for the fractional integral yϕ =

I
1
2uc1 the diffusive representation: yϕ =

ˆ ∞
0

µ(ξ)ϕ dξ, µ(ξ) =
2√
ξ
,

∂tϕ = −ξϕ+ uc1 .

For the fractional derivative of ỹ = ∂
1
2
t uc2: ỹ

ϕ̃
=

ˆ ∞
0

ν(ξ) ∂tϕ̃ dξ =

ˆ ∞
0

(−ν(ξ) ξ ϕ̃+ ν(ξ)uc2) dξ ,

∂tϕ̃ = −ξϕ̃+ uc2 ,

(7)
where ν(ξ) ∝ ξ−1/2, like µ.

The energy associated to this system is defined by:

Ec =
1

2

ˆ +∞

0

(√
2µ(ξ)ϕ2 +

√
2ξν(ξ) ϕ̃2

)
dξ .

Following e.g. (Le Gorrec and Matignon, 2013), the overall
feedback can be written:



 yc1
yc2
∂tϕ

∂tϕ̃


︸ ︷︷ ︸

f

=


0 1 −

ˆ ∞
0

(.) dξ 0

1 −
√
2

ˆ ∞
0

ν(ξ) (.) dξ 0

ˆ ∞
0

(.) dξ

1 0 −
ξ

√
2µ(ξ)

0

0 1 0 −
1

√
2ν(ξ)


︸ ︷︷ ︸

J−R

 uc1
uc2√
2µ(ξ)ϕ√
2ξν(ξ)ϕ̃


︸ ︷︷ ︸

e

(8)

with e ∈ E and f ∈ F , where E and F are two real
Hilbert spaces, the efforts and the flows respectively. The
bond space B defined by B = E × F is equipped with the
natural power product:

〈(e1, e2, e3, e4), (f1, f2, f3, f4)〉 = (9)ˆ 1

0

(
e1f1 + e2f2 +

ˆ ∞
0

(e3f3 + e4f4) dξ

)
dz .

The differential operator J is the skew-symmetric part of
the differential operator defined by (8), and R its symmet-
ric part. The passivity of the boundary control feedback is
associated with the positivity of R. To check the positivity
of R, one has to check the sign of 〈e,Re〉,∀e ∈ E :

〈e,Re〉 =
ˆ 1

0

ˆ ∞
0
−2e1e2 + bν(ξ)e22 dξ dz

− 2

ˆ 1

0

ˆ ∞
0

e2e4 dξ dz +

ˆ 1

0

ˆ ∞
0

(
ξ

µ(ξ)a
e23 +

1

ν(ξ)b
e24

)
dξ dz .

(10)

Then

〈e,Re〉 =
ˆ 1

0

ˆ ∞
0
−2e1e2 dξ dz

+

ˆ 1

0

(
ξ

µ(ξ)a
e23 +

(√
ν(ξ)be2 −

1√
ν(ξ)b

e4

)2)
dξ dz . (11)

We can see that in (11) the first right-hand side term
has no determined sign, and nothing can be concluded
regarding the positivity of R.

We now consider the interconnection of the system with
the boundary control feedback:

u1 = yc; uc = y1

with

u0 =

(
∂tθ(0)
∂z∂tθ(0)

)
= 0

One can check that the total energy balance is given by:

dEt
dt

=
dE

dt
+
dEc
dt

= −eTRe ≤ 2e1e2 = − (∂t∂xθ(1)) (∂tθ(1)) .

Once again nothing can be said on the sign of dEt
dt .

It is important to notice that all the analysis that has
been provided by using the diffusive representation of the
boundary feedback, in (Montseny et al., 1997) for example,
has been done considering the non-diagonal terms both
equal to zero. In this latter case the port-Hamiltonian

formulation can be simplified, and the new R term is such
that:

〈e,Re〉 =
ˆ 1

0

(
ξ

µ(ξ)a
e23 +

(√
ν(ξ)be2 −

1√
ν(ξ)b

e4

)2)
dξ dz .

(12)

In this latter case, it is clear that the system is passive
and classical analysis tools can be applied. It does not
seem to be the case when exact matching conditions are
considered.

Remark. Something to notice is that Diffusive Repre-
sentations only give sufficient stability conditions, even
in very elementary cases (Linear Fractional Differential
Equations with constant coefficients), as already pointed
out in (Matignon, 1998). Hence, if the use of DR does not
help for stability analysis in the MIMO case of interest
here, it will not be a proof that the closed-loop system is
not stable.

4. CONCLUSION AND PERSPECTIVES

In this paper we discussed the boundary feedback control
of some wave equation systems using impedance matching
strategies. The port-Hamiltonian formulation has been
used to check the passivity properties of the resulting
feedbacks. In the SISO case, the matching feedback is
trivial and has some passivity properties. It is not the
case for MIMO systems like for the Euler Bernoulli beam
model. In this case the feedback is made up with direct
transmission terms and fractional order integrals and
derivatives. This feedback is usually expressed using a
diffusive representation in order to use the Hilbert spaces
properties and semigroup theory. We show by using the
port-Hamiltonian framework that passivity properties are
not trivial, at least in the exact impedance matching case.
It seems that some properties of the MIMO fractional
order feedback are lost by the diffusive representation.
Thus, as a first perspective, port-Hamiltonian framework
could definitely help in modifying the representation of
the controller to guarantee the preservation of its natural
properties.

An interesting second perspective would be to go to more
realistic 2D-systems: so far, two such examples have been
treated in the literature, on the wave equation:

• In (Montseny et al., 2000), the perfectly absorbing
feedback for the wave equation is defined by the

pseudo-differential operator K = −
(√

∂2t − ∂2y
)−1

:

diffusive representations can be adapted to tackle this
problem.

• In (Levadoux and Montseny, 2003), the perfectly ab-
sorbing feedback has a more involved formulation, but
can be represented exactly, using Fourier series in the
angular variables and Hankel functions: diffusive rep-
resentations can be adapted to tackle this problem.
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