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Abstract

A fractional time derivative is introduced into
Burgers equation to model losses of nonlinear
waves arising in acoustics. A diffusive represen-
tation of the fractional derivative replaces the
nonlocal operator by a continuum of memory
variables that satisfy local ordinary differential
equations. A quadrature formula yields a sys-
tem of local partial differential equations. The
quadrature coefficients are computed by opti-
mization with a positivity constraint. One re-
solves the hyperbolic part by a shock-capturing
scheme, and the diffusive part exactly. Exten-
sive details can be found in [3].

Keywords: fractional derivatives, diffusive rep-
resentation, nonlinear acoustics, Strang split-
ting

1 Introduction

We investigate Burgers equation with a frac-
tional time derivative Dy (¢ > 0,0 < a < 1):

2
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For a causal function u(t), D{*u refers to the
Caputo fractional derivative in time of order a:
t
Doy = ﬁ/{) (t—T)—a%(x,T) dr, (2)
where I' is the Gamma function. The Lh.s. of
(1) is a standard transport equation, with lin-
ear advection at constant speed a and a nonlin-
ear quadratic term with coefficient b. The r.h.s.
of (1) models linear losses and memory effects
along the propagation. Since o < 1, the hyper-
bolic nature of Burgers equation is preserved.
Various physical configurations are described
by (1). Particular values of ¢ and « enable to
recover Chester’s equation describing propaga-
tion of finite-amplitude sound waves in tubes,
up to O(£?) terms. This equation is widely used
to model brass instruments (trombones, trum-
pets): the transport terms describe the steep-
ening of waves, yielding the typical ”brassy”

effect, and the fractional term models the vis-
cothermal losses at the wall of the duct. More-
over, the linear Lokshin equation can be seen
as the superposition of two one-way fractional
transport equations of this type [1]. Other ap-
plications of (1) concern viscoelasticity, propa-
gation in elastic-walled tubes, or more generally
wave propagation in media with memory and
complex rheological properties.

2 Diffusive approximation

The convolution product (2) can be recast as

+o0
¢(x,t,0)do, (3)

Di'u =
0

with the diffusive variable ¢ given by

t
d(x,t,0) =, g1 @(a@, T) e~ (t=7) 0" dr,
0 87’
(4)

with v, = 25%(”) > 0. From equation (4), ¢
satisfies the following first-order ordinary differ-
ential equation (ODE):
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The integral in (3) is approximated by a quadra-
ture formula on L points, where the diffusive
variables ¢y satisfy an ODE deduced from (5):
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(6)
An adequate choice of the weights uy and nodes
0, is crucial for the efficiency and accuracy of
the diffusive approximation, see e.g. [3] and ref-

erences therein. Injecting (6) into (1) yields
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SU+F(U)=SU, 7)
with U(z,¢) = (u, ¢1, ..., ¢)*. The energy of
U decreases if yuy > 0 and 6, > 0. A Strang
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splitting is used to solve (7). The propagative
part is solved by a finite-volume scheme with
flux-limiters [2], whereas the diffusive part is
solved exactly. The CFL condition of stability
is the same as for the inviscid Burgers equation.

3 Numerical experiments

a=1/3

1 © 0 O simulation
— analytical

Offset (m)

0 001 002 003 004 005 006 007

X (m) ts)

a=1/2

- oA

15

10

J\[‘v

Offset (m)

0

v ool o o o 0w 0w 0w
w "

Figure 1: linear fractional advection, for vari-

ous fractional order «. Left row: snapshots of

the numerical and exact solutions. Right row:

seismograms.

First, we consider linear advection (b = 0).
A smooth truncated sinusoid is injected at the
left boundary of the domain. Closed-form an-
alytical solutions are known for @ = 1/3 and
a = 1/2. These cases are illustrated in fig-
ure 1. In the left row, one compares snapshots
of the numerical and exact solutions. Greater
values of « yield a greater attenuation and a
slower propagation, as predicted by the disper-
sion analysis [3]. The right row illustates the
time and space evolution of the waves.

Second, we consider both nonlinear prop-
agation and fractional attenuation (figure 2).
The initial data is a rectangular pulse. Without
attenuation, classical phenomena are observed:
the pulse splits into a left rarefaction wave and
a right shock (a), which collide (b). With atten-
uation, the right-going shock smears and even
disappears for sufficiently large ¢.
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Figure 2: nonlinear advection and fractional at-
tenuation. (a-b): numerical and exact solutions
without attenuation. (c-d): numerical solutions
for o« = 1/2 and various values of ¢.

4 Conclusion

This article is an attempt for better understand-
ing the competition between nonlinear effects
and nonlocal relaxation. Many theoretical ques-
tions remain to be addressed. In particular,
it seems that the emergence of shocks is con-
ditional (unlike the inviscid Burgers equation).
This question requires a deeper analysis to con-
firm / infirm the numerical observations.
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