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PENAMBAHBAIKAN SIFAT-SIFAT MEKANIK, TERMA DAN 

DIELEKTRIK BAGI HIBRID NANOTIUB KARBON DAN ALUMINA 

DALAM NANOKOMPOSIT EPOKSI 

 
 

ABSTRAK 

 

Penambahan nanotiub karbon (CNT) dalam nanokomposit polimer telah 

memberikan cabaran kepada penyelidik disebabkan oleh taburannya dalam matriks 

polimer. Kajian ini memberikan fokus terhadap sebatian hibrid CNT-alumina yang 

dihasilkan melalui pemendapan wap kimia (CVD) yang digunakan untuk 

mempertingkatkan taburan dan menambah baik sifat-sifat mekanik, terma dan 

dielektrik bagi nanokomposit epoksi. Sebatian hibrid CNT-alumina telah berjaya 

disintesis melalui kaedah CVD dengan menggunakan pemangkin nikel di bawah 

atmosfera metana pada suhu 800 °C. Bagi tujuan perbandingan, campuran CNT-

alumina secara fizikal juga disediakan dengan menggunakan kaedah pengisaran 

bebola bagi tujuan perbandingan. Nanokomposit epoksi terisi sebatian hibrid CNT-

alumina dan CNT-alumina yang dicampurkan secara fizikal telah dicirikan 

berdasarkan muatan pengisi (iaitu 1% - 5%). Sebatian hibrid CNT-alumina masing-

masing mempunyai saiz antara 10 – 30 nm dan 12 % berat karbon berdasarkan 

analisis medan pancaran mikroskop imbasan electron pancaran medan (FESEM), 

mikroskop pemancaran elektron resolusi tinggi (HRTEM) dan serakan tenaga sinar-x 

(EDX), manakala analisis pembelauan sinar-x (XRD) mendedahkan kewujudan fasa 

karbon antara beberapa fasa alumina. Penilaian bagi sebatian hibrid CNT-alumina 

terisi nanokomposit epoksi menunjukkan sifat-sifat mekanik, terma dan dielektrik 

yang lebih tinggi berbanding CNT-alumina yang dicampurkan secara fizikal serta 

terisi nanokomposit epoksi. Peningkatan ini berkaitan dengan taburan seragam 
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sebatian hibrid CNT-alumina seperti yang diperhatikan daripada FESEM dan 

HRTEM. Penggunaan sebatian hibrid CNT-alumina terisi nanokomposit epoksi telah 

dibuktikan mampu untuk meningkatkan kekuatan tegangan sehingga 30%, modulus 

tegangan sebanyak 39%, kekuatan lenturan sebanyak 30%, modulus lenturan 

sebanyak 35%, kekerasan sebanyak 17%, konduktiviti terma sebanyak 20%, nilai 

suhu peralihan kaca sebanyak 25% dan pemalar dielektrik sebanyak 20% apabila 

dibandingkan dengan epoksi yang tulen. 
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ENHANCEMENT OF MECHANICAL, THERMAL AND DIELECTRIC 

PROPERTIES OF HYBRID CARBON NANOTUBES AND ALUMINA IN 

EPOXY NANOCOMPOSITES 

 
 

ABSTRACT 

 

The incorporation of carbon nanotube (CNT) in polymer nanocomposites has 

become challenges for researchers due to its dispersion in polymer matrix. This work 

focuses on CNT-alumina hybrid compound prepared via chemical vapor deposition 

(CVD) which is used to improve dispersion and enhance the mechanical, thermal and 

dielectric properties of epoxy nanocomposites. The CNT-alumina hybrid compound 

was successfully synthesized via CVD by using nickel catalyst under methane 

atmosphere at 800 °C. The physically mixed CNT-alumina was also prepared by ball 

milling method for comparison. The CNT-alumina hybrid compound and physically 

mixed CNT-alumina filled epoxy nanocomposites were characterized according to 

their filler loadings (i.e. 1% - 5%). The CNT-alumina hybrid compound had the size 

between 10 – 30 nm and 12 Wt % of carbon according to field emission scanning 

electron microscope (FESEM), high resolution transmission electron microscope 

(HRTEM) and energy dispersive x-ray (EDX) analysis respectively, while x-ray 

diffraction (XRD) revealed the existence of carbon phase among several phases of 

alumina. The CNT-alumina hybrid compound filled epoxy nanocomposites 

assessments showed higher mechanical, thermal and dielectric properties than the 

physically mixed CNT-alumina filled epoxy nanocomposites. This increase is 

associated with the homogeneous dispersion of CNT-alumina hybrid compound as 

observed from FESEM and HRTEM. It was demonstrated that the CNT-alumina 

hybrid compound filled epoxy nanocomposites are capable of increasing tensile 
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strength by up to 30%, giving tensile modulus of 39%, flexural strength of 30%, 

flexural modulus of 35%, hardness of 17%, thermal conductivity of 20%, glass 

transition temperature value of 25% and dielectric constant of 20% when compared 

to a neat epoxy.   
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CHAPTER 1 

INTRODUCTION 

 

1.1 Overview 

 

The extensively growing area of nanoengineering materials will create many 

perspectives for polymer and composites determined by the final product of the 

polymer nanocomposites. In the late 1980s, polymer nanocomposites were 

commercially produced in both academic laboratories and research organisations 

(Komarneni, 1992). Roy (1992) and Komarneni et al. (1997) started to use the term 

‘nanocomposites’ in 1984 to describe the fact that polymeric product contains two or 

more distinct materials in the nanoscale. Since that time, the term ‘nanocomposites’ 

has been globally recognized and described as a very large group of materials 

involving structures in the nanometer range between 1-100 nm (Gleiter, 1995). The 

properties of the nanocomposites have become an attraction to researchers due to 

size of the structures which is totally different from those of the bulk matrix. In 1988, 

the Toyota Group became the first company to utilize nanocomposites parts for their 

novel car models by using polymer/layered nanocomposites (Fukushima et al., 

1988). Subsequently, numerous other companies also started to look into 

nanocomposites and this led to a dramatic development of research in this novel class 

of materials. 

 

 The reinforcement of polymer by using fillers such as inorganic or organic 

materials is typical in the production of modern polymer composites. Generally, 

conventional composites use micrometer particles, platelets or fibres as fillers in 

polymer composites. These conventional composites have been explored for many 
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years to be fully utilized in various industrial applications (Schadler, 2003). For 

examples, composites based on thermosetting resins are extensively used for 

structural materials product such as polymer, concrete, glass fibre reinforced epoxy, 

inorganic particle filled epoxy, etc. Usually, micro-filler particles are inactive and 

their main purpose is to reduce the cost of the final product.  The most crucial factors 

that control the properties of polymer composites which contain inactive fillers are 

size, shape and distribution of the filler, while surface morphology and chemistry 

play a minor role. On the other hand, active fillers in polymer composites 

demonstrate a reinforcing effect of filler on mechanical properties depending on the 

morphology and interaction between filler and polymer matrix (Ajayan et al., 2006). 

Typically, polymer reinforced with micrometer active fillers exhibits improvement in 

hardness, however its tensile properties worsen due to stress concentration resulting 

from the presence of filler particle. 

 

 Polymer nanocomposites are developed by incorporating a small amount of 

nano-filler dispersed at a molecular level in the polymer matrix as a replacement for 

the conventional polymer composites. The homogenous dispersion of nano-filler 

particles provides very high surface area to volume ratio between filler and polymer 

matrix. A special characteristic of polymer nanocomposites is that a significant 

enhancement in properties can be achieved at low filler loading which consequently 

minimizes the weight of the final product (Mai and Yu, 2006).  

 

Epoxy resins are a type of versatile polymer materials characterized by the 

existence of more than one epoxy group or oxirane ring located on their molecular 

structure. Similar to other thermosets, epoxy resin also forms a network on curing 
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with various types of curing agents. Nowadays, epoxy resin is recognized as one of 

the interesting class of polymers and used as a matrix for polymer composites due to 

its strong adhesion and excellent overall mechanical properties, including high 

strength and stiffness, high chemical, thermal, and dimensional stability, as well as 

good creep and solvent resistance (Hussain et al., 2006). The performance of epoxy 

resin can usually be improved by incorporating various type of including particulate 

filler and fibrous reinforcement. Recently, carbon nanotubes, as particulate filler in 

epoxy resin, have been widely used due to their remarkable improvements in 

mechanical, electrical, optical and thermal properties (Coleman et al., 2006a).  

 

 Over the last decades, carbon nanotubes have remained attractive to both 

engineers and scientists who are interested in their applications due to the unique 

combination of their properties (Meyyappan, 2004). Carbon nanotubes have 

progressed into one of the most intensively studied materials and they play a major 

role in co-triggering the polymer nanocomposites (Andrews and Weisenberger, 

2004). Carbon nanotubes are regarded as seamless cylinders formed by wrapping 

graphene sheets with carbon atoms that are covalently bonded with each other 

through sp2 hybridization. Based on the number of layer of graphene sheets, they can 

be categorized as single-walled or multi-walled carbon nanotubes. These carbon 

nanotubes molecular systems are nanometer in diameter and up to centimeter in 

length which demonstrate length/diameter aspect ratio of more than 107 (Ebbesen, 

1996). The contiguous carbon nanotubes possess a high degree of atomic-scale 

perfection and this makes them chemically inert as their close relationship with 

graphene. As for graphene under tension, the strength of the carbon nanotubes are 

two times higher than steel (Gojny et al., 2004). The melting point of the carbon 
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nanotubes in vacuum is approximately 3700 ˚C which is almost similar to graphite 

and greater than any metal (Jorio et al., 2007). Carbon nanotubes can act as ballistic 

conductors of electrons or behave as a semiconductor depending on the atomic 

structure and the diameter (Javey et al., 2003). In addition, carbon nanotubes are an 

excellent conductor of heat and reported to surpass the thermal conductivity of pure 

diamond (Jorio et al., 2007). Furthermore, carbon nanotubes also seem to be 

biocompatible in many environments (Smart et al., 2006). 

 

In the meantime, a wide range of carbon nanotubes based hybrid materials 

have also been developed by the combination of carbon nanotubes with other 

materials. These hybrid materials with attractive features exhibit promising 

applications in the fields of nanobiotechnology, energy conversion, fuel storage, 

catalysis and electronic nanodevices (He et al., 2009). In particular, the micro 

supports could be either micrometric inorganic particles or various fibers. Instead of 

conventionally mixing two types of materials in a random way, carbon nanotubes are 

directly grown on the surface of the microscopic supports to form the nano-micro 

hybrid structures (Xie and Gao, 2007; Wang et. al., 2008; Jiang et al., 2007). The 

nano-micro hybrid structures have a reinforced interface between each carbon 

nanotubes and the micrometer support. At the same time, rather than in entangled 

state, carbon nanotubes could be distributed on the surface of micrometer particles. 

This is desired to avoid the agglomeration of carbon nanotubes and to obtain good 

dispersion in composites. Furthermore, hybrid materials in the composites favor to 

transfer efficiently the loads between the matrix and the fillers. Thus, enhanced 

properties of composites are expected to be achieved by using the hybrid materials as 

fillers in composites. 
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1.2  Problem Statement 

 

The extraordinary properties of the CNT make it an ideal candidate to be used 

as multifunctional filler system in epoxy composites. Nevertheless, there are huge 

challenges for researchers to impart the intrinsic properties of the CNT due to the 

difficulty to disperse CNT in the epoxy matrix. CNT is usually present in the form of 

bundles or ropes due to the intrinsic van der Waals force attraction, its high surface 

area and its high aspect ratio (HowardáEbron, 2004).  These characteristic of CNT 

can easily result in poor dispersion and significance level of agglomeration. Poor 

dispersion of the CNT will significantly reduce their reinforcement efficiency due to 

the CNT slipping each other when load is applied which will result in the formation 

of micro-voids in the epoxy composites.  

 

Many researches have been conducted to overcome the above mentioned 

challenges i.e; to improve the dispersion of CNT in epoxy matrix (Du et al., 2007). 

Most of the techniques are dealing with processing issues rather than looking at the 

filler design aspect or architecture. The research includes investigation of different 

methods such as chemical functionalization (Yang et al., 2009), and physical 

blending (ultrasonication or high shear mixing) (Park et al., 2002). Chemical 

functionalization focuses on the surface treatment to the CNT structure to improve 

their chemical interaction with polymer matrix, and it has enhanced the dispersion of 

CNT. However, chemical functionalization method often causes structural defect that 

diminishes the intrinsic properties of CNT (Park et al., 2002). Hybridization of CNT 

with an inorganic filler is implemented to improve dispersion of CNT without 

damaging its structure. Nevertheless, conventional hybridization method by milling 

requires longer time which may damage the CNT structure. Furthermore, the 
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