ACKNOWLEDGEMENTS

I would like to thank my supervisor, Assoc. Prof. Dr. Nor Ashidi Mat Isa, for the guidance, encouragement and advice he has provided throughout my time as his student. I have been extremely lucky to have a supervisor who cared so much about my work, and who responded to my questions and queries so promptly. He has dedicated his great efforts making sure I stay within research scope while giving me sufficient freedom to seek for my own thought and ideas. This thesis would never have been completed without his continuous guidance.Many thanks to all colleagues in the Imaging and Intelligent System Research Team (ISRT).

I must express my gratitude to Dr. Salem, my husband, for his continued support and encouragement.

Overall, this thesis is dedicated to my parents and I thank them too much for always giving me unconditional love, encouragement and freedom through my life.

TABLE OF CONTENTS

ACKNOWLEDGEMENTS ii
TABLE OF CONTENTS iii
LIST OF TABLES vii
LIST OF FIGURES ix
LIST OF 0ABBREVIATIONS xviii
ABSTRAK xix
ABSTRACT xxi
CHAPTER 1 1
INTRODUCTION 1
1.1 Background 1
1.2 Current Trend in Image Magnification Algorithms 2
1.3 Problem of Statement 4
1.4 Research Objectives 5
1.5 Research Scope 5
1.6 Thesis Outline 6
CHAPTER 2 8
LITERATURE REVIEW 8
2.1 Introduction 8
2.2 Digital Image 9
2.2.1 Texture Images 12
2.2.2 Non-Texture Images 14
2.2.2.1 Pure Non-Texture Images 14
2.2.2.2 Natural Images 15
2.2.3 Digital Image Processing 15
2.3Image Zooming 18
2.4 Interpolation Based Magnification (Zoom-in) 22
2.4.1 Basic Concepts 22
2.4.2 Problems of Interpolation Based Magnification 26
2.4.3 Interpolation Algorithms 28
2.4.3.1 Non-adaptive Interpolation Algorithms 29
2.4.3.2 Adaptive Interpolation Algorithms 34
2.4.4 Applications of Interpolation Based Magnification 42
2.4.5 Remarks 44
2.5 Synthesis Based Zoom-in (Texture Synthesis) 45
2.5.1 Basic Concepts 45
2.5.2 Problemsof Texture Synthesis Algorithms 46
2.5.3Texture Synthesis Algorithms 46
2.5.3.1 Pixel-Based Synthesis Algorithms 47
2.5.3.2 Patch-Based Synthesis Algorithms 50
2.5.4 Applications of Texture Synthesis 53
2.5.5 Remarks 55
2.6 Latest Interpolation Based Magnification Algorithms 55
2.6.1 Directional Cubic Convolution Interpolation 55
2.6.2 Iterative Curvature Based Interpolation technique (ICBI) 57
2.6.3 Soft-Decision Adaptive Interpolation 59
2.6.4 An Edge-Guided Image Interpolation Algorithm via Directional Filtering and
Data Fusion 61
2.7 Summary 62
CHAPTER 3 65
METHODOLOGY 65
3.1 Introduction 65
3.2 Motivation 67
3.3 Mapping Based Magnification Algorithm (MBMA) 68
3.3.1 Basic Concept 69
3.3.2 The Online Part of MBMA 74
3.3.2.1 Feature Representation Stage 74
3.3.2.2 Matching Stage 79
3.3.2.3 Synthesis Stage 82
3.3.3 The Offline MBMA 84
3.3.3.1 Down Sampling Stage 85
3.3.3.2 Feature Representation 86
3.3.4 Patch-Based Texture Synthesis versus MBMA 88
3.3.5 Interpolation-Based Magnification versus MBMA 90
3.4 Data Samples 91
3.5 Quantitative and Qualitative Analysis 94
3.6 Summary 99
CHAPTER 4 - RESULTS AND DISCUSSION
4.1 Introduction Error! Bookmark not defined.
4.2Optimal Parameters Analysis Error! Bookmark not defined.
4.3Performances Analysis of MBMA_Direct. Error! Bookmark not defined.
4.3.1 Results for Standard Images Error! Bookmark not defined.
4.3.2 Results for MLCP Images Error! Bookmark not defined.
4.4Performances Analysis of MBMA_Average Error! Bookmark not defined.
4.4.1 Results of Standard Images Error! Bookmark not defined.
4.4.2 Results for MLCP Images Error! Bookmark not defined.
4.5Results of Magnifying MLCP Images by 3X and 4X. Error! Bookmark not defined.
Error! Bookmark not defined.
CHAPTER 5 155
CONCLUSION AND FUTURE WORKS 155
5.1 Conclusion 155
5.2 Future Work 156
LIST OF PUBLICATIONS 166

LIST OF TABLES

Abstract

Page

Table 4.1 $\begin{aligned} & \text { Performance comparison in terms of PSNR between the } 118 \\ & \text { proposed MBMA_Direct and other state-of-the-art algorithms }\end{aligned}$
$\begin{array}{ll}\text { Table 4.2 } & \begin{array}{l}\text { Performance comparison in terms of MSE between the } 118 \\ \text { proposed MBMA_Direct and other state-of-the-art algorithms }\end{array}\end{array}$

Table 4.3 Performance comparison in terms of SSIM between the 118 proposed MBMA_Direct and other state-of-the-art algorithms

Table 4.4 $\begin{aligned} & \text { Performance comparison in terms of FSIM between the } 119 \\ & \text { proposed MBMA_Direct and other state-of-the-art algorithms }\end{aligned}$

Table 4.5 $\begin{aligned} & \text { Performance comparison between the proposed MBMA_Direct } \\ & \text { and other state-of-the-art algorithms for average of } 100 \text { standard } \\ & \text { and natural images }\end{aligned}$

Table 4.6 $\begin{aligned} & \text { Performance comparison in terms of PSNR between the } 125 \\ & \text { proposed MBMA_Direct and other state-of-the-art algorithms }\end{aligned}$

Table 4.7 Performance comparison in terms of MSE between the 125 proposed MBMA_Direct and other state-of-the-art algorithms

Table 4.8 Performance comparison in terms of SSIM between the 126 proposed MBMA_Direct and other state-of-the-art algorithms

Table 4.9 Performance comparison in terms of FSIM between the 126 proposed MBMA_Direct and other state-of-the-art algorithms

Table 4.10 Performance comparison between the proposed MBMA_Direct 126 and other state-of-the-art algorithms for average of 200 MLCP images

Table 4.11 Performance comparison in terms of PSNR between the 138 proposed MBMA_Average and other state-of-the-art algorithms
Table 4.12 Performance comparison in terms of MSE between the 138 proposed MBMA_Average and other state-of-the-art algorithms
Table 4.13 Performance comparison in terms of SSIM between the 139 proposed MBMA_Average and other state-of-the-art algorithms
Table 4.14 Performance comparison in terms of FSIM between the 139 proposed MBMA_Average and other state-of-the-art algorithms
Table 4.15 Performance comparison between the proposed 139 MBMA_Average and other state-of-the-art algorithms for average of 100 standard and natural images
Table 4.16 Performance comparison in terms of PSNR between the 149 proposed MBMA_Average and other state-of-the-art algorithms
Table 4.17 Performance comparison in terms of MSE between the 149 proposed MBMA_Average and other state-of-the-art algorithms
Table 4.18 Performance comparison in terms of SSIM between the 149 proposed MBMA_Average and other state-of-the-art algorithms

Table 4.19 Performance comparison in terms of FSIM between the149proposed MBMA_Average and other state-of-the-art algorithms

Table 4.20 Performance comparison between the proposed 150 MBMA_Average and other state-of-the-art algorithms for average of 200 MLCP images

LIST OF FIGURES

Page
Figure 2.1 Digital image is sharper and has better contrast than the analog 10image (NCGICC, accessed 2013)
Figure 2.2 (a) Digital image consists of a collection of pixels arranged in a 11 grid format. (b) Each pixel containing information about its color or intensity
Figure 2.3 Digital image types 12
Figure2.4 Examples of texture images based on their types (Liu et al., 14 2004)
Figure 2.5 Examples of non-texture image (a) MLCP image (b) non- 14 texture image full of smooth areas and edges (b) the bicycle image is a non-texture image contains a lot of edges
Figure 2.6 Example of natural image 15
Figure 2.7 Digital image processing in a computer vision system 16(Annadurai and Shanmugalakshmi, 2006)
Figure 2.8 Image processing tasks 18
Figure 2.9 Zoom-in or magnification process, (a) Original image, (b) 20 Magnified image
Figure 2.10 (a)Original low resolution image, (b)Original image is 20 expanded and the places of unknown values that will be estimated during the zoom-in process

Figure 2.11 Interpolation based zoom-out, (a) Original image, (b) Zoomed- 21 out image

Figure 2.12 $\begin{aligned} & \text { Synthesis based zooming, (a) Original image, (b) Synthesized } 22 \\ & \text { image }\end{aligned}$

Figure 2.13 (a) LR image, (b) White doted squares are unknown points, (c) 23 Interpolated image

Figure 2.14 Constructing x direction unknown points then y direction of 23 unknown points

Figure 2.15 The distances between the known point and a selected finite known neighborhoods around it

Figure 2.16 Constructing x direction interpolated points, (a) LR known 25 points, (b) the locations of unknown points and the values of known points, (c) the interpolated values.

Figure 2.17 (a) Original image, (b) Magnified image with MF=2, (c) 26 Magnified image with MF=3

Figure 2.18 Three common problems of interpolation process (a) Image 27 blurry, (b) Blocking artifacts (c) Edge jagging

Figure 2.19 Interpolation algorithms categories

Figure 2.20 Non-adaptive interpolation algorithms

Figure 2.21 Pixel Replication Interpolation, (a) Original image, (b) 30 locations of unknown points (c) Interpolated image (Kumar, 2009)

Figure 2.22 Example of pixel replication interpolation, (a) LR image, (b) 30 Interpolated image, (c) Original image

Figure 2.23 Closest 2 neighborhood of known pixel values surrounding the 31 unknown pixel (Sharmal, 2012)

Figure 2.24 Example of bilinear interpolation (a) LR image, (b) Interpolated 32 image, (c) Original image

Figure 2.25 Closest 4 neighborhoods of known pixel values surrounding
 33 the unknown pixel

Figure 2.26 Example of bicubic interpolation (a) LR image, (b) Interpolated
 33 image, (c) Original image

Figure 2.27 Adaptive interpolation algorithms

Figure 2.28 Block diagram of edge-directed algorithms (Che and Cheng, 35 2004)

Figure 2.29 Example of statistical learning-based algorithms (Atkins, 2001) 39

Figure 2.30 Interpolation steps for each local region (Muresan and Parks, 40 2004)

Figure 2.31 Medical application for interpolation based magnification, (a) 42 Unclear tumor (b) Bicubic interpolation MF=8 and brightness 2 times (Salih and Ramly, 2002)

Figure 2.32 CT magnification application, (a) LR CT image (b) The LR 43 image magnified by MF=2 (c) The selected part from LR CT image is magnified by MF>10 (Gao et al., 2008)

Figure 2.33 Remote sensing application used interpolation based 44 magnification (Jensen, 1996)

Figure 2.34 Example of synthesized image problems, (a) Original image, 46 (b) Seams and overlapping problem, (c) Good synthesized image

Figure 2.35 Pixel based texture synthesis example (Wei and Levoy, 2000)

Figure 2.36 Relationship between time and patch size in pixel based texture 49 synthesis

Figure 2.37 Subjective analysis pixel based texture synthesis algorithms for 49 different patch size

Figure 2.38 Patch based texture synthesis example

Figure 2.39 Relationship between time and patch size in patch based texture synthesis

Figure 2.40 Subjective analysis patch based texture synthesis algorithms for different patch size

Figure 2.41 Examples of texture synthesis applications 54

Figure 2.42 DCC Interpolation (Zhou et al., 2012) 56

Figure 2.43 Comparison between DCC, Bicubic (Keys, 1981), Bilinear (a) 57 LR image (b) Original image (c) Bilinear interpolation (d) Bicubic interpolation (e) DCC interpolation (Zhou et al., 2012)

Figure 2.44 Two steps of ICBI interpolation Algorithm (Giachetti and 58 Asuni, 2011)

Figure 2.45 Comparison between ICBI, Bicubic (Keys, 1981), Bilinear (a) 59 LR image, (b) original image (c) Bilinear intrepolation, (d) Bicubic interpolation (e) ICBI (Giachetti and Asuni, 2011)

Figure 2.46 Formation of a LR image from a HR image of SAI interpolation 60

Figure 2.47 Comparison between SAI, Bicubic (Keys, 1981), Bilinear (a) 60 LR image (b) Original image (c) Bilinear intrepolation (d) Bicubic interpolation (e) SAI interpolation (Zhang and Wu, 2008)

Figure 2.48 Comparison between DFDF, Bicubic (Keys, 1981), Bilinear (a) 62 LR image (b) Original image (c) Bilinear intrepolation (d) Bicubic interpolation (e) DFDF interpolation (Zhang and Wu, 2006)

Figure 3.1 The basic concept of the MBMA, (a) LR image, (b) HR image, 69 (Note: as an example, pixel $\mathrm{P}(0,0)$ in the LR image has been replaced by $S \times S$ HR block)

Figure 3.2 Flow chart of the Online MBMA

Figure 3.3 The lookup table which is resulted from the offline MBMA

Figure 3.4 Flow chart of the offline MBMA

Figure 3.5 Converting from MHR image to MLR image, (a) MHR image, (b) MLR, the top left $S \times S$ HR block of the MHR image is down sampled to the LR pixel $P(0,0)$

Figure $3.6 \quad W \times W$ window around each pixel in the LR image

Figure 3.7 Flow chart of feature representation stage

Figure 3.8 Examples of (a) $\mathrm{R} \times \mathrm{C}$ LR image, (b) ELR image with $\mathrm{W}=3$, 76 (c) ELR image with $W=5$, (d) ELR image with $W=7$

Figure 3.9 ELR image, (a) LR image, (b) LR image with extended top and bottom borders, (c) LR image with extended left and right borders

Figure 3.10 3×3 Window around each considered original LR pixel

Figure 3.11 Value of FV

Figure 3.12 Flow chart of matching stage

Figure 3.13 Comparing the considered FV with all MFVs, (a) LR image, (b) comparing FV1 with all MFVs, (c) the lookup table from the offline MBMA

Figure 3.14 Mapping the winner MLR pixels with the respective $S \times S$ HR blocks, (a) LR image (b) the look up table introduced by the offline part of the MBMA (c) the magnified HR image.

Figure 3.15 Synthesis stage, (a) LR image (b) the HR synthesized image

Figure 3.16 Main idea of median filter, (a) the running 3×3 window, (b) 84 replacing the central pixel with the middle value of all entries in the running window

Figure 3.18 Direct down sampling, (a) MHR image, (b) $P(0,0)$ in the $S \times S$ HR block is selected to be the respective MLR pixel for this block, (c) MLR image

Figure 3.19 Flow chart of feature representation stage in offline MBMA

Figure 3.20 Images involved in the MBMA and the patch based texture 89 synthesis algorithms, (a) small texture image, (b) larger texture image, (c) LR image, (d) magnified image

Figure 3.21 Patch -texture synthesis versus new the proposed MBMA (a) 90 the proposed MBMA (b) Patch-based texture synthesis algorithm

Figure 3.22 Interpolation based magnification (a) LR image, (b)original image is expanded and the places of unknown values will be estimated using interpolation to form the magnified image

Figure 3.23 Data samples that are used in the MBMA

Figure 3.24 Mapping images that are used in the MBMA

Figure 3.25 Image of MLCP

Figure 3.26 Flow chart of determining the effectiveness of the proposed95 MBMA

Figure 4.1 Magnification performance comparison between using 103 windows sizes $3 \times 3,5 \times 5$ and 7×7 for the image of Cameraman (a) MBMA_Average (b) MBMA_Direct

Figure 4.2 Magnification performance comparison between using 104 windows sizes $3 \times 3,5 \times 5$ and 7×7 for the image of Pepper (a) MBMA_Average (b) MBMA_Direct

Figure 4.3 Magnification performance comparison between using 104 windows sizes $3 \times 3,5 \times 5$ and 7×7 (a) MBMA_Average (b) MBMA_Direct

Figure 4.4 Magnification performance comparison between using 105 windows sizes $3 \times 3,5 \times 5$ and 7×7 (a) MBMA_Average (b) MBMA_Direct

Figure 4.5 Performance comparison for magnifying Cameraman image 109 using (a) original image (b) NEDI (c) DFDF (d) SAI (e) ICBI (f) DCC (g) MBMA_Direct

Figure 4.6 Performance comparison for magnifying Barbara image using
(a) original image (b) NEDI (c) DFDF
(d) SAI (e) ICBI (f) DCC (g) MBMA_Direct

Figure 4.7 Performance comparison for magnifying Boat image using (a) original image (b) NEDI (c) DFDF (d) SAI (e) ICBI (f) DCC (g) MBMA_Direct

Figure 4.8 Performance comparison for magnifying Pepper image using 115 (a) original image (b) NEDI (c) DFDF (d) SAI (e) ICBI (f) DCC (g) MBMA_Direct

Figure 4.9 Direct down sampling (a) 2×2 HR block (b) the respective 120 MLR pixel

Figure 4.10 Performance comparison for magnifying Plate 01 image using122 (a) original image (b) NEDI (c) DFDF (d) SAI (e) ICBI (f) DCC (g) MBMA_Direct

Figure 4.11 Performance comparison for magnifying Plate 02 image using
(a) original image (b) NEDI (c) DFDF (d) SAI (e) ICBI (f) DCC (g) MBMA_Direct

Figure 4.12 Performance comparison for magnifying Plate 03 image using DCC (g) MBMA_Direct

Figure 4.13 Performance comparison for magnifying Plate 04 image using (a) original image (b) NEDI (c) DFDF (d) SAI (e) ICBI (f) DCC (g) MBMA_Direct

Figure 4.14 Performance comparison for magnifying Cameraman image 130 using (a) original image (b) NEDI (c) DFDF (d) SAI (e) ICBI (f) DCC (g) MBMA_Average

Figure 4.15 Performance comparison for magnifying Barbara image using
(a) original image (b) NEDI (c) DFDF (d) SAI (e) ICBI (f) DCC (g) MBMA_Average

Figure 4.16 Performance comparison for magnifying Boat image using (a) 134 original image (b) NEDI (c) DFDF (d) SAI (e) ICBI (f) DCC (g) MBMA_Average

Figure 4.17 Performance comparison for magnifying Pepper image using136 (a) original image (b) NEDI (c) DFDF (d) SAI (e) ICBI (f) DCC (g) MBMA_Average

Figure 4.18 Performance comparison for magnifying Cameraman image 141 using (a) ICBI (b) DCC (c) MBMA_Average

Figure 4.19 Performance comparison for magnifying Barbara image using141 (a) ICBI (b) DCC (c) MBMA_Average

Figure 4.20 Performance comparison for magnifying Boat image using (a) 142 ICBI (b) DCC (c) MBMA_Average

Figure 4.21 : Performance comparison for magnifying Peppers image using142 (a) ICBI (b) DCC (c) MBMA_Average

Figure 4.22 Performance comparison for magnifying Plate01 image using144
(a) original image
(b) NEDI (c) DFDF
(d) SAI (e) ICBI (f) DCC (g) MBMA _ Average

Figure 4.23 Performance comparison for magnifying Plate02 image using
(a) original image (b) NEDI (c) DFDF
(d) SAI (e) ICBI (f)

DCC (g) MBMA _ Average

Figure 4.24 Performance comparison for magnifying Plate03 image using
(a) original image (b) NEDI (c) DFDF (d) SAI (e) ICBI (f) DCC (g) MBMA_Average

Figure 4.25 Performance comparison for magnifying Plate04 image using
(a) original image
(b) NEDI (c) DFDF
(d) SAI (e) ICBI (f)

Figure 4.26 Performance comparison for magnifying the MLCP images 147 using MBMA_Direct and MBMA_Average

Figure 4.27 : Magnification of MLCP images by a factor of 3 using the 151 proposed MBMA_Average.

Figure 4.28 Magnification of MLCP images by a factor of 4 using the 152 proposed MBMA_Average

LIST OF OABBREVIATIONS

DCC	Directional Cubic Convolution
DFDF	Directional Filtering and Data Fusion
FSIM	Feature Similarity Index
FV	Feature Vector
GM	Gradient Magnitude
HR	High Resolution
HVS	Human Visual System
LAZA	Locally Adaptive Zooming Algorithm
LR	Low Resolution
MBMA	Mapping Based Magnification Algorithm
MFV	Mapping Feature Vector
MHR	Mapping High Resolution
MLCP	Malaysian License Car Plate
MLR	Mapping Low Resolution
MSE	Mean Square Error
NEDI	New Edge Directed Interpolation
PC	Phase Congruency
PSNR	Peak Signal to Noise Ratio
SAI	Soft Decision Adaptive Interpolation
SSIM	Structural Similarity Index

ALGORITMA PEMBESARAN IMEJ BERDIGIT BAHARU
 BERDASARKAN INTERGRASI DI ANTARA KONSEP PEMETAAN DAN SINTESIS

Abstract

ABSTRAK

Pembesaran imej adalah proses pembinaan semula imej resolusi tinggi (HR) dari versi resolusi rendah (LR). Proses pembesaran imej adalah salah satu proses penting yang digunakan untuk memenuhi keperluan manusia. Proses ini digunakan dalam beberapa aplikasi seperti dalam pengimejan perubatan, penderiaan jauh, mempertingkatkan butiran imej dan percetakan. Pada umumnya, algoritma pembesaran yang biasa menggunakan konsep penentudalaman. Walau bagaimanapun, algoritma pembesaran berasaskan penentudalaman ini mengalami masalah seperti kehadiran artifak-artifak yang tidak diingini dalam imej yang diperbesarkan seperti pinggir terhalang dan pinggir kabur. Artifak-artifak ini kebanyakannya muncul pada pinggir yang jelas. Oleh itu, selain menggunakan konsep penentudalaman, kajian ini memberi fokus kepada memperkenalkan algoritmapembesaran yang baharuberasaskan konsep sintesis. Disebabkan oleh konsep sintesis telah digunakan dalam algoritma sintesis tekstur berasaskan tampalan, pengubahsuaian kepada algoritma sintesis tekstur barasaskan tampalan perlu dilakukan agar dapatdigunakanuntuktujuan pembesaran imej. Pengubahsuaian yang dicadangkan menghasilkan algoritma pembesaran baharu yang dipanggil Algoritma Pembesaran Barasaskan Pemetaan (MBMA). Algoritma MBMA menggantikan setiap piksel imej LR dengan blok HRdua dimensi untuk membina imej HR. Algoritma yang dicadangkan pada asasnya direka untuk memelihara pinggir

yangjelas. Dua variasi cadangan MBMA diperkenalkan, iaitu MBMA_Average dan MBMA_Direct. Variasi MBMA yang dicadangkan telah dibandingkan dengan teknologiterkini pembesaran algoritma lain menggunakan 100 imej piawai dan 200 imej plat kereta lesen Malaysia (MLCP). MBMA_Average menghasilkan imej pembesaran yang lebih baik dengan pengurangan artifak yang tidak diingini (iaitu pengurangan pinggir kabur dan pinggir terhalang) berbanding dengan teknologi algoritma yang lain. Seterusnya, analisis kuantitatif menunjukkan bahawa MBMA_Average yang dicadangkan juga menghasilkan nilai yang terbaik dalam pengukuran PSNR, SSIM, MSE dan FSIM berbanding algoritma-algoritma tersebut.

NEW DIGITAL IMAGES MAGNIFICATION ALGORITHM BASED ON INTEGRATION OF MAPPING AND SYNTHESIS CONCEPT

Abstract

Image magnification is the process of reconstructing High Resolution (HR) image from its Low Resolution (LR) version. Image magnification process is one of the most important processes that is used to fulfill human needs. This process is used in several applications such as in medical imaging, remote sensing, enhancing image details and printing. In general, the common magnification algorithms employ interpolation concept. However, these interpolation-based magnification algorithms suffer from the appearance of undesirable artifacts in magnified images such as edge blocking and edge blurring. These artifacts mostly appear around the strong edges.Therefore, instead of employing interpolation concept, this study focuses in introducing new magnification algorithm based on synthesis concept. As the synthesis concept has been used in patch based texture synthesis algorithms, a modification to the patch based texture synthesis algorithms has to be carried out in order to use it for the image magnification purpose. The proposed modification produces a new magnification algorithm called the Mapping Based Magnification Algorithm (MBMA). The proposed MBMA replaces each pixel in the LR image with a two dimensional HR block to reconstruct the HR image. The proposed algorithm is basically designed to preserve the strong edges. Two variants of the proposed MBMA are introduced, namely MBMA_Average and MBMA_Direct.The proposed MBMA variants have been compared with other state-of-the-art magnification algorithms by using 100 standard images and 200 Malaysian License Car Plate (MLCP) images. The

proposed MBMA_Average produces the best magnified images with less undesirable artifacts (i.e. less of edge blurring and edge blocking) compared with the other state-of-the-art algorithms. Furthermore, the quantitative analyses show that the proposed MBMA_Average also produces the best value of the PSNR, MSE, SSIM and FSIM measurements compared to those algorithms.

CHAPTER 1

INTRODUCTION

1.1 Background

In fact, most of the information received by human is in pictorial form. Thus, it is important to apply some operations on the image to get the required information. Image zooming is one of the most important operations in both human and computer vision fields. Zooming an image is the process of changing the number of display pixels per image pixel as well as in physical size (Kumar, 2009; Sharmal, 2012; Sharma1 and Walia, 2013). If the number of the pixels in the zoomed image is larger than the number of pixels in the input image, thus this process is defined as zoom-in or magnification process. On the otherhand, if the number of the new displayed pixels is smaller than the number of pixels in the input image, this is considered as zoom-out process (Abd ElSamie et al, 2013;Altunbasak,2010).

For the magnification process, a Low Resoultion (LR) image (i.e. the image that is generated from an imaging system with inadequate detectors (Yang and Huang, 2010)) a High Resoultion (HR) image (i.e. the image that contains more details at particular part in the LR image (Yang and Huang, 2010)) is constructed. This process is very important for specific applications including (but not limited) medical imaging (Salih and Ramly, 2002; Raveendran and Thoms, 2014),remote sensing(Jensen, 1996; DiBiase, 2007) and enhancing image details(Basque Research, 2013; Davis, 1998; Wittman, 2005).

1.2 Current Trend in Image Magnification Algorithms

Several magnification algorithms have been proposed by various researchers. These algorithms depend on using interpolation concept in magnifying the LR image and they can be defined as interpolation based magnification algorithms. Interpolation is the process of estimating the values of function at positions lying between its samples (Wolberg, 1996; Abd El-Samie et al., 2013; Tripathi and Kirar, 2014). The estimation process is achieved by fitting a continuous function through the discrete input samples.

There is an inclusive list of different approaches for interpolation based magnification algorithms. This list can be divided into two approaches namely,adaptive and non-adaptive approaches. Most of adaptive and non-adaptive approaches result in a varity of undesirable artifacts (Atkins et al., 2001; Ouwerkerk, 2006; Altunbasak, 2010; Grover, 2014). These artifacts include edge blocking (Nallaperumalet al., 2006), edge blurring (Singhand Singh, 2013) and fail in preserving image details.

The non-adaptive algorithms treat all pixels equally and they are easy to be implemented. These algorithms include bilinear and cubic convolution. These algorithms are the simplest ones and they are preferred for their low complexity (Thevenaz et al., 2000; Giachetti and Asuni, 2011). However, they suffer from the inability to adapt to varying local structure of the LR image. Furthermore, these algorithms tend to cause undesirable artifacts such as blurring and blocking around edges (Amanatiadis and Andreadis, 2009).

Recently, numerous adaptive interpolation algorithms have been presented in the literature. These algorithms struggled to overcome the shortcomings of the non-adaptive algorithms. Adaptive interpolation algorithms depend on what they are interpolating based on certain information extracted from the structure of the image including edges and smooth areas (Kim, 2014,Li and Orchard, 2001). These algorithms can be classified
as edge-adaptive interpolation, statistical learning-based interpolation, optimal recovery based interpolation and transform domain interpolation (Altunbasak, 2010).

The edge directed interpolation algorithms take into account the edge information in the LR image either explicitly (Chen et al., 2005) or implicitly (Li and Orchard, 2001; Giachetti and Asuni, 2011; Zhou et al., 2012). The subjective quality of the magnified images using these algorithms is improved with higher computational cost. Furthermore, the magnified images have sharper edges than magnified images using the non-adaptive algorithms. However, edge directed algorithms usually cause artifacts in complex edges such as in textures (Amanatiadis and Andreadis, 2009).

The statistical learning-based interpolation algorithms based on the observation that pixels can be classified to different spatial context classes such as edges of different orientation and smooth textures. Then an interpolation filter is designed for the selected class to get the interpolated image (Altunbasak, 2010). These algorithms are considered as the most effective interpolation algorithms since the magnified image has superior visual quality with sharper edges than many other algorithms. However, these algorithms have difficulties dealing with texture areas (Altunbasak, 2010).

The Adaptively Quadratic Interpolation Algorithms (AQUA) are based on specifying the local quadratic signal class from local image patches and then applying optimal recovery to estimate the unknown points. While the AQUA works well for small interpolation factors, the magnified image is deteriorated when interpolating by larger factors (Altunbasak, 2010).

The transform domain interpolation algorithms focus on the use of Wavelet Transform(WT) and Discrete Cosine Transform(DCT) in decomposing the image into specific frequency bands, then process each band separately. The magnified image

