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SIFAT MEKANIK DAN BIODEGRADASI MAGNESIUM BERSALUT 

HIDROKSIAPATIT DIENAP MELALUI SEMBURAN SEJUK 

 

ABSTRAK 

Proses semburan sejuk yang mudah dan telah diubahsuai digunakan untuk 

menyalut serbuk hidrosiapatit ke atas substrat magnesium tulen yang dipanaskan 

kepada 350°C atau 550°C dan dihaluskan permukaan samada 240 atau 2000 gred 

kekasaran dengan jarak ‘standoff’ 20 mm atau 40 mm. Prosedur ini diulang lima dan 

sepuluh kali. Satu reka bentuk faktorial pecahan (24-1) telah digunakan untuk 

menjelaskan faktor-faktor proses yang memberi kesan kepada ketebalan, kekuatan dan 

modulus elastik sampel. Analisis kaedah tindihan digunakan untuk menentukan nilai 

domain yang optimum. Kemudian, kaedah kecuraman digunakan untuk mengesah dan 

memindahkan nilai domain yang optimum. Sifat mekanik yang maksimum telah 

diperolehi pada jarak 30mm, gred kekasaran permukaan Ra=0.14 dan 460°C suhu 

pemanasan substrat yang menghasilkan salutan optimum dengan ketebalan 49.77μm, 

462.61 MPa kekuatan dan 45.69 GPa modulus elastik. Lapisan hidroksiapatit tidak 

menunjukkan perubahan fasa pada suhu 550°C. Daya mikroskop atom menunjukkan 

topografi lapisan seragam dan mikroskop imbasan elektron menunjukkan ikatan yang 

baik antara lapisan bersalut dan substrat. Kajian biodegradasi menunjukkan bahawa 

lapisan apatit tulang yang terbentuk di atas permukaan lapisan selepas 24 jam boleh 

menggalakkan ikatan tulang dengan tisu hidup dan meningkatkan jangka hayat 

lapisan. Kajian kehilangan berat menunjukkan bioaktiviti bagi sampel bersalut lebih 

baik berbanding dengan sampel tidak bersalut. Ujian lekatan mendedahkan bahawa 

pengurangan kekuatan ikatan datang dari pembubaran lapisan kimia yang berterusan. 

Selepas 24 jam rendaman, kekuatan ikatan adalah 40 MPa. Ujian percepatan kakisan 
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menunjukkan bahawa lapisan hidroksiapatit melindungi dan mencegah magnesium 

daripada kakisan dalam persekitaran mengakis. 
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 MECHANICAL AND BIODEGARADABLE PROPERTIES OF 

HYDROXYAPATITE COATED MAGNESIUM DEPOSITED BY COLD 

SPRAY 

 

 

ABSTRACT 

A simple and modified cold spray process was developed in which 

hydroxyapatite powder was coated onto pure magnesium substrates preheated to 

350°C or 550°C and ground to either 240 grit or 2000 grit surface roughness, with 

standoff distances of 20 mm or 40 mm. The procedure was repeated five and ten times. 

A fractional factorial design (24-1) was applied to elucidate the process factors that 

significantly affected the thickness, nanohardness and elastic modulus of the coating 

sample. The overlaid method analysis was employed to determine trade off optimal 

values from multiple responses. Then, steepest method was used to reconfirm and 

relocate the optimal domain. The maximum mechanical properties of the coating were 

determined at 30mm standoff distance, surface roughness Ra=0.14µ and 460°C 

substrate heating temperature which accommodate the optimum coating of 49.77μm 

thickness, 462.61 MPa nanohardness and 45.69 GPa elastic modulus. The 

hydroxyapatite coatings did not show any phase changes at 550°C. Atomic force 

microscopy revealed a uniform coating topography and scanning electron microscopy 

revealed good bonding between the coated layers and the substrates. The 

biodegradable study suggested that bone-like apatite layer formed on the surface of the 

coatings at 2 hours may promote bone bonding with living tissues and increase the 



xxii 
 

longevity of coatings. The mass loss experiment concluded that coated sample shows 

a better bioactivity compared to uncoated sample. The adhesion test revealed that 

reduction of bond strength comes mostly from the continuation of chemical dissolution 

of coatings. After 24 hours of immersion, the bond strength was 40 MPa which 

satisfied the requirement for bioimplant application. The accelerated corrosion test 

concluded that the hydroxyapatite coating remarkably protect and prevent magnesium 

from corrosion in the corrosive environment.  
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CHAPTER ONE 

INTRODUCTION 

 

 

1.1 Research background 

The desire to bring man-made materials into the treatment of human body has 

raised an influx of research into the field of biomaterials. A challenge in the region of 

biomaterials is to enhance the interface between biomaterial implants and the living 

tissue surrounding them. The thought of using materials to replace or supplement 

human biological functionsis not a recent phenomenon. Sutures were first used in 

around 4000 BC and the implantation of gold plates for skull repair is recorded back 

to 1000 BC (Patrick et al., 2014). 

 

Nowadays, patients leading to broken bone incidence are increasing which 

leads to the necessity of bone implant surgery (Picciolo et al., 2013). Therefore, there 

have been several studies on the possibilities of using different implant system in the 

human body considering cost, life and bio/mechanic compatibility. Unfortunately, the 

choice is limited with stainless steel (SS), cobalt chromium and titanium (Ti) being the 

most preferred materials (Manivasagam et al., 2010). Although currently in use for the 

vast majority of applications there are still number of problems associated with these 

implants. One of the major ones is that if these implants exist in the human body for a 
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long time, they will release toxic elements to impair human body's health. For example, 

metal ions (e.g. aluminium and vanadium ions) are discharged from the Ti–6Al–4V 

implant to the bloodstream and these may cause local irritation of the tissues 

encompassing the implant (Manivasagam et al., 2010). The application of bio-

degradable implants can solve this issue. The biodegradable implants can 

progressively be dissolved, absorbed, consumed or excreted after the bone tissue heals. 

In correlation, magnesium (Mg) and its alloys are potential biodegradable materials 

because of their attractive biological performances (Song, 2007; Kirkland et al., 2012; 

Seal et. al., 2009). 

 

The idea of utilizing Mg as implant are strengthen by the superior 

biodegradability of metal Mg in body fluids by corrosion. It has been known that there 

are no serious concerns on the harm that can be caused by Mg ions to the human body 

(Silleken et al., 2011).  It has been suggested that Mg can accelerate the development 

of new bone tissue and mechanical properties of Mg are the closest to those of bones 

(Poinern et al., 2012). Thus, Mg and its alloys are better than some other metallic or 

polymeric implants at bone repairing or orthopaedics. However, the use of currently 

available Mg alloys is generally not advisable as most alloying elements may be toxic 

for the human body. Furthermore, preparation of these alloys adds to the cost of the 

implant without giving any decisive advantage. Thus, use of pure Mg in bio implants 

is being seriously considered (Poinern et al., 2012). 

 

However, Mg is susceptible to attack in chloride containing solutions, e.g. the 

human body fluid or blood plasma (Song et al., 2005). If the implants being made of 
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Mg are utilized to repair the diseased bone tissue, Mg tendsto lose the mechanical 

property before the healing of bone tissue due to the rapid corrosion. Recently, a few 

research have been done to slow down the biodegradation rate of Mg alloys, including 

fluoride conversion coating (Chiu et al., 2007), alkali heat treatment (Li et al., 2007) 

and plasma immersion ion implantation (Liu et al., 2007).  

 

Other than reducing the biodegradation rate of Mg, the biocompatibility should 

also be considered.Some researchers in the field of orthopaedic biomaterials direct 

their emphasis on the manufacture and improve of bioactive properties of calcium-

phosphates and in particular much interest has been directed towards the use of 

hydroxyapatite (HAP). Hydroxyapatite coating whose primary component is 

composed of the same ions responsible for the construction of the mineral part of bone 

and teethcan fulfil the dual properties. It is bioactive with bone-bonding ability, 

making it suitable for clinical use as bone spacers and fillers. The nonappearance of 

cytotoxic effect makes HAP biocompatible with both hard and soft tissue (Choudhuri 

et al., 2009). 

 

To coat HAP powder onto highly degradable Mg substrate, any processing 

technique that melts the Mg substrate or accelerates the dissolution of Mg in fluid must 

be avoided. Thus, this work proposes the cold spray technique as a method suitable for 

coating HAP onto Mg substrate. This is also known as cold gas-dynamic spraying, 

kinetic spraying, high-velocity powder deposition and supersonic powder deposition 

(Lima et al., 2002). In principle, the feedstock powders are introduced into a high-

velocity, gas dynamic stream and directed onto a substrate surface where they impact 

and form a coating(Li et al., 2003). 
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