

MECHANICAL AND BIODEGRADABLE PROPERTIES OF HYDROXYAPATITE COATED MAGNESIUM DEPOSITED BY COLD SPRAY

by

HASNIYATI BT MD RAZI

Thesis submitted in fulfillment of the requirements for the degree of Doctor of Philosophy

September 2016

ACKNOWLEDGEMENT

Bismillahirrahmanirrohim.

Above all, first and foremost, I would like to thank Allah, who is all powerful. HIS had bestowed on me especially in giving me the strength to complete my study.

I am very grateful to my supervisor, Associate Professor Dr. Zuhailawati Bt Hussain for her vital role and patience, for being inspirational and teaching me the importance of using curiosity as the driving force behind research. Without her advice and patience, this research would probably be unintelligible. To my co-supervisor, Dr. Sivakumar s/o Ramakrishnan, thank you very much for your hard work and dedication for guiding me through my study especially in design of experiment. I would also like to express my gratitude to Prof. Dhindaw Brij Kumar from Christ University of Bangalore, India and Dr. Siti Noor Fazliah Mohd Noor from Paediatric Dentistry Unit, Advanced Medical and Dental Institute, Universiti Sains Malaysia for their kindness in guiding me through my study.

I am also indebted to the School of Materials and Mineral Resources Engineering, Universiti Sains Malaysia especially to the Dean, the Deputy Dean and the management staff for all their technical support and teaching me experimental techniques during my work in the laboratory. In particular, I wish to express my gratitude to Mr. Shafiq, Mr. Kemuridan, Mr. Shahrul, Mr. Farid, Mr. Hasnor, Mr. Azrul, Mr. Sayid and others. The use of the nanoindenter granted by the School of Mechanical Engineering, Universiti Sains Malaysia, is gratefully acknowledged. I would also like to acknowledge Kementerian Pengajian Tinggi Malaysia for providing MyBrain15 scholarship. Heartfelt gratitude goes to my beloved husband, Fahrulradzi bin Muhamad Azmi for his personal support and great patience at all time. Thank you for always remind me about Allah and my study. To my son, Muhammad Azmi Iskandar and Muhammad Azmi Zulkarnain. thank you so much for being a good sons. You are the most precious gift from Allah. Thank you to my parents, Md Razi Bin Hussain and Wan Shabiah Bt Wan Salim, and parents-in-law, Muhammad Azmi Bin Muhammad and Masriah Bt Omar who have given me their unequivocal support thought the years. You are always in my heart. Also to my sister, brothers, sisters-in-law and brothersin-law, thank you so much for your moral support.

I also have a large debt to my dearest friends especially to Laila, Masyitah, Syaza, Anis, Soo Ai, Fahmin and Farish who have offered such precious emotional support that will be never be forgotten.

Last, but by no means the least, I thank to those who are involved either directly concerning this research or indirectly in other aspect of my study. For any errors or inadequacies that may remain in this work, of course, the responsibility is entirely my own.

Thank You.

Hasniyati Bt Md Razi

TABLE OF CONTENTS

ACKNOWLEDGEMENTS	ii
TABLE OF CONTENTS	iv
LIST OF TABLES	x
LIST OF FIGURES	xii
LIST OF ABBREVIATIONS	xviii
ABSTRAK	xix
ABSTRACT	xxi

CHAPTER ONE: INTRODUCTION

1.1	Research background	1
1.2	Problem statements	4
1.3	Objective of the research	7
1.4	Research Approach	7
1.5	Scope of Thesis	8

CHAPTER TWO: LITERATURE REVIEW

2.1	Introduction		9
2.2	Biomaterials		10
	2.2.1	Desired properties of implantable biomaterials	12
	2.2.2	Metallic biomaterials	13
	2.2.3	Bioceramics	14
		2.2.3.1 Application of Bioceramic	16
2.3	Magn	esium	17
	2.3.1	Magnesium as potential biomaterial for orthopaedic implant	19

2.4	Hydro	oxyapatite	25
	2.4.1	Physical properties of hydroxyapatite	26
	2.4.2	Mechanical properties of hydroxyapatite	28
	2.4.3	Chemical properties of HAP	29
	2.4.4	Application of HAP as an implant coating	30
	2.4.5	Hydroxyapatite coating on Mg by cold spray technique	32
2.5	Cold	spraying technique	33
	2.5.1	Cold spray process parameters	38
		2.5.1.1 Particle and critical velocity	39
		2.5.1.2 Standoff distance	40
		2.5.1.3 Surface roughness	42
		2.5.1.4 Substrate heating temperature	44
2.6	Desig	n of experiment	46
	2.6.1	Screening design	51
	2.6.2	Fractional factorial design of 2 ⁴⁻¹	52
		2.6.2.1 Test for significance of factors	54
		2.6.2.2 Test for significance of the regression model	55
		2.6.2.3 Test for significance on individual model coefficients	56
	2.6.3	Use of contour plot to explore the potential relationship between variables	57
	2.6.4	Multiple responses analysis using overlaid contour plots and desirability function	58
	2.6.5	Steepest method for searching the optimal conditions	60

2.7	Biodegradable study in SBF solution	62
2.8	Accelerated corrosion test studies in 3.5wt % NaCl solution	66
2.9	Summary	68

CHAPTER THREE: MATERIALS AND RESEARCH METHODOLOGY

3.1	Introduction		70
3.2	Mater	als	71
	3.2.1	Magnesium as substrate	71
	3.2.2	Hydroxyapatite powder as coating material	72
3.3	Experi	imental procedure	72
	3.3.1 \$	Screening Design	74
		3.3.1.1 Selection of process factor and construction of 2 ⁴⁻¹ fractional factorial design	74
		3.3.2 Cold spray deposition process to coat HAP powder on Mg substrate	77
		3.3.2.1 Substrate heating process	79
3.4	Identif	fication of new region points by steepest method	79
3.5	Biode	gradable study using SBF solution	80
3.6	Accele	ccelerated test of degradation in 3.5wt % NaCl solution	
3.7	Chara	cterisation of HAP powder coated onto Mg substrate	83
	3.7.1	Elemental composition by X-ray fluorescence (XRF)	83
	3.7.2	Particle size analysis (PSA)	83
	3.7.3	Phases identification by X-Ray diffraction (XRD)	84
	3.7.4	Atomic force microscopy (AFM)	85
	3.7.5	Elemental composition, phase identification and morphology conditions by scanning electron microscopy (SEM) and energy dispersive X-ray analyser (EDX)	85

	3.7.6 Determine hardness and elastic modulus using nanoindentation test	86
3.8	Adhesion test	90
3.9	Determination of Mg, Ca and P by inductively couple plasma optical emission spectroscopy (ICPOES)	92
	3.9.1 Reagents and standards	93
	3.9.2 Instrumentations	93
	3.9.3 Operating Conditions	93
СНА	APTER FOUR: RESULTS AND DISCUSSIONS	
4.1	Introduction	95
4.2	Elemental Composition of Mg substrate by XRF	96
4.3	Particle Size Analysis of Pre-spray Powder by Particle Size Analyser	97
4.4	Phase analysis of HAP coating by XRD	
4.5	Screening through 2 ⁴⁻¹ fractional factorial design	99
	4.5.1 Analysis of variance (ANOVA)	101
	4.5.1.1 Analysis of variance: Thickness, nanohardness and	102
	elastic modulus of coating	
	4.5.1.2 Half normal plot: Thickness, nanohardness and	108
	elastic modulus of coating	
	4.5.1.3 Residual analysis: Thickness, nanohardness and	113
	elastic modulus of coating	
	4.5.1.4 Main effects plot: Thickness, nanohardness and elastic	118
	modulus of coating	
	4.5.1.5 Interaction plot: Thickness, nanohardness and elastic	121
	modulus of coating	

4.6	Effect of Standoff distance, surface roughness and substrate heating temperature on responses	125	
4.7	Atomic Force Microscopy Analysis	131	
4.8	Overlaid analysis of multiple responses	134	
4.9	Multiple responses optimization	138	
4.10	Steepest Method Analysis	140	
4.11	Characterization and biodegradable assessment in simulated body fluid (SBF)	144	
	4.11.1 Characterization and degradation behaviour of uncoated Mg substrate in simulated body fluid (SBF)	144	
	4.11.2 Characterization and degradation behaviour of HAP coated on Mg substrate in simulated body fluid (SBF)	152	
	4.11.3 Mass Loss as a measure of biocorrosion	161	
	4.11.4 Adhesion Test for HAP coated on Mg substrate	164	
4.12	Immersion test	166	
	4.12.1 Corrosion behaviour of uncoated AZ51 in the3.5 wt% NaCl solution	166	
	4.12.2 Corrosion behaviour of coated Mg in the3.5 wt% NaCl solution	169	
CHAP	TER FIVE: CONCLUSION AND RECOMMENDATIONS		
5.1	Conclusion	172	
5.2	Recommendations for future work	174	
REFE	REFERENCES 1		

APPENDICES

LIST OF PUBLICATIONS

LIST OF TABLES

Table 2.1:	Bioceramics and its applications	17
Table 2.2:	Chemical composition of pure magnesium and AZ31, AZ61 and AZ91 alloys (mass%)	19
Table 2.3:	Physical and mechanical properties of natural bone and some implant materials	22
Table 2.4:	Some calcium phosphate compounds	26
Table 2.5:	Mechanical properties of synthetic HAP	28
Table 2.6:	Comparison of the mechanical properties of human cortical bone and hydroxyapatite	30
Table 2.7:	The 2^{4-1} design with the defining relation $I = ABCD$	53
Table 2.8:	Aliases for 2 ⁴⁻¹ fractional factorial design	54
Table 2.9:	Ion concentration of SBF in comparison with human blood plasma	63
Table 3.1:	The atomic, crystal structure and physical properties of Mg	71
Table 3.2:	Mechanical properties of synthetic HAP	72
Table 3.3:	Levels of factors for screening	75
Table 3.4:	Factorial designs for screening factor of 2 ⁴⁻¹	77
Table 3.5:	Ion concentration of SBF	81
Table 3.6:	Nanotest specification	90
Table 3.7:	Optima 7300 DV operating conditions	94
Table 4.1:	XRF results on purity of Mg sample	97
Table 4.2:	The experimental design and measured responses	100
Table 4.3:	ANOVA for coating thickness (Y_1)	105

Table 4.4:	ANOVA for nanohardness (Y ₂)	107
Table 4.5:	ANOVA for elastic modulus (Y ₃)	108
Table 4.6:	Type of effect based on regression analysis for coating thickness	110
Table 4.7:	Type of effect based on regression analysis for nanohardness	111
Table 4.8:	Type of effect based on regression analysis for elastic modulus	113
Table 4.9:	Hardness of pure Mg at various temperatures	128
Table 4.10:	Experimental and calculated values for the response optimiser	140
Table 4.11:	Points along the path of steepest ascent and decent and observed thickness of the nanohardness and elastic modulus of the sample at the points	142
Table 4.12:	EDX profile and Ca:P ratio of ion dissolution in SBF	161
Table 4.13:	Specific mass loss for uncoated and coated sample after immersion in SBF solution for various time periods	162
Table 4.14:	Bond strength data for HAP coated on Mg substrate for various immersion period	164
Table 4.15:	SEM micrograph and microanalysis of substrate after immersion of uncoated samples for different periods	165
Table 4.16:	SEM micrograph and microanalysis of substrate after immersion of coated samples for different time period	166

LIST OF FIGURES

Figure 2.1:	Schematic representation of HAP crystal structure	27
Figure 2.2:	Gas temperatures and particle velocities in different thermal spray processes	34
Figure 2.3:	Main elements of cold spray setup	35
Figure 2.4:	Stages of coating formation in the cold spray process	37
Figure 2.5:	A typical LPCS device	38
Figure 2.6:	SEM micrograph of the titanium deposited onto aluminium 7075-76 at the stand-off distance of (a) 20mm, (b) 40mm and (c) 60mm	42
Figure 2.7:	Schematic representation of large hydroxyapatite particles impinging a substrate surface with (a) low surface roughness and (b) high surface roughness	43
Figure 2.8:	SEM micrograph shows the surface of coated AZ51 substrate heated at (a) 300°C, (b) 400°C and (c) 500°C	45
Figure 2.9:	Cross-sectional microstructure of a Ni particle depositing on the Cu substrate temperature of (a) 25°C, (b) 200°C and (c) 400°C	46
Figure 2.10:	The 2_{IV}^{4-1} design	54
Figure 2.11:	Contour plot of quality vs temp, time	58
Figure 2.12:	An example of overlaid contour plot	59
Figure 2.13:	Direction of steepest ascent and descent path	62
Figure 2.14:	XPS analysis of AZ31 immersed in SBF solution	64

Figure 2.15:	(a) Surface morphology of AZ31 immersed in SBF for 48h,(b)Surface morphology of AZ31 immersed in SBF for 72 h which fracture and pit corrosion was observed of surface	65
Figure 3.1:	Flow chart of the research	73
Figure 3.2:	Schematic view of cold spray set up	79
Figure 3.3:	Specimen placed in SBF solution	82
Figure 3.4:	Typical load/displacement graph obtained during nano indentation testing	88
Figure 3.5:	Sample prepared for adhesion test	92
Figure 4.1:	Cumulative distribution versus particle size of HAP	97
Figure 4.2:	X-ray diffraction spectrums for pure Mg and HAP at 550°C	99
Figure 4.3:	Half Normal Plot for coating thickness	109
Figure 4.4:	Half normal Plot for nanohardness	111
Figure 4.5:	Half normal plot for elastic modulus	112
Figure 4.6:	Good normal probability plot	114
Figure 4.7:	Normal plot that does not meet satisfaction	114
Figure 4.8:	Residual analysis (a) normal probability plot (b) residual vs fitted value (c) histogram and (d) residual vs observation order for coating thickness	116
Figure 4.9:	Residual analysis (a) normal probability plot (b) residual vs fitted value (c) histogram and (d) residual vs observation order for nanohardness	117
Figure 4.10:	Residual analysis (a) normal probability plot (b) residual vs fitted value (c) histogram and (d) residual vs observation order for elastic modulus	118
Figure 4.11:	Main effects plot for coating thickness	119

Figure 4.12:	Main effects plot for nanohardness of coating	120	
Figure 4.13:	Main effects plot for elastic modulus of coating	120	
Figure 4.14:	Interaction plot for coating thickness	122	
Figure 4.15:	Interaction plot for nanohardness of coating	122	
Figure 4.16:	Interaction plot for elastic modulus of coating		
Figure 4.17:	SEM micrograph of (a) cross section are of coating, (b) surface 1 morphology and (c) chemical analysis of run 4		
Figure 4.18:	SEM micrograph of (a) cross section are of coating, (b) surface 1 morphology and (c) chemical analysis of run 11		
Figure 4.19:	Schematic representation of large hydroxyapatite particles impinging a substrate with (a) low surface roughness and (b) high surface roughness		
Figure 4.20:	Elements at the small gap between HAP coating and the Mg substrate	131	
Figure 4.21:	Two-dimensional AFM image of HAP coating sprayed and its surface roughness sprayed at (a) 550°C (run 11) and (b) 350°C (run 4)	132	
Figure 4.22:	Response surface plot for coating thickness (a) surface roughness vs standoff distance, (b) substrate heating temperature vs standoff distance and (c) substrate heating temperature vs surface roughness	135	
Figure 4.23:	Response surface plot for nanohardness of coating (a) surface roughness vs standoff distance, (b) substrate heating temperature vs standoff distance and (c) substrate heating temperature vs surface roughness	136	
Figure 4.24:	Response surface plot for elastic modulus of coating (a) surface	136	

Figure 4.24: Response surface plot for elastic modulus of coating (a) surface 136 roughness vs standoff distance, (b) substrate heating temperature vs standoff distance and (c) substrate heating temperature vs surface roughness

- Figure 4.25: Overlaid Contour plot of coating thickness, nanohardness 138 and elastic modulus
- Figure 4.26: Optimal solution for the input variable combinations along with 139 an optimisation plot
- Figure 4.27: Steps along the path of steepest method for (a) thickness (b) 143 nanohardness and (c) elastic modulus
- Figure 4.28: SEM micrograph and EDS analysis of uncoated substrate before 144 immerse in SBF
- Figure 4.29: SEM micrograph and EDS analysis of uncoated substrate after 145 immersion in SBF at 10 min
- Figure 4.30: SEM micrograph and EDS analysis of uncoated substrate after 145 immersion in SBF at 30 min
- Figure 4.31: SEM micrograph and EDS analysis of uncoated substrate after 146 immersion in SBF at 60 min
- Figure 4.32: Schematic illustration of the corrosion of Mg in an aqueous 147 environment
- Figure 4.33: SEM micrograph and EDS analysis of uncoated substrate after 148 immersion in SBF 120 min
- Figure 4.34: (a) SEM micrograph and EDS analysis of uncoated substrate 150 after immersion in SBF at 240 min
- Figure 4.35: SEM micrograph and EDS analysis of uncoated substrate after 151 immersion in SBF at 1440 min.
- Figure 4.36: SEM micrograph of substrate before immersion of coated 152 sample
- Figure 4.37: SEM micrograph of substrate after immersion of coated sample 153 at 10 min
- Figure 4.38: SEM micrograph of substrate after immersion of coated sample 153 at 30 min
- Figure 4.39: SEM micrograph of substrate after immersion of coated sample 154 at 60 min

Figure 4.40:	Surface morphologies of the samples immersed in the SBF Solution at 60 min	155
Figure 4.41:	SEM micrograph of substrate after immersion of coated sample at 120 min	155
Figure 4.42:	Surface morphologies of samples immersed in the SBF for 120 min at (a) 2500x magnifications (b) 5000x magnifications	156
Figure 4.43:	SEM micrograph of substrate after immersion of coated sample at 240 min	156
Figure 4.44:	Surface morphologies of samples immersed in the SBF solution at 240min	158
Figure 4.45:	SEM micrograph of substrate after immersion of coated sample at 1440 min	158
Figure 4.46:	Microcracks of tortoise shell- like character	159
Figure 4.47:	Specific mass loss of specimens immersed in SBF for uncoated and coated sample	162
Figure 4.48:	SEM and EDS analysis on Ca-P-Mg apatite deposition on the Mg substrate after 60min of immersion	163
Figure 4.49:	Bond strength of the HAP coated on Mg substrate after Immersion in SBF solution for various time period	165
Figure 4.50:	SEM micrograph and EDS analysis of substrate after immersion of uncoated sample at day 1	167
Figure 4.51:	SEM micrograph and EDS analysis of substrate after immersion of uncoated samples at day 4	168
Figure 4.52:	SEM micrograph and EDSanalysis of substrate after immersion of uncoated samples at day 10	168
Figure 4.53:	SEM micrograph and EDS analysis of substrate after immersion of uncoated samples at day 21	168

- Figure 4.54: SEM micrograph and EDS analysis of substrate after immersion 169 of coated sample at day 1
- Figure 4.55: SEM micrograph and EDS analysis of substrate after immersion 170 of coated samples at day 4
- Figure 4.56: SEM micrograph and EDS analysis of substrate after immersion 171 of coated samples at day 10
- Figure 4.57: SEM micrograph and EDS analysis of substrate after immersion 171 of coated samples at day 21

LIST OF ABREVIATIONS

SS	Stainless steel
Ti	Titanium
Mg	Magnesium
НАР	Hydroxyapatite
Cu	Copper
Al	Aluminium
Zn	Zinc
Mn	Manganese
Fe	Iron
Ni	Nickel
Ca	Calcium
Pb	Lead
XRD	X-ray diffraction
AFM	Atomic force microscope
SEM	Scanning electron microscope
EDX	Energy-dispersive X-ray analyser
SBF	Simulated body fluid
XRF	X-ray fluorescence
НСР	Hexagonal close-packed
CS	Cold spray
LPCS	Low pressure cold spray
Vp	Particle velocity
Vc	Critical velocity
CFD	Computational fluid dynamic
DOE	Design of experiment
HVOF	High velocity oxy fuel
D	Desirability

SIFAT MEKANIK DAN BIODEGRADASI MAGNESIUM BERSALUT HIDROKSIAPATIT DIENAP MELALUI SEMBURAN SEJUK

ABSTRAK

Proses semburan sejuk yang mudah dan telah diubahsuai digunakan untuk menyalut serbuk hidrosiapatit ke atas substrat magnesium tulen yang dipanaskan kepada 350°C atau 550°C dan dihaluskan permukaan samada 240 atau 2000 gred kekasaran dengan jarak 'standoff' 20 mm atau 40 mm. Prosedur ini diulang lima dan sepuluh kali. Satu reka bentuk faktorial pecahan (2^{4-1}) telah digunakan untuk menjelaskan faktor-faktor proses yang memberi kesan kepada ketebalan, kekuatan dan modulus elastik sampel. Analisis kaedah tindihan digunakan untuk menentukan nilai domain yang optimum. Kemudian, kaedah kecuraman digunakan untuk mengesah dan memindahkan nilai domain yang optimum. Sifat mekanik yang maksimum telah diperolehi pada jarak 30mm, gred kekasaran permukaan Ra=0.14 dan 460°C suhu pemanasan substrat yang menghasilkan salutan optimum dengan ketebalan 49.77µm, 462.61 MPa kekuatan dan 45.69 GPa modulus elastik. Lapisan hidroksiapatit tidak menunjukkan perubahan fasa pada suhu 550°C. Daya mikroskop atom menunjukkan topografi lapisan seragam dan mikroskop imbasan elektron menunjukkan ikatan yang baik antara lapisan bersalut dan substrat. Kajian biodegradasi menunjukkan bahawa lapisan apatit tulang yang terbentuk di atas permukaan lapisan selepas 24 jam boleh menggalakkan ikatan tulang dengan tisu hidup dan meningkatkan jangka hayat lapisan. Kajian kehilangan berat menunjukkan bioaktiviti bagi sampel bersalut lebih baik berbanding dengan sampel tidak bersalut. Ujian lekatan mendedahkan bahawa pengurangan kekuatan ikatan datang dari pembubaran lapisan kimia yang berterusan. Selepas 24 jam rendaman, kekuatan ikatan adalah 40 MPa. Ujian percepatan kakisan menunjukkan bahawa lapisan hidroksiapatit melindungi dan mencegah magnesium daripada kakisan dalam persekitaran mengakis.

MECHANICAL AND BIODEGARADABLE PROPERTIES OF HYDROXYAPATITE COATED MAGNESIUM DEPOSITED BY COLD SPRAY

ABSTRACT

A simple and modified cold spray process was developed in which hydroxyapatite powder was coated onto pure magnesium substrates preheated to 350°C or 550°C and ground to either 240 grit or 2000 grit surface roughness, with standoff distances of 20 mm or 40 mm. The procedure was repeated five and ten times. A fractional factorial design (2^{4-1}) was applied to elucidate the process factors that significantly affected the thickness, nanohardness and elastic modulus of the coating sample. The overlaid method analysis was employed to determine trade off optimal values from multiple responses. Then, steepest method was used to reconfirm and relocate the optimal domain. The maximum mechanical properties of the coating were determined at 30mm standoff distance, surface roughness Ra=0.14µ and 460°C substrate heating temperature which accommodate the optimum coating of 49.77µm thickness, 462.61 MPa nanohardness and 45.69 GPa elastic modulus. The hydroxyapatite coatings did not show any phase changes at 550°C. Atomic force microscopy revealed a uniform coating topography and scanning electron microscopy revealed good bonding between the coated layers and the substrates. The biodegradable study suggested that bone-like apatite layer formed on the surface of the coatings at 2 hours may promote bone bonding with living tissues and increase the

longevity of coatings. The mass loss experiment concluded that coated sample shows a better bioactivity compared to uncoated sample. The adhesion test revealed that reduction of bond strength comes mostly from the continuation of chemical dissolution of coatings. After 24 hours of immersion, the bond strength was 40 MPa which satisfied the requirement for bioimplant application. The accelerated corrosion test concluded that the hydroxyapatite coating remarkably protect and prevent magnesium from corrosion in the corrosive environment.

CHAPTER ONE

INTRODUCTION

1.1 Research background

The desire to bring man-made materials into the treatment of human body has raised an influx of research into the field of biomaterials. A challenge in the region of biomaterials is to enhance the interface between biomaterial implants and the living tissue surrounding them. The thought of using materials to replace or supplement human biological functions not a recent phenomenon. Sutures were first used in around 4000 BC and the implantation of gold plates for skull repair is recorded back to 1000 BC (Patrick et al., 2014).

Nowadays, patients leading to broken bone incidence are increasing which leads to the necessity of bone implant surgery (Picciolo et al., 2013). Therefore, there have been several studies on the possibilities of using different implant system in the human body considering cost, life and bio/mechanic compatibility. Unfortunately, the choice is limited with stainless steel (SS), cobalt chromium and titanium (Ti) being the most preferred materials (Manivasagam et al., 2010). Although currently in use for the vast majority of applications there are still number of problems associated with these implants. One of the major ones is that if these implants exist in the human body for a long time, they will release toxic elements to impair human body's health. For example, metal ions (e.g. aluminium and vanadium ions) are discharged from the Ti–6Al–4V implant to the bloodstream and these may cause local irritation of the tissues encompassing the implant (Manivasagam et al., 2010). The application of bio-degradable implants can solve this issue. The biodegradable implants can progressively be dissolved, absorbed, consumed or excreted after the bone tissue heals. In correlation, magnesium (Mg) and its alloys are potential biodegradable materials because of their attractive biological performances (Song, 2007; Kirkland et al., 2012; Seal et. al., 2009).

The idea of utilizing Mg as implant are strengthen by the superior biodegradability of metal Mg in body fluids by corrosion. It has been known that there are no serious concerns on the harm that can be caused by Mg ions to the human body (Silleken et al., 2011). It has been suggested that Mg can accelerate the development of new bone tissue and mechanical properties of Mg are the closest to those of bones (Poinern et al., 2012). Thus, Mg and its alloys are better than some other metallic or polymeric implants at bone repairing or orthopaedics. However, the use of currently available Mg alloys is generally not advisable as most alloying elements may be toxic for the human body. Furthermore, preparation of these alloys adds to the cost of the implant without giving any decisive advantage. Thus, use of pure Mg in bio implants is being seriously considered (Poinern et al., 2012).

However, Mg is susceptible to attack in chloride containing solutions, e.g. the human body fluid or blood plasma (Song et al., 2005). If the implants being made of Mg are utilized to repair the diseased bone tissue, Mg tendsto lose the mechanical property before the healing of bone tissue due to the rapid corrosion. Recently, a few research have been done to slow down the biodegradation rate of Mg alloys, including fluoride conversion coating (Chiu et al., 2007), alkali heat treatment (Li et al., 2007) and plasma immersion ion implantation (Liu et al., 2007).

Other than reducing the biodegradation rate of Mg, the biocompatibility should also be considered.Some researchers in the field of orthopaedic biomaterials direct their emphasis on the manufacture and improve of bioactive properties of calciumphosphates and in particular much interest has been directed towards the use of hydroxyapatite (HAP). Hydroxyapatite coating whose primary component is composed of the same ions responsible for the construction of the mineral part of bone and teethcan fulfil the dual properties. It is bioactive with bone-bonding ability, making it suitable for clinical use as bone spacers and fillers. The nonappearance of cytotoxic effect makes HAP biocompatible with both hard and soft tissue (Choudhuri et al., 2009).

To coat HAP powder onto highly degradable Mg substrate, any processing technique that melts the Mg substrate or accelerates the dissolution of Mg in fluid must be avoided. Thus, this work proposes the cold spray technique as a method suitable for coating HAP onto Mg substrate. This is also known as cold gas-dynamic spraying, kinetic spraying, high-velocity powder deposition and supersonic powder deposition (Lima et al., 2002). In principle, the feedstock powders are introduced into a high-velocity, gas dynamic stream and directed onto a substrate surface where they impact and form a coating(Li et al., 2003).