FORMATION AND CHARACTERIZATION OF Pb_xCd_{1-x}S INTERLAYER FOR PbS/CdS/ZnS QUANTUM DOT SENSITIZED SOLAR CELLS

by

QUAH AI LI

Thesis submitted in fulfillment of the requirements

for the Degree of

Master of Science

AUGUST 2014

DECLARATION

I would like to declare that the contents presented in this thesis entitled "Formation and Characterization of $Pb_xCd_{1-x}S$ Interlayer for PbS/CdS/ZnS Quantum Dot Sensitized Solar Cells" are my own work which was done at Universiti Sains Malaysia unless stated otherwise. The results obtained did not contain materials that were submitted without acknowledgement to any universities or materials that were previously published, written or produced by another person except due reference was made in the text.

Name of student	: Quah Ai Li	Signature:
Date	:	
Witnessed by		
Supervisor	: Dr. Khatijah Aisha bt. Yaacob	Signature:
Date	:	

ACKNOWLEDGEMENT

First of all, I would like to express my greastest gratitude to my supervisors Dr. Khatijah Aisha bt. Yaacob who had provided guidance and advice to me in terms of technical and theory as this project was being carried out. Her contribution would not be forgotten.

Secondly, I greatly thanks to the dean of the School of Materials and Mineral Resources, Engineering Campus of University Sains Malaysia, Profesor Hanafi B. Ismail for providing such a good environment and safe place for me to complete my project.

Besides, I would like to thank all the academic, administrative, and technical staffs for their endless supports and assistance. Specially appreciation was given to Mr Azrul, Mr Rashid, Mr Khairi, Mr Zaini and Madam Fong for their valuable technical supports and assistances. They are greatly helpful for providing all the apparatus needed and willing to help me explore and handle machines during my experiment. Last but not least, I would like thank to my family members and friends for their endless encouragement and supports in making this research reality.

TABLE OF CONTENTS

ACKNOWLEDGEMENTS	ii
TABLE OF CONTENTS	iii
LIST OF TABLES	vii
LIST OF FIGURES	ix
LIST OF ABBREVIATIONS	xvi
LIST OF SYMBOLS	xviii
ABSTRAK	xix
ABSTRACT	xxi

CHAPTER 1 INTRODUCTION

1.1	Introduction	1
1.2	Problem Statement	6
1.3	Research Objectives	8
1.4	Research Scope	8
1.5	Thesis Outline	9

CHAPTER 2 LITERATURE REVIEW

2.1	Introduction	10
2.2	Dye Sensitized Solar Cells (DSSCs)	12
2.3	Quantum Dot Sensitized Solar Cells (QDSSCs)	13
2.4	Differences between QDSSCs and DSSCs	17
2.5	Quantum Dots	18

2.6	Titanium Dioxide (TiO ₂)	22
2.7	Lead Sulphide (PbS)	24
2.8	Cadmium Sulphide (CdS)	25
2.9	Zinc Sulphide (ZnS)	28
2.10	Lead Cadmium Sulphide (Pb _x Cd _{1-x} S)	30
2.11	Fabrication of QD	31
	2.11.1 Chemical Bath Deposition (CBD)	33
	2.11.2 Successive Ionic Layer Adsorption and Reaction (SILAR)	34
	2.11.3 Surface Attachment through Molecular Linkers	36
	2.11.4 Electrophoretic Deposition	38
	2.11.5 Direct Adsorption (DA)	38

CHAPTER 3 Materials and Methodology

3.1	Introduction 3	
3.2	Chemical and Materials	
	3.2.1 Fluorine-doped Tin Oxide (FTO) Glass	40
	3.2.2 TiO ₂ Paste DSL 18-NR-T	40
	3.2.3 Chemicals	41
3.3	Cleaning of Fluorine-doped Tin Oxide (FTO) Glass	42
3.4	Preparation of the TiO ₂ Electrode	42
3.5	Preparation of Sensitizer for TiO2 Mesoporous Photoanode	44
3.6	Preparation of Polysulfide	49
3.7	Preparation of Counter Electrode	50
3.8	QDSSCs Assemble	51

3.9	FTO gl	ass, TiO ₂ Electrode, TiO ₂ Mesoporous Photoanode and Solar	52
	Cell Ch	aracterization	
	3.9.1	X-Ray Diffraction (XRD)	53
	3.9.2	Field Emission Scanning Electron Microscopy (FESEM)	55
	3.9.3	Transmission Electron Microscopy (TEM)	56
	3.9.4	UV-Visible Spectroscopy	56
	3.9.5	Current Density-Voltage (J-V) Measurement	57

CHAPTER 4 RESULTS AND DISCUSSION

4.1	Introdu	ction	60
4.2	X-Ray Diffraction (XRD)		63
	4.2.1	FTO Glass and TiO ₂ Electrode	63
	4.2.2	Deposition of Six SILAR Cycles of PbS, CdS, ZnS and	65
		Pb _x Cd _{1-x} S	
4.3	Field E	mission Scanning Electron Microscopy (FESEM)	68
	4.3.1	FTO Glass and TiO ₂ Electrode	69
	4.3.2	Deposition of Six SILAR Cycles of PbS, CdS, ZnS and	72
		Pb _x Cd _{1-x} S	
	4.3.3	Deposition of Multilayer of PbS/CdS/ZnS and	74
		PbS/Pb _x Cd _{1-x} S/CdS/ZnS	
4.4	Energy	Dispersive X-Ray Spectroscopy (EDX)	77
	4.4.1	FTO Glass and TiO ₂ Electrode	78
	4.4.2	Deposition of Six SILAR Cycles of PbS, CdS, ZnS and	80
		Pb _x Cd _{1-x} S	

	4.4.3	Deposition of Multilayer of PbS/CdS/ZnS and	83
		PbS/Pb _x Cd _{1-x} S/CdS/ZnS	
4.5	UV-Vi	sible Spectrophotometer Analysis	84
	4.5.1	TiO ₂ Electrode	85
	4.5.2	Deposition of Six SILAR Cycles of PbS, CdS, ZnS and	86
		$Pb_xCd_{1-x}S$	
	4.5.3	Deposition of Multilayer of PbS/CdS/ZnS and	95
		PbS/Pb _x Cd _{1-x} S/CdS/ZnS	
4.6	Transm	nission Electron Microscopy (TEM)	97
4.7	Curren	t Density-Voltage (J-V) Measurement	101
	4.7.1	Deposition of Six SILAR Cycles of PbS, CdS, ZnS and	102
		Pb _x Cd _{1-x} S	
	4.7.2	Deposition of Multilayer of PbS/CdS/ZnS and	104
		PbS/Pb _x Cd _{1-x} S/CdS/ZnS	

CHAPTER 5: CONCLUSION AND RECOMMENDATIONS

5.1	Conclusion	119
5.2	Recommendations	122

REFERENCES 123

LIST OF TABLES

		Page
Table 2.1	Summary of QDSSCs reported in recent literature.	32
Table 3.1	Details of FTO glass.	40
Table 3.2	Chemical formula and supplier of the chemical used.	41
Table 3.3	Weight of metal and sulphide precursors to produce PbS QDs.	45
Table 3.4	Weight of metal and sulphide precursors to produce $Pb_xCd_{1-x}S$	47
	QDs.	
Table 3.5	Volume needed for mixing $Pb(NO_3)_2$ and $Cd(NO_3)_2$ to prepare	47
	$Pb_xCd_{1-x}S$ QDs with different molar fraction, <i>x</i> .	
Table 3.6	Weight of metal and sulphide precursors to produce CdS QDs.	48
Table 3.7	Weight of metal and sulphide precursors to produce ZnS.	48
Table 3.8	Weight of sodium sulphide, sulphur and sodium hydroxide for	49
	polysulfide preparation.	
Table 3.9	Multilayer of PbS/Pb _x Cd _{1-x} S /CdS/ZnS samples.	53
Table 4.1	Interplanar spacing and crystalline size for FTO glass and TiO_2	64
	electrode.	
Table 4.2	Interplanar spacing and crystalline size for CdS-TiO ₂ electrode,	67
	$Pb_{0.05}Cd_{0.95}S$ -TiO ₂ electrode, $Pb_{0.1}Cd_{0.9}S$ -TiO ₂ electrode,	
	$Pb_{0.15}Cd_{0.85}S\text{-}TiO_2 electrode, Pb_{0.2}Cd_{0.8}S\text{-}TiO_2, PbS\text{-}TiO_2$	
	electrode and ZnS-TiO ₂ electrode.	
Table 4.3	Average pore area for TiO_2 mesoporous film and six SILAR	74

cycles of PbS, CdS, ZnS and $Pb_xCd_{1-x}S$ samples.

Table 4.4 FESEM images for multilayer of PbS/Pb_xCd_{1-x}S/CdS/ZnS 76 samples with different SILAR cycles in different molar fraction, x. 77 Table 4.5 Average pore area for multilayer of PbS/CdS/ZnS and PbS/Pb_xCd_{1-x}S/CdS/ZnS samples. Weight percentage of Pb_xCd_{1-x}S samples with different molar Table 4.6 82 fraction, x. Table 4.7 Weight percentage of multilayer PbS/CdS/ZnS and 83 PbS/Pb_xCd_{1-x}S/CdS/ZnS samples. Table 4.8 Band gap and adsorption edge for six SILAR cycles of PbS. 88 Band gap and adsorption edge for six SILAR cycles of CdS. 89 Table 4.9 Table 4.10 Band gap and adsorption edge for six SILAR cycles of Pb_xCd₁. 91 $_{\rm x}$ S with different molar fraction, *x*. Table 4.11 Open circuit voltage, short circuit current, fill factors and 103 efficiency for PbS, CdS, ZnS and $Pb_xCd_{1-x}S$ with different x samples. Table 4.12 Open circuit voltage, short circuit current, fill factors and 107 efficiency for multilayer PbS/Pb_{0.05}Cd_{0.95}S/CdS/ZnS samples. Table 4.13 Open circuit voltage, short circuit current, fill factors and 110 efficiency for multilayer PbS/Pb_{0.1}Cd_{0.9}S/CdS/ZnS samples. Table 4.14 Open circuit voltage, short circuit current, fill factors and 113 efficiency for multilayer PbS/Pb_{0.15}Cd_{0.85}S/CdS/ZnS samples. Open circuit voltage, short circuit current, fill factors and Table 4.15 115 efficiency for multilayer PbS/Pb_{0.2}Cd_{0.8}S/CdS/ZnS samples.

LIST OF FIGURES

- Figure 1.1 Schematic diagram of the effect of the $Pb_xCd_{1-x}S$ interlayer on 4 the performance of the multilayer quantum dots sensitized solar cells (Kim *et* al., 2013).
- Figure 1.2 Schematic energy diagram of the redox couple, quantum dot 7 and TiO₂; Solid arrows are desired charge transfer and dotted arrows are the recombination pathways (Jung *et al.*, 2012).
- Figure 2.1 Schematic diagram of the working principles of a dye 12 sensitized solar cell (Macaira *et* al., 2013).
- Figure 2.2 Schematic diagram of working principle of QDSSCs (Yang *et* 15 *al.*, 2011).
- Figure 2.3 Schematic diagram of energetics and kinetics of an efficient 16 QDSSCs device (Albero *et* al., 2014).
- Figure 2.4 Schematic diagram of the modulation of energy levels and the 17 charge injection by size control (Albero *et* al., 2014).
- Figure 2.5 Schematic diagram and image of quantum confinement and 20 semiconductor size: (a) energy level of high-energy conduction band and low-energy valence band, (b) band gap energy increase by decreasing nanoparticle sizes, (c) quantum dots of cadmium sulphide in solution fluoresce brightly under ultraviolet light (Canham, 1990).

ix

- Figure 2.6 Schematic diagram of (a) impact ionization and (b) Auger 21 recombination processes. Electrons (filled circles), holes (empty circles), conduction band (CB) and valence band (VB) (Jun *et* al., 2013).
- Figure 2.7 Crystallographic unit cell structure of TiO₂ with A) rutile and 23B) anatase structures (Banerjee., 2011).
- Figure 2.8 Arrangement of TiO₆ octahedra in relation to the unit cells in 24
 A) rutile and B) anatase. Only one chain is shown for each structure. Highlighted bonds are the O–O bonds (Banerjee., 2011).
- Figure 2.9 Cubic rock salt crystal structure for PbS (Sze and Ng, 2007). 25
- Figure 2.10 Crystal structure for CdS (a) zinc blende (b) wurtzite (Sze and 27 Ng, 2007).
- Figure 2.11 Crystal structure for ZnS (a) zinc blende (b) wurtzite (Sze and 29 Ng, 2007).
- Figure 2.12 TEM images of (a) bare TiO_2 and (b) PbCdS QDs-sensitized 31 TiO₂ at magnification scale of 50 nm and the inset picture is at magnification scale of 20 nm (Shu *et* al., 2011).
- Figure 2.13 Schematic diagram of SILAR method (a) cationic precursor 35 and (c) anionic precursor and (b, d) deionised water (Sambur and Parkinson, 2010)
- Figure 2.14 Linking QDs to TiO₂ surface with a bifunctional molecular 37 linker (Jun *et al.*, 2013).

Figure 3.1	Flow chart of sample preparation and characterization steps	39
	involved in fabrication of QDSSCs.	
Figure 3.2	Doctor-bladed technique.	42
Figure 3.3	Calcination program of TiO ₂ electrode at 450 °C.	43
Figure 3.4	(a) Deposition of TiO_2 paste on the FTO glass before the	44
	calcination (b) Transparent TiO_2 mesoporous film formed after	
	the calcination.	
Figure 3.5	Schematic diagram of SILAR method.	45
Figure 3.6	Polysulfide solution.	49
Figure 3.7	Steps in preparing the Cu_2S counter electrodes (a) Copper	50
	electrode was produced after immersing brass plate in the HCl	
	solution at 70 °C. (b) The active area of copper electrode was	
	cover with scotch tape (c) Cu_2S counter electrode was	
	produced after dropping the polysulfide solution.	
Figure 3.8	Assembly QDSSCs.	51
Figure 3.9	Bragg's Diffraction by crystal planes. The path difference	54
	between beams 1 and 2 is SQ +QT = 2 PQ sin θ .	
Figure 3.10	QDSSCs under illumination from the xenon arc lamp.	57
Figure 3.11	Schematic diagram of current density-voltage characteristics	58
	of a solar cell under dark and under illumination (Emin <i>et al.</i> , 2011)	
Figure 4.1	FTO glass substrate deposited with TiO_2 mesoporous film to	61
	form TiO_2 electrode and deposition of six SILAR cycles of (b)	
	PbS (c) CdS and (d) ZnS on TiO ₂ electrode.	
Figure 4.2	Deposition of six SILAR cycles of $Pb_xCd_{1-x}S$ (a) $x = 0.05$ (b) x	61
	= 0.1 (c) $x = 0.15$ and (d) $x = 0.2$ on TiO ₂ electrode.	

xi

Figure 4.3	XRD diffraction patterns of (a) FTO glass (b) TiO ₂ electrode.	64
Figure 4.4	XRD diffraction patterns of (a) $CdS-TiO_2$ electrode (b)	66
	$Pb_{0.05}Cd_{0.95}S$ -TiO ₂ electrode (c) $Pb_{0.1}Cd_{0.9}S$ -TiO ₂ electrode (c)	
	$Pb_{0.15}Cd_{0.85}S$ -TiO ₂ electrode and (d) $Pb_{0.2}Cd_{0.8}S$ -TiO ₂ electrode	
	(e) PbS-TiO ₂ electrode (f) ZnS-TiO ₂ electrode.	
Figure 4.5	FESEM images of FTO glass.	69
Figure 4.6	FESEM images of TiO ₂ electrode.	
Figure 4.7	Cross-sectional images of TiO ₂ electrode.	71
Figure 4.8	Cross-sectional images for area TiO_2 mesoporous film at	71
	magnification 30 KX.	
Figure 4.9	FESEM images of deposition of (a) Six SILAR cycles of PbS,	72
	(b) Six SILAR cycles of CdS and (c) Six SILAR cycles of ZnS	
	on the TiO_2 electrodes.	
Figure 4.10	FESEM images of deposition of six SILAR cycles of Pb _x Cd ₁ .	73
	_x S for (a) $x = 0.05$ (b) $x = 0.1$ (c) $x = 0.15$ and (d) $x = 0.20$ on	
	the TiO_2 electrodes.	
Figure 4.11	FESEM images of multilayer PbS/CdS/ZnS sample.	75
Figure 4.12	EDX analysis of FTO glass.	78
Figure 4.13	EDX analysis of TiO ₂ electrode	78
Figure 4.14	EDX analysis on the FTO glass area in cross-sectional TiO_2	79
	electrode.	
Figure 4.15	EDX analysis on the TiO_2 mesoporous film area in cross-	80
	sectional TiO ₂ electrode.	
Figure 4.16	EDX analysis for six SILAR cycles of PbS on the TiO_2	81
	electrode.	

xii

- Figure 4.17 EDX analysis for six SILAR cycles of CdS on the TiO_2 81 electrode.
- Figure 4.18 EDX analysis for six SILAR cycles of ZnS on the TiO_2 82 electrode.
- Figure 4.19UV-visible absorption spectra of TiO_2 electrode.85

86

87

Plot of $(\alpha hv)^2$ vs hv for TiO₂ electrode.

Plot of $(\alpha h v)^2$ vs hv for PbS sample.

Figure 4.20

Figure 4.22

- Figure 4.21 UV-visible absorption spectra of PbS sample. 87
- Figure 4.23 UV-visible absorption spectra of CdS sample. 88
- Figure 4.24 Plot of $(\alpha hv)^2$ vs hv for CdS sample. 89
- Figure 4.25UV-visible absorption spectra of ZnS sample.90
- Figure 4.26 Plot of $(\alpha hv)^2$ vs hv for ZnS sample. 90
- Figure 4.27 UV-visible absorption spectra of $Pb_xCd_{1-x}S$ sample for (a) x = 920.05 (b) x = 0.1 (c) x = 0.15 and (d) x = 0.2 on the TiO₂ mesoporous film.
- Figure 4.28 Plot of $(\alpha hv)^2$ vs hv of Pb_xCd_{1-x}S sample for x = 0.05 (b) x = 930.1 (c) x = 0.15 and (d) x = 0.20 on the TiO₂ mesoporous film.
- Figure 4.29 Comparison of band gap between PbS, CdS and $Pb_xCd_{1-x}S$ 94 samples with x of 0.05, 0.1, 0.15 and 0.2.
- Figure 4.30 UV-visible absorption spectra of comparison between 96 multilayer PbS/CdS/ZnS sample and PbS/Pb_xCd_{1-x}S/CdS/ZnS samples with different SILAR cycles of Pb_xCd_{1-x}S interlayer (a) x = 0.05 (b) x = 0.1 (c) x = 0.15 and (d) x = 0.2
- Figure 4.31 TEM image of TiO_2 mesoporous film. 98

- Figure 4.32 TEM image of deposition of six SILAR cycles of $Pb_xCd_{1-x}S$ 98 sample with x = 0.05.
- Figure 4.33 TEM image for 2:6:2 of multilayer PbS/CdS/ZnS sample. 99
- Figure 4.34 TEM image of 2:4(0.05):6:2 of multilayer PbS/Pb_xCd₁. 100 $_x$ S/CdS/ZnS sample.
- Figure 4.35 *J-V* curve for samples under dark condition. 101
- Figure 4.36 J-V curve for six SILAR cycles of PbS, CdS, ZnS and Pb_xCd_{1-} 102 _xS with different x samples.
- Figure 4.37 Efficiency for samples with six SILAR cycles of PbS, CdS, 104 ZnS and $Pb_xCd_{1-x}S$ with different *x*.
- Figure 4.38 J-V curve for multilayer PbS/CdS/ZnS sample. 105
- Figure 4.39 Schematic diagram of band gap for sample with multilayer 106 PbS/CdS/ZnS. CB is conduction band and VB is valence band.
- Figure 4.40 J-V curve for multilayer PbS/Pb_{0.05}Cd_{0.95}S/CdS/ZnS sample 107 with different SILAR cycles of Pb_{0.05}Cd_{0.95}S.
- Figure 4.41 Schematic diagram of band gap for multilayer 108
 PbS/Pb_{0.05}Cd_{0.95}S/CdS/ZnS samples with (a) two SILAR
 cycles (b) four SILAR cycles (c) six SILAR cycles of
 Pb_{0.05}Cd_{0.95}S interlayer.
- Figure 4.42 J-V curve for multilayer PbS/Pb_{0.1}Cd_{0.9}S/CdS/ZnS sample with 110 different SILAR cycles of Pb_{0.1}Cd_{0.9}S.
- Figure 4.43 Schematic diagram of band gap for multilayer 111
 PbS/Pb_{0.1}Cd_{0.9}S/CdS/ZnS samples with (a) two SILAR cycles
 (b) four SILAR cycles (c) six SILAR cycles of Pb_{0.1}Cd_{0.9}S interlayer.

- Figure 4.44 J-V curve for multilayer PbS/Pb_{0.15}Cd_{0.85}S/CdS/ZnS sample 113 with different SILAR cycles of Pb_{0.15}Cd_{0.85}S.
- Figure 4.45 Schematic diagram of band gap for multilayer 114 PbS/Pb_{0.15}Cd_{0.85}S/CdS/ZnS samples with (a) two SILAR cycles (b) four SILAR cycles (c) six SILAR cycles of Pb_{0.15}Cd_{0.85}S interlayer.
- Figure 4.46 J-V curve for multilayer PbS/Pb $_{0.2}$ Cd $_{0.8}$ S/CdS/ZnS sample with 115 different SILAR cycles of Pb $_{0.2}$ Cd $_{0.8}$ S.
- Figure 4.47 Schematic diagram of band gap for multilayer 116
 PbS/Pb_{0.2}Cd_{0.8}S/CdS/ZnS samples with (a) two SILAR cycles
 (b) four SILAR cycles (c) six SILAR cycles of Pb_{0.2}Cd_{0.8}S interlayer.
- Figure 4.48 Efficiency for comparison the samples with multilayer 118 PbS/CdS/ZnS and PbS/Pb_xCd_{1-x}S/CdS/ZnS.

LIST OF ABBREVIATIONS

СВ	Conduction Band
CdS	Cadmium Sulphide
DSSCs	Dye Sensitized Solar Cells
EDX	Energy Dispersive X-Ray
FESEM	Field Emission Scanning Electron Microscopy
FF	Fill Factor
FTO	Fluorine Doped Tin Oxide
ICDD	International Centre Diffraction Data
J-V	Current density-Voltage
nm	Nanometer
PbS	Lead Sulphide
$Pb_xCd_{1-x}S$	Lead Cadmium Sulphide
QDs	Quantum Dots
QDSSCs	Quantum Dot Sensitized Solar Cells
SILAR	Successive Ionic Layer Adsorption and Reaction
TEM	Transmission Electron Microscopy
TiO ₂	Titanium Oxide
IW	Illtraviolet

V	Voltage
Vis	Visible
VB	Valence Band
XRD	X-ray Diffraction
ZnS	Zinc Sulphide

LIST OF SYMBOLS

$E_{ m g}$	Band Gap
М	Molar Concentration
$M_{\rm w}$	Molar Mass
Ν	Number of Moles
\mathbf{J}_{mp}	Current Density at Maximum Point
\mathbf{J}_{sc}	Short-Circuit Current
Р	Incident Solar Power Density
V	Volume
V _{mp}	Voltage at Maximum Point
V _{oc}	Open Circuit Voltage
η	Efficiency
x	Molar Fraction

PEMBETUKAN DAN PENCIRIAN ANTARA LAPISAN Pb_xCd_{1-x}S BAGI PbS/CdS/ZnS SEL SURIA SENSITIF TITIK KUANTUM

ABSTRAK

Sel suria sensitif titik kuantum (QDSSCs) mempunyai kecekapan yang rendah disebabkan oleh penggabungan semula antara muka elektrolit-elektrod. Titik kuantum plumbum sulfida (PbS), titik kuantum plumbum cadmium sulfida (Pb_xCd_{1-x}S), titik kuantum kadmium sulfida (CdS) dan diikuti oleh salutan zink sulfida (ZnS) telah berjaya dimendapkan ke atas elektrod TiO₂ melalui kaedah penjerapan dan tindakbalas lapisan berturut-ion (SILAR) sebagai fotoanod bagi QDSSCs. Pemendapan $Pb_xCd_{1-x}S$ di antara lapisan teras PbS dan lapisan luar CdS akan mengurangkan penggabungan semula dan meningkatkan kecekapan bagi QDSSCs. Elektrod TiO₂ akan dibentukan dengan memendapkan TiO₂ berliang meso di atas kaca oksida timah berdopkan florin (FTO) setelah pengkalsinan pada suhu 450 °C. Sel suria disediakan dengan mengapitkan fotoanod TiO₂ berliang meso dengan fotokatod Cu₂S. Enam kitaran SILAR PbS, CdS, ZnS dan Pb_xCd_{1-x}S serta lapisan Bagi lapisan pelbagai PbS/Pb_xCd_{1-x}S/CdS/ZnS sampel, kesan kitaran SILAR bagi $Pb_xCd_{1-x}S$ dikaji dengan empat jenis pecahan molar, x iaitu 0.05, 0.1, 0.15 and 0.2. Pengukuran ketumpatan arus-voltan (J-V) mengesahkan kecekapan sel suria untuk empat kitaran SILAR lapisan Pb_xCd_{1-x}S dengan pecahan molar, x dalam 0.05 bagi lapisan pelbagai PbS/Pb_xCd_{1-x}S/CdS/ZnS sampel akan meningkatkan sebanyak 38.2 % apabila berbanding dengan lapisan pelbagai PbS/CdS/ZnS sampel. In adalah kerana jurang jalur diperolehi bagi empat kitaran SILAR lapisan Pb_xCd_{1-x}S dengan pecahan molar, x dalam 0.05adalah antara jurang jalur diperolehi bagi lapisan teras PbS dan lapisan luar CdS dengan pengukuran UV-Vis spektra penyerapan. Selain itu, perangkap keadaan di antara lapisan teras PbS dan lapisan luar CdS dapat diturunkan

dengan pemendapan lapisan Pb_xCd_{1-x}S dalam sampel lapisan pelbagai PbS/Pb_xCd_{1-x}S/CdS/ZnS. Antara sampel lapisan pelbagai PbS/Pb_xCd_{1-x}S/CdS/ZnS, empat kitaran SILAR bagi lapisan Pb_xCd_{1-x}S dengan pecahan molar, *x* dalam 0.05 menunjukkan kecekapan sel suria yang paling tinggi iaitu 0.34 % apabila berbanding dengan empat kitaran SILAR bagi lapisan Pb_xCd_{1-x}S dengan pecahan molar, *x* dalam 0.1, 0.15 and 0.2. Ini adalah disebabkan oleh empat kitaran SILAR bagi lapisan Pb_xCd_{1-x}S dengan pecahan molar, *x* dalam 0.1, 0.15 and 0.2. Ini adalah disebabkan oleh empat kitaran SILAR bagi lapisan Pb_xCd_{1-x}S dengan *x* dalam 0.05 mempunyai jalur konduksi yang tinggi akan membawa kepada suntikan electron yang lebih cepat dari PbS/Pb_xCd_{1-x}S jalur konduksi ke elektrod TiO₂. Oleh itu, penggabungan semula yang rendah akan diperolehi dan kecekapan sel suria akan meningkatkan. Di samping itu, empat kitaran SILAR bagi lapisan Pb_xCd_{1-x}S memberikan kecekapan sel suria yang tinggi daripada enam kitaran SILAR bagi lapisan Pb_xCd_{1-x}S dalam lapisan pelbagai PbS/Pb_xCd_{1-x}S/CdS/ZnS sampel. Ini adalah disebabkan oleh pemendapan titk kuantum yang tinggi bagi Pb_xCd_{1-x}S dengan enam kitaran SILAR lapisan Pb_xCd_{1-x}S mengelakkan penusukan elektrolit dan menurunkan kecekapan sel suria dalam pengukuran *J-V*.

FORMATION AND CHARACTERIZATION OF Pb_xCd_{1-x}S INTERLAYER FOR PbS/CdS/ZnS QUANTUM DOT SENSITIZED SOLAR CELLS

ABSTRACT

Quantum dot sensitized solar cells (QDSSCs) have low efficiency due to the recombinations at electrolyte-electrode interfaces. Lead sulphide (PbS) quantum dots (QDs), lead cadmium sulphide (Pb_xCd_{1-x}S) QDs, cadmium sulphide (CdS) QDs and followed by coating with zinc sulphide (ZnS) were deposited on TiO₂ electrode as TiO₂ mesoporous photoanode using successive ionic layer adsorption and reaction (SILAR) method for QDSSCs. Pb_xCd_{1-x}S QDs deposited between PbS core and CdS shell layer could reduce the recombination and improve the efficiency. TiO₂ electrode was formed with the deposition of TiO₂ mesoporous film on fluorine doped tin oxide glass (FTO) after calcination at 450 °C. The PbS QDs, Pb_xCd_{1-x}S QDs, CdS QDs and coating with ZnS were formed on TiO₂ electrode with SILAR method. Solar cells were prepared by sandwiching the TiO₂ mesoporous photoanode with Cu₂S counter electrode. Six SILAR cycles of PbS, CdS, ZnS and Pb_xCd_{1-x}S as well as multilayer of PbS/CdS/ZnS and PbS/Pb_xCd_{1-x}S/CdS/ZnS were prepared for characterizations. In multilayer of PbS/Pb_xCd₁₋ _xS/CdS/ZnS, the effects of number of SILAR cycles of Pb_xCd_{1-x}S were studied with four different molar fraction, x of 0.05, 0.1, 0.15 and 0.2. From current-density voltage (J-V) measurement, four SILAR cycles of $Pb_xCd_{1-x}S$ interlayer with molar fraction, x of 0.05 in multilayer PbS/PbxCd1-xS/CdS/ZnS samples showed 38.2 % improvement in the efficiency when compared to the multilayer PbS/CdS/ZnS sample. This was because the band gap value obtained for four SILAR cycles of Pb_xCd_{1-x}S interlayer with molar fraction, x of 0.05 were between band gap value of PbS core and CdS shell layer during UV-Vis spectrometer analysis. Moreover, the traps states were reduced between the PbS

core and CdS shell layers with the deposition of $Pb_xCd_{1-x}S$ interlayer in multilayer of $PbS/Pb_xCd_{1-x}S/CdS/ZnS$ sample. Among the multilayer $PbS/Pb_xCd_{1-x}S/CdS/ZnS$ samples, four SILAR cycles of $Pb_xCd_{1-x}S$ interlayer with molar fraction, *x* of 0.05 provided the highest efficiency of 0.34 % when compared with four SILAR cycles of $Pb_xCd_{1-x}S$ interlayer with molar fraction, *x* of 0.1, 0.15 and 0.2. This is due to the conduction band of four SILAR cycles of $Pb_xCd_{1-x}S$ interlayer with molar fraction, *x* of 0.05 was higher and lead to faster electron injection from the conduction band of PbS/Pb_xCd_{1-x}S to the TiO₂ electrode. Thus, lower recombination was obtained and the efficiency was improved. Besides that, four SILAR cycles $Pb_xCd_{1-x}S$ interlayer in samples with multilayer PbS/Pb_xCd_{1-x}S/CdS/ZnS. This was owing to the high loading of $Pb_xCd_{1-x}S$ QDs with six SILAR cycles of $Pb_xCd_{1-x}S$ interlayer in samples and decreased the efficiency in *J-V* measurement.

CHAPTER 1

INTRODUCTION

1.1 Introduction

Quantum dot sensitized solar cells (QDSSCs) are drawing much attention as a third generation solar cells that is derived from dye sensitized solar cells (DSSSCs). The attractive properties of the QDs over conventional dye used in the DSSSCs include its tunable band gap (Xie *et al.*, 2012), large intrinsic dipole moments for rapid charge separation and large extinction coefficient to reduce dark current and increase overall efficiency of solar cell (Emin *et al.*, 2011). Furthermore, the ability of QDs to produce multiple exciton generation (MEG) where a single absorbed photon can generate more than one electron hole-pair (Nozik, 2008).

In QDSSCs, deposition of QDs on the wide band gap of semiconductor of titanium dioxide (TiO₂) as sensitizers. Mesoporous structure is made for TiO₂ wide band gap semiconductor to provide large surface area for absorption of more QDs in harvesting visible light effectively (Chen *et al.*, 2012). TiO₂ is an attractive material for the solar cells application because of surface photochemistry, physical and chemical stability of the semiconductor material. TiO₂ is an n-type semiconductor with wide band gap of 3.0 eV for rutile and 3.2 eV for anatase. The anatase is preferred to use in solar cells because of the anatase higher mobility and its catalytic properties (Scanlon *et al.*, 2013). The conduction band, E_{cb} of anatase TiO₂ is -4.21 with respect to absolute vacuum scale (AVS) or it is named as E_{cb} -4.21 eV versus vacuum (Xu and Schoonen, 2000). The wide band gap of bulk TiO₂ absorbs portion of solar spectrum from ultraviolet down to ~ 400 nm.