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PEMBETUKAN DAN PENCIRIAN ANTARA LAPISAN PbxCd1-xS  

BAGI PbS/CdS/ZnS SEL SURIA SENSITIF TITIK KUANTUM   

 

ABSTRAK 

 Sel suria sensitif titik kuantum (QDSSCs) mempunyai kecekapan yang rendah 

disebabkan oleh penggabungan semula antara muka elektrolit-elektrod. Titik kuantum 

plumbum sulfida (PbS), titik kuantum  plumbum cadmium sulfida (PbxCd1-xS), titik 

kuantum  kadmium sulfida (CdS) dan  diikuti oleh salutan zink sulfida (ZnS) telah berjaya 

dimendapkan ke atas elektrod TiO2 melalui kaedah penjerapan dan tindakbalas lapisan 

berturut-ion (SILAR) sebagai fotoanod bagi QDSSCs. Pemendapan PbxCd1-xS di antara 

lapisan teras PbS dan lapisan luar CdS akan mengurangkan penggabungan semula dan 

meningkatkan kecekapan bagi QDSSCs. Elektrod TiO2 akan dibentukan dengan 

memendapkan TiO2 berliang meso di atas kaca oksida timah berdopkan florin (FTO) 

setelah pengkalsinan pada suhu 450 °C. Sel suria disediakan dengan mengapitkan 

fotoanod TiO2 berliang meso dengan fotokatod Cu2S. Enam kitaran SILAR PbS, CdS, 

ZnS dan PbxCd1-xS serta lapisan Bagi lapisan pelbagai PbS/PbxCd1-xS/CdS/ZnS sampel, 

kesan kitaran SILAR bagi PbxCd1-xS dikaji dengan empat jenis pecahan molar, x iaitu 

0.05, 0.1, 0.15 and 0.2. Pengukuran ketumpatan arus-voltan (J-V) mengesahkan 

kecekapan sel suria untuk empat kitaran SILAR lapisan PbxCd1-xS dengan pecahan molar, 

x dalam 0.05 bagi lapisan pelbagai PbS/PbxCd1-xS/CdS/ZnS sampel akan meningkatkan 

sebanyak 38.2 % apabila berbanding dengan lapisan pelbagai PbS/CdS/ZnS sampel. In 

adalah kerana jurang jalur diperolehi bagi empat kitaran SILAR lapisan PbxCd1-xS dengan 

pecahan molar, x dalam 0.05adalah antara jurang jalur diperolehi bagi lapisan teras PbS 

dan lapisan luar CdS dengan pengukuran UV-Vis spektra penyerapan. Selain itu, 

perangkap keadaan di antara lapisan teras PbS dan lapisan luar CdS dapat diturunkan 



xx 
 

dengan pemendapan lapisan PbxCd1-xS dalam sampel lapisan pelbagai PbS/PbxCd1-

xS/CdS/ZnS. Antara sampel lapisan pelbagai PbS/PbxCd1-xS/CdS/ZnS, empat kitaran 

SILAR bagi lapisan PbxCd1-xS dengan pecahan molar, x dalam 0.05 menunjukkan 

kecekapan sel suria yang paling tinggi iaitu 0.34 % apabila berbanding dengan empat 

kitaran SILAR bagi lapisan PbxCd1-xS dengan pecahan molar, x dalam 0.1, 0.15 and 0.2. 

Ini adalah disebabkan oleh empat kitaran SILAR bagi lapisan PbxCd1-xS dengan x dalam 

0.05 mempunyai jalur konduksi yang tinggi akan membawa kepada suntikan electron 

yang lebih cepat dari PbS/PbxCd1-xS jalur konduksi ke elektrod TiO2. Oleh itu, 

penggabungan semula yang rendah akan diperolehi dan kecekapan sel suria akan 

meningkatkan. Di samping itu, empat kitaran SILAR bagi lapisan PbxCd1-xS memberikan 

kecekapan sel suria yang tinggi daripada enam kitaran SILAR bagi lapisan PbxCd1-xS 

dalam lapisan pelbagai PbS/PbxCd1-xS/CdS/ZnS sampel. Ini adalah disebabkan oleh 

pemendapan titk kuantum yang tinggi bagi PbxCd1-xS dengan enam kitaran SILAR lapisan 

PbxCd1-xS mengelakkan penusukan elektrolit dan menurunkan kecekapan sel suria dalam 

pengukuran J-V.  

 

 

 

 

 

 

 

 

 

 



xxi 
 

FORMATION AND CHARACTERIZATION OF PbxCd1-xS INTERLAYER  

FOR PbS/CdS/ZnS QUANTUM DOT SENSITIZED SOLAR CELLS  

 

ABSTRACT 

Quantum dot sensitized solar cells (QDSSCs) have low efficiency due to the 

recombinations at electrolyte-electrode interfaces. Lead sulphide (PbS) quantum dots 

(QDs), lead cadmium sulphide (PbxCd1-xS) QDs, cadmium sulphide (CdS) QDs and 

followed by coating with zinc sulphide (ZnS) were deposited on TiO2 electrode as TiO2 

mesoporous photoanode using successive ionic layer adsorption and reaction (SILAR) 

method for QDSSCs. PbxCd1-xS QDs deposited between PbS core and CdS shell layer 

could reduce the recombination and improve the efficiency. TiO2 electrode was formed 

with the deposition of TiO2 mesoporous film on fluorine doped tin oxide glass (FTO) after 

calcination at 450 °C. The PbS QDs, PbxCd1-xS QDs, CdS QDs and coating with ZnS 

were formed on TiO2 electrode with SILAR method. Solar cells were prepared by 

sandwiching the TiO2 mesoporous photoanode with Cu2S counter electrode. Six SILAR 

cycles of PbS, CdS, ZnS and PbxCd1-xS as well as multilayer of PbS/CdS/ZnS and 

PbS/PbxCd1-xS/CdS/ZnS were prepared for characterizations. In multilayer of PbS/PbxCd1-

xS/CdS/ZnS, the effects of number of SILAR cycles of PbxCd1-xS were studied with four 

different molar fraction, x of 0.05, 0.1, 0.15 and 0.2. From current-density voltage (J-V) 

measurement, four SILAR cycles of PbxCd1-xS interlayer with molar fraction, x of 0.05 in 

multilayer PbS/PbxCd1-xS/CdS/ZnS samples showed 38.2 % improvement in the 

efficiency when compared to the multilayer PbS/CdS/ZnS sample. This was because the 

band gap value obtained for four SILAR cycles of PbxCd1-xS interlayer with molar 

fraction, x of 0.05 were between band gap value of PbS core and CdS shell layer during 

UV-Vis spectrometer analysis. Moreover, the traps states were reduced between the PbS 
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core and CdS shell layers with the deposition of PbxCd1-xS interlayer in multilayer of 

PbS/PbxCd1-xS/CdS/ZnS sample. Among the multilayer PbS/PbxCd1-xS/CdS/ZnS samples, 

four SILAR cycles of PbxCd1-xS interlayer with molar fraction, x of 0.05 provided the 

highest efficiency of 0.34 % when compared with four SILAR cycles of PbxCd1-xS 

interlayer with molar fraction, x of 0.1, 0.15 and 0.2. This is due to the conduction band of 

four SILAR cycles of PbxCd1-xS interlayer with molar fraction, x of 0.05 was higher and 

lead to faster electron injection from the conduction band of PbS/PbxCd1-xS to the TiO2 

electrode. Thus, lower recombination was obtained and the efficiency was improved. 

Besides that, four SILAR cycles PbxCd1-xS interlayer showed higher efficiency than six 

SILAR cycles of PbxCd1-xS interlayer in samples with multilayer PbS/PbxCd1-xS/CdS/ZnS. 

This was owing to the high loading of PbxCd1-xS QDs with six SILAR cycles of PbxCd1-xS 

interlayer would prevent the penetration of electrolyte and decreased the efficiency in J-V 

measurement.   
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CHAPTER 1 

INTRODUCTION 

1.1 Introduction 

Quantum dot sensitized solar cells (QDSSCs) are drawing much attention as a 

third generation solar cells that is derived from dye sensitized solar cells (DSSSCs). The 

attractive properties of the QDs over conventional dye used in the DSSSCs include its 

tunable band gap (Xie et al., 2012), large intrinsic dipole moments for rapid charge 

separation and large extinction coefficient to reduce dark current and increase overall 

efficiency of solar cell (Emin et al., 2011) . Furthermore, the ability of QDs to produce 

multiple exciton generation (MEG) where a single absorbed photon can generate more 

than one electron hole-pair (Nozik, 2008).  

In QDSSCs, deposition of QDs on the wide band gap of semiconductor of titanium 

dioxide (TiO2) as sensitizers. Mesoporous structure is made for TiO2 wide band gap 

semiconductor to provide large surface area for absorption of more QDs in harvesting 

visible light effectively (Chen et al., 2012). TiO2 is an attractive material for the solar cells 

application because of surface photochemistry, physical and chemical stability of the 

semiconductor material. TiO2 is an n-type semiconductor with wide band gap of 3.0 eV 

for rutile and 3.2 eV for anatase. The anatase is preferred to use in solar cells because of 

the anatase higher mobility and its catalytic properties (Scanlon et al., 2013). The 

conduction band, Ecb of anatase TiO2 is -4.21 with respect to absolute vacuum scale 

(AVS) or it is named as Ecb -4.21 eV versus vacuum (Xu and Schoonen, 2000). The wide 

band gap of bulk TiO2 absorbs portion of solar spectrum from ultraviolet down to ~ 400 

nm. 
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