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Zusammenfassung

Im Kern beschäftigt sich diese Dissertation mit dem praktischen Lösen des
Erfüllbarkeitsproblems der Aussagenlogik (SAT). Die Probleminstanzen,
um die es dabei geht, stammen aus industriellen Anwendungen. Die Ent-
deckung des Conflict-Driven Clause-Learning (CDCL) Algorithmus führte
zu enormen Fortschritten in diesem Bereich. CDCL wurde durch effektive
Pre- und Inprocessingtechniken erweitert, welche die Leistungsfähigkeit des
Algorithmus erhöhen. Während in der Vergangenheit viel Forschungsar-
beit in den Einsatz von shared-memory Parallelität zum Beschleunigen
von CDCL geflossen ist, blieb das Lösen von SAT auf verteilten Rechn-
ern weniger gut erforscht.

In dieser Arbeit entwickeln wir ein verteiltes, auf CDCL basierendes
Framework, um SAT zu Lösen. Dieses Framework besteht hauptsächlich
aus drei Komponenten: 1. Einer Implementierung des CDCL-Verfahrens,
die wir von Grund auf neu geschrieben haben, 2. einem neuartigem Algo-
rithmus um SAT mit Hilfe von Parallelität zu lösen, und 3. einer Ansamm-
lung von parallelen Vereinfachungstechniken für SAT-Instanzen. Das ent-
standene Framework nennen wir satUZK, während der parallele Lösungsal-
gorithmus der Distributed Divide-and-Conquer (DDC) Algorithmus ist.

DDC verwendet eine parallele Lookahead-Prozedur, um den Suchraum
dynamisch zu zerteilen. Dabei wird Load Balancing genutzt um sicherzustel-
len, dass alle zur Verfügung stehenden Resourcen des verteilen Rechn-
ers ausgenutzt werden. Diese Prozedur erstellt einen Divide-and-Conquer
Baum, der über alle Prozessoren verteilt wird. Individuelle Threads wer-
den durch diesen Baum geleitet, bis sie ein ungelöstes Blatt erreichen.
Bei Ankunft an einem Blatt wird entweder die Lookahead-Prozedur erneut
aufgerufen oder das Blatt wird durch CDCL gelöst. Wir schlagen mehrere
Erweiterungen für diesen Algorithmus vor. Insbesondere integrieren wir
eine Strategie um Klauseln zwischen Threads austauschen und ein Schema,
um den sogenannten LBD-Wert von Klauseln relativ zur lokalen Position im
Suchbaum anzupassen. LBD ist ein Maß für die Nützlichkeit einer Klausel
während der CDCL-Suche. Wir evaluieren unseren Algorithmus empirisch
und messen ihn an den besten, verteilen SAT Algorithmen. In diesem Ex-
periment ist unser Algorithmus schneller als andere, verteilte Solver und
löst mindestens ebenso viele Instanzen.

Zusätzlich zu dem parallelen Lösungsalgorithmus betrachten wir auch
parallele Vereinfachungstechniken. Dabei entwickeln wir zunächst eine the-
oretische Grundlage, die es uns erlaubt, die Korrektheit von parallelen
Vereinfachungstechniken nachzuweisen. Auf dieser Basis untersuchen wir



etablierte Vereinfachungstechniken auf ihre Parallelisierbarkeit. Es stellt
sich heraus, dass einige dieser Techniken sehr gut parallelisierbar sind. Für
diese Techniken stellen wir parallele Implementierungen bereit, die wir em-
pirisch auf ihre Effektivität hin untersuchen. Als Ergebnis dieser Unter-
suchung identifizieren wir mehrere Techniken, die es erlauben, Instanzen zu
Lösen, die der DDC Algorithmus alleine nicht lösen kann.
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Abstract

The primary subject of this dissertation is practically solving instances of
the Boolean satisfiability problem (SAT) that arise from industrial appli-
cations. The invention of the conflict-driven clause-learning (CDCL) algo-
rithm led to enormous progress in this field. CDCL has been augmented
with effective pre- and inprocessing techniques that boost its effectiveness.
While a considerable amount of work has been done on applying shared-
memory parallelism to enhance the performance of CDCL, solving SAT on
distributed architectures is studied less thoroughly.

In this work, we develop a distributed, CDCL-based framework for SAT
solving. This framework consists of three main components: 1. An imple-
mentation of the CDCL algorithm that we have written from scratch, 2. a
novel, parallel SAT algorithm that builds upon this CDCL implementation
and 3. a collection of parallel simplification techniques for SAT instances.
We call our resulting framework satUZK; our parallel solving algorithm is
called the distributed divide-and-conquer (DDC) algorithm.

The DDC algorithm employs a parallel lookahead procedure to dynam-
ically partition the search space. Load balancing is used to ensure that
all computational resources are utilized during lookahead. This procedure
results in a divide-and-conquer tree that is distributed over all processors.
Individual threads are routed through this tree until they arrive at unsolved
leaf vertices. Upon arrival, the lookahead procedure is invoked again or the
leaf vertex is solved via CDCL. Several extensions to the DDC algorithm
are proposed. These include clause sharing and a scheme to locally ad-
just the LBD score relative to the current search tree vertex. LBD is a
measure for the usefulness of clauses that participate in a CDCL search.
We evaluate our DDC algorithm empirically and benchmark it against the
best distributed SAT algorithms. In this experiment, our DDC algorithm
is faster than other distributed, state-of-the-art solvers and solves at least
as many instances.

In addition to running a parallel algorithm for SAT solving we also con-
sider parallel simplifcation. Here, we first develop a theoretical foundation
that allows us to prove the correctness of parallel simplification techniques.
Using this as a basis, we examine established simplification algorithms for
their parallelizability. It turns out that several well-known simplification
techniques can be parallelized efficently. We provide parallel implementa-
tion of the techniques and test their effectiveness in empirical experiments.
This evaluation finds several combinations of simplification techniques that
can solve instances which could not be solved by the DDC algorithm alone.
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Chapter 1

Introduction

Satisfiability is far from an abstract exercise in understanding formal systems.
Revolutionary methods for solving such problems emerged at the beginning
of the twenty-first century, and they’ve led to game-changing applications in
industry. These so-called “SAT solvers” can now routinely find solutions to
practical problems that involve millions of variables and were thought until
very recently to be hopelessly difficult.

From the back cover of The Art of Computer Programming,
Volume 4, Fascicle 6: Satisfiability by Donald Knuth [60]

Boolean satisfiability (SAT) is the problem of determining whether a
given formula over Boolean variables has a solution. In addition to its
importance as the canonical NP-complete problem [28], SAT solvers are
often used to practically solve hard industrial problems. Those problems
include verification of hardware and software via bounded model checking
[21, 55], debugging via symbolic execution [26] and AI planning [74]. Other
applications of SAT solving include hard combinatorial problems. For ex-
ample, such problems arise from cryptography [80] or from the encoding of
NP-complete problems.

In addition to finding solutions, SAT solvers are also able to prove
the non-existance of solutions even for very hard problems. In the recent
years, two long-standing mathematical problems have been solved by the
use of SAT solvers, namely the Erdős discrepancy conjecture [61] and the
Pythagorean triple problem [50]. The SAT-based proof of the latter prob-
lem has a size of over 200 terabytes and took four years of CPU time to be
produced.

The practical use of SAT-based tools is made feasible by the tremendous
progress [79, 69, 99, 70, 33, 81, 8] that has been made on SAT solving tech-
nologies after the invention of the so called conflict-driven clause-learning
(CDCL) method in 1996. CDCL is an algorithm for SAT solving that
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performs exceptionally well on large industrial and hard combinatorial in-
stances. Advances include specialized data structures [69], better heuristics
[69, 99, 70, 8] and extensions to the basic CDCL algorithm [69, 81]. These
extensions include the use of sophisticated pre- and inprocessing techniques
[33, 42, 45, 47, 46] that simplify the Boolean formula before or while a solver
searches for a solution.

With the ubiquituous availability of multicore processors and clusters of
computers, SAT solvers that utilize parallelism have been developed. These
solvers follow multiple different approaches: Portfolio solvers [40, 16, 11, 4,
10] use multiple cooperating SAT engines to solve the same problem while
search space partitioning solvers [24, 51, 3, 7] try to accelerate the search
by solving different parts of the problem in parallel.

The SAT Competition [78] measures the continuing progress of SAT
solving technologies. It features both industrial and hard combinatorial
problems and evaluates sequential as well as parallel, shared-memory solvers.
While some SAT solvers for distributed architectures have been proposed
[24, 11, 3, 7], most state-of-the-art solvers only support shared-memory
[16, 17, 4, 10]. Furthermore, those solvers continue to perform pre- and
inprocessing only sequentially, even if the solving procedure itself is par-
allelized. The challenge of developing parallel simplification techniques is
explicitly mentioned in [41].

In this dissertation, we develop a framework that supports distributed
SAT solving. We call this framework satUZK. satUZK consists of multiple
components: A sequential CDCL implementation that has been written
from scratch, a novel distributed SAT solving algorithm that builds upon
this CDCL implementation and a set of parallel simplifcation techniques
that can be applied as pre- and inprocessing. While distributed solving
algorithms have been published in the past and parallel simplification tech-
niques have also been proposed, this work constitutes the first framework
that utilizes parallelism at all stages of the solving process.

Our contribution can be summarized as follows:

• We have written a competitive implementation of the CDCL algo-
rithm from scratch. This implementation integrates all significant
advances that have been made on the CDCL core algorithm in the
last 20 years. In constrast to existing solvers our implementation is
written in a modern C++ style that combines modularity and exten-
sibility with high performance.

• We present a novel parallel SAT algorithm that runs on distributed
architectures. This algorithm has also been implemented in C++.
We demonstrate the scalability of our algorithm and evaluate our im-
plementation against the state of the art in parallel SAT solvering.
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In this evaluation, our algorithm compares favorably against the best
distributed SAT solvers. We propose multiple extensions to our dis-
tributed algorithm that further boost its performance. For each of
those extensions, we present benchmarks of their performance.

• We work towards a theory of parallel simplification techniques and
present methods that can prove the correctness of such techniques.
Furthermore, we describe parallelizations of many common simplifi-
cation techniques which we have also implemented in C++. In partic-
ular, we present a distributed algorithm for distillation, which is one
of the most powerful simplification techniques that is applied in SAT
solvers. We evaluate the scalability and effectivness of these parallel
techniques.

This dissertation is organized as follows: In chapter 2 we review basic
notions related to Boolean satisfiability. This chapter prepares the required
preliminaries and the basics that the CDCL algorithm builds upon. Chapter
3 presents our implementation of the CDCL algorithm. We first introduce
the CDCL method and summarize the algorithms and data structures that
are required to implement it. After that we describe details of our CDCL
implementation in satUZK and evaluate the performance of this implemen-
tation. In chapter 4 we present our novel distributed algorithm for SAT
solving. We discuss extensions and implementation details of this algorithm
and assess its scalability and performance empirically. Chapter 5 deals with
the theory, implementation and parallelization of simplification techniques.
We evaluate the scalability and effectiveness of those techniques. Finally,
we conclude by summarizing the results of this dissertation.
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Chapter 2

Preliminaries

In this chapter, we will introduce basic concepts that are required to present
our work on SAT solvers in later chapters. These concepts are widely-known
in the literature.

2.1 Prerequisites

In this section, we state some concepts that we assume the reader is familiar
with.

Complexity theory The classes P and NP are well-known complexity
classes of decision problems. coNP is the complement of NP , or in
other words, coNP is the class of decision problems where certificates
for “no” answers can be verified in polynomial time. We further as-
sume that the reader is accustomed to the notion of NP -hardness and
NP -completeness.

Graphs We assume that the reader is familiar with graphs and with the
usual terminology related to graphs. We denote the vertex set of a
graph G by V (G) and its set of edges by E(G).

Propositional logic While we introduce most terms of propositional logic
that are related to SAT solving in the next section, we expect the
reader to have a basic understanding of propositional logic.

2.2 The SAT problem

In this section, we will define the SAT problem and state some basic defi-
nitions and propositions related to SAT.
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2.2.1 Boolean formulas

We start by defining what a Boolean formula is.

Definition 2.1. A Boolean variable is a variable that assumes a value in
the set {true, false}. Boolean formulas are formulas that are constructed
from a finite number of Boolean variables and some set of junctors. In
this thesis, variables are generally denoted by x, y, z and w. Formulas are
denoted by φ or ψ.

We will usually restrict the set of junctors in definition 2.1 to ∧,∨ and
¬ (corresponding to the Boolean “and”, “or” and “not” functions). Other
junctors such as→,↔ or ⊕ (corresponding to implication, equivalence and
“xor”) can be constructed from ∧,∨ and ¬. In order to conserve space,
instead of writing ¬α for some term α, we often write ᾱ instead.

Definition 2.2. For each Boolean variable x, the two terms x and x̄ are
called literals; x is called positive and x̄ is called negative. We often denote
literals by a, b or c.

An assignment (sometimes also called partial assignment) is a set of
literals. An assignment is called total assignment with respect to a Boolean
formula φ if it contains at least one literal for each variable that occurs in
φ. A partial assignment τ is called conflicting if there is a variable x so
that {x, x̄} ⊆ τ .

Let τ be an assignment. If τ is non-conflicting, we can think of τ as
a function that assigns a value from {true, false, unknown} to each Boolean
variable via

τ(x) =


true x ∈ τ
false x̄ ∈ τ
unknown otherwise

This function can be naturally extended to arbitrary Boolean terms, using
the usual semantics for the junctors. This enables us to state the following
definition:

Definition 2.3. Let φ be a Boolean formula. If τ(φ) = true, then τ is called
a model of φ.

The concept of a model is central to this thesis, this will become clear
in the next subsection.
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2.2.2 Satisfiability

Given the definitions from the last section we can now state the SAT prob-
lem.

Definition 2.4. The satisfiability problem of propositional logic (SAT) asks
if there is a model for a given Boolean formula φ. In that case φ is called
satisfiable.

It is well known that SAT is NP-complete; specifically SAT is the first
problem that was proven to be NP-complete by Cook [28]. Therefore, many
NP-completeness proofs use reductions from SAT.

A SAT solver is an algorithm that solves the SAT problem. We usually
demand that a SAT solver can output a model for “yes” answers and some-
times even demand that it can output an unsatisfiability proof for “no”
answers. In this thesis, we only consider SAT solvers that are of practical
relevance. We are not interested in algorithms that are used to prove lower
bounds on the complexity of SAT but that are inefficient in practice.

If a SAT solver eventually terminates, we call the solver complete. We
will only consider complete solvers here. For some classes of problems,
for example random formulas, incomplete algorithms that use randomized
methods to search for a solution are very efficient in practice. However,
those methods cannot prove unsatisfiability and do not terminate on un-
satisfiable formulas.

2.2.3 Notions of equivalence

SAT solvers often transform their input formulas while solving them. In
order to express whether such transformations are correct, we need the
notion of equivalence of two Boolean formulas.

Definition 2.5. Two Boolean formulas are called equivalent, if they share
exactly the same models.

When discussing the SAT problem, equivalence of Boolean formulas is
sometimes too strong. For example, equivalence does not allow us to intro-
duce or eliminate variables or to restrict the set of models while preserving
satisfiability. We are often only interested in finding a single model, so it is
not necessary to keep all models invariant. We formalize a weaker notion
of equivalence by introducing the concept of satisfiability-equivalence.

Definition 2.6. Two formulas are satisfiability-equivalent, if they are ei-
ther both satisfiable or both unsatisfiable.
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Satisfiability-equivalence is obviously much weaker than equivalence; in
particular, if φ and φ′ are satisfiability-equivalent, models of φ cannot nat-
urally be recovered from models of φ′ (or vice-versa). In practice we will
only transform formulas φ into new formulas φ′ in ways that still allow us
to efficiently translate φ′ models to φ models.

2.2.4 CNF formulas

Programmatically handling general Boolean formulas in a SAT solver is
complicated as those formulas can form arbitrary trees of subformulas.
Therefore, we will restrict ourselves to a subset of formulas that have a
certain form. It turns out that this form is still general enough to encode
arbitrary problems.

Definition 2.7. Let a1, . . . , ak be literals. The term (a1∨ . . .∨ak) is called a
clause (of length k) and the term (a1∧. . .∧ak) is called a cube (of length k).
Clauses of length one, two and three are respectively called unary, binary
and ternary clauses. We usually denote clauses by C or D.

Let φ be a formula. If φ = C1 ∧ . . . ∧ Cm where C1, . . . , Cm are clauses,
we say φ is in Conjunctive Normal Form (CNF). Likewise if φ = D1∨ . . .∨
Dm where D1, . . . , Dm are cubes, we say φ is in Disjunctive Normal Form
(DNF).

If a CNF (or DNF) formula entirely consists of clauses of length less
than k, it is called k-CNF (or k-DNF).

Because clauses and CNF formulas have a fixed structure, we can use the
mathematical set notation to denote them. Instead of writing (a1∨ . . .∨ak)
as in definition 2.7, we use the notation {a1, . . . , ak}. Similarly, we replace
the notation C1 ∧ . . . ∧ Cm with the set {C1, . . . , Cm}. When using set
notation, we understand clauses as sets, but CNF formulas as multisets.
This is due to practical considerations; a program should easily be able
to remove duplicate literals from clauses when reading its input and avoid
generating such duplicate literals at runtime, however, it might be expensive
to detect duplicate clauses.

A basic theorem of Tseitin [85] states that CNF formulas are suffi-
cient to encode arbitrary Boolean problems while preserving satisfiability-
equivalence. Later work [72] improved upon this encoding, yielding encod-
ings that are more compact in practice.

Theorem 2.8. An arbitrary Boolean formula φ can be transformed to a
satisfiability-equivalent CNF formula φ′ in polynomial time. Only a linear
number of new clauses and variables is introduced in this process. Further-
more every model of φ′ is also a model of φ if it is restricted to the variables
of φ.
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The proof of this theorem is constructive: For each subformula that
is not already in CNF, a new variable is introduced. The subformula is
replaced by that variable and clauses that encode the equivalence between
the new variable and the original subformula are added to the formula.
It should be noted that the theorem does not hold for DNF formulas as
equivalences between variables and subformulas cannot easily be encoded
in DNF.

As a result of this theorem, when considerung the SAT problem, it
suffices to work with CNF formulas. Thus, the SAT problem for arbitrary
Boolean formulas is equivalent to the CNF-SAT problem.

Many restrictions of CNF-SAT have been studied. In particular, it is
well known that the 2-CNF-SAT problem is solvable in linear time. The
same holds if all clauses are Horn clauses; a Horn clause is a clause that
contains at most one positive literal.

In contrast to that, it is also easy to see that SAT remains NP -hard if
all clauses are restricted to a length of three. In fact, 3-CNF-SAT is often
studied in the context of random CNF formulas and when theoretical upper
bounds on the complexity of SAT are considered. We will, however, not
restrict us to 3-CNF formulas and allow clauses of arbitrary length.

In the remainder of this thesis, we will use the terms SAT and CNF-SAT
interchangeably.

2.2.5 Implication and incidence graphs

Sometimes, modeling relations between variables and literals as graphs is
more convenient than stating them in the language of CNFs. In this sub-
section we will introduce two graphs that can be associated with a CNF
formula.

The first of those graphs is the variable-incidence graph.

Definition 2.9. The variable-incidence graph of a CNF formula φ is the
undirected graph V I(φ) which has variables as vertices and which has an
edge between two variables x and y if x and y appear in the same clause of
φ.

This graph encodes the connectivity of variables that are part of the
CNF formula. In particular, in order to find a model of a CNF formula,
it suffices to find a model of each connected component of the variable-
incidence graph.

The second graph that we consider here is the binary-implication graph.

Definition 2.10. The binary-implication graph BIG(φ) of a CNF formula
φ is the digraph which has literals as vertices and which has two edges
c̄1 → c2 and c̄2 → c1 for every binary clause {c1, c2} ∈ φ.
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Edges in BIG(φ) correspond to implications that are encoded as clauses
in φ: If there is an edge b→ c in BIG(φ), then c must be assigned to true
whenever b is true. Thus, cycles in BIG(φ) correspond to literals that have
to take the same value in every model of φ. Pairs of such literals are called
equivalent literals.

Many algorithms that are complex on general CNF formulas can be
simplified to graph algorithms when only the 2-CNF parts of those formulas
are considered. Particularly, if φ is a 2-CNF formula, then BIG(φ) encodes
φ completely. In this case φ is satisfiable, if no cycle of BIG(φ) contains
both the positive and the negative literal of the same variable. This proves
our claim that 2-CNF formulas are solvable in polynomial time which we
stated in the previous subsection.

2.2.6 Resolution

Several proof systems for propositional logic are studied in the literatuire. In
the context of SAT solvers, proof systems allow us to verify the correctness
of the solvers: If we can show that the actions that a SAT solver performs
correspond to derivations in a proof system, we have proven the correctness
of the solver. Regarding CNF formulas, resolution is the most important
proof system.

Definition 2.11. Let x be a variable and let C and C ′ be two clauses. We
say that C and C ′ can be resolved by variable x if x ∈ C and x̄ ∈ C ′ or vice
versa. If that is the case, the resolvent C ⊗x C ′ is defined by C ⊗x C ′ :=
(C \ {x}) ∪ (C ′ \ {x̄}).

If the choice of the variable x is obvious from context, we drop the index
of the ⊗ sign.

It is easy to see that adding resolvents to a CNF formula does not restrict
the set of models of that CNF formula: If the resolvent C⊗C ′ is unsatisfied
under some assignment, one of the original clauses C and C ′ also has to be
unsatisfied. Therefore, the following lemma holds:

Lemma 2.12. Let C,C ′ ∈ φ be two clauses. If C and C ′ can be resolved,
then φ and φ ∪ {C ⊗ C ′} are equivalent.

Indeed, iterating this procedure yields a complete procedure to solve
the SAT problem. This is formulated in the well-known resolution theorem
[75]:

Theorem 2.13. Let φ be a CNF formula. φ is unsatisfiable iff the empty
clause ∅ can be derived by successively adding resolvents to φ.
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It is known that there are unsatisfiable CNF formulas which require an
exponential amount of resolution steps to derive the empty clause. This
was first proved [39] for CNF formulas that encode the pigeonhole principle
[29].

An additional difficulty when trying to use resolution to solve SAT is
that there is no natural order in which clauses should be resolved. The
choice of such an order will heavily affect the number of resolution steps
that are required to solve a given problem. In particular, it is known that
several restrictions of resolution are exponentially weaker than unrestricted
resolution. For example, this is the case for regular resolution [85] and
tree-like resolution [86]. Here, a resolution proof is called regular if every
variable is only resolved once along every path through the resolution DAG;
a resolution proof is called tree-like if the resolution DAG is a tree.

On the other hand, if resolution is augmented with an extension rule
that allows the definition of equivalences of the form x ↔ (c1 ∨ . . . ∨ ck),
the resulting proof system is exponentially stronger than resolution alone
[29] and in fact equivalent to more traditional proof systems like extended
Frege systems.

2.2.7 Unit propagation and DPLL

Unit propagation is a simple deduction rule that is based on the observation
that if there is a clause {c} of length one in a CNF formula φ, then c must
be part of every model of φ. Unit propagation is heavily used in modern
SAT solvers. This subsection will present the unit propagation rule and the
DPLL algorithm for SAT solving that is based on this rule.

Definition 2.14. Let φ be a CNF formula and let τ be an assignment.
The set UPφ(τ) is the smallest superset of τ so that if a1, . . . , ak ∈ UPφ(τ)
and there is a clause {ā1, . . . , āk, c} ∈ φ, then c ∈ UPφ(τ). The clauses
{ā1, . . . , āk, c} are called unit clauses1 and forming UPφ(τ) is called unit
propagation or Boolean constraint propagation (BCP).

Formalizing our statement from the beginning of this subsection gives
us the following lemma:

Lemma 2.15. Let τ be an assignment of some CNF formula φ. If τ can
be extended to a model of φ, then UPφ(τ) is a subset of this model. In
particular, τ cannot be extended to a model if UPφ(τ) is conflicting.

1Note that we use the two terms “unit clause” and “unary clause” with slightly different meanings.
Unary clauses are always unit but the converse is not true.
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In the special case of an empty τ this gives us the statement that φ is
unsatisfiable, if UPφ(∅) is conflicting. However, the converse is not true;
unit propagation is not a complete procedure for SAT solving.

Computing unit propagation is one of the most performance critical
parts of a modern SAT solver. Solvers use specialized data structures to be
able to compute unit propagation efficiently. We will not discuss how this
is done here. Instead, the discussion of how unit propagation is computed
in practice will be postponed to chapter 3.

The first SAT solving algorithm that employed unit propagation was
the DP algorithm [32] which was later improved to the DPLL algorithm
[31]. Both algorithms are named after their inventors Davis, Putnam, Lo-
gemann and Loveland. DPLL is a backtracking algorithm that performs
unit propagation at every node of the search tree. Branching heuristics
are only used when unit propagation does not fix any additional variables
2. Algorithm 2.1 depicts a recursive variant of the DPLL algorithm. The
algorithm returns true if the input CNF formula φ is satisfiable, and false
otherwise.

Algorithm 2.1 DPLL algorithm
1: procedure dpll(τ)
2: τ ← UPφ(τ)
3: if τ is conflicting then
4: return false
5: else if there is a variable x with x, x̄ /∈ τ then
6: if dpll(τ ∪ {x}) then
7: return true
8: end if
9: return dpll(τ ∪ {x̄}) via tail recursion

10: else
11: return true
12: end if
13: end procedure

The process of selecting a branching variable is called a decision; thus,
the literal that is assigned by a decision is called a decision literal. The re-
cursion depth at which those decisions are made is called the corresponding
decision level. Here, the tail recursion does not count as an own level. Per
convention, we say that literals which are assigned by UPφ(∅) (i.e. the first
iteration of unit propagation), are assigned at decision level zero.

Note that if a literal c is assigned as a decision literal but τ ∪{c} cannot
be extended to a model (as determined by recursive calls to the algorithm),
the DPLL procedure returns to the decision level of c and then assigns
c̄ at the previous decision level. At this point, c̄ is not a decision literal

2The original DP and DPLL algorithms also include a “pure literal” rule that adds a literal c to the
current assignment if c̄ does not occur in any clause that is not already satisfied. As this rule does not
impact the practical performance of the algorithm, we ignore it here.
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anymore: The solver has “learned” that c̄ must be true under the current
assignment τ . This can be seen as a very limited form of the Conflict-Driven
Clause-Learning mechanism that we will study later in chapter 3.

The recursive structure of the algorithm makes DPLL very easy to un-
derstand. However, implementing DPLL recursively is often not desirable:
As we will see later, a recursive implementation makes some extensions of
DPLL difficult to state because they require backtracking more than one
level. Furthermore, as industrial CNF formulas might have millions of vari-
ables, a simple recursive implementation is likely to exhaust the space that
is available on call stacks of typical programming languages. Therefore,
DPLL is usually implemented iteratively, as shown in algorithm 2.2.

Algorithm 2.2 Iterative DPLL algorithm
1: procedure dpll
2: loop
3: propagate
4: if atConflict then
5: if currentDecLevel > 0 then
6: a← last decision literal
7: backtrack
8: enqueue(ā)
9: else

10: return false
11: end if
12: else if there is an unassigned variable x then
13: newDecisionLevel
14: enqueue(x)
15: else
16: return true
17: end if
18: end loop
19: end procedure

Note that the iterative variant of the DPLL procedure does not take
the assignment τ as an argument, instead, a global assignment is managed
implicitly by the algorithm. The algorithm uses an internal stack to remem-
ber the decision literals. The position of those literals on this stack equals
the decision level in the recursive algorithm, with currentDecLevel de-
noting the size of the stack. propagate updates the global assignment
via unit propagation. newDecisionLevel adds a new decision level to
the stack, while backtrack removes the last decision level and undoes all
literal assignments that were done on that decision level. enqueue assigns
a literal, with the first literal after newDecisionLevel becoming a new
decision literal.

All complete state-of-the-art solvers for SAT run some variant of this
DPLL algorithm. They typically amend it either with more sophisticated
decision heuristics (i.e. they replace the selection of variable x in the pre-
viously named algorithms with something less arbitrary) or add additional
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rules to the algorithm or both.

2.2.8 The lookahead procedure

Lookahead algorithms are a class of DPLL-based algorithms. Lookahead al-
gorithms can directly be used to solve SAT. We are not primarily interested
in this approach; however, we use lookahead procedures as subprocedures
in some of the algorithms that we study in chapters 4 and 5.

Lookahead algorithms use a lookahead procedure as sophisticated de-
cision heuristics: Before determining a branching variable, all literals (or
a preselected subset of all literals) are probed iteratively. Each literal is
assigned and unit propagation is performed. Then, the new assignment is
evaluated and discarded again. Typically, this evaluation results in a score
for each literal. The decision procedure then combines the score of the pos-
itive and the negative literal of each variable and picks the variable with
highest combined score.

We will not discuss the evaluation heuristic here. Some discussion on
this topic will be done in chapter 4. Instead, we focus on the lookahead
procedure itself.

Algorithm 2.3 depicts the naive lookahead procedure which takes a set
L of literals as input. The procedure returns true if it could successfully
evaluate all literals of L. Otherwise false is returned. The latter case can
happen if assigning one of the literals c leads to a conflict. In this case c is
called a failed literal. The solver then learns that c̄ must be assigned on the
previous decision level. It can either repeat the entire lookahead on L \ {c}
and update scores that were already associated with some literals of L or it
can reinvoke the lookahead procedure on only those literals which did not
receive a score yet.

2.2.9 Tree-based lookahead

In the last section we have stated a naive lookahead procedure. In many
applications this procedure can be improved by reducing the number of unit
propagations that have to be done.

In particular, this is the case if we suppose that the lookahead evaluation
function only depends on the assignment that results from applying unit
propagation after c has been assigned (and not on other data like the order
in which literals are assigned). In order to improve the procedure we notice
that if we have an implication c → b, then we can assign b first, compute
the evaluation function for b, then assign c and compute the evaluation
function for c, without undoing the assignment of b first. As b would have
to be assigned anyway, this optimization reduces the number of literals that

17



Algorithm 2.3 Naive lookahead procedure
1: procedure lookahead(L)
2: for a ∈ L do
3: if a or ā is already assigned then
4: continue
5: end if
6: newDecisionLevel
7: enqueue(a)
8: propagate
9: if atConflict then

10: backtrack
11: enqueue(ā)
12: propagate
13: return false
14: else
15: Evaluate the current assignment
16: backtrack
17: end if
18: end for
19: return true
20: end procedure

have to be assigned during unit propagation, although it does not reduce the
number of times that we have to invoke the propagate and backtrack
procedures.

Improving the naive procedure from the last section using this idea leads
to the tree-based lookahead procedure. Tree-based lookahead is described
in [46] but was earlier implemented in the March solver [44].

Algorithm 2.4 Tree-based lookahead procedure

1: procedure lookahead(L)
2: Q : Queue
3: procedure dfs(a)
4: Q.push(a)
5: for a′ → a do
6: if a′ /∈ Q then
7: dfs(a′)
8: end if
9: end for

10: Q.push(nil)
11: end procedure

12: for a ∈ L do
13: if a /∈ Q then
14: dfs(a)
15: end if
16: end for

17: a← Q.pop()
18: if a 6= nil then
19: newDecisionLevel
20: enqueue(a)
21: propagate
22: if atConflict then
23: backjump(0)
24: enqueue(ā)
25: return false
26: else
27: Evaluate the assignment
28: end if
29: else
30: backtrack
31: end if
32: return true
33: end procedure

The tree-based lookahead procedure first performs a DFS through the
binary-implication graph in lines 2 to 16. This DFS builds a forest of
literals, so that for each literal c, c implies its parent. The resulting forest
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is stored as a queue. In the second part of the procedure, this queue is
traversed. During the traversal the procedure assigns a new literal whenever
it descends into a subtree of the DFS forest and backtracks when it finishes
visiting a subtree of the DFS forest.

2.2.10 The state of the art

In this subsection we will briefly present the state of the art of SAT solvers.
CNF formulas are commonly grouped into three categories: Real-world

(or industrial) instances, hard combinatorial instances and random formu-
las. Real-world instances encode problems that arise from industrial appli-
cations, for example from bounded model checking [21]. Hard combinatorial
instances are usually encodings of NP-hard problems. Random formulas can
be generated by various mechanisms, for example k-CNF formulas can be
constructed by picking literals from a uniform distribution. Random formu-
las and some types of hard combinatorial instances are typically quite small
and only contain a few thousands of variables. Other hard combinatorial
instances and most industrial instances are much larger. The best known
approaches to solve these instances differ among the three categories.

The state of the art is periodically evaluated by the SAT Competition
[78]. For satisfiable random formulas, the best known algorithms are incom-
plete stochastic local search (SLS) solvers that use randomized methods to
find models. For unsatisfiable random formulas and for small hard combi-
natorial formulas, solvers based on lookahead heuristics are very successful.
However, these solvers become less effective when large formulas are con-
sidered.

In this thesis, we will focus on large industrial and hard combinatorial
instances. These formulas have more “structure” than randomly generated
formulas: For example, in many cases, large parts of the formulas are al-
ready encoded in the binary-implication graph. For industrial and hard
combinatorial formulas, the Conflict-Driven Clause-Learning (CDCL) algo-
rithm is the most successful approach. We will discuss this algorithm in
detail in chapter 3. The performance of the CDCL algorithm depends on
the structure of the instances in order to quickly prune the search space.
In the remainder of this subsection, we shortly discuss the peculiarities of
large industrial and hard combinatorial instances.

As an example for industrial and hard-combinatorial CNF instances, we
take all formulas from the Main track of SAT Competition 2017. Figure 2.1
depicts the distributions of the numbers of variables and clauses in these
instances. Instances typically consist of thousands to millions of variables
and up to tens of millions of clauses.

In Figure 2.2 the size of the formulas with respect to the number of
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Figure 2.1: Distribution of variables and clauses in SC’17 instances
The histograms plot the numbers of variables and clauses, rounded down to the previous power of ten.

literals and their memory consumption is plotted. The figure illustrates
that the number of literals in industrial and hard combinatorial formulas
is of the same order of magnitude as the number of clauses. In fact, out of
all clauses in this set of formulas, 45.4% are binary clauses and 51.5% are
ternary clauses. Only 3.1% of all clauses have a length greater than three.
Thus, in order to be successful, a SAT solver for those instances does not
only need to handle large amounts of clauses but also needs to handle small
clauses efficiently. Minimizing memory consumption is especially important
because solvers regularly allocate new clauses during search (as we will see
in chapter 3) and parallel solvers need to store a separate copy of the formula
for each thread.
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Figure 2.2: Size of SC’17 instances
Again, numbers are rounded down to the previous power of ten. Memory consumption was measured by

parsing the formula using the satUZK solver.

To better understand how the afforementioned structure of CNF for-
mulas emerges, we give an example that demonstrates how combinatorial
problems are encoded into CNF.

Example 2.16. Consider the NP -complete problem of graph 3-coloring.
Let G be a graph. We want to construct a CNF formula φ so that each
model of φ corresponds to a 3-coloring of G.

This can be achieved in the following way: We introduce variables xkv
with k ∈ {1, 2, 3} denoting a color and v ∈ V (G) iterating through the
vertices of G. After the construction is completed, the literal xkv will be true
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in a given model if and only if v receives the color k in the corresponding
coloring.

We now construct the clauses of φ. For each vertex v, the clause
{x1

v, x
2
v, x

3
v} ensures that at each vertex receives at least one color. On the

other hand, the clauses {x1
v, x

2
v}, {x1

v, x
3
v}, and {x2

v, x
3
v} prevent coloring the

vertex with more than one color. Finally, for each edge u− v ∈ E(G), the

clauses {x1
u, x

1
v}, {x2

u, x
2
v}, and {x3

u, x
3
v} guarantee that adjacent vertices do

not receive the same color. This completes the construction of φ.

As we can see, the construction in example 2.16 results in 3(|V (G)| +
|E(G)|) binary clauses and |V (G)| ternary clauses. While graph coloring
can be seen as a synthetic problem, it is obvious that “at-least-one”, “at-
most-one” and similar constraints are ubiquitous in industrial applications.

2.3 Parallel computing

As we will discuss parallel algorithms in chapters 4 and 5, we need some
terminology related to parallel computing. This terminology will be intro-
duced in this section.

2.3.1 Parallel computation models

The best-known parallel computation model is the P-RAM machine. P-
RAM extends the random-access machine (RAM) model to multiple pro-
cessors that are all connected to shared memory. These processors operate
in a single instruction, multiple data (SIMD) fashion: All processors run
the same instructions but each processor is allowed to operate on a differ-
ent set of data. In pseudocode, this is often expressed via for . . . do in
parallel statements. Several specializations of the P-RAM model exist;
most commonly, exlusive read, exclusive write (EREW) or concurrent read,
exclusive write (CREW) models are considered.

The class of decision problems that can be solved by a P-RAM machine
using a polynomial number of processors and polylogarithmic time is called
NC3. The definition of NC is the same in the EREW and CREW models.
It is an open problem whether P equals NC. Similar to P -reductions in
the context of the NP complexity class, we can define NC-reductions as
reductions that can be executed on a P-RAM machine with a polynomial
number of processors in polylogarithmic time. A problem is called P -hard
if there is a reduction from every problem in NC to that problem. If such
a problem is also in P , it is called P -complete. It is well-known that the

3NC stands for “Nick’s class” and is named after Nick Pippenger.
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circuit value problem (CVP) is P -complete [56]. CVP is the problem of
determining if the output of a circuit consisting of Boolean gates is true for
a given set of input values.

In reality, shared memory systems are limited in their scalability even
when running NC-algorithms. Modern processors feature a hierachy of
caches; writes to memory typically need to invalidate entire cache lines and
thus affect the performance of other processors. In addition to that, mem-
ory latency is affected by the distance of a processor to the memory module.
Attaching an arbitrary amount of processors to a given memory module is
not physically possible without increasing memory latencies. Furthermore,
implementations of shared memory algorithms require the use of synchro-
nization primitives like mutexes or carefully crafted lock-free algorithms.
This leads to contention between processors and increases the complexity
of the implementation.

Because of these inherent problems, large parallel computers typically
use a distributed architecture. In such a distributed architecture, computers
consist of individual nodes that all have isolated memory spaces. All nodes
are connected by a network that we call an interconnect. Instead of perform-
ing implicit communication over shared memory, the nodes communicate
by explicitely exchanging message via the interconnect. Communication
costs on the interconnect typically depend on the physical proximity of two
nodes. We do not specify the exact shape of the interconnect as we do not
want to specialize our algorithms for specific interconnects.

2.3.2 Dynamic load balancing

In many applications, evenly distributing the load (i.e. the computational
tasks that are to be performed in parallel) to different processors and/or
different nodes is hard to achieve statically. Even if a good initial load
distribution is found, some processors might finish their tasks earlier than
others. If this happens the processors become idle and their computational
resources are wasted. Dynamic load balancing is the process of adaptively
moving load between processors so that idle periods of processors are min-
imized.

The diffusion method is one of the earliest algorithms that were con-
sidered for dynamic load balancing [30]. An example of this method is the
dimension-exchange algorithm on a hypercube. Consider a d-dimensional
hypercube. Its vertices are binary strings of length d. Suppose that each
processor is associated to one of the vertices. Note that each processor has
exactly one neighbor in each for the d dimensions. The dimension-exchange
algorithm iteratively cycles through the d dimensions. For each dimension
i it exchanges load between each pair of neighbors in dimension i so that
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the load on both of those neighbors is equal. Eventually, this procedure
balances the total load uniformly.

Note that this diffusion method does not take communication that is
required to solve the computational tasks into account. There are more
sophisticated load balancing algorithms that do account for the cost of this
communication (e.g. methods that are based on graph partitioning). How-
ever, in our cases, only negligible amounts of communication are required
to solve each task. Thus, the dimension-exchange methods suffices in our
applications.

2.3.3 Practical parallel computing

In our implementations, we use both shared memory and communication
over interconnects. Each node consists of one or more sockets. Each socket
hosts multiple cores and each of those cores is a full-fledged CPU. All cores
of the same node (even those cores that belong to different sockets) share
their memory. However, the latency of accesses to different parts of this
shared memory might differ among different sockets.

Operating systems (OSs) typically abstract over these details. They
allow programs to create “processes” and “threads”. A process consists of
multiple threads that each represent a single execution context. All threads
of the same process share the same memory. We assume that the OS maps
each thread of a program to a different physical core and the number of
threads we create will usually equal the number of cores on a node or
socket. When we talk about threads that execute a specific algorithm (as
opposed to threads that only perform book keeping, communication or other
secondary tasks) we often use the term worker.
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Chapter 3

The satUZK solver

In this chapter we review the algorithms of our CDCL solver satUZK and
discuss how to implement them efficiently. We start by discussing the algo-
rithms that make up the generic CDCL framework and then describe how
they are realized in satUZK.

The C++ implementation of satUZK was written by the author of this
thesis. We submitted satUZK to previous SAT Competitions in 2012, 2013,
2014 and 2017 [96, 90, 89, 87]. In 2013, the sequential satUZK-seq solver
won a bronze medal in the Application, SAT track. The parallel ppfolioUZK
solver [95], written by Andreas Wotzlaw, included satUZK as a subroutine
and won a gold medal in 2012. satUZK is available from https://github.

com/satuzk/satUZK.

3.1 CDCL basics

This section will review the components that constitute the core of modern
CDCL solvers. Most of the algorithms that are disussed in this section are
not novel, however, presenting them is necessary to discuss their specific
implementation in satUZK in the next section.

The modern CDCL approach was not developed in a single step. In-
stead, it was refined iteratively starting from the DPLL procedure. We give
a short overview of this development before we present the individual steps
in detail in the following subsections. The first clause learning solver was
GRASP [79]1. Chaff [69] improved upon GRASP by implementing the two-
watched-literals scheme2, restarts, learned clause deletion and the VSIDS
decision heuristic. zChaff [99] then introduced the 1-UIP learning scheme.

1The relsat solver [12] independently added clause learning to a DPLL algorithm but its architecture
is quite different from that of modern CDCL solvers.

2The two-watched literal scheme is related to the head/tail scheme that was already implemented in
the SATO solver [98], which is based on DPLL without clause learning.

24



MiniSat improved upon zChaff by incorporating learned clause minimiza-
tion [81, 84, 34] and preprocessing techniques [33]. Glucose [8] introduced
the LBD measure for clause quality. Lingeling [15] added inprocessing al-
gorithms to the search procedure.

3.1.1 The CDCL algorithm

The Conflict-Driver Clause-Learning (CDCL) algorithm is an extension to
the iterative DPLL procedure that was presented in algorithm 2.2. The
CDCL algorithm itself improves upon the DPLL algorithm by preventing
it from reaching the same conflict multiple times. This is done by adding
new clauses to the CNF formula every time a conflict is encountered. The
following example demonstrates how this mechanism works.

Example 3.1. Consider the CNF formula {{w̄, y}, {x̄, y}, {ȳ, z}, {ȳ, z̄}}.
Assume that the DPLL algorithm first assigns w. Then, y and z are fixed
by unit propagation and the propagation procedure runs into a conflict when
trying to assign z̄. Note that assigning w was not necessary in order to trig-
ger this conflict; just assigning y would have led to the same conflict. How-
ever, DPLL does not recognize this fact. Instead, the algorithm backtracks
(i.e. it undoes every assignment) and assigns w̄. If the DPLL algorithm
now assigns x, it runs into the same conflict again.

If we would have used our knowledge that assigning y already leads to a
conflict, we could have assigned ȳ after the solver backtracks. In fact, we
can add the clause {ȳ} to the CNF formula: Adding the clause forces the
solver to perform this assignment via unit propagation; this is the idea of the
CDCL algorithm. Unit propagation then also fixes w̄ and x̄ automatically.
Thus, only a single backtracking operation is required to fix the same amount
of literals that were fixed by multiple backtracking operations of the DPLL
algorithm.

The example already shows how the DPLL algorithm is to be extended
to be turned into CDCL. When the solver runs into a conflict, conflict
analysis is performed, which outputs a clause C that is logically implied by
the input CNF formula but unsatisfied under the current assignment. C is
called a learned clause or a conflict clause in this context. The solver then
backtracks to the first decision level where C is unit and fixes a new literal
by applying unit propagation to C. Algorithm 3.1 formulates this procedure
in pseudocode. The only difference to algorithm 2.2 (the iterative DPLL
algorithm) is the handling of conflicts in lines 6 to 10. The basic structure
of this CDCL algorithm was introduced by GRASP [79].

Note that the algorithm can backtrack more than one level as result of
a conflict. This mechanism is called non-chronological backtracking [79].
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Algorithm 3.1 CDCL algorithm
1: procedure cdcl
2: loop
3: propagate
4: if atConflict then
5: if currentDecLevel > 0 then
6: C ← analyzeConflict
7: k ← first decision level so that C is unit
8: while currentDecLevel > k do
9: backtrack

10: end while
11: else
12: return false
13: end if
14: else if there is an unassigned variable x then
15: newDecisionLevel
16: enqueue(x)
17: else
18: return true
19: end if
20: end loop
21: end procedure

Non-chronological backtracking ensures that the newly learned clause is
propagated at the correct decision level. It also cleans decision literals that
did not participate in the conflict from the assignment.

There are, of course, formulas which require an exponential number of
conflicts to be solved. For such formulas, the CDCL algorithm generates an
exponential number of conflict clauses. Nevertheless, as long as the algo-
rithm does not produce duplicate conflict clauses, the procedure eventually
terminates. We will see that learning schemes that are used in practice
indeed do not generate duplicate clauses. Thus, this form of the CDCL
algorithm is a complete algorithm for SAT. In reality, solvers delete learned
clauses heuristically in order to prevent the solver from consuming an ex-
ponential amount of memory. If this is done, the completeness guarantee of
the algorithm is lost. In practice, this is usually not considered a problem;
the result from a solver that does not terminate within a reasonable time
frame is indistinguishable from the result of a solver that does not terminate
at all.

Although the CDCL algorithm shares an exponential upper bound with
the DPLL algorithm, CDCL is much stronger than DPLL, even from a the-
oretical point of view. While DPLL can be simulated by regular resolution
(see 2.2.7), CDCL is known to be equivalent to general resolution [71, 13] 3.
Thus, there are formulas that can be solved by CDCL in polynomial time

3The proof requires some assumptions that are reasonable but still not always satisfied in practice.
However, the proof still gives a theoretical justification to the CDCL algorithm. For example the proof
in [71] requires a restart (see subsection 3.1.6) after each conflict. Real solvers do not restart after each
conflict as restarts have a non-negligible runtime cost.
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but that require exponential amounts of time for traditional DPLL solvers
(see 2.2.6 and [1]).

In the following subsections we will discuss how the conflict analysis pro-
cedure works and introduce a few extensions to algorithm 3.1 that modern
CDCL solvers use.

3.1.2 Clause learning

The previous subsection presented an example of how clause learning can
be used to prun the search space of a SAT solver. In this subsection, we
will develop a systematic method to construct useful learned clauses.

In order to extract learned clauses from conflicts, the CDCL algorithm
constructs a “conflict graph” that encodes which literals were used to fix new
literals during unit propagation. The solver builds this graph by remember-
ing the clause ant(c) that is used to fix a literal c during unit propagation.
This clause is called the antecedent of c. Conflict graphs are constructed
from the antecedents of assigned literals; the following definition explains
how this is done.

Definition 3.2. Consider the run of DPLL algorithm on the CNF formula
φ. At a given point of time during this run, an antecedent graph is a
graph that has (a subset of the) literals of φ as vertices and that has edges
a1 → c, . . ., ak → c if and only if c is true under the current assignment
and D = {c, ā1, . . . , āk} ∈ φ is the antecedent of c. We label those incoming
edges of c with D.

Suppose that G is an antecedent graph and that there is a clause C =
{ā1, . . . , āk} ∈ φ with a1, . . . , ak ∈ V (G) (i.e. the DPLL algorithm encoun-
tered a conflict). If we add a special vertex ⊥ and edges ai → ⊥ to G, for
i = 1, . . . , k, and label those edges with C, the resulting graph is called a
conflict graph.

A conflict cut is a cut of a conflict graph G that separates all decision
literals from ⊥. Literals on the decision side of the cut which are adjacent
to the conflict side of the cut (i.e. the side containing ⊥) are called cut
literals.

Conflict graphs were introduced by GRASP [79].
Let us illustrate how the conflict graph looks like in case of the example

from the last subsection. We will see that the inverses of the cut literals of
conflict cuts form possible learned clauses.

Example 3.3. Consider the same situation as in example 3.1. The conflict
graph from that example is depicted in figure 3.1. This figure also shows
three different conflict cuts. We form learned clauses by taking the inverses

27



w y z

⊥

{w̄, y} {ȳ, z}

{ȳ, z̄} {ȳ, z̄}

Figure 3.1: Conflict graph from example 3.1
Three cuts, corresponding to the sets {w}, {y} and {y, z} of cut literals (from left to right) are drawn

into the graph.

of the cut literals. This results in the clauses {w̄}, {ȳ} and {ȳ, z̄} (from left
to right).

The learned clause {ȳ, z̄} is not very useful: As it contains two literals
on the current decision level, it will not be unit after backtracking. The
clause {w̄} does not have this problem. However, this clause contains ex-
actly the single decision literal that is currently assigned. Cuts that have
only decision literals as cut literals are called decision cuts. If a CDCL
solver always learns decision cuts, the CDCL algorithm degenerates to the
DPLL algorithm without clause learning.

Therefore, we conclude that {ȳ} is the best learned clause that we can
extract from the given conflict graph. It only contains a single literal at the
current decision level (i.e. it will be unit after backtracking) and is also
strictly superior to {w̄} as it will fix both ȳ and w̄ after backtracking.

Next, we prove that learning clauses using this mechanism is indeed
sound. For that, we show how the learned clause can be derived using
resolution. Results from chapter 5 will later generalize this result and show
that learned clauses are in fact so called “asymmetric tautologies”.

Lemma 3.4. Let G be a conflict graph for some CNF formula φ. For every
conflict cut of G, the inverses of the cut literals form a clause that can be
derived by resolution.

Proof. Our proof explicitely constructs a resolution derivation. Per defini-
tion, G contains no cycles. Note that ⊥ is a sink vertex. Let a1, . . . , a` = ⊥
be a topological ordering of G that ends in the ⊥ vertex (i.e. there are only
edges from ai to aj if i < j). Let C be the label of the incoming edges of ⊥.
Start the resolution derivation with C; this is our “current clause”. We will
maintain the invariant that every literal of the current clause that is not
also a cut literal is on the conflict side of the cut; certainly, this is initially
true.

Let i be maximal so that ai is part of our current clause but not a cut
literal. In particular, because of our invariant, ai cannot be a decision literal.
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Let C ′ be the label of the incoming edges of ai. Resolve our current clause
with C ′ on the literal ai; the result becomes our new current clause. This
is possible because the definition of an antecedent graph guarantees that
āi ∈ C ′. The resolution operation only adds literals that are predecessors
of ai and those literals have indices less than i in the topological ordering.
This ensures that the procedure terminates eventually. Furthermore, as ai
is not a cut literal, the predecessors of ai are either cut literals themselves
or still on the conflict side. Thus, our invariant is maintained.

Corollary 3.5. Let D be the set of cut literals for an arbitrary conflict cut
of G. Then φ and φ ∪ {D} are equivalent.

This lemma gives us many possible conflict clauses. The question now
arises how to select the conflict cut? In our previous example 3.3 we already
saw that not all conflict cuts yield useful learned clauses. In particular, cuts
with more than one cut literal at the current decision level are unhelpful,
as they do not fix literals after backtracking.

While multiple methods to find a conflict cut have been studied in the lit-
erature, virtually all modern CDCL solvers use the “1-UIP” scheme. 1-UIP
was empirically proven to be superior to earlier schemes. It was introduced
in zChaff [99]. The same paper also contains an evaluation of othe learning
schemes.

Definition 3.6. Let G be a conflict graph. Let c be vertex with decision
level k. If all paths from the decision literal of level k to ⊥ pass through c
(i.e. c is a dominator of this subgraph), then c is called a unique implication
point (UIP) on level k. Note that UIPs of the same level can be naturally
ordered.

We call the UIP that is closest to ⊥ the first UIP. The 1-UIP conflict
cut is uniquely defined as the conflict cut that contains only the first UIP
on the current decision level on the decision side and is as close to ⊥ as
possible on all other decision levels. Here, as close as possible means that a
vertex is on the conflict side if and only if it is on a path between the UIP
and ⊥.

In example 3.3 and figure 3.1, the 1-UIP cut is given by the set {y} of
cut literals and corresponds to the learned clause {ȳ}.

Note that for each decision level there is at least one UIP, namely the
decision literal itself. Thus, the 1-UIP cut is always well-defined. Further-
more, as the 1-UIP cut contains exactly one literal on the current decision
level, the generated learned clause will always be useful. This property
also guarantees that 1-UIP clauses never duplicate already existing clauses:
If an already existing clause was contained in a 1-UIP clause, that clause
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Decision level 1

Decision level 2

w x

y z

⊥

{w̄, x} {x̄, ȳ, z}
{x̄, ȳ, z}

{w̄, ȳ, z̄} {w̄, ȳ, z̄}
{w̄, ȳ, z̄}

Figure 3.2: Learned clause minimization in example 3.7
Displays the conflict graph from the example. Decision literals are indicated by double circles. The right

cut corresponds to the usual 1-UIP clause. The left cut corresponds to the 1-UIP clause after
minimization has been applied.

would have fixed the UIP on an earlier decision level via unit propagation.
Therefore, as we discussed in the previous subsection, the CDCL algorithm
using the 1-UIP scheme is complete. Also note that the 1-UIP cut is strictly
more useful than any conflict cut that contains a different UIP on the cur-
rent decision level; any UIP other than the first UIP would fix the first UIP
via unit propagation and run into a conflict again.

Note that the 1-UIP cut is not the only useful cut that contains exactly
one literal at the current decision level. After all, we could resolve additional
literals on earlier decision levels (e.g. replace them with the first UIP on
their decision levels). However, there are both practical and theoretical
reasons why we prefer the 1-UIP clause. In practice, we will see that the
1-UIP cut can be computed very efficiently; the same is not necessarily
true for more complex cuts. Theoretically, while the 1-UIP cut does not
minimize the learned clause’s length, it is easy to observe that it indeed
minimizes the number of decision levels that are part of the learned clause,
over all clauses that contain the first UIP on the current level. The reason
for that is that the resolution process in the proof of lemma 3.4 only adds
decision levels to the clause but can never remove them 4.

3.1.3 Learned clause minimization

In many cases, the 1-UIP clause still contains superfluous literals. Learned
clause minimization is the process of removing those literals from the learned
clause. Learned clause minimization was popularized by MiniSat [81, 84] 5.
The next example illustrates the idea of learned clause minimization.

4This property implies that the 1-UIP clauses minimizes the LBD measure over all clauses that contain
the UIP. LBD will be discussed in subsection 3.1.5.

5It was, however, already considered in [13].
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Example 3.7. Consider the CNF formula φ = {{w̄, x}, {x̄, ȳ, z}, {x̄, ȳ, z̄}.
Suppose that a CDCL solver assigns w on the first decision level and y on
the second decision level. This situation is depicted in figure 3.2.

The CDCL solver learns the 1-UIP clause {w̄, x̄, ȳ}; here, y is the first
UIP on the second decision level. However, the literal x̄ in this clause is
superfluous: We could resolve the 1-UIP clause with the clause {w̄, x} from
φ to obtain the smaller learned clause {w̄, ȳ}. As this clause is a subset of
the 1-UIP clause, it is strictly more useful during unit propagation.

Let us formalize the idea from the preceeding example and formulate it
as an algorithm: The recursive minimization algorithm removes a literal c
from a learned clause C if any path from a decision literal to c in the conflict
graph contains a cut literal that is different from c. The correctness of this
algorithm follows from the fact that it is equivalent to moving c and some
predecessors of c to the conflict side of the cut. As the conflict graph is
acyclic, the recursive minimization procedure has a unique result (i.e. the
result does not depend on the order in which literals are considered).

It should be noted that recursive minimization is unable to remove entire
decision levels from the learned clause: Let c be the only remaining literal
of the learned clause on a certain decision level l. If c is the decision literal
on level l, then recursive minimization cannot remove c. Otherwise, there
is a path from the decision literal on level l to c that only contains literals
on level l: If there was no such path, then c would have been propagated on
an earlier decision level. However, no predecessor of c on this path is part
of the learned clause. Thus, recursive minimization does not remove c.

As a consequence, recursive minimization cannot remove the UIP on the
current decision level. In particular, it does not influence the literal that is
propagated by the conflict clause after backtracking, nor does it influence
the decision level the CDCL algorithm backtracks to 6.

3.1.4 Decision heuristics

Up to this point, we still left the decision heuristic of the CDCL algo-
rithm unspecified. In this section, we will present the most commonly
used decision heuristic, namely the variable-state-independent-decaying-sum
(VSIDS) heuristic.

Definition 3.8. For a variable x, let pi(x) = 1 if either x or x̄ are part of
the conflict side of the i-th conflict graph that is encountered by the CDCL
algorithm and otherwise pi(x) = 0. The VSIDS score of a variable x after

6It also does not influence the LBD of the clause.

31



the n-th conflict is defined as

vsids(x) =
n∑
i=1

pi(x)hi

Here, h > 1 is a fixed constant. MiniSat uses a number close to h = 1.05.

The VSIDS heuristic selects the variable with highest VSIDS score at
each decision. Because of the hi term, only the last few summands actually
matter and the importance of earlier summands “decays” during the CDCL
algorithm. Thus, the VSIDS heursitic selects the variable that occurred
most frequently in the most recent learned clauses.

In order to quickly determine the variable with highest VSIDS score,
solvers usually store all variables in a heap data structure. Most solvers use
a binary heap as this implementation seems to yield the best performance
in practice. However, insertion and update operations of this heap consume
non-negligible amounts of runtime.

There are some alternatives to VSIDS. The variable-move-to-front
(VMTF) heuristic [77] stores variables in a list and always moves those
variables that are part of conflict sides to the front of this list. It always
selects the first unassigned variable of the list. While a benefit of the VMTF
strategy generally is the better runtime bound of O(1) (versus the O(log n)
bound of a VSIDS implementation using binary heaps), dedicated data
structures are still necessary in order to implement VMTF efficiently [23].
Another recent alternative to VSIDS is the family of learning-rate-branching
(LRB) heuristics [64]. Those heuristics explicitly compute the frequency in
which variables occur on conflict sides. All of those heuristics are related
to VSIDS in the sense that they try to select variables that most frequently
occur in recent conflicts. Earlier decision heuristics that tried to pick vari-
ables from certain clauses (like the heuristic from BerkMin [37]) are not
competitive with VSIDS, VMTF and LRB.

After a decision variable is determined, its polarity has to be fixed in
order to determine a decision literal. In modern SAT solvers, this is done by
utilizing progress-saving [70]: For each variable, the solver memorizes the
polarity that the variable is assigned to, whenever it is assigned. If a decision
needs to be made, the solver always choses exactly the memorized polarity.
Here, the initial polarity is chosen arbitrarily. This policy forces the solver
to focus on a small part of the search space. Variables are only flipped
when flipping them is necessary; that is as a result of unit propagation.
This happens, for example, if a conflict clause forces a flip. In contrast
to that, if variables were flipped arbitrarily, the resulting assignment could
satisfy large amounts of recently learned clauses, rendering them useless for
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unit propagation. In this way, the progress-saving mechanism ensures that
learned clauses stay relevant to the search.

3.1.5 Clause database reduction

In sections 3.1.1 and 3.1.2 we discussed how CDCL solvers add learned
clauses to the CNF formula. In general, a CDCL solver can add an ex-
ponential amount of learned clauses to the formula. As the number of
clauses in the formula increases, the performance of unit propagation de-
creases. What is worse is that the solver might even run out of memory
on instances that require many conflicts to be solved. To mitigate these
problems, it becomes necessary to delete learned clauses after they are no
longer useful. This procedure is called clause database reduction.

In order to support clause database reduction, the solver has to divide
its set of clauses into redundant and irredundant clauses. All clauses that
originate from the input CNF formula are irredundant, while clauses gen-
erated by clause learning are redundant. The solver has to ensure that only
redundant clauses are removed.

The main problem that has to be solved when designing a clause database
reduction algorithm is determining when a clause is no longer useful. While
clause database reduction was already present in solvers like Chaff [69], their
heuristics differ significantly from modern ones. MiniSat [34] implements
a more modern heuristic: It schedules clause database reduction after an
exponentially increasing number of conflicts and always deletes half of the
learned clauses. MiniSat never deletes binary clauses during database re-
duction. To determine the clauses that are being removed, MiniSat asso-
ciates a VSIDS-like score which is called activity with each clause. It turns
out that this mechanism works well for some families of formulas.

For most industrial CNF formulas, however, a more aggressive reduction
policy performs better. Glucose [8] is a successful SAT solver that is based
on an aggressive database reduction strategy. Glucose does not rely on the
activity score to delete clauses, instead it uses a score called literal block
distance (LBD).

Definition 3.9. Let C be the learned clause that is learned after the m-th
conflict. For a literal c, let li(c) be the decision level of c before backtracking
has been performed as result of conflict i, if c is assigned at that point of
time. After the n-th conflict, lbd(C) is defined as

lbd(C) = min
m≤i≤n

|{li(c) : c ∈ C} \ {0}|

The minimum is only taken over all i where li(c) is defined for all c ∈ C.
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Note that clauses with an LBD of zero are unit at decision level zero
and thus equally useful as unary clauses. Like binary clauses, clauses with
an LBD of one are unit after some decision literal has been assigned. In
this sense, clauses with LBD one are as important as binary clauses.

Note that the LBD of a clause can potentially change after every conflict.
In practice, it is too costly to recompute the LBD of all clauses (or even
of all redundant clauses) after each conflict. Thus, the LBD of a clause C
is usually computed at the time when C is learned. If C participates in
a conflict side afterwards, the LBD of C is recomputed. This mechanism
allows clauses to improve their LBD over time.

Glucose schedules clause database reduction after a linearly increasing
number of conflicts. It always keeps clauses with an LBD smaller or equal to
two; this implies that Glucose, like MiniSat, does not delete binary clauses.
Half of the remaining clauses are deleted. LBD is used to determine the
clauses that will be deleted; clauses with large LBD are deleted first. The
activity score is only used to break ties.

3.1.6 Restarts

This subsection will discuss restarts, which are one of the core components
that are universally implemented in modern SAT solvers. When a SAT
solver restarts, it undoes all decisions and starts again from an empty as-
signment. Restarts were first implemented in Chaff [69].

Technically, in order to restart, it is sufficient to backtrack to decision
level zero. Assignments at decision level zero do not need to be undone
as they would be repeated anyway. Thus, the solver gains the ability to
reconsider decisions that were made at early decision levels.

Note that the purpose of a restart is not encouraging the solver to explore
a different part of the search space. Indeed, the VSIDS heuristic and the
progress-saving mechanism encourage the solver to explore the same part
of the search space even after a restart. Instead, solvers use restarts to
clean “unimportant” decision literals from the current assignment. Such
literals lead to larger conflict graphs and thus decrease the quality of learned
clauses. Hence, restarts are not only important to quickly find solutions to
satisfiable instances but also to quickly find unsatisfiability proofs.

Experiments show, that on many classes of formulas, SAT solvers benefit
from frequent restarts [38]. In particular, the number of decisions that
are required to solve problems often decreases with more frequent restarts.
However, especially on large formulas, redoing all unit propagations after
a restart has a non-negligible cost. If restarts are scheduled too frequently,
this cost can diminish the advantage of a smaller number of decisions. There
is some work [92, 73] to reuse parts of the current assignment after a restart
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in order to reduce the cost of restarts.
There are multiple restart strategies that are used in state of the art

CDCL solvers, with the most common ones being Luby restarts and LBD-
based restarts. The Luby restart [65] strategy (named after its inventor)
is a restart strategy that was discovered during the study of Las Vegas
algorithms (i.e. randomized algorithms that always return the correct result
if they terminate but that have a stochastic runtime bound). For these
algorithms, Luby restarts are proven to be optimal up to a logarithmic
factor.

In the CDCL context, Luby restarts are usually implemented by restart-
ing after a certain number of conflicts. This number of conflicts is given by
the elements of the Luby sequence S. Fix some integer r ∈ N. S can be
constructed as follows: Start with S0 = (r). Construct Si by appending the
element r2i to Si−1. S is formed as the concatenation of all Si. For r = 1,
this yields the sequence S = (1, 1, 2, 1, 1, 2, 4, 1, 1, 2, 4, 8, . . .). SAT solvers
usually use values between r = 100 (MiniSat) and r = 2 (Lingeling in [22]).
Even r = 1 might be beneficial in some scenarios [73].

Of course, it is questionable whether the behavior of the CDCL algo-
rithm can be modeled as a Las Vegas algorithm. In particular, usual im-
plementations of CDCL are determinisitic. However, as demonstrated by
MiniSat, Luby restarts seem to perform well on many families of formulas;
this is evaluated in detail in [22].

In contrast to the static Luby strategy, LBD-based restarts [9] take
the current progress of the CDCL solver into account. Thus, LBD-based
restarts form a dynamic restart strategy. The LBD-based restart strategy
compares the LBD of the last learned clause to a moving average of the
LBD scores of recently learned clause (e.g. the last 50 learned clauses).
If the LBD of the recently learned clause is significantly higher than the
average LBD, a restart is performed.

3.2 satUZK: Algorithms and data structures

In this section, we will discuss the concrete implementation of the CDCL
algorithm in satUZK. The resulting sequential SAT solver is called satUZK-
seq.

3.2.1 Variable and clause data types

The most fundamental data types relevant to SAT solving are the data
types that represent variables, literals and clauses. We will shortly discuss
how these data types are implemented.
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In satUZK, variables and literals are represented as unsigned 32-bit
integers. Specifically, for a variable that is represented by the number k, the
positive and negative literals are represented by 2k and 2k+ 1 respectively.
Thus, the inverse of a literal can be computed by flipping its least significant
bit. This representation was inspired by MiniSat [34]. Some other solvers
implement positive and negative literals as positive and negative numbers
respectively. Our representation has the advantage that it interacts nicely
with our assignment data structure that is presented in the next section.

Clauses are represented by “handles” to their data (which includes their
literals and other information). The representation of clause data is more
complicated: satUZK implements multiple schemes to store clause data.
We call these schemes clause spaces and will discuss them in subsections
3.2.6 and 3.2.7. Clause handles could be implemented as pointers into such
clause space data structures. However, as the solver needs to manage a large
amount of clause handles (e.g. as part of watched lists that we will discuss in
subsection 3.2.4), we can reduce its memory consumption by implementing
clause handles as 32-bit integers, too. The exact meaning of these integers
depends on the clause space. On 64-bit systems (i.e. where pointers are
64-bit) that halves the memory footprint of clause handles. Furthermore,
it improves the locality of the data structures and reduces cache pressure.
On the flip side, implementing clause handles as 32-bit integers reduces the
maximal number of clauses that can be addressed by the solver. The solver
can be recompiled with 64-bit clause handles if 32-bit handles do not suffice
to solve a given instance. However, we did not encounter such instances in
practice, especially because exploiting CPU alignment constraints allows us
to address 16 GiB of clauses using 32-bit handles (see subsection 3.2.6).

3.2.2 Assignment and trail data structures

During an iterative DPLL or CDCL search, a SAT solver needs to keep track
of the current assignment and of the order in which literals are assigned.
The latter is required to be able to backtrack after the solver encountered a
conflict. The assignment and trail data structures manage this information.

Assignments are stored as an array that contains two bits per variable
7. The more significant bit determines whether the variable is assigned
(encoded as zero) or unassigned (encoded as one). The less significant bit
is only valid while the variable is assigned and determines if the positive
or negative literal is currently true. This encoding enables a low-overhead
implementation of truth checks: Testing whether a certain literal is true
amounts to comparing its least significant bit (i.e. the least significant bit

7Technically, these two bits are padded to a byte for performance reasons.
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of its 2k/2k + 1 encoding) to the 2-bit value given by the assignment.

In addition to the truth value, the assignment data structure has to
store, for each currently assigned variable, the decision level that the
variable was assigned on and the antecedent of the variable. As we
stated earlier, the antecedent of a variable is the clause that fixed the
variable via unit propagation. However, in some algorithms, we need
to manage antecedents that do not directly arise from clauses. There-
fore, antecedents are managed through a dedicated data type: Formally,
the Antecedent type is a discriminated union that can assume val-
ues of the form DecisionAntecedent, ClauseAntecedent(C) and
UnaryAntecedent(c), where C is a clause and c is a literal. Here,
ClauseAntecedent(C) is the antecedent of a variable that has been
fixed by the clause C through unit propagation. UnaryAntecedent(c)
indicates that the variable was fixed by an implication (i.e. an edge of
the binary-implication graph or equivalently, a binary clause) after the lit-
eral c̄ has been assigned. The solver uses UnaryAntecedent instead of
ClauseAntecedent if the exact clause that propagated a variable is not
known. DecisionAntecedent is used to mark decision variables. If a
variable is not assigned, we set its antecedent to nil.

The trail data structure consists of two stacks. The first stack stores
all assigned literals in the order in which they are assigned. The second
stack stores, for each decision level, the position of the decision literal on
the first stack. We call those stacks the assignment stack and the level stack
respectively.

The assignment and trail data structures implement the proce-
dures newDecisionLevel, enqueue(c, λ) and backtrack. The
newDecisionLevel operation just pushes the current size of the assign-
ment stack onto the level stack. The enqueue(c, λ) operation assigns c
(while memorizing the current decision level and the antecedent λ) and
pushes c onto the assignment stack. backtrack pops the topmost item k
from the level stack. It then pops literals from the assignment stack and
unassigns them until only k items remain on the assignment stack.

3.2.3 Watch lists

In this subsection we present satUZK’s “watch list” data structure that is
responsible for detecting unit clauses and conflicts.

The idea behind this data structure is the two-watched-literals scheme:
In order to detect if a clause is unit, the solver marks exactly two literals
of each non-unary clause C. These literals are called the watched literals of
C. The solver maintains the following invariants:
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2-WL If C is neither unit nor unsatisfied, there are at least two literals in
C which do not have value false (i.e. they can either be unassigned
or have value true). Two of these literals are the watched literals and
they are chosen from the maximal possible decision levels.

1-WL C is unit if there is exactly one literal in C which does not have
value false. This literal is one of the watched literals and is assigned
after all other literals in C. The other watched literal has value false
and is chosen from the maximal possible decision level.

0-WL Otherwise C is unsatisfied and both watched literals have value false.
These two literals are chosen from the current decision level.

The solver then stores a watch list for each literal c that stores exactly
the clauses that contain c as a watched literal. The watch lists are updated
during unit propagation. However, it should be noted that the data struc-
ture does not need to be updated during backtracking. This follows from
the fact that all invariants of the two-watched-literals data structure remain
satisfied after literals are unassigned, provided that they are unassigned in
the reverse order in which they were assigned. As a result, backtracking
during the CDCL algorithm is an inexpensive operation.

The two-watched-literals scheme was invented by Chaff [69]. It is lazy
in the sense that assigning a literal does not immediately affect all clauses
that contain this literal. One of the implications of using a lazy data struc-
ture is that it is not possible to determine the set of clauses of length k
under the current assignment, for k > 1. Other lazy schemes to detect unit
clauses have been discussed in [66], however, none of them turned out to
outperform the two-watched-literals scheme in practice. Due to its perfor-
mance advantage, all state-of-the-art CDCL solvers rely on this scheme to
perform unit propagation. It should be noted that other SAT solvers, for
example lookahead-based solvers, rely on eager data structures (e.g. mod-
ern versions of the one discussed in [24]) which are indeed able to determine
all clauses of length k. Because of their irrelevance to CDCL, we will not
discuss eager data structures here.

Binary entry General entry

Type (0) Type (1)

Blocking literal Blocking literal

Clause handle

Figure 3.3: Layout of watch list entries
In the actual implementation, both the type and the blocking literal are stored in a single 32-bit word.

This leaves only 31-bit (i.e. ≈ 2 billion possible values), for the blocking literal which is not a problem as
instances typically do not contain more than 10 million variables.
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The structure of watch list entries in satUZK is depicted in figure 3.3.
The blocking literal of an entry is arbitrarily chosen from the clause that
is referenced by the entry, with the constraint that it does not equal c
for entries of the watch list of c̄. Thus, for binary clauses {c, c′}, there is
only a single choice for the blocking literal and that is the literal c′ that
will be propagated once c̄ is assigned. The blocking literal mechanism
of course duplicates information; after all, the literals of the clause are
already accessible through the clause handle. The reason that we store
the blocking literal is that it improves locality: In many cases the blocking
literal allows us to determine that a clause is satisfied even without following
the clause handle. In the case of binary clauses, it even allows us to perform
propagation without looking at the clause.

3.2.4 Propagation

Unit propagation is the most performance critical operation in a CDCL-
based SAT solver. Therefore, unit propagation is heavily optimized in state-
of-the-art solvers. satUZK uses a unit propagation algorithm that takes
caches and CPU branch prediction into account. In this subsection, we
present the details of the algorithm.

In addition to the data structures that we already discussed so far,
unit propagation has to deal with the Conflict data type that repre-
sents incoming edges of the ⊥ vertex in conflict graphs (similar to how the
Antecedent type represents incoming edges of all vertices other than ⊥).
Similar to the Antecedent type, it is a discriminated union that can as-
sume values ClauseConflict(C) and BinaryConflict(c, c′), where C
is a clause and c, c′ are literals 8.

ClauseConflict(C) represents a conflict that happens because the
clause C is unsatisfied, while BinaryConflict(c, c′) represents a conflict
that happens because both c and c′ are false under the current assignment.
Similar to the antecedent type, the solver might use BinaryConflict in
favor of ClauseConflict if the exact clause that caused the conflict is
not known. As in the case of antecedents, we use the nil value to represent
the fact that the current assignment is not conflicting.

Algorithm 3.2 states our unit propagation algorithm. The algorithm
traverses the watch list of c̄ via two pointers begin and end. At the same
time, it rewrites the watch list through the wit pointer. With ∗p, we de-
note access to the element pointed to by p; this syntax is similar to the C

8This list does not contain UnaryConflict(c). Such a value is not required to present our propagation
algorithm as we assume that unary clauses are always assigned at decision level zero, before the propagation
algorithm is called. It might still make sense to use UnaryConflict(c) internally to represent unsatisfied
unit clauses.

39



Algorithm 3.2 Optimized unit propagation algorithm
1: procedure propagteLiteral(ā)
2: ξ ← nil
3: begin← pointer to first watch list entry of ā
4: end← pointer to last watch list entry of ā
5: wit← begin
6: for rit between begin and end do
7: b← (∗ rit).blocking
8: if likely isTrue(b) then
9: ∗wit← ∗ rit

10: wit← wit+ 1
11: continue
12: end if
13: if (∗ rit).isBinary then
14: λ← UnaryAntecedent(a)
15: ε← BinaryWatchlistEntry(b)
16: if unlikely isAssigned(b) then
17: ξ ← BinaryConflict(a, b)
18: break
19: else
20: enqueue(b, λ)
21: ∗wit← ε
22: wit← wit+ 1
23: end if
24: else
25: C ← (∗ rit).clause
26: λ← ClauseAntecedent(C)
27: if getWatch1(C) = a then
28: swapWatches(C)
29: end if
30: b′ ← getWatch1(C)
31: ε← ClauseWatchlistEntry(b′, C)
32: if isTrue(b′) then
33: ∗wit← ε
34: wit← wit+ 1
35: continue
36: end if
37: w ← first literal of C that is not false
38: if unlikely no such literal w exists then
39: ∗wit← ε
40: wit← wit+ 1
41: if unlikely isAssigned(b′) then
42: ξ ← ClauseConflict(C)
43: break
44: else
45: enqueue(b′, λ)
46: end if
47: else
48: updateWatch2(C,w)
49: insertIntoWatchlist(w̄, ε)
50: end if
51: end if
52: end for
53: wit← copy the range between rit and end to wit
54: resizeWatchlist(ā, wit− begin)
55: return ξ
56: end procedure
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programming language. Futhermore, we denote branches that are likely to
be taken with if likely and branches that are not likely to be taken with
if unlikely. In our C++ implementation, these annotations give hints to
the branch-prediction unit of the processor and thus improve performance.

The first thing that the algorithm does is checking if the blocking literal
is true; this operation allows us to ignore many watch list entries without
further work. In line 13, we handle watch list entries of binary clauses.
Binary clauses that are part of the watch list that is currently propagated
are always unit or conflicting. If they are indeed unit, they propagate the
block literal. Since we already know that the blocking literal is not true, we
do not have to check if it is already true after the check in line 16.

Non-binary clauses are handled by the block starting in line 24. Here,
we order the watched literal so that c is the second watched literal. This
is the first memory access to the clause’s data and thus pulls the clause
data into cache. The first watched literal might already be true, in which
case we can ignore the watch list entry. This is checked in line 32. If the
watched literal is not true, we try to find a new non-false watched literal.
If such a literal exists, we use it as a new watched literal in line 47. The
clause might still be unit; however, it will be detected during traversal of
the other watch list. If no non-false literal exists, we enter the block in line
38. Here, we check if the first watched literal is assigned. If that is the case,
it has to be false, as we already checked if it is true before. Thus, we either
found a conflict or propagate the first watched literal.

3.2.5 Conflict analysis

Conflict analysis can be efficiently implemented using the data structures
that we already discussed. In this subsection, we will review how this is
done. Most ideas in this subsection are taken from MiniSat [34].

In particular, it is not necessary to construct antecedent graphs ex-
plicitely as the trail data structure already gives us a topological ordering
a1, . . . , ak, ak+1 = ⊥ of the current antecedent graph that ends in the ⊥
vertex (so that there can only be an edge between ai and aj if i < j). UIPs
on the current decision level are exactly the vertices in this ordering that
are not crossed by any edge between vertices on the current decision level.
Thus, we can easily extract the first UIP by reversely iterating through the
trail, while only considering vertices that are reachable by the ⊥ vertex and
stopping when no such edge exists.

Algorithm 3.3 depicts the pseudocode of this algorithm. The loop in line
19 iterates over the literals in the reverse topological ordering ak, . . . , a1.
During iteration, the counter n counts the number of vertices that have
smaller indices than the current vertex in the topological ordering and that
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Algorithm 3.3 Conflict clause extraction
1: procedure extractLearnedClause
2: C ← ∅
3: n← 0
4: procedure visit(c)
5: if c is already marked then
6: return
7: end if
8: mark a
9: if decisionLevel(c) = currentLevel then

10: n← n+ 1
11: else
12: C ← C ∪ {c̄}
13: end if
14: end procedure
15: κ← conflict
16: for a ∈ reasons(κ) do
17: visit(a)
18: end for
19: for literals a that are part of the trail, in reverse order do
20: if a is not marked then
21: continue
22: end if
23: n← n− 1
24: if n 6= 0 then
25: λ← antecedent(a)
26: for c ∈ reasons(λ) do
27: visit(c)
28: end for
29: else
30: C ← C ∪ {ā}
31: return C
32: end if
33: end for
34: end procedure

have edges crossing the current vertex. Per definition, if this number drops
to zero, the currently visited vertex is a UIP. For each literal, the conflict
graph is traversed by calling the visit procedure on the literals in its an-
tecedent. visit increments n as necessary and records variables from earlier
decision levels that will be part of the 1-UIP clause C. The visit proce-
dure marks vertices in order to avoid counting them twice. Finally, once a
UIP is detected (per construction, this will be the first UIP on the current
decision level) its inverse is added to the conflict clause C. The algorithm
terminates and that clause is returned.

Note that because the algorithm terminates once a UIP on the current
decision level is found, it actually only iterates over literals on the current
decision level and not over all literals in the conflict graph. If learning
schemes other than 1-UIP were used, the conflict clause extraction algo-
rithm would have to iterate over larger portions of the conflict graph.

After the initial learned clause has been extracted, satUZK performs
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Algorithm 3.4 Conflict clause minimization
1: r(c)← unknown ∀ literals c
2: procedure minimizeLearnedClause(a,C)
3: S : Stack
4: λ← antecedent(a)
5: if λ = DecisionAntecedent then
6: return false
7: end if
8: for d ∈ reasons(λ) do
9: S.push((d, false))

10: end for
11: while not S.empty do
12: (c, p)← S.pop
13: if not p then
14: if r(c) = true then
15: continue
16: end if
17: S.push((c, true))
18: if a ∈ C then
19: continue
20: end if
21: λ← antecedent(c)
22: if r(c) = false or λ = DecisionAntecedent then
23: for (c′, true) ∈ S do
24: r(c′)← false
25: end for
26: return false
27: else
28: for d ∈ reasons(λ) do
29: S.push((d, false))
30: end for
31: end if
32: else
33: r(c)← true
34: end if
35: end while
36: return true
37: end procedure
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recursive learned clause minimization. In order to prevent stack overflows,
we actually implement this algorithm iteratively. Algorithm 3.4 shows the
procedure that checks if a given literal a can be removed from the conflict
clause C by recursive minimization.

Call a literal c implied if either c ∈ C or if the literals of the antecedent of
c are all recursively implied. Recall that a can be removed by minimization
if all literals of the antecedent of a are implied. We use a stack to perform
the recursive implication check and cache both positive and negative results
using the variable r. The stack stores items of the form (c, p), where c is
a literal and p is a Boolean value that determines whether c has already
been expanded (i.e. whether the literals of the antecedent of c have already
been pushed onto S). The algorithm expands the literals on S in a depth-
first order. Note that literals can occur multiple times on S (if it occurs in
the antecedent of multiple expanded literals) but the caching mechanism
prevents literals from being expanded multiple times. Thus, the number of
items that the algorithm processes is bounded by the number of edges in
the conflict graph.

At the start of the algorithm, the literals of the antecedent of a are
pushed onto S. Once all these literals are processed and marked as implied
by the algorithm, we know that a can be removed by recursive minimization.
The algorithm iteratively removes literals c from S. If c is part of C, it is
implied. Because of the check in line 18, it is not expanded. Instead, it is
cached as implied in line 33. Otherwise, if we reached a decision literal c, the
literal cannot be implied. In this case, we also know that all successors of c
are not implied. Thus, the loop in line 23 marks all of them as non-implied
and returns. In this case, a cannot be removed by recursive minimization.
After the whole stack has been emptied, the algorithm returns that a can
indeed be removed from C.

3.2.6 Compact clause representation

In this section, we will discuss how the satUZK solver stores and manages
its clause data. This section will discuss a “compact” clause representation,
while the next section presents an “indexed” representation. The compact
layout is generally faster and uses less memory, but it is also less flexible.
Furthermore, unit propagation needs to modify clauses in-place when the
compact layout is used, rendering this layout unsuitable for algorithms that
want to share clause spaces between different threads.

The data that we need to store for each clause includes its length, its
literals, some flags (e.g. if the clause is redundant or irredundant), its
LBD and activity scores and some other information that is required for
algorithms that we want to run in addition to CDCL (like the CNF simpli-
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fication techniques that will be discussed in chapter 5) 9.

In the compact clause representation, all data that belongs to a clause is
stored in a single chunk of memory. In order to reduce the amount of mem-
ory that this clause data consumes, we divide the clause space into “perma-
nent” and “reducible” clauses. For permanent clauses, we do not store the
LBD and activity values of the clause. We do store these values for reducible
clauses. This division implies that clause database reduction heuristics can-
not evaluate permanent clauses; thus, those clauses are never removed by
clause database reduction. Note that permanent clauses are not necessarily
essential (and reducible clauses are not necessarily non-essential) and can
still be removed by other means (e.g. when a CNF simplification technique
decides that they are not useful). In a typical satUZK configuration, this
reduces the size of permanent clauses by 16 bytes 10; a non-permanent bi-
nary clause may consume as little as 32 bytes. Clause database reduction
heuristics do not remove binary clauses anyway (see subsection 3.1.5), so
storing them as permanent clauses has no drawbacks. As a large fraction
of the clauses of industrial CNF formulas are binary, this optimization can
greatly reduce memory consumption.

Figure 3.4 depicts the layout of clauses in compact representation. We
use a flag to determine if a clause is permanent or reducible. Algorithms
need to test this flag before they access fields that are not shared by both
layouts. Note that some fields are stored at negative offsets from pointers
into the data structure (highlighted by the “Handle” arrow in figure 3.4).
The layout is chosen so that fields that are traversed during unit propagation
are stored at positive offsets, while the other fields (which are accessed
less frequently) are stored at negative offsets. This design minimizes cache
misses during unit propagation. The use of negative offsets is inspired by
the SAT solver Splatz [19].

As discussed in section 3.2.3, clause spaces have to mark two literals of
each clause as watched literals. In the compact clause representation, we do
not explicitly mark those literals. Instead, the first and the second literal of
each clause correspond to the watched literals of the clause. Thus, clauses
have to be permutated during unit propagation.

A naive way of managing the clause data would be using the system
memory allocator to allocate each clause individually. However, the over-
head of this approach is not acceptable: General purpose memory managers
usually require expensive updates of internal data structures to perform

9For example, some simplification algorithms store a 64-bit bloom filter for checking if a clause is a
subset of another clause. Some parallel algorithms store a globally unique “clause name” to identify clauses
originating from different threads.

10This reduction comes from the fact that activity values are stored as double-percision floating point
numbers and require an alignment of 8 bytes.

45



Reducible clause

Activity

Permanent clause LBD

Additional data Additional data

Flags Flags

Clause length Clause length

Literal [0] Literal [0]

Literal [1] Literal [1]

...
...

Handle Handle

Figure 3.4: Compact representation: Clause layout
Permanent and reducible clauses are stored in different layouts. “Handle” indices where clause handles

point to. The flags field contains a bit that determines if the clause is permanent or reducible.
Additional data fields may be needed for some algorithms.

allocation and deallocation. Furthermore, they may need to attach auxil-
liary information to each of the memory chunks they return, increasing the
amount of memory that the system consumes. Most allocators also require
padding to ensure that the allocation size satisfies alignment constraints
(e.g. the allocator might only hand out 2k-sized chunks with k ∈ N).

In order to avoid these overheads, we store all clauses in a contiguous
block of memory. This idea is taken from the Chaff [69] and MiniSat [34]
solvers. Clause handles are implemented as 32-bit offsets into this block 11.
Allocating a new clause thus simplifies to just incrementing a pointer into
the memory block. If there is no space left (i.e. the whole block of memory
is occupied by clauses), we allocate a new block of memory and copy all
clauses into it. As clause handles are relative to the start of the block, they
do not change as result of this operation.

However, this strategy prevents us from deleting clauses in the middle
of the memory block. Instead, we mark clauses as deleted and clean up the
whole memory block once a significant amount of clauses is deleted. We
call this operation garbage collection. Garbage collection does indeed change
clause handles; all clause handles in watch lists and other data structures
have to be updated afterwards.

11Technically speaking, the offset is constructed by shifting the 32-bit handle by two bits to the left
(i.e. multiplying the handle by four). This takes advantage of the fact that clause data is aligned to four
bytes on most CPU architectures as it contains 32-bit integers. The trick enables the solver to address 16
GiB of clause data instead of 4 GiB. On the x86 architecture the shift is almost free, as most instructions
support memory operands of the form r1 + (r2 � c) where r1 and r2 are registers and c is a constant.
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3.2.7 Indexed clause representation

In our second subsection regarding clause spaces, we present our indexed
clause representation.

...

Clause head Literal [0]

Watched literal [0] Literal [1]

Watched literal [1] Literal [2]

Clause length Literal [3]

Literal offset Literal [4]

...

Handle

Figure 3.5: Indexed representation: Clause layout
The unit propagation algorithm uses the clause head to keep track of watched literals. The remaining

literals are stored in a separate array.

Instead of storing clauses compactly in a single chunk of memory, we
assign sequentially increasing integers to the clauses. These integers form
the clause handles of the indexed clause space. We store the actual clause
data in arrays that are indexed by clause handles.

Literals are a special case here, as clauses have variable numbers of
literals. To accommodate for this, we store the literals of all clauses in a
single array with each clause occurring contiguously in this array. For each
clause we store its offset into the literal array seperately. Note that this
design still forces us to perform garbage collection to compact the array of
literals.

Furthermore, we group all propagation-related information about a clause
in a single structure that we call the clause head. This improves locality and
prevents cache-misses when clauses are accessed during unit propagation.
Figure 3.5 depicts the clause head structure. Compared to the compact
clause representation, we can expect that accessing the literals of a clause
through its head incurs one additional cache-miss.

Nevertheless, as we store watched literals explicitly in the indexed repre-
sentation, clauses do not need to be permuted during unit propagation. This
enables the indexed representation to be shared between multiple threads.
Furthermore, algorithms that extend CDCL can easily store clause-specific
information in arrays as each clause has a sequentially increasing handle.
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3.2.8 Occurrence lists

We quickly discuss a data structure that allows the solver do find all clauses
that contain a certain literal.

When we review the data structures that we discuss so far, it is obvious
that this information cannot be obtained from any of them without per-
forming a linear search over all clauses. In fact, such a data structure is
not necessary to run the CDCL algorithm. Nonetheless, some CNF sim-
plification techniques depend on this information. In order to run these
simplification techniques, we need to manage occurrence lists : For each lit-
eral, we store a list of clauses in which this literal occurs. It should be
noted, that these lists are not updated when literals are assigned; the state
represented by the occurence lists corresponds to the empty assignment.

Managing occurrence lists for learned clauses incurs a non-negligible
performance cost. Whenever a new clause is allocated, we need to add
it to multiple occurrence lists and after garbage collection, all occurrence
lists need to be rebuilt. Furthermore, occurrence lists can consume large
amounts of memory: For each literal, an additional clause handle needs to
be stored, effectively doubling the memory footprint of literls.

For these reasons, the sequential satUZK solver only maintains occur-
rence lists during preprocessing. However, some extensions of the algorithm
may require maintaining occurrence lists even during search; for example,
some lookahead evaluation heuristics that we discuss in chapter 4 require
occurrence lists.

3.2.9 Choice of heuristics

We shortly discuss the choice of heuristics in satUZK.
The current version of satUZK does not feature its own heuristics for

decisions, clause database reduction and restarts 12. Instead it relies on
well-known heuristics. As a decision heuristic, we use VSIDS in all config-
urations. For clause database reduction and restarts, two emulation modes
are implemented: MiniSat and Glucose emulation.

In MiniSat-emulation mode, the solver uses a geometric clause database
reduction heuristic and Luby restarts. In Glucose-emulation mode, an ag-
gressive, linear clause database reduction heuristic based on LBD and a
dynamic restart heuristic is used.

One benefit of emulating the heuristics of other solvers is that opti-
mization and debugging of solvers is greatly simplified. For example, the
emulation modes of satUZK are accurate enough to compare propagation

12Versions of satUZK that participated at previous SAT Competitions did feature their own heuristics,
see [96, 90, 89].
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speed and the numbers of conflicts per instance (both of which vary heav-
ily among different reduction and restart heuristics) of satUZK and the
emulated solver.

3.2.10 C++ implementation details

While we presented most of satUZK’s algorithms in a language-agnostic
way, this subsection will discuss some details of satUZK’s C++ implemen-
tation.

A unique feature of satUZK is that it is implemented in a modular way
and many parts of the implementation can be modified by inserting code
into well-defined hooks. For example, this mechanism is used to switch
between different clause spaces 13. Because dynamic polymorphism is too
expensive to be used in the performance-critical parts of the solver, we use
static polymorphism via C++ templates instead. The entire solver is imple-
mented as a collection of templates that are compiled by a single invocation
of the C++ compiler. This means that the solver has to be recompiled to
modify hooks; this is unavoidable to achieve acceptable performance. Nev-
ertheless, the template mechanism allows multiple instances of the solver
that differ in their configurations in the same process 14. This is not possible
for manual configuration mechanisms like C typedefs and #ifdefs.

3.3 Extensions to CDCL

This section discusses some techniques that are not part of the core CDCL
framework but that augment the CDCL algorithm in various ways.

3.3.1 Incremental SAT solving

Incremental SAT solving is the process of solving similar CNF formulas
successively via multiple calls to the CDCL algorithm. This subsection will
discuss techniques that speed up incremental calls to a CDCL solver.

Typically, between each of those incremental calls, clauses are added
and/or removed from the formula. If a CDCL solver remembers its learned

13It is also used to parameterize the unit propagation procedure for the hyper binary resolution and
distillation algorithms that we discuss in chapter 5.

14For example, this technique was used in the satUZK-par solver [89] that was submitted to SAT
Competition 2014. satUZK-par was a parallel shared memory solver that used a dedicated thread to
strengthen learned clauses along with traditional CDCL threads. The solver instances in both threads
were based on different template instantiations. Hence, both instances of the algorithm could be adapted
to their use cases without sacrificing performance of the other instance. We do not discuss satUZK-par in
detail here, as we consider it inferior to the satUZK-ddc algorithm that we discuss in chapter 4
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clauses between calls, incrementally solving a sequence of formulas is often
much faster than solving each formula independently.

Adding new clauses before each call is not a problem for the CDCL al-
gorithm. At the worst, new clauses can invalidate models that have already
been found by the solver but they do not impact the validity of clauses that
have already been learned. However, care must be taken to ensure that
learned clauses are still valid after some of the original input clauses have
been removed. If a set ψ of clauses that might eventually be removed is
known in advance, this problem can be solved by allocating a new variable
x, adding x̄ to all clauses of ψ and forcing the solver to always assign x
before performing other decisions. Using this scheme, all learned clauses
that depend on clauses in ψ will also contain the literal x̄. When the clauses
from ψ are removed from the formula, all learned clauses containing x̄ also
need to be removed. This is equivalent to assigning the literal x̄ instead
of x; per construction, the latter literal does not even occur in the CNF
formula.

Note that using this idea it is possible to remove individual clauses as
well as sets of clauses from the formula. In practice, however, we want to
keep the number of additional variables low, as each of those variables is
likely to show up in learned clauses. This increases their length and thus
reduces the efficiency of unit propagation. Luckily, in many applications,
we want to remove sets of clauses, and not individual clauses anyway. For
example, this is the case with [43] and with the distributed algorithm that
we present in chapter 4.

In order to implement the aforementioned concept, we need to be able
to force the CDCL solver to assign a certain literal before any decisions are
done. An “assumption” mechanism [35] can be used to do that. A sequence
of literals (a1, . . . , ak) is designated as the current sequence of assumptions.
Whenever the solver needs to perform a decision, it first checks if the current
decision level l is smaller or equal to k. If that is the case, no decision is
done and al is chosen as a decision literal instead.

satUZK (similar to MiniSat [34]) implements such an assumption mecha-
nism. Subsection 4.3.1 of the next chapter discusses the interaction between
this assumption mechanism and the LBD score.

3.3.2 Unsatisfiability proofs

In this subsection we discuss suitable formats for certificates of unsatisfia-
bility.

As a certificate for satisfiablility, most SAT solvers can trivially output a
model of a formula once they prove this formula to be satisfiable. However,
in many cases we are also interested in certificates for unsatisfiability. In
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other words, given an unsatisfiable CNF formula φ, we want an efficiently
checkable proof that φ is indeed unsatisfiable.

It is an open problem if short unsatisfiability proofs for CNF formulas
exist. In particular, UNSAT is coNP -complete. If there is a proof system
that can prove the unsatisfiability of an arbitrary CNF formula using only
a polynomial number of steps, then the classes NP and coNP coincide [27].

Lemma 3.4 states that clause learning can be translated to resolution,
so it is possible to modify a CDCL solver to output a resolution proof for
unsatisfiable CNF formulas. Early SAT Competitions, starting from 2005,
indeed used a resolution based proof system for unsatifiability certificates
[78]. However, resolution proofs are both large (see 2.2.6) and inefficient to
validate.

A much more convenient proof system for CDCL solvers is the reverse
unit propagation (RUP) system. RUP unsatisfiability proofs consist of a
sequence of clauses (C1, C2, . . . , C` = ∅) so that applying unit propagation
to the assignment {ā : a ∈ Ci} on the formula φ ∪ {C1, . . . , Ci−1} leads
to a conflict, for all i = 1, . . . , `. Specifically, this property is true for all
learned clauses that are produced during CDCL. Therefore, a CDCL solver
can generate a RUP proof simply by outputting all its learned clauses.

It is easy to see that the RUP proof system is sound; this will be dis-
cussed in detail later in subsection 5.1.2 of chapter 5. Because of its simplic-
ity, the SAT Competition switched to the RUP format in 2012 [78]. RUP
has been extended to the DRUP format which also stores clause deletion
information in order to improve the performance of a proof verifier. Other
extensions include the introduction of RAT clauses [93] which can be used
to model some simplification techniques that cannot be modeled via RUP
clauses. RAT clauses will be discussed in chapter 5. Another extension to
RUP is the introduction of even stronger clausal proofs in [48, 49].

satUZK provides RUP based unsatisfiability proofs. All of satUZKs
simplification techniques can be simulated via RUP and RAT.

3.4 Experimental evaluation

In this section, we will experimentally evaluate the performance of satUZK.
In a first experiment, we compare satUZK-seq’s CDCL implementation to
other state-of-the-art CDCL implementations. After that, we evaluate the
effectiveness of its heuristics among different families of instances. Finally,
we study the performance impact of certain data structures and of exten-
sions to the CDCL algorithm.

It should be noted that we do not compare satUZK-seq with the state
of the art of sequential SAT solvers here. As the primary objects of interest
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in this dissertation are the parallel algorithms of chapters 4 and 5, chasing
the latest sequential state of the art is not absolutely necessary for us.
While the implementation of CDCL in satUZK is competitive against the
state of the art, it does not implement sophisticated inprocessing (like in
Lingeling [15]) or the very successful LRB heuristic15 that was discovered
in the last year. satUZK-seq is, however, competitive with state-of-the-art
solvers when these techniques are disabled.

All experiments that we discuss in this section ran on a cluster of dual-
socket Intel Xeon E5-2690 v2 nodes with 128 GiB of RAM per node. The
processors run at a reference frequency of 3.0 GHz. The cluster runs on
Linux, using the Debian Stretch distribution. We used GCC 6.2.0 to build
all solvers.

3.4.1 Performance characteristics

In our first experiment, we compare the quality of our CDCL implementa-
tion with that of MiniSat and Glucose. While MiniSat is not able to solve
as many instances as state-of-the-art solvers, it still has one of the fastest
CDCL engines and is often used as a basis for other solvers (e.g. Glucose,
Syrup [10], CryptoMiniSat [80] and the Maple family [64]). Glucose is a
state-of-the-art solver that won five gold medals at SAT Competitions since
2009 [78]. As we want to evaluate the performance of the CDCL implemen-
tation, we disabled Glucose’s adaption heuristics that tune its behavior to
the input CNF formula. In order to obtain meaningful results, we compare
satUZK-seq’s MiniSat-emulation with MiniSat and its Glucose-emulation
to Glucose.

We use MiniSat version 2.2 and Glucose version 4.1 and the version of
satUZK that was submitted to SAT Competition 201716. As benchmarks,
we use all 350 instances from the Main track of this competition. These
instances include industrial applications and combinatorial problems. In or-
der to evaluate the performance of the CDCL implementations, we compare
the number of unit propagations per second and the number of conflicts per
second that the solvers are able to handle. We ran all solvers with a timeout
of one hour. For our comparison we only use those instances that could be
solved both by satUZK-seq and the other solver.

Figures 3.6 and 3.7 depicts the performance characteristics of the solvers.
Both emulation modes seem to mimic the characteristics of the original
solvers quite well. MiniSat seems to be slightly faster than satUZK-seq,
which might be due to the fact that MiniSat is much smaller and thus its

15The Maple family of SAT solvers [64] that implements LRB solved 20 more instances than any other
solver at SAT Competition 2017; this is a huge improvement over the previous state of the art.

16Specificially, the version differs from the SAT Competition 2017 only by minor bugfixes.
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Figure 3.6: Performance of satUZK vs. MiniSat
Compares MiniSat with satUZK’s MiniSat-emulation. Each point corresponds to one instance of the
SAT Competition 2017 benchmark set. Only instances that are solved both by satUZK-seq and by

MiniSat are reported.
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Figure 3.7: Performance of satUZK vs. Glucose
The same experimental design as in figure 3.6. Here, Glucose is compared with satUZK’s

Glucose-emulation.
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Table 3.1: Effectiveness of heuristics on SC’17 families

The “Uniq.” columns give the number of instances that could only be solved in the specific configuration
and not by the other set of heuristics.

MiniSat-emu. Glucose-emu.
Family Inst. Solved Uniq. Solved Uniq.

Integer prefix 59 22 (37%) 10 18 (31%) 6
ACG 3 3 (100%) 1 2 (67%) 0
ak128 30 10 (33%) 0 10 (33%) 0
blockpuzzle 20 14 (70%) 0 20 (100%) 6
bsat 4 0 (0%) 0 3 (75%) 3
gss 10 0 (0%) 0 0 (0%) 0
hwmcc 41 1 (2%) 0 5 (12%) 4
klieber 20 6 (30%) 0 11 (55%) 5
mizh 4 4 (100%) 0 4 (100%) 0
modgen 5 2 (40%) 2 1 (20%) 1
Nb 19 2 (11%) 0 2 (11%) 0
ps 40 5 (12%) 0 6 (15%) 1
rubikcube 20 7 (35%) 0 8 (40%) 1
slp-synthesis 6 2 (33%) 2 0 (0%) 0
squ 10 5 (50%) 0 10 (100%) 5
T 40 18 (45%) 0 21 (52%) 3
tri 5 5 (100%) 0 5 (100%) 0
UCG 3 2 (67%) 0 3 (100%) 1
Uncategorized 11 7 (64%) 0 10 (91%) 3

Sum 350 115 15 139 39

code exhibits better caching behavior. satUZK-seq’s performance generally
matches that of Glucose.

3.4.2 Effectiveness of heuristics

In the next experiment, we evaluate the differences between MiniSat- and
Glucose-emulation. In particular, we are interested in determining which
families of instances are best solved by which heuristic. This information
will be useful when we design our parallel solver that can potentially use
different sets of heuristics in different threads. We ran satUZK-seq both in
MiniSat- and in Glucose-emulation mode with a timeout of 5000 seconds.
We use the same set of benchmarks as in our previous experiment.

In table 3.1 we report the numbers of instances per instance family that
could be solved by each emulation mode. Here, an instance family is defined
by taking the common prefixes of the SAT Competition 2017 file names.
If a prefix occurred less than three times, we put it into the uncategorized
family.

Overall, Glucose-emulation outperforms MiniSat-emulation. However,
MiniSat-emulation is still able to solve 15 instances that Glucose-emulation
cannot solve. In particular, MiniSat seems to be strong on ACG, modgen and
slp-synthesis instances and on the family of instances with an integer

54



0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

0 20 40 60 80 100 120 140 160

C
P

U
ti

m
e

t
(s

)

Number of instances solved in time t

Default
DRAT proofs

Occurrence lists
Indexed clauses

Figure 3.8: Extensions of satUZK-seq: Performance impact

prefix.

3.4.3 Performance impact of data structures and ex-

tensions

In our last experiment regarding our sequential solver, we study the per-
formance impact of DRAT proofs, the maintenance of occurrence lists and
the indexed clause space.

We enable Glucose-emulation for this experiment, use the SAT Com-
petition 2017 instances as benchmarks and set a timeout of 5000 seconds.
Proofs are generated in the binary DRAT format [93] but discarded to
/dev/null.

The results are depicted in figure 3.8 in the form of a cactus plot. Fortu-
nately, the generation of DRAT proofs and the maintenance of occurrence
lists do not seem to affect the performance of satUZK-seq negatively. For
proof generation, however, one has to keep in mind that in applications the
proof has to be fed into a verifier. This has a non-zero cost which depends
on the implementation quality of the verifier and on the I/O performance
of the operating system. This cost is not represented in our plot.

On the other hand, the indexed clause representation has a huge nega-
tive impact on satUZK’s performance. We conjecture that this is not due to
the slightly worse caching behavior of the data structure (when compared to
the compact clause representation) but due to the fact that reordering the
clauses is actually a huge performance advantage in the compact represen-
tation. Hence, we conclude that sharing the clause space among different
threads is not feasible in practice.
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Chapter 4

Distributed
Divide-and-Conquer

In this chapter we present our distributed SAT algorithm. First we discuss
multiple approaches on parallel SAT solving in section 4.1. The section
will also give an overview of the previous work on parallel SAT solvers.
In section 4.2 we present the basic idea of our novel “Distributed Divide-
and-Conquer” (DDC) algorithm. Section 4.3 will discuss the satUZK-ddc
implementation of this algorithm as well as some refinements of it. At the
end of the chapter, we will give some experimental results in section 4.4.

There is some overlap between this chapter and our DDC paper [88].
However, this dissertation describes the DDC algorithm and its extensions
in more detail. We also include an extensive evaluation of variants of the
algorithm that is not present in the paper. satUZK-ddc was submitted to
SAT Competition 2017.

4.1 Approaches to parallel SAT solving

In the following, we will discuss different approaches to parallel SAT solving.
This will help us to categorize existing solvers and introduce important
techniques that will be reused later in our Distributed Divide-and-Conquer
(DDC) solver.

4.1.1 Portfolio solvers

We start by discussing the “portfolio” approach to parallel SAT solving.
Conceptually, this is the most simple parallel solving approach and it also
requires the least modifications to a sequential CDCL solver.

A portfolio solver incorporates multiple different SAT solving strategies
in order to exploit the fact that no single strategy is optimal on all instances.
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We call these strategies engines. The solving process ends as soon as the
first engine finds a solution or proves the unsatisfiability of the formula.
If this happens, all other engines are stopped. In a (parallel) portfolio,
typically all engines are run in parallel. Alternatively, it would be possible
to enable only a subset of all engines on a per-instance basis. There are
sequential portfolio solvers (e.g. [97]) based on this idea; however, we are
more interested in the parallelization here.

ManySAT [40] was the first notable parallel portfolio solver. Its en-
gines are based on a CDCL algorithm and use different restart and decision
heuristics and different clause learning schemes. In addition to that the
solver utilizes clause sharing : Engines exchange some of the learned clauses
which they produce during the CDCL algorithm. These additional clauses
reduce the search space that the other engines have to explore. ManySAT
shares clauses with length smaller or equal to 8. Most of the later portfolio
solvers incorporate some form of clause sharing; however, most of them use
more sophisticated heuristics to decide whether a given clause should be
exchanged with other engines. ManySAT won the parallel track of the SAT
2009 competition [78].

A problem of clause sharing is that clauses which are imported from
other workers might negatively interact with the VSIDS heuristics by en-
couraging the workers to explore the same search space as the solver that
produced the clauses. Therefore, the successful Plingeling solver [15, 16]
uses a minimalistic clause sharing strategy: It only shares unit clauses and
literal equivalences (i.e. clause sets of the form {{ā, b}, {a, b̄}}, correspond-
ing to the implications a→ b and b→ a) between worker threads.

Rather than restricting clause exchange, the PeneLoPe solver [4] uses
clause freezing [5] to prevent imported clauses from disturbing the CDCL
search. Instead of immediately adding imported clauses to the watch lists,
clause freezing only allocates the clauses first, without traversing them dur-
ing unit propagation yet. Frozen clauses are activated later when they be-
come relevant to the search. To judge whether a clause is relevent to the
search, PeneLoPe utilizes the dynamic “psm” score of a clause.

Definition 4.1. For a clause C, the progress-saving measure psm(C) at a
given point of time during a run of a CDCL solver is defined as the number
of literals of C that are true under the total assignment that is given by
progress-saving.

Note that if psm(C) is zero, the clause is conflicting under the progress-
saving assignment; clauses with psm(C) equal to one are unit under the
progress-saving assignment. Furthermore, because CDCL solvers always
assign variables to the values given by progress-saving, it is likely that this
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assignment will indeed arise. PeneLoPe therefore unfreezes clauses once
their psm falls below a fixed constant.

The successful Syrup solver [10] uses a lazy clause export scheme. Clauses
are not exported when they are generated. Instead, the solver only exports
a clause after it appeared in conflict analysis at least once. On the import
side, Syrup also performs clause freezing. However, it does not use psm but
rather activates a clause once that clause causes a conflict. Clauses that
cause a conflict can cheaply be detected by a single watched literal scheme.

All of the afforementioned solvers are shared-memory solvers. HordeSat
is a portfolio solver [11] that runs in a distributed environment instead.
HordeSat is a parallel interface to MiniSat [34] or Lingeling [15] and ex-
changes learned clauses via MPI. The authors of HordeSat report a decent
speedup on large instances for up to 2048 cores.

It should be noted that there are inherent limits on the effectiveness
of clause sharing. In particular, CDCL solvers are limited by the depth
of resolution proofs that they produce, regardless of the amount of clause
sharing in a solver [59].

In contrast to these sophisticated solvers, the ppfolio [76] solver just runs
a collection of multiple different SAT engines in parallel and does not employ
any form of communication. Its engines consist of separate SAT solvers that
have proven to be efficient in previous SAT competitions. Despite the lack
of communication, ppfolio won in the wall clock ranking of the “Application
category”, SAT instances only track at the SAT Competition 2011 [78]. A
version of ppfolio that incorparates our sequential satUZK solver won the
“Parallel Track” of the SAT Challenge 2012 [78].

Even though ppfolio was very successful at the SAT Competition, the
value of its approach is questionable. While using different non-communicat-
ing SAT engines certainly helps to solve problems that are randomly se-
lected from a large pool of instances, it does not help to solve families of
SAT instances for which a best sequential solver is known. In industrial
applications of SAT solving, this is often the case: Instances that encode
similar problems and that are encoded by the same procedure are very likely
to be solved by the same engine every time, so there is little advantage in
running multiple engines. Furthermore, the approach of running different
non-communicating engines of course is of little theoretical interest.

4.1.2 Search space partitioning

In this subsection, we discuss the search space partitioning approach to
parallel SAT solving. This approach does not try to solve the same CNF
formula using multiple engines but instead tries to divide the search space
so that individual workers explore different parts of the search space.
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This partitioning is usually done by adding additional clauses that par-
tition the search space before starting the search procedure. Such a set of
clauses is often called a guiding path in the literature. Each guiding path
determines a subproblem of the input formula. In practice, many solvers
generate guiding paths that only contain unit clauses.

In order to be able to prove unsatisfiability, guiding paths have to be
chosen so that each assignment of the input CNF formula is contained
in at least one guiding path. We also want to choose them so that each
assignment is indeed part of exactly one guiding path. This motivates the
next definition.

Definition 4.2. Let γ1, . . . , γ` be sets of clauses. {γ1, . . . , γ`} is called a
collection of guiding paths (for a formula φ) if the sets of models of the
γ1, . . . , γ` form a partition of the set of assignments of the variables in φ.

This condition from definition 4.2 helps to prevent different workers from
accidentally exploring the same part of the search space; however, it is not
sufficient to ensure this. As a pathological example, consider a variable x
that does not even occur in the input formula. The guiding paths {x} and
{x̄} do not constrain the search space; if these guiding paths are given to
two workers, the workers will explore exactly the same search space. In
practice it is of course easy to avoid picking literals that do not occur in
the formula, but the general problem is still relevent. Remember that the
CDCL algorithm explores the search space mostly using unit propagation.
In industrial CNF formulas only a subset of all literals will be “important”
and fix lots of literals through unit propagation; most literals will only fix
a small amount of new literals. Hence, if such a literal is part of a guiding
path, different workers are still suspectible to exploring the same search
space.

The first parallel SAT solver that appears in the literature was written
by Böhm [24] and utilizes the search space partitioning approach. Böhm’s
solver predates the CDCL method. Instead, it performs a DPLL algorithm
without clause learning to solve subproblems. The solver uses a relatively
simple branching heuristic: In each step it selects a decision literal so that
the inverse of this literal has a maximal number of occurrences in clauses
of shortest length. This heuristic was constructed to favor the production
of unit clauses in random SAT formulas. Böhm’s solver uses the same
heuristic to generate guiding paths and to perform decisions while solving
subproblems via DPLL.

Another approach that is outlined in [53] consists of first splitting an in-
stance using guiding paths and then submitting all subproblems to a cluster
where they are solved by CDCL solvers. The advantage of this scheme is
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that it does not depend on any communication and poses minimal require-
ments to the cluster infrastructure. On the other hand, the partition has
to be chosen statically. Its quality has a large impact on the solvers perfor-
mance as the wallclock time of the whole system depends on the difficulty
of the hardest subproblem. Furthermore, the lack of communication also
implies that techniques like clause sharing cannot be applied to the solver.

More recent search space partitioning solvers that do employ commu-
nication are Dolius [3] and AmPharoS [7]. Both solvers use a distributed
client-server architecture. They are based on both search space partition-
ing and clause sharing. The solvers use the VSIDS heuristic to partition
the search space. AmParoS contains heuristics that try to find a balance
between exploring different parts of the search space while still generating
learned clauses that are relevant to all workers.

4.1.3 Cube-and-Conquer

As a modern refinement of the search space partitioning approach from the
last section, we discuss Cube-and-Conquer solvers.

Cube-and-Conquer refers to a SAT solving architecture that was intro-
duced in [51]. It was not necessarily developed as a parallel SAT solver.
Instead, Cube-and-Conquer is built on the idea of extending the concept
of a lookahead solver to large industrial CNF formulas. To make this idea
feasible, Cube-and-Conquer solves “easy” subproblems by CDCL.

Cube-and-Conquer proceeds in two sequential phases: In the cube-phase,
the solver first performs a DPLL search with a lookahead-based decision
heuristic. Let T be the DPLL search tree that is expanded during this
search. We label each edge e ∈ E(T ) with the decision literal that was
fixed while expanding the tree. Consequently, the children of each vertex
define a collection of guiding paths γ(v), where γ(v) only contains of the
single unit clause corresponding to the literal that the incoming edge of v
is labeled with. Furthermore, the leafs u of T define a collection of guiding
paths γ∗(u), where γ∗(u) is given by the union of all γ(v) along the path
from the root of T to u. Note that γ∗(u) is essentially a cube of literals;
this gives the algorithm the name “Cube-and-Conquer”. Figure 4.1 depicts
an example for such a DPLL search tree.

Note that some vertices are already closed by the lookahead procedure.
That means, either the lookahead procedure was able to prove that at a
given vertex u ∈ V (T ), the formula φ∪ γ∗(u) is unsatisfiable or all children
of u are closed themselves. Vertices that are not closed yet are called open.

In contrast to a pure lookahead solver the Cube-and-Conquer algorithm
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Figure 4.1: DPLL search tree after the cube-phase
Possible result of a cube-phase that produces two subproblems φ ∪ γ∗(v1) and φ ∪ γ∗(v2). Gray denotes

vertices that have been closed by the lookahead procedure.

does not continue to expand T until completion 1. Instead it employs a
cutoff heuristic to determine for each vertex u ∈ V (T ) of the DPLL search
tree whether expanding it is worthwhile. If that is not the case, u is left open
and the solver backtracks to a parent of u. After the cube-phase completes
(i.e. after the cutoff heuristic has been met for all open leafs) it suffices to
solve all remaining open leafs. For each of those open leafs u ∈ V (T ), the
Cube-and-Conquer algorithm now solves the subproblems φ ∪ γ∗(u) using
a CDCL solver. This second phase is called the conquer-phase.

Note that we do not specify a particular cutoff heuristic. The original
Cube-and-Conquer cutoff heuristic [51] is based on the number of decision
literals (i.e. the length of the path from the root to a vertex) and the number
of literals that are fixed by unit propagation, compared to the number of
variables in the input formula. As our DDC algorithm does not employ a
cutoff heuristic, we will not discuss it here in detail.

It is obvious that the conquer-phase of the algorithm can be naturally
parallelized. As stated earlier, this parallelization can be seen as a special
case of the search space partitioning approach. One problem with the ap-
proach, however, is that the cube-phase is still sequential. Just executing
the conquer-phase in parallel thus might run into bottlenecks during the
cube-phase.

The paper [91] introduced the concept of concurrent Cube-and-Conquer,
a parallel algorithm that runs a CDCL algorithm in parallel to the sequential
cube-phase. This CDCL algorithm always runs on the same DPLL search
tree vertex as the lookahead procedure. If the CDCL algorithm finds a
model of the formula, the whole solver terminates. Otherwise, if the CDCL
algorithm is able to prove a vertex unsatisfiable faster than the lookahead

1A pure lookahead solver would expand T until either all leafs are proved to be unsatisfiable (i.e. by
unit propagation derives a conflict) or a solution is found.
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is able to split it, both solvers backtrack. In order to utilize multiple cores,
it is desireable to use a parallel CDCL algorithm (e.g. a CDCL portfolio
solver) to fully utilize the available processors.

The Treengeling solver [17] that won gold medals at the SAT Com-
petitions in 2013, 2014 and 2016 implements a variant of this concurrent
Cube-and-Conquer algorithm. Instead of running the CDCL algorithm in
parallel to the lookahead procedure, each worker of the solver runs CDCL
and lookahead interleaved. During this process a limit is applied to the
number of open leafs. Additionally, the CDCL algorithm is run with a con-
flict limit; this limit is dynamically adjusted depending on the number of
vertices that are solved by CDCL versus the number of vertices that are
produced by lookahead [18].

A remaining problem of the concurrent Cube-and-Conquer approach is
that if the CDCL algorithm is unable to solve a vertex, the CPU time it
spent is essentially wasted. This happens especially often when the solver
starts and no literals are fixed yet. The distributed divide-and-conquer
solver that we will present in section 4.2 tries to avoid this problem by
ensuring that workers contribute to a solution (or unsatisfiability proof) at
all stages of the solving process.

4.1.4 Parallelizing CDCL

In addition to using a parallel high-level algorithm it is also possible to par-
allelize its building blocks to a certain extent. We shortly discuss algorithms
that try to parallelize CDCL at the level of unit propagation.

Most of the time that a DPLL-based (or CDCL-based) SAT solver con-
sumes is spent on doing unit propagation. Therefore it seems evident that
one could try to parallelize the unit propagation itself and some work has
been done on that [67, 54]. Unfortunately there are both theoretical and
practical hurdles that impair the scalability of this method. From a theo-
retical point of view unit propagation is P -complete2 and thus it is an open
question whether there is an efficient parallel algorithm for unit propagation
at all.

In practice it is unlikely to achieve a decent speedup by parallelizing unit
propagation. Because the propagation of a single literal can result in the ex-
amination of arbitrary parts of the input formula, frequent synchronization
between worker threads is required if these parts of the formula are han-
dled by different workers. Even the author of the parallel, shared-memory
unit propagation implementation in [67] remarks that his algorithm does

2This can easily be seen because HORN-SAT is already P -complete and unit propagation solves HORN-
SAT in linear time. To see that HORN-SAT is P -complete, it suffices to reduce the CVP (see section
2.3.1) to HORN-SAT.
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not scale to more than two cores. It seems likely that such an algorithm
cannot be ported to a distributed computer without introducing a negative
speedup even for two nodes.

Despite these problems, the parallel unit propagation algorithm of [67]
does have one advantage over the other approaches that we consider here: It
does not need to store the whole input formula in RAM and thus can be used
to solve formulas that are too large to fit into a machine’s memory. Instead,
only an arbitrarily small subformula of the input formula needs to be stored
by each individual worker. Therefore, it can be used in a complementary
way with the other approaches to enable the solver to operate on formulas
that would otherwise be to large to be handled.

However, we will concentrate on improving the scalability of parallel
SAT algorithms in the remainder of this thesis. Hence, we will not consider
parallel unit propagation any further.

4.2 The DDC algorithm

In this section, we present a novel parallel SAT algorithm that we call the
distributed divide-and-conquer (DDC) algorithm.

4.2.1 The basic algorithm

Here, we first present the basic algorithm. The following subsections will
discuss specific parts of this algorithm.

DDC is a search space partitioning solver that operates similar to the
Cube-and-Conquer approach and also builds a DPLL search tree T (like the
one in figure 4.1) to generate guiding paths. Similar to Cube-and-Conquer,
a lookahead based algorithm is used to compute the branching heuristic.
As opposed to Cube-and-Conquer however, the lookahead scores are not
computed sequentially and no cutoff heuristic is required to decide when to
run CDCL.

Instead, we attach (possibly empty) sets of workers to vertices of the
DPLL search tree. Those workers are routed through the tree until they
reach an open leaf vertex. When that happens, one of two possible opera-
tions is performed. We call these operations divide- and conquer-steps. Let
u be a leaf vertex. Divide- and conquer-steps operate on u as follows:

Divide-step The workers perform a parallel lookahead operation. After
this lookahead completes, guiding paths are computed and for each
of those guiding paths, the vertex u is expanded with a new child
vertex. As a by-product this operation yields a set of failed literals.
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For each failed literal a, we learn a clause that consists of ā and the
inverse3 of all elements of the guiding path γ∗(u) that contributed to
the conflict when a was assigned. We denote the set of these clauses
by η(u). η(u) is added to the formulas associated with each new child
vertex to further reduce the search space.

Conquer-step The workers run the CDCL algorithm in order to solve u
directly. If one of the workers finds a solution, the whole solver termi-
nates. Otherwise, if one of the workers proves the formula associated
to u to be unsatisfiable, the vertex u is closed.

If the solver is able to close the root vertex, the input CNF formula φ
is proven to be unsatisfiable. It should be noted that there is a number of
corner cases that can result from divide- and conquer-steps: Divide-steps
might discover a satisfying assignment (e.g. assigning a literal or after
propagating new failed literals). Both divide- and conquer-steps can directly
prove the formulas associated to parent vertices of u to be unsatisfiable. For
example, this can happen if CDCL reaches a conflict that includes only a
subset of the guiding path. In an exceptional case, this can even directly
prove φ to be unsatisfiable.

Our heuristic of choosing between divide- and conquer-steps is easy.
First, we always perform a conquer-step when only a single worker is at-
tached to the leaf u. If there is more than one worker, we run a conquer-step
until all workers combined reach a conflict limit. After that we interrupt the
conquer-step and run a divide-step instead. If workers arrive at u while a
conquer-step of u is already in progress, the workers join the active conquer-
step. If a divide-step is in progress, the workers have to wait until it is
completed.

Initially, we attach all workers to the root vertex of T (which corresponds
to the empty guiding path). Workers that are attached to an inner vertex
v of the tree are routed through T until they reach a leaf vertex. Routing
moves workers into two directions: If the given vertex v is open, the workers
attached to it are routed to child vertices of v. We distribute the workers so
that each subtree of v contains the same number of workers. If v is already
closed, the workers attached to it are routed to the parent of v until they
reach an open vertex.

Because this routing operation prefers to move workers locally, the guid-
ing path does not change chaotically after routing. This ensures that clauses
that are learned during CDCL stay relevant at the new guiding path.

3The use of the assumption mechanism that we discuss in 4.3.1 ensures that this is possible, even if
the guiding path has non-unary clauses.
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4.2.2 Parallel lookaheads

Our DDC algorithm performs a parallel lookahead procedure during divide-
steps. We shortly discuss different parallel algorithms to perform this looka-
head.

There are two natural ways to parallelize the sequential lookahead algo-
rithms 2.3 and 2.4 from chapter 2. The first way consists of computing the
lookahead score for multiple literals concurrently and the second is to paral-
lelize the lookahead evaluation procedure itself. The second approach might
be desirable in situations with few variables (e.g. less variables than the
number of cores) and expensive lookahead evaluation algorithms. However,
we can expect industrial CNF formulas to have many times more variables
than we have cores available, so that the first approach is likely to yield
better performance.

Disregarding communication costs, we expect a linear speedup when
computing the lookahead procedure for multiple variables in parallel. How-
ever, the runtime of this algorithm is still bounded by the runtime of the
unit propagation algorithm. A natural theoretical question is thus, whether
it is possible to design a parallel lookahead algorithm with a smaller runtime
than the sequential unit propagation algorithm. This, however, is unlikely
as unit propagation is P -complete (as discussed in subsection 4.1.4). In that
sense, the runtime of our parallel lookahead algorithm is optimal under the
assumption that P 6= NC.

In order to further speed up the lookahead, we can combine it with a (se-
quential or parallel) preselection phase. This might be especially worthwhile
if the number of available workers is low. If enough workers are available,
preselection becomes less important as it becomes possible to compute more
lookaheads in reasonable time. Therefore, we run just a simple sequential
preselection phase.

Suppose that we want to run a divide-step using the set Ω of workers that
are attached to a vertex u of the DPLL search tree. We randomly choose
one of the workers from Ω as the leader of the divide-step. The leader is
responsible for coordinating all other workers in Ω. In particular, it runs
the sequential preselection phase before starting the parallel lookahead and
it generates the new child vertices of u after the lookahead is finished.

The naive lookahead algorithm 2.3 can easily be parallelized by employ-
ing a load balancer to distribute the variables over all available workers.
After the lookahead of all variables is completed, the result of the whole
lookahead evaluation can be computed by a parallel reduction operation
that computes the maximum of all lookahead scores. If the number of
available workers is close to the number of variables, this parallelization of
the naive lookahead algorithm is optimal in the following sense: The num-
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ber of variables that have to be probed by each worker is bounded by a
constant. Thus, the walltime performance of this algorithm is determined
by the most expensive unit propagation run and this is true for any other
lookahead algorithm as well.

However, in the general case (i.e. when the number of variables is far
greater than the number of available workers) we can try to parallelize the
tree-based algorithm 2.4 in order to archive better performance. In this
case, the load balancer does not distribute variables; instead it distributes
the literals that are roots of the DFS forest which is constructed by the
algorithm. The individual workers compute the lookahead scores for all
literals that are in the trees with these specific roots. After lookahead of
all literals is completed, the algorithm still needs to combine the scores of
the positive and negative literals of each variable to obtain a lookahead
score for the variable itself. Therefore, it does not suffice to perform a
parallel reduction operation like in the naive case. All workers need to send
the scores of all literals to the leader. The leader performs a sequential
search to determine the variable with best lookahead score. The fact that
it requires more communication and sequential runtime to determine the
best variable score from the scores of individual literals is a drawback of
the algorithm compared to the naive one.

So far, we did not specifiy a lookahead evaluation heuristics for the al-
gorithm. An obvious choice for the score of a literal x is the number of
literals that are fixed as the result of applying unit propagation to the as-
signment {x}. This number is cheap to compute and computing it does
not require dedicated data structures. Other choices would be any of the
evaluation heuristics that established lookahead solvers use (see e.g. [14]
for an overview). However, most of these heuristics require at least occur-
rence lists to be computed and often need eager data structures for unit
propagation (see 3.2.3) for efficiency.

4.2.3 Managing the distributed search tree

In order to actually implement the DDC algorithm, we have to specify how
workers will be mapped to threads and processes. This subsection will
discuss that mapping and the organization of the DPLL search tree that
the solver has to manage.

In an implementation, a worker will be represented by a thread, with
multiple worker threads running inside a single process. In general, it is
desirable to either start one process per node or per CPU socket and then
start as many worker threads as there are cores available on this node or
socket.

In addition to the individual worker threads, each process also manages
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some state that is shared among all worker threads. This state includes the
DPLL search tree itself. In the remainder of this section we will discuss
how the DPLL search tree is organized.

While running the DDC algorithm, each of the workers has to access the
formula φ ∪ γ∗(u), where u is the vertex that the given worker is attached
to. There are generally two ways of how this information can be provided
to each worker: Let v be some vertex that is on the path from the root of T
to u; either the worker requests γ(v) from a centralized server that manages
the whole DPLL search tree or the management of the search tree itself is
distributed over multiple processes.

In order to avoid a design where a central server has to communicate
with every other process, our algorithm uses the second approach. Vertices
of the DPLL search tree are uniquely identified by IDs that consist of pairs
(p, n), where p is the index of a process that we call the owner of the vertex
and n is an integer. We allocate n by maintaining a per-owner counter that
is incremented whenever a vertex ID is created by this owner. This ensures
that no communication is required to allocate vertex IDs.

Recall that vertices are only added to the DPLL search tree as the result
of a divide-step. When that happens, the leader of this divide-step becomes
the owner of all vertices that are generated by the divide-step. Let v be
such a vertex. The owner is then responsible for routing workers to the
children of v.

In order to run the algorithm, all processes that have workers which are
attached to a vertex in the subtree of v have to store γ(v). The owner of v
has to store the number of child vertices of v and the number of completed
child vertices. In addition to that, it has to store, for each child vertex of
v, whether that child vertex is already closed. This information allows the
owner to determine whether v itself is already closed and it is required for
routing decisions. The next subsection will detail the communication that
is required to share γ(v) among workers.

4.2.4 Communication model

In this section we discuss how the DDC algorithm can be implemented on
top of a message passing framework.

In our DDC implementation processes send commands to each other
in order to route workers through the DPLL search tree and to invoke
divide- and conquer-steps. Commands are always sent and received between
processes and never between individual threads. Some commands still affect
specific workers. Those commands are forwarded to the workers via shared-
memory queues. However, it can happen that a process sends a command
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Table 4.1: Command overview

Category Message

Vertex management QueryVertex(u), VertexData(u, p, γ, η(p))
Routing Route(u,Ω), Close(u,Ω)
Divide-/conquer-step Divide(u,Ω), Conquer(u, ω), RequestInterrupt(u, ω)
Result of divide-step DivideComplete(u,Γ, η(u)), DivideTerminate(u)
Result of conquer-step Progress(u, k), ConquerInterrupt(u, ω)

ConquerComplete(u, ω), ConquerTerminate(u, ω)
Solution Satisfiable(τ), Unsatisfiable
Shutdown ShutdownSolver, ShutdownWorker(ω)

The meaning of the symbols u, p, γ,Γ, η, ω,Ω, k and τ is as follows:

Symbol Meaning

u Vertex of the DPLL search tree
p Parent vertex of u
γ and Γ Guiding path and set of guiding paths
η( ) Set of redundant clauses that are relevant at some vertex
ω and Ω Single worker and set of workers
k Number of conflicts since last Progress command
τ Model of the input CNF formula

to itself4.

Table 4.1 states all commands that our implementation uses. It should
be noted that commands are not the only messages that are exchanged
in our DDC implementation. For example, divide-steps employ additional
messages for load balancing and to exchange intermediate results between
workers.

Using the QueryVertex command, processes can enquire information
about vertices u that are owned by other processes. The owner processes
respond with a VertexData command that contains the relevant informa-
tion. Note that VertexData contains the set η(p) of redundant clauses
and not η(n). This is because η(p) consists of clauses that assign failed
literals which were found during the divide-step that generated u. These
failed clauses apply to all child vertices of p and not only to n.

The commands Route and Close route workers through the DPLL
search tree. Route moves the set Ω of workers to the vertex u, while
Close moves the workers from Ω to the parent of u after u has been
closed. Thus, Route is always sent to the owner process of u and Close
is always sent to the owner of the parent of u.

After workers arrive at a leaf vertex u, the owner of u sends Divide or
Conquer commands to the workers attached to u. Those workers usually

4Of course, that is not strictly necessary as those commands could also be sent over shared memory.
However, it simplifies the implementation of the algorithm. We expect the overhead of those messages
to be negligible as high-quality message passing libraries (e.g. MPICH and Open MPI) will fall back to
shared memory anyway.
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Owner of parent of u Owner of u Process hosting leader ω ∈ Ω

Route(u,Ω)

Divide(u,Ω)

DivideComplete(u,Γ, η(u))

Route(u′,Ω′)

Route(u′′,Ω′′)

(a) Divide-step
We assume that the divide-step generates two child vertices u′ and u′′. Ω′ and Ω′′ denote the sets of

workers that are routed to these new vertices.

Owner of parent of u Owner of u Process hosting ω ∈ Ω

Route(u,Ω)

Conquer(u, ω)

Progress(u, k)

...

ConquerComplete(u)

Close(u,Ω)

(b) Conquer-step

Figure 4.2: Successful completion of divide- and conquer-steps
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Owner of u Process hosting leader ω ∈ Ω Rank zero

Divide(u,Ω)
or Conquer(u, ω)

...
Satisfiable(u, τ)

or Unsatisfiable(u)
DivideTerminate(u,Ω)

or ConquerTerminate(u, ω)

Figure 4.3: Termination after a divide- or conquer-step

Owner of parent of u Owner of u Process hosting leader ω ∈ Ω

Route(u,Ω)

Conquer(u, ω)

Progress(u, k)

...

RequestInterrupt(u, ω)

ConquerInterrupt(u, ω)

Divide(u,Ω)

...

Figure 4.4: Interruption of a conquer-step
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send a DivideComplete or ConquerComplete command back to the
owner of u, after the divide- or conquer-step finishes. Figure 4.2 shows the
message flow in these two cases.

If a divide- or conquer-step finds a satisfying assignment for the input
formula or proves that the input formula is unsatisfiable, the workers in-
stead send a DivideTerminate or ConquerTerminate command to
the owner. This ensures that the workers do not enter the routing algo-
rithm again. Instead, they wait until the whole solver terminates. Figure
4.3 depicts this situation.

In addition to that, conquer-steps can finish by sending a ConquerIn-
terrupt command to the owner of u. This happens only after the owner
has requested to interrupt the conquer-step by sending a RequestInter-
rupt command. In order to allow the owner to estimate if conquer-steps
should be interrupted, workers send Progress commands at regular inter-
vals during conquer-steps. This is visualized in figure 4.4.

Finally, the ShutdownSolver command is broadcasted to all work-
ers when the solver terminates. As a response to that, each process sends
ShutdownWorker commands to all workers that are attached to ver-
tices that the process owns. The latter command causes the workers to
exit. After all workers that are part of a process exited, a global barrier is
issued and the solver itself exits. We remark that the termination process
is considerably difficult to implement correctly in practice, even though it
is conceptually simple. The mechanism outlined above prevents deadlocks
that would otherwise arise when a worker waits for the response of an-
ther worker (e.g. during divide-steps) and that second worker terminated
already.

4.3 satUZK-ddc: Implementation and refine-
ments

This section discusses implementation details and some refinements that we
made to our basic DDC algorithm.

We implemented the DDC algorithm as part of our satUZK framework.
The resulting solver is called satUZK-ddc. The implementation is written
in C++ and uses MPI for message passing. We use the same CDCL engine
as satUZK-seq to implement conquer-steps.

4.3.1 Assumptions and local LBD

We shortly discuss how assumptions can be used to force the solver to
explore a certain guiding path.
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In order to be able to efficiently change the guiding path as a result
of a completed cube- or conquer-step, we assign the current guiding path
using the assumption mechanism. This allows us to change the guiding
path by only changing the current set of assumptions and without touching
other data structures (e.g. it does not require deleting clauses from the
clause database). Unary clauses can directly be assigned by assumptions.
However, if the guiding path γ(u) associated with a vertex u contains a
non-unary clause, we need to introduce a new variable xu. We add x̄u to
each non-unary clause of γ(u) and assign xu as an assumption. However,
as learned clauses containing x̄u will not be useful in other parts of the
search tree5. Therefore, it is desirable to avoid guiding paths that contain
non-unary clauses.

A consequence of using assumptions is that the meaning of the LBD
as an indicator of clause quality changes: We can expect that most of the
clauses which are learned during conquer-steps contain a large number of
assumptions; some of them will even contain the whole guiding path. In
those cases, as assumptions are all assigned on different decision levels, the
LBD will be dominated by the number of assumptions that are part of the
clause. While the LBD is still fine as a measure of a clause’s quality with
respect to the input formula, including assumptions in the LBD leads to
a poor measure of the quaility of the clause with respect to the current
guiding path.

This problem was already recognized in [6], altough not in the context of
parallel solving. The solution which that paper discusses is simply dropping
assumptions from the LBD calculation. While this strategy seems to per-
form well for the paper’s application of minimal unsatisfiable cores (MUS),
it is not a good idea in our case: If we just drop assumptions from the LBD
calculation, clauses that are useless on the current guiding path will not be
deleted in case they were useful on a previous guiding path.

Therefore, we adopt the following solution: For each clause, we store
a global LBD and a local LBD. The global LBD counts all assumptions
as usual. The local LBD does not count assumptions at all. Hence, the
global LBD is an upper bound for the local LBD. The usual mechanism
to improve the LBD of clauses that participate in conflicts (see 3.1.5) only
affects the local LBD and we use the local LBD in the clause database
reduction heuristics.

When we change the guiding path, we reset the local LBD to the global
LBD. Clauses with small LBD before reset are protected for one round of
clause database reduction. Due to the LBD improvement mechanism, they
get the chance to reduce their local LBD if they are still useful on the new

5Per construction, learned clauses containing xu are not produced by CDCL.
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guiding path.
In addition to enabling this reset mechansim, the global LBD can also

be used as an indicator for the quality of clauses regarding clause sharing.
We will discuss clause sharing in the context of the DDC algorithm in
subsection 4.3.3.

4.3.2 Branching schemes

This subsection will discuss alternatives to the usual branching scheme that
generates two guiding paths as the result of each divide-step.

Scattering is an alternative technique to generate guiding paths, or
equivalently, to expand vertices when branching in a DPLL search tree.
Scattering was introduced in [52]. While the traditional DPLL method gen-
erates 2` guiding paths from ` branching literals, scattering takes ` cubes
of literals as input and produces `+ 1 guiding paths.

Definition 4.3. Let D1, . . . , D` be sequence of cubes. Note that the per-
mutation of the Di does matter. Scattering generates the ` + 1 guiding
paths

γ1 := {{a} : a ∈ D1}
γ2 := {{a} : a ∈ D2} ∪ {{ā : a ∈ D1}}
γ3 := {{a} : a ∈ D3} ∪ {{ā : a ∈ D1}, {ā : a ∈ D2}}

...

γ`+1 := {{ā : a ∈ D1}, . . . , {ā : a ∈ D`}}

In other words, the i-th guiding path has the form

γi := {{a} : a ∈ Di} ∪ {{ā : a ∈ D1}, . . . , {ā : a ∈ Di−1}}

with D`+1 defined as D`+1 = ∅.

Note that if ` = 1 and D1 contains only a single literal c, scattering
degrades to the usual branching scheme that creates two guiding paths
fixing the literals c and c̄. We call this branching scheme binary branching.
Furthermore, if ` is arbitrary but all Di are unary cubes, then all γi only
contain unit clauses. This interacts nicely with our use of assumptions that
we discussed in the previous subsection.

For the general case the paper [52] contains some guidelines howD1, . . . D`

should be chosen so that all φ∪ γi have a similar difficulty. However, these
guidelines depend on an estimation of the size of both search trees that
might be inacurate in the presence of unit propagation.
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Because of these complications with |Di| > 1, we only deal with Di that
have |Di| = 1 in satUZK-seq. In order to generate child vertices as the result
of a divide-step, we set ` to the number of workers that participated in the
divide-step. We set Di to the unary cube that contains the i-th best literal
as determined by the lookahead evaluation heuristic. We call the resulting
branching scheme unary scattering. While the scheme does not guarantee
that all γi have comparable difficulty, it ensures that workers quickly get to
explore different parts of the search space. In our experimental section, we
compare this scattering scheme to binary branching.

4.3.3 Clause sharing

Another enhancement of our DDC algorithm is the addition of clause shar-
ing. We shortly discuss the interaction between clause sharing and DDC.

Even though DDC performs search space partitioning, clauses that are
generated in one part of the search space can still be relevant to other parts.
For example, one of the workers might be able to learn a unit clause that
fixes a variable for all workers. Clause sharing is made possible because the
assumption mechanism ensures that even though a clause is learned by a
worker with a certain guiding path, it is still globally valid.

As sharing only unit clauses has proven to be effective in the Plingeling
solver, we implemented this strategy in our satUZK-ddc solver. In the
experimental section, we compare this strategy to a strategy that shares all
clauses with an LBD of two or less.

We use clause freezing (as presented in section 4.1.1) to avoid resetting
active CDCL searches when new clauses arrive. Clauses which get imported
from other workers are frozen after they are allocated. The solver then un-
freezes those clauses during clause database reduction. Clauses are unfrozen
based on their PSM; this implies that unit clauses are always unfrozen.

The actual clause exchange is implemented by a combination of shared-
memory queues and message passing. Generated clauses are passed to dif-
ferent workers of the same process via shared memory queues. At the same
time, the worker that generated the clause prepares a message to send the
clause to a different process. For purposes of clause sharing, the processes
are arranged in a ring: Each process always sends clauses to exactly one
other process and receives clauses from exactly one other process. The
same model is used for the shared memory queues that pass clauses be-
tween workers of the same process.

4.3.4 Diversification

We quickly discuss the role of diversification as part of the DDC algorithm.
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In portfolio solvers, the primary purpose of diversification is ensuring
that workers do not explore the same search space and do not perform re-
dundant work. This is not a concern for us, as satUZK-ddc already avoids
this problem by partitioning the search space. Diversification can still im-
prove performance for two reasons: First, the best heuristics for restarts
and clause database reduction simply differ among different CNF formulas.
Secondly, different heuristics might be able to derive different useful learned
clauses that can be shared between the workers.

For these reasons, we implemented a simple diversification scheme in
satUZK-ddc: satUZK-ddc runs one half of the worker threads in Glucose
emulation mode and the other half in MiniSat emulation mode (see 3.2.9).
We expect Glucose emulation to be effective on the majority of industrial
CNF formulas, while we expect MiniSat emulation to be effective on some
classes of hard combinatorial formulas where Glucose emulation performs
badly (see the evaluation in 3.4.2).

4.3.5 Idle-time inprocessing

In this subsection we discuss techniques to reduce the idle time of satUZK-
ddc.

The construction of the DDC algorithm tries to reduce the idle time of
worker threads to a minimum by ensuring that workers can almost inde-
pendently enter divide- and conquer-steps and by applying load balancing
when multiple workers need to work on the same task. Unfortunately, it
is still possible for workers to idle for non-negligible amounts of time. For
example, that can happen if a worker is waiting for the completion of a
divide-step or if it is waiting for the response to a command. In order
to prevent wasting time, we run inprocessing when a solver is waiting for
external events.

In contrast to sequential SAT solvers that make heavy use of inpro-
cessing (like Lingeling [15]), we do not need to care about the efficiency of
inprocessing or about sophisticated scheduling schemes as we will only run
inprocessing when nothing else can be done. The version of satUZK that
was submitted to SAT Competition 2017 runs subsumption inprocessing
during idle-time. Subsumption removes clauses that are contained in other
clauses as subsets. Subsumption interacts favorably with clause sharing as
duplicated learned clauses can be removed by subsumption. In an exper-
iment we also compare this inprocessing configuration to a configuration
that performs resolution subsumption. Chapter 5 discusses both of these
thechniques in depth.
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4.3.6 Asynchronous MPI via fibers

In this subsection we shortly discuss how the communication infrastructure
is organized in satUZK.

From subsection 4.2.4 it is obvious that many messages (e.g. completion
messages for divide- and conquer-steps or interrupt messages) are sent and
received asynchronously: Those messages are not generated at predeter-
mined points during the algorithm but instead result from events that are
hard to predict. Furthermore, it is evident that nodes need to be respon-
sive to messages from other nodes even while their workers are computing
divide- and conquer-steps.

One way to deal with those circumstances would be allocating a dedi-
cated communication thread per process. Messages sent by individual work-
ers would then be routed over the communication thread. Workers in the
some process could interact with the communication thread over shared
memory queues.

Early versions of satUZK-ddc implemented this approach. During pro-
filing we found the communication thread to be underutilized in many situ-
ations. Therefore, we switched to a completely asynchronous model, where
all threads are equal and implement workers of the DDC algorithm. In or-
der to deal with asynchronous messages, we use user-space threads that are
called fibers 6. A fiber, just like a thread, is an execution context. However,
unlike threads, fibers are not scheduled by the OS but by the solver itself.
We implemented three priority-levels for fibers:

Batch priority Fibers in this priority-level are scheduled with the high-
est priority. They are only suspended to wait for the completion of
blocking operations but never yield the CPU cooperatively.

Computation priority These fibers are only scheduled when no fiber
with batch priority is available. They are expected to regularly yield
the CPU to allow fibers with polling priority to run.

Polling priority These fibers only run after a fiber with computation pri-
ority yields and if no fibers with batch priority are available.

We implemented adapters for many of the MPI communication functions
that only block the current fiber instead of the current thread. In order to
realize this, each process runs one MPI progress fiber with polling priority
that continuously checks if pending MPI operations are completed. This
fiber then wakes other suspended fibers that block for these operations.

6In particular, we are using the user-space threading library Boost.Fiber [25].
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Figure 4.5: Scalability of satUZK-ddc on SC’17 instances

4.4 Experimental results

In this section, we evaluate the performance of our DDC algorithm empir-
ically.

All experiments ran on a cluster of dual-socket Intel Xeon E5-2690 v2
nodes. Each of those CPUs consists of 10 individual cores7, resulting in 20
cores per node. The cores run at a reference frequency of 3.0 GHz. Each
node has access to 128 GiB of memory. The cluster runs on Linux, using
the Debian Stretch distribution. As in the last chapter, we used the GCC
6.2.0 compiler to build our solvers.

When evaluating the DDC algorithm we always start one process per
socket and one thread per core on this socket. This amounts to two pro-
cesses per node and ten worker threads per process. The number of nodes
that we use varies among different experiments.

4.4.1 Scalability of DDC

Our first experiment concerns the scalability of the satUZK-ddc solver. In
order to evaluate this, we run satUZK-ddc on the 350 instances from SAT
Competition 2017 and vary the number of workers from 20 to 160 (more
specificially, we vary the number of nodes from 1 to 8). No CNF simplifica-
tion is applied before starting the DDC algorithm. In this experiment, we
set a per-instance timeout of 20 minutes. This timeout is much lower than
the timeout of 5000 seconds from the Main track of SAT Competition 2017,

7Technically, Intel’s hyper-threading provides two hardware threads per core, yielding 40 hardware
threads per core. However, we disabled hyper-threading for our experiments. The solvers that we consider
are limited by memory bandwidth and hyper-threading does not significantly improve their performance.
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however, in contrast to the competition we run our benchmark on more than
one node and thus invest more CPU time (at least in configurations with
more than 100 workers).

Figure 4.5 depicts the results of this experiment as a cactus plot. The
time that we report is the total wall time that is needed by the DDC
algorithm to solve a given instance. Instances that could not be solved
within the timeout are not reported in the figure.

As expected, figure 4.5 shows that the runtime per instance decreases
when more workers are available. At the same time, the number of instances
that can be solved within the timeout increases. It should be noted that the
relation between the number of workers and the number of solved instances
is not linear. This is no shortcoming of the algorithm but instead is caused
by the fact that the instance difficulty is non-linear itself.

Note that although satUZK is written for a distributed computing ar-
chitecture, configurations with 20 workers or less are essentially shared-
memory solvers: The 10-workers configuration only performs communica-
tion within the same process and the 20-workers configuration only per-
forms communication within the same node. All other configurations per-
form communication even between nodes. The configurations still all use
the same message-passing API. As can be seen from figure 4.5, scalability
does not noticably differ between the shared-memory and distributed con-
figurations. This suggests that the performance of the DDC algorithm is
not suspectible to latency differences originating from the communication
fabric.

While the cactus plot confirms that increasing the number of workers is
always beneficial, it does not visualize whether the solver uses its resources
efficiently and whether the parallel speedup is justified relative to the num-
ber of invested workers. Unfortunately, in case of the SAT problem, it is
hard to accurately determine the efficiency of the solver. Because solving
times often vary chaotically after slight modifications of the algorithm, the
intersection of instances that are solved by a sequential reference algorithm
and instances that are solved by our parallel algorithm is relatively small.
In table 4.2 we summarize the speedup of the satUZK-ddc solver compared
with satUZK-seq. Here, satUZK-seq ran with a timeout of 3200 minutes,
which is equal to the CPU time spent by the 160 worker configuration8. We
report both the total speedup of the whole benchmark set and the median
of the speedups of individual instances. Those statistics are provided both
for all instances and for “difficult” instances only. Here, difficult means
that the instance required more than 10n seconds, where n is the number
of worker threads 9. This allows us to estimate the weak scalability of the

8Using this timeout, the sequential solver was able to solve 239 of the 350 instances.
9This notion of difficulty is adopted from [11].
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Table 4.2: Speedup of satUZK-ddc on SC’17 instances

(a) Over all runs

If the sequential reference algorithm could not solve an instance, we use the timeout for speedup
calculation. The fifth column states the number of hard instances that could be solved. As the solver

was not able to solve all instances, this number does not always decrease.

All instances Difficult instances
(Strong scaling) (Weak scaling)

Workers Solved Total Median Samples Total Median

20 162 127.49 5.14 145 129.20 6.36
40 167 412.24 5.49 139 418.45 11.89
80 183 494.20 7.76 149 505.51 22.23

160 187 553.36 9.02 134 595.61 39.34

(b) Over runs completed both by DDC and reference solver

All instances Difficult instances
(Strong scaling) (Weak scaling)

Workers Solved Samples Total Median Samples Total Median

20 162 160 29.22 5.03 143 29.62 6.31
40 167 161 57.52 5.19 133 58.52 11.47
80 183 174 60.32 6.86 140 61.93 18.22

160 187 177 65.97 5.70 124 71.55 32.29

algorithm. Furthermore, table 4.2 is split into two parts: 4.2a aggregates
data from all runs while 4.2b only includes those runs that were success-
fully completed both by the sequential and by the parallel solver. Because
of the afforementioned chaotic behavior, we overestimate the real speedup
in the first case and underestimate it in the second case. In particular,
the total speedup over all runs exhibits superlinear behavior. This is a
well-known phenomenon [82] that is also experienced by other SAT solvers.
Overall, the speedups are comparable with those that are reported by the
portfolio-based, state-of-the-art, distributed HordeSat solver [11].

4.4.2 DDC versus the state of the art

In the second experiment, we compare the performance of satUZK-ddc with
other state-of-the-art solvers.

As references, we picked Syrup, Plingeling, Treengeling and HordeSat.
Syrup and Plingeling respectively won the first and second place in the Par-
allel Track at SAT Competition 2017. Treengeling is the most successful
Cube-and-Conquer solver and is architecturally the most similar solver to
satUZK-ddc. HordeSat did not participate in SAT Competitions but rep-
resents the state of the art in distributed SAT solving (with the only other
recently published, distributed SAT solver, AmPharoS, performing badly
at SAT Competition 2016). For Syrup, Plingeling and Treengeling we use
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Figure 4.6: satUZK-ddc versus the state of the art

the SAT Competition 2017 versions. HordeSat was downloaded from the
authors’ website https://baldur.iti.kit.edu/hordesat/. The version
of satUZK-ddc that we use here differs slightly from the SAT Competi-
tion 2017 version. In particular, we fixed a termination-related bug that
might have had an impact on satUZK’s performance at the competition.
We choose the same set of benchmarks from SAT Competition 2017 as be-
fore. The experiment ran with a timeout of 10 minutes. All solvers run
on 20 cores. The shared-memory solvers run a single process with 20 cores
while the distributed solvers HordeSat and satUZK-ddc are configured as
described in the beginning of section 4.4.

The results of the experiment are presented in figure 4.6. The search
space partitioning solvers Treengeling and satUZK-ddc seem to perform
worse than the portfolio-based solvers Plingeling and Syrup. Considering
that the same, unmodified [20] version of Treengeling won the SAT Com-
petition 2016 [78] (which also featured the same version of Plingeling), we
explain this as a property of the chosen benchmark set.

The comparison between satUZK-ddc and HordeSat versus Syrup, Plin-
geling and Treelingeling is unfair in the sense that satUZK-ddc and Horde-
Sat target distributed environments while the other solvers only communi-
cate over shared memory. However, with the parallel distillation preproces-
sor enabled (see chapter 5), satUZK-ddc solves more instances than Treen-
geling. This is despite the fact that Treengeling’s CDCL engine Lingeling
outperforms satUZK-seq10.

If we compare satUZK-ddc with the distributed HordeSat solver, satUZK-
ddc yields decent results. satUZK-ddc solves more instances than HordeSat,
even when HordeSat uses the more powerful Lingeling engine. It should be
noted that HordeSat is significantly slower than Plingeling, even though

10Lingeling solved 7 instances more than satUZK-seq in the last SAT Competition [78]
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both solvers are using the same Lingeling engine and the same portfolio-
based approach. This can be seen as evidence for the difficulty of porting
the portfolio approach to distributed architectures.

As can be seem from the previous subsection, all shared-memory solvers
are of course eventually outscaled by satUZK-ddc (and also HordeSat).

4.4.3 Runtime of divide- vs. conquer-steps

In the next experiment, we evaluate where the satUZK-ddc solver spends
its runtime.

Table 4.3: Divide vs. conquer-steps

Divide-, conquer- and inprocessing-time is given as a percentage of the total runtime. The sixth column
reports the average degree of the tree. Column seven is the percentage of uninterrupted conquer-steps

relative to the number of all conquer-steps.

Workers Size Divide Conquer Inproc. Degree Conquer Shared
of tree time time time of tree success unaries

20 14072 3.93 64.90 7.30 3.14 38.20 41479
40 32522 3.42 60.25 7.78 2.94 37.00 76188
80 48378 2.13 53.09 5.59 3.20 37.47 138031

160 83918 1.76 46.20 4.84 3.40 37.75 239481

We ran satUZK-ddc with a timeout of 5 minutes and varied the number
of workers between 20 and 160. Again, benchmarks from SAT Competition
2017 are used. During this run, we measured the time that the solver
spends in divide-steps, conquer-steps and inprocessing. In addition to that
we recorded the size of the distributed search tree that the DDC algorithm
generates.

Table 4.3 presents the results of this experiment. Only successfully
solved instances are reported. The size of the constructed DPLL search
tree scales linearly with the number of workers, while the degree of vertices
in the tree increases slightly (because of our unary scattering strategy).
The success rate of conquer-steps stays constant over all configuration. This
suggests that the quality of the branching does not degrade when the degree
of vertices is increased via scattering. The number of shared clauses also
increases significantly; this is a trivial consequence of increasing the number
of workers. However, with larger numbers of workers, some workers are
likely to produce multiple copies of the same clause.

Furthermore, the time spent in divide- and conquer-steps and in in-
processing decreases when more workers are added to the solver. This is
because the solver has to spend more time on book-keeping tasks and on
communication. Additionally, both divide- and conquer-steps become grad-
ually easier when the DPLL search tree becomes larger.
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4.4.4 Comparison of lookahead strategies
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Figure 4.7: Comparison of lookahead strategies

Our next experiment compares different lookahead implementations and
branching heuristics.

The default configuration from our SAT Competition 2017 version pres-
elects the 10000 variables that occur most frequently in the current formula
and then runs the parallel, naive lookahead algorithm. The number of lit-
erals that are fixed after unit propagation is used as the score for variables.
We compare that configuration with a configuration which does not apply
preselection and a configuration that performs tree-based lookahead (and
also applies no preselection). As we conjecture that sophisticated strategies
like tree-based lookahead are more important when the number of workers
is small, we evaluate both 20-worker and 160-worker configurations. Fur-
thermore, the experiment compares three different lookahead evaluation
heuristics. By default, satUZK-ddc computes variable scores based on the
number of literals which are fixed by unit propagation after a given vari-
able is assigned. We compare that to a “clause difference” scheme that
counts the number of clauses that are affected but not satisfied by unit
propgation. Here, a clause is affected if it contains literals that are assigned
to false by unit propagation. Finally, we consider a “weighted difference”
scheme that weights those clauses based on the number of literals that re-
main unassigned. A clause with k ≥ 2 unassigned literals contributes a
score of 2−(k−2).

The results of our comparison for the 160-worker configurations are il-
lustrated in figure 4.7. None of the alternative strategies is able to improve
the solver’s performance. This is not necessarily unexpected as the de-
fault configuration has already been tuned before it was submitted to SAT
Competition 2017. In order to better understand the implications of each
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Table 4.4: Lookahead strategies: Statistics

The fourth column reports the average number of vertices in DPLL search trees. The remaining columns
match those of table 4.3.

Configuration Workers Solved Avg. Divide Conq. Conq.
tree time time success

Default 20 141 157 3.64 68.35 38.97
No presel. 20 145 156 10.63 62.59 39.86

Tree-based 20 144 160 5.70 66.77 38.63

Default 160 170 714 2.65 50.39 36.81
No presel. 160 163 706 3.61 48.32 39.55

No presel. + clause diff. 160 161 595 9.67 45.69 36.07
No presel. + weighted diff. 160 154 567 8.20 46.63 37.57

Tree-based 160 158 684 1.90 50.57 38.65
Tree-based + clause diff. 160 157 671 3.75 51.68 35.39

Binary branching 160 170 367 1.54 54.28 16.59

strategy, we summarize their statistics in table 4.4. This table also includes
data on the 20-workers case.

All alternative lookahead and branching schemes reduce the number of
DPLL search tree nodes that the solver has to explore. Despite solving the
least amount of instances, the weighted difference scheme also generates
the least number of vertices. Hence, it seems that the weighted difference
heuristic is not able to generate subproblems that are considerably easier
than their parents and conquer-steps get stuck at hard subproblems.

Tree-based lookahead reduces the time required for divide-steps consid-
erably compared to the configurations without preselection. Unfortunately
it seems that this reduction is not enough to offset the greater amount of
communication that is required to collect the results after the tree-based
algorithm is completed.

An interesting observation is that both tree-based lookahead and looka-
head without preselection are beneficial in the 20-workers case: The number
of search tree vertices that workers explore in these configurations is small
enough to justify more expensive lookahead strategies that yield results of
better quality.

The binary branching configuration is a special case in this experiment.
When scattering is disabled, the number of DPLL search tree vertices is
greatly reduced and workers spend considerably more time in conquer-steps.
However, as workers are routed after they finish their conquer-steps, a sig-
nificantly more conquer-steps need to be interrupted.
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Figure 4.8: Comparison of DDC variants

4.4.5 Variants of the algorithm

In the last experiment regarding satUZK-ddc, we compare the performance
of different variants of the algorithm. In particular, we compare different
clause sharing and inprocessing stratgies and evaluate the performance of
our local LBD scheme.

The experiment ran with 160 workers and a timeout of 10 minutes. As
before, we use the SAT Competition 2017 benchmarks to compare different
configurations. We evaluate the following variants of the DDC algorithm:

Default The default configuration from SAT Competition 2017. Performs
subsumption inprocessing, sharing of unary clauses and our local LBD
measure (see subsection 4.3.1).

Canonical LBD Uses a global LBD measure instead. Assumptions do
count towards the LBD.

No sharing and LBD-2 sharing The former disables clause sharing. The
latter exports clauses with a global LBD of 2 or less instead of just
exporting unary clauses. Clauses are frozen during import and later
unfrozen using a PSM-based policy.

Explicit unfreezing Performs an unfreezing pass over all clauses before
each conquer-step. The default configuration only performs unfreez-
ing during clause database reduction.

No diversification Uses Glucose-emulation mode for all workers.

No inprocessing and RS inprocessing The former disables subsump-
tion inprocessing during idle time. The latter enables resolution sub-
sumption in addition to subsumption during idle-time inprocessing.
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Figure 4.8 depicts the results of this experiment. The first fact that
we notice from the graph is that no configuration improves upon the de-
fault configuration. Again, this is not necessarily unexpected as the default
configuration has already been tuned.

The local LBD measure certainly improves the runtime of the algorithm
compared with the canonical LBD score.

Neither disabling clause sharing nor sharing more clauses improves the
performance of the solver. Both of these configurations solve a few less
instances than the default configuration. The explicit unfreezing pass has
a less significant effect on performance but is still slightly slower than the
default configuration.

Inprocessing does not seem to have a great impact on the algorithm’s
runtime either. Turning off inprocessing leads to a slightly slower configu-
ration. Increasing the amount of inprocessing seems to hurt the solver even
more.

Diversification seems to improve the performance of the solver signifi-
cantly. The additional MiniSat-emulation configurations generate helpful
learned clauses and enable the solver to solve instances where Glucose-
emulation alone does not perform well.
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Chapter 5

Parallel CNF
simplification

This chapter will discuss the design and implementation of efficient parallel
CNF simplification algorithms. At the end of the chapter we present exper-
imental results to evaluate the practical performance of those algorithms.

What is CNF simplification? We understand CNF simplification as a
collection of techniques that modify a CNF formula in order to make it
more tractable for CDCL solvers. Simplification techniques will usually try
to reduce the size of a CNF formula without impairing their underlying
structure, or they will try to add useful clauses to the formula that fix
variables or guide the solver by enhancing unit propagation.

As part of a CDCL solver, simplification techniques can be applied both
as preprocessing (i.e. before starting the CDCL search) or as inprocessing.
Here, inprocessing means scheduling the simplification and CDCL search
algorithms in an interleaved fashion.

Usually, simplification techniques will not be strong enough to solve
the CNF formula by itself. This implies that we want them to be highly
efficient, as we still need to run a CDCL search. Furthermore, we want to
be able to verify their result. To be able to do this, we will formulate a
proof system that is strong enough to verify the correctness of our CNF
simplifications in polynomial time.

The remainder of this chapter will discuss simplification techniques in
depth. In section 5.1 we will discuss the theoretical basis of simplification
techniques. Section 5.2 will present individual simplification techniques that
are successfully applied in state-of-the-art CDCL solvers. In section 5.3 we
will try to parallelize those techniques. Finally, we present experimental
results in section 5.4.
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5.1 Clause redundancy properties

It turns out that all established simplifcation techniques can be modelled as
a sequence of adding and removing redundant clauses to and from a CNF
formula. This motivates us to study classes of redundant clauses, before we
look at individual simplification techniques.

5.1.1 The AT and RAT properties

This subsection will define various useful clause redundancy properties.
These redundancy properties will form the basis of a proof system that
we will introduce in the next subsection.

All redundancy properties will be properties of clauses C with respect
to a CNF formula φ. Here C does not necessarily belong to φ.

Definition 5.1. We call a clause C (not necessarily part of φ) redundant
(Red) with respect to a CNF formula φ, if and only if φ and φ ∪ {C}
are satisfiability-equivalent. If φ and φ ∪ {C} are not only satisfiability-
equivalent, but in fact equivalent, we say that C has property Redequiv with
respect to φ.

The notion of a clause redundancy property was introduced in [58].
In the following discussion, we need to compare the strength of different

redundancy properties. Formally, we introduce the following definiton:

Definition 5.2. Let P and P ′ be two clause properties. We say that P ′
is weaker than P, if every clause that has property P ′ also has property P
(w.r.t to the same CNF formula φ). In this case we write: P ′ � P.

In this language, Redequiv � Red.
Unfortunately, our general redundancy property is too coarse to be use-

ful in practice, as checking whether a clause is redundant is already coNP -
hard; this follows from the fact that the empty clause is redundant if and
only if φ is unsatisfiable. Furthermore, while φ and φ∪{C} are satisfiability-
equivalent if C is a redundant clause, redundancy alone does not allow us
to efficiently compute a model of φ∪{C} from a model of φ. Therefore, we
need to study weaker redundancy properties that are efficiently computable.
The most simple of these properties is given by the following definition.

Definition 5.3. Let C be a clause. We call C a tautology (T) if and
only if there is a variable x ∈ V so that x, x̄ ∈ C. It should be noted
that the tautology property is independent from the CNF formula under
consideration and only depends on the given clause.
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It is easy to see that tautologies are indeed redundant. Symbolically, we
can write T � Redequiv.

While the tautology property is certainly efficiently computable, it is
too weak to derive useful CNF simplification algorithms from it. In the
following, we consider a construction that gives us stronger redundancy
properties. It was introduced in [45].

Definition 5.4. Let C be a clause. Asymmetric Literal Addition of C with
respect to a CNF formula φ defines the smallest set ALAφ(C) so that C ⊆
ALAφ(C) and if c1, . . . , c` ∈ ALAφ(C) and there is a clause {c1, . . . , c`, d̄} in
φ then d ∈ ALAφ(C). The set HLAφ(C), denoted Hidden Literal Addition,
is defined in the same way, with ` restricted to ` = 1 (i.e. only binary
clauses of φ are considered).

Let P be a clause property. We define the associated asymmetric prop-
erty AP as follows. Let C be a clause. C has property AP if and only if
ALAφ(C) has property P . We similarly define the hidden property HP. For
the tautology property T, this defines the asymmetric tautology property AT
as well as the hidden tautology property HT.

Suppose that property P in definition 5.4 is stable under literal addition,
that is, if a clause C has property P , then every superset of C must also
have property P . In this case, P � HP � AP and the latter two properties
are also stable under literal addition. Clearly, this assumption is satisfied
for the tautology property T.

One might wonder why we consider HP when AP is stronger and also
computable in polynomial time. The reason is that there are often better
algorithms for HP than for AP as HLAφ can be constructed by traversing
the binary implication graph of φ, while computing ALAφ is equivalent to
full unit propagation. This will be made clear in the next proof.

We still need to check that HP and AP define redundancy properties.
This is already proven in [45].

Lemma 5.5. For every CNF formula φ and every clause C, it holds that
φ∪{C} is equivalent to φ∪{ALAφ(C)}. In particular, P � Redequiv implies
AP � Redequiv and P � Red implies AP � Red. The same holds for HLAφ

and HP.

Proof. Let τ be a model of φ. Per construction, every model of {C} is a
model of {ALAφ(C)}. On the other hand, assume that τ is not a model of
{C}. Observe that ALAφ(C) contains exactly the inverses of the literals in
UPφ({ā : a ∈ C}). As the literals ā for a ∈ C are all true under τ and τ
is a model of φ, UPφ({ā : a ∈ C}) is a subset of τ , so τ is not a model of
ALAφ(C).

The statement for HLA follows directly from HLAφ(C) ⊆ ALAφ(C).
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The proof of lemma 5.5 gives another intuition for asymmetric tautolo-
gies: A clause C is an asymmetric tautology if and only if unit propagation
in φ, starting with the assignment {ā : a ∈ C} derives a conflict.

As an example for clauses that have the AT property, consider the fol-
lowing:

Lemma 5.6. Let C,C ′ ∈ φ with x ∈ C and x̄ ∈ C ′. Then the resolvent
C ⊗x C ′ has the AT property.

Proof. It is clear that ALAφ(C ⊗x C ′) contains both x and x̄ as C and C ′

contribute those literals to ALAφ(C ⊗x C ′).

However, it should be noted that this does not apply to resolvents that
require more than one resolution step to be derived.

While the asymmetric tautology property is already strong enough to
build useful simplification techniques (e.g. as a simplification technique,
we can remove all clauses that have the AT property), it is still not strong
enough to model all simplification techniques as the addition and removal
of ATs. The following extension will enable us to do this:

Definition 5.7. Let P be a clause property. The clause C has property RP
with respect to φ if and only if C itself has property P with respect to φ or
there is a literal a ∈ C so that for every clause C ′ ∈ φ with ā ∈ C ′, the
resolvent of C and C ′ has property P with respect to φ. In the latter case
C is called a-RP. RP is called the resolution version of P. For AT, this
defines the resolution asymmetric tautology (RAT) property.

The next lemma proves that properties RP that are constructed by this
mechanism are indeed redundancy properties, for a large class of choices
for P . In [58] this lemma was proven for P = AT. We prove it here with
greater generality.

Lemma 5.8. If P � Redequiv, then RP � Red.
Furthermore, if C is a-RP with respect to φ, and τ is a model of φ, then

either τ or (τ \ {ā}) ∪ {a} satisfies φ ∪ {C}.

Proof. Let C be a clause that has property RP with respect to φ. We need
to show that φ and φ∪{C} are satisfiability-equivalent. If C is a tautology,
there is nothing to prove, so we consider the case that C is not a tautology.

If C itself has property P , there is again nothing to show. Therefore, we
consider the case that C has property a-RP . Let φā ⊆ φ be the set of all
clauses that contain ā. As C⊗aC ′ has property P , φ and φ∪{C⊗aC ′} are
equivalent, for every C ′ ∈ φā. This means that φ and φ∪{C⊗aC ′ : C ′ ∈ φā}
are equivalent.
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Let τ be a model of φ (so τ also satisfies C ⊗a C ′ for all C ′ ∈ φā). If τ
satisfies C, there is nothing to prove. We consider the case where τ does
not satisfy C. In this case all C ⊗a C ′ with C ′ ∈ φā are satisfied by a
literal from C ′ \ {ā} (since ā /∈ C ⊗a C ′, otherwise C would be a tautology
and we already eliminated that case). So all those C ′ are still satisfied by
τ ′ := (τ \ {ā}) ∪ {a}. But τ ′ also satisfies C. On the other hand, if τ is a
model of φ ∪ {C}, then τ is obviously also a model of φ.

As the above argument holds for every clause C, this concludes the
proof.

In addition to the correctness guarantee, lemma 5.8 gives a simple way
to reconstruct solutions if clauses with property RP are removed from the
CNF formula.

An obvious question is, whether the requirement P � Redequiv in the
statement of lemma 5.8 can be relaxed to P � Red. However, this is
not the case. To demonstrate that, it suffices to show that RRed is not a
redundancy property. Consider the satisfiable formula φ = {{ā, x}, {ā, x̄}}.
The clause {a} does not have property Red but RRed can add {a} to φ
(as the resolvents {x} and {x̄} both have property Red with respect to φ),
resulting in an unsatisfiable formula.

5.1.2 The RAT deduction system

In the following, we discuss the RAT deduction system that allows modeling
both CDCL search and simplification algorithms. The system is based on
the AT and RAT properties from the last subsection and will allow us to
prove the correctness of simplification techniques.

The RAT deduction system deals with RAT triples of the form φ [ρ]σ
where φ and ρ are CNF formulas, with φ and φ ∪ ρ being satisfiability-
equivalent, and σ is a finite sequence (a1, C1)(a2, C2) . . . (a`, C`) of literal-
clause pairs so that ai ∈ Ci for all i = 1, 2, . . . , `. φ is the set of irredundant
clauses while ρ is the set of redundant clauses. σ is the reconstruction
sequence. This sequence allows us to reconstruct models of the original
formula from models of φ, using the principle of lemma 5.8. The intuition
is that the SAT solver operates on the formula φ∪ ρ; however, clauses from
ρ might be dropped at any moment, while clauses from φ must not be
deleted. In other words, the notions of redundant and irredundant clauses
match those that we discussed in the context of CDCL in chapter 3.

The deduction rules of the RAT deduction system are depicted in figure
5.1. They operate on RAT triples by transforming them. Most of the rules
have a precondition that needs to be satisfied before the rule can be applied.
The rules are defined as follows:
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φ [ρ]σ

φ [ρ ∪ {C}]σ
Learn(C)

φ [ρ ∪ {C}]σ
φ [ρ]σ

Forget(C)

φ [ρ ∪ {C}]σ
φ ∪ {C} [ρ]σ

Strengthen(C)

φ ∪ {C} [ρ]σ

φ [ρ ∪ {C}]σ
AT-Weaken(C)

φ ∪ {C} [ρ]σ

φ [ρ ∪ {C}] (a, C) σ

RAT-Weaken(a, C)

Figure 5.1: Deduction rules of the RAT deduction system

Learn(C) Allows addition of a new redundant clause. The precondition
is that C has to be RAT with respect to φ ∪ ρ. For correctness, it is
important that ρ is considered here1.

Forget(C) Removes a redundant clause. Matching our intuition, redun-
dant clauses can be removed at any moment, so there is no precondi-
tion.

Strengthen(C) Turns a redundant clause into an irredundant one.
There is no precondition to the Strengthen rule, however it is not
directly reversible.

AT-Weaken(C) Turns an irredundant AT clause C into a redundant
clause. The precondition is that C has to be AT with respect to φ.

RAT-Weaken(a, C) Turns a irredundant a-RAT clause C into a redun-
dant clause. The precondition is that C has to be a-RAT with respect
to φ. This is the only rule that changes the reconstruction sequence.

It is easy to see that the RAT deduction rules preserve satisfiability-
equivalence. Formally, if φ [ρ]σ is transformed to φ′ [ρ′]σ′ by the application
of a RAT deduction rule, then φ and φ′ are satisfiability-equivalent (and
thus φ ∪ ρ and φ′ ∪ ρ′ are also satisfiability-equivalent to these formulas).
This follows directly from lemmas 5.5 and 5.8.

In some situations, σ will not matter when dealing with RAT triples. If
that is the case, we will drop σ from the notation and just write φ [ρ].

It turns out that the RAT deduction system is able to model all CNF
transformations that are performed by a CDCL-based SAT solver. In par-
ticular, it is strong enough to model clause learning and most of the estab-

1Consider a formula that has two models. Learning a clause that excludes one of those models is fine
as long as the other model is preserved. If ρ was not considered during learning, two clauses could be
learnt that each exclude one on the models.
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lished simplification techniques. For example, it is easy to see that every
learned clause is an asymmetric tautology by construction.

5.1.3 Other redundancy properties

Instead of starting with the tautology property T and defining other prop-
erties based on that, one can also consider other redundancy properties.
Here, we discuss the subsumption property that forms the theorical basis
for the subsumption elimination technique that we will discuss in the next
section.

Definition 5.9. Let C be a clause. We say that C is subsumed in φ, if and
only if there is a clause C ′ ∈ φ with C ⊇ C ′. This defines the subsumption
(S) property. Using the definitions from section 5.1.1 we also define HS,
AS, RHS and RAS.

The S property is independent of the T property. However, it is easy to
see that the following relation (that was proved by [45]) between AS and
AT holds.

Lemma 5.10. AS � AT and thus RAS � RAT.

Proof. Let C be AS with respect to φ. That means that ALAφ(C) is
subsumed by some other clause D ∈ φ. But then D contributes the inverses
of all its literals to ALAφ(C) and that set is a tautology.

5.2 A survey of simplification techniques

In this section, we review most of the established simplification techniques.
This prepares for the study of their parallelizability.

5.2.1 CNF simplification as RAT deduction

We start by giving a general definition of the term “simplification technique”
and by discussing some basic properties of simplification techniques.

As we have already remarked in section 5.1.2, the most commonly used
CNF simplification techniques can all be modelled as RAT deduction. This
motivates us to define the term “simplification technique” via RAT deduc-
tion.
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Definition 5.11. A simplification technique or simplification step2 is a
function that takes a RAT triple φ [ρ]σ and maps it to a finite sequence of
applicable RAT deduction rules, starting from φ [ρ]σ.

We remark that our definition of a simplification technique is somewhat
unusual given the fact that most authors see simplification techniques as
algorithms that operate on φ and/or ρ and not as functions that produce
RAT triples. However, we will see that this notion enables us to rigorously
study properties like the parallelizability of simplification techniques.

In practice we also want the f from the previous definiton to be effi-
ciently computable. Here, efficiency is not synonymous with polynomial
time - especially in the sequential world, that might be too slow. It is
desirable to have linear or almost linear algorithms to be able to handle
industrial CNF formulas with millions of clauses and variables.

Simplification steps can be chained, by applying the second simplifica-
tion step to the RAT triple that is produced by applying the result of the
first simplification step to the input φ [ρ]σ.

We will see that most of the well-known simplification techniques apply
a certain set of rules until a fixed point is reached. The following definition
distinguishes simplification techniques that have a unique fixed point.

Definition 5.12. Let s be a simplification technique. If s has a natural
fixed point in the sense that this fixed point does not depend on arbitrary
choices like the order in which variables or clauses are considered, for every
input triple φ [ρ], we call s confluent.

Confluence is mostly interesting from a theoretical point of view. It
can be argued that the confluence of simplification techniques is also useful
practically as it implies that no additional heuristics are required to imple-
ment the technique. It is not primarily important for our purpose but we
discuss it for the sake of completeness.

5.2.2 Quality of simplification techniques

We shortly discuss means of estimating the quality of simplification tech-
niques.

What is missing from the discussion so far are criteria for the quality of
simplification techniques. Unfortunately such criteria are difficult to state.
Instead, the quality of such techniques is often evaluated empirically. In

2Technically, we define simplification techniques and simplification steps identically. We do this as
simplification techniques are conventionally understood as algorithms that simplify large parts of the
formula, while we also need to consider simplifications that only affect fragments of the formula (e.g.
single clauses).
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practice, many techniques either try to reduce the size of the formula by
removing redundant clauses or they try to fix variables to constrain the
search space.

Nevertheless, we try to define at least some criteria. One property that is
important from the CDCL algorithm’s point of view is that unit propagation
is not obstructed by simplification algorithms.

Definition 5.13. We call a simplification step BCP-preserving if and only
if UPφ∪ρ(τ) ⊆ UPφ′∪ρ′(τ) holds for every input triple φ [ρ], result triple φ′ [ρ′]
and every partial assignment τ .

We will later see that most of the commonly used simplification tech-
niques indeed preserve unit propagation. Some of these results are already
studied in [45].

Another approach of evaluating simplification techniques theoretically is
to examine their relative strength. For simplification techniques that elimi-
nate redundant clauses, we already introduced such a measure through the
� relation. It is less straightforward to generalize this definition to simplifi-
cation techniques that do introduce new clauses3. Instead of trying to give
a general definition, we will informally state whether a simplification tech-
nique S simulates another technique, with the precise meaning depending
on the situation.

5.2.3 Clause elimination techniques

In this subsection, we review simplification techniques that remove clauses
from the input formula.

Each clause redundancy property P � AT canonically defines a P elim-
ination technique that removes all clauses C ∈ φ that have property P with
respect to φ using AT-Weaken, possibly followed by forgetting all clauses
C ∈ ρ that have P with respect to φ ∪ ρ by Forget. This procedure is
repeated until a fixed point is reached. Similarly, for P � RAT , a canonical
elimination technique based on RAT-Weaken can be defined.

In the context of a CDCL solver, however, not all P elimination tech-
niques will improve CDCL performance. For example, AT elimination is
strong enough to remove all learned clauses from the formula. Certainly,
forgetting all learned clauses will degrade CDCL performance. In contrast
to that, for other redundancy properties like S, forgetting all S clauses will
indeed improve performance. In general, forgetting redundant clauses will
be beneficial if BCP is still preserved afterwards.

3The � relation does not yield a good measure for clause quality here: For example, we expect perfor-
mance to drop dramatically if we just add all asymmetric tautologies to a formula.
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Table 5.1: Well-known clause elimination techniques

Property Elimination technique Forget

T Tautology elimination Yes
S Subsumption Yes

RT Blocked clause elimination (BCE) Yes
HT Hidden tautology elimination (HTE) Yes
AT Asymmetric tautology elimination (ATE) No

While we could define an elimination technique for each of the redun-
dancy properties that we studied before, we concentrate on well-known
simplification techniques first. Figure 5.1 lists commonly applied clause
elimination techniques.

Tautology elimination can be considered as a CNF simplification tech-
nique but it is usually not applied explicitly in practice. Instead, CDCL
solvers discard tautologies when parsing their input and never produce tau-
tologies themselves (e.g. as part of clause learning). Tautology elimination
obviously preserves BCP. As the property T does not depend on any clauses
of φ but only on the given clause itself, tautology elimination is also con-
fluent.

Subsumption as a CNF simplification technique was introduced in [33]
as part of the successful SatELite preprocessor. SatELite efficiently imple-
ments backward subsumption, that is finding all clauses that are subsumed
by a given clause C. This is made possible by observing that to find those
clauses, it suffices to iterate through the shortest occurrence list of any lit-
eral in C and by using a bloom filter4 to speed up the check if C is contained
in some other clause. Similar to tautology elimination, it is clear that sub-
sumption preserves BCP. Because of the transitivity of the subset relation,
subsumption is confluent: If C is subsumed by C ′ and C ′ itself is subsumed
by some other clause, then C can be eliminated even after removing C ′.

Blocked clause elimination as a simplification technique was first con-
sidered in [57]. It is based on the resolution tautology property RT which is
also called the blocked clause property: If C is a-RT we also say that C is a
blocked clause and a is a literal that blocks C. This notation was introduced
much earlier [62] than the notation of RP for arbitrary P in [58].

It is easy to construct examples in which BCE does not preserve BCP.
However, blocked clauses do not contribute to unit propagation in the fol-
lowing sense: Let C be a clause and a ∈ C be a literal that blocks C. If
a is propagated by C, no additional literals will be fixed by UP as every

4Implementations typically store a 64-bit signature sig(C) of each clause C, where bit i of sig(C) is set
if and only if there is a variable with index congruent to i mod 64 in C.
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clause that contains ā is already satisfied by another literal. This holds as
one of the literals of those clauses must occur inverted in C. On the other
hand, if the rest of the formula propagates the literal ā then the clause C is
not unit as it is satisfied by some other literal. This means that BCE can
only obstruct the propagation of a literal that blocks the clause in question
and even if that does happen, no other propagations (or conflicts) would
be possible. Therefore, forgetting blocked clauses is always beneficial in a
CDCL solver.

BCE is confluent. Let C be a-RT. All resolvents of C by literal a are
tautologies. Furthermore, they are still tautologies after clauses from φ
have been removed. Hence, C is still a-RT in this case.

Hidden tautology elimination was introduced in [45]. HTE can be ef-
ficiently approximated by the unhiding algorithm [47] that is based on a
depth-first search through the binary implication graph. The paper [45]
proved that HTE is BCP preserving if the binary implication graph of the
input CNF formula does not contain failed literals.

Asymmetric tautology elimination was first described in [42] although
the notion of asymmetric tautologies did not exist when that paper was
written. This paper defined a distillation algorithm that performs ATE
and simulates some other simplification techniques. The term “asymmet-
ric tautology elimination” was later defined in [45]. While the authors of
[42] observed that distillation improves CDCL runtime on some hard CNF
instances, they could not demonstrate that distillation performs well on av-
erage over large sets of benchmarks. The reason for that is that distillation
is quite expensive (compared with other simplification techniques and even
with CDCL search) and that ATE can actually remove useful clauses as it
does not preserve BCP.

5.2.4 Clause addition techniques

We now consider simplification techniques that add clauses to the formula.
Similar to the case clause elimination techniques, each clause redun-

dancy property P also defines a P addition technique. This technique adds
all clauses that have property P with respect to φ ∪ ρ via Learn to ρ,
possibly followed by Strengthen to move them to φ. This procedure is
repeated until a fixed point is reached.

In contrast to clause elimination techniques, it is less clear that adding
redundant clauses improves CDCL performance. Certainly, for large classes
of redundancy properties P , including T or S, performing P addition de-
creases CDCL performance (otherwise there would be no point in eliminat-
ing these clauses by clause elimination techniques). Instead of considering
these redundancy properties, we need to consider properties that only af-
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fect “useful” clauses and improve BCP performance. Just preserving BCP
is not enough to be useful, as all clause addition techniques naturally pre-
serve BCP.

We say that a clause {a} has the failed literal (FL) property with respect
to φ, if and only if UPφ({ā}) is conflicting. a is called the failed literal in
this case5. It is easy to see that FL � AT, as a clause C is AT with
respect to φ exactly when ALAφ(C) is conflicting. This implies that FL
is indeed a redundancy property. Failed literal elimination (FLE) is the
clause addition technique that is based on the failed literal property. In
order to avoid adding superfluous clauses, we further restrict failed literal
elimination on φ [ρ] to clauses {a} with a /∈ UPφ∪ρ(∅).

There are multiple algorithms for FLE. The naive probing based algo-
rithm simply assigns all 2n literals iterativly and performs unit propaga-
tion to determine whether some of those literals are failed literals. Another
method to find a subset of all failed literals is the unhiding algorithm [47]
that runs a depth-first search in the binary implication graph of φ to find
implications of the form ā → a. Due to this approach, unhiding is unable
to find failed literals that require inspecting non-binary clauses.

The naive probing algorithm can be improved by noticing that if
UPφ({ā}) contains a literal b and a is not a failed literal, then b cannot
be a failed literal either. If there are many of such propagations (for exam-
ple because φ is an industrial CNF formula with a large binary implication
graph), this optimization greatly reduces the number of necessary probes.
However, it is not enough to get acceptable performance.

Another interesting redundancy property for clause additon is the
hyper-binary property. We say that a clause C = {a, b} has the hyper-
binary (HB6) property with respect to φ if and only if there is a clause
{a, c1, . . . , c`} ∈ φ and there are paths c̄i → b in the binary implication
graph of φ, for each i = 1, . . . , `. In other words, a binary clause C has the
hyper-binary property if C can be generated by repeatedly resolving a (not
necessarily binary) clause from φ with binary clauses from φ. Similar to
the failed literal case, it is easily verified that HB is a redundancy property;
it suffices to observe that HB � AT. Thus HB defines the hyper-binary
resolution (HBR) clause addition technique. Again, we have to restrict
the technique to clauses {a, b} so that ā → b (or equivalently b̄ → a) is
not already a path in the binary implication graph of φ ∪ ρ, for an input
triple φ [ρ]. Without this restriction, hyper-binary resolution would add

5Instead saying that {a} has the failed literal property, one usually states that a is a failed literal.
However, viewing the failed literal property as a clause redundancy property unifies the presentation of
failed literal elimination and other clause addition techniques.

6The H at the beginning of HB should not be confused with the H in HT, HTE and similar terms
where it stands for hidden.
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the transitive closure of the binary implication graph to φ, which decreases
the performance of CDCL as transitive clauses do not make additional unit
propagations possible.

Both FLE and HBR can be efficiently computed by the tree-based looka-
head algorithm from chapter 2. Failed literal elimination can trivially be
included in the procedure. For HBR, we need to propagate all binary clauses
before clauses of length greater than two are propagated. If unit propaga-
tion still fixes a literal during propagation of a non-binary clause, a hyper-
binary clause can be added to the formula. We refer the reader to [46] for
more details.

5.2.5 Clause shortening techniques

The last remaining category of simplification techniques that operate on
individual clauses are clause shortening techniques; we shortly discuss them
in this subsection.

Clause shortening techniques are defined as simplification techniques
that first apply Learn(C ′) and Strengthen(C ′) to add a new clause
C ′ ⊆ C to φ and then use AT-Weaken(C) and Forget(C) to remove C.
The Strengthen and AT-Weaken rules must of course be dropped if
we want to shorten redundant clauses. Theoretically, it would be possible
to also define RAT based clause shortening techniques, however, we do not
encounter any of such techniques in practice. By construction, all clause
shortening techniques preserve BCP. In fact, we can hope that BCP is
actually improved by shortening clauses, which is the main motivation to
consider such techniques.

The first clause shortening technique that we will consider is self-sub-
sumption. The technique was introduced by SatELite [33]. Self-subsump-
tion7 replaces C ∈ φ by its resolvent C ⊗D with some other clause D ∈ φ,
if C ⊗ D ⊆ C. Applying Learn to add C ⊗ D is well-defined because of
lemma 5.6. After C⊗D is added, C ⊇ C⊗D has the subsumption property
S so AT-Weaken(C) can be applied.

Note that by design, self-subsumption will remove a single literal from
a given clause in each step. However, this literal is not uniquely defined
and self-subsumption is not confluent, as demonstrated by the following
example.

Example 5.14. Consider the formula φ = {{x, y, z}, {x̄, y, z}, {x, ȳ, z}}
and let C be the first clause. Self-subsumption can either remove x or y but
not both from C.

7Self-subsumption is often called “resolution subsumption” or “self-subsuming resolution”. We do not
use this term here to avoid confusion with the resolution subsumption property RS.
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Similar to the subsumption algorithm that we discussed in section 5.2.3
backward self-subsumption can be efficiently implemented by traversing
only the literal with shortest occurrence list and using bloom filters. By
backward self-subsumption we mean the problem of finding all clauses, that
can be shortened by resolving them with a given clause. Again, this trick
was invented by the author’s of SatELite [33].

Other clause shortening techniques are hidden and asymmetric literal
elimination. Hidden and asymmetric literal elimination replace clauses with
subsets that have the same HLA or ALA set as the original clause. This
is possible because if C and C ′ are clauses with HLAφ(C

′) = HLAφ(C),
then C ′ has the HT property with respect to φ ∪ {C}: As HLAφ(C

′) =
HLAφ(C) ⊇ C, the clause C contributes the inverses of all its literals to
HLAφ∪{C}(C

′), so that set becomes a tautology. The same holds for ALA
and the AT property.

Computing hidden and symmetric literal elimination can be done by
similar algorithms as the related hidden and symmteric tautology elimi-
nation techniques. Hidden literal elimination (as well as hidden tautology
elimination) can be computed during the unhiding algorithm [47]. Asym-
metric literal elimination (as well as asymmetric tautology elimination) can
be computed by distillation [42].

5.2.6 Variable elimination and addition techniques

This subsection will discuss simplification techniques that do not add,
shorten or remove individual clauses but operate on multiple clauses. While
the techniques are harder to categorize than the ones we studied, they all
operate on clauses that share a specific variable.

Bounded variable elimination (BVE) is a well-known CNF simplification
method that is applied in most CDCL based SAT solvers. It was introduced
in [83] and is also part of the SatELite preprocessor [33]. Bounded variable
elimination applies Davis-Putnam resolution to selected variables of the
CNF formula φ. Here, Davis-Putnam resolution means applying resolution
to all pairs of clauses that contain a given variable. The resulting resolvents
are then added to φ while the original clauses are removed.

Unrestricted Davis-Putnam resolution is a complete procedure to solve
SAT on CNF formulas. Specificially, it has exponential space and time
requirements. Bounded variable elimination therefore restricts the set of
variables that are considered for Davis-Putnam resolution so that a variable
is only eliminated if its elimination decreases the number of clauses in the
formula.

If we think of BVE as RAT deduction, BVE first applies Learn(C ⊗x
C ′) and Strengthen(C ⊗x C ′) for all clauses C and C ′ with x ∈ C,
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x̄ ∈ C ′. After that, RAT-Weaken(x,C) and Forget(C) as well as
RAT-Weaken(x̄, C ′) and Forget(C ′) is used to remove the original clauses.
Strengthen is only applied if both C and C ′ are irredundant clauses.
Likewise, RAT-Weaken() is only applied if C or C ′ are irredundant clauses.
The Learn rules can be applied because of lemma 5.6. RAT-Weaken can
be applied because after addition of C⊗xC ′ for all C ′, the clause C has the
x − RS property: All resolvents of C are already present as clauses in the
formula. The same holds for C ′ as C ′ has the x̄− RS property.

The inverse of variable elimination is variable addition. Suppose that
a CNF formula contains nm clauses of the form Ci ∪ Dj for i = 1, . . . , n
and j = 1, . . . ,m. Variable addition [68] introduces a new variable x and
replaces all Ci ∪ Dj by Ci ∪ {x} and Dj ∪ {x̄}. Similar to BVE, variable
addition is applied in a bounded fashion: Bounded variable addition (BVA)
only introduces new variables if the number of clauses decreases (i.e. if
m+ n < nm).

In the RAT deduction system, BVA is done analogous to BVE: First,
Learn is used to introduce the new clauses. This is possible because all
new clauses are x−RS and x̄−RS respectively. After that, AT-Weaken
can be used to remove all clauses from the Ci ∪Dj.

5.3 Parallelization

Finally, the theory that we developed in the previous sections will allow us
to reason about parallel simplification techniques. In this section we will
define a notion of easily parallelizable simplification techniques. After that,
we will inspect the simplification techniques that we introduced in the last
section for parallelizability and present parallel algorithms to compute some
of those techniques.

5.3.1 CNF-parallelization

In this subsection, we discuss conditions that allow different simplification
steps to be run in parallel.

We want to be able to compute the modifications of those simplification
steps to the CNF formula individually on different workers and then merge
these modifications and apply them in all workers. The next definition
captures this idea.

Definition 5.15. Let S = {s1, . . . , s`} be simplification steps. A new sim-
plification step that maps φ [ρ]σ to the concatenation s1(φ [ρ]σ) . . . s`(φ [ρ]σ)
of sequences of deduction rules, is called a CNF-parallelization of S. Note
that there is a CNF-parallelization for every choice of indices. If all those
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CNF-parallelizations are valid simplification techniques, that is, if the ap-
plication of all sequences s1(φ [ρ]σ) . . . s`(φ [ρ]σ) to φ [ρ]σ is well-defined,
then S is called CNF-parallelizable.

We illustrate the concept of CNF-parallelizability by giving a simple
example.

Example 5.16. Consider the tautology technique. Instead of applying tau-
tology elimination as defined in 5.2.3 to a formula φ we consider the col-
lection {sC : C is a tautology} of simplification steps, where sC(φ [ρ]) is the
sequence

AT-Weaken(C) Forget(C)

if C ∈ φ and the empty sequence otherwise. The elements of this collec-
tion can be applied in an order to φ [ρ] to recover the tautology elimination
technique. In this sense, tautology elimination is CNF-parallelizable.

In the remainder of this subsection, we will discuss conditions under
which simplification techniques from section 5.2 are CNF-parallelizable. As
a first result, it is easy to see that AT-based clause addition techniques are
always CNF-parallelizable.

Lemma 5.17. Let sC(φ [ρ]) be the sequence

Learn(C) Strengthen(C)

if C is AT with respect to φ ∪ ρ. Any set of sC is CNF-parallelizable.

Proof. It is clear from the definition that adding clauses to a formula never
causes clauses to lose the AT property. More generally, adding clauses to a
formula ψ can only add literals to ALAψ(C) but never remove literals.

Furthermore, it turns out that AT-based clause shortening techniques,
as presented in 5.2.5 are always CNF-parallelizable. To see this, we need
the following lemma:

Lemma 5.18. Let φ be a CNF formula and C,D be clauses. Let D′ ⊆ D
be some subset, D 6= ∅. Furthermore, let C be AT with respect to φ∪{D}.
Then C is also AT with respect to φ ∪ {D′}.

Proof. Recall that C is AT if and only if ALAφ∪{D}(C) is a tautology. We
perform induction over the contributions ofD to ALAφ∪{D}(C). If the clause
D does not contribute to ALAφ∪{D}(C) then ALAφ∪{D′}(C) ⊇ ALAφ∪{D}(C)
and both of these sets are tautologies. Note that in the last relation, we
only get ⊇ and not equality as D′ can still contribute to ALAφ∪{D′}(C).

101



Consider the case where D = {ā, d1, . . . , dk} contributes the literal a
to ALAφ∪{D}(C). If a ∈ D′, then we can replace this contribution by
the contribution of D′ and continue with the next contribution of D to
ALAφ∪{D}(C). Otherwise we have D′ ⊆ {d1, . . . , dk} ⊆ ALAφ(C) and D′

contributes the inverses of all of its literals to ALAφ∪{D′}(C) so that set is
a tautology.

Now we can formulate the CNF-parallelizability of clause shortening
techniques as a corollary.

Corollary 5.19. For two clauses C and C ′ with C ⊇ C ′, let sC,C ′(φ [ρ]) be
the sequence

Learn(C ′) Strengthen(C ′) AT-Weaken(C) Forget(C)

if C ∈ φ and C ′ is AT with respect to φ ∪ ρ and the empty sequence other-
wise. In other words, sC,C ′ is a single step of an AT-based clause shortening
technique. All sets of sC,C ′ with pairwise different C are CNF-parallelizable.

Note that the pairwise-different condition is required to avoid deleting
the same clause multiple times.

Proof. Applying sC,C ′ to φ [ρ] shortens clauses from φ and leaves ρ invariant.
The lemma immediately gives us the desired result.

It should be noted that the CNF-parallelization from corollary 5.19 gen-
erally does not recover the full sequential algorithm. For example, taking
the sC,C ′ that are induced by resolution subsumption and applying them
as a CNF-parallelization is not equivalent to resolution subsumption until
a fixed point is reached. The reason for this is that applying a single reso-
lution subsumption might enable additional resolution subsumptions later
on.

In contrast to these strong results for clause addition and shorten-
ing techniques, we need to impose more constraints on CNF-parallelizable
clause elimination techniques.

Lemma 5.20. Let P be a clause property that is stable under clause re-
moval, meaning that if C has property P with respect to some formula ψ,
then we require C to also have property P with respect to any ψ′ ⊆ ψ.

Furthermore, if P � AT, let sP,C(φ [ρ]) be the sequence

AT-Weaken(C) Forget(C)

if C ∈ φ and C has property P with respect to φ, and otherwise the empty
sequence. If P � a-RAT define sa,P,C(φ [ρ]) similarly by the sequence

RAT-Weaken(a, C) Forget(C)

102



Then any set of sP,C and sa,P,C with pairwise different C is CNF-parallelizable,
even for varying P.

Proof. The statement follows directly from the fact that P is stable under
clause removal.

The interesting task now is to find properties P which satisfy the sta-
bility requirements. Certainly AT is not stable under clause removal: Re-
moving clauses can remove literals from ALAψ(C) and thus leads to clauses
C losing the AT property. Indeed, it is easy to construct an example that
demonstrates that for AT, the CNF-parallelization from lemma 5.20 is not
valid.

However, the RT property is stable under clause removal; this proves
that BCE is CNF-parallelizable. This follows from the fact that the T
property does not depend on any clauses from the given CNF formula. It
is, in a sense, equivalent to the statement that BCE is confluent.

Subsumption is also CNF-parallelizable: While subsumption is not sta-
ble under arbitrary clause removal, it is stable under removal of other clauses
that also have the subsumption property. As discussed before, this follows
directly from the transitivity of the subset relation. The only complication
here is that we have to prevent the simultaneous elimination of all copies
of a duplicate clause. This can be done by ordering the clauses (e.g. by
taking the order in which they appear in the input formula) and restricting
subsumption so that a duplicate clause is only eliminated if it is not the
first copy of this clause in the chosen order.

5.3.2 Data structures for parallel simplification

We shortly discuss additional data structures that we need to efficiently
implement parallel simplification algorithms.

During CNF simplification, we need to be able to globally identify
clauses, even if they originate from different workers or if their clause han-
dles are different for different workers8. Thus, to perform this identification
we introduce a unique name for each clause. This name consists of a 64-
bit integer where the first 16 bits identify the workers that produced the
clause and the remaining 48 bits form a sequential per-worker counter that
is incremented whenever a new clause is generated by this worker.

To support our algorithm, we maintain a hash table that maps clause
names to proper clause handles. Because of the large number of clauses
in industrial formulas, we cannot use a hash table with separate chain-
ing. Instead, we use open addressing with linear probing. We found, that

8Remember that clause handles change as the result of garbage collection.
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while this scheme provides better performance than other open addressing
schemes, its performance drastically degrades if the output of the hash func-
tion is not uniformly distributed. We tried several simple hash functions
with unsatisfying results and settled for the murmur3 32 [2] function.

5.3.3 Straightforward parallelizations

In this section we will consider relatively simple approaches for paralleliz-
ing self-subsumption, subsumption and blocked clause elimination. As the
statements in section 5.3.1 guarantee CNF-parallizability for those tech-
niques, implementing actual parallel algorithms for them is easy. The re-
sulting algorithms tend to be embarrassingly parallel.

We model the self-subsumption technique as a set of simplification steps
sC,C ′ as defined in corollary 5.19. Our goal is to compute the results
sC,C ′(φ [ρ]) concurrently on different workers. We have to ensure that all
sC are pairwise different. Our approach consists of distributing the clauses
C of φ over all workers. Each worker can then find a suitable C ′ for each
C, thus computing sC,C ′. After all sC,C ′ have been computed, we gather the
results (i.e. the names of removed clauses and the literals of new clauses)
at all workers.

For blocked clause elimination and subsumption, we model the technique
as a set of simplification steps sa,RT,C or sS,C as defined in lemma 5.20.
Again, we have to ensure that all C are pairwise different. Similar to our
self-subsumption approach, we distribute the clauses of φ over all workers.
Each worker then tries to find a blocking literal a for each of its assigned
clauses C. This computes the result sa,RT,C or sS,C , that we have to gather
(as a list of names of removed clauses) at all workers afterwards.

5.3.4 Parallel clause addition

We shortly discuss the parallelization of clause addition techniques.
As we already saw a proof for the CNF-parallizability of clause addition

techniques, there is not much that still needs to be done. We can integrate
FLE and HBR into the parallel tree-based lookahead algorithm that we
discussed in chapter 4. In the case of FLE, this algorithm is embarrass-
ingly parallel with the caveat that the size of the trees which the algorithm
produces is not balanced. This problem, however, can be solved easily by
using a load balancer that takes the size of the trees into account.

Unfortunately, regarding HBR, there is another problem: The size of
the output is so large that applying the resulting simplification sequentially
consumes non-negligible amounts of time. In experiments, we found that
for many industrial problems, millions to tens of millions of binary clauses
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can be added by HBR. Often, a significant fraction of those clauses can
be removed after failed literals are found. Another significant fraction are
binary clauses that becomes transitive after HBR completes. These clauses
can be removed by unhiding. Therefore, when applying parallel HBR in
practice, we apply parallel tree-based lookahead twice; the first run only
eleminates failed literals while the second run performs HBR. We remove
all satisfied binary clauses from the output before exchanging them with
other workers and follow the HBR run by unhiding to remove the transitive
clauses.

5.3.5 Parallel distillation

In this section we formulate a parallel algorithm that performs both ATE
and ALE.

As noted in 5.2.3, ATE might remove clauses that actually benefit the
CDCL solver’s performance. To prevent that from happening we do not re-
move clauses from φ. Instead we only mark those clauses as non-essential.
The clause database reduction heuristics of the CDCL solver will then re-
move the clauses if it turns out that they do not help the solver.

As an additional optimization we do not apply ATE and ALE to binary
clauses. Applying ATE does not make sense as solvers generally do not
remove binary clauses9 as they improve the number of possible propaga-
tions. ALE on binary clauses is simulated by FLE: Consider the case that
C = {c, d} is reduced to {c} by ALE. Then d ∈ ALAφ\{C}({c}). In other
words, unit propagation of c̄ (on φ \ {C}) assigns d̄ and c̄ is a failed literal.

Our algorithm uses a load balancer to distribute the set of clauses over
all workers. Each worker is given a clause C and performs unit propagation
to compute ALAφ\{C}(C). The worker then decides if C is an AT or if
C can be shortened by ALE. This procedure is iterated until all clauses
are processed. After that, all ATs and all clauses shortened by ALE are
exchanged by the workers in an all-to-all operation. Each worker applies
the changes made by other workers to its own formula.

We have to take into account that applying ATE to two different clauses
does not commute. In order to gurantee correctness we track the dependen-
cies of each ATE operation: During unit propagation, we track all clauses
that contribute to ALAφ\{C}(C). Because we never apply ATE to binary
clauses, we only have to track clauses of length > 2. In practice this greatly
reduces the number of dependencies as industrial CNF formulas have large
2-CNF subsets.

Algorithm 5.1 shows our distributed distillation algorithm. In line 13 we

9This applies to non-transitive binary clauses. Transitive binary clauses are removed by unhiding.
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Algorithm 5.1 Distributed distillation

1: procedure distributedDistillation
2: B : LoadBalancer
3: R : List
4: if Rank = 0 then
5: U ← allClauses
6: B.initialize(U)
7: end if
8: loop
9: C ← B.fetch

10: if C = nil then
11: break
12: end if
13: (ate, ale,D, S)← distill(C)
14: R.append((C, ate, ale,D, S))
15: end loop
16: R← allgather(R)
17: R.sort . Sort order has to be consistent

over all ranks
18: E = ∅
19: F = ∅
20: for (C, ate, ale,D, S) ∈ R do
21: if ale then
22: shorten(C, S)
23: end if
24: if ate then
25: if C ∈ F or E ∩ D 6= ∅ then
26: continue
27: end if
28: markAsIrredundant(C)
29: E ← E ∪ {C}
30: F ← F ∪D
31: end if
32: end for
33: end procedure

invoke a distillation procedure that determines if a clause is an asymmetric
tautology and if it can be shortened by ALE. For asymmetric tautologies,
the procedure returns a set D of dependencies. If ALE can be applied, a
subset S ⊆ C that later replaces C is returned. This information is stored
in a list R. The data from R is used to replay the ATE and ALE operations
at all workers.

In line 17 we start to apply those operations. First we sort the elimi-
nation information list R so that all workers consistently apply the same
modifications to the CNF formula. If a clause can be shortened by ALE
we unconditionally apply this modification. However, before applying ATE
to a clause C, we need to ensure that no dependency of C is already elim-
inated and that C is not a dependency of an eliminated clause. Therefore
we maintain a set E that stores all eliminated clauses and a set F of clauses
that must not be eliminated.

Algorithm 5.2 lists the sequential distillation procedure itself. The al-
gorithm operates on a clause C. Line 2 defines a filter function that we
pass to propagateFilter. propagateFilter performs unit propaga-
tion while only considering clauses for which the filter function evaluates
to true. This is required as non-irredundant clauses can be dropped from
the formula at any time, thus eliminating ATs based on them is unsound.
In line 5 we check for some trivial cases. In particular we check if a clause
is the antecedent of a literal on decision level zero. Such clauses cannot be
removed by ATE. As outlined earlier we do not consider clauses of length
two for performance reasons.

The loop in line 15 assigns all literals of C to true. Each literal is
assigned on a different decision level. If the loop encounters a literal c that
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Algorithm 5.2 Distillation procedure

1: procedure distill(C)
2: procedure f(D)
3: return C 6= D

and isIrredundant(D)
4: end procedure
5: if length(C) ≤ 2

or isAntecedent(C) then
6: return (false, false,∅,∅)
7: else if ∃c∈C isTrue(C) then
8: return (true, false,∅,∅)
9: end if

10: ate← false
11: ale← false
12: D ← ∅
13: S ← ∅
14: E ← ∅
15: for c ∈ C do
16: if isTrue(c) then
17: E ← E ∪ {c}
18: end if
19: if isAssigned(c) then
20: continue
21: end if
22: newDecisionLevel
23: enqueue(¬c)
24: propagateFilter(f)
25: if atConflict then
26: break
27: end if
28: end for
29: S : Stack
30: procedure trace
31: while not S.empty do
32: c← S.pop
33: if decLevel(c) == 0 then
34: continue
35: end if
36: λ← antecedent(c)
37: if λ = DecisionAntecedent then

38: S ← S ∪ {¬c}
39: else
40: D ← D ∪ {clause of λ}
41: for a ∈ reasons(λ) do
42: S.push(a)
43: end for
44: end if
45: end while
46: end procedure
47: if atConflict then
48: for a ∈ C do
49: S.push(a)
50: end for
51: trace
52: ate← true
53: else if |E| > 0 then
54: a← argminc∈E decLevel(c)
55: λ← antecedent(a)
56: D ← D ∪ {clause ofλ}
57: for a ∈ reasons(λ) do
58: S.push(a)
59: end for
60: trace
61: S ← S ∪ {a}
62: ate← true
63: else
64: for a ∈ C do
65: S.push(a)
66: end for
67: trace
68: end if
69: if |S| < |C| then
70: ale← true
71: end if
72: backjump(0)
73: clearConflict
74: return (ate, ale,D, S)
75: end procedure
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is already assigned to true, this assignment necessarily happened at a non-
zero decision level and C is not part of the antecedent graph of c. In this
case, we have c̄ ∈ ALA(C) and C is an AT. We memorize c in a set E so
that we can traverse the antecedent graph and determine all dependencies
of this AT later. When there are multiple such literals we prioritize the
literal with lowest decision level to get a small antecedent graph.

In line 47 we finally determine if ATE and/or ALE can be applied to C.
In the first two cases, assigning all literals of C to false leads to a conflict
that does not involve C itself. Here C is an AT. In all three cases we scan
the antecedent graph to compute all dependendencies and a subclause of C
that can be derived by ALE. This completes the distillation algorithm.

5.3.6 A note on variable elimination

It is conspicuous that we did not consider parallel variable elimination in
this section. We shortly remark why parallel variable elimination is a hard
problem.

A sufficient condition for CNF-parallelizability of BVE applied to two
different variables x and y is that no clause that contains x shares a vari-
able with any clause that contains y. This means that the variable incidence
graph has a vertex separator10 so that x and y are in different partitions
w.r.t. this separator. Finding minimal separators is an NP-complete prob-
lem in itself [63]. Thus, it would be necessary to apply an approximation
algorithm to find such separators. Because it is unclear, whether a good
approximation can be obtained in acceptable time (especially because we
need as many partitions as there are processors), we do not study parallel
variable elimination here; the same applies for variable addition.

It should be noted that there is work on a parallel, shared-memory
algorithm for variable elimination [36] via fine-grained locking. However, as
this algorithm will not scale to distributed computers, we will not further
discuss it here.

5.4 Experimental results

In this section, we evaluate the effectiveness and performance of our parallel
and sequential CNF simplification techniques. For this evaluation we use
the same execution environment as in chapter 4.

10A vertex separator of a graph G is a partition of the vertex set V (G) into three sets A,B and S so
that there is no edge between A and B.
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5.4.1 Effectiveness of CNF simplifications

In a first experiment, we compare the effectiveness of different simplification
techniques.

We will focus on parallelizable simplification techniques here. For the
effectiveness of sequential simplification algorithms, we refer to our survey
[94].

Here, we consider preprocessing only: We apply CNF simplification
and CDCL search in separate phases. There are two kinds of data that
we are interested in: First, we want to evaluate which CNF simplification
techniques accelerate the CDCL solver’s performance. Secondly, we need to
take the runtime that CNF simplifications themselves consume into account.
In order to obtain this information, we run the sequential satUZK solver on
the 350 CNF instances from SAT Competition 2017. We set a timeout of
one hour, both for the preprocessing and for the CDCL phase. In reality,
we do not want to allocate such a large fraction of the available runtime to
CNF simplification. Later experiments will try to reduce the runtime that
CNF simplifcation requires by parallelizing the simplifcation techniques.
We compare the following configurations:

Default As a reference, we use the sequence of CNF simplification tech-
niques from the SAT Competition 2017 version of satUZK. This se-
quence consists of an initial unit propagation pass and then applies
unhiding (i.e. resolution subsumption on binary clauses, failed lit-
eral elimination using binary clauses only, HLE and HTE), BCE,
subsumption, resolution subsumption and BVE. This sequence is re-
peated until less than 5% of the remaining clauses and variables are
affected by the last iteration of the sequence.

Long distillation Runs distillation on clauses with length greater than
two only. The distillation algorithm only runs once, after the initial
iteration of the preprocessing sequence completes.

Simple/iterative distillation First runs the tree-based lookahead algo-
rithm to determine failed literals. After that, it runs the distillation
algorithm on clauses with a length greater than two. The simple ver-
sion only runs distillation during the initial iteration of preprocessing
while the iterative version runs it in each iteration.

Simple/iterative HBR Runs the tree-based lookahead algorithm to per-
form hyper binary resolution and to determine failed literals. HBR
is scheduled before unhiding in the preprocessing sequence. The dif-
ference between the simple and iterative version is the same as for
distillation.
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Figure 5.2: Effectiveness of CNF simplification, effect on CDCL runtime
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Table 5.2: Effectiveness of simplification

States the number of instances that could be simplified or solved within the timeout. Instances that
could not be simplified are reported as unsolved. Maximal simplification time is given in seconds.

Configuration Simplified Solved Max simp. time

None - 133 -
Default 350 129 276.72

Long dist. 350 135 1481.17
Simple dist. 348 125 > 3600.00

Iterative dist. 342 127 > 3600.00
Simple HBR. 345 138 > 3600.00

Iterative HBR 332 139 > 3600.00

Let us discuss the results of the experiment. Table 5.2 contains the num-
ber of instances that could be simplified and solved within the timeout. In
order to better understand the results, we visualize them in cactus plots.
Figure 5.2 depicts the runtime of the CDCL algorithm after preprocessing
has been applied. The first interesting observation is that the configuration
without preprocessing solves more instances than the default preprocessing
configuration. This is unexpected, especially because it does not match the
results of satUZK at SAT Competition 2017, where a larger timeout of 5000
seconds is used. The second observation is that both HBR and distillation
of clauses with length greater than two improve considerably over the con-
figuration without preprocessing. The effectiveness of HBR is even more
impressive given the fact that many instances could not be preprocessed
within the timeout and are thus excluded from the results. However, ap-
plying HBR multiple times does not seem to improve the runtime of the
CDCL algorithm substantially.

On the other hand, distillation in combination with failed literal elimi-
nation seems to have a negative impact on the number of solved instances.
We conjecture that in these configurations, too many clauses are weakened
and later removed as the result of asymmetric tautology elimination. While
those asymmetric tautologies are of course redundant, they still guide the
CDCL solver and enable it to find a solution (or unsatisfiability proof) more
quickly. This suggests that further heuristics are required to restrict the set
of asymmetric tautologies that should be weakened from the input formula.

Figure 5.3 presents the runtime of the CNF simplifcation techniques it-
self. Note that the plot has a logarithmic time axis to account for the large
range of occurring runtimes. The default preprocessing configuration is by
far the cheapest configuration, with a maximal runtime of under 200 sec-
onds. Even the simple HBR and distillation configurations reach a runtimes
over 3600 seconds. Only the default and long distillation configurations were
able to preprocess all benchmark formulas within the timeout.

On large ranges of instances, simple distillation is not significantly slower
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than distillation of long clauses only. The iterative versions of both distilla-
tion and HBR are much slower than the simple versions. Together with the
fact that the iterative versions do not improve considerably upon the run-
time of the simple versions, this suggests that running iterative distillation
and HBR as preprocessing is not worthwhile.

5.4.2 Simplification scalability

In the second experiment regarding simplification, we evaluate the scalabil-
ity of our parallel simplification techniques.

All simplifcation techniques were ran with 20, 40, 80 and 160 work-
ers on the SAT Competition 2017 benchmarks. We evaluate the following
combinations of simplification techniques:

Subsumption + BCE Runs the parallel subsumption, self-subsumption
and BCE algorithms.

(FLE +) Distillation First runs the parallel tree-based lookahead algo-
rithm to determine failed literals and then runs the parallel distillation
algorithm on all clauses with length greater than two.

HBR Runs the parallel tree-based lookahead algorithm two times. The
first run determines failed literals, while the second run performs hy-
per binary resolution.

Table 5.3: Parallel subsumption + BCE: Speedup

All instances Difficult instances
(Strong scaling) (Weak scaling)

Workers Total Median Samples Total Median

20 16.37 12.90 31 16.38 18.89
40 19.97 23.71 32 20.02 35.76
80 38.88 40.06 31 39.25 57.66

160 73.74 47.58 29 75.52 110.12

Let us first analyze the combination of subsumption and BCE. As the
sequential computation of these techniques takes less than ten seconds on all
SAT Competition 2017 instances, we cannot use these instances to bench-
mark our parallel implemenations. Instead, we take the barman, sokoban
and stone families of instances from SAT Competition 2016 as benchmarks.
This results in a set of 60 instances. The sequential implementation requires
hundreds to thousands of seconds to simplify these instances. Table 5.3 re-
ports the speedup of the subsumption + BCE algorithm. As we expect,
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the algorithm has almost ideal weak scaling properties and decent strong
scaling.

Secondly, we discuss distillation. In contrast to the preceeding evalua-
tion, we use the SAT Competition 2017 benchmarks here. Figure 5.5 visu-
alizes the results of the experiment. Only the 80 most difficult instances are
reported in the plot as many of the instances are actually too small when
20 or more workers are used. In contrast to the sequential case, all parallel
configurations are able to simplify all 350 benchmark instances.

We compute the speedup of the distillation algorithm on this set of
benchmarks. Table 5.4 reports the strong and weak scalability of parallel
distillation. We use the same difficulty measure as in subsection 4.4.1 of
the previous chapter. As many instances are too simple for the parallel
algorithm, the median speedup over all instances is less than 1; the pro-
gram runtime is increased by the additional parallelism. However, when
difficult instances are considered, we get satisfactory speedup values over
all configurations.

Table 5.4: Parallel distillation: Speedup

All instances Difficult instances
Workers Total Median Samples Total Median

20 15.12 < 1 74 15.52 13.57
40 25.03 < 1 69 26.05 22.79
80 37.13 < 1 65 39.82 33.27

160 50.22 < 1 60 55.64 48.71

Finally, we evaluate HBR. Figure 5.4 depicts the results of this tech-
nique. All parallel configurations are much faster than their sequential
counterpart. However, beyond 20 workers, added parallelism does not im-
prove the algorithm’s performance. The reason for this behavior is that
HBR generates such a large amount of clauses that importing clauses from
other workers takes more time than running the actual HBR algorithm.
Furthermore, for large instances, the parallel HBR algorithm exhausts the
available amount of memory while the resulting clauses are exchanged. We
suggest that additional heuristics could be developed to restrict the number
of generated clauses but leave this challenge to future work.

5.4.3 Effectiveness of satUZK-ddc plus simplification

In our final experiment, we benchmark the performance of satUZK-ddc with
preprocessing enabled.

For the experiment, we consider our default sequential preprocessing
(as described in subsection 5.4.1), the combination of distillation and failed
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literal elimination from the last subsection and a combination of these tech-
niques. We use the SAT Competition 2017 instances and set a timeout of
10 minutes.

Figure 5.6 depicts the results of the evaluation. All configurations are
equally viable and solve between 171 and 173 instances. This is in contrast
to sequential configurations, where satUZK-seq solves a significantly smaller
number of instances if distillation is enabled. Hence, the high computational
cost of distillation is offset by its good scaling to many processors.

Table 5.5: satUZK-ddc + simplification: Comparison of configurations

Reports the numbers of instances that could only be solved in some configurations.

Instances solved by
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s None - 8 7 9

Sequential 6 - 7 9
Distillation 5 7 - 8

Seq. + dist. 8 10 9 -

It should be noted that the configurations do not solve the same in-
stances. Table 5.5 lists the number of instances that were solved only in
some configurations. It is evident from this table that our parallel distilla-
tion algorithm enables satUZK-ddc to solve multiple instances that could
not be solved otherwise.
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Chapter 6

Conclusion and future
work

In this dissertation, we presented our CDCL implementation, introduced
the novel DDC algorithm for distributed SAT solving and developed paral-
lelizations of several established CNF simplification techniques.

In a benchmark, our DDC algorithm turned out to be faster than other
state-of-the-art, distributed SAT solvers while solving at least as many in-
stances. We studied performance characteristics of the algorithm and in-
troduced extensions that boost its effectiveness. While the solver is not
necessarily able to solve more instances when parallel simplification is en-
abled, we demonstrated that several instances could only be solved when
the parallel distillation technique was used.

Future work could either focus on improvements to the sequential CDCL
algorithm or on improvements to the parallel DDC architecture. For the
parallel architecture, there are still some successful technologies that have
not been integrated into satUZK-ddc. For example, the clause exchange
scheme from the Syrup solver seems to be an obvious candidate for integra-
tion to the DDC framework.

Orthogonally, the communication between individual workers could be
further restricted in order to allow the algorithm to better scale to thou-
sands and tens of thousands of cores. The DDC algorithm already performs
routing decisions and assignment of work locally relative to the DPLL search
tree that it constructs. However, no effort is made to match this search tree
to the underlying topology of the interconnect. Another interesting chal-
lenge could be the study of clause exchange schemes that prefer to exchange
clauses between local clusters of workers instead of broadcasting them to all
workers. Again, these considerations should take the interconnect topology
into account in order to be successful.
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scription. In Tomáš Balyo, Marijn J. H. Heule, and Matti Järvisalo,
editors, Proceedings of SAT Competition 2017, 2017.

[88] Alexander van der Grinten and Ewald Speckenmeyer. SAT solving on
clusters and supercomputers based on real-time communication and
efficient load balancing, 2017. Submitted.

[89] Alexander van der Grinten, Andreas Wotzlaw, and Ewald Specken-
meyer. satUZK: Solver description. In Anton Belov, Daniel Diepold,
Marijn J.H. Heule, and Matti Järvisalo, editors, Proceedings of SAT
Competition 2014, page 75, 2014.

[90] Alexander van der Grinten, Andreas Wotzlaw, Ewald Speckenmeyer,
and Stefan Porschen. satUZK: Solver description. In Adrian Balint,
Anton Belov, Marijn J.H. Heule, and Matti Järvisalo, editors, Proceed-
ings of SAT Competition 2013, page 82, 2013.

[91] Peter van der Tak, Marijn J. H. Heule, and Armin Biere. Concurrent
Cube-and-conquer. In Theory and Applications of Satisfiability Testing
- SAT 2012, SAT ’12, pages 475–476. Springer, 2012.

[92] Peter van der Tak, Antonio Ramos, and Marijn Heule. Reusing the
Assignment Trail in CDCL Solvers. Journal on Satisfiability, Boolean
Modeling and Computation (JSAT), pages 133–138, 2011.

[93] Nathan Wetzler, Marijn J. H. Heule, and Warren A. Hunt. DRAT-trim:
Efficient Checking and Trimming Using Expressive Clausal Proofs. In
Carsten Sinz and Uwe Egly, editors, Theory and Applications of Sat-
isfiability Testing – SAT 2014: 17th International Conference, Held
as Part of the Vienna Summer of Logic, VSL 2014, Vienna, Austria,
July 14-17, 2014. Proceedings, pages 422–429, Cham, 2014. Springer
International Publishing.

[94] Andreas Wotzlaw, Alexander van der Grinten, and Ewald Specken-
meyer. Effectiveness of pre- and inprocessing for CDCL-based SAT
solving. ArXiv, 2013.

126



[95] Andreas Wotzlaw, Alexander van der Grinten, Ewald Speckenmeyer,
and Stefan Porschen. ppfolioUZK: Solver description. In Adrian Balint,
Anton Belov, Daniel Diepold, Simon Gerber, Matti Järvisalo, and
Carsten Sinz, editors, Proceedings of SAT Challenge 2012, page 45,
2012.

[96] Andreas Wotzlaw, Alexander van der Grinten, Ewald Speckenmeyer,
and Stefan Porschen. satUZK: Solver description. In Adrian Balint,
Anton Belov, Daniel Diepold, Simon Gerber, Matti Järvisalo, and
Carsten Sinz, editors, Proceedings of SAT Challenge 2012, pages 54–55,
2012.

[97] Lin Xu, Frank Hutter, Holger H. Hoos, and Kevin Leyton-Brown.
SATzilla: Portfolio-based algorithm selection for SAT. Journal of Ar-
tificial Intelligence Research, 32:65–606, 2008.

[98] Hantao Zhang and Mark Stickel. Implementing the Davis-Putnam
Method. Journal of Automated Reasoning, 24:277–296, Feb 2000.

[99] Lintao Zhang, Conor F. Madigan, Matthew H. Moskewicz, and Sharad
Malik. Efficient conflict driven learning in a boolean satisfiability
solver. In Proceedings of the 2001 IEEE/ACM international confer-
ence on Computer-aided Design, ICCAD ’01, pages 279–285. IEEE,
2001.

127



Danksagungen
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Mein weiterer Dank gilt Prof. Dr. Meyerhenke, der diese Arbeit als
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