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An Estimation of the Size of Non-Compact

Suffix Trees

Bálint Vásárhelyi∗

Abstract

A suffix tree is a data structure used mainly for pattern matching. It
is known that the space complexity of simple suffix trees is quadratic in the
length of the string. By a slight modification of the simple suffix trees one gets
the compact suffix trees, which have linear space complexity. The motivation
of this paper is the question whether the space complexity of simple suffix
trees is quadratic not only in the worst case, but also in expectation.

1 Introduction

A suffix tree is a powerful data structure which is used for a large number of
combinatorial problems involving strings. Suffix tree is a structure for compact
storage of the suffixes of a given string. The compact suffix tree is a modified
version of the suffix tree, and it can be stored in linear space of the length of the
string, while the non-compact suffix tree is quadratic (see [11, 14, 18, 19]).

The notion of suffix trees was first introduced by Weiner [19], though he used
the name compacted bi-tree. Grossi and Italiano mention that in the scientific
literature, suffix trees have been rediscovered many times, sometimes under different
names, like compacted bi-tree, prefix tree, PAT tree, position tree, repetition finder,
subword tree etc. [10] .

Linear time and space algorithms for creating the compact suffix tree were given
soon by Weiner [19], McCreight [14], Ukkonen [18], Chen and Sciferas [4] and others.

The statistical behaviour of suffix trees has been also studied. Most of the
studies consider improved versions.

The average size of compact suffix trees was examined by Blumer, Ehrenfeucht
and Haussler [3]. They proved that the average number of nodes in the compact
suffix tree is asymptotically the sum of an oscillating function and a small linear
function.

An important question is the height of suffix trees, which was answered by De-
vroye, Szpankowski and Rais [6], who proved that the expected height is logarithmic
in the length of the string.
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The application of suffix trees is very wide. We mention but only a few examples.
Apostolico et al. [2] mention that these structures are used in text searching,
indexing, statistics, compression. In computational biology, several algorithms are
based on suffix trees. Just to refer a few of them, we mention the works of Höhl et
al. [12], Adebiyi et al. [1] and Kaderali et al. [13].

Suffix trees are also used for detecting plagiarism [2], in cryptography [15, 16],
in data compression [7, 8, 16] or in pattern recognition [17].

For the interested readers further details on suffix trees, their history and their
applications can be found in [2], in [10] and in [11], which sources we also used for
the overview of the history of suffix trees.

It is well-known that the non-compact suffix tree can be quadratic in space as
we referred before. In our paper we are setting a lower bound on the average size,
which is also quadratic.

2 Preliminaries

Before we turn to our results, let us define a few necessary notions.

Definition 1. An alphabet Σ is a set of different characters. The size of an
alphabet is the size of this set, which we denote by σ(Σ), or more simply σ. A
string S is over the alphabet Σ if each character of S is in Σ.

Definition 2. Let S be a string. S[i] is its ith character, while S[i, j] is a substring
of S, from S[i] to S[j], if j ≥ i, else S[i, j] is the empty string. Usually n(S) (or n
if there is no danger of confusion) denotes the length of the string.

Definition 3. The suffix tree of S is a rooted directed tree with n leaves, where n
is the length of S.

Its structure is the following:
Each edge e has a label `(e), and the edges from a node v have different

labels (thus, the suffix tree of a string is unique). If we concatenate the edge
labels along a path P, we get the path label L(P).

We denote the path from the root to the leaf j by P(j). The edge labels are
such that L(j) = L(P(j)) is S[j, n] and a $ sign at the end. The definition
becomes more clear if we check the example on 1 and 2.

A naive algorithm for constructing the suffix tree is the following:
Notice that in 2 a leaf always remain a leaf, as $ (the last edge label before a

leaf) is not a character in S.

Definition 4. The compact suffix tree is a modified version of the suffix tree. We
get it from the suffix tree by compressing its long branches.

The structure of the compact suffix tree is basically similar to that of the suffix
tree, but an edge label can be longer than one character, and each internal node
(i.e. not leaf) must have at least two children. For an example see 2.

With a regard to suffix trees, we can define further notions for strings.
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Figure 1: Suffix tree of string aabccb

Definition 5. Let S be a string, and T be its (non-compact) suffix tree.
A natural direction of T is that all edges are directed from the root towards the

leaves. If there is a directed path from u to v, then v is a descendant of u and u is
an ancestor of v.

We say that the growth of S (denoted by γ(S)) is one less than the shortest
distance of leaf 1 from an internal node v which has at least two children (including
leaf 1), that is, we count the internal nodes on the path different from v. If leaf j
is a descendant of v, then the common prefix of S[j, n] and S[1, n] is the longest
among all j’s.

If we consider the string S = aabccb, the growth of S is 5, as it can be seen on
1.

An important notion is the following one.

Definition 6. Let Ω(n, k, σ) be the number of strings of length n with growth k
over an alphabet of size σ.

Observe that the connection between the growth and the number of nodes in a
suffix tree is the following:

Observation 1. If we construct the suffix tree of S by using 2, we get that the sum
of the growths of S[n− 1, n], S[n− 2, n], . . . , S[1, n] is a lower bound to the number
of nodes in the final suffix tree. In fact, there are only two more internal nodes, the
root vertex, the only node on the path to leaf n, and we have the leaves.

In the proofs we will need the notion of period and of aperiodic strings.
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Let S be a string of length n. Let j = 1 and T be a tree of one vertex r (the root
of the suffix tree).

Step 1: Consider X = S[j, n] + $. Set i = 0, and v = r.

Step 2: If there is an edge vu labelled X[i+ 1], then set v = u and i = i+ 1.

Step 3: Repeat Step 2 while it is possible.

Step 4: If there is no such an edge, add a path of n − j − i + 2 edges from v,
with labels corresponding to S[j + i, n] + $, consecutively on the edges. At
the end of the path, number the leaf with j.

Step 5: Set j = j + 1, and if j ≤ n, go to Step 1. �

5 4 3 6 2 1

c b a

b$ cb$ ccb$ $ bccb$ abccb$

Figure 2: Compact tree of string aabccb

Definition 7. Let S be a string of length n. We say that S is periodic with period
d, if there is a d|n for which S[i] = S[i + d] for all i ≤ n − d. Otherwise, S is
aperiodic.

The minimal period of S is the smallest d with the property above.

Definition 8. µ(j, σ) is the number of j-length aperiodic strings over an alphabet
of size σ.

A few examples for the number of aperiodic strings are given in 1.

σ µ(1, σ) µ(2, σ) µ(3, σ) µ(4, σ) µ(5, σ) µ(6, σ) µ(7, σ) µ(8, σ)
2 2 6 12 30 54 126 240 504
3 3 6 24 72 240 696 2184 648
4 4 12 60 240 1020 4020 16380 65280
5 5 20 120 600 3120 15480 78120 390000

Table 1: Number of aperiodic strings for small alphabets. σ is the size of the
alphabet, and µ(j, σ) is the number of aperiodic strings of length j
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3 Main results

Our main results are formulated in the following theorems.

Theorem 2. On an alphabet of size σ for all n ≥ 2k, Ω(n, k, σ) ≤ φ(k, σ) for some
function φ.

Theorem 3. There is a c > 0 and an n0 such that for any n > n0 the following is
true. Let S′ be a string of length n−1, and S be a string obtained from S′ by adding
a character to its beginning chosen uniformly random from the alphabet. Then the
expected growth of S is at least c · n.

Theorem 4. There is a d > 0 that for any n > n0 (where n0 is the same as in
3) the following holds. On an alphabet of size σ the simple suffix tree of a random
string S of length n has at least d · n2 nodes in expectation.

4 Proofs

Proof. (4)
Considering 1 we have that the expected size of the simple suffix tree of a

random string S is at least

E
n∑

m=1

(γ(S[n−m,n])) ≥
n∑

m=1

E(γ(S[n−m,n])). (1)

If m ≤ n0, 3 is obvious. If m > n0, we can divide the sum into two parts:

n∑

m=1

E(γ(S[n−m,n])) =

n0∑

m=1

E(γ(S[n−m,n])) +
n∑

m=n0+1

E(γ(S[n−m,n])). (2)

The first part of the sum is a constant, while the second part can be estimated
with 3:

n∑

m=n0+1

E(γ(S[n−m,n])) ≥
n∑

m=n0+1

cn = d · n2. (3)

This proves 4.

First, we show a few lemmas about the number of aperiodic strings. 1 can be
found in [9] or in [5], but we give a short proof also here.

Lemma 1. For all j > 0 integer and for all alphabet of size σ the number of
aperiodic strings is

µ(j, σ) = σj −
∑

d|j
d 6=j

µ(d, σ). (4)
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Proof. µ(1, σ) = σ is trivial.
There are σj strings of length j. Suppose that a string is periodic with minimal

period d. This implies that its first d characters form an aperiodic string of length
d, and there are µ(d, σ) such strings. This finishes the proof.

Specially, if p is prime, then µ(p, σ) = σp − σ.

Corollary 1. If p is prime and t ∈ N, then µ (pt, σ) = σpt − σpt−1

for all alphabet
of size σ.

Proof. We count the aperiodic strings of length pt. There are σpt

strings. Consider
the minimal period of the string, i.e. the period which is aperiodic. If we exclude
all minimal periods of length k, we exclude µ(k, σ) strings. This yields the following
equality:

µ
(
pt, σ

)
= σpt −

∑

1≤s<t

µ (ps, σ) . (5)

With a few transformations and using 1, we have that (5) is equal to

σpt−µ
(
pt−1, σ

)
−

∑

1≤s<t−1
µ (ps, σ) = σpt−σpt−1

+
∑

1≤s<t−1
µ (ps, σ)−

∑

1≤s<t−1
µ (ps, σ) ,

(6)
which is

σpt − σpt−1

. (7)

Lemma 2. For all j > 1 and for all alphabet of size σ , µ(j, σ) ≤ σj − σ.

Proof. From 1 we have µ(j, σ) = σj − ∑
d|j
d6=j

µ(d, σ). Considering µ(d, σ) ≥ 0 and

µ(1, σ) = σ, we get the claim of the lemma.

Lemma 3. For all j ≥ 1, and for all alphabet of size σ

µ(j, σ) ≥ σ(σ − 1)j−1. (8)

Proof. We prove by induction. For j = 1 the claim is obvious, as µ(1, σ) = σ.
Suppose we know the claim for j − 1. Consider σ(σ − 1)j−2 aperiodic strings

of length j − 1. Now, for any of these strings there is at most one character by
appending that to the end of the string we receive a periodic string of length j.
Therefore we can append at least σ−1 characters to get an aperiodic string, which
gives the desired result.

Observation 5. Observe that if the growth of S is k, then there is a j such that
S[1, n−k] = S[j+1, j+n−k]. For example, if the string is abcdefabcdab (n = 12),
one can check that the growth is 8 (the new branch in the suffix tree which ends in
leaf 1 starts after abcd), and with j = 6 we have S[1, 4] = S[7, 10] = abcd.
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The reverse of this observation is that if there is a j < n such that S[1, n−k] =
S[j + 1, j + n− k], then the growth is at most k, as S[j + 1, n] and S[1, n] shares a
common prefix of length n− k, thus, the paths to the leaves j+ 1 and n share n− k
internal nodes, and at most k new internal nodes are created.

Proof. (2) For proving the theorem we count the number of strings with growth k
for n ≥ 2k.

First, we fix j, and then count the number of possible strings where the growth
occurs such that S[1, n− k] = S[j + 1, j +n− k] for that fixed j. Note that by this
way, we only have an upper bound for this number, as we might found an ` such
that S[1, n− k + 1] = S[`+ 1, `+ n− k + 1].

We know that j ≤ k, otherwise S[j + 1, j + n− k] does not exist.

If j = k, then we know S[1, n− k] = S[k + 1, n].

S[1, k] must be aperiodic. Suppose the opposite and let S[1, k] = p . . . p, where
p is the minimal period, and its length is d. Then S[k + 1, n] = p . . . p. Obviously,
in this case S[1, n − d] = S[d + 1, n], which by 5 means that the growth would be
at most d. See also 3.

Therefore this case gives us at most µ(k) strings of growth k.

1

p p p

k

p p p

n

Figure 3: Proof of 2, case j = k

If j < k, then we have S[1, n− k] = S[j + 1, j + n− k].

First, we note that S[1, j] must be aperiodic. Suppose the opposite and let
S[1, j] = p . . . p, where p is the minimal period, and its length is d. Then

S[j + 1, 2j] = S[2j + 1, 3j] = . . . = p . . . p, (9)

which means that

S

[
1,

⌊
k

j

⌋
· j
]

= S

[
j + 1, j +

⌊
k

j

⌋
· j
]

= p . . . p. (10)

This implies that S[1, j + n− k] = p . . . pp′, where p′ is a prefix of p. However,
S[1, j + n − k − d] = S[d, j + n − k] is true, and using 5, we have that γ(S) ≤
n− (j + n− k) + d = k − j + d < k, which is a contradiction.

Further, S[j + n− k + 1] must not be the same as S[k + 1], which means that
this character can be chosen σ − 1 ways.

Therefore this case gives us at most µ(j)(σ − 1)σk−j−1 strings of growth k for
each j.

By summing up for each j, we have
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Figure 4: Proof of 2, case j < k

φ(k, σ) =

k−1∑

j=1

µ(j, σ)(σ − 1)σk−j−1 + µ(k, σ) (11)

This completes the proof.

Proof. (3)
According to 2, µ(j, σ) ≤ σj − σ (if j > 1).
In the proof of 2 at (11) we saw for k ≥ 1 and n ≥ 2k − 1 that

φ(k, σ) = µ(k, σ) +
k−1∑

j=1

µ(j, σ)(σ − 1)σk−j−1. (12)

We can bound the right hand side of (12) from above as it follows:

µ(k, σ) +
k−1∑
j=1

µ(j, σ)(σ − 1)σk−j−1 = µ(k, σ) + µ(1, σ)(σ − 1)σk−2 +
k−1∑
j=2

µ(j, σ)(σ − 1)σk−j−1,

(13)
which is by 2 at most

σk−σ+σ(σ−1)σk−2+

k−1∑

j=2

(σj−σ)(σ−1)σk−j−1 ≤ σk+σk+

k−1∑

j=2

σjσσk−j−1 ≤ kσk.

(14)
Thus, φ(k, σ) ≤ kσk, which means

m∑

k=1

φ(k, σ) ≤
m∑

k=1

kσk ≤ (m+ 1)σm+1. (15)

The left hand side of 15 is an upper bound for the strings of growth at most m.
Let m =

⌊
n
2

⌋
.

As σn � n
2σ

n
2 , this implies that in most cases the suffix tree of S has at least

n
2 more nodes than the suffix tree of S[1, n− 1].

Thus, a lower bound on the expectation of the growth of S is

E (γ(S)) ≥ 1

σn

(n
2
σ

n
2 +

(
σn − n

2
σ

n
2

)(n
2

+ 1
))

, (16)

which is
1

σn

(
n+ 2

2
σn +

(
n

2
− n(n+ 2)

4

)
σ

n
2

)
= cn, (17)



An Estimation of the Size of Non-Compact Suffix Trees 831

with some c, if n is large enough.

With this, we have finished the proof and gave a quadratic lower bound on the
average size of suffix trees.
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The graph packing problem is a well-known area in graph theory. We consider a bipartite
version and give almost tight conditions.
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1. Notation

We consider only simple graphs. Throughout the paper we use common graph theory notations: dG(v) (or briefly, if G is
understood from the context, d(v)) is the degree of v in G, and∆(G) is the maximal and δ(G) is the minimal degree of G, and
e(X, Y ) is the number of edges between X and Y for X ∩Y = ∅. For any function f on V let f (X) =

∑
v∈X f (v) for every X ⊆ V .

π (G) is the degree sequence of G.

2. Introduction

Let G and H be two graphs on n vertices. We say that G and H pack if and only if Kn contains edge-disjoint copies of G and
H as subgraphs.

The graph packing problem can be formulated as an embedding problem, too. G and H pack if and only if H is isomorphic
to a subgraph of G (H ⊆ G).

A classical result in this field is the following theorem of Sauer and Spencer.

Theorem 1 (Sauer, Spencer [14]). Let G1 and G2 be graphs on n vertices with maximum degrees ∆1 and ∆2, respectively. If
∆1∆2 <

n
2 , then G1 and G2 pack.

Many questions in graph theory can be formulated as special packing problems, see [9].
We study the bipartite packing problem as it is formulated by Catlin [3], Hajnal and Szegedy [7] and was used by Hajnal

for proving deep results in complexity theory of decision trees [6].We are not going to statewhat Hajnal and Szegedy proved
in [7], since it is technically involved. However, we present two previous results in bipartite packing, as in certain cases our
main theorem is stronger than those.

Let G1 = (A, B; E1) and G2 = (S, T ; E2) be bipartite graphs with |A| = |S| = m and |B| = |T | = n. Sometimes, we use only
G(A, B) if we want to say that G is a bipartite graph with classes A and B. Let∆A(G1) be the maximal degree of G1 in A. We use
∆B(G1) similarly.

E-mail address:mesti@math.u-szeged.hu.

http://dx.doi.org/10.1016/j.dam.2017.04.019
0166-218X/© 2017 Elsevier B.V. All rights reserved.
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The bipartite graphs G1 and G2 pack in the bipartite sense (i.e. they have a bipartite packing) if there are edge-disjoint
copies of G1 and G2 in Km,n.

The bipartite packing problem can be also formulated as a question of embedding. The bipartite graphs G1 = (A, B; E) and
G2 pack if and only ifG2 is isomorphic to a subgraph of G̃1, which is the bipartite complement ofG1, i.e. G̃1 = (A, B; (A×B)−E).

First, we present the result ofWojda andVaderlind. Before formulating their theorem,we need to introduce three families
of graph pairs which they use [17].

Let Γ1 be the family of pairs {G(L, R),G′(L′, R′)} of bipartite graphs that G contains a star (i.e. one vertex in L is connected
to all vertices of R), and in δL′ (G′) ≥ 1.

Let Γ2 be the family of pairs {G(L, R),G′(L′, R′)} of bipartite graphs such that L = {a1, a2}, and dG(a1) = dG(a2) = 2; and
L′

= {a′

1, a
′

2}, dG′ (a′

1) = |R| − 1, dG′ (a′

2) = 0, finally,∆R(G) = ∆R(G′) = 1.
The family Γ3 is the pair {G,G′

}, where G = K2,2 ∪ K1,1, and G′ is a one-factor.

Theorem 2 ([17]). Let G = (L, R; E) and G′
= (L′, R′

; E ′) be two bipartite graphs with |L| = |L′
| = p ≥ 2 and |R| = |R′

| = q ≥ 2,
such that

e(G) + e(G′) ≤ +q + ε(G,G′) (1)

where ε(G,G′) = min{p −∆R(G), p −∆R′ (G′), q −∆L(G), q −∆L′ (G′)}.
Then G and G′ pack unless either

(i) ε(G,G′) = 0 and {G,G′
} ∈ Γ1, or

(ii) ε(G,G′) = 1 and {G,G′
} ∈ Γ2 ∪ Γ3.

Another theorem in this field is by Wang.

Theorem 3 ([15]). Let G(A, B) and H(S, T ) be two C4-free bipartite graphs of order n with |A| = |B| = |S| = |T | = n, and
e(G)+ e(H) ≤ 2n− 2. Then there is a packing of G and H in Kn+1,n+1 (i.e. an edge-disjoint embedding of G and H into Kn+1,n+1),
unless one is a union of vertex-disjoint cycles and the other is a union of two-disjoint stars.

For more results in this field, we refer the interested reader to the monograph on factor theory of Yu and Liu [18].
Themain question of extremal graph theory is that atmost howmany edges aG graphmight have (orwhat is itsminimum

degree) if there is an excluded subgraph H .
Let us formulate our main result in the following theorem as an embedding problem.

Theorem 4. For every ε ∈ (0, 1
2 ) there is an n0 = n0(ε) such that if n > n0, and G(A, B) and H(S, T ) are bipartite graphs with

|A| = |B| = |S| = |T | = n and the following conditions hold, then H ⊆ G.

Condition 1: dG(x) >
( 1
2 + ε

)
n holds for all x ∈ A ∪ B

Condition 2: dH (x) < ε4

100
n

log n holds for all x ∈ S,
Condition 3: dH (y) = 1 holds for all y ∈ T .

We prove Theorem 4 in the next section. First we indicate why we have the bounds in Conditions 1 and 2.
The following two examples show that it is necessary tomake an assumption on δ(G) (see Condition 1) and on∆S(H) (see

Condition 2).
First, let G = K n

2 +1, n2 −1 ∪ K n
2 −1, n2 +1. Clearly, G has no perfect matching. This shows that the bound in Condition 1 is close

to being best possible.
For the second example, we chooseG = G(n, n, 0.6) to be a randombipartite graph. Standard probability reasoning shows

that with high probability, G satisfies Condition 1. However, H cannot be embedded into G, where H(S, T ) is the following
bipartite graph: each vertex in T has degree 1. In S all vertices have degree 0, except log n

c vertices with degree cn
log n . The graph

H cannot be embedded into G, what follows from the example of Komlós et al. [10].

Remark 5. There are graphs which can be packed using Theorem 4, though Theorem 2 does not imply that they pack.
For instance, let G(A, B) and H(S, T ) be bipartite graphs with |A| = |B| = |S| = |T | = n. Choose H to be a 1-factor, and

G to be a graph such that all vertices in A have degree
( 1
2 +

1
100

)
n. This pair of graphs obviously satisfies the conditions of

Theorem 4, thus, H can be embedded into G, which means that H can be packed with the bipartite complement of G̃.
Now,we check the conditions of Theorem2 for the graphs G̃ andH .Weknow that e(H) = n, asH is a 1-factor. Furthermore,

in G̃ each vertex in A has degree
( 1
2 −

1
100

)
n, which means that the number of edges is approximately n2

4 . As ε(H, G̃) ≤ n,
the condition of Theorem 2 is obviously not satisfied. □

Remark 6. There are graphs which can be packed using Theorem 4, though Theorem 3 does not imply that they pack. Let
G be the union of n

3 disjoint copies of C6’s and H be a 1-factor. Obviously, H is C4-free, but the condition of Theorem 3 is not
satisfied for G and H , as e(G) + e(H) = 3n.

However, our theorem can give an embedding of H into G̃, as all conditions of Theorem 4 are satisfied with these graphs.
This provides a packing of H and G. □
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3. The proof of Theorem 4

We will use the following lemma, which was formulated by Gale [5] and Ryser [13]. We present the lemma in the form
as discussed in Lovász, Exercise 16 of Chapter 7 [11].

First, we need the following definition. We say that a sequence π = (a1, . . . , am; b1, . . . , bn) is bigraphic, if and only
if there is a bipartite graph G(A, B) with vertices x1, x2, . . . , xm; y1, . . . , yn such that dG(xi) = π (ai) for each xi ∈ A and
dG(yi) = π (bi) for each yi ∈ B [16]. In this case, we say that π is a fixed order realization of the bipartite degree sequence dG.
Note that this notion is different from the usual degree sequence notion, which contains only an ordered list of the degrees,
which are not connected to specific vertices.

Lemma 7 (Lovász [11]). Let G(A, B) be a bipartite graph and π a bigraphic sequence on (A, B). If∑
x∈X

π (x) ≤ eG(X, Y ) +

∑
y∈Y

π (y) ∀X ⊆ A, ∀Y ⊆ B, (2)

then π can be embedded into G.

We formulate the key technical result for the proof of Theorem 4 in the following lemma.

Lemma 8. Let ε ∈ (0, 0.5) and c as stated in Theorem 4. Let G(Z,W ) and H(Z ′,W ′) be bipartite graphs with |Z | = |Z ′
| = z and

|W | = |W ′
| = n, respectively, with z > 2

ε
.

Suppose that

Condition 1a: dG(x) >
( 1
2 + ε

)
n for all x ∈ Z ,

Condition 1b: dG(y) >
( 1
2 +

ε
2

)
z for all y ∈ W ,

Condition 2: There is an M ∈ N and a 0 < δ ≤
ε
10 <

1
20 such that

M ≤ dH (x) ≤ M(1 + δ) for all x ∈ Z ′,

and
Condition 3: dH (y) = 1 for all y ∈ W ′.

Then there is an embedding of H into G.

Proof. We show that the conditions of Lemma 7 are satisfied.
First, assign to the vertices of Z ′ and W ′. Then, let ∅ ̸= X ⊆ Z and ∅ ̸= Y ⊆ W . Let X = Z − X and Y = W − Y . We

distinguish five cases depending on the sizes of X and Y .
In all cases we will use the obvious inequalityMz ≤ n, as dH (Z ′) = dH (W ′).

Case (a) |X | ≤
z

2(1+δ) and |Y | ≤
n
2 .

We have

dH (X) ≤ M(1 + δ)|X | ≤ M(1 + δ)
z

2(1 + δ)
=

Mz
2

≤
n
2
, (3)

and
n
2

≤ |Y | = dH
(
Y
)
. (4)

Therefore, dH (X) ≤ dH (y) + eG(X, Y ).
Case (b) |X | ≤

z
2(1+δ) and |Y | > n

2 .

Let φ =
|Y |

n −
1
2 , so |Y | =

( 1
2 + φ

)
n. Obviously, 0 ≤ φ ≤

1
2 .

Therefore, dH (Y ) = |Y | =
( 1
2 − φ

)
n.

We have dH (X) ≤
n
2 , as we have seen in Case (a).

Besides this, using Condition 1a, we know that dG(X) >
( 1
2 + ε

)
n|X |. As |Y | =

( 1
2 − φ

)
n, we have

eG(X, Y ) ≥ dG(X) − |Y ||X | >

(
1
2

+ ε

)
n|X | −

(
1
2

− φ

)
n. (5)

Thus,

eG(X, Y ) > (ε + φ)n|X | ≥ (ε + φ)n, (6)

we obtain dH (X) ≤ dH (Y ) + eG(X, Y ).
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Case (c) z
2 ≥ |X | > z

2(1+δ) and |Y | ≤
n
2 .

Let ψ =
|X |

z −
1

2(1+δ) , hence, |X | =

(
1

2(1+δ) + ψ

)
z.

Let ψ0 =
δ

2(1+δ) =
1
2 −

1
2(1+δ) , so ψ ≤ ψ0. This means that |X | =

( 1
2 − ψ0 + ψ

)
z.

As 0 < δ ≤
ε
10 , we have ψ0 <

δ
2 ≤

ε
20 .

Let φ =
1
2 −

|Y |

n , so |Y | =
( 1
2 − φ

)
n. As |Y | ≤

n
2 , this gives 0 ≤ φ ≤

1
2 .

We have the following bounds:

(1) dH (Y ) = |Y | = n
( 1
2 + φ

)
(2) As above, dH (X) ≤ M(1 + δ)|X | = Mz(1 + δ)

(
1

2(1+δ) + ψ

)
≤ n(1 + δ)

(
1

2(1+δ) + ψ

)
.

(3) We claim that eG(X, Y ) ≥ |Y |
(
ε
2 − ψ0 + ψ

)
z. Indeed, the number of neighbours of a vertex y ∈ Y in X is at

least
(
ε
2 + ψ − ψ0

)
z, considering the degree bounds ofW in G.

We have to show that dH (X) ≤ eG(X, Y ) + dH (Y ). We estimated each term, hence it is enough to prove that:

n(1 + δ)
(

1
2(1 + δ)

+ ψ

)
≤ n

(
1
2

− φ

)( ε
2

− ψ0 + ψ

)
z + n

(
1
2

+ φ

)
. (7)

This is equivalent to

ψ + δψ ≤ z
(
1
2

− φ

)( ε
2

+ ψ − ψ0

)
+ φ. (8)

The left hand side of (8) is at most ψ0 + δψ0 ≤
δ
2 +

δ2

2 ≤ δ, as δ ≤ ε ≤
1
2 .

If φ > δ, (8) holds, since ε
2 + ψ − ψ0 ≥ 0, using ψ0 ≤

ε
20 .

Otherwise, if φ ≤ δ, the right hand side of (8) is

z
(
1
2

− φ

)( ε
2

+ ψ − ψ0

)
≥

(
1
2

− δ

)(
ε

2
−
δ

2

)
z. (9)

We can bound each factor: 1
2 − δ > 1

2 −
1
20 ,

ε
2 −

δ
2 >

ε
2 −

ε
20 , and z > 2

ε
.

Using these bounds for (9), we have(
1
2

− δ

)(
ε

2
−
δ

2

)
z >

(
1
2

−
1
20

)( ε
2

−
ε

20

) 2
ε

=
81
200

>
1
20

> δ. (10)

This completes the proof of this case.
Case (d) |X | > z

2 and |Y | ≤
n
2 . We have

(1) dH (X) = dH (Z) − dH (X) = n − dH (X) ≤ n − M|X |,

(2) dH (Y ) = n − |Y | and
(3) eG(X, Y ) ≥ |Y |

(
|X | −

z
2 +

εz
2

)
, using the degree bound on Y .

We have to show that dH (X) ≤ eG(X, Y ) + dH (Y ). Using the estimations of the terms, all we have to check
whether

n − M|X | ≤ n − |Y | + |Y |

(
|X | −

z
2

+
εz
2

)
. (11)

It is equivalent to

0 ≤ |Y |

(
|X | −

z
2

+
εz
2

− 1
)

+ M (z − |X |) . (12)

We know that |X | > z
2 , and

εz
2 − 1 > 0, and z − |X | > 0, which gives that 7 is true. This case is also finished.

Case (e) |X | > z
2(1+δ) and |Y | > n

2 .

Letψ =
|X |

z −
1

2(1+δ) , hence, |X | = z
(

1
2(1+δ) + ψ

)
. Letψ0 =

δ
2(1+δ) , as it was defined in Case (c). Again,ψ0 ≤

δ
2 .

We have 0 ≤ ψ ≤
1
2 + ψ0 ≤

1+δ
2 .

Let φ =
|Y |

n −
1
2 , hence, |Y | = n

( 1
2 + φ

)
.

We have

(1) dH (X) ≤ zM(1 + δ)
(

1
2(1+δ) + ψ

)
≤ n(1 + δ)

(
1

2(1+δ) + ψ

)
,

(2) dH (Y ) = n
( 1
2 − φ

)
and

(3) eG(X, Y ) ≥ z
(

1
2(1+δ) + ψ

)
(φ + ε)n.
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We have to show again that dH (X) ≤ eG(X, Y )+dH (Y ). Using the estimation of the terms it is sufficient to show
that

n(1 + δ)
(

1
2(1 + δ)

+ ψ

)
≤ n

(
1
2

− φ

)
+ z

(
1

2(1 + δ) + ψ

)
(φ + ε)n. (13)

It is equivalent to

ψ(1 + δ) ≤ −φ + z
(

1
2(1 + δ)

+ ψ

)
(φ + ε). (14)

Using ψ ≤
1+δ
2 and δ ≤

ε
10 , the left hand side of (14) is at most

1 + δ

2
(1 + δ) ≤

1 +
1
20

2

(
1 +

1
20

)
<

3
5
, (15)

as ε ≤
1
2 .

The right hand side of (14) is

φ
z − 2(1 + δ)
2(1 + δ)

+
z

2(1 + δ)
ε + zψ(φ + ε). (16)

The first and the last term of (16) is always positive.
The middle term can be easily bounded since zε > 2, and 1

1+δ >
1

1+1/20 =
20
21 .

This means that (16) is at least 20
21 , which is more than 3

5 . This finishes the proof of this case. □

Proof (Theorem 4). First, form a partition C0, C1, . . . , Ck of S in the graph H . For i > 0 let u ∈ Ci if and only if

ε4

100
n

log n
·

1
(1 + δ)i−1 ≥ dH (u) >

ε4

100
n

log n
·

1
(1 + δ)i

(17)

with δ =
ε
10 . Let C0 be the class of the isolated points in S. Note that the number of partition classes, k is log1+δn = log1+ ε

10
n =

log n
log(1+ ε

10 )
= c log n.

Now, we embed the partition of S into A. Take a random ordering of the vertices of A. Say this is (v1, . . . , vn). The first |C1|

vertices of A form A1, the vertices |C1| + 1st, . . . , |C1| + |C2|th form A2 etc., while C0 maps to the last |C0| vertices. Obviously,
C0 can be always embedded, as it contains only isolated vertices.

We say that a partition class Ci is small if |Ci| ≤
16
ε2

log n.
We claim that the total size of the neighbourhood in B of small classes is at most εn4 .
The size of the neighbourhood of Ci is at most

ε4

100
n

log n
·

1
(1 + δ)i−1 ·

16
ε2

log n. (18)

If we sum up, we have that the total size of the neighbourhood of small classes is at most
k∑

i=1

ε4

100
n

log n
·

1
(1 + δ)i−1 ·

16
ε2

log n =
4
25
ε2n

k−1∑
i=0

1
(1 + δ)i

≤
4
25
ε2n

1 + δ

δ
≤

4
25
ε2n

3/20
ε/10

≤
εn
4
. (19)

The vertices of the small classes can be dealt with using a greedy method: if vi is in a small class, choose randomly dH (vi) of
its neighbours, and fix these edges. After we finished fixing these edges, the degrees of the vertices of B are still larger than( 1
2 +

ε
2

)
n.

Continue with the large classes Ci1 , . . . , Ciℓ and form a random partition E1, . . . , Eℓ of the unused vertices in B such that
|Ej| =

∑
u∈Cij

dH (u). We will consider the pairs (Cij , Ej).
We will show that the conditions of Lemma 8 are satisfied for (Cij , Ej), then we apply Lemma 8 with ε

2 instead of ε, and
we get an embedding in each pair (Cij , Ej), which gives an embedding of H into G.

Conditions 2 and 3 are immediate.
For Conditions 1a and 1b we have to show that for any j every vertex y ∈ Ej has at least

( 1
2 +

ε
4

)
z neighbours in Di and

every vertex x ∈ Cij has at least
( 1
2 +

ε
2

)
z in Ej.

For this, we will use the martingale technique (see [1]).
Let |Cij | = z. We know z > 16

ε2
log n, as Cij is large.

Let y ∈ Ej be fixed. Consider the random variable X = |N(y) ∩ Cij |.



154 B. Vásárhelyi / Discrete Applied Mathematics 227 (2017) 149–155

Define the following chain: Z0 = EX ,Z1 = E[X |v1],Z2 = E[X |v1, v2]; in general, Zk = E[X |v1, . . . , vk] for 1 ≤ k ≤ n.
In otherwords,Zk is the expectation ofX with the condition thatwe already know v1, . . . , vk. This chain of random variables
define a martingale (see Chapter 8.3 of the book of Matoušek and Vondrák [12]) with martingale differences Zk −Zk−1 ≤ 1.

According to the Azuma–Hoeffding inequality [2,8] we have the following lemma:

Lemma 9 (Azuma [2]). If Z is a martingale with martingale differences at most 1, then for any j and t the following holds:

P
(
Zj ≥ EZj − t

)
≥ 1 − e−

t2
2j . (20)

The conditional expected value E(Zz |Z0) is EZz =
( 1
2 +

3ε
4

)
z.

Lemma 9 shows that

P
(
Zz ≥

(
1
2

+
ε

2

)
z
)

≥ 1 − e−
ε2z2/4

2z = 1 − e−ε2z/8. (21)

We say that a vertex v ∈ Ej is bad, if it has less than
( 1
2 +

ε
2

)
z neighbours in Cij . Lemma 9 means that a vertex v is bad with

probability at most e−ε2z/8. As we have n vertices in B, the probability of the event that any vertex is bad is less than

n · e−ε2z/8 <
1
n
, (22)

as z > 16
ε2

log n.
Thenwe have thatwith probability 1−

1
n no vertex in Ej is bad. Thus, Condition (ii) of Lemma 8 is satisfiedwith probability

1 for any pair (Cij , Ej).
Using Lemma 9, we can also show that each x ∈ Cij has at least

( 1
2 +

ε
2

)
|Ej| neighbours in Ej with probability 1.

Thus, the conditions of Lemma 8 are satisfied, and we can embed H into G. The proof of Theorem 4 is finished. □

4. Remark

In the bipartite discrete tomography problem we are given two bigraphic sequences π1 and π2 on the vertex set (A, B),
where |A| = |B| = n. The goal is to colour the edges of K (A, B) by red, blue and grey such that for each v ∈ A ∪ B the blue
degree of v is π1(v), its red degree is π2(v), and its grey degree is n − π1(v) − π2(v).

A previous result in this field is the following theorem.

Theorem 10 (Diemunsch et al. [4]). Let π1 and π2 be bigraphic sequences with parts of sizes r and s, and ∆i = ∆(πi) and
δi = δ(πi) for i = 1, 2 such that ∆1 ≤ ∆2 and δ1 ≥ 1. If

∆1∆2 ≤ δ1
r + s
8
, (23)

then π1 and π2 pack.

In Theorem 4, we study an ‘‘ordinary’’ packing problem. However, inspecting the proof one obtains the following result
in discrete tomography.

Assume the conditions of Theorem4. Letπ1 be the bipartite degree sequence of G̃, andπ2 be the bipartite degree sequence
of H . Consider a fixed order realization π̃1 and π̃2 of them, where π̃1 is an arbitrary, and π̃2 is a random realization. Then,
with probability tending to 1, π̃1 and π̃2 pack.

Hence, in certain cases for most orderings we can improve the bounds of Theorem 10.
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ABSTRACT
Assume that we are given two graphic sequences, π1 and π2.
We consider conditions for π1 and π2 which guarantee that
there exists a simple graph G2 realizing π2 such that G2 is
the subgraph of any simple graph G1 that realizes π1.

Categories and Subject Descriptors
G.2.2 [Graph theory]: Extremal graph theory; Matchings
and factors; Graph coloring

General Terms
Graph theory

Keywords
degree sequence, embedding, extremal graph theory

1. INTRODUCTION
All graphs considered in this paper are simple. We use stan-
dard graph theory notation, see for example [4]. Let us
provide a short list of a few perhaps not so common no-
tions, notations. Given a bipartite graph G(A,B) we call it
balanced if |A| = |B|. This notion naturally generalizes for
r-partite graphs with r ∈ N, r ≥ 2.

If S ⊂ V for some graph G = (V,E), then the subgraph
spanned by S is denoted by G[S]. Moreover, let Q ⊂ V so
that S∩Q = ∅, then G[S,Q] denotes the bipartite subgraph
of G on vertex classes S and Q, having every edge of G that
connects a vertex of S with a vertex of Q. The number of
edges of a graph is denoted by e(G). The chromatic number
of a graph G is χ(G). The complete graph on n vertices is
denoted by Kn, the complete bipartite graph with vertex
class sizes n and m is denoted by Kn,m.
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tional Research, Development and Innovation Office - NK-
FIH Fund No. SNN-117879.
†Supported by TÁMOP-4.2.2.B-15/1/KONV-2015-0006.

A finite sequence of natural numbers π = (d1, . . . , dn) is a
graphic sequence or degree sequence if there exists a graph
G such that π is the (not necessarily) monotone degree se-
quence of G. Such a graph G realizes π. The largest value
of π is denoted by ∆(π). We sometimes refer to the value of
π at vertex v as π(v).

Let G and H be two graphs on n vertices. They pack if
there exist edge-disjoint copies of G and H in Kn. Two
degree sequences π1 and π2 pack, if there are graphs G1 and
G2 realizing π1 and π2, respectively, such that G1 and G2

pack. Equivalently, G1 and G2 pack if and only if G1 ⊂ G2,
that is, G1 can be embedded into G2, where G denotes the
complement of G.

It is an old an well-understood problem in graph theory to
tell whether a given sequence of natural numbers is a degree
sequence or not. We consider a generalization of it, which is
remotely related to the so-called discrete tomography [3] (or
degree sequence packing) problem as well‡. The question
whether a sequence π of n numbers is a degree sequence
can be formulated as follows: Does Kn have a subgraph
H such that the degree sequence of H is π? The question
becomes more general if Kn is replaced by some (simple)
graph G on n vertices. If the answer is yes, we say that π
can be embedded into G, or equivalently, π packs with G.
In order to state our main result let δ(G) and ∆(G) denote
the minimum and maximum degree of G, respectively. We
prove the following.

Theorem 1. For every ε > 0 and D ∈ N there exists an
n0 = n0(ε,D) such that for all n > n0 if G is a graph on n
vertices with δ(G) ≥ n

2
+ εn and π is a degree sequence of

length n with ∆(π) ≤ D, then π is embeddable into G.

We also state Theorem 1 in an equivalent complementary
form, as a packing problem.

Theorem 2. For every ε > 0 and D ∈ N there exists an
n0 = n0(ε,D) such that for all n > n0 if π1 and π2 are
graphic sequences of length n satisfying ∆(π1) <

(
1
2
− ε

)
n

and ∆(π2) ≤ D then there exists a graph G2 that realizes π2

and packs with any G1 realizing π1.

It is easy to see that Theorem 1 is sharp up to the εn ad-
ditive term. For that let n be an even number, and sup-

‡This relation is discussed in the full version of the paper
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pose that every element of π is 1. Then the only graph
that realizes π is the union of n/2 vertex disjoint edges. Let
G = Kn/2−1,n/2+1 be the complete bipartite graph with ver-
tex class sizes n/2− 1 and n/2 + 1. Clearly G does not have
n/2 vertex disjoint edges.

2. PROOF OF THEOREM 1
We are going to construct a 3-colorable graph H that realizes
π and has the following properties. There exists A ⊂ V =
V (H) such that

(1) |A| ≤ 5∆3(π),

(2) the components of H[V − A] are balanced complete
bipartite graphs, each having size at most 2∆(π),

(3) χ(H[A]) = 3 if A is non-empty, and

(4) e(H[A, V −A]) = 0.

In order to construct H we will use two types of ”gadgets”.
Type 1 gadgets are balanced complete bipartite graphs on 2k
vertices, where k ∈ {1, . . . ,∆(π)}, these are the components
of H[V − A]. Type 2 gadgets are composed of at least two
type 1 gadgets and at most two other vertices, these are the
components of H[A].

We find type 1 gadgets with the following algorithm.

Algorithm 3. Assign the elements of π arbitrarily to V.
Set every vertex active. Let k = 1.

Step 1 If there are at least 2k active vertices with degree
k, then take any 2k such vertices, create a balanced
complete bipartite graph on these 2k vertices, and
then unactivate them.

Step 2 If the number of active vertices with degree k drops
below 2k, set k = k + 1.

Step 3 If k ≤ ∆(π), then go to Step 1. Else stop the algo-
rithm.

This way we obtain several components, each being a bal-
anced complete bipartite graph. These are type 1 gadgets.
It is easy to see that for every k ∈ {1, . . . ,∆(π)} at most
2k−1 vertices are left out from the union of type 1 gadgets,
a total of at most ∆2(π) − 2∆(π) vertices. Furthermore, if
a vertex v belongs to some type 1 gadget, then its degree is
exactly π(v).

Let R denote the set of vertices that are uncovered by the
above set of type 1 gadgets. As we noted earlier |R| ≤
∆(π)2 − 2∆(π). In order to get the right degrees for the
vertices of R we construct type 2 gadgets, using some type
1 gadgets as well.

Notice first that the sum of the degrees of the vertices of
R must be an even number, hence, Ro, the subset of R
containing the odd degree vertices, has an even number of
elements. Find |Ro|/2 disjoint pairs in Ro, and join vertices
by a new edge that belong to the same pair. With this we
get that every vertex of R misses an even number of edges.

We construct the type 2 gadgets using the following algo-
rithm.

Algorithm 4. Set every type 1 gadget unmarked and
every vertex in R−Ro uncolored.

Step 1 Choose an uncolored vertex v from R−Ro and color
it.

Step 2 Choose a type 1 unmarked gadget K and mark it.

Step 3 Choose an arbitrary perfect matching MK in K
(MK exists since K is a balanced complete bipartite
graph).

Step 4 Choose an arbitrary xy edge in MK .

Step 5 Replace the edge xy with the new edges vx and vy.

Step 6 If v is still missing edges, then if MK is not empty,
go to Step 4, else go to Step 2.

Step 7 If v reaches its desired degree and there are still
uncolored vertices in R−Ro, then go to Step 1, else
stop the algorithm

It is easy to see that in π(v)/2 steps v reaches its desired
degree, while the degrees of vertices in the marked type 1
gadgets have not changed. It is straightforward to use this
algorithm for vertices in Ro, since each of these miss an even
number of edges.

Figure 1 shows examples of type 2 gadgets. Let F ⊂ H
denote the subgraph containing the union of all type 2 gad-
gets, thus F = H[A]. Observe that type 2 gadgets of F are
3-chromatic, and all have less than 5∆2(π) vertices. This
easily implies the following claim.

Claim 5. We have that |V (F )| ≤ 5∆3(π).

We are going to show that H ⊂ G. For that we first em-
bed the 3-chromatic part F using the following strength-
ening of the Erdős–Stone theorem proved by Chvátal and
Szemerédi [1].

Theorem 6. Let ϕ > 0 and assume that G is a graph on
n vertices where n is sufficiently large. Let r ∈ N, r ≥ 2. If

|E(G)| ≥
(

r − 2

2(r − 1)
+ ϕ

)
n2,

then G contains a Kr(t), i.e. a complete r-partite graph with
t vertices in each class, such that

t >
logn

500 log 1
ϕ

. (1)

Since δ(G) ≥ n/2+εn, the conditions of Theorem 6 are sat-
isfied with r = 3 and ϕ = ε/2, hence, G contains a balanced
complete tripartite subgraph T on Ω(logn) vertices. Using
Claim 5 and the 3-colorability of F this implies that F ⊂ T.
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Figure 1: Type 2 gadgets of H with a 3-coloring

Observe that after embedding F into G every uncovered
vertex still has at least δ(G)−v(F ) > n/2+εn/2 uncovered
neighbors. Denoting the uncovered subgraph of G by G′ we
obtain that δ(G′) > n/2 + εn/2.

We need a definition from [2].

Definition 7. [2] A graph H on n vertices is well-separable,
if it has a subset S ⊂ V (H) of size o(n) such that all com-
ponents of H − S are of size o(n).

In order to prove that H − F ⊂ G′ we will apply a special
case of the main theorem of [2], which is as follows:

Theorem 8. [2] For every γ > 0 and positive integer
D there exists an n0 such that for all n > n0 if J is a
bipartite well-separable graph on n vertices, ∆(J) ≤ ∆ and
δ(G) ≥

(
1
2

+ γ
)
n for a graph G of order n, then J ⊂ G.

Since H − F has bounded size components, we can apply
Theorem 8 for H − F and G′, with parameter γ = ε/2.
With this we finished proving what was desired.

3. A GENERALIZATION
While Theorem 1 is best possible up to the εn additive term,
if π has a special property, one can claim much more as The-
orem 9 shows below. Let us call a bipartite graph H(A,B)
u-unbalanced if |A| = u|B| for some u ∈ N. A bipartite de-
gree sequence π is u-unbalanced if π can be realized by a
u-unbalanced bipartite graph. We need the notion of edit
distance of graphs: the edit distance between two graphs on
the same labeled vertex set is defined to be the size of the
symmetric difference of the edge sets.

A generalization of Theorem 1 is the following:

Theorem 9. For every ε > 0 and D,u ∈ N there exist an
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n0 = n0(ε, u) and a K = K(ε,D, u) such that if n ≥ n0, π is
a u-unbalanced degree sequence of length n with ∆(π) ≤ D,
G is a graph on n vertices with δ(G) ≥ n

u+1
+ εn, then there

exists a graph G′ on n vertices so that the edit distance of
G and G′ is at most K, and π is embeddable into G′.

Hence, if π is unbalanced, the minimum degree requirement
of Theorem 1 can be substantially decreased, what we pay
for this is the ”almost embedding” of π. For example, if π is
a 10-unbalanced bounded degree sequence of length n and
G is a graph on n vertices having δ(G) ≥ n/11+εn for some
ε > 0, then after deleting/adding a constant number (i.e. a
function of ε§) of edges, we obtain a graph G′ from G into
which π can be embedded.

In another direction, one can also show that if π has little
less elements than the number of vertices in G, then π can
be embedded into G under very similar conditions.

Theorem 10. For every ε > 0 and D,u ∈ N there exist
an n0 = n0(ε, u) and an M = M(ε,D, u) such that if n ≥
n0, π is a u-unbalanced degree sequence of length n with
∆(π) ≤ D, G is a graph on n + M vertices with δ(G) ≥
n+M
u+1

+ ε(n+M), then π is embeddable into G.

The proofs of Theorem 9 and Theorem 10 are much more
involved than that of Theorem 1, they are given in the full
version of the paper. Let us note that the conditions for
δ(G) are best possible in the above theorems up to the εn
additive term.
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Assume that we are given two graphic sequences, π1 and π2. We consider condi-
tions for π1 and π2 which guarantee that there exists a simple graph G2 realizing
π2 such that G2 is the subgraph of any simple graph G1 that realizes π1.

Povzetek:

1 Introduction

All graphs considered in this paper are sim-
ple. We use standard graph theory notation,
see for example [16]. Let us provide a short
list of a few perhaps not so common notions,
notations. Given a bipartite graph G(A,B)
we call it balanced if |A| = |B|. This notion
naturally generalizes for r-partite graphs with
r ∈ N, r ≥ 2.

If S ⊂ V for some graph G = (V,E) then the
subgraph spanned by S is denoted by G[S].
Moreover, let Q ⊂ V so that S ∩Q = ∅, then
G[S,Q] denotes the bipartite subgraph of G
on vertex classes S and Q, having every edge
of G that connects a vertex of S with a vertex
of Q. The number of vertices in G is denoted
by v(G), the number of its edges is denoted
by e(G). The degree of a vertex x ∈ V (G)
is denoted by degG(x), or if G is clear from
the context, by deg(x). The number of neigh-
bors of x in a subset S ⊂ V (G) is denoted
by degG(x, S), and δ(G) and ∆(G) denote the

minimum and maximum degree of G, respec-
tively. The complete graph on n vertices is
denoted by Kn, the complete bipartite graph
with vertex class sizes n and m is denoted by
Kn,m.

A finite sequence of natural numbers π =
(d1, . . . , dn) is a graphic sequence or degree se-
quence if there exists a graph G such that π
is the (not necessarily) monotone degree se-
quence of G. Such a graph G realizes π. For
example, the degree sequence π = (2, 2, . . . , 2)
can be realized only by vertex-disjoint union
of cycles.

The largest value of π is denoted by ∆(π). Of-
ten the positions of π will be identified with
the elements of a vertex set V . In this case,
we write π(v) (v ∈ V ) for the corresponding
component of π.

The degree sequence π = (a1, . . . , ak;
b1, . . . , bl) is a bigraphic sequence if there exists
a simple bipartite graph G = G(A,B) with
|A| = k, |B| = l realizing π such that the de-
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grees of vertices in A are a1, . . . , ak, and the
degrees of the vertices of B are b1, . . . , bl.

Let G and H be two graphs on n vertices. We
say that H is a subgraph of G, if we can delete
edges from G so that we obtain an isomor-
phic copy of H. We denote this relation by
H ⊂ G. In the literature the equivalent com-
plementary formulation can be found as well:
we say that H and G pack if there exist edge-
disjoint copies of H and G in Kn. Here G
denotes the complement of G.

It is an old an well-understood problem in
graph theory to tell whether a given sequence
of natural numbers is a degree sequence or not.
We consider a generalization of it, which is re-
motely related to the so-called discrete tomog-
raphy1 (or degree sequence packing) problem
(see e.g. [5]) as well. The question whether a
sequence of n numbers π is a degree sequence
can also be formulated as follows: Does Kn

have a subgraph H such that the degree se-
quence of H is π? The question becomes more
general if Kn is replaced by some (simple)
graph G on n vertices. If the answer is yes, we
say that π can be embedded into G, or equiva-
lently, π packs with G.

Let us mention two classical results in ex-
tremal graph theory.

Theorem 1 (Dirac, [6]). Every graph G with
n ≥ 3 vertices and minimum degree δ(G) ≥ n

2

has a Hamilton cycle.

Theorem 2 (Corrádi-Hajnal, [3]). Let k ≥ 1,
n ≥ 3k, and let H be an n-vertex graph with
δ(H) ≥ 2k. Then H contains k vertex-disjoint
cycles.

1In the discrete tomography problem we are given
two degree sequences of length n, π1 and π2, and the
questions is whether there exists a graph G on n ver-
tices with a red-blue edge coloration so that the fol-
lowing holds: for every vertex v the red degree of v is
π1(v) and the blue degree of v is π2(v).

Observe, that Dirac’s theorem implies that
given a constant 2 degree sequence π of length
n and any graph G on n vertices having min-
imum degree δ(G) ≥ n/2, π can be embedded
into G. One can interprete the Corrádi-Hajnal
theorem similarly, but here one may require
more on the structure of the graph that real-
izes π and in exchange a larger minimum de-
gree of G is needed.

One of our main results is the following.

Theorem 3. For every η > 0 and D ∈ N
there exists an n0 = n0(η,D) such that for
all n > n0 if G is a graph on n vertices with
δ(G) ≥

(
1
2

+ η
)
n and π is a degree sequence of

length n with ∆(π) ≤ D, then π is embeddable
into G.

It is easy to see that Theorem 3 is sharp up to
the ηn additive term. For that let n be an even
number, and suppose that every element of π
is 1. Then the only graph that realizes π is the
union of n/2 vertex disjoint edges. Let G =
Kn/2−1,n/2+1 be the complete bipartite graph
with vertex class sizes n/2 − 1 and n/2 + 1.
Clearly G does not have n/2 vertex disjoint
edges.

In order to state the other main result of the
paper we introduce a new notion.

Definition 4. Let q ≥ 1 be an integer. A
bipartite graph H with vertex classes S and
T is q-unbalanced, if q|S| ≤ |T |. The degree
sequence π is q-unbalanced, if it can be realized
by a q-unbalanced bipartite graph.

Theorem 5. Let q ≥ 1 be an integer. For
every η > 0 and D ∈ N there exist an n0 =
n0(η, q) and an M = M(η,D, q) such that if
n ≥ n0, π is a q-unbalanced degree sequence of
length n−M with ∆(π) ≤ D, G is a graph on
n vertices with δ(G) ≥ ( 1

q+1
+ η)n, then π can

be embedded into G.

Hence, if π is unbalanced, the minimum degree
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requirement of Theorem 3 can be substantially
decreased, what we pay for this is that the
length of π has to be slightly smaller than the
number of vertices in the host graph.

2 Proof of Theorem 3

Proof. First, we find a suitable realization H
of π, our H will consists of components of
bounded size. Second, we embed H into G us-
ing a theorem by Chvátal and Szemerédi and
a result on embedding so called well-separable
graphs. The details are as follows.

We construct H in several steps. At the be-
ginning, let H be the empty graph and let
all degrees in π be active. While we can find
2i active degrees of π with value i (for some
1 ≤ i ≤ ∆(π)) we realize them with a Ki,i

(that is, we add this complete bipartite graph
to H, and the 2i degrees are “inactivated”).

When we stop we have at most
∑∆(π)

i=1 (2i− 1)
active degrees. This way we obtain several
components, each being a balanced complete
bipartite graph. These are the type 1 gadgets.
Observe that if a vertex v belongs to some type
1 gadget, then its degree is exactly π(v). Ob-
serve further that if there are no active degrees
in π at this point then the graph H we have
just found is a realization of π.

Assume that there are active degrees left in π.
Let R = Rodd ∪Reven be the vertex set that is
identified with the active vertices (v ∈ Rodd

if and only if the assigned active degree is
odd). Since

∑
v∈R

d(v) must be an even num-

ber we have that |Rodd| is even. Add a perfect
matching on Rodd to H. With this we achieved
that every vertex of R misses an even number
of edges.

Next we construct the type 2 gadgets using the
following algorithm. In the beginning every
type 1 gadget is unmarked. Suppose that v ∈

R is an active vertex. Take a type 1 gadget
K, mark it, and let MK denote an arbitrarily
chosen perfect matching in K (MK exists since
K is a balanced complete bipartite graph). Let
xy be an arbitrary edge in MK . Delete the xy
edge and add the new edges vx and vy. While
v is missing edges repeat the above procedure
with edges of MK , until MK becomes empty.
If MK becomes empty, take a new unmarked
type 1 gadget L, and repeat the method with
L. It is easy to see that in π(v)/2 steps v
reaches its desired degree and gets inactivated.
Clearly, the degrees of vertices in the marked
type 1 gadgets have not changed.
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Figure 1: Type 2 gadgets of H with a 3-coloring

Figure 1 shows examples of type 2 gadgets. In
the upper one two vertices of Rodd were first
connected by an edge and then two type 1 gad-
gets were used so that they could reach their
desired degree, while in the lower one we used
three type 1 gadgets for a vertex of R. The
numbers at the vertices indicate the colors in
the 3-coloring of H.

Let A ⊂ V (H) denote the set of vertices con-
taining the union of all type 2 gadgets. Ob-
serve that type 2 gadgets are 3-colorable and
all have less than 5∆2(π) vertices. Let us sum-
marize our knowledge about H for later refer-
ence.
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Claim 6. (1) |A| ≤ 5∆3(π),

(2) the components of H[V − A] are balanced
complete bipartite graphs, each having size
at most 2∆(π),

(3) χ(H[A]) ≤ 3, and

(4) e(H[A, V − A]) = 0.

We are going to show that H ⊂ G. For that
we first embed the possibly 3-chromatic part
H[A] using the following strengthening of the
Erdős–Stone theorem proved by Chvátal and
Szemerédi [2].

Theorem 7. Let ϕ > 0 and assume that G
is a graph on n vertices where n is sufficiently
large. Let r ∈ N, r ≥ 2. If

e(G) ≥
(

r − 2

2(r − 1)
+ ϕ

)
n2,

then G contains a Kr(t), i.e. a complete r-
partite graph with t vertices in each class, such
that

t >
log n

500 log 1
ϕ

. (1)

Since δ(G) ≥ (1/2+η)n, the conditions of The-
orem 7 are satisfied with r = 3 and ϕ = η/2,
hence, G contains a balanced complete tripar-
tite subgraph T on Ω(log n) vertices. Using
Claim 6 and the 3-colorability of H[A] this im-
plies that H[A] ⊂ T .

Observe that after embedding H[A] into G ev-
ery uncovered vertex of G still has at least
δ(G)− v(F ) > (1/2 + η/2)n uncovered neigh-
bors. Denoting the subgraph of the uncovered
vertices of G by G′ we obtain that δ(G′) >
(1/2 + η/2)n.

In order to prove that H[V −A] ⊂ G′ we first
need a definition.

Definition 8. A graph F on n vertices is well-
separable if it has a subset S ⊂ V (F ) of size

o(n) such that all components of F − S are of
size o(n).

We need the following theorem.

Theorem 9 ([4]). For every γ > 0 and posi-
tive integer D there exists an n0 such that for
all n > n0 if F is a bipartite well-separable
graph on n vertices, ∆(F ) ≤ D and δ(G) ≥(

1
2

+ γ
)
n for a graph G of order n, then F ⊂

G.

Since H[V −A] has bounded size components
by Claim 6, we can apply Theorem 9 forH[V −
A] and G′, with parameter γ = η/2. With this
we finished proving what was desired.

3 Further tools for

Theorem 5

When proving Theorem 3, we used the Reg-
ularity Lemma of Szemerédi, but implicitly,
via the result on embedding well-separable
graphs. When proving Theorem 5 we will ap-
ply this very powerful result explicitly, hence,
below we give a very brief introduction to the
area. The interested reader may consult with
the original paper by Szemerédi [15] or e.g.
with the survey paper [10].

3.1 Regularity Lemma

The density between disjoint sets X and Y is
defined as:

d(X, Y ) =
e(X, Y )

|X||Y | .

We will need the following definition to state
the Regularity Lemma.
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Definition 10 (Regularity condition). Let
ε > 0. A pair (A,B) of disjoint vertex-sets in
G is ε-regular if for every X ⊂ A and Y ⊂ B,
satisfying

|X| > ε|A|, |Y | > ε|B|

we have

|d(X, Y )− d(A,B)| < ε.

This definition implies that regular pairs are
highly uniform bipartite graphs; namely, the
density of any reasonably large subgraph is al-
most the same as the density of the regular
pair.

We will use the following form of the Regular-
ity Lemma:

Lemma 11 (Degree Form). For every ε > 0
there is an M = M(ε) such that if G = (W,E)
is any graph and d ∈ [0, 1] is any real number,
then there is a partition of the vertex set V into
` + 1 clusters W0,W1, . . . ,W`, and there is a
subgraph G′ of G with the following properties:

• ` ≤M ,

• |W0| ≤ ε|W |,

• all clusters Wi, i ≥ 1, are of the same size

m
(
≤
⌊
|W |
`

⌋
< ε|W |

)
,

• degG′(v) > degG(v) − (d + ε)|W | for all
v ∈ W ,

• G′|Wi
= ∅ (Wi is an independent set in

G′) for all i ≥ 1,

• all pairs (Wi,Wj), 1 ≤ i < j ≤ `, are
ε-regular, each with density either 0 or
greater than d in G′.

We call W0 the exceptional cluster, W1, . . . ,W`

are the non-exceptional clusters. In the rest of
the paper we will assume that 0 < ε� d� 1.

Here a� b means that a is sufficiently smaller
than b.

Definition 12 (Reduced graph). Apply
Lemma 11 to the graph G = (W,E) with pa-
rameters ε and d, and denote the clusters of
the resulting partition by W0,W1, . . . ,W` (W0

being the exceptional cluster). We construct
a new graph Gr, the reduced graph of G′ in
the following way: The non-exceptional clus-
ters of G′ are the vertices of the reduced graph
Gr (hence v(Gr) = `). We connect two ver-
tices of Gr by an edge if the corresponding two
clusters form an ε-regular pair with density at
least d.

The following corollary is immediate:

Corollary 13. Apply Lemma 11 with param-
eters ε and d to the graph G = (W,E) sat-
isfying δ(G) ≥ γn (v(G) = n) for some
γ > 0. Denote Gr the reduced graph of G′.
Then δ(Gr) ≥ (γ − θ)`, where θ = 2ε+ d.

The (fairly easy) proof of the lemma below can
be found in [10].

Lemma 14. Let (A,B) be an ε-regular–pair
with density d for some ε > 0. Let c > 0
be a constant such that ε � c. We arbitrar-
ily divide A and B into two parts, obtaining
the non-empty subsets A′, A′′ and B′, B′′, re-
spectively. Assume that |A′|, |A′′| ≥ c|A| and
|B′|, |B′′| ≥ c|B|. Then the pairs (A′, B′),
(A′, B′′), (A′′, B′) and (A′′, B′′) are all ε/c–
regular pairs with density at least d− ε/c.

3.2 Blow-up Lemma

Let H and G be two graphs on n vertices. As-
sume that we want to find an isomorphic copy
of H in G. In order to achieve this one can ap-
ply a very powerful tool, the Blow-up Lemma
of Komlós, Sárközy and Szemerédi [8, 9]. For
stating it we need a new notion, a stronger
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one-sided property of regular pairs.

Definition 15 (Super-Regularity condition).
Given a graph G and two disjoint subsets
of its vertices A and B, the pair (A,B) is
(ε, δ)-super-regular, if it is ε-regular and fur-
thermore,

deg(a) > δ|B|, for all a ∈ A,

and

deg(b) > δ|A|, for all b ∈ B.

Theorem 16 (Blow-up Lemma). Given a
graph R of order r and positive integers δ,∆,
there exists a positive ε = ε(δ,∆, r) such
that the following holds: Let n1, n2, . . . , nr
be arbitrary positive parameters and let us
replace the vertices v1, v2, . . . , vr of R with
pairwise disjoint sets W1,W2, . . . ,Wr of sizes
n1, n2, . . . , nr (blowing up R). We construct
two graphs on the same vertex set V = ∪iWi.
The first graph F is obtained by replacing each
edge vivj ∈ E(R) with the complete bipartite
graph between Wi and Wj. A sparser graph G
is constructed by replacing each edge vivj arbi-
trarily with an (ε, δ)-super-regular pair between
Wi and Wj. If a graph H with ∆(H) ≤ ∆ is
embeddable into F then it is already embed-
dable into G.

4 Proof of Theorem 5

Let us give a brief sketch first. Recall, that
π is a q-unbalanced and bounded degree se-
quence with ∆(π) ≤ D. In the proof we
first show that there exists a q-unbalanced
bipartite graph H that realizes π such that
H is the vertex disjoint union of the graphs
H1, . . . , Hk, where each Hi graph is a bipar-
tite q-unbalanced graph having bounded size.
We will apply the Regularity lemma to G, and
find a special substructure (a decomposition
into vertex-disjoint stars) in the reduced graph
of G. This substructure can then be used to

embed the union of the Hi graphs, for the ma-
jority of them we use the Blow-up lemma.

4.1 Finding H

The goal of this subsection is to prove the
lemma below.

Lemma 17. Let π be a q-unbalanced degree
sequence of positive integers with ∆(π) ≤ D.
Then π can be realized by a q-unbalanced bipar-
tite graph H which is the vertex disjoint union
of the graphs H1, . . . , Hk, such that for every
i we have that Hi is q-unbalanced, moreover,
v(Hi) ≤ 4D2.

Before starting the proof of Lemma 17, we list
a few necessary notions and results.

We call a finite sequence of integers a zero-
sum sequence if the sum of its elements is
zero. The following result of Sahs, Sissokho
and Torf plays an important role in the proof
of Lemma 17.

Proposition 18. [14] Assume that K is a
positive integer. Then any zero-sum sequence
on {−K, . . . ,K} having length at least 2K
contains a proper nonempty zero-sum subse-
quence.

The following result, formulated by Gale [7]
and Ryser [13], will also be useful. We present
it in the form as discussed in Lovász [11].

Lemma 19. [11] Let G = (A,B;E(G)) be a
bipartite graph and f be a nonnegative integer
function on A ∪ B with f(A) = f(B). Then
G has a subgraph F = (A,B;E(F )) such that
dF (x) = f(x) for all x ∈ A ∪B if and only if

f(X) ≤ e(X, Y ) + f(Y ) (2)

for any X ⊆ A and Y ⊆ B, where Y = B−Y .

We remark that such a subgraph F is also
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called an f -factor of G.

Lemma 20. If f = (a1, . . . , as; b1, . . . , bt) is
a sequence of positive integers with s, t ≥
2∆2, where ∆ is the maximum of f , and
f(A) = f(B) with A = {a1, . . . , as} and
B = {b1, . . . , bt} then f is bigraphic.

Proof. All we have to check is whether the con-
ditions of Lemma 19 are met if G = Ks,t.

Suppose indirectly that there is an (X, Y ) pair
for which (2) does not hold. Choose such a
pair with minimal |X| + |Y |. Then X = ∅
or Y = ∅ are impossible, as in those cases (2)
trivially holds. Hence, |X|, |Y | ≥ 1. Assuming
that (2) does not hold, we have that

f(X) ≥ e(X, Y ) + f(Y ) + 1, (3)

which is equivalent to

f(X) ≥ |X||Y |+ f(Y ) + 1, (4)

as G is a complete bipartite graph. Further-
more, using the minimality of |X| + |Y |, we
know that

f(X − a) ≤ |X − a||Y |+ f(Y ) (5)

for any a ∈ X. (5) is equivalent to

f(X)− f(a) ≤ |X||Y | − |Y |+ f(Y ). (6)

From (4) and (6) we have

f(a)− 1 ≥ |Y | (7)

for any a ∈ X, which implies

∆ > |Y |. (8)

The same reasoning also implies that ∆ > |X|
whenever (X, Y ) is a counterexample. There-
fore we only have to verify that (2) holds in

case |X| < ∆ and |Y | < ∆. Recall that
f(B) ≥ t, as all elements of f are positive.
Hence, f(X) ≤ ∆|X| ≤ ∆2, and f(Y ) =
f(B)− f(Y ) ≥ t−∆2, and we get that

f(X) ≤ ∆2 ≤ t−∆2 ≤ f(Y ) ≤ f(Y )+eG(X, Y )
(9)

holds, since t ≥ 2∆2.

Proof. (Lemma 17) Assume that J =(
S, T ;E(J)

)
is a q-unbalanced bipartite graph

realizing π. Hence, q|S| ≤ |T |. Moreover,
|T | ≤ D|S|, since ∆(π) ≤ D. We form ver-
tex disjoint tuples of the form (s; t1, . . . , th),
such that s ∈ S, ti ∈ T, q ≤ h ≤ D, and the
collection of these tuples contains every vertex
of S ∪ T exactly once. We define the bias of
the tuple as

ζ = π(t1) + · · ·+ π(th)− π(s).

Obviously, −D ≤ ζ ≤ D2. The conditions of
Proposition 18 are clearly met with K = D2.
Hence, we can form groups of size at most
2D2 in which the sums of biases are zero.
This way we obtain a partition of (S, T ) into
q-unbalanced set pairs which have zero bias.
While these sets may be small, we can com-
bine them so that each combined set is of size
at least 2D2 and has zero bias. By Lemma 20
these are bigraphic sequences. The realiza-
tions of these small sequences give the graphs
H1, . . . , Hk. It is easy to see that v(Hi) ≤ 4D2

for every 1 ≤ i ≤ k. Finally, we let H =
∪iHi.

4.2 Decomposing Gr

Let us apply the Regularity lemma with pa-
rameters 0 < ε� d� η. By Corollary 13 we
have that δ(Gr) ≥ `/(q + 1) + η`/2.

Let h ≥ 1 be an integer. An h-star is a K1,h.
The center of an h-star is the vertex of degree
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h, the other vertices are the leaves. In case
h = 1 we pick one of the vertices of the 1-star
arbitrarily to be the center.

Lemma 21. The reduced graph Gr has a de-
composition S into vertex disjoint stars such
that each star has at most q leaves.

Proof. Take a partial star-decomposition ofGr

that is as large as possible. Assume that there
are uncovered vertices in Gr. Let U denote
those vertices that are covered (so we assume
that U has maximal cardinality), and let v
be an uncovered vertex. Observe that v has
neighbours only in U, otherwise, if uv ∈ E(Gr)
with u /∈ U , then we can simply add uv to the
star-decomposition, contradicting to the max-
imality of U . See Figure 2 for the possible
neighbors of v.

a) If v is connected to a 1-star, then we can
replace it with a 2-star.

b) If v is connected to the center u of an h-
star, where h < q, then we can replace this
star with an h+ 1-star by adding the edge
uv to the h-star.

c) If v is connected to a leaf u of an h-star,
where 2 ≤ h ≤ q, then replace the star
with the edge uv and an (h − 1)-star (i.e.,
delete u from it).

We have not yet considered one more case:
when v is connected to the center of a q-
star. However, simple calculation shows that
for every vertex v at least one of the above
three cases must hold, using the minimum de-
gree condition of Gr. Hence we can increase
the number of covered vertices. We arrived
at a contradiction, Gr has the desired star-
decomposition.

v

a) b)

c)

d)

Figure 2: An illustration for Lemma 21

4.3 Preparing G for the
embedding

Consider the q-star-decomposition S of GR as
in Lemma 21. Let `i denote the number of
(i−1)-stars in the decomposition for every 2 ≤
i ≤ q + 1. It is easy to see that

q+1∑

i=2

i`i = `.

First we will make every ε-regular pair in S
super-regular by discarding a few vertices from
the non-exceptional clusters. Let for example
C be a star in the decomposition of Gr with
center cluster A and leaves B1, . . . , Bk, where
1 ≤ k ≤ q. Recall that the (A,Bi) pairs has
density at least d. We repeat the following for
every 1 ≤ i ≤ k : if v ∈ A such that v has
at most 2dm/3 neighbors in Bi then discard v
from A, put it intoW0. Similarly, if w ∈ Bi has
at most 2dm/3 neighbors in A, then discard w
from Bi, put it into W0. Repeat this process
for every star in S. We have the following:

Claim 22. We do not discard more than qεm
vertices from any non-exceptional cluster.

Proof. Given a star C in the decomposition S
assume that its center cluster is A and let B
be one of its leaves. Since the pair (A,B) is
ε-regular with density at least d, neither A,
nor B can have more than εm vertices that
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have at most 2dm/3 neighbors in the opposite
cluster. Hence, during the above process we
may discard up to qεm vertices from A. Next,
we may discard vertices from the leaves, but
since no leaf B had more than εm vertices with
less than (d − ε)m neighbors in A, even after
discarding at most qεm vertices of A, there
can be at most εm vertices in B that have less
than (d − (q + 1)ε)m neighbors in A. Using
that ε� d, we have that (d−(q+1)ε) > 2d/3.
We obtained what was desired.

By the above claim we can make every ε-
regular pair in S a (2ε, 2d/3)-super-regular
pair so that we discard only relatively few
vertices. Notice that we only have an upper
bound for the number of discarded vertices,
there can be clusters from which we have not
put any points into W0. We repeat the fol-
lowing for every non-exceptional cluster: if s
vertices were discarded from it with s < qεm
then we take qεm − s arbitrary vertices of it,
and place them into W0. This way every non-
exceptional cluster will have the same number
of points, precisely m− qεm. For simpler no-
tation, we will use the letter m for this new
cluster size. Observe that W0 has increased
by qεm` vertices, but we still have |W0| ≤ 3dn
since ε � d and `m ≤ n. Since qεm � d,
in the resulting pairs the minimum degree will
be at least dm/2.

Summarizing, we obtained the following:

Lemma 23. By discarding a total of at most
qεn vertices from the non-exceptional clus-
ters we get that every edge in S represents
a (2ε, d/2)-super-regular pair, and all non-
exceptional clusters have the same cardinality,
which is denoted by m. Moreover, |W0| ≤ 3dn.

Since v(G)−v(H) is bounded above by a con-
stant, when embedding H we need almost ev-
ery vertex of G, in particular those in the ex-
ceptional cluster W0. For this reason we will
assign the vertices of W0 to the stars in S.

This is not done in an arbitrary way.

Definition 24. Let v ∈ W0 be a vertex and
(Q, T ) be an ε-regular pair. We say that v ∈ T
has large degree to Q if v has at least η|Q|/4
neighbors in Q. Let S = (A,B1, . . . , Bk) be
a star in S where A is the center of S and
B1, . . . , Bk are the leaves, here 1 ≤ k ≤ q. If
v has large degree to any of B1, . . . , Bk, then v
can be assigned to A. If k < q and v has large
degree to A, then v can be assigned to any of
the Bi leaves.

Observation 25. If we assign new vertices to
a q-star, then we necessarily assign them to the
center. Since before assigning, the number of
vertices in the leaf-clusters is exactly q times
the number of vertices in the center cluster, af-
ter assigning new vertices to the star, q times
the cardinality of the center will be larger than
the total number of vertices in the leaf-clusters.
If S ∈ S is a k-star with 1 ≤ k < q, and we
assign up to cm vertices to any of its clusters,
where 0 < c � 1, then even after assigning
new vertices we will have that q times the car-
dinality of the center is larger than the total
number of vertices in the leaf-clusters.

The following lemma plays a crucial role in the
embedding algorithm.

Lemma 26. Every vertex of W0 can be as-
signed to at least η`/4 non-exceptional clus-
ters.

Proof. Suppose that there exists a vertex w ∈
W0 that can be assigned to less than η`/4 clus-
ters. If w cannot be assigned to any cluster of
some k-star Sk with k < q, then the total de-
gree of w into the clusters of Sk is at most
kηm/4. If w cannot be assigned to any cluster
of some q-star Sq, then the total degree of w
into the clusters of Sq is at most m + qηm/4,
since every vertex of the center cluster could
be adjacent to w. Considering that w can be
assigned to at most η`/4− 1 clusters and that
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d(w,W −W0) ≥ n/(q + 1) + ηn/2, we obtain
the following inequality:

n

q + 1
+
ηn

2
≤ d(v,W −W0) ≤ η

`m

4
+

q−1∑

k=1

(k + 1)η
`k+1m

4
+ qη

`q+1m

4
+ `q+1m.

Using m` ≤ n and
∑q

k=1(k + 1)`k+1 = `, we
get

m`

q + 1
+
ηm`

2
≤ η

`m

4
+ (`− `q+1)

ηm

4
+

qη
`q+1m

4
+ `q+1m.

Dividing both sides by m and cancellations
give

`

q + 1
≤ q

η`q+1

4
+ (1− η

4
)`q+1.

Noting that (q + 1)`q+1 ≤ `, one can easily
see that we arrived at a contradiction. Hence
every vertex of W0 can be assigned to several
non-exceptional clusters.

Lemma 26 implies the following:

Lemma 27. One can assign the vertices of
W0 so that at most

√
dm vertices are assigned

to non-exceptional clusters.

Proof. Since we have at least η`/4 choices for
every vertex, the bound follows from the in-
equality 4|W0|

η`
≤
√
dm, where we used d � η

and |W0| ≤ 3dn.

Observation 28. A key fact is that the num-
ber of newly assigned vertices to a cluster is
much smaller than their degree into the oppo-
site cluster of the regular pair since

√
dm �

ηm/4.

4.4 The embedding algorithm

The embedding is done in two phases. In the
first phase we cover every vertex that belonged
to W0, together with some other vertices of the
non-exceptional clusters. In the second phase
we are left with super-regular pairs into which
we embed what is left from H using the Blow-
up lemma.

4.4.1 The first phase

Let (A,B) be an ε-regular cluster-edge in the
h-star C ∈ S. We begin with partitioning A
and B randomly, obtaining A = A′ ∪ A′′ and
B = B′ ∪ B′′ with A′ ∩ A′′ = B′ ∩ B′′ = ∅.
For every w ∈ A (except those that came from
W0) flip a coin. If it is heads, we put w into A′,
otherwise we put it into A′′. Similarly, we flip
a coin for every w ∈ B (except those that came
from W0) and depending on the outcome, we
either put the vertex into B′ or into B′′. The
proof of the following lemma is standard, uses
Chernoff’s bound (see in [1]), we omit it.

Lemma 29. With high probability, that is,
with probability at least 1 − 1/n, we have the
following:

•
∣∣|A′| − |A′′|

∣∣ = o(n) and
∣∣|B′| − |B′′|

∣∣ =
o(n)

• deg(w,A′), deg(w,A′′) > deg(w,A)/3 for
every w ∈ B

• deg(w,B′), deg(w,B′′) > deg(w,B)/3 for
every w ∈ A

• the density d(A′, B′) ≥ d/2

It is easy to see that Lemma 29 implies that
(A′, B′) is a (5ε, d/6)-super-regular pair having
density at least d/2 with high probability.

Assume that v was an element of W0 before
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we assigned it to the cluster A, and assume
further that deg(v,B) ≥ ηm/4. Since (A,B)
is an edge of the star-decomposition, either A
or B must be the center of C.

Let Hi be one of the q-unbalanced bipartite
subgraphs of H that has not been embedded
yet. We will use Hi to cover v. Denote Si and
Ti the vertex classes of Hi, where |Si| ≥ q|Ti|.
Let Si = {x1, . . . , xs} and Ti = {y1, . . . , yt}.

If A is the center of C then the vertices of Ti
will cover vertices of A′, and the vertices of Si
will cover vertices of B′. If B is the center, Si
and Ti will switch roles. The embedding of Hi

is essentially identical in both cases, so we will
only discuss the case when A is the center.2

In order to cover v we will essentially use a
well-known method called Key lemma in [10].
We will heavily use the fact that

0 < ε� d� η.

The details are as follows. We construct an
edge-preserving injective mapping ϕ : Si ∪
Ti −→ A′ ∪ B′. In particular, we will have
ϕ(Si) ⊂ B′ and ϕ(Ti) − v ⊂ A′. First we
let ϕ(y1) = v. Set N1 = N(v) ∩ B′. Using
Lemma 29 we have that |N1| ≥ ηm/12� εm.

Next we find ϕ(y2). Since |N1| � εm, by 5ε-
regularity the majority of the vacant vertices
of A′ will have at least d|N1|/3 neighbors in
N1. Pick any of these, denote it by v2 and let
ϕ(y2) = v2. Also, set N2 = N1 ∩N(v2).

In general, assume that we have already found
the vertices v2, v3, . . . , vi, their common neigh-
borhood in B′ is Ni, and

|Ni| ≥
ηdi−1

3i−2 · 36
m� εm.

By 5ε-regularity, this implies that the major-
ity of the vacant vertices of A′ has large de-
gree into Ni, at least d · |Ni|/3, and this, as

2Recall that if h < q then we may assigned v to a
leaf, so in such a case B could be the center.

above, can be used to find vi+1. Then we set
ϕ(yi+1) = vi+1. Since η and d is large com-
pared to ε, even into the last set Nt−1 many
vacant vertices will have large degrees.

As soon as we have ϕ(y1), . . . , ϕ(yt), it is easy
to find the images for x1, . . . , xt. Since |Nt| �
εm � s = |Si|, we can arbitrarily choose s
vacant points from Nt for the ϕ(xj) images.

Note that we use less than v(Hi) ≤ 4D2 ver-
tices from A′ and B′ during this process. We
can repeat it for every vertex that were as-
signed to A, and still at most

√
d2D2m ver-

tices will be covered from A′ and from B′.

Another observation is that every h-star in the
decomposition before this embedding phase
was h-unbalanced, now, since we were careful,
these have become h′-balanced with h′ ≤ h.

Of course, the above method will be repeated
for every (A,B) edge of the decomposition for
which we have assigned vertices of W0.

4.4.2 The second phase

In the second phase we first unite all the
randomly partitioned clusters. For example,
assume that after covering the vertices that
were coming from W0 the set of vacant ver-
tices of A′ is denoted by A′v. Then we let
Av = A′v ∪ A′′, and using analogous notation,
let Bv = B′v ∪B′′.

Claim 30. All the (Av, Bv) pairs are
(3ε, d/6)-super-regular with density at least
d/2.

Proof. The 3ε-regularity of these pairs is easy
to see, like the lower bound for the density,
since we have only covered relatively few ver-
tices of the clusters. For the large minimum
degrees note that by Lemma 29 every vertex
of A had at least dm/6 neighbors in B′′, hence,
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in Bv as well, and analogous bound holds for
vertices of B.

At this point we want to apply the Blow-up
lemma for every star of S individually. For
that we first have to assign those subgraphs of
H to stars that were not embedded yet. We
need a lemma.

Lemma 31. Let Ka,b be a complete bipar-
tite graph with vertex classes A and B, where
|A| = a and |B| = b. Assume that a ≤ b = ha,
where 1 ≤ h ≤ q. Let H ′ be the vertex disjoint
union of q-unbalanced bipartite graphs:

H ′ =
t⋃

j=1

Hj,

such that v(Hj) ≤ 2D2 for every j. If v(H ′) ≤
a+ b− 4(2q + 1)D2, then H ′ ⊂ Ka,b.

Observe that if we have Lemma 31, we can dis-
tribute the Hi subgraphs among the stars of S,
and then apply the Blow-up lemma. Hence, we
are done with proving Theorem 5 if we prove
Lemma 31 above.

Proof. The proof is an assigning algorithm
and its analysis. We assign the vertex classes
of the Hj subgraphs to A and B, one-by-one.
Before assigning the jth subgraphHj the num-
ber of vacant vertices of A is denoted by aj and
the number of vacant vertices of B is denoted
by bj.

Assume that we want to assign Hk. If hak −
bk > 0, then the larger vertex class of Hk is
assigned to A, the smaller is assigned to B.
Otherwise, if hak − bk ≤ 0, then we assign the
larger vertex class to B and the smaller one
to A. Then we update the number of vacant
vertices of A and B. Observe that using this
assigning method we always have ak ≤ bk.

The question is whether we have enough room
for Hk. If ha ≥ 4hD2, then we must have

enough room, since bk ≥ ak and every Hj has
at most 2D2 vertices. Hence, if the algorithm
stops, we must have ak < 4D2. Since bk −
hak ≤ 2D2 must hold, we have bk < (2h +
1)2D2 < (2q + 1)2D2. From this the lemma
follows.

5 Remarks

One can prove a very similar result to The-
orem 5, in fact the result below follows eas-
ily from it. For stating it we need the no-
tion of graph edit distance which is detailed
e.g. in [12]: the edit distance between two
graphs on the same labeled vertex set is de-
fined to be the size of the symmetric difference
of the edge sets

Theorem 32. Let q ≥ 1 be an integer. For
every η > 0 and D ∈ N there exists an
n0 = n0(η, q) and a K = K(η,D, q) such that
if n ≥ n0, π is a q-unbalanced degree sequence
of length n with ∆(π) ≤ D, G is a graph on
n vertices with δ(G) ≥ ( 1

q+1
+ η)n, then there

exists a graph G′ on n vertices such that the
edit distance of G and G′ is at most K, and π
can be embedded into G′.

Here is an example showing that Theorem 5
and 32 are essentially best possible.

Example 33. Assume that π has only odd
numbers and G has at least one odd sized com-
ponent. Then the embedding is impossible. In-
deed, any realization of π has only even sized
components, hence, G cannot contain it as a
spanning subgraph.

Note that this example does not work in case
G is connected. In Theorem 3 the minimum
degree δ(G) ≥ (1/2 + η)n, hence, G is con-
nected, and in this case we can embed π into
G.



On embedding degree sequences Informatica 37 page 501–yyy 13

References

[1] N. Alon, J. Spencer. The probabilistic
method. Third edition, John Wiley &
Sons, Inc., 2008.
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Abstract

In this paper we show the existence of bounded degree bipartite
graphs with a small separator and large bandwidth. We also prove that
under certain conditions these graphs can be embedded into graphs
with minimum degree slightly over n/2.

1 Introduction

One of the most basic questions in graphs theory is, given graphs H and G,
whether H is a subgraph of G. If so, we also say that H can be embedded into
G. Observe that embedding problems can be formulated as packing problems.
In a packing problem one has two graphs, G1 and G2, on n vertices and the
question is whether there is an edge-disjoint placement of G1 and G2 into
the complete graph Kn. Letting G1 = H and G2 = G (that is, G2 is the
complement of G) one can turn the embedding question into a packing one.

Many seemingly unrelated problems can be translated to the language of
embedding/packing, for a (non-complete) list see for example [12]. Therefore,
it is not surprising that in general many embedding/packing problems are
open. In order to prove meaningful results one usually imposes condition on
the graphs in question.

In this paper we consider bounded degree bipartite graphs that have a
small separator and large bandwidth, and prove that under reasonable con-
ditions these are spanning subgraphs of n-vertex graphs that have minimum
degree just slightly larger than n/2. We also show that using earlier methods
such graphs cannot be embedded in general into host graphs with such small
minimum degree.

The structure of the paper is as follows. First we give an overview of
the area with a list of our new results. Next we define an infinite class of
bounded degree graphs having small separators and very large bandwidth.
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Finally, we embed such graphs using the Regularity lemma – Blow-up lemma
method.

2 Overview of the area and our new results

In this paper we consider only simple graphs. We use standard graph theory
notation.

The famous Bollobás-Eldridge-Catlin conjecture [3, 7] below is among the
most important conjecture in the area:

Conjecture 1 (Bollobás, Eldridge; Catlin). If G1 and G2 are graphs on n
vertices with maximum degree ∆1 and ∆2, respectively, and

(∆1 + 1)(∆2 + 1) ≤ n+ 1,

then G1 and G2 pack.

Since the above conjecture is open in general, we impose further condi-
tions for H and G in order to be able to solve special cases of the problem.
One possibility is to consider only bounded degree H graphs to be embedded.
The BEC conjecture was solved in case ∆(H) = 2 [1], ∆(H) = 3 [10], and
when ∆(H) is bounded and H is bipartite [8]. There is an approximation
result in which (∆1 + 1)(∆2 + 1) ≤ 0.6n [12].

One may impose other restrictions on H still obtaining hard (but some-
what easier) problems. For example one may upper bound the so called
bandwidth of H, this guarantees that H is “far from being an expander”.

Definition 2. Let H(V,E) be a graph. Let F =
{
f : V → {1, . . . , n}

}
be a

family of bijective functions on V . The bandwidth of H is

ϕ(H) = min
f∈F

max
vivj∈E

{|f(vi)− f(vj)|}.

Note that a Hamilton path has bandwidth 1, a Hamilton cycle has band-
width 2. Expander graphs have large, linear bandwidth, a star on n vertices
has bandwidth n/2, a complete graph has bandwidth n− 1. One of the im-
portant open problems of the area was the following conjecture by Bollobás
and Komlós.

Conjecture 3 (Bollobás, Komlós). For every D, k, ε there exists β such
that the following holds. Every n-vertex graph G of minimum degree at least
(1− 1/k + ε)n contains all k-chromatic n-vertex graphs of maximum degree
at most D and bandwidth at most βn as subgraphs.
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This conjecture was proved by Böttcher, Schacht and Taraz [6] using deep
tools, in particular the proof of the celebrated Pósa-Seymour conjecture by
Komlós, Sárközy and Szemerédi [15].

In [4] and [5] Böttcher and Böttcher et al. go further and explore relations
of bandwidth with other notions, like separability. Separability plays an im-
portant role in this paper. We say that an n-vertex graph H is γ-separable
if there exists a separator set S ⊂ V (H) with |S| ≤ γn such that every
component of H − S has at most o(n) vertices. Böttcher et al. [5] observed
that bandwidth and separability are closely related: they proved the Sub-
linear Equivalence Theorem. This states that, roughly speaking, sublinear
bandwidth implies the existence of a sublinear sized separating set and vice
versa.

One of our main results shows that when the separating set has linear
(small, but not very small) size, the bandwidth can be very large even for
bounded degree graphs.

Theorem 4. Let r ≥ 35 and t ≥ 2 be integers and set γ = γ(r) = 1/(8r2r).
Then there exists an infinite class of graphs Hr,t such that every element H of
Hr,t has a separator set of size ≤ γv(H), has bandwidth at least 0.3n/(2t+4),
moreover, ∆(H) = O(1/γ).

It is easy to see that there are bounded degree graphs having linearly
large bandwidth since it is well-known that a random l-regular graph with
l ≥ 3 has large bandwidth with positive probability. However, such random
graphs do not have small separators.

Knox and Treglown [13] embedded bounded degree graphs with sublinear
bandwidth into so called robust expanders. Let 0 < ν ≤ µ < 1. Assume that
G is a graph of order n and S ⊂ V (G). The ν-robust neighborhood RNν,G(S)
of S is the set of vertices v ∈ V (G) such that |N(v) ∩ S| ≥ νn. We say that
G is a robust (ν, µ)-expander if |RNν,G(S)| ≥ |S| + νn for every S ⊂ V (G)
such that τn ≤ |S| ≤ (1− τ)n.

We will also show that elements ofHr,t cannot be embedded into arbitrary
robust expanders. However, if an n-vertex graph G has minimum degree
slightly larger than n/2, then it contains the elements of Hr,t as spanning
subgraphs. We will prove the following.

Theorem 5. Let r ≥ 35 and t ≥ 2 be integers and set γ = γ(r) = 1/(8r2r).
Then there exists an n0 = n0(γ) such that the following holds. Assume
that n ≥ n0 and G is an n-vertex graph having minimum degree δ(G) ≥
(1/2 + 2γ1/3)n. If H ∈ Hr,t is a graph on n vertices, then H ⊂ G.

The proof of Theorem 5 will rely heavily on the proof method of [9]. Let
us remark that in [9] the size of the separator set was o(n), and therefore the
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bandwidth was also o(n). This time the separator set is quite large compared
to previous results. This is why the minimum degree bound for G contains
γ, unlike in the main result of [9], although we still need only slightly larger
δ(G), than n/2. The latter is the bound, for example, when we want to tile
G with vertex disjoint copies of a fixed bipartite graph.

3 Construction ofHr,t and proof of Theorem 4

In order to exhibit the infinite family of graphs Hr,t we first need to construct
certain kind of bipartite expander graphs. We begin with defining a bipartite
graph F with vertex classes V1 and V2 such that |V1| = |V2| = k and F has
relatively good expansion properties. Our construction of F relies on the ex-
istence of so called Ramanujan graphs: an r-regular (nonbipartite) graph U
is a Ramanujan graph if λ ≤ 2

√
r − 1, where λ is the second largest in abso-

lute value of the eigenvalues of U (since U is r-regular, the largest eigenvalue
is r). Lubotzky, Phillips and Sarnak [17], and independently Margulis [18],
constructed for every r = p + 1 where p ≡ 1 mod 4 infinite families of r-
regular graphs with second largest eigenvalues at most 2

√
r − 1. We need

a fact about these graphs, a lower bound for the number of edges between
subsets of U.

Lemma 6. Let U be a graph as above. Then for every two subsets A,B ⊂
V (U) where |A| = ak and |B| = bk we have

|e(A,B)− abrk| ≤ 2
√
r − 1

√
abk.

The proof of Lemma 6 can be found for example in [2].

Corollary 7. Let U be an r-regular Ramanujan graph on k vertices with
r ≥ 35. Let us assume that A,B ⊂ V (U) with |A| = |B| = k/3 and A∩B = ∅.
Then e(A,B) ≥ 1.

Proof. It is easy to see that the expression of Lemma 6 gives a lower bound
for e(A,B) which is monotone increasing in r. Hence it is sufficient to apply
Lemma 6 with r = 35 and a = b = 1/3. Straightforward computation gives
what was desired.

We are ready to discuss the details of the construction of F. Given an
r-regular Ramanujan graph U with r ≥ 35 the vertex classes of F will be
copies of V (U) : for every x ∈ V (U) we have two copies of it, x1 ∈ V1 and
x2 ∈ V2. For every xy ∈ E(U) we include the edges x1y2 and x2y1 in E(F ).
Finally, for every x ∈ V (U) we will also have the edge x1x2 in E(F ). Observe
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that F is an (r+ 1)-regular bipartite graph. The following claims are crucial
for the construction of Hr,t.

Claim 8. Let A ⊂ V1 and B ⊂ V2 be arbitrary such that |A| = |B| = k/3.
Then e(A,B) ≥ 1.

Proof. If there exists x ∈ V (U) such that x1 ∈ A and x2 ∈ B then we are
done since every x1x2 edge is present in F. If there is no such x ∈ V (U) then
we can apply Corollary 7 and obtain what is desired.

Claim 9. For every A ⊂ V1 we have |N(A)| ≥ |A|. Analogous statement
holds for any subset B ⊂ V2.

Proof. The claim easily follows from the fact that we included a perfect
matching in F when we added every x1x2 edge to E(F ).

Observe that we have a bipartite graph F with v(F ) = 2k whenever there
exists a Ramanujan graph U with v(U) = k, for the latter we also assume
that r ≥ 35. Thus, there exists an infinite sequence of {Fi}∞i=1 graphs on
increasing number of vertices, say, Fi has 2ki vertices.

We are ready to define Hr,t. Each graph from this class is γ-separable
where γ = γ(r) can be relatively small as we will see soon. Still, the band-
width of each of them is very large. Hence, Hr,t demonstrates that in spite
of sublinear equivalence of separability and bandwidth, there is no linear
equivalence.

The construction of Hr,t is somewhat specific, we do it with foresight
as our goal is not only to further explore the relation of separability and
bandwidth but also to be able embed the elements of Hr,t later.

Definition 10. Let n,m ∈ N and set γ = γ(r) = 1/(8r2r). Let Fi be the
bipartite graph as above on 2ki vertices which is (r + 1)-regular such that ki
is the largest for which γn ≥ 2ki. The elements of Hr,t are constructed as
follows. Given n we let H = (A,B;E) ∈ Hr,t to be the following bipartite
graph.

1. ||A| − |B|| ≤ 1, and |V | = |A ∪B| = n,

2. let S = SA ∪ SB such that |SA| = |SB| = ki,

3. H[S] = F and E(H[SA]) = E(H[SB]) = ∅,

4. D = ∆(H) = O(r2r),
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SB

SA

≤ ∆− 1

≤ ∆− 1

Figure 1: The graph H

5. for every point x ∈ S we have a unique path Px of length t starting at
x and ending at z, and z has D neighbors such that each has degree 1
except one that precedes z in Px.

Note that S is a separator set of H with |S| = 2ki ≈ γn, every component
of H − S has less than t + D vertices. From this one can easily obtain
the bound D < 3n/ki. The following lemma is crucial for bounding the
bandwidth of H ∈ Hr,t.

Lemma 11. Let H be an element of Hr,t on n vertices. Assume that X, Y ⊂
V (H) with |X|, |Y | ≥ 0.35n and X ∩Y = ∅. Then there exists an x ∈ X and
a y ∈ Y such that the distance of x and y is at most 2t+ 4.

Proof. Denote the vertices of H − S closer to SA by A∗, and analogously,
the vertices of H − S closer to SB by B∗. By the construction of H we have
|A∗| = |B∗| = (1 − γ)n/2. Note that γ < 0.01 since r ≥ 35. Hence we have
that |X − S| ≥ 0.34n and |Y − S| ≥ 0.34n. Thus, either |X ∩ A∗| ≥ |A∗|/3
or |X ∩ B∗| ≥ |B∗|/3. Without loss of generality, suppose the former. This
also implies that at least 1/3 of the components of A∗ have vertices in X.

It is useful to introduce the notations XA for NSA
(X), YA for NSA

(Y ) and
YB for NSB

(Y ). Using these notations we have that |XA| ≥ k/3 and either
|YA| ≥ k/3, or |YB| ≥ k/3.

If |YB| ≥ k/3, then by Claim 8 there is an edge sq between XA and YB,
and therefore we have a path xvr . . . v1squ1 . . . ury of length 2t + 3, where
x ∈ X, y ∈ Y, vi ∈ A∗, s ∈ XA, q ∈ YB, ui ∈ B∗.

If YB < k
3
, then |YA| ≥ k/3. Let Y ′B = NSB

(YA). Claim 9 implies that
|Y ′B| ≥ |YA| ≥ k/3, so by Claim 8 H has an edge between Y ′B and XA. Thus,

6



we have a path xvr . . . v1s1qs2u1 . . . ury of length 2t + 4, where x ∈ X, y ∈
Y, vi ∈ A∗, ui ∈ B∗, s1 ∈ XA, s2 ∈ YA and q ∈ Y ′B.
Corollary 12. Let H be an element ofHr,t on n vertices. Then the bandwidth
of H is at least 0.3n

2t+4
.

Proof. Take an arbitrary ordering P of the vertices of H. Let X be the first
0.35n vertices, while Y be the last 0.35n vertices of P . Using Lemma 11
there is an x ∈ X and an y ∈ Y such that the distance of x and y is at most
2t + 4. Their distance in P is at least 0.3n. Thus at least one of the edges
of the shortest path between x and y must have “length” at least 0.3n

2t+4
, from

which the bound for the bandwidth follows immediately.

With this we proved Theorem 4. Note that choosing t = 2 results in
graphs having bandwidth at least 3n/80 while being γ-separable.

As we mentioned in the introduction Knox and Treglown [13] embedded
spanning subgraphs of sublinear bandwidth into robust expanders. Recall
the notion of robust expanders. The following example shows that graphs
of Hr,t not only have very large bandwidth, these graphs are not necessarily
subgraphs of robust expanders. Hence, in the theorem of Knox and Treglown
one cannot replace small bandwidth by γ-separability, unless γ is very small.

Let us construct a robust expander. Set α = 0.002∗ and let G = (V,E) be
the following graph on n vertices. The vertex set ofG is V = A0∪̇A1∪̇ · · · ∪̇A400,
where |Ai| = (1+α)i n

1000
for every 0 ≤ i < 400 and A400 contains the remain-

der of the vertices. The edges of G are defined as follows: E(G) contains
the edges vivi+1 for every vi ∈ Ai and vi+1 ∈ Ai+1 for 0 ≤ i < 400, and
G[A400] is the complete graph on |A400| vertices. It is easy to see that G is a
(1/1000, 1/1000)-robust expander.

Lemma 13. Let H be a graph from Hr,t on n vertices and let G be as above.
Then H 6⊂ G if t ≤ 47.

Proof. First we give an upper bound for n− |A400|:

n− |A400| =
∣∣∣∣∣
399⋃

i=0

Ai

∣∣∣∣∣ =
399∑

i=0

(1 + α)i
n

1000
=

n

1000
· 1.002400 − 1

0.002
< 0.62n,

so |A400| > 0.35n. Let B =
300⋃
i=0

Ai. We have |B| = n
1000
· 1.002301−1

0.002
> 0.35n.

The shortest path between B and A400 is of length 100. This means that
H cannot be packed into G, as in H there is a path of length 2t + 4 ≤ 98
between any two disjoint sets of size at least 0.35n.

∗We remark that we did not look for optimal constants here.
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4 Proof of Theorem 5

The proof of Theorem 5 is very similar to the proof of the main result of [9].
Hence, we will first sketch the proof of the latter one in an itemized list, and
then discuss the differences we will make when proving our main result. First
let us state a special case of the main theorem of [9] for embedding bipartite
graphs with small separators.

Theorem 14. For every ε > 0 and positive integer D there exists an n0 =
n0(ε,D) such that the following holds. Assume that H is a bipartite graph on
n ≥ n0 vertices which has a separator set S such that |S| = o(n), and every
component of H − S has o(n) vertices. Assume further that ∆(H) ≤ D. Let
G be an n-vertex graph such that δ(G) ≥ (1/2 + ε)n. Then H ⊂ G.

One can observe the similarities with Theorem 5. The main difference
is that in Theorem 5 the separator set can be very large compared to the
separator set in the above result.

4.1 Main tools for the proof

Definition 15. The density between two disjoint vertex sets X and Y is

d(X, Y ) =
e(X, Y )

|X||Y | . (1)

Definition 16. We call a pair (A,B) of disjoint vertex sets in G ε-regular,
if for every X ⊂ A and Y ⊂ B we have |d(X, Y ) − d(A,B)| < ε, whenever
|X| > ε|A| and |Y | > ε|B|.

We say that a vertex partition W0,W1, . . . ,W` is ε-regular, if |W0| ≤ εn,
and |Wi| = m for each i ≥ 1, and all but at most ε`2 pairs (Wi,Wj) (1 ≤ i <
j ≤ k) are ε-regular.

The Regularity Lemma is as it follows:

Lemma 17. For every ε > 0 and t there is an N ∈ N and a T ∈ N
such that for every n ≥ N every n-vertex graph has an ε-regular partition
W0,W1, . . . ,W` with t ≤ ` ≤ T .

We will use its degree form:

Lemma 18. For every ε > 0 there is an M = M(ε) such that if G = (V,E)
is any graph and d ∈ [0, 1], then there is a partition of the vertex set V into
`+ 1 clusters W0,W1, . . . ,W` and there is a subgraph G′ of G such that
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• ` ≤M ,

• |W0| ≤ ε|V |,

• All clusters Wi, i ≥ 1 are of the same size m

• dG′(v) > dG(v)− (d+ ε)|V | for all v ∈ V ,

• Wi is an independent set in G′ for all i ≥ 1,

• All pairs (Wi,Wj) (1 ≤ i < j ≤ `) are ε-regular, each with density
either 0 or at least d in G′.

We call W0 the exceptional cluster.

Definition 19. If we apply Lemma 17 to the graph G = (V,E) with param-
eters ε and set a new parameter d, we can construct a new graph Gr. Its
vertices are the non-exceptional clusters, and two vertices are connected if
the corresponding clusters form an ε-regular pair with density at least d. We
call Gr the reduced graph.

Definition 20. We say that the pair of disjoint vertex sets (A,B) is (ε, δ)-
super-regular, if it is ε-regular, and d(a) > δ|B| for all a ∈ A, and d(b) > δ|A|
for all b ∈ B.

Remark 21. If (A,B) is an ε-regular pair, and we add cε|A| new vertices to
A resulting A′, where c is a constant, then the new pair (A′, B) is ε′-regular,
where ε′ is somewhat larger than ε, depending on c.

Remark 22. If (A,B) is an ε-regular pair with density d, then for any
Y ⊂ B, |Y | > ε|B| we have

|{x ∈ A : d(x, Y ) ≤ (d− ε)|Y |}| ≤ ε|A|. (2)

We also need an important lemma:

Theorem 23 (Blow-up Lemma, [14]). Given a graph R of order r and pos-
itive parameters δ,∆, there exists a positive ε = ε(δ,∆, r) such that the fol-
lowing holds: Let n1, n2, . . . , nr be arbitrary positive integers and replace the
vertices v1, v2, . . . , vr of R with pairwise disjoint sets V1, V2, . . . , Vr of sizes
n1, n2, . . . , nr (blowing up). We construct two graphs on the same vertex set
V = ∪Vi. The first graph F is obtained by replacing each edge vivj of R
with the complete bipartite graph between Vi and Vj. A sparser graph G is
constructed by replacing each edge vivj arbitrarily with an (ε, δ)-super-regular
pair between Vi and Vj. If a graph H with ∆(H) ≤ ∆ is embeddable into F ,
then it is also embeddable into G.
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Theorem 24 (Strengthening the Blow-up Lemma [14]). Assume that ni ≤
2nj for every 1 ≤ i, j ≤ r. Then we can strengthen the lemma: Given c > 0
there are positive numbers ε = ε(δ,∆, r, c) and α = α(δ,∆, r, c) such that the
Blow-up Lemma remains true if for every i there are certain vertices x to be
embedded into Vi whose images are a priori restricted to certain sets Tx ⊂ Vi
provided that each Tx within a Vi is of size at least c|Vi|, and the number of
such restrictions within a Vi is not more than α|Vi|.

Another very important tool for us is the following result by Fox and
Sudakov [11].

Theorem 25. Let H be a bipartite graph with n vertices and maximum degree
∆ ≥ 1. If ρ > 0 and G is a graph with N ≥ 8∆ρ−∆n vertices and at least
ρ
(
N
2

)
edges, then H ⊂ G.

We are going to apply Theorem 25 in the special case ρ = 1/2.

4.2 Sketch of the proof of Theorem 14

The Regularity lemma of Szemerédi [19] and the Blow-up lemma [14] plays
a very important role in the proof. The interested reader may consult with
the survey paper by Komlós and Simonovits [16] also. Below we assume
familiarity with these important tools and related notions.

Step 1: Apply the Degree form of the Regularity lemma with parameters 0 <
ε � d � 1 in order to obtain a partition of V (G) into the clusters
W0,W1, . . . ,W`, where W0 is the exceptional cluster.

Step 2: Construct the reduced graph Gr on the non-exceptional clusters, in
which two clusters are adjacent if and only if they form an ε-regular
pair with density at least d.

Step 3: Find a maximum matching M in Gr. Using the minimum degree con-
dition, the vertex set of M may not contain at most one cluster – its
vertices are put into W0.

Step 4: Make the edges of M super-regular. At most 2εn vertices are put into
W0 at this point.

Step 5: Distribute the vertices of W0 among the non-exceptional clusters while
keeping super-regularity.
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Step 6: Assign the vertices of H to clusters of Gr so that the following holds:
whenever xy ∈ E(H) for x, y ∈ V (H), then C(x)C(y) ∈ E(Gr), where
C(x), (respectively, C(y)) denotes the cluster to which x (respectively,
y) is assigned to. This is done in two steps: first randomly distribute
the components of H −S and S, then in the second step a few vertices
may get reassigned in order to satisfy the above requirement for every
edge of H.

Step 7: At this point it is possible that there are more (or less) vertices assigned
to a cluster than its size. A procedure very similar to the one used in
Step 5. helps in finding the balance.

Step 8: Applying the Blow-up lemma finishes the proof.

Readers familiar with the Regularity lemma – Blow-up lemma method
may observe that the first seven steps are essentially a preparation for being
able to apply the Blow-up lemma.

4.3 Proof of Theorem 5

As we indicated above, the proof of Theorem 5 is very similar to the proof of
Theorem 14. Hence, below we will concentrate on the differences of the two.

Assume that H ∈ Hr,t has n vertices. Denote the separator set of H by
S. Then we have |S| ≤ γn. Observe that we can apply the deep result of Fox
and Sudakov, Theorem 25 for finding a copy of H[S] in G, since δ(G) > n/2.
Let us call the uncovered part of G by G̃ after embedding H[S]. Note that
δ(G̃) ≥ (1/2 + γ1/3)n.

Next we apply the Degree form of the Regularity lemma for G̃ with pa-
rameters ε and d =

√
γ. We form the reduced graph G̃r, and then find an

(almost) perfect matching M in G̃r. Then we make the edges of M super-
regular, and then distribute the vertices of W0 among the non-exceptional
clusters so that the pairs in M remain super-regular. These steps are in
fact identical to the corresponding ones (Step 1 – Step 5) in the proof of
Theorem 14.

Next we assign the components of H −S to the non-exceptional clusters.
We do it using a random procedure (randomness is not necessary here, but a
simple chooice), the components are assigned randomly to edges of M. This
immediately implies that whenever x, y belong to the same component and
are adjacent, then C(x)C(y) is an edge of M. Still, there could be vertices
x, y ∈ H such that xy ∈ E(H) but C(x)C(y) 6∈ E(G̃r). This can happen
only in case x ∈ S and y ∈ V (H)−S. In such a case we repeat the procedure
from the proof of Theorem 14 mentioned in Step 6.
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There is an important difference of the two proofs at this point, so we
provide more details here. Assume that x ∈ S is mapped onto v ∈ V (G)
in the beginning. Let L denote those clusters in which v has at least

√
m

neighbors. Let C(y)Wi denote the edge of M to which the component of y
was assigned. Then we locate a cluster Wj ∈ L such that Wj is adjacent to
Wi in G̃r. Then we reassign y to Wj. This way v will have many neighbors
in the cluster of y and the cluster of y will be adjacent to the cluster of the
neighbors of y in its component. Observe that if we locate the Wj clusters as
evenly as possible then we can achieve that at most about γ2/3m vertices are
reassigned to a particular cluster. Here we used that the set of vertices to be
reassigned are neighbors of S, and there are less than n/D such vertices.

Next we repeat the procedure of Step 7. The method we use for balancing
is essentially the same we discussed above. Say, that Ws has more vertices
assigned to it than |Ws|. Then there must be a cluster Wi to which we
assigned less than |Wi| vertices of H. Let Wj denote the neighbor of Ws in
the matching M. If WjWi is an edge in G̃r then we pick a vertex x such that
C(x) = Wj and d(x) = D− 1 (using the random distribution there are many
choices for x). We reassign some of the leaves that are adjacent to x, the
right number will be assigned to Wi.

If WjWi is not an edge, then there exists a cluster Wq such that WqWi and
WjWp are edges in G̃r, and WpWq is an edge in M. Then the above procedure
is done in two steps: first we reassign some vertices from Ws to Wp and then
from Wp to Wi. Note that the same computation works as above: at most
γ2/3m vertices are reassigned at every cluster.

Since the density of the ε-regular pairs is at least
√
γ, and at most γ2/3m

vertices are reassigned at every cluster, we are able to apply the Blow-up
lemma. This finishes the proof of Theorem 5.
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