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Could the rotation of the Earth’s inner core be the cause
of a dipolar magnetic field generation?
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Summary. — Beginning with the comment of S. Marinov (Nuovo Cimento C, 19
(1966) 215) article, we studied two processes that could generate a dipolar magnetic
field: the electron inertia in metals and the Barnett effect, and calculated the field
generated by such processes. Then, we solved analytically the hydrodynamic
problem of the fluid motion in the spherical shell when the inner and outer spheres
rotate with different angular velocities and considered an analogue model for the
liquid outer core of the Earth. Putting this solution into the kinematics equation of
the dynamo theory, we discussed about its solution and about the possibility of
modifying and amplifying the dipolar field by the fluid motion.

PACS 91.25.Cw – Origins and models of the magnetic field; dynamo theories.
PACS 91.35.Cb – Models of interior structure.
PACS 75.80 – Magnetomechanical and magnetoelectric effects, magnetostriction.

Introduction

The starting point of this work was the article: Earth’s rotation is the cause for its
magnetization by S. Marinov [1]. According to this article, the known Barnett effect
(where the magnetization of a rotating body is proportional to the angular rotational
velocity) should be the Monstein-Barnett effect. Referring to Monstein’s experiments,
the author concluded that the magnetization of rotating cylinders (made of a non-
ferromagnetic material, brass or aluminum) was proportional to the linear rotational
velocity. The magnetic field measured on periphery or at different distances from the
axis was [1]

B4 (8210)VmTl ,

where V is the linear rotational velocity in m/s.
He claimed the explanation of such effect (called “Barnett-Monstein” effect) with

the reasoning based on fig. 5 of [1], where one has a big disk (with radius R) rotating
about its axis with angular velocity V and on its periphery numerous pairs of small
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disks (with radius r) carrying negative electric charges on their peripheries (it seems
that they model the atoms). The pairs of small disks rotate in mutually opposite
direction with the same angular velocity v about their own axes.

Adding the velocities of negative charges that rotate in positive sense of v and that
rotate in negative sense of v [1]:

.
/
´

V pos
R1r4 (R1r)(V1v) ,

V neg
R1r4 (R1r)(V2v) ,

V pos
R2r4 (R2r)(V2v) ,

V neg
R2r4 (R2r)(V1v) ,

(1)

he found a “net velocity” of negative charges: V net44 QR QV .
Multiplying such V net with half of atomic density, he got an electrical “net current”

density which will generate a magnetic field proportional to the linear velocity.
The author claimed that on the base of the above effect the magnetism of the

planets, especially the magnetism of the Earth, could be explained.
I think that the author’s reasoning for the “net velocity” of the charges was wrong.

The linear velocities of negative charges that rotate in positive and negative sense
should be:

.
/
´

V pos
R1r4 (R1r) V1rv ,

V neg
R1r4 (R2r) V2rv ,

V pos
R2r4 (R1r) V2rv ,

V neg
R2r4 (R2r) V1rv .

(2)

Formula (1) (or (5) and (6) of [1]) would not be right even in the approximation when
Vbv . Nevertheless, the exact formulas (2) give as the sum of 4 velocities the same
result V net44 QR QV . So, the result does not depend on v and is valid even for v40.
That is to say even for the positive charges (the atom nucleus) that have v40, we get
the same “net velocity” V net44 QR QV and as a result we get a “net current” equal to
zero and not any magnetization effect could be explained in this way.

So, the explanation of so-called “Barnett-Monstern effect” is wrong. Does a
“Barnett-Monstern effect” really exist?

We could not answer such a question without knowing how the Monstein
experiments are carried out: how the magnetic field was measured, how the Earth’s
magnetic field was compensated, etc. Such details we could not find and we are
doubtful about the results of Monstein’s experiments.

If we accepted the results of Monstein’s experiments, then we have to find out some
other effect that causes such an observed magnetic field. For example, one could be the
effect of the thin fluid layer that corotates with the body and although having a small
electrical conductivity, perhaps could amplify the magnetic field of a body magnetized
by rotation, or some other secondary effect. But I think whatever be the effect that
could explain the magnetization of the rotating body, we could not find a
proportionality between the magnetization and the linear rotational velocity. I have
imagined two processes analyzed below that could give the magnetization effect from
the rotation of a body.

1. – Magnetization caused by inertia of free electrons in metals

The rotation of a metallic body with a constant angular velocity v oriented parallel
to the Z-axis causes a redistribution of the free electrons in such way that the electric
field created by this redistribution should compensate the action of inertial force on
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free electrons. Thus, we have

me v 2 r4eE ,(3)

where r is the distance from the axis; me , e are, respectively, the mass and electrical
charge of the electron; E is the intensity of the electrical field. The electrical field
created by this distribution of charges is perpendicular to the rotation axis:

E4Er4
me v 2 r

e
.(4)

From the Maxwell equation

div E4
r

e 0

(5)

we can find the volume distribution density r of electrical charges which creates such
field:

r4e 0 div E4e 0y 1

r

¯(rEr )

¯r
1

1

r

¯Ef

¯f
1

¯Ez

¯z
z ,

where the divergence operator is written in the cylindrical coordinates. As Ef4Ez40,
we can find

r4e 0 Q
2me

e
Qv 2 .(6)

So, the density r results constant, positive and the same result could be found for any
geometrical shape of the rotating body.

There are surface charges that compensate the volume charges. From the condition
of electrical neutrality, for a cylindrical body with radius R we can find the surface
charge density:

s42
rR

2
42

e 0 me v 2 R

e
,(7)

that is negative and constant. These charges, being in rest relative to the body, rotate
together with the body creating electrical currents with volume density

j4rv ; j4 jf4rvf4rvr4
2e 0 me v 3 r

e
,(8)

and surface density

jS4sv ; jS4 jSf4svf4svR42
e 0 me v 3 R 2

e
.(9)
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The magnetic field corresponding to these electrical current satisfies the Maxwell
equations:

rot B4
.
/
´

m 0 j ,

0 ,

if rER ,

if rDR ,
div B40(10)

and the boundary condition in jump discontinuity:

B12B242m 0 n3 jS .(11)

Writing eqs. (10) in cylindrical coordinates, we have

g 1

r

¯Bz

¯f
2

¯Bf

¯z
h er1 g ¯Br

¯z
2

¯Bz

¯r
h ef1 g 1

r

¯(rBf )

¯r
2

1

r

¯Br

¯f
h ez4 jf ef , if rER ,

g 1

r

¯Bz

¯f
2

¯Bf

¯z
h er1 g ¯Br

¯z
2

¯Bz

¯r
h ef1 g 1

r

¯(rBf )

¯r
2

1

r

¯Br

¯f
h ez40 , if rDR .

If we consider the cylindrical body infinitely long in the Z-direction, then from the
symmetry we have

Br4Bf40 , B4Bz ;

.
`
/
`
´

¯Bz

¯r
4m 0 j¨

dB

dr
42

2m 0 e 0 me v 3 r

e
,

¯Bz

¯r
40¨

dB

dr
40 ,

B4Bz42
m 0 e 0 me v 3 r 2

e
,

if rER ,

if rDR ,

if rER

(12)

(considering B40 at r40) and

B 242
m 0 e 0 me v 3 R 2

e
.(13)

From the boundary condition (11), we have

B 12B 242m 0 jS4
m 0 e 0 me v 3 R 2

e
;

substituting here B 2 from (13), we find B 140, as dBOdr40 for rDR , then B40 for
rD0.

So, the magnetic field created by the inertia of electrons is zero outside the body
and is proportional to v 3 and r 2 inside the body. Its orientation is opposite to the
angular velocity vector v . The maximum value of this field would be

Bmax42
m 0 e 0 me v 3 R 2

e
.



COULD THE ROTATION OF THE EARTH’S INNER CORE BE ETC. 195

For the Monstein experiment data [1], the quantities of this formula are: vA250 s21 ,
RA0, 0.022 m, me OeA10212 , e 0 m 0A10216 ; and the magnetic field would be in order:
BmaxA10226 T. Such field is negligible in comparison to the result of Monstein
experiment [1]: BA1025 T.

So, the magnetic field caused by the effect of electron inertia is so small inside the
body and zero outside the body that could not be observed in the experiment.

2. – The Barnett effect

The magnetomechanic effect is observed for the first time in the Einstein and De
Haas experiment (1915): During the magnetization of an iron cylinder in the direction
of its axis, a rotation of the cylinder about its axis was noticed. The effect was very small
but observable; for a cylinder with diameter of some millimeter, settled in the magnetic
field with intensity HA104 A/m, an angular velocity of the order 1023 s21 was noticed.

The opposite effect is the magnetization of a body that rotates, the so-called Barnett
effect, observed for the first time in 1936 [2]. The order of the observed effect for an
iron cylinder was such that the magnetization for an angular velocity 3 Q102 s21 , was
equivalent to that caused by a magnetic field of intensity of order 1022 A/m.

The Barnett effect was explained with the gyroscopic effect of elementary gyrostats
that model the orbital momentum or spin of electrons. The gyromagnetic ratio (the
ratio between the kinetic momentum l and magnetic momentum m) is g42me /e for the
orbital motion of the electron and g4me /e for the spin of the electron. Supposing that
any electron has a kinetic momentum l that is inclined with an angle u to the rotation
axis of the body which rotates with angular velocity v, then the torque v3 l would be
exerted on the electron. This torque tends to turn the kinetic momentum l parallel to
the rotation axis causing a magnetization parallel to the rotation axis of the body. Let
Beq be the magnetic field parallel to the rotation axis that would cause the same
magnetization as that caused by the rotation, then we have

mBeq sin u42vl sin u ¨Beq42
vl

m
42vg .

In the Barnett experiment just Beq and v were measured and the gyromagnetic ratio g
was determined. For different materials like iron, steel, nickel, cobalt, it was gB
1.08–1.071 me /e . It seems that the Barnett experiment served mostly to prove that the
magnetic effects are caused more by the electron spins than by the electron orbital
momentum.

We will present below a calculation of the magnetization caused by the rotation that
is analogue to the calculation of the paramagnetic effect [3].

The kinetic momentum tends to be oriented along the rotation axis. Such
orientation is obstructed by the thermal motion. For any orientation of a kinetic
momentum, there is the potential energy

W42v Q l42vl cos u ,

which is minimum when u40.
This tendency of orientation of the kinetic momentum (orbital or spin) and of the

magnetic momentum that is anti-parallel to the kinetic momentum, causes a
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magnetization anti-parallel to v , with the module [3]

M4NmL(a) ,

where N is the number of momentum for volume unit and L(a) is the Langevin
function:

L(a)4cosh (a)2
1

a
and a4

vl

kT
.

For ab1 the Langevin function became L(a)BaO34vlO(3kT).
Such approximation is satisfied for temperatures of the order TA102 K when the

angular velocity is of order vb1013 s21 , that is to say even in the case of Monstein
experiments even in the case of the Earth’s inner core this approximation could be
applied. Then the magnetization caused by the rotation would be

.
`
/
`
´

M4
Nmvl

(3kT)
, gl4mg4

mme

e
h ,

M4
Nl 2 ve

3kTme

.

(14)

It results that the magnetization is proportional to the angular velocity and depends on
the temperature. It does not depend on the rotating body shape. Applying this formula
to the case of the Monstein experiments [1], where vA103 s21 , (lA10234 J s ), we find

MA1028 10268 103 10219 O(10220 10231 )A1025 A/m .

Such magnetization would create a magnetic field of order

B4m 0 MA4p1027 1025A10211 T ,

while according to Marinov [1], the observed field was of order 10mT41025 T.
Applying the result to the case of the Earth’s inner core, we would find the dipolar
magnetic momentum caused by the rotation (vA1024 s21 ):

Mdip4M QV4Nl 2 (v/3kT)(e/me )(4 /3pR 3 )A106 A/m2 .

While it is known from the Earth’s magnetic field observation that the dipolar
magnetic momentum of the Earth is MdipB8 Q1022 AOm2 . This value could be not
achieved by the above analyzed effect.

So, both mechanisms of the magnetic field generation cannot explain either the
Monstein experiment results (if they are exact) or the origin of the dipolar magnetic
field of the Earth. But those effects, mostly the Barnett effect, could incite a dipolar
magnetic field which is strengthened by the fluid flow in the outer core of the Earth.
According to the dynamo theory of the Earth’s magnetic field generation, a small seed
magnetic field would be sufficient for the dynamo action: the observed magnetic field
could be generated and maintained by the fluid flow in the outer core [4, 5].

Before entering the dynamo theory problems, let us study first the fluid flow in a
spherical shell simply without the presence of magnetic field, which is a hydrodynamic
problem.
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3. – The fluid motion between two rotating spheres

a) The spheres rotate about the same axis.

Firstly, let us consider that the inner solid sphere with radius R1 rotates with
angular velocity V1 about the Z-axis and the outer solid sphere rDR2 rotates with
angular velocity V2 about the same axis Z . If the fluid which fills the spherical shell
R1ErER2 , were ideal (the viscosity coefficient n40) then it would be not excited by
such a rotation. We will consider the fluid incompressible but having a viscosity. Then it
will be driven in motion with boundary conditions that in spherical coordinates are

.
/
´

in r4R1 : vr40, vu40 ; v4vf4V1 R1 sin u ,

in r4R2 : vr40, vu40 ; v4vf4V2 R2 sin u .
(15)

From such boundary conditions there results that vr40, vu40 in the whole fluid
volume. From the symmetry we have: ¯vf O¯f4¯vO¯f40. Writing the Navier-Stokes
equations:

¯v

¯t
1 (v Q˜) v42

1

r
˜p1n Dv(16)

in spherical coordinates [6]:

(17)
¯vr

¯t
1vr

¯vr

¯r
1

vu

r

¯vr

¯u
1

vf

r sin u

¯vr

¯f
2

(v 2
u 1v 2

f )

r
4

42
1

r

¯p

¯r
1n y 1

r

¯2 (rvr )

¯r 2
1

1

r 2

¯2 vr

¯u 2
1

1

r 2 sin2 u

¯2 vr

¯f 2
1

1
cot u

r 2

¯vr

¯u
2

2

r 2

¯vu

¯u
2

2

r 2 sin u

¯vf

¯f
2

2vr

r 2
2

2 cot u

r 2
vuz ,

(18)
¯vu

¯t
1vr

¯vu

¯r
1

vu

r

¯vu

¯u
1

vf

r sin u

¯vu

¯f
1

vr vu

r
2

v 2
f cot u

r
4

42
1

rr

¯p

¯u
1n y 1

r

¯2 (rvu )

¯r 2
1

1

r 2

¯2 vu

¯u 2
1

1

r 2 sin2 u

¯2 vu

¯f 2
1

1
cot u

r 2

¯vu

¯u
2

2 cos u

r 2 sin2 u

¯vf

¯f
1

2

r 2

¯vr

¯u
2

vu

r 2 sin2 u
z ,

(19)
¯vf

¯t
1vr

¯vf

¯r
1

vu

r

¯vf

¯u
1

vf

r sin u

¯vf

¯f
1

vr vf

r
1

vu vf cot u

r
4

42
1

rr sin u

¯p

¯f
1n y 1

r

¯2 (rvf )

¯r 2
1

1

r 2

¯2 vf

¯u 2
1

1

r 2 sin2 u

¯2 vf

¯f 2
1

1
cot u

r 2

¯vf

¯u
1

2

r 2 sin u

¯vr

¯f
1

2 cos u

r 2 sin2 u

¯vu

¯f
2

vf

r 2 sin2 u
z ,
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Fig. 1. – Two spheres rotate about the same axis.

Fig. 2. – Two spheres rotate about different axes.

and the continuity equation

¯vr

¯r
1

1

r

¯vu

¯u
1

1

r sin u

¯vf

¯f
1

2vr

r
1

vu cot u

r
40 ,(20)

then for a stationary flow (from eqs. (17) and (18)) we have

v 2

r
42

1

r

¯p

¯r
and

v 2 cot u

r
42

1

rr

¯p

¯u
.

From these equations, the pressure field can be found when the velocity field is known.
While eq. (19) when ¯pO¯f40 became

¯2 vf

¯r 2
1

1

r 2

¯2 vf

¯u 2
1

2

r

¯vf

¯r
1

cot u

r 2

¯vf

¯u
2

vf

r 2 sin2 u
40 .(21)

We have searched the solution of this equation in the form v4vf4cr n sin u , where c is
a constant. Putting this solution into eq. (21), we found n41, n422.

So, the solution of eq. (21) should be

v4
a sin u

r 2
1br sin u ,(22)
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where the constants a and b could be determined by the boundary conditions (15):

a4
(V12V2 )R 3

1 R 3
2

R 3
2 2R 3

1

, b4
V2 R 3

2 2V1 R 3
1

R 3
2 2R 3

1

.

The solution (22) for the velocity is

v4vf4
(V12V2 )R 3

1 R 3
2

R 3
2 2R 3

1

sin u

r 2
1

V2 R 3
2 2V1 R 3

1

R 3
2 2R 3

1

r sin u .(23)

By this way, the velocity field in the spherical shell in the stationary conditions has only
an azimuth component that depends only on the coordinates r and u . This field is
axisymmetric, i.e. it has the symmetry of rotation about the Z-axis.

b) The spheres rotate about different axes: V1 and V2 .

Choosing V2 along the Z-axis, then the boundary condition at r4R2 could be
written as

vr40 , vu40 , v4vf4V2 R2 sin u .(24)

While at r4R1 , we have: v4V13R1 , or in spherical coordinates, when V1 is in the YZ
plane with polar angle u 0 , we have

(25) vr40 ; vu4V1 R1 sin u 0 cos f ; vf4V1 R1 ( cos u 0 sin u2sin u 0 cos u sin f) .

As vr40 at both boundaries, we can search the solution with vr40 in the whole volume.
Also, as vu does not depend on u at both boundaries, we can consider ¯vu O¯u40 in the
whole volume. Although Navier-Stokes equations are not linear, we will find the
solution imagining that the rotation with angular velocity V1 could be divided into one
rotation with the angular velocity V1 cos u 0 about the Z-axis (parallel to V2 ) and one
rotation with angular velocity V1 sin u 0 about the Y-axis (perpendicular to V2 ). The
first rotation brings only azimuth velocity (at r4R1 ):

vf14V1 R1 cos u 0 sin u .

While the second rotation brings even azimuth velocity:

vf242V1 R1 sin u 0 cos u sin f ,

and even meridian velocity, at r4R1 :

vu4V1 R1 sin u 0 cos f .

The rotations with angular velocities V1 cos u 0 and V2 about the same axis bring on the
solution found in the case a). Substituting to the solution (23) V1 with V1 cos u 0 , then
we find the solution:

vf14
(V1 cos u 02V2 ) R 3

1 R 3
2

R 3
2 2R 3

1

sin u

r 2
1

V2 R 3
2 2V1 cos u 0 R 3

1

R 3
2 2R 3

1

r sin u ,

that satisfies the boundary conditions at r4R1 and at r4R2 . While the rotation with
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angular velocity V1 sin u 0 about the axis perpendicular to V2 has the boundary
conditions

at

and at

r4R1 , vf242V1 R1 sin u 0 cos u sin f ,

r4R2 , vf240 .

Therefore we search the solution vf2 in the form

vf242
V1 R 3

1 R 3
2

R 3
2 2R 3

1
g 1

r 2
2

r

R 3
2
h sin u 0 cos u sin f

and the whole solution in the form

(26) vf4
(V1 cos u 02V2 ) R 3

1 R 3
2

R 3
2 2R 3

1

sin u

r 2
1

V2 R 3
2 2V1 cos u 0 R 3

1

R 3
2 2R 3

1

r sin u2

2
V1 R 3

1 R 3
2

R 3
2 2R 3

1
g 1

r 2
2

r

R 3
2
h sin u 0 cos u sin f .

From the continuity equation (20), after substituting ¯vu O¯u40, we find

1

r sin u

¯vf

¯f
1

vu cot u

r
40 .

Substituting here the derivative of vf from (26) we found the solution of vu :

vu4
V1 R 3

1 R 3
2

R 3
2 2R 3

1
g 1

r 2
2

r

R 3
2
h sin u 0 cos f(27)

which satisfies both boundary conditions at r4R1 and at r4R2 . As the Navier-Stokes
equations with given boundary conditions have the unique solution [7], then we can say
that the found solution is the unique solution. The same result is taken by [6] in another
way supposing the linearity of Navier-Stokes equation (neglecting the second term of
the left side of eq. (16)). Somehow even here is used the superposition of two motions,
which is valid under the conditions of linearity.

4. – A similar model of the liquid core of the Earth

From the above-analyzed models, which one would be suitable for the liquid core of
the Earth?

Up to now it was considered that the inner core and the mantle of the Earth rotate
about the same axis with the same angular velocity. In the last years, the seismic data
brought to the supposition of the existence of a difference between the angular
velocities of inner core and mantle. According to the evaluation of Song and
Richard [8], the rotation of inner core relative to the mantle is 1.17 per year, while Su et
al. [8] have evaluated it to be about 37 per year and Glatzmaier and Roberts [9] have
calculated it B2.67 per year.

The rotation of the inner core relative to the mantle explained the “westward drift”
of the non-dipolar geomagnetic field observed on the Earth’s surface which is
evaluated to be 0.27 per year [6]. It seems as if the outer liquid core not only could
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reinforce the magnetic field generated by the rotation of the inner core but could
transmit up to core-mantle boundary the properties of this field: the dipolar property
and “westward drift” relative to the mantle.

Another interesting fact found by the seismic observations, is that the inner core
has an anisotropy in three dimensions, having an axis of symmetry which is tilted by
10.5 761 7 from the Earth’s rotation axis in the direction 160 7E65 7 in the Northern
hemisphere [10]. The interesting thing is that the tilt of geomagnetic dipolar axis from
the Earth’s rotation axis is near this value. According to Barton [11], the geomagnetic
axis was tilted by 11.547 N from the geographic axis in 1955, was tilted by 10.77 N in
1995 and is projected to be tilted by 10.57 in the year 2000. But the geographic longitude
(relative to the mantle) of the geomagnetic axis is 2897 E, while that of symmetry axis of
the inner core is evaluated to be 160 7 E65 7 [10], so both axes are quite opposite in
longitude. A strong correlation was noticed between the non-dipole magnetic potential
and the potential of gravitational fluctuations over the Earth surface (Hide and Malin,
1965, according to [5]) and the shift of the geomagnetic potential required to maximize
the correlation was 1607 to the East. Such a shift increases in time at a rate of about
2.277 per year [5], then it would be about 2277 E in the year 1995, while now the
longitude shift of the geomagnetic axis relative to symmetry axis of the inner core is
about 1297.

If we suppose that the rotation of the inner core is about its axis of symmetry and
that the dipolar moment is directed along this axis, then how would such a movement
toward East (about 1307) of the North Pole during the pass from the bottom boundary
of the liquid core to its upper boundary (core-mantle boundary) be explained? Is it
possible that the fluid flow in the outer core be able to carry such a movement? It seems
too difficult to answer such questions, therefore I have chosen the model of case a) as
more realistic for the liquid core of the Earth.

5. – Discussion about the solution of the kinematic equation

In the dynamo theory it is proved that the fluid flow in the outer core of the Earth
can regenerate the magnetic field [4, 5]. Nevertheless, there is not an analytical
solution of the kinematic dynamo equation [4, 5]:

¯B

¯t
4˜3 (v3B)1h DB .(28)

It seems that when the conducting fluid flows across the magnetic lines of force, the
resulting electromotive force v3B will drive a current against Ohmic losses (the
second term of eq. (28)). Under the conditions of high conductivity s of the liquid core
(h41Om 0 s , hb1) (the “frozen flux hypotheses”) and appropriate conditions
concerning the symmetry of the turbulent motions, the small-scale motions generate a
large-scale electromotive force parallel to the large-scale magnetic field aBb and
proportional to it (the so-called dynamo a-effect, where the e.m.f. is: e4 av3Bb4
aaBb ) [4].

To such results came the research on dynamo theory, as there was a restriction
derived from the Cowling theorem: an axisymmetric magnetic field cannot be
maintained by a self-sustaining dynamo and from the Bullard and Gellman antidynamo
theorem according to which in an incompressible fluid (div v40) with the radial
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component of the velocity zero (vr40) and with magnetic diffusivity h constant,the
radial component Br of magnetic field will die away.

Here, I will discuss about the solution of kinematic and dynamic equations, without
claiming the exact solution of such equations.

For the model of liquid core analogue to the case a), we will analyze eq. (28) when
the term 2h DB is negligible, i.e. in the conditions of “frozen flux hypothesis” when
the magnetic lines of force are “frozen” to the fluid and move with it. Then the eq. (28)
became

¯B

¯t
4˜3 (v3B) .(29)

The presence of gravitational field and magnetic field changes the hydrodynamic
eq. (16) to

¯v

¯t
1 (v Q˜) v42

˜p

r
1n Dv1g1

1

rm 0

(˜3B)3B .(30)

As g has only the radial component g4gr4g0 (rORE ) (where g0 is the acceleration
of the free fall on the Earth surface r4RE ), it will contribute only to the radial
dependence of the pressure but will not change the solution (23), while the Lorentz
force term (1Orm 0 (˜3B)3B could be considered too small (for the magnetic field
in the liquid core that is thought to have gradients of order 1023 T, the gradient of
magnetic pressure B 2 Om 0 divided by r is of order 1023 , that is too small in comparison
to g). Therefore I will consider that in the liquid core the solution (23) for v is valid,
then the cross product v3B in spherical coordinates, has the components

(v3B)r42vf Bu ; (v3B)u4vf Br ; (v3B)f40

and the projections of the eq. (29) in spherical coordinates are
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¯(2vf Bu )

¯f
,

¯Bf

¯t
42

1

r
y ¯(rvf Br )

¯r
2

¯(2vf Bu )

¯u
z .

(31)

In order to find the solution of eqs. (31) we have to know the boundary conditions
at r4R1 and at r4R2 . If we approve the idea that the magnetic field in the solid
inner core is caused by the rotation (the Barnett effect) and that there are not
superficial electric currents at r4R1 (there is continuity of Br , Bu , Bf ) then the
boundary conditions at r4R1 can be taken as

Br42m 0 M cos u ; Bu4m 0 M sin u ; Bf40 ,(32)

where M is the known magnetization (14). If such field were continued outside the
sphere R1 it would present a typical poloidal field. According to the Backus
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theorem [4]: If no current crosses a spherical surface, then the magnetic field on that
surface is purely poloidal.

We have also considered that the magnetic field inside the inner core is not
influenced by the flow in the outer core. Although there is a strong magnetic coupling
between inner and outer cores [12], it is considered that the field of the outer core
cannot penetrate deep into the inner core.

The boundary conditions at r4R2 could be found by the downward continuation of
the observed field on the Earth surface. Such continuation up to mantle-core boundary
could be done if there are not superficial currents in this boundary and if the mantle is
non-conductive. The magnetic field on the Earth surface can be expressed as the sum
of spherical harmonics [4]. Taking only the dipolar term of spherical harmonics
expansion, then at r4R2 , an observer on the Earth has

.
`
/
`
´

Br42 g R

R2
h3

(g 0
1 cos u1g 1

1 sin u cos f1h 1
1 sin u sin f) ,

Bu4 g R

R2
h3

(g 0
1 sin u2g 1

1 cos u cos f2h 1
1 cos u sin f) ,

Bf4 g R

R2
h3

(g 1
1 sin f2h 1

1 cos f) ,

(33)

where R is the outer radius of the mantle (R46371.2 km ), R2 is the outer radius of the
liquid core (R2B3477–3550 km, see the discussion of [12]); g 0

1 , g 1
1 , h 1

1 are the Gauss
coefficients of degree n41 [4].

While for an observer on the rest referential, instead of the angle f there should be
f1V2 t , where t is the time and V2 is the angular velocity of the mantle.

Without searching for the analytic solution, we can find some qualitative conclusion.
In the case of axisymmetric field ¯Bf O¯f40), from the equation div B40 in spherical
coordinates,we find

1

r

¯(r 2 Br )

¯r
1

1

sin u

¯( sin uBu )

¯u
40 .(34)

In the stable state (¯BO¯t40), having the velocity field (23), from the two first eqs. (31)
we find ¯Br O¯f40 and ¯Bu O¯f40; while, from the third eq. (31) and eq. (34), we find

0422Br
(V12V2 ) R 3

1 R 3
2

R 3
2 2R 3

1

sin u

r 2
,

that means Br40. This conclusion is in agreement with the Cowling theorem, so an
axisymmetrical magnetic field could not be stable.

In the condition of non-stability, eqs. (31) where the velocity (23) is substituted, lead
to the equations from which one can see that the poloidal field can generate the toroidal
field simply by the differential rotation in the liquid core. Such conclusion is now
approved in the dynamo theory [4, 5, 9, 13, 14]. But these equations do not tell us that
the poloidal field could be generated by the toroidal field.

Our model could not explain the generation of a poloidal field from a toroidal field,
because we have not considered the thermal and compositional buoyancy, which incite
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the radial component of fluid velocity in the liquid core. Such velocity components
should be zero at the boundary of the spherical shell.

In the presence of convection, the continuity equation (19) should be

¯r

¯t
1div (rv)40 ,(35)

where div vc0, and in the stable conditions and spherical coordinates it would be

r
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1
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r
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¯f
1

2rvr

r
1

rvu cot u
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1vr

¯r

¯r
1

vf

r sin u

¯r

¯f
40 .(36)

Now, in this equation only derivatives of r relative to u and f could be zero but not its
derivative relative to r, therefore the equations would be much more complicated.

The recent models of dynamo theory accept the differential rotation in the liquid
core, but they consider it as a consequence of magnetic interaction between core and
mantle or as a consequence of anisotropy of convective flow in the outer core [14]. The
convection in the spherical shell should be non-axisymmetrical in order to generate a
magnetic field with strong axisymmetrical components [14]. The models of convective
flow must always have radial component zero at the boundaries of the spherical shell,
like in the model of Matsushima [15]. Boundary conditions maintain the buoyancy
gradients that would drive the dynamo action. For a dynamo driven by buoyancy force,
the flow must have a radial component for the buoyancy force to be able to work on it.
Busse [14] has derived a lower bound of this radial component necessary for dynamo
action.

As concerns the amplification of magnetic field from the fluid motion, although we
have not got the calculations, we would like to mention the Hollerbach reasoning [16]
that the B lines may be stretched and thereby amplified. The tension in the field lines
resists the kinematic stretching and by doing work against this elastic tension the flow
pumps energy into the field [16]. It is also possible that the differential azimuth motion
of fluid in outer core, stretching the poloidal field lines could amplify the field realizing
the transform of mechanic energy into the magnetic energy.

I think that the generation of the magnetic field from the rotation of the inner core
could be a continuous source of magnetic field and energy that would compensate the
Ohmic losses of energy in the liquid core. Knowing that the Ohmic losses in the outer
core are of order 1011 J/s and that the mechanic energy of rotation is of order 1028 J , it
would need a time of order 1017 sB109 years for the Earth’s rotation to die away. This
time is of the order of the Earth’s formation, so we are sure that it would not have
happened by this energetic balance.
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