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Summary. — The problems associated with shallow-water waves has received con-
siderable attention in the recent years. In the case of solitary and cnoidal waves, it
is often assumed that the nonlinear and dispersion effects balance whilst dissipation
is slight or totally neglected in the areas of the shallow water concerned. As a
follow-up, this model attempts to provide a description of the classical solitary waves
and the related cnoidal oscillations using the traditional shallow-water equations
(WHITHAN G. B., Linear and Non-Linear Waves (Wiley and Sons) 1973, pp. 460-470).
The derivations in this case do not involve any series expansion; and thus, they differ
significantly from the approach using the Korteweg-de Vries (KDV) equations
(WHITHAN G. B., Linear and Non-Linear Waves (Wiley and Sons) 1973, pp. 460-470;
ZABUSKY N. J. and GALVIN C. J., Shallow waves. The KDV equation and solitons, J.
Fluid Mech., 47 (1971) 811-824). Consequently, this model attempts to describe the
wave pattern even when the wave height grows as high as very close in magnitude to
the depth of the corresponding undisturbed water layer or before breaking begins.
In this consideration, realistic shallow-water parameters are used to examine the
structure of the wave processes concerned.

PACS 92.10.Hm – Surface waves, tides, and sea level.

1. – Introduction

The transformations of the finite-amplitude waves in shallow water are to a
considerable extent governed by the nonlinear Korteweg-de Vries equation [6, 8].
However, this is the case only in the shallow-water zone with the depth small compared
with the typical wavelength and the associated wave height less than the depth of
undisturbed water level [3, 4]. In this consideration, nonlinearity and dispersion
compete effectively; at the same time, dissipation is neglected [7].

Two types of waveforms appear to be prominent under these conditions. They are
a) the solitary wave [9] characterized by a simple hump [1] and b) the cnoidal oscillation
which is periodic in form [1, 7]. The existence of these waves as shallow-water
phenomena has been noted for some time. Investigation by Zabusky and Galvin [8, 6]
conclusively established the soliton concept as an observable shallow-water
phenomenon. At geophysical scale, Tsunami waves [9] possess identical characteristics
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with solitary waves. On the other hand, the profiles of low swell are often periodic and
thus identical with cnoidal oscillation.

Further, the KDV equation is an approximation to the traditional shallow-water
equations. This is so because, in the derivation, the terms of order h 2

0 Oh 2
0 are neglected;

here h 0 and h0 are, respectively, the peak wave height and the associated undisturbed
depth of water layer. This is aimed at ensuring the convergence of the binomial
expansion arising from the formulation. Thus, this approach suggests that the solutions
are restricted in application to waves with peak amplitude strictly less than the depth
of the associated water layer in the shallow water.

In this analysis, we shall use rather a different approach which does not involve
series expansion. Consequently, the method admits higher numerical value of h 0 Oh0 in
the subsequent calculations and, also, the derived steady wave profile appears to
remain realistic even when h 040.78 h0 ; suggesting the stage when the wave begins to
break. This value appears to be near to the usual theoretical prediction of h 040.85 h0 .

2. – Specifications and the governing equations

In this model, the origin is taken as the shoreline with the x-axis normal to it; the
y-axis being the vertical coordinate. The horizontal bottom of the water layer is defined
by y42h0 ; tD0 represents the time. The elevation and depression of the free surface
defined by y4h(x , t) present the appearance of a series of ridges and furrows,
assumed in this consideration to be parallel to the shoreline.

The governing equations are the system [3, 7]:

¯h

¯t
1

¯

¯x
]u(h01h)(40 ,(2.1)
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g is the constant gravitational acceleration, u(x , t) is the flow velocity. In the absence of
the dispersion term g (¯3 hO¯x 3 ), u(x , t) is defined by

.
/
´

u(x , t)42 kg(h01h)22 kgh04C0 (hOh0 )1O(h 2 Oh 2
0 ) ,

g4
C 3

0

3
h0 , C 2

0 4gh0 .
(2.3)

The process of elimination of u(x , t) in (2.1) using (2.3) introduces the binomial
series and the subsequent approximations in the KDV equation formulation as already
mentioned.

3. – Formal development

In this approach, we introduce x defined by x4x2u0 t , u04kg(h01h 0 )
corresponding to progressive wave train solution. Thus, (2.1) becomes

u4
u0 h1A

h01h
,(3.1)
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A being an arbitrary constant of integration, and from (2.2)

2u0
du
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dh

dx
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d3 h

dx 3
.(3.2)

A first integration of (3.2) gives

2u0 u1
u 2

2
2gh1g

d2 h

dx 2
4B .(3.3)

B is also an arbitrary constant of integration. Eliminating u(x) between (3.1) and (3.3),
then

g (h01h)2 d2 h

dx 2
1gh 31C3 h 21C2 h1C140 ,(3.4)

where
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.

4. – Solitary waves derivable from (3.4)

In the special case of solitary waves, u(x), h(x) and dhOdx are usually assumed to
vanish at infinity for a choice of h0 . Further, the same suitable choice of h0 will also
make d2 hOdx 240 at infinity; thus, A4B40. Equation (3.4) now becomes

g(h01h)2 d2 h

dx 2
1gh 31h 2g2gh02

u 2
0
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h1h(gh 2

0 2u 2
0 h0 )40 .(4.1)

Let h4j2h0 ; (4.1) becomes

g
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40 .(4.2)

The absence of the term involving 1Oj in (4.1) and the associated logarithmic term
in the subsequent integration imply that no series expansion is required and hence, the
advantage of this approach.

Integrating (4.2) again
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C0 is also constant of integration easily determined by same choice of j 84h 84h40
corresponding to j4h0 . Therefore, C042(h0 O2)(gh01u 2

0 ) (4.3) now becomes

g

2
g dj

dz
h2

1j 32 (2h01 f 2 ) j 21h0 (h0 2 f 2 ) j2 f 2 h 2
0 40 ,(4.4a)
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where f 24u 2
0 Og . We now assume that

dx4kj dz ,(4.4b)

(4.4b) is valid provided that the water surface never touches the bottom. That is,
hD2h0 ; this is the usual shallow-water assumption.

Equation (4.4a) takes the form

g

g
g dj

dz
h2

4F(j) ,(4.5)

F(j)42j 3 (2h01 f 2 ) j 22h0 (h012 f 2 ) j1 f 2 h 2
0 .(4.6)

We now obtain the solution of (4.5) in the form of an elementary function
corresponding to the solitary wave. In this case, it is usual to assume that the roots of
the equation

F(j)40 are 2a , 2a , b .

In the case of the KDV equation [1], these are 0, 0, b . We now have

F(j)4 (a1j)2 (b2j) .(4.7)

By comparing coefficients in (4.6) and (4.7), a and b satisfy the equations

a 2 (2h01 f 2 )12ah0 (h012 f 2 )23 f 2 h 2
0 40 ,(4.8)

b42a1h01 f 2 .(4.9)

Separating variables in (4.5) and using (4.7), then
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where b 0 is an arbitrary constant. Choose

b 04
pi

ka1b
,

then
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g
(a1b)1O2 zn(4.11)

and
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g
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g
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Equation (4.11) represents a solitary wave with b as the amplitude but tails off to 2a as
zK6Q . This is shown in fig. 1. The parameter a40 in the usual solution arising from
the KDV equation for shallow-water waves. In this case, (4.10) thus suggests a more
complete solution. Interestingly, the constant a seems to represent a measure of depth
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Fig. 1. – Solitary wave.

for which the undisturbed level of the surrounding shallow water is depressed during
the passage of the solitary wave.

Numerically, h 0� (0.5h0 , 0.85h0 ), then a� (1.1h0 , 1.31h0 ).
Consequently, since the origin of the co-ordinate system is taken at the undisturbed

water level, this analysis conclusively suggests that with this range of values of h 0 and
a , the observed surrounding sea level will be depressed to a depth between 0.1h0 and
0.31h0 from the undisturbed level during the passage of the solitary wave.

5. – Cnoidal oscillation derivable from (3.4)

Solution of (3.4) can be expressed in the form of periodic or cnoidal wave. In this
consideration, the oscillation does not need to vanish at infinity before the constants of
integration involved in (3.4) are fixed. Instead, h0 can be suitably chosen such that h4
d2 hOdx 240 and, consequently, in (3.1) and (3.3), A4B40. This is achieved if we
assume that the uniform depth h0 extends to the seaward end of the shallow water
beyond which all oscillations vanish owing to probable introduction of reverse current.
In this case, (4.5) still holds.

However, we firstly let

F 24
u 2

0

gh0

4
f 2

h0

, R04
g

gh0

and j4h0 j ;

then, dropping the bar, (4.4a) becomes

R0 j
.
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2(5.1)

(Q4dOdz), where

G(j)42j 31 (21F 2 ) j 22 (112F 2 ) j1F 2 .(5.2)

Express G(j) in the form

G(j)44A1 (j 02j)316A2 (j2j 0 )214A3 (j 02j) .(5.3)
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TABLE I. – Variation of non-breaking wave parameters with wave height.

h 0 Oh0 2j 0 k u vR 1O2
0

0.60
0.65
0.71
0.78
0.80
0.83

0.20075
0.20103
0.20130
0.20160
0.20207
0.20401

0.4925
0.4910
0.4905
0.4898
0.4895
0.4876

20.517
29.417
29.387
29.327
29.317
29.187

1.0112
1.0207
1.0212
1.0222
1.0237
1.0253

By comparing coefficients of j in (5.2) and (5.3), we have

A14
1

4
, A24

1

6
(21F 223j 0 ) , A34

1

4
]2j 0 (21F 2 )23j 2

02 (112F 2 )(

and j 0 satisfies the cubic equation

5j 3
023j 2

0 (21F 2 )1j 0 (11F 2 )1F 240 .(5.4)

Numerical calculations of the only real root of (5.4) as a function of h 0 Oh0 is shown in
table I. This is computed to an acceptable error of 21.531029 .

Again, let P 24j 02j , then (5.1) simplifies to

P
.

24
1

4R0

(P 22P 2
2 )(P 22P 2

1 ) ,(5.5)

where

P 2
1 4R23A2 , P 2

2 4R13A2 and R4 (9A 2
2 24A3 )1O2 .

Further, let P4P1 y ; then (5.5) takes the standard form

y
. 24v 2 (12y 2 )(12k 2 y 2 ) ,(5.6)

where v 24P 2
2 O4R0 , k4P1 OP2 ; (5.6) has solution

y4Sn (vz) and hOh04A01P 2
n Cn2 (vz) , A04j 02P 2

1 .(5.7)

Sn and Cn are Jacobian elliptic functions of first kind with modulus k ; k4sin u , u
being modular angle. From the properties of Cn, j oscillates between j 0 and A0 as
shown in fig. 2.

Solution (5.7) thus, describes a periodic or cnoidal wave of period T given by

T4
4K(k 2 )

v
,

where K(k 2 ) is a complete Jacobian elliptic function of the first kind expressible in
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Fig. 2. – Cnoidal wave.

terms of hypergeometric function; that is

K(k 2 )4
p
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2
; 1 ; k 2h(5.8)

and
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2
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Numerically, 0EkE1 as shown in table I.
Using the properties of the hypergeometric functions,
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2
,

1

2
; 1 ; k 2h411
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4
1o(k 4 ) ;(5.9)

then,

T4
2p

v
k11 k 2

4
1O(k 4 )l .(5.9)

Equation (5.9) can be used to estimate the period T given h 0 and h0 . For example, if
0.70h0Gh(x)G0.85h0 , and h042(1O2) m, g45O6 (in metre unit); then T48 seconds.
This period is the one usually associated with locally generated short swell on very
shallow beach in steady state.

6. – Conclusions

This theoretical model illustrates that with the suitable change of variables, the
solutions of the shallow-water wave equations can be completely obtained. In
particular, eq. (4.2) applies even in the case of the arbitrary depth distribution, and so,
can be integrated numerically. The equation is further simplified in all the cases
involving uniformly sloping bottom [4].

Equation (5.9) gives a quantitative estimate of the wave period in the shallow water
with constant depth distribution. A quantitative estimate of 8 second period when the
undisturbed water depth is 2(1O2) m suggests that the solution (5.7) can reasonably



E. O. OKEKE130

describe the profile of a short swell propagating towards a shoreline (see fig. 2).
Consequently, matching of the Fourier analysis of the solution (5.7) with the
corresponding microseismic frequency spectrum may give the improved estimate of
microseismic [5] activities in the locality concerned.

Finally, the variation of wave parameters such as k , u and v are shown as functions
of relative wave amplitude peak. The gradual variations in these parameters are
explainable by the slow evolution of wave profile relative to its speed in the shallow water.
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