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The surface code is currently the leading proposal to achieve fault-tolerant quantum computation.
Among its strengths are the plethora of known ways in which fault-tolerant Clifford operations can be
performed, namely, by deforming the topology of the surface, by the fusion and splitting of codes, and even
by braiding engineered Majorana modes using twist defects. Here, we present a unified framework to
describe these methods, which can be used to better compare different schemes and to facilitate the design
of hybrid schemes. Our unification includes the identification of twist defects with the corners of the planar
code. This identification enables us to perform single-qubit Clifford gates by exchanging the corners of the
planar code via code deformation. We analyze ways in which different schemes can be combined and
propose a new logical encoding. We also show how all of the Clifford gates can be implemented with the
planar code, without loss of distance, using code deformations, thus offering an attractive alternative to
ancilla-mediated schemes to complete the Clifford group with lattice surgery.
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I. INTRODUCTION

The components that make up quantum technologies are
inherently sensitive to noise. This is a problem that, if
unresolved, will inhibit the scalability of quantum infor-
mation processing tasks. To overcome this issue, quantum
error-correcting codes have been developed [1–5], where
logical quantum states are redundantly encoded in robust
subspaces of the Hilbert space of many physical qubits. As
such, there is a considerable number of physical qubits of a
scalable quantum computer that are dedicated to the role of
error correction.
Given the prohibitive cost of quantum resources, it is

important to discover fault-tolerant schemes for universal
quantum computation that use as few physical qubits as
possible. Among other factors, the resource cost of fault-
tolerant quantum computation depends on the choice of
quantum error-correcting codes into which we choose to
encode quantum information, as well as the different
schemes we use to implement a universal set of computa-
tional gates. Indeed, there has been considerable effort
dedicated to minimizing the resource cost of quantum
computation.
A leading approach to realizing fault-tolerant quantum

computation is broadly known as topological quantum
computation [1,6–8]. With this approach, we protect

quantum information by encoding it into nonlocal degrees
of freedom, using objects including non-Abelian anyons
[1,9] and punctures [10–19], or by use of extrinsic defects
[20–25], otherwise known as twists. With these schemes,
encoded information is manipulated by braiding these
objects to realize fault-tolerant universal quantum compu-
tation. In addition to schemes where protected quantum
information undergoes unitary rotations by braiding, other
promising schemes are known where quantum information
is encoded over noncontractable cycles of a lattice of
physical qubits, which are embedded on a manifold with
nontrivial topology [1,2]. Fault-tolerant entangling gates
are then achieved either transversally [26–28] or by lattice
surgery [29,30].
It is the goal of this manuscript to unify some of these

schemes by consideration of a specific lattice model. Here
we unify two low-overhead approaches to encoding qubits
using the surface code [1,2,31], namely, lattice surgery
[29,30], together with defect encoding schemes [20,24].
This unification is made using a correspondence between
the corners of the planar code [2] and twist defects [20].
While it is well known in generality that non-Abelian

defects exist on system boundaries in between distinct
phases in the topological condensed-matter literature
[23,32–36], here we find it instructive to consider bounda-
ries of a very specific lattice system. In particular, we use
the correspondence between twist defects and Majorana
fermions [20,25,37,38] to realize logical gates by braiding
twist defects. Specifically, we show that we can achieve a
fault-tolerant realization of the full Clifford group in a two-
dimensional system using lattice surgery methods, and by
braiding twist defects via code deformations.
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Furthermore, we also consider interactions between
different topological schemes for encoding quantum infor-
mation. In particular, we consider how punctures interact
with twist defects and show that we can use holes to
perform fault-tolerant measurement-only topological quan-
tum computation [24,39,40] with twist defects, by braiding
twists and holes. We also show that we can encode logical
qubits in hybridized schemes that use both holes and twist
defects to encode logical qubits. Such encodings are
of interest as they may enable new schemes that realize
fault-tolerant quantum computation with lower overhead
demands. See, for instance, related recent work [41]
following this goal, where logical qubits are encoded on
a surface code with three corners and a single central twist.
The paper is organized as follows: In Sec. II, we give a

brief overview of some of the different approaches that
have been followed to achieve low-overhead fault-tolerant
quantum computation. Then, in Sec. III, we introduce
notation and review the stabilizer formalism, anyon mod-
els, the Clifford group, and different methods of encoding
qubits using the surface code. We also develop a dia-
grammatic language that we use to build correspondences
between different schemes for encoding qubits. In Sec. IV,
we review code deformation and show that we can braid the
corners of the planar code by code deformation to perform
Clifford gates. In Sec. V, we consider interactions between
twists and holes, and show that we can use holes to perform
fault-tolerant parity measurements between qubits encoded
using twist defects in a measurement-only topological
quantum-computational scheme. In Sec. VI, we illustrate
a connection between lattice surgery and measurement-
only topological quantum computation. Finally, in Sec. VII,
we introduce a new hybrid scheme of encoding qubits and
discuss its advantages and drawbacks before giving some
concluding remarks in Sec. VIII. We point out that further
details and alternative explanations of some aspects of this
manuscript can be found in the work on which it is based
(see Ref. [42]).

II. FAULT-TOLERANT TOPOLOGICAL
QUANTUM COMPUTATION SCHEMES

This work seeks to develop and unify tools for surface-
code quantum computation. Before we present our results,
we first comment on other promising topological quantum-
computational schemes. Ultimately, the resource cost of a
computational scheme will depend on how the logical error
rate of a code scales as a function of the number of physical
qubits used, together with time and space requirements that
are needed to execute a universal gate set with the chosen
system. Certainly, it is important to consider all of these
factors when trying to determine the number of physical
qubits a particular architecture will need.
Given a system that can perform Clifford gates and

prepare noisy copies of magic states, universal quantum
computation can be achieved via magic-state distillation

[43]. A recent review of developments in magic-state
distillation protocols can be found in Ref. [44]. As such,
we first restrict our attention to achieving Clifford gates in
two-dimensional architectures.
Previously, using the surface code where qubits are

encoded using punctures, the full Clifford group is com-
pleted using ancillas that are prepared in the Y state [16],
i.e., an eigenstate of the Pauli-Y matrix. Logical qubits are
prepared in the Y state via a probabilistic and noisy process
[45]. Once prepared, the distilled states can be used to
perform an arbitrary number of phase gates [46,47].
Nevertheless, the requirement for nearby ancilla qubits
prepared in the Y states, together with the initial overhead
cost of preparing these Y states, will contribute to the
resource cost of quantum computation compared with
schemes where phase gates can be achieved natively.
Alternatively, by the addition of lattice dislocations [24],
the Clifford group can be achieved by making parity
measurements between logical qubits. Indeed, given arbi-
trary two-qubit Pauli parity measurements, arbitrary two-
qubit Clifford gates can be achieved [4]. The ability to
perform arbitrary two-qubit gates circumvents the need for
single-qubit Clifford gates to generate the Clifford group.
Notably, the dislocation code scheme involves introducing
a small number of weight-five stabilizer measurements to
the surface code.
The two-dimensional color code also achieves the full

Clifford group logical gates via transversal operations [26].
While transversal operations are very appealing compared
with the code-deformation schemes that seem to be
required for quantum computation with the surface code,
realizing the color code comes at the expense of increased
weight stabilizer measurements. Specifically, the surface
code requires weight-four stabilizer measurements com-
pared with weight-six measurements that are required of
the color code.
It is also worth mentioning the gauge color code [28],

which, notably, performs a universal transversal gate set via
gauge fixing [48,49] and may thus offer a reduction in
overhead compared with magic-state distillation-based
schemes of computation. While this is an appealing feature,
the gauge color code is three dimensional and, as such, is
challenging to realize with locally interacting qubits
arranged on a two-dimensional surface. While some effort
has been made to reduce the engineering demands of
realizing three-dimensional codes via dimension jumping
[50], or by finding two-dimensional variants of the gauge
color code [51–53], these schemes still, respectively, either
require some three-dimensional components or come at the
expense of the threshold error rate.
While gauge fixing with the gauge color code offers an

elegant approach to achieving a universal gate set, the
space-time quantum resource cost scales equally [54–56]
with other proposals, up to a constant factor, by use of
single-shot error correction [54,57]. As such, despite the
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apparent advantages of these codes, current proposals
for magic-state distillation-based schemes with two-
dimensional architectures remain attractive due to their
practicality and high error thresholds [10].

III. ENCODING QUBITS WITH THE
SURFACE CODE

In this section, we review the background material that
we use throughout the present paper, including stabilizer
formalism [58], anyon models [1,6–9], the Clifford group,
and different methods of encoding qubits with the surface
code [2].

A. Stabilizer formalism

Quantum states are robustly maintained in the code space
of a quantum error-correcting code. We specify the code
space of a stabilizer quantum error-correcting code with its
stabilizer group S. The stabilizer group is an Abelian
subgroup of the Pauli group P with −1∈S. Up to phases,
the Pauli group is generated by the standard Pauli matrices,
Xj, Yj, and Zj, where j indicates the qubit of the system on
which the operator acts.
The code space of a stabilizer code is the common

þ1 eigenspace of all the elements of the stabilizer group
s ∈ S, i.e.,

sjψi ¼ ðþ1Þjψi; ∀ s; ð1Þ

where jψi are basis vectors that span the code space.
Stabilized states jψi are commonly known as codewords.
We act on the code space with logical operators X̄k, Z̄k,

which are distinguished from other operators with bar
notation. Logical operators commute with all members of
the stabilizer group but are not themselves members of the
stabilizer group. The logical operators generate the logical
Pauli group that acts on the code space. Therefore, they
satisfy the following properties: X̄kZ̄k ¼ −Z̄kX̄k and
X̄kZ̄l ¼ Z̄lX̄k for k ≠ l.
An important quantity to introduce that characterizes

stabilizer codes is the code distance, which is commonly
denoted d. The code distance is the smallest set of qubits
which support one nontrivial logical operator of the code,
where the support of an operator is the set of qubits an
operator acts upon nontrivially. As a first-order approxi-
mation, the code distance quantifies the ability of a code to
tolerate noise, as it denotes the smallest number of qubits
that must be rotated in order to complete a logical operation
on the code subspace of the code.
It will also be helpful to note that the action of a logical

operator on the code space is invariant if the logical
operator is multiplied by an element of the stabilizer group.
Specifically, two logical operators L̄ and L̄0 ¼ sL̄ for s ∈ S
satisfy the relationship L̄0jψi ¼ L̄jψi for all code states jψi.
This result follows from Eq. (1) and the commutation

relation of elements of the stabilizer group with the logical
operators. It will be useful as it allows us to change, or
“clean” [59], the support of logical operators, such that
certain qubits of the stabilizer code do not support certain
choices of logical operator.

B. Anyons

A complementary and natural way to understand
schemes of topological quantum error correction is through
the language of anyonic excitations. Anyons are pointlike
quasiparticles whose motion is restricted to two spatial
dimensions. This restriction allows exotic exchange behav-
ior to arise.
We will frequently invoke this quasiparticle picture to

elucidate the physics of the error-correcting codes we study.
For a detailed description of anyon models, we refer the
reader to Refs. [1,6–8] and Appendix E of Ref. [9]. Here,
we briefly review two explicit anyon models that will be
relevant throughout this paper.

1. DðZ2Þ anyon model

The anyon model of the surface code is known asDðZ2Þ
[1]. It is composed of four anyons: e, m, and ψ , together
with the vacuum particle 1, which denotes “no particle.”All
anyon models include the vacuum particle.
For historical reasons, the e and m anyons are known as

the electric and magnetic charges. These anyons are their
own antiparticles. This means that they will annihilate if
combined. The combination of pairs of particles is captured
by the notion of “fusion,” denoted by the binary operation
“×.” The fact that e and m excitations are their own
antiparticles is captured by the fusion rules

e × e ¼ m ×m ¼ 1:

Exchanging pairs of e quasiparticles gives rise to bosonic
exchange statistics, in the sense that they realize a trivial,
i.e., þ1, phase upon the exchange. The same is true when
pairs of m particles are exchanged. Braiding an e and an m
excitation, however, has a nontrivial effect. This is seen
when one particle is moved through a full loop around the
other, which is known as a monodromy. Braiding an e
around an m, or vice versa, introduces a global phase of −1
to the system.
The ψ anyon is a particle that is composed of an e and an

m excitation, which is specified by the fusion rule

e ×m ¼ ψ :

The particle labeled ψ has fermionic exchange behavior,
so its wave function acquires −1 global phase upon
exchange. This arises from the nontrivial exchange behav-
ior of the component e and m anyons.
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2. Ising anyon model

The Ising anyon model [9,60] has two nontrivial anyon
types, σ and ψ . The particle ψ , as above, is a fermion that is
its own antiparticle. The equivalence between these par-
ticles will be used in this work, so any reference to fermions
refers to both interchangeably.
The σ anyon is non-Abelian. Fusing two Ising anyons

can either result in annihilation where the vacuum particle
is produced, or the fusion outcome can be one fermion.
This is captured by the fusion rule

σ × σ ¼ 1þ ψ :

The σ particle is also able to absorb a fermion, which is
represented by the fusion rule

σ × ψ ¼ σ:

The number of fermions absorbed by a pair of Ising anyons
can be learned by fusing the pair.
The σ anyons are equivalent to Majorana modes and can

be well described by Majorana operators [9,25]. We do not
require this description in this work. However, we note one
important feature: The Majorana parity operator, which
assigns a phase of �1 depending on whether a pair of σ
anyons will fuse to vacuum or a ψ particle, is equivalent, up
to a global phase, to the operator that fuses a fermion with
each σ particle. These operators are also equivalent to a full
monodromy of one σ particle around the other. It is these
operators that are used as the logical Pauli operators of
qubits encoded with Ising anyons. A single exchange of
two Ising anyons therefore implements a unitary rotation
that corresponds to the square root of the Pauli operator.
Such rotations are members of the Clifford group, which
we discuss next.

C. Clifford group

Elements of the Clifford group, U ∈ C, map elements of
the Pauli group onto elements of the Pauli group under
conjugation. It is defined as

C ¼ fU∶∀P ∈ P; UPU† ∈ Pg: ð2Þ
The Clifford group can be generated by two single-qubit
unitary rotations, or “gates”—the phase gate and the
Hadamard gate—which, respectively, can be expressed
in terms of Pauli matrices such that

S ¼ ðeiπ=41þ e−iπ=4ZÞ=
ffiffiffi
2

p
; H ¼ ðX þ ZÞ=

ffiffiffi
2

p
; ð3Þ

together with a two-qubit controlled-NOT gate

CNOT ¼ ð1 ⊗ 1þ Z ⊗ 1þ 1 ⊗ X − Z ⊗ XÞ=2: ð4Þ

The Clifford group acts on the Pauli matrices as follows.
The phase gate, or “S-gate,” obeys the following equations:

SXS† ¼ −Y; SYS† ¼ X; SZS† ¼ Z; ð5Þ

the Hadamard gate, which is Hermitian, satisfies

HXH ¼ Z; HYH ¼ −Y; HZH ¼ X; ð6Þ

and for the (Hermitian) controlled-NOT gate, we have

CNOTðX ⊗ 1ÞCNOT ¼ X ⊗ X;

CNOTð1 ⊗ XÞCNOT ¼ 1 ⊗ X;

CNOTðZ ⊗ 1ÞCNOT ¼ Z ⊗ 1;

CNOTð1 ⊗ ZÞCNOT ¼ Z ⊗ Z: ð7Þ

D. Planar code

The planar code [2,31] is defined on an L × L square
lattice with one qubit placed on each vertex of the lattice, as
shown in Fig. 1. The distance of the code is d ¼ L. This
representation of the planar code is given in Ref. [61], but it
is easily checked [62,63] that this representation, up to local
unitary operations, is equivalent to the more conventional

(a)

(b)

(c)

(d)

(e)

(f)

FIG. 1. The planar variant of the surface code with two rough
boundaries and two smooth boundaries. Qubits lie on the vertices
of the square lattice. Diagrams (a) and (b) show the two different
types of weight-four stabilizer operators. Diagrams (c) and
(d) show two stabilizers that lie at the boundary of the lattice.
(e) The logical operator Z̄ is the tensor product of Pauli-Z
operators extending from the top to the bottom of the lattice.
(f) The logical operator X̄ is the tensor product of Pauli-X
operators along the horizontal dashed line that extends from the
left to the right of the lattice.
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representation of the surface code [1,2] where the qubits lie
on the edges of a square lattice.
To specify the stabilizer group, we bicolor the faces f of

the lattice black and white as in Fig. 1. With this coloring
scheme, we can write the two different types of stabilizers
that form the stabilizer group; namely, we have the operator

Af ¼
Y

j∈∂f
Xj; ð8Þ

on each white face of the lattice, and the operator

Bf ¼
Y

j∈∂f
Zj; ð9Þ

on each black face of the lattice. The set ∂f denotes the
qubits that touch face f. We show an example of an Af and
a Bf operator in Figs. 1(a) and 1(b), respectively.
We must also define stabilizers on the boundary of the

planar code. The boundary stabilizers are shown in Fig. 1
by adding additional faces to the boundary of the lattice.
We have added black faces to the top and the bottom of the
lattice, and white faces to the left and right sides of the
lattice. With the addition of these extra faces, the boundary
terms are specified with the definitions given in Eqs. (8)
and (9). We show explicit examples of boundary terms in
Figs. 1(c) and 1(d).
Provided the stabilizer group contains only commuting

generators, we have a lot of freedom as to which types of
faces we can add to the boundary. Indeed, the choice of
boundary stabilizers plays a very important role in the
encoding properties of the planar code (see Ref. [31]). To
maintain consistency with the terminology used in
Refs. [2,31], we call boundaries with black faces on the
boundary “rough boundaries” and boundaries with white
faces on the boundary “smooth boundaries.” In Fig. 1, we
show rough boundaries on the top and bottom of the lattice
and smooth boundaries on the left and right sides of the
lattice.
With the choice of boundaries shown in Fig. 1, the planar

code encodes one logical qubit. The logical operators are
strings of Pauli operators that extend between different
boundaries of the same type. The logical operator Z̄ is the
tensor product of Pauli-Z operators that are supported along
a string that extends from the top to the bottom of the
lattice, between two rough boundaries. We show Z̄ in
Fig. 1(e). The logical operator X̄ is the tensor product of
Pauli-X operators supported on a string that runs from the
left side to the right side of the lattice. The qubits that
support X̄ lie on the thick dashed line shown in Fig. 1(f).
Unlike Z̄, the operator X̄ is a string that stretches between
two different smooth boundaries of the lattice. It is easily
seen that X̄ anticommutes with Z̄, as they are commonly
supported on only one qubit of the lattice.

It is worth noting that, provided the string operators
commute with the stabilizer group, we are free to choose
logical operators along any string on the lattice as long as
the terminal boundaries of the string are not changed. This
is easily seen by observing that we can manipulate the path
of the strings of logical operators shown in Fig. 1 by
multiplying them by elements of the stabilizer group. We
frequently make use of this fact in discussions in later
sections of the present paper.
The logical operators of the planar code can be understood

using the picture of anyonic quasiparticle excitations.
Indeed, as it is explained in Ref. [1], stringlike Pauli
operators acting on the codewords of the planar code can
be regarded as creation operators for anyons. Specifically, a
string operator of Pauli-Z (Pauli-X) operators with end
points that lie in the bulk of the lattice create pairs of electric
(magnetic) charges at the end points of the strings, as we
have defined in Sec. III B 1. Hopping operators for e and m
excitations also correspond to stringlike operators.
Unlike the creation and hopping operators we have just

mentioned, the stringlike logical operators of the planar
code do not create quasiparticle excitations. This is because
the string operators terminate at boundaries of the planar
code where quasiparticle excitations are absorbed, or
“condensed.” Specifically, a rough (smooth) boundary is
capable of absorbing e (m) particles. We can therefore
regard the Z̄ðX̄Þ logical operator as the process of creating a
single e (m) excitation at one rough (smooth) boundary and
subsequently transporting the particle across the lattice
where it is then absorbed by the opposite rough (smooth)
boundary. The braiding statistics of the exchange of these
two excitations assures the appropriate commutation rela-
tions between these logical operators. We will frequently
draw on this picture to demonstrate different logical
operations using the surface code. Our freedom to deform
logical operator strings is also elucidated in this picture, as
we have argued that it is the role of logical operators to
transport excitations between different boundaries. For the
case of the planar code, the action of the operator is
independent of its path along the lattice, provided charges
are transported between the appropriate boundaries. In
general, the action of logical string operators are invariant
under continuous deformations to their path over the lattice.

E. Encoding logical qubits using holes

We can increase the number of encoded qubits for the
surface code by introducing punctures to the lattice.We show
a puncture, or hole, in Fig. 2. The qubits inside the puncture,
shown as small black points, have been disentangled from the
lattice.We point out that unlike the lattice shown in Fig. 1, the
punctured lattice has only roughboundaries.As such,without
a hole in the center, this latticewould encodeno logical qubits.
By introducing a puncture in the center of the lattice, we are
able to encode a single logical qubit on the lattice. We show
the logical operators for the encoded qubit in Figs. 2(a)
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and 2(b). The logical operator X̄ is the tensor product of Pauli-
X operators supported on a cycle of qubits that enclose the
puncture shown by a dashed line in the figure. The logical
operator Z̄ is the tensor product of Pauli-Z operators
supported along a line that connects the lattice boundary to
the boundary of the puncture. We show such an operator in
Fig. 2(b). As with the planar code, the logical operators here
are stringlike and allow continuous deformations.
Like the planar code, the logical operators of the

punctured planar code can also be interpreted from the
point of view of topological excitations. Given that both
the lattice boundary and the hole in the lattice have rough
boundaries, they are both capable of absorbing an e
particle. Therefore, the logical state of the hole relates to
the number of electric charges that have been passed from
the lattice boundary into the hole. Specifically, the parity of
this number gives one two-level logical degree of freedom.
The even case corresponds to vacuum due to the fusion rule
e × e ¼ 1, and the odd case corresponds to an e charge
absorbed by the hole. We measure the charge parity
absorbed by the hole with a measurement that encloses
the hole, which is able to count the number of pairs of
electric excitations that have been shared between the
lattice boundary and the hole, thus giving the topological
structure of the X̄ logical operator. Indeed, this measure-
ment is analogous to Gauss’ law [1].

The distance of a code where qubits are encoded using
holes depends on two quantities: the length of the boundary
of a given hole and the separation of a hole from another
lattice boundary. As such, to maintain a code distance d, all
holes with a common boundary type must be separated by a
distance of at least d and must maintain a distance of d from
the boundary of the lattice. Holes must also have a
boundary of at least length d. As such, for the case of
spherical holes, i.e., holes where the removed qubits are
taken from a simply connected region, the radius of the
region must be about d. For simplicity, we only consider
holes that cover simply connected regions.
In general, we can consider punctures with smooth

boundaries instead of rough boundaries, where smooth
boundaries absorbm particles instead of e particles. Indeed,
protocols to implement quantum logic gates have been
shown which involve holes with both types of boundaries
[10–12]. It is also worth noting the recent work of Delfosse
et al. [64], where they study the encoding properties of
holes that have both rough and smooth boundaries. Here,
we need only introduce holes with rough boundaries. In
what follows, we will see that rough boundaries differ from
smooth boundaries only by lattice defects that are intro-
duced in the following subsection.

F. Encoding logical qubits with twist defects

We next consider encoding qubits using twist defects.
Twist defects were introduced for the surface-code model
by Bombín in Ref. [20]. Other work on twist defects on the
surface code is presented in Refs. [25,33,37,65,66]. Twist
defects have also been introduced in the color-code models
in Ref. [21,67], and from the point of view of topological
quantum field theories in Refs. [22,23] and references
therein. See also the second item in Sec. 12 of Ref. [9].
In Fig. 3, we show four twists on a lattice, which

collectively encode a single qubit. On this lattice, the
qubits that lie along the two pink lines are removed from
the lattice. We refer to these pink lines as defect lines. Twist
defects lie on the double plaquettes where the defect lines
terminate. Up to a complex phase, we show a stabilizer that
lies on a twist defect in Fig. 3(a). Indeed, one should also
include a complex �i phase in front of the twist stabilizer
such that the stabilizer returns a þ1 measurement outcome,
where the sign determines the phase the defect carries. We
largely neglect this phase, as it does not significantly
change the physics that we are demonstrating, but we
direct the interested reader to Ref. [20]. In Fig. 3(b) we also
show how the weight-four stabilizers are modified along
the defect line. In general, the stabilizers that lie on the
defect lines are determined as follows: We first replace the
stabilizers that lie along defect lines with restricted stabi-
lizers, where we take the restriction [68] on the qubits that
do not support defect lines. We then replace the restricted
stabilizers with the products of pairs of adjacent restricted
stabilizers. Indeed, following this prescription gives the

(a)

(b)

(c)

FIG. 2. A hole in the planar code modifies its code space.
A hole is shown in the center of the lattice. (a) When a hole is
prepared, a new logical operator is produced which consists of a
nontrivial cycle of Pauli-X operators that enclose the hole. The
qubits that support the logical operator are marked by a thick
dashed line. (b) The logical operator shown by label (a) anti-
commutes with the conjugate logical operator which is composed
of the tensor product of Pauli-Z operators that extends from
the boundary of the hole to the boundary of the surface.
(c) A hole can be produced in the lattice by measuring the
qubits in the computational, i.e., Pauli-Z, basis.

BROWN, LAUBSCHER, KESSELRING, and WOOTTON PHYS. REV. X 7, 021029 (2017)

021029-6



stabilizers shown in Figs. 3(a) and 3(b). We show the
logical operator X̄ in Fig. 3(c), and the logical operator Z̄ is
the tensor product of Pauli-X operators on all the qubits that
support the dashed line in Fig. 3(d). If we have a single
uniform lattice boundary, we can see from the logical
operators that to maintain a distance d code, all twist
defects must be separated by at least d (see Ref. [24]).
We now briefly review the properties of twists from

the point of view of anyonic quasiparticles. Indeed, the
string operators we have studied create either a pair of
electric charges or magnetic charges at the two end points
of the string when they act on code words in the bulk of
the lattice. In this sense, we see that the surface-code model
obeys global charge-parity conservation law, as anyonic
charges of the same type must be created in pairs.
Interestingly, string operators that cross a defect line
create one e excitation and one m excitation at its end
points. Remarkably, it follows from this fact that this
property gives twist defects the ability to absorb a fermion.
It was observed by Bombín in Ref. [20] that this behavior
is reminiscent of Ising anyons, which we reviewed in
Sec. III B 2. Importantly, like twists, Ising anyons also have
the ability to absorb fermionic excitations.
We can see that twist defects mimic the behavior of Ising

anyons by consideration of their logical operators. Indeed,
the string of Pauli-Y operators shown in Fig. 3(c) represents
a string operator that transports a fermion from one twist on
the lattice to another. The operator Z̄, on the other hand,

measures the fermionic charge parity that has been
absorbed by the two twist defects that lie on the left of
the lattice. With this observation, we see that the physics of
Ising anyons is echoed by the simple stabilizer model that
we consider here. Later, we make use of this analogy to find
new logical gates by code deformation, which we discuss in
the following section.

G. Twist on the boundary

Before moving on to the next section, we finally dem-
onstrate a correspondence between twist defects and the
corners of the planar code above.More precisely, by corners,
we mean points on the boundary of the planar code where
rough boundaries meet smooth boundaries. In later sections,
we make use of this correspondence to perform Clifford
gates with the planar code using code deformations.
To show the correspondence between twists and corners,

we consider the planar-code lattice with defect lines in
different configurations. To do so, we first build a dia-
grammatic notation without the microscopic details of the
underlying lattice.
In Fig. 4, we show a planar code with a rough boundary

that supports a single pair of twist defects. In the diagram,
strings of Pauli-Z (Pauli-X) matrices are shown by red
(blue) strings. With this picture, the operator Af (Bf) can be
regarded as a red (blue) string that follows a trivial cycle, as
shown in Figs. 4(a) and 4(b), respectively. As the lattice has
only a single rough boundary, the stabilizer group also
contains strings of Pauli-Z operators that follow trivial
cycles and terminate at the boundary of the lattice, as shown

(a)

(b)

(c)

(d)

FIG. 3. Two pairs of twist defects on the planar code. Twists
appear at the end points of the pink defect lines. (a) The weight-
five stabilizer operator of a twist defect, shown up to a phase
factor. (b) A modified weight-four stabilizer that lies on the pink
line. (c) A logical operator associated with the four twist defects
on the lattice. (d) The tensor product of Pauli-X operators on the
qubits supported along the dashed line gives the logical operator
that anticommutes with that shown at (c).

(a)

(b)

(c)

(d)

(e)

FIG. 4. A schematic diagram of the planar-code lattice with a
rough boundary. Strings of Pauli-Z (Pauli-X) operators are
marked by red (blue) lines, respectively. Diagrams (a) and (b),
respectively, show Af and Bf stabilizer operators. (c) An element
of the stabilizer group where a string of Pauli-Z operators follows
a trivial path and terminates at the same rough boundary of the
lattice. (d) A defect line marked by a dashed white line with two
twist defects at its end points. Red strings that cross the defect line
change to blue and vice versa. (e) A stabilizer operator that
encloses a single twist. The string must wind twice around the
twist, which changes the string from red to blue and back to red
again to form a closed loop. As mentioned, the stabilizer should
also include a complex phase due to the point where the two
strings cross, which we do not consider explicitly.
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in Fig. 4(c). Importantly, as the boundary is entirely rough,
only red strings can terminate at the boundary. We show a
defect line in Fig. 4(d), marked by a thick dashed white
line, where two twist defects lie at its termination points.
Twists are shown as white crosses. We also show an
example of a stabilizer operator that encloses a single
twist in Fig. 4(e) drawn as strings of Pauli-X and Pauli-Z
operators, where the string changes color as it crosses the
boundary.
Having introduced a simple diagrammatic notation, we

can easily demonstrate the equivalence between the corners
of the planar code and twists, which we summarize in
Fig. 5. In Fig. 5(a), we show a lattice that encodes one
logical qubit using four twist defects. The logical operator
X̄ is a string operator that encloses the top two twists. As
previously discussed, this operator corresponds to an
operator that transports a fermion between the two enclosed
twists. We see this because the parallel strings are passing
an e excitation and an m excitation between the two twists.
The operator Z̄ is shown by a red loop that encloses the two
twists to the left of the figure. This measures the parity of
fermionic charges that have been absorbed by the two
enclosed twists. From the diagram, we can see that the two
logical operators anticommute because there is one single
point where the blue segment of X̄ intersects the red Z̄ loop.

Logical operators can be manipulated by multiplying
them by stabilizer operators. As we have discussed,
stabilizer operators are strings of trivial cycles or strings
that both terminate at the same boundary. In Fig. 5(b), we
show the logical operators of Fig. 5(a), where the logical
operators are deformed such that they terminate at the
boundary of the lattice. As with Fig. 5(a), we see that these
two logical operators anticommute, as there is still a single
point where the blue segment of the X̄ operator intersects
the red string that represents the Z̄ operator.
Indeed, the logical operators in Fig. 5(b) are reminiscent

of the logical operators of the planar code discussed in
Sec. III D, where logical operators also terminate at the
boundary. We next consider the same model, except where
the defect lines terminate at the boundary of the lattice, such
that the four twist defects of the code are located at the
boundaries of the lattice. This is shown in Fig. 5(c). In this
picture, the logical operators are unchanged from those
shown in Fig. 5(b), which, once again, are logical operators
that are very similar to those of a planar code. To make this
analogy completely clear, we show the same model in
Fig. 5(d), except where the defect lines have been drawn
close to the boundary of the lattice but where the twist
defects remain in the same locations. In this picture, the
logical operators are now identical to those of the planar
code, where Z̄ corresponds to moving an e excitation from
the upper boundary to the lower boundary, and X̄ corre-
sponds to moving anm excitation from the left boundary to
the right boundary. In this sense, we can regard a smooth
boundary as a rough boundary that has been covered by a
defect line. We also observe that the points, or corners,
where the rough boundary meets the smooth boundary are
the locations of twist defects. We can therefore regard the
corners of the planar code as equivalent to twist defects. In
the following section, we make use of this analogy to
demonstrate how we can perform logical Clifford gates on
the planar code by code deformations that manipulate the
corners of the planar-code lattice as though they are twist
defects.

IV. LOGICAL OPERATIONS BY
MANIPULATING CORNERS

We have now introduced several different methods of
encoding qubits in the surface-code model. However,
quantum computation requires that we also perform logical
gates on encoded qubits. A well-studied method for
performing fault-tolerant quantum logical operations is
by use of code deformations [10–19], where we make
special measurements to manipulate the logical qubits of a
quantum error-correcting code. In particular, we perform
code deformations to manipulate and braid the twist defects
that lie at the corners of the planar code, as discussed in
the previous section. Given that the twist defects of the
planar code are analogous to Ising anyons, we can devise
code-deformation strategies based on known braiding

(a) (b)

(c) (d)

FIG. 5. Lattices with different configurations of twist defects
but equivalent logical operators. (a) Four twist defects in the
center of the lattice. The logical operators are closed loops that
enclose pairs of twists. (b) The logical operators shown in
(a) multiplied by stabilizer operators that terminate at the
boundary, as in Fig. 4(c), thus giving the logical operator shown
in the picture. (c) We consider the lattice shown in (a) and (b),
except where the defect lines terminate at the boundary. In this
picture, the twist defects lie at the boundaries of the lattice.
Importantly, the logical operators are unchanged from those
shown in (b). (d) We finally show the lattice where the defect lines
are drawn close to the left and right sides of the lattice. Now, the
logical operators are equivalent to those in Fig. 1, where a string
of Pauli-X operators runs from the left to the right of the lattice
and a string of Pauli-Z operators runs from the top to the bottom
of the lattice.
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gates that can be achieved using Ising anyons [9,69]. The
manipulation of twist defects has been discussed in
Refs. [20,21,25,67,70]. Indeed, like Ising anyons, twist
defects can achieve the Clifford group by braiding, which,
together with magic-state distillation [43], can be used to
achieve universal quantum computation. In this section, we
begin by reviewing the theory behind code deformations.
We then show explicitly how to move twists by code
deformations. Finally, at the end of this section, we show
how to perform single-qubit Clifford gates.

A. Code deformations

Here, we briefly review the concept of code deformation.
This is a process by which a code defined with stabilizer
group S is mapped onto a different code defined by
stabilizer group S0. With a suitable choice of code defor-
mation, we can perform logical rotations on a code. Code
deformation is achieved simply by measuring the elements
of S0 to project onto the new code. Details on performing
measurements using the stabilizer formalism are given in
Chapter 10 of Ref. [71]. We note that the code-deformation
procedures we present should be readily adapted to
adiabatic topological quantum-computational schemes
using the methods shown in Refs. [72,73].
We require that no stabilizers of S0 measure the logical

information encoded in the code space of the code specified
by S to preserve encoded information. For all of the
instances we consider here, we can perform sequential
measurements with weight that is much smaller than the
distance of the code. It then follows that we can always
clean logical operators [59,74] away from the qubits that
support the stabilizer measurements of S0. We therefore
focus on how the stabilizer group is modified by the
stabilizer measurements of S0 on the code specified by S.
We consider the simple case where the generators of S0

differ from S by only a single element, s0. This is easily
generalized to the case where S0 differs from S by many
elements, as we can sequentially deform the code several
times between many different codes. Depending on the
choice of S0, element s0 will do one of two things: It will
either commute with all elements of S, or it will anti-
commute some stabilizers of S. In the case where s0
commutes with all elements of S, provided s0 is not a
logical operator, it must follow that s0 ∈ S, which is a trivial
deformation.
We next consider the case where s0 anticommutes with

some elements of S. We denote the subset of elements of S
that do not commute with s0 as A, where we denote
members of the anticommuting set sj ∈ A, where 1 ≤ j ≤
N and N is the number of elements in A. In this case, we
replace elements of A⊆S with terms of the form sjsjþ1 for
all 1 ≤ j ≤ N − 1. Then, up to the measurement outcome
m0 ¼ �1, we project our encoded state onto the code space
of S0. In the case where m0 ¼ −1, we project the encoded
state onto the −1 eigenstate of s0. Then, we can apply a

unitary correction operator to rotate the state we achieved
under the projection onto the desired state.

B. Manipulating corners by code deformations

We now show that we can move the corners of the planar
code onto the bulk of the lattice. The sequence of
measurements we choose is based on the terms in the
perturbation expansion used to synthetically introduce twist
defects to Hamiltonian models [75].
In Fig. 6(a), we show the single-qubit Pauli measure-

ments that we perform along the pink line to move the twist
into the bulk of the lattice. Upon performing these
measurements, the twist defect is moved along the pink
line. After performing these measurements, the qubits that
lie on the pink line are projected onto a product state and
are thus disentangled from the lattice.
With a few exceptions, which we show in Fig. 6, the

stabilizers along the pink defect line of the deformed lattice
are found by the same prescription given in Sec. III F. Twist
defects are weight-five stabilizers at the terminal point of
the defect line, and stabilizers along the straight segments
of the defect line are weight-four operators that straddle the
line. We also consider how the stabilizers are modified in

(a) (b)

(c)

(d)
(e)

FIG. 6. Moving the twist defects at the corners of the planar
code into the bulk of the lattice. (a) We make single-qubit Pauli
measurements along the pink defect line to deform the twist
defect from the corner of the planar code to the center of the
lattice. Most of the measurements along the line are Pauli-Y
operators, but we also use Pauli-X measurements and Pauli-Z
measurements to move a twist around a corner. (b,c) Stabilizer
operators that are modified by the code deformation at locations
where twists are moved around corners. (d) The stabilizer
operator that lies at the corner of the lattice where a twist defect
has been removed. (e) Two qubits at the corner of the lattice that
have been measured in a product basis and are no longer
entangled with the code.
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the locations where the defect line moves around a corner.
In Figs. 6(b) and 6(c), we show some explicit examples of
one weight-three stabilizer, and one weight-five stabilizer
where the twist defect turns around a corner on the lattice.
We also show how the stabilizers are modified close to the
corner where the twist defect originated in Figs. 6(d) and
6(e). In Fig. 6(d), we show a weight-three stabilizer on the
boundary of the lattice where the twist defect began, and in
Fig. 6(e), we show two qubits that have been projected into
the product state and are thus removed from the code.

C. Single-qubit Clifford rotations on the planar code
by code deformation

Having demonstrated that it is possible to move the
corners of planar codes into the bulk of the lattice and braid
them like twist defects, we now show that we can complete
the generating set of the Clifford group using twist defects.
In terms of scope and resource usage, our scheme can be
compared with protocols given in Refs. [16,76] where
Hadamard gates are performed on qubits encoded with
pairs of holes.
In Fig. 7, we show that a deformation that exchanges two

twists on two adjacent corners maps between different Pauli
matrices. Specifically, we show that exchanging the two
twists at the bottom of the lattice will, up to phases,
exchange logical operators Z̄ → Ȳ and Ȳ → Z̄, where X̄
remains invariant. We work through this manipulation, step
by step, by manipulating the support of the logical
operators shown in Sec. III G. The strategy we follow is
to deform the logical operator away from the path of the
twist defects.
Note that, up to phases, the effect of this exchange is

equivalent to the braiding of two Ising anyons [69,77].
Indeed, as noted in Sec. III B, exchanging two Ising anyons
is equivalent to the square root of the X̄ operation
associated with these twists.
We first deform the two twists on the corners of the lower

boundary into the center of the lattice, as shown in Fig. 7(a).
Upon doing this, we deform the logical operator Z̄ away
from the positions of the twists by multiplying the logical
operator by elements of the stabilizer group such that none
of the qubits that are measured during the code deformation
supports the logical operator. The logical Z̄ operator is
shown in red in Fig. 7(a), snaking between the twists in the
center of the lattice.
Next, we continue to move the twist defect that began in

the bottom-left corner of the lattice into the bottom-right
corner of the lattice. We therefore continue to deform the
logical operator such that one end point terminates on the
right-hand side of the lattice. This forces the logical
operator to move over a defect line which has already
been drawn on the lattice, which changes its string type
from red to blue, as we show in Fig. 7(b). We also multiply
the logical operator by an element of the stabilizer group
which extends from the left boundary to the lower

boundary of the lattice. Introducing this stabilizer operator
at this point will help us see that we can deform the logical
operator out of the trajectory of the twist defect that lies in
the center of the code as it moves towards the bottom corner
of the lattice.
In Fig. 7(c), we show a small deformation of the logical

operator shown in Fig. 7(b), where now we have the
product of a string operator running from the top to the
bottom of the lattice, and a string that runs horizontally
across the lattice that loops around the one twist defect that
remains in the bulk of the lattice. To deform the logical
string shown in Fig. 7(c), we multiply the logical operator
by a stabilizer that loops around a single twist, as in
Fig. 4(e), to deform the horizontal string over the central
twist. This method allows us to move the central twist
defect into the bottom-left corner of the lattice without
performing any code-deformation measurements over the
support of the logical operator. Then, recognizing that the
two parallel defect lines that run along the bottom edge of
the lattice are equivalent to a boundary where there is no
defect line, we recover the lattice shown in Fig. 5(d).
We finally look at the action of the deformation on

the X̄ operator. One can readily check that this logical
operator is invariant under the presented transformation, as

(a) (b)

(c) (d)

FIG. 7. A sequence of code deformations that map the logical
operator Z̄ onto Ȳ. (a)Wemove the bottom two twist defects into the
center of the lattice.We also show the Z̄ string operator in red,which
“snakes” between the twist defects at the center of the lattice. (b)We
deform the position of one twist defect into the bottom-right corner
of the lattice. The logical operator is deformed over the defect line
such that it is not supported on any of the qubits where code-
deformation measurements move the lowest twist defect from its
position in (a) to its position in (b). This deformation moves the
logical operator over a defect line and, as such, changes the color of
the string. We also multiply the logical operator by a stabilizer that
extends from the left-hand side of the lattice to the bottom of the
lattice, which is also shown in the figure. (c) A small deformation of
the logical operator shown in (b) gives the pictured logical operator.
(d) Multiplying the logical operator shown in (c) by a stabilizer that
encloses the single twist defect lying at the center of the lattice
deforms the logical operator out of the path of the twist, enabling us
to move the twist defect at the center of the lattice to the bottom-left
corner of the lattice, thus completing the procedure.

BROWN, LAUBSCHER, KESSELRING, and WOOTTON PHYS. REV. X 7, 021029 (2017)

021029-10



it can be supported on the qubits on the lattice that are never
acted upon by nontrivial measurements under the code-
deformation procedure, thus showing the promised action
of this code-deformation procedure.
To complete the Clifford group, one can also check using

a similar argument that, up to phases, exchanging the two
twists on the left-hand side of the lattice will map the Pauli
operators such that X̄ → Ȳ, Ȳ → X̄, and it will leave the
operator Z̄ unchanged. For an alternative perspective, we
show this operation in a spacetime diagram in Fig. 8. Now,
if we denote the exchange of the two twists at the bottom
(left-hand side) of the lattice as B1 (B2), then, up to Pauli
rotations, we have the single-qubit logical phase gate S̄ and
the logical Hadamard gate H̄ such that B2 ¼ −X̄ S̄ and
B1B2B1 ¼ −Ȳ H̄, which generate the single-qubit gates of
the Clifford group. Given that we can achieve logical Pauli
matrices either via transversal single-qubit Pauli rotations
or, more simply, by updating the Pauli frame [16], we
recover a fault-tolerant implementation of the Clifford
group with code deformation using the planar code.

Upon performing the suggested braiding operations with
the square lattice introduced in the previous section, we
modify the code distance. Recalling that the distance of a
logical qubit encoded via twist defects depends on the
separation between all the twists on the lattice, it is obvious
that we must deform the locations of the twist defects such
that they all maintain a large separation. Using the lattice
shown in Fig. 1, we can find paths that the twists follow
while undergoing this exchange such that all the twist
defects maintain a distance of at least L=2 from one another
on the considered lattice geometry. As such, the code
distance is d ∼OðL=2Þ as we perform the presented logical
operations. Interestingly, we also find that for the code with
a rotated geometry, as is shown in Fig. 9, we can exchange
the corners without more than a small constant loss in code
distance. This comes at the expense of using 2d2 qubits to
achieve a code of distance d, in contrast to the square
geometry we have already introduced, which requires only
d2 qubits. It is interesting then that the resource demands of
both lattice geometries are similar when we consider
performing logical gates by braiding the corners of the
lattice.

FIG. 8. Spacetime figure showing the evolution of the logical
operator X̄ under the exchange of two twists, where the time
direction is upwards along the page. The figure shows that the
operator is mapped onto the logical operator Ȳ, which can be
seen at the top of the figure. The trajectory of the twist defects
is marked by black lines. As in the two-dimensional figures
above, red (blue) strings correspond to the world lines of e (m)
quasiparticle excitations. We continue with the convention we
used earlier, where e charges can terminate at the boundary. We
depict this by showing red strings diverging away from the twist
defects.

(a)

(b)

(c)

(d)

FIG. 9. By rotating the lattice geometry about an angle of π=4,
we can perform both twist exchange operations without reducing
the distance beyond a small constant value. The figure shows a
distance L ¼ 9 lattice. (a,b) Two twist defects that have been
deformed into the center of the lattice. (c) The single-qubit
measurements we make to move the twist along the bottom of the
lattice. (d) Aweight-nine logical operator at a moment where the
two twists pass each other. The black dashed and dotted lines
show the support of conjugate weight-nine logical operators that
we find to be minimal in weight.
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D. Encoding two qubits on a single planar code

By regarding the corners of the planar code as twist
defects, we have seen that we can braid them to realize a set
of gates that generate the single-qubit elements of the
Clifford group. We can extend this idea by adding more
corners to the planar code, such that it encodes more qubits.
Then, we can braid the corners of this extended code to
implement entangling gates, as we describe in this sub-
section. We believe that the entangling operation we
present here may provide a relatively simple procedure
to entangle two fault-tolerant qubits in the laboratory using
near-future technology.
We look at the example shown in Fig. 10, which encodes

two logical qubits that we index qubit 1 and qubit 2. In the
picture, we show a planar code with six twist defects lying
on the boundary of the surface code. The two twist defects
at the left of the figure and the twist defect at the bottom
center of the lattice support the logical qubit 1, and the other
three twist defects support qubit 2. The logical operators,
X̄1, Z̄1, X̄2, and Z̄2, are shown in the figure. As in the
previous subsection, we can generate the single-qubit
Clifford operations by exchanging the twist defects of a
respective qubit.
Additionally, we can also perform an entangling oper-

ation between the two qubits by exchanging the two twists
in the center of the lattice.
Each pair of twists is individually able to fuse to either

vacuum of a ψ particle. However, for any state within the
stabilizer space, the parity of the number of ψ particles
must be even overall. This even parity is to ensure that they
can mutually fuse to vacuum. Given this restriction, the
fusion result for the leftmost and rightmost pairs must
always be the same as that of the central pair. This pair is

therefore associated with the logical operator X̄1X̄2.
Consider exchanging these two twists along the dark grey
arrows shown in Fig. 10, which are marked with a letter e.
Explicitly, we find that, under the exchange of the central
two twists, we get the transformation

X̄1 → X̄1; Z̄1 → Ȳ1X̄2;

X̄2 → X̄2; Z̄2 → X̄1Ȳ2;

which can be shown using methods similar to those used in
Sec. III B. This gate is equivalent to a controlled-NOT gate
up to local Clifford rotations.
Remarkably, we can perform both the single-qubit

operations and the entangling gate, without decreasing
the distance of the code, by using an L × 2L lattice with
square geometry as shown in Fig. 9, where we have about
2d2 physical qubits describing two logical qubits with a
distance of about d code. As such, we believe, given the
recent surge in progress in experimental quantum error
correction [78–85], that this example provides a relatively
simple experiment to demonstrate the full Clifford group
that may be implemented in the near future.
Note also that by exchanging the leftmost and middle

twists using the light grey arrows marked r, and similarly
for the right-hand side, we can achieve the direct exchange
of any twist pair in the center without loss of distance. The
equivalent gates can be achieved without using such
rotations, but it could yield superior results in certain cases
by keeping the twists slightly better separated.

V. ENTANGLING DIFFERENT TYPES
OF LOGICAL QUBITS

In addition to performing single-qubit elements of the
Clifford group, it is also important to have fault-tolerant
schemes that entangle many logical qubits. It is known that
we can perform entangling operations using two-qubit
nondestructive parity measurements [4]. One method of
performing a two-qubit parity measurement nondestruc-
tively is to prepare a third ancillary qubit which is then
entangled to the two qubits we wish to perform a parity
measurement over, and to then measure the ancilla qubit. In
this section, we elaborate upon one of the fault-tolerant
entangling schemes in Ref. [24], which performs a con-
trolled-NOT gate between two qubits that are encoded
using quadruples of twists using a third ancillary logical
qubit. We first show in detail that we can perform a
controlled-NOT gate between a logical qubit encoded with
a pair of holes and a logical qubit encoded over four twist
defects by code deformations. We can then use this
entangling gate to perform parity measurements between
qubits encoded with twists by performing entangling gates
between logical qubits and an ancillary qubit encoded with
a pair of holes, and subsequently measuring the ancilla
qubit. We use this entangling operation to perform a

FIG. 10. A surface code that encodes two logical qubits.
Logical operators X̄1, Z̄1, X̄2, and Z̄2, which act on qubit 1
and qubit 2, are shown. Exchanging the two central qubits along
the trajectories shown by the dark grey arrows, which are marked
by e, entangle the two logical qubits. This exchange can be
performed without decreasing the code distance beyond a small
constant amount on an L × 2L lattice with the square geometry
we show in Fig. 1.
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controlled-NOT gate between qubits encoded with twist
defects. We point out that this scheme is much like a
measurement-only topological quantum computation
scheme [39,40,65,69,86–88] presented by Bravyi in
Ref. [69].

A. Braiding twists and holes

We consider the setup shown in Fig. 11. In the picture,
we show two qubits: one encoded over four twists on the
lattice and the other encoded using two punctures. We call a
qubit encoded with four twists the quadruple-twist encod-
ing, and a qubit encoded using two punctures the hole-
pair encoding. We show that deforming one hole along a
path that encloses two twists, whose trajectory we show
with a dashed line in the figure, will execute a controlled-
NOT gate. We show the action of the braid operation by
demonstrating that the logical operators shown in Fig. 11
satisfy the conditions given in Eqs. (7).
We will not elaborate in detail on the sequence of code-

deformation measurements that we perform to move holes,
as this has been described in detail in, for instance,
Refs. [10–16]. For now, it is enough to understand that
holes are moved by first increasing their size along some
suitable direction and then decreasing their size again, such
that the hole is displaced along their path of motion. More

specifically, we increase the size of a hole with a rough
(smooth) boundary by measuring the physical qubits of the
lattice with single-qubit Pauli-Z (Pauli-X) close to the
boundary of the puncture. As such, the qubits in the center
of a hole with a rough (smooth) boundary are measured
onto an eigenstate of the Pauli-Z (Pauli-X) matrix [see
Fig. 2(c)]. To decrease the size of the hole, we measure
stabilizers at the boundary of the puncture. Importantly, as
we perform measurements to move the hole, we will not
change its topology. We can continually repeat this pre-
scription to transport a hole along the different trajectories
described below.
Having discussed how holes are moved around the

lattice, we next show that the braid shown in Fig. 11 will
result in a controlled-NOT gate. We first show that
Z̄T → Z̄CZ̄T . This is shown diagrammatically in Fig. 12.
We consider the transformation of the Z̄T that is shown in
Fig. 11. As the hole moves, the logical operator stretches to
follow the hole. This causes the logical operator to thread
between the twists, as we show in Fig. 12(a). We note that
as the hole passes across a defect line, it changes its
boundary type such that it now absorbs Pauli-X string
operators instead of Pauli-Z string operators. Once the
deformation procedure is completed and the hole is

FIG. 11. The code-deformation scheme to entangle a qubit
encoded with a pair of holes to a qubit encoded over four twists. At
the top of the figure, we show the logical operators for a quadruple-
twist qubit encoding, and at the bottom of the figure, we show the
logical operators for a hole-pair qubit encoding. We present a
scheme to perform a controlled-NOTgatewhere the qubit encoded
with the four twists is the control qubit and the qubit encoded using
holes is the target qubit. The black dashed line shows the trajectory
that the hole in the middle of the figure must follow to complete a
controlled-NOT gate between these qubits.

(a) (b)

FIG. 12. The deformation of the Z̄T operator under the fault-
tolerant entangling operation. (a) The logical operator that
terminates at the hole moves with the hole and is thus threaded
between the twists. We also point out that the boundary of the
hole changes from a rough boundary to a smooth boundary as it is
passed across the defect line. As such, we draw a white dashed
line around the puncture. (b) Upon moving the puncture back to
its initial position, we see that we have wrapped the logical string
operator around the lower two twists shown in the figure. One can
check that the deformed logical operator is equivalent to Z̄CZ̄T , as
shown in Fig. 11.
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returned to its initial position, the logical operator is
deformed around the lower two twists on the lattice, as
we show in Ref. 12(b), which one can easily see is
equivalent to Z̄CZ̄T as depicted in Fig. 11.
We next consider the evolution of X̄C as the hole is

moved around the lattice. The operator X̄C is a string of
Pauli-Z operators that wrap around the two twists shown on
the right in Fig. 11. While the hole has a rough boundary, it
can terminate Pauli-Z strings and, as such, passes trans-
parently through the logical operator. However, once the
puncture passes over the defect line, the boundary changes
from rough to smooth, and as such, the Pauli-Z string can
no longer terminate on the hole and must thus deform
around the hole, as we see in Fig. 13(a). We continue to
move the hole around its prescribed trajectory to its initial
position, deforming the logical operator further, such that
we finally obtain the logical operator shown in Fig. 13(b). It
can easily be checked that this can be deformed by
stabilizer manipulations to the logical operator X̄CX̄T as
drawn in Fig. 11.
Finally, it can readily be checked that the other two trivial

relations, namely, Z̄C → Z̄C and X̄T → X̄T , also hold under
the code-deformation scheme. With this result, we show that
the proposed braid completes a controlled-NOT gate
between the two qubits shown in Fig. 11. We remark that,
provided the holes maintain a width of Oðd=4Þ and a
separation of about d, and the twists are mutually separated

by distance d, then this operation is completed without
reducing the distance of the code below d. One can also
show that we achieve a controlled-phase gate between the
hole-pair qubit and the twist-quadruple qubit by deforming
the hole around the two twists in the left side of the diagram.
We leave this as an exercise for the reader.
Note that, once again, the effect of the braiding can be

interpreted in terms of the anyons of DðZ2Þ. Given that a
hole can support an electric excitation, and since two twists
correspond to a single fermionic mode, which may fuse
either to vacuum or to a ψ excitation, the twists can be
ignored and the braiding around the mode alone can be
considered. The only instance in which a nontrivial braiding
occurs is when both the hole and the fermionic mode are
occupied by a nontrivial excitation. In this case, the e anyon
braids around the ψ excitation, which yields a −1 phase, and
hence we observe the application of a controlled operation.
As an aside, it may be interesting to reinterpret the

proposed entangling operation by code deformation, fol-
lowed by a logical measurement to teleport logical infor-
mation between logical qubits as a gauge-fixing operation
[28,48,49]. Specifically, this teleportation fault-tolerantly
moves logical information between two different schemes
of encoding. If we can regard the two logical qubits shown
in Fig. 11 as one logical qubit and a second gauge qubit,
then suitable preparation, or gauge fixing, of the gauge
qubit, followed by the entangling operation that is achieved
by code deformation, and subsequent measurement of the
logical qubit will teleport information from the logical
qubit to the gauge qubit. After the operation is completed,
the qubit that originally supported the logical information is
now a gauge qubit, and the gauge qubit maintains the
logical information; as such, logical information has been
switched between two different codes.
To understand this code-deformation operation as some

special case of gauge fixing, we can interpret the system as
the hole is braided as an intermediate code, or even a series
of intermediate codes, where the nontrivial measurements
that deform the code are elements of the gauge group of a
subsystem code [89–91]. As before, the measurements we
make to deform the hole can be regarded as a series of
gauge-fixing operations. Finally, the measurement that is
made to teleport logical information between the two codes
after the entangling operation can be thought of as a third
gauge-fixing operation that completes the transfer of
logical information. It may be interesting to consider this
example of code switching to help us shed light on the
limitations and the potential applications of gauge fixing.
We discuss this in more detail in Sec. VII B.

B. Entangling twist qubits

Having shown that we can perform a controlled-NOT
operation between a quadruple-twist encoded qubit and a
hole-pair qubit, we can now use a hole-pair qubit as an
ancilla qubit to perform a parity measurement between two

(a) (b)

FIG. 13. The transformation X̄C onto X̄CX̄T under the code-
deformation scheme. Diagram (a) shows how X̄C is deformed
around the hole when the hole lies in between the four twists.
(b) Once the hole has been deformed around the two lower twists
of the lattice and is returned to its initial position, the logical
operator X̄C is deformed onto a string operator that is equivalent
up to stabilizer multiplication to the logical operator X̄CX̄T, as we
show in Fig. 11.
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quadruple-twist qubits. Specifically, we take the ancilla
qubit and perform entangling operations between both of
the qubits involved in the parity measurement and sub-
sequently measure the ancilla qubit.
As we have already seen, we entangle the ancilla qubit to

a logical quadruple-twist qubit by braiding the hole around
two of the twists that encode the qubit. It follows from this
that, to perform a parity measurement between two logical
qubits encoded with a quadruple of twists, we must braid a
hole of an encoded ancillary hole pair around two of the
twists of each qubit and then measure the hole-pair qubit by
moving the two holes together. Given the ability to perform
parity measurements, we can perform a controlled-NOT
operation between qubits encoded with quadruples of
twists by measurement given an additional ancillary
twist-quadruple qubit. We describe this procedure below.
In Fig. 14, we show how to perform a controlled-NOT

gate between twist qubits using parity measurements [4].
Having prepared the ancilla qubit in the þ1 eigenstate of
X̄A, we then measure Z̄CZ̄A, followed by X̄AX̄T, before
measuring the ancilla qubit in the computational basis, thus
projecting it onto an eigenstate of Z̄A.
Each of the three qubits in Fig. 14—the control, the

ancilla, and the target qubit—are labeled in the center of
each twist quadruple qubit. We use an encoding where the
logical operator Z̄αðX̄αÞ is a closed loop enclosing two
vertically (horizontally) separated twists of each quadruple,

as in Fig. 5(a) for α ¼ C, A, T. We also remark that with the
chosen encoding, the total anyonic charge of a given
quadruple qubit is vacuum. It follows from this result that
the stabilizer group contains a closed loop of Pauli-X and
Pauli-Z operators that encloses all four twists of each
quadruple. A consequence of this is that it does not matter
which pair of vertically (horizontally) aligned twists the Z̄α

(X̄α) enclose; both are equivalent up to multiplication by
stabilizer group elements and thus have the same action on
the code space.
Given these facts, together with the earlier discussion in

this section where we show that we can entangle a hole-pair
qubit to a quadruple-twist qubit, we can easily show how to
perform a fault-tolerant controlled-NOT gate by parity
measurements. First, to perform Z̄CZ̄A we prepare a pair
of holes in the þ1 eigenvalue eigenstate of logical operator
X̄h, where we have used a lowercase index to indicate that
this is the logical qubit encoded by the hole pair. Next,
knowing that braiding one of the two holes of the hole pair
around two of the vertically aligned twists of a quadruple
qubit results in a controlled-phase gate, it follows that
braiding a hole around two of the vertically aligned twists
of the ancilla qubit and then two of the vertically aligned
twists of the control qubit and then returning the hole to its
initial position will result in a controlled-phase gate
between the hole-pair qubit and the ancilla qubit, and a
controlled-phase gate between the hole qubit and the
logical control qubit. In the bottom right-hand side of
Fig. 14, we show how the X̄h logical operator is deformed
into a logical operator, which is equivalent up to stabilizers
to the logical operator Z̄CZ̄AX̄h. Finally, following this
entangling operation, measuring X̄h returns the value of the
fault-tolerant nondestructive parity measurement. This
measurement is completed by moving the two holes of
the hole pair back together, as we indicate by the black-
dashed arrow in Fig. 14.
We must also perform a X̄AX̄T gate to execute the fault-

tolerant controlled-NOT gate. This high-weight logical
operator is also shown in Fig. 14, where the logical operator
is a string of Pauli operators that enclose two of the
horizontally aligned twists of the ancilla qubit and two of
the horizontally aligned qubits of the target qubit. To
measure this logical operator fault-tolerantly, once again,
we prepare an additional logical qubit using a pair of holes
close to both the ancilla qubit and the target qubit in theþ1

eigenstate of X̄h. We then deform one of the holes of the pair
around two of the horizontally aligned qubits of both the
ancilla qubit and the target qubit. This deformation effec-
tively performs a controlled-NOTgate between the hole-pair
qubit and the ancilla qubit, and a controlled-NOT gate
between the hole-pair qubit and the target qubit. Once again,
measuring the hole-pair qubit in the basis of eigenstates of
the X̄h operator completes the X̄AX̄T parity measurement.
Finally, we perform the fault-tolerant Z̄A measurement by

producing a hole-pair qubit in an eigenstate of X̄h,

FIG. 14. Executing the two qubit parity measurements, we need
to perform a controlled-NOT gate. Qubits are encoded with
quadruples of twists, where the different logical qubits—the
control, target, and ancilla—are labeled in the center of each twist
quadruple. We measure Z̄CZ̄A by braiding a single hole of a hole-
pair qubit around two twists of the control qubit and two twists of
the ancilla qubit, as shown in the figure. Upon completing this
deformation, measuring the hole-pair qubit reveals the outcome
of the parity measurement. We also show the X̄AX̄T operator that
we must measure. This is again achieved by braiding one hole of
a hole pair, which is prepared in X̄ around the loop followed by
the X̄AX̄T operator. Measuring Z̄A completes the controlled-NOT
gate, up to a Pauli correction.
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performing a controlled-phase gate as we have already
described and then measuring X̄h. The outcome of this
measurement determines the Pauli correction that we must
apply to complete the measurement-only controlled-
NOT gate. Together with the methods we have outlined
in Sec. IV C, we can generate all of the gates of the Clifford
group. Alongside noisy processes such as magic-state
distillation [43], we can use the Clifford group to perform
universal quantum computation with our scheme.

VI. LATTICE SURGERY WITHIN THE
TWIST FRAMEWORK

Finally, with the observation that the corners of the
planar code can be regarded as Majorana modes, it is
interesting to recognize that lattice surgery [29,30] is
reminiscent of the measurement-only entangling gate
scheme that we discuss in Sec. V B.
Lattice surgery provides a way of entangling pairs of

planar codes within a two-dimensional architecture via
fault-tolerant logical parity measurements. This entangle-
ment scheme is particularly interesting from a practical
perspective because, in principle, the planar codes of this
computational architecture can be kept well separated while
they are not interacting with other qubits. In this sense, the
lattice-surgery computational scheme is modular. In con-
trast, braiding schemes, for instance, where all the qubits
are encoded over twist defects or punctures, need to be kept
on a common manifold, and as such, it will be necessary to
design large surface-code architectures with these schemes,
which can support all of the logical qubits that are needed to
complete a computation.
In Fig. 15, we show how an entangling gate is performed

between logical qubits encoded with planar codes via lattice
surgery. The figure depicts three planar codes—an ancilla
qubit, a control qubit, and a target qubit—together with the
Z̄CZ̄A operator and the X̄AX̄T operator shown in red and blue,
respectively, that are used to perform entangling gates via
lattice surgery [29]. The figure also shows the additional
qubits of the lattice used in the original measurement-only
topological quantum-computation scheme that we have
discussed above. The qubits used in the scheme above that
are not required in lattice surgery are shown in pale colors.
Instead, lattice surgery uses onlyOðLÞ qubits to perform two-
qubit parity measurements. This is in contrast to the meas-
urement-only scheme discussed above where OðL2Þ qubits
are required in between logical qubits encoded with twist
quadruples on the lattice in order to maintain the distance of
the code. Details on performing fault-tolerant logical parity
measurements by lattice surgery are given in Refs. [29,30].
Following this observation, it may also be interesting to

explore this picture further to discover new fault-tolerant
schemes for quantum computation with low resource
demands using other, more exotic topological models
[22,92,93]. For instance, one might also consider reinter-
preting lattice surgery with the color code from the point of

view of twist defects. Lattice surgery and twist defects have
been considered for computation with the color code in
Refs. [30] and [21], respectively.

VII. HYBRID ENCODING SCHEME

Having considered several different fault-tolerant
schemes for encoding and manipulating quantum informa-
tion, we finally introduce a new method of encoding logical
qubits that makes use of both punctures and twist defects.
We call qubits encoded in this fashion hybrid qubits.
Entangling operations can be achieved without additional
ancilla qubits, and we can perform one nontrivial single-
qubit element of the Clifford group. With these encodings,
we need only braid holes with different boundary types.
More details on hybrid qubits are found in Ref. [42].

A. Hybrid qubit

We show a hybrid qubit in Fig. 16, together with its
logical operators. The figure shows two twist defects at the
terminal points of a single defect line, together with one
hole with a rough boundary and a second hole with a
smooth boundary. The logical operator Z̄ extends from one
hole around a single twist defect and terminates at the other
hole. The logical operator must follow this trajectory
because the string must cross the defect line such that it
can terminate at both of the punctures of the qubit. The

FIG. 15. Using the picture of twists, we can view lattice surgery
as a measurement-only approach to performing logical gates
between non-Abelian point particles. In bold colors, we show
three planar codes, and the Z̄CZ̄A and X̄AX̄T measurements we
need to perform lattice surgery are shown in red and blue,
respectively. We also show with pale colors the qubits used in the
measurement-only scheme above that are not required in the
lattice surgery scheme. From this perspective, we see that lattice
surgery is a measurement-only topological quantum computation
scheme with a significant reduction in resource costs, as we are
able to perform the required parity measurements with onlyOðLÞ
ancillary physical qubits, which is in contrast to OðL2Þ qubits if
we maintain all of the twist defects on the same lattice.
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logical operator X̄ is a string that forms a loop that encloses
a single puncture of the hybrid qubit, as seen in the figure.
To achieve code distance d, the two holes must each have a
circumference OðdÞ, the two twist defects must be sepa-
rated from each other by a distance of about d, and both
defects must be separated from the two holes by a
distance Oðd=2Þ.
We entangle pairs of hybrid qubits by exchanging the

smooth hole of one hybrid qubit with the rough hole of the
second hybrid qubit. We can also perform the single-qubit
Clifford operation B1 by braiding the two holes of a hybrid
qubit or by exchanging the two twist defects. It is interesting
thatwe can combinepunctures anddislocation lines to encode
qubits. Such combinations could potentially be used to
discover better encoding rates of logical qubits to physical
qubits than those currently known. We leave such a calcu-
lation to futurework. Similar work in this direction is given in
Refs. [41,64]. However, finding the optimal rate for encoding
qubits remains an open problem. Inwhat follows,we describe
how to fault-tolerantly convert between different encodings
that may allow us to exploit the benefits of each qubit type.

B. Switching between different encodings

We have now identified and discussed three distinct
methods of encoding logical qubits in the surface code,
namely, by hole pairs, twist quadruples, and with hybrid
qubits, all of which have distinct capabilities of performing
logical operations. Given their complementary properties, it
is interesting to see that we can fault-tolerantly switch
between these different encodings. We have already out-
lined how we can switch between a hole-pair qubit and a
twist-quadruple qubit in Sec. VA. In what follows, we
briefly describe how to switch between a hybrid encoding
and the other two encodings, thus providing a direct path to
switch between any two of the three encodings. We remark
that the switching procedures we give can be understood
naturally in the anyonic picture, as they are simply trans-
ferring the anyons from one occupational mode to another

without allowing them to be measured. We also point out
that this idea of code switching is reminiscent of the ideas
presented in Ref. [87], where code switching is used to
complete a universal gate set with parity measurements for
a particular non-Abelian anyon model.
We first consider transferring a logical qubit from a

hybrid qubit to a twist qubit. To do so, we first prepare a
second pair of twist defects some distance at least Oðd=2Þ
from the holes of the hybrid qubit, and a distance at least
OðdÞ from the two twist defects of the hybrid qubit. Then,
one of the two holes, say, the hole with a smooth boundary
of the hybrid qubit, is braided around one of the two new
twist defects by code deformation and then returned to its
initial position. The braid operation moves the hole across a
defect line and thus changes the boundary type of the hole.
After completing the braid, we can measure a string of

Pauli-Z operators that terminates at the boundaries of the two
distinct holes, which maps the logical qubit onto a logical
encoding of the four twists that now remain on the lattice, up
to some Pauli correction. The Pauli correction we must apply
is determined by the outcome of the string-operator meas-
urement. The string-operator measurement can be performed
fault-tolerantly by moving the two holes together to form a
single hole. The single remaining hole can subsequently be
closed, leaving a single logical qubit encoded over four twists
on the lattice, thus completing the code-switching operation.
We can also map from a twist-quadruple qubit to a

hybrid qubit. This is achieved by preparing a pair of holes
on the lattice a distance Oðd=2Þ away from the twist
defects. Then, we braid one of the two holes around one of
the twist defects of the twist-quadruple qubit and return the
hole to its original position. Finally, we measure a loop
operator that encloses two twists, including the one twist
that was braided with the hole, to teleport the encoded
logical information onto a hybrid qubit up to a Pauli
correction, which is determined by the outcome of the loop
measurement. Remaining on the lattice is a hybrid qubit
that is made up of two holes on the lattice and two twist
defects that were not enclosed by the loop-operator
measurement. The other two twists that remain on the
lattice can be removed by code deformation.
Finally, to map between a hybrid qubit and a hole-pair

qubit, we simply braid the hole with a smooth boundary of
the hybrid qubit around one of the two twist defects of the
hybrid qubit, which transforms the boundary type of
the braided hole. We are then free to remove the twists
from the lattice as the logical information is now preserved
in the hole-pair qubit. The reverse operation can be
performed such that a hole-pair qubit is mapped onto a
hybrid qubit by preparing a pair of twist defects on the
lattice and then braiding one of the holes of the hole pair
around one of the new twist defects. The two twist defects
and the two holes now compose a hybrid qubit describing
the logical information that was initially encoded by the
hole-pair qubit.

FIG. 16. A hybrid qubit is encoded using a pair of holes—one
with a rough boundary and one with a smooth boundary—and
one pair of twist defects. The two anticommuting logical
operators of the hybrid qubit are shown.
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Given that the three different encodings of logical qubits on
the surface code all have complementary properties, it is
interesting to find the most resource-efficient method of
encoding and manipulating logical qubits. To remind the
reader, the twist qubit can generate all of the single-qubit
Clifford operations bybraiding, but it requires a logical ancilla
qubit to perform entangling gates using parity measurements,
the double code of Sec. IVD being a notable exception. In
contrast, hole-pair qubits can be entangled readily, but they do
not achieve single-qubit Clifford gates by braiding. Hybrid
qubits fall in themiddle groundof these two examples, as they
can be directly entangled without ancilla and can perform a
subset of single-qubit Clifford rotations. Given that we are
also capable of efficiently switching between these different
types of qubits, it may be interesting to try to discover more
efficient computational schemes in space-time resource costs
using code switching.We alsomention again that itmay be an
interesting direction of study to reinterpret the examples of
code-deformation gauge-fixing schemes from a more funda-
mental point of view.

VIII. CONCLUDING REMARKS

To summarize, we have unified several methods of
manipulating logical qubits with the surface code.
Notably, we have demonstrated new code-deformation
schemes to implement the full Clifford group using a small
number of weight-five local measurements over the planar-
code lattice. In contrast, surface-code quantum computa-
tion using only hole defects or standard lattice surgery may
be more resource intensive once the implementation of full
algorithms is considered, as with these architectures we
must prepare and maintain additional logical qubits in
eigenstates of the Pauli-Y matrix via a distillation scheme
to complete the Clifford group. Alternatively, the two-
dimensional color code, which achieves the full Clifford
group transversally, requires weight-six stabilizer measure-
ments, which we expect to be more challenging to perform
in the laboratory. With these considerations, we argue that
the new deformation procedures we have considered may
lead to fault-tolerant quantum-computational schemes with
lower resource costs than previously considered architec-
tures. To investigate our corner-braiding scheme further, we
should examine how it behaves at the circuit level under a
realistic noise model as gates are performed. We leave such
an analysis to future work.
We have also built on the analogy between the corners

of the planar code, twists, and Ising anyons to show that
lattice surgery fits into the more conventional picture of
measurement-only topological quantum computation. We
suggest that this observation may be extended to other
topological phases with boundaries to develop other fault-
tolerant quantum-computational schemeswith lattice surgery.
Certainly, it may be instructive to find modular quantum-
computational models where a universal gate set is achieved
between qubits encoded on some suitably chosen topological

substrates via fault-tolerant logical parity measurements. It
might also be interesting to adapt the schemes we develop
here for use in a fault-tolerant measurement-based scheme
[11,12,17,94] for quantum computation. Such an extension
maymake someof the present ideas experimentally amenable
to a linear optical architecture [95].
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