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Abstract

Psychology investigates the interplay of human mind, body, and its environment in
health and disease. Fully understanding these complex interrelations requires
comprehensive analyses across multiple modalities and multidimensional datasets.
Large-scale analyses on complex datasets are the exception rather than the rule in
current psychological research. At the same time, large and complex datasets are
becoming increasingly available. This thesis points out benefits, challenges and
adequate approaches for analyzing complex multidimensional datasets in psychology.
We applied these approaches and analysis strategies in two studies. In the first
publication, we reduced the dimensionality of brain activation during a working
memory task based on data from a very large sample. We observed that a mainly
parietally-centered brain network was associated with working memory performance
and global measures of white matter integrity. In the second publication, we
exhaustively assessed pairwise interaction effects of genetic markers onto epigenetic
modifications of the genome. Such modifications are complex traits that can be
influenced by the environment and in turn affect development and behavior. The lack
of observed strong interaction effects in our study suggested that focusing on additive
effects is a suitable approach for investigating the link between genetic markers and
epigenetic modifications. Both studies demonstrate how psychological scientists can
exploit large complex datasets by applying adequate research practices and
methodologies. Further adopting these approaches will prepare psychological research
for harnessing large and complex datasets, leading towards a better understanding of

mental health and disease.
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INTRODUCTION

1. Introduction

During the last three decades, the development of new neuroimaging tools has greatly
facilitated investigating neurobiological correlates of psychological processes (Poldrack
& Farah, 2015). Accordingly, neuroscience constitutes an integral part of contemporary
psychological research (Schwartz, Lilienfeld, Meca, & Sauvigné, 2016). Combining
techniques from psychology and non-invasive neuroimaging with tools of molecular
biology and genetics has yielded promising insights into the molecular underpinnings
of human behavior, cognitive functioning, and psychiatric disorders (Freytag et al.,
2017; Heck et al., 2014, 2017; Milnik et al., 2012; Papassotiropoulos et al., 2013; Vogler et
al., 2014). The technologies and methods applied in these fields are currently
advancing at a fast pace (Medland, Jahanshad, Neale, & Thompson, 2014; Poline,
Breeze, & Frouin, 2015; van Horn & Toga, 2014) and yield ever-growing amounts of
increasingly complex and voluminous data (Fan, Han, & Liu, 2014). Such large and
complex datasets may result from methods including the comprehensive analysis of
brain connectivity (Burns, Vogelstein, & Szalay, 2014; Van Essen et al., 2013), whole
genome or whole exome sequencing (Gudbjartsson et al., 2015; Heck et al., 2017), or
from sources such as electronic health records (Boland, Hripcsak, Shen, Chung, &
Weng, 2017; Geraci et al., 2017), mobile devices (Schobel, Pryss, & Reichert, 2015;
Torous, Kiang, Lorme, & Onnela, 2016), social media (Luhmann, 2017; Park et al., 2014),
online games (McNab et al., 2015; Stafford & Dewar, 2014; Stafford & Haasnoot, 2017),
web content mining (Landers, Brusso, Cavanaugh, & Collmus, 2016), or deep
phenotyping (Loeffler et al., 2015). The amount of available large datasets is in addition

increasing due to recent collaborative efforts for acquiring very large research samples
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(Medland et al., 2014) and the growing volume of publicly available data (Ferguson,
Nielson, Cragin, Bandrowski, & Martone, 2014).

Genetics and neuroscience are commonly considered data-intensive research
fields (Lazar, 2016; van Horn & Toga, 2014). In contrast, other subfields of psychology
have only recently started to conduct large-scale analyses (Harlow & Oswald, 2016).
Most psychological scientists are therefore used to investigating rather small datasets
(Chen & Wojcik, 2016; Cheung & Jak, 2016). Research in psychology should embrace
the opportunities that arise from investigating large and complex datasets - as an
essential complement to small-scale studies. This will require adopting research
practices and methodologies that enable harnessing vast amounts of complex data
(Cheung & Jak, 2016; Harlow & Oswald, 2016).

This doctoral thesis contributes to the research field of psychology, firstly by
highlighting benefits of analyzing large multidimensional datasets, secondly by
pointing out challenges that arise from investigating such data, and thirdly by
presenting adequate approaches for facing these challenges. I describe these
approaches from the perspective of the researcher in molecular psychology and
neuroscience but they are similarly applicable to other subfields of psychology and
other scientific fields. Two studies investigating brain activation networks and epistasis
demonstrate how adequate informatics infrastructure, statistical methods, and data
visualization have enabled analyzing large datasets and gaining knowledge from vast
amounts of data:

* Egli, T., Coynel, D., Spalek, K., Fastenrath, M., Freytag, V., Heck, A., Loos, E.,

Auschra, B., Papassotiropoulos, A., de Quervain, D. J.-F. & Milnik, A. (2018).
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Identification of two distinct working memory-related brain networks in
healthy young adults. eNeuro, in press

* Egli, T., Vukojevic, V., Sengstag, T., Jacquot, M., Cabezén, R., Coynel, D.,
Freytag, V., Heck, A., Vogler, C., de Quervain, D. ].-F., Papassotiropoulos, A. &
Milnik, A. (2017). Exhaustive search for epistatic effects on the human

methylome. Scientific Reports, 7, 13669.

In the first publication "Identification of two distinct working memory-related
brain networks in healthy young adults", we applied dimensionality reduction to brain
activation measured from N = 26'542 voxels during a working memory task in a large
sample of N =1369 subjects. We then associated the resulting brain activation
networks with individual performances in the task. The analysis revealed that a
parietally-centered network was robustly associated with working memory
performance. I designed the experiment, conducted the analyses, and wrote the paper.

In the second publication "Exhaustive search for epistatic effects on the human
methylome", we exhaustively assessed pairwise interaction effects of N =192'955
genetic markers scattered across the whole genome onto N = 395'431 deoxyribonucleic
acid (DNA) methylation sites across the whole methylome in N = 533 subjects. This
analysis was computationally highly intensive and required rigorous methodological
precautions to counteract spurious effects. We therefore conducted a full replication in
an independent sample of N = 319 subjects. The exhaustive analysis showed that
pairwise interactions of genetic markers robustly affected a very small number of DNA
methylation sites. I acquired the data, conducted analyses relevant for interpreting the

results, and wrote the paper.
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2. Theoretical background

2.1 Large and complex datasets

The total amount of data generated per day is estimated at 2.5 quintillion (2.5 x 10'®)
bytes (Monteith, Glenn, Geddes, & Bauer, 2015). Scientific data follows this general
trend and is constantly growing in size and complexity (Ma & Zhu, 2013). In
neuroimaging, the data volume has duplicated every 26 months since 1995 (van Horn
& Toga, 2014). The brain activation data acquired for a single subject may typically
consist of 50M data points (50'000 voxels x 1'000 time points) or more. Hence
neuroimaging data is massive in volume and highly dimensional (Fan et al., 2014).
Owing to the development of relatively inexpensive high-throughput measurements,
the volume of data in human genetics is growing even more rapidly (Fan et al., 2014); it
has doubled every six or seven months for several years now (Gelernter, 2015). The
sequenced genome of a single individual comprises approximately three billion base
pairs (Venter et al.,, 2001), a recent study has identified 20M single nucleotide
polymorphisms (SNPs) in sequenced individuals (Gudbjartsson et al., 2015). The
cheaper SNP arrays measure SNPs scattered across the genome in a lower resolution of
approximately 1M SNPs per subject (Corvin, Craddock, & Sullivan, 2010). Accordingly,
the datasets generated in human neuroimaging and genetics have both been termed
big data (Landhuis, 2017) and the combined application of neuroimaging data plus
genetic data has been referred to as "really big data" (van Horn & Toga, 2014, p. 325) or
"big data squared” (Lazar, 2016, p. 61). The term big data is not unambiguously defined
(Chen & Wojcik, 2016; Cheung & Jak, 2016) and the quantifiable amount of data that is
referred to as "big" can differ by several orders of magnitude when compared between

different fields, e.g. between psychology and tech industry (Yarkoni & Westfall, 2017).
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Nonetheless, various descriptions agree that big data involves datasets that could not
be handled within a tolerable amount of time using traditional hardware and software
tools (Chen & Woijcik, 2016; Chen et al., 2013; Chen, Mao, Zhang, & Leung, 2014). Big
data is furthermore inherently complex (Fan et al., 2014; Monteith et al., 2015) with
regards to large numbers of observations n and/or variables p.

Investigating a large multidimensional dataset or even integrating multiple such
datasets yields several potential benefits. Psychology investigates complex traits such
as cognition, emotion, and psychiatric disorders (Gratten, Wray, Keller, & Visscher,
2014; Matheson, 2017; Papassotiropoulos & de Quervain, 2011, 2015; Vogler et al., 2014).
These traits show neural substrates in distributed brain circuits (Eriksson, Vogel,
Lansner, Bergstrom, & Nyberg, 2015; Geib, Stanley, Wing, Laurienti, & Cabeza, 2017;
Goodkind et al., 2015; Minzenberg, Laird, Thelen, Carter, & Glahn, 2010; Pessoa, 2017)
and have complex genetic backgrounds (Debette et al., 2015; Heck et al., 2014; Munafo
& Flint, 2014; Papassotiropoulos & de Quervain, 2011; Sullivan & Posthuma, 2014; Vogler
et al., 2014). Correspondingly, isolated analyses of a few variables will not suffice for
understanding the function and dysfunction of a system as complex as the human
mind and brain (Akil, Martone, & van Essen, 2011; Yarkoni, Poldrack, Van Essen, &
Wager, 2010). Rather than measuring single data points, analyses of complex patterns
are required, e.g. investigating a broad set of psychological measurements in place of
single ones (Krapohl et al.,, 2016; Loeffler et al., 2015), unstructured rather than
structured data (Bedi et al., 2015; Geraci et al., 2017), polygenic effects instead of single
genetic markers (Sullivan & Posthuma, 2014), or brain networks rather than single
voxels (Akil et al., 2011; Poldrack, 2012). The synthesis of information across many

variables, dimensions (e.g. spatial and temporal), modalities (e.g. cognitive
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measurements, functional/structural MRI, genetics, and epigenetics), paradigms, and
psychological domains may lead towards a better understanding of the relationship
between mind and brain (Akil et al., 2011; Bogdan et al., 2017; Lessov-Schlaggar, Rubin,
& Schlaggar, 2016; Logothetis, 2008; Poldrack, 2012; Sejnowski, Churchland, &
Movshon, 2014; Yarkoni et al., 2010). In addition to hypothesis testing, explorative
analyses in complex datasets across large numbers of variables allow to identify
unexpected patterns and to build new hypotheses (Chen & Wojcik, 2016; Holzinger,
Dehmer, & Jurisica, 2014; Monteith et al., 2015; van Horn & Toga, 2014). Of note,
analyzing datasets from large samples provides more precise answers (Spiegelhalter,
2014) that are more representative of the underlying population (Yarkoni & Westfall,
2017). Additionally, large sample sizes enable to identify and investigate exceptional
cases from the sample that would be excluded as outliers in smaller samples (Monteith
et al., 2015).

Analyzing datasets of large volume and high complexity involves significant
challenges with regards to informatics infrastructure, statistical methodology, and
interpretation of results (Fan et al., 2014). In the following sections, I will address
prominent challenges from the perspective of psychological research and point out

strategies for approaching them.

2.2 Adequate informatics infrastructure and data management

Scientific studies need to be conducted, analyzed, and reported as transparent,
reproducible, and as little error-prone as possible (Munafo et al., 2017; National
Academy of Sciences, 2009; Open Science Collaboration, 2015). Meeting these

demands while analyzing large and complex datasets requires apt informatics

10
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infrastructure (Poline et al., 2015), as well as an adequate data management plan (Chen
& Wojcik, 2016; Goodman et al., 2014; van Horn & Toga, 2014). The following section
introduces informatics infrastructure and data handling strategies that enable
conducting large-scale analyses with methodological and statistical rigor. Using the
term "analysis" in the following sections will include the overall process of acquiring
data, processing data, and conducting statistical tests or estimations, which is also
referred to as an analysis pipeline (Yarkoni & Westfall, 2017).

Using programming or scripting languages alleviates the analysis of large and
complex datasets, firstly by automating manipulations and computations that are
repeated many times, and secondly because it keeps the human input at a minimum,
which is less error prone (if scripted correctly; Wilson et al., 2014). In the context of
scientific analyses, it is generally advisable to write code in high-level languages (like
e.g. R or Python) and only to use low-level languages (such as C or Fortran) if
performance needs to be optimized (Wilson et al., 2014). The high-level languages R
and Python are widely used in large-scale data analyses in many research fields (Chen
& Woijcik, 2016; Chen et al., 2014; Cheung & Jak, 2016). R and Python are open source
languages with large communities of users and developers who contribute to an
abundance of packages and libraries in many areas of application (Godsey, 2017; R Core
Team, 2013; van Rossum, 1995).

Scripting complex analyses is likely to involve complicated codes that are
difficult to oversee - possibly distributed across numerous sub-scripts. Version control
tools like Git (https://git-scm.com) register changes in scripts and archive the different
versions. This allows reverting all scripts to earlier versions if needed (Blischak,

Davenport, & Wilson, 2016; Ram, 2013). Using Git also facilitates collaborative work on

11
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complex tasks and analyses; on the one hand because it enables effortless sharing of
scripts with collaborators or between different computers, on the other hand because
it allows merging simultaneous changes by several individuals in the same script
(Blischak et al., 2016; Ram, 2013). If a single script (that executes other subscripts)
consolidates all processing steps and calculations applied in an analysis, it seamlessly
documents the analysis. Importantly, this maximizes the transparency of the analysis,
as it allows publishing the workflow alongside the manuscript of a paper and makes
the entire analysis pipeline fully reproducible (Goodman et al., 2014; Nosek, Spies, &
Motyl, 2012; Poldrack et al., 2017; Wilson et al., 2017). On Unix-like computer systems,
scripts written in a Unix shell - e.g. the Bourne-again shell 'bash’ - are beneficial for
consolidating an analysis pipeline. This is especially helpful if the analysis comprises
scripts written in several languages and/or tools executed from the Unix shell (Wilson
et al., 2017). Because large-scale data processing and analyses require considerable
amounts of memory and computational power (Fan et al., 2014; Medland et al., 2014;
Poline et al., 2015), they can easily overburden individual desktop computers. In such
cases, high performance computing (HPC) systems (computational clusters or
supercomputers) may provide the required memory resources and processing power
(Bouchard et al., 2016; van Horn & Toga, 2014). Even if a desktop computer could
handle the memory and provide the computational power required for an analysis,
using an HPC system may speed up calculations considerably (Godsey, 2017). In order
to use such systems efficiently, researchers profit greatly from collaborating with
facilities dedicated to HPC and data storage or at least from interacting closely with
computer scientists and informaticians (Bouchard et al., 2016; Cheung & Jak, 2016;

Poldrack, 2012; van Horn & Toga, 2014).

12
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The value of a scientific analysis depends on its reproducibility (Holzinger et al.,
2014; Kleppner & Sharp, 2009). Reproducible analyses require the ability to trace back
all the data investigated and each processing step applied during an analysis
(Goodman et al., 2014; Wilson et al., 2014). Therefore, the data that serves as the
starting point of an analysis should be stored as "pure" and unprocessed as possible
(Hart et al., 2016). Storing this "raw data" with read-only access permission prevents
unwanted manipulations of the data (Wilson et al., 2017). Furthermore, storing the raw
data redundantly in several locations and using various storage systems prevents data
loss (Berman, 2008). The integrity of stored data can be monitored by saving the
cryptographic hash (e.g. SHA or MDs) of each dataset as metadata (Hart et al., 2016);
any silent corruption and/or manipulation of a dataset will change the associated
cryptographic hash. In order to keep track of the data's location and state, the
cryptographic hash, the path to the data in the storage system, and other metadata
should be systematically saved for each dataset (Berman, 2008). Accessing data
contents for further processing or for conducting an analysis is then possible via the
path to the data that is stored in the metadata. Figure 1 illustrates a schematic example
of a scientific data management plan that reassures traceability of the data as well as

the applied processing steps and analyses.

13
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—> Metadata storage

h 4 ‘L 4
Data Raw data Data Data Data Publication
acquisition storage processing storage analysis of results

i A

—> Script version control

Figure 1. Schematic representation of an exemplified data management plan. Grey
boxes represent storages of data or metadata; white boxes depict operations on the
data. An arrow towards a storage location represents storing new data; an arrow from a

storage location represents accessing stored data.

During my PhD studies, I have participated in planning, designing, and
developing various automated data analysis pipelines, or components of such
pipelines, respectively. I was particularly involved in the validation of raw data, storing
the raw data in a secure file system, and storing the associated metadata and/or data
contents in a scientific data warehouse based on LabKey (Nelson et al., 2011) and HDFj5
(http://www.hdfgroup.org/HDFs). I also prepared the raw data of a behavioral n-back
task for statistical analyses (which was used in Egli et al., 2018), including outlier
detection and data aggregation. I furthermore developed an analysis pipeline for
extensive dimensionality reduction of functional brain imaging data in Egli et al.
(2018). In Egli et al. (2017), I participated in an analysis that used graphics processing
units of an HPC environment for efficiently parallelizing quadrillions of computations

using the software EpiGPU (Hemani, Theocharidis, Wei, & Haley, 20m1).

14
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2.3 Statistical challenges

Datasets investigated in molecular psychology and in neuroscience often comprise
large numbers of variables p and fewer observations n (Lazar, 2016). This “small n large
p problem” (Spiegelhalter, 2014, p. 264) is typically encountered in functional magnetic
resonance imaging (fMRI) studies with samples of a few hundred or thousand
individuals, which measure brain scans across millions of voxels (in our brain imaging
study ~50'000 x 1'000 voxels in 1400 subjects). Similarly, the problem also occurs in
genetic and epigenetic studies, which measure hundreds and thousands of genetic and
epigenetic markers (in our epistasis study ~190'000 SNPs x 400'000 CpGs in 500
subjects). In the following sections, I outline various statistical challenges that arise
from such data characteristics and that we encountered in our studies. I also point out

how we approached these challenges.

2.3.1 Multiple comparisons

In Egli et al. (2018), we conducted hypothesis tests across large numbers of voxels, and
in Egli et al. (2017) we computed enormous numbers of interaction analyses.
Conducting large numbers of statistical hypothesis tests extensively accumulates false-
positive results (Poldrack et al., 2017). The probability of making any false-positive
inference by a group or family of tests is termed family-wise error rate (FWER); the
proportion of false-positive results that is expected among all tests is referred to as
false discovery rate (FDR; Cao & Zhang, 2014). FWER corrections, e.g. Bonferroni
adjustment or Westfall-Young permutation (Westfall & Young, 1993), are rather
stringent and potentially lead to a lower detection rate for true effects (Cao & Zhang,

2014). In contrast, FDR corrections like the Benjamini-Hochberg method tolerate a

15
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minor amount of false-positive results in order to improve the chance of detecting true
effects (Benjamini & Hochberg, 1995). Therefore, the decision whether to correct for
FWER or for FDR should trade off the benefits and drawbacks of false-positive and
false-negative observations. In exploratory analyses that involve large numbers of tests
and expect many true negative results, FDR correction is more suitable (Glickman,
Rao, & Schultz, 2014). In contrast, FWER correction is more appropriate for
confirmatory analyses (Frane, 2016). We accordingly corrected for FDR when
associating working memory brain activation (across all voxels as well as across
estimated brain networks) with task performance measures in Egli et al. (2018). Due to
its more complex algorithm, FDR correction has the disadvantage of increased
computational demands, when compared to FWER correction. In light of the
enormous number of computations, we therefore applied FWER corrections instead of
the statistically more suitable FDR corrections to account for 7.36 x 10" epistasis tests
in Egli et al. (2017) to circumvent unnecessary computational burden and complexity.
As an alternative to correcting for multiple comparisons, reducing the
dimensionality of the investigated dataset can increase the sensitivity and the
efficiency of analyses on complex datasets (Medland et al., 2014). In Egli et al. (2018),
we accordingly applied dimensionality reduction to brain activation (in addition to
analyses across all variables). This reduced the dataset from 26'542 voxels to six brain
activation networks and facilitated detecting associations of brain activation with

other measurements.

16
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2.3.2 Correlated variables

Correcting for the total number of comparisons may be too restrictive if the tested
variables are highly correlated (Poline et al., 2015). This is generally the case when
analyzing genetic markers in linkage disequilibrium (LD; Wray, 2005), or fMRI signals
in neighboring voxels (Medland et al., 2014). In Egli et al. (2017) we only included
uncorrelated genetic markers in the analysis. By contrast, the dimensionality reduction
applied in Egli et al. (2018) yielded a low number of statistically independent and
uncorrelated features of brain activation. Both approaches are suitable for

circumventing issues related to highly correlated variables.

2.3.3 Spurious associations and replications

In both studies, we conducted exploratory hypothesis tests across large numbers of
variables. Exploratory tests in complex datasets are prone to spurious results (Button
et al., 2013; loannidis, 2005; Szucs & Ioannidis, 2017), and therefore require measures
for counteracting false-positive findings. The best method for validating promising
findings is replication in independent samples (Bogdan et al., 2017; Medland et al.,
2014; Nosek et al., 2012; Yarkoni et al., 2010), especially in exploratory analyses
(Poldrack et al., 2017). In Egli et al. (2017), we fully replicated the findings of our
epistasis analyses in an independent sample. If a replication based on independent
data is not feasible, other appropriate validation methods include within-sample cross-
validation, meta-analytical approaches, evaluation of convergence across methods, or
conceptual replication (Bogdan et al., 2017; Nosek et al., 2012; Yarkoni & Westfall,
2017). Because we lacked a replication sample with brain imaging measurements

during working memory performance, we compared our findings to meta-analytic

17
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results, and applied within-sample cross-validation as well as resampling for validating

our working memory brain activation networks in Egli et al. (2018).

2.3.4 Computational challenges

Elaborate statistical methods, such as the dimensionality reduction in Egli et al. (2018),
or the exhaustive search for epistatic effects in Egli et al. (2017), are computationally
very expensive when applied to large numbers of variables and observations.
Sequentially aggregating the raw data to summary statistics on different levels of the
data is one option for efficiently solving this problem. In the field of fMRI, this
procedure is referred to as level-wise analysis (Holmes & Friston, 1997). In Egli et al.
(2018), we calculated for each subject separately the summary statistics that describe
working memory-related brain activation in each individual voxel (first-level
statistics). We then applied dimensionality reduction to these values on the group
level (i.e. across all subjects; second-level statistics). Such computationally efficient
split-apply-combine approaches allow parallel computing of the apply-step (Cheung &
Jak, 2016; Kane, Emerson, & Weston, 2013). This approach is especially suitable when
analyzing hierarchically structured datasets like repeated measurements, where data
points within subjects represent the level 1 units and the individuals represent the level
2 units (Goldstein, 2011). In our epistasis analysis in Egli et al. (2017), we followed a
different approach and gained computational efficiency by applying a simplified and
computationally less demanding analysis strategy (as suggested in Wei, Hemani, &
Haley, 2014). We used EpiGPU (Hemani et al., 2011) for computing the exhaustive N =
7.36 x 10” calculations across N =1.85 x 10" pairs of SNPs and N =395'431 CpG sites.

EpiGPU is computationally very efficient, but merely approximates a true interaction
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test. For all SNP-SNP-CpG combinations that were indicative of an interaction effect in
this screening step, we then calculated statistically more appropriate linear regressions
for confirming the interaction results. The screening based on a simplified analysis
strategy effectively reduced this computationally costly analysis step to N = 9.54 x 10°

calculations, which is merely 0.00013% of the original number of computations.

2.4 Interpreting results

The wealth of information generated from analyzing complex datasets can be difficult
to absorb, understand, and interpret (Sejnowski et al., 2014). Methods that can
alleviate these issues include data visualization, annotation of data with additional
information, or third level statistics that combine the outcome of multiple statistical
analyses. Applying these approaches can help to gain further insights from the derived

results.

2.4.1 Data visualization

Comprehending higher dimensional datasets tends to overburden human perception.
In such cases visualizations may help to map data into lower dimensional space
(Holzinger et al., 2014). Modern data illustrations are not merely interchangeable with
statistical tables but provide additional qualities like integrating multidimensional
data from different sources (Tufte, 2001). Accordingly, data visualization can give a
sense of relations in data that were not intelligible in any other way (Fox & Hendler,
20m). Visualizations are therefore critical for understanding complex data. However,
designing the appropriate visualization for a given dataset is not an easily performed

method, but should rather be regarded a form of art and expert storytelling (Fox &
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Hendler, 2011; Murray, 2013). Edward R. Tufte, a pioneer in the field of data
visualization (Unwin, 2008), has described graphical excellence as a matter of both
statistics and design that is almost always multivariate, illustrates data as
comprehensive as possible, and uses only as much elements in the illustration as
necessary (Tufte, 2001). The concept of visual data fusion is helpful for illustrating
complex data as it integrates data from different modalities into a single visualization
based on a common frame of reference (Kehrer & Hauser, 2013). The common
reference allows comparative visualization displays, which depict differences and
similarities in the data by juxtaposition, overlaying, or plotting of computed
relationships (Kehrer & Hauser, 2013).

Various software applications provide excellent default displays of commonly
used illustration types (Deepayan, 2008; Wickham, 2009). Other tools produce
illustrations that are specific for particular research fields, for instance the Python
library 'PySurfer' (https://pysurfer.github.io) or the standalone program 'MRIcroGL'
(http://www.mccauslandcenter.sc.edu/mricrogl) for brain imaging. Such tools provide
graphics that are standard in the field and are easily understood by readers familiar
with them (Unwin, 2008). I used MRIcroGL for visualizing functional brain networks
as three-dimensional renderings in a semi-transparent brain in Egli et al. (2018), see
Figure 2a. These visualizations allowed perceiving entire brain networks based on a
low number of images. The classically used "brain slices" can yield good visualizations
of individual regions of interest, but cannot easily convey more complex patterns of

multiple regions that are distributed across the brain, as is illustrated in Figure 2b.
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Figure 2. Different illustrations of a distributed brain network. (a) Three-dimensional
renderings of the brain network in a semi-transparent brain (left lateral, superior, and
right lateral views), created using MRIcroGL. (b) The same brain network represented
in ten horizontal slices of the brain (from top to bottom), created using the R-package

'grid'.

In Egli et al. (2017), we visualized the local functional backgrounds of genomic
regions associated with our results. These illustrations used visual data fusion as well
as comparative visualization displays for integrating the genetic and epigenetic
markers with additional information, either derived from the investigated data or

retrieved from the UCSC genome browser (Tyner et al., 2017), see Figure 3.
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Figure 3. Example of a multivariate figure created using the R-package 'grid' showing
an interaction effect and several main effects of SNPs onto DNA methylation in one
CpG-site. Visual data fusion (different horizontal panels with concordant x-axes)
integrates the data from different sources (external data retrieved from the UCSC
genome browser; Tyner et al., 2017). Comparative visualization (vertical lines) allows
comparing information between the different sources. From Egli, et al. (2017),
supplementary,  licensed  under  Creative =~ Commons CC BY 4.0

(https://creativecommons.org/licenses/by/4.0/).
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Because no software applications were available for creating such
visualizations per default, I developed a tool for creating the illustrations using the R-
package 'grid' (Murell, 2006). The package 'grid' does not contain high-level functions
for producing complete illustrations but provides low-level graphics functions. Low-
level functions give the user extensive control over all aspects of the illustration, but
also require more expertise in coding as compared to high-level functions (Unwin,

2008).

2.4.2 Integrating results with additional information

Combining new results with findings from past studies further improves the
interpretability of new findings (Yarkoni et al., 2010). The comparison with former
studies also allows assessing the plausibility of new results (Woo, Chang, Lindquist, &
Wager, 2017). Recently introduced resources provide large collections of results from
past studies in neuroimaging (NeuroSynth; Yarkoni, Poldrack, Nichols, Van Essen, &
Wager, 20m1) or in genetics (NHGRI-EBI GWAS Catalog; Macarthur et al., 2017) that
can be used for this purpose. In Egli et al. (2018), we identified a working memory-
related brain activation network. By using the meta-analytic results from 11'406 fMRI
studies in NeuroSynth, we showed that the spatial characteristics of this network had
also been observed across a large number of other brain imaging studies. In addition to
results from former studies, information from expert-curated databases can provide
annotations for contextualizing new results. Corresponding databases of genetic
information include dbSNP (Kitts, Phan, Ward, & Holmes, 2014), UCSC Genome
Browser (Tyner et al., 2017), Gene Ontology (The Gene Ontology Consortium, 2013),

Reactome (Haw, Hermjakob, D’Eustachio, & Stein, 2011), or the Kyoto Encyclopedia of
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Genes and Genomes (Kanehisa et al., 2014). In Egli et al. (2017), we used information
from the UCSC Genome Browser for visually annotating our results (see Figure 3).
Besides data visualization and descriptive annotations, statistical methods can
add informative value to new findings from complex analyses that are difficult to
oversee (Pers, 2016). For instance gene-set enrichment analysis (GSEA) adds biological
context to findings from genetic analyses (Mooney & Wilmot, 2015). GSEA either tests
whether a group of genes or genetic markers (e.g. with an association in a genome-
wide association study above a certain threshold) significantly overlaps with a
predefined set of genes (Mooney & Wilmot, 2015; Pers, 2016), or whether the genes in a
gene-set are jointly associated with a given trait (Wang, Li, & Hakonarson, 2010). In
Egli et al. (2017), we used GSEA for assessing functional commonalities of our main
results, the epigenetic modifications affected by epistasis. The epigenetic markers
overlapped with gene-sets implicated in HPV infection as well as cancer. While this
finding was not essentially associated with our research question, it added some
plausibility to our findings, since genome-wide epistasis analyses had also shown small

numbers of epistatic effects on cancer risk (Shen, Li, Song, Chen, & Shi, 2017).

3. Methods

3.1 Neuroimaging

Over the last two decades, magnetic resonance imaging (MRI) has evolved into one of
the most applied non-invasive methods in neuroscience (Fan et al., 2014; Poldrack &
Farah, 2015). MRI infers three-dimensional measurements of brain structures and brain
activation from the spin of nuclei (commonly hydrogen atoms; Logothetis, 2008). The

most frequent MRI techniques include structural MRI, functional MRI (fMRI), and
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diffusion weighted imaging (DWI) or diffusion tensor imaging (DTI), respectively.
Structural MRI makes use of different signal properties in distinct tissue types for
segmenting the brain into cortical and subcortical structures, white brain matter, or
cerebrospinal fluid (Desikan et al., 2006). Instead of structural variation, fMRI infers
changes in neuronal activity from variations in the oxygenation of hemoglobin. The
deoxygenation observed in a brain area is interpreted as higher consumption of oxygen
in that region, which is in turn assumed as a proxy for higher brain activation
(Logothetis, Pauls, Augath, Trinath, & Oeltermann, 2001). DWI estimates the diffusion
of molecules (mainly water) in tissues (Jones, Knésche, & Turner, 2013). DTI, a subtype
of DWI, allows measuring the diffusion in neuronal tracts, it is therefore extensively
used for characterizing white matter tracts (Beaulieu, 2002). In Egli et al. (2018), we
used fMRI for estimating functional brain networks and associated them with
individual task performances as well as with white matter properties measured using

DTI.

3.2 Genetic and epigenetic analyses

Genetic variation results from differences in the sequence of nucleic acids in the DNA.
Loci in the genome with differing single nucleic acid pairs (alleles) that are common in
the population (e.g. present in at least 1%) are termed single nucleotide
polymorphisms (SNPs; Poline et al., 2015). For regulating the transcription of genes,
transcription factors physically bind to the DNA. Chemical modifications on the DNA
or its surrounding regions can therefore impact the transcription factors' ability to
access the DNA (Zhang & Meaney, 2010). The molecular processes that impact gene

transcription without altering the sequence of nucleotides are termed epigenetic
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events or marks (Bird, 2007). DNA methylation is a classical epigenetic alteration that
(in mammals) adds a methyl group onto CpG dinucleotides in the DNA (Li, 2002).
DNA methylation can silence gene transcription by preventing transcription factors
from binding to the DNA (Bird, 2002). Alternatively, it can indirectly increase the
transcription by silencing genes that involve acetylation of histone proteins. The DNA
sequence is spooled around the histone proteins. Reduced acetylation of histones
results in less dense packing of the DNA and consequently making the DNA more
accessible for transcription (Klose & Bird, 2006). Evidence suggests that environmental
events impact epigenetic marks in early life, which in turn influences neural
development and ultimately brain function as well as behavior (Weaver et al., 2004;
Zhang & Meaney, 2010).

Microarrays allow measuring genetic or epigenetic markers scattered across
the genome with a relatively low resolution of ~1IM SNPs per subject (Corvin et al.,
2010) or ~450'000 CpG-sites per subject, respectively (Bibikova et al., 201). Genome-
wide association studies (GWAS) associate each individual SNP with a given trait (e.g.
using chi-squared test, linear regression, or logistic regression; Corvin et al., 2010).
When used for investigating complex traits, GWAS typically yield risk variants with
small effect sizes (Gelernter, 2015; Papassotiropoulos & de Quervain, 2015; Poldrack et
al., 2017). Correspondingly, the proportion of variation in complex and polygenic traits
that is explained by additive effects of all significantly associated SNPs is usually low (it
typically sums up to less than 10%; Visscher, Brown, McCarthy, & Yang, 2012). It is
therefore speculated that some of the remaining variation (the "hidden variance")
could be explained by investigating non-additive effects, for instance in epistasis

analyses that investigate interaction effects between SNPs (Wei et al., 2014). In Egli et
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al. (2017), we assessed pairwise SNP-SNP interaction effects onto the methylation of
CpG sites across the genome and the methylome, both measured from microarrays.
For genetic or epigenetic analyses that yield large amounts of results, it may be

beneficial to assess common biological and/or functional implications of the results.

3.3 Dimensionality reduction

Dimensionality reduction techniques aim at reducing the dimensionality of the data
while retaining as much of the relevant information as possible (Fabrigar, Wegener,
MacCallum, & Strahan, 1999; Kehrer & Hauser, 2013). Such techniques commonly
either select a subset of features in the data (without transforming the data), or
construct new features from the data, for instance describing linear combinations of
the variables in the data (Ma & Zhu, 2013; Mladeni¢, 2006). Classical psychological
research frequently transforms data to some low dimensional representation using
principal component analysis (PCA) or exploratory factor analysis (EFA; Fabrigar et al.,
1999). PCA estimates new variables that describe the main sources of variance in a
dataset (Jolliffe, 2002). It successively estimates principal components (PCs) that
account for as much variance in the data as possible, are orthogonal to the preceding
component, and are uncorrelated. Accordingly, the first PC explains the most variance;
the second PC explains the most of the remaining variance, etc. Other than PCA, EFA
aims at revealing a predefined number of latent variables that underlie the covariation
of the observed variables (Fabrigar et al., 1999). Studies in the fields of neuroimaging,
molecular biology, and genetics increasingly apply independent component analysis
(ICA) or penalized regression for dimensionality reduction (Kong, Vanderburg,

Gunshin, Rogers, & Huang, 2008; Medland et al., 2014). While PCA and EFA rely on
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Gaussian signals and the covariance of variables, ICA takes into account the total
dependence structure of all variables and uses higher-order statistics to find a linear
representation of non-Gaussian data (Hyvarinen & Oja, 2000; Kong et al., 2008). Like
the more classical methods of EFA and PCA, ICA results in a linear decomposition of
the data. It is additionally able to separate sources that are mixed in the observed data,
a task where the classical methods frequently fail (Hyvarinen, 2013). The separation of

mixed signals by ICA is illustrated and compared to PCA in Figure 4.

Original 61
values

PCA

Variable 2
IC2

Variable 1 PC1 IC1

Figure 4. The decompositions of two mixed signals using PCA and ICA. (a) A mixture
of two signals (blue-green and red-yellow) measured by two variables. (b) The PCs
from a PCA explain the main sources of variance but are not able to disentangle the

mixed signals. (c) Conversely, the ICA yields statistically independent estimates of the

two signals.

In contrast to the results of PCA and EFA, the independent components (ICs)
estimated by ICA are not only uncorrelated, but also as statistically independent as
possible. Figure 5 depicts examples of variables that are uncorrelated and either

statistically independent or dependent from each other.
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Independent Dependent

Figure 5. (a) Two examples of uncorrelated and statistically independent variables. (b)

Two examples of uncorrelated and statistically dependent variables.

In Egli et al. (2018), we used ICA to reduce the dimensionality of brain
activation during a working memory task and retrieved networks of statistically
independent brain activation. We applied the ICA decomposition using a very efficient
implementation of ICA in the R-package 'fastiICA' (Hyvarinen & Oja, 2000). Applied to
the matrix X of m observations (1369 subjects) across n variables (working memory
brain activation in 26'542 voxels), the ICA estimated a matrix S of k x n latent sources
(6 voxel-wise loadings) that underlay the variables while holding the voxel loadings as
statistically independent from each other as possible (Engreitz, Daigle Jr., Marshall, &
Altman, 2010). In addition to the voxel loadings, ICA also yielded a matrix A of m x k
mixing coefficients (subject-wise scores) for each IC. The mixing coefficients of a
particular component depicted the projection of the original brain activation data onto
this component's estimated voxel loadings, such that X = AS (Hyvdrinen, 2013;
Hyvérinen & Oja, 2000). Figure 6 summarizes the estimates involved in ICA; Figure 7
visualizes the voxel loadings that resulted from the ICA on working memory brain

activation.
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Figure 6. The estimates that result from an ICA decomposition of brain activation data

in from 1369 subjects across 26'542 voxels.

Brain activation networks
6 ICs x 1369 subjects

Activated during WM performance
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SO0089
COCee6
290999

Figure 7. ICA decomposition of brain activation during a working memory task
resulted in voxel loadings for each IC. The three-dimensional visualizations of brain

imaging data in a semi-transparent brain were created using the software MRIcroGL.
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Abstract

Working memory (WM) is an important cognitive domain for everyday life functioning and is often disturbed in
neuropsychiatric disorders. Functional magnetic resonance imaging (fMRI) studies in humans show that distrib-
uted brain areas typically described as fronto-parietal regions are implicated in WM tasks. Based on data from a
large sample of healthy young adults (N = 1369), we applied independent component analysis (ICA) to the
WM-fMRI signal and identified two distinct networks that were relevant for differences in individual WM task
performance. A parietally-centered network was particularly relevant for individual differences in task measures
related to WM performance (“WM dependent”) and a frontally-centered network was relevant for differences in
attention-dependent task performance. Importantly, frontal areas that are typically considered as key regions for
WM were either involved in both WM-dependent and attention-dependent performance, or in attention-
dependent performance only. The networks identified here are provided as publicly available datasets. These
networks can be applied in future studies to derive a low-dimensional representation of the overall WM brain
activation.

Key words: cognition; functional networks; ICA; n-back; working memory

(s )

Fronto-parietal brain regions are typically involved when performing working memory (WM) related tasks.
Within these fronto-parietal brain regions we have identified two networks that show distinct functional
characteristics. Whereas frontal areas are often considered as key regions for WM, we show that frontal
areas were either involved in both WM-dependent and attention-related performances or in attention-
related performance only. A predominately parietally-centered network was the key region for WM-
dependent performance. Due to the large sample size of N = 1369 healthy young adults, we can provide
Krobust estimates of these networks which can be applied in future studies. /
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Introduction
Working memory (WM) describes the ability to temporarily
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(Baddeley, 2012; Eriksson et al., 2015). It comprises a men-
tal representation of our current environment that can be
integrated with previous experiences. Impaired WM leads
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to deterioration in everyday life functioning. Correspond-
ingly WM is affected in neuropsychiatric disorders such as
schizophrenia (Lee and Park, 2005; Forbes et al., 2009;
Mesholam-Gately et al., 2009; Van Snellenberg et al.,
2016), depression (Marazziti et al., 2010), and attention-
deficit hyperactivity disorder (Alderson et al., 2013). Fur-
thermore, white matter microstructure is associated with
WM performance and activity in WM related regions
(Charlton et al., 2010; Vestergaard et al., 2011; Darki and
Klingberg, 2015). In contrast, impairment of white matter
integrity comes along with a decrease in WM performance
and alterations in the activity of WM-related brain regions
(Palacios et al., 2012).

Functional magnetic resonance imaging (fMRI) experi-
ments show that WM-related tasks robustly activate the
lateral and medial premotor cortex, dorsolateral prefrontal
cortex (DLPFC) and ventrolateral PFC, frontal pole, as well
as medial and lateral posterior parietal cortex (Owen et al.,
2005; Wager and Smith, 2003; Rottschy et al., 2012). This
broad WM network (WMN) of activated brain regions has
been studied extensively, including the use of meta-
analytical approaches (Yarkoni et al.,, 2011; Rottschy
et al., 2012). Several studies have observed associations
of WM performance with mainly parietal or fronto-parietal
brain activation (Klingberg et al., 2002; Todd and Marois,
2004, 2005; Nagel et al., 2005; Palacios et al., 2012;
Satterthwaite et al., 2013; Zou et al., 2013; Ullman et al.,
2014; Darki and Klingberg, 2015; Huang et al., 2016) in
children as well as in adults. Recent studies suggest that
frontal and parietal regions differ regarding their contribu-
tions to WM. Neuronal recordings in the PFC and the
lateral intraparietal (LIP) region of monkeys showed that
encoded stimuli were retained in both regions, with more
task-specific mnemonic encoding in the LIP as compared
to the PFC (Sarma et al., 2016). Another study provided
causal evidence for differing roles of parietal and frontal
regions in attentional aspects of WM processing, by ap-
plying transcranial direct current stimulation. Stimulating
the right parietal cortex increased the amount of informa-
tion maintained in the visual WM, whereas stimulating the
right PFC improved focusing on relevant information and
directing attention away from irrelevant stimuli (Li et al.,
2017). In addition, measuring the directed connectivity
between the DLPFC and superior parietal lobule (SPL)
during a visual WM task hinted toward a top-down drive
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from DLPFC to SPL that increased with WM load (Kundu
et al., 2015). These insights were based on a priori defined
regions of interest (ROIs) and therefore described func-
tional properties of separate brain regions.

Importantly, the human brain is organized in functional
intrinsic networks that are relatively stable during resting
state as well as task execution (Cole et al., 2014; Cole
et al., 2016), can exhibit spatial overlaps (Yeo et al., 2014),
and are also affected by neurodegenerative diseases
(Seeley et al., 2009; Zhou et al., 2012). Hence, instead of
applying a ROI-based approach, we used independent
component analysis (ICA) to identify distinct networks
within the WMN, as measured by the n-back task, based
on data from a large (N = 1369) sample of healthy young
adults. ICA decomposition is a data-driven unbiased ap-
proach to retrieve a low-dimensional representation of
a dataset, resulting in statistically independent signals
(Kong et al., 2008). We included both cortical and sub-
cortical regions into the ICA decomposition to retrieve
maximally unbiased estimates of brain networks. To func-
tionally classify these networks, we used cognitive per-
formance measurements of our subjects. We verified
the stability of our results using bootstrapping and cross-
validation procedures. Furthermore, we assessed whether
microstructural differences of white matter, measured by
diffusion tensor imaging (DTI), were associated with acti-
vation differences in the estimated networks. Finally, we
compared the networks estimated in our study with re-
sults from an extensive meta-analysis of neuroimaging
studies on WM brain activation (Rottschy et al., 2012) and
with networks derived from NeuroSynth, a meta-analytical
platform comprising a large variety of different fMRI stud-
ies (Yarkoni et al., 2011). All results obtained (univariate
statistics and estimates from the ICAs) are available as
parametric maps stored on NeuroVault (http://neurovault.
org/collections/EYCSLZUZ/; Gorgolewski et al., 2016)
and can be used for future studies. The WMN-IC esti-
mates can be used to derive a low-dimensional represen-
tation of the overall WM brain activation.

Materials and Methods

Study and sample description

We used data from a single-center fMRI study that aims
to identify biological correlates of cognitive performance
by combining imaging data with genetics data; note that
no genetic data were used here. With respect to the
cognitive performance measurements, this study empha-
sizes on WM and episodic memory performance. The
sample consisted of healthy young adults from the gen-
eral population. We analyzed data of 1369 subjects (mean
age: 22.4, range: 18-35; 841 females; the experiment
took place at the University Hospital of Basel) after ex-
cluding subjects with incomplete behavioral data (N =
28), with cognitive measurements (WM, attention, reac-
tion time, episodic memory, recognition memory) lying 4
SDs above or below the average (N = 15), with corrupted
imaging data (N = 38, see below, fMRI preprocessing and
first-level analyses of the n-back task), or with incomplete
imaging data (N = 6, see below, fMRI preprocessing and
first-level analyses of the n-back task). Subjects were free
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from any neurologic or psychiatric illness and did not take
any medication (except oral contraception) at the time of
the experiment. Women using hormonal contraceptives
(e.g., oral, spiral, patch) and naturally cycling women were
included in the study without restrictions. The ethics com-
mittees of the Cantons of Basel-Stadt and Basel-Landschaft
approved the study. Advertising for study participation was
conducted mainly in the University of Basel. Written in-
formed consent was obtained from all subjects before par-
ticipation.

Experimental procedure

After receiving general information about the study and
giving their written informed consent, participants were
first instructed and then trained on a picture-rating task
and an n-back task. This training was done outside of the
MR scanner. After training, participants were positioned in
the scanner. All subjects wore earplugs and headphones
during MR scans to reduce scanner noise. The partici-
pants were instructed not to move during the scans. Small
foam pads were used for additional head fixation. We
used MR-compatible LCD goggles (VisualSystem, Nor-
dicNeuroLab) to present the behavioral tasks inside the
scanner. Vision correction was used if necessary. The
participants first performed the picture-encoding task in
which they had to rate pictures. Afterward they performed
the WM task (n-back). During this first fMRI session par-
ticipants spent a total of 30 min in the scanner (20 min on
the picture-rating task, 10 min on the n-back task). Par-
ticipants then left the scanner and performed an unan-
nounced free recall task of the previously presented
pictures (without any time restriction). On finishing the free
recall, subjects were instructed and trained on a picture
recognition task. This training was done outside of the
scanner. Subjects were then positioned in the MR scan-
ner a second time. The picture recognition task lasted 20
min and was followed by T1 (anatomic MRI) and DTI
measurements for a further 20 min. The total length of the
experimental procedure ranged from 3 to 4.5 h per sub-
ject. Participants were rewarded with 25 Swiss Francs per
hour for participating.

WM task description

We used two different conditions of a verbal n-back
task. The 0-back condition required participants to re-
spond to the occurrence of the letter “x” as target stim-
ulus (both lower- and uppercase) in a sequence of letters
(e.9., N - p - X -g...); all other letters were nontarget
stimuli. In the 2-back condition subjects had to indicate
whether the current letter and the letter presented two
places prior in the sequence were identical (target stimu-
lus) or not (nontarget stimulus); e.g., S-f-s—-g... Each
condition was measured in six blocks. Every block con-
sisted of 14 stimuli. In each block, three target stimuli and
11 nontarget stimuli were presented (quasi)-randomly; the
frequency of lure trials (i.e., the most recent letter matches
the letter one or three positions back) was set to 17.9%
(15 out of 84 stimuli) in the 2-back condition. Each block
started with an instruction of 5 s and had a total duration
of 33 s. Each stimulus was presented for 500 ms with a
1500-ms interstimulus interval showing a black screen.
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The sequence of 2-back and 0-back blocks was random-
ized and a break of 20 s was added after every second
block. The subjects used a button-box to indicate each
stimulus either as “target” or as “nontarget.” The data
were disregarded if responses were missing (1) in >30%
of all stimuli across all twelve blocks of the task, (2) in
>30% of target stimuli in at least three blocks, or (3) in
>30% of nontarget stimuli in at least three blocks. Task
performances were defined as D-prime measures (Mac-
millan and Creelman, 1990). These measures account for
false alarms and were calculated separately for the
0-back and 2-back conditions. The task performance
ranged from -0.34 to 4.34 (M = 2.53; Md = 2.47) for the
D-prime 2-back and from 1.56-4.34 (M = 3.65; Md =
3.76) for the D-prime 0-back. We also used the difference
in performances between D-prime 2-back and D-prime
0-back, which ranged from -4.10 to 1.38 (M = -1.13, Md =
-1.10). As a measure of difference in reaction times, we used
the subtracted reaction time of the two conditions (reaction
time 2-back — 0-back), which varied from -37.26 to 602.32
ms (M = 126.15 ms; Md = 104.25 ms).

Descriptions of picture-related tasks

The picture-rating task required the participants to rate
72 pictures of positive, neutral, and negative valence (24
per valence group). While watching the pictures the par-
ticipants rated each picture’s emotional valence (positive,
neutral, negative) and the perceived arousal (low, middle,
high) on separate three-point Likert scales. Approximately
10 min later, the subjects were instructed to describe as
many of these pictures as possible and in as much detalil
as possible by using keywords or short sentences (free
recall of pictures). Based on these descriptions two inde-
pendent and blinded raters identified the number of cor-
rectly recalled pictures (Cronbachs « between the two
raters was 0.91 to 0.98). A third independent rater decided
on ambiguously scored pictures. The number of correctly
recalled pictures served as a measure of episodic mem-
ory performance (range: 5-55 pictures; M = 30.77; Md =
31). This free recall of the pictures was conducted in
several different rooms; the effect of the different rooms
on the free recall performance was regressed out before
running the analyses.

In the picture recognition task, 144 pictures in total
were presented: the 72 previously seen pictures and 72
new pictures. The participants rated these pictures as
remembered, familiar, or new on a three-point Likert
scale. Item familiarity corresponds to the number of pre-
viously seen pictures that were identified as “familiar,”
corrected for the number of new pictures that were
wrongly rated as familiar. The item familiarity performance
ranged from -32 to 48 (M = 3.53; Md = 2). Both, the
episodic memory task and the familiarity memory task
used photographic pictures of positive, neutral, and neg-
ative valence selected from the International Affective
Picture System (IAPS; Lang et al., 2008). In-house stan-
dardized pictures additionally complemented the neutral
picture set to equate the stimuli for visual complexity and
content (e.g., human presence).
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Description of further task performances and
covariates

A total of 90.3% of the participants used their right hand
while performing the tasks in the scanner, 9.7% used their
left hand. The self-reported body mass index (BMI)
ranged from 16.6 to 36.3 (M = 22.19; Md = 21.80). We
assessed distinct chronotypes on a two-point Likert
scale: subjects classified themselves either as “evening-
ness” (69.8%) or as “morningness” (30.2%) chronotype.
The self-reported sleep duration ranged from 3.75to 12 h
(M = 7.96; Md = 8). Self-reported smoking was measured
on a five-point Likert scale ranging from 1 (never) up to 5
(20 cigarettes per day); the relative frequencies per cate-
gory were: (1) 65%, (2) 23%, (3) 5.2%, (4) 6.8%, (5) 0.7%.
After finishing all tasks, the perceived overall task difficulty
and the overall motivation of the subjects were measured
on five-point Likert scales ranging from 1 (not at all) up to
5 (very). The relative frequencies per category for task
difficulty were: (1) 9.2%, (2) 40.3%, (3) 38.1%, (4) 12%, (5)
0.3% and for motivation were: (1) 0%, (2) 0.5%, (3) 6.6%,
(4) 44.4%, (5) 48.4%.

()MRI data acquisition

All functional and structural images were acquired on
the same Siemens Magnetom Verio 3 T whole-body MR
unit (12-channel head coil). Blood oxygen level-depen-
dent fMRI was acquired using a single-shot echoplanar
sequence along with generalized auto-calibrating partially
parallel acquisition (GRAPPA), using the following param-
eters: echo time (TE) = 25 ms, field of view (FOV) = 22
cm, acquisition matrix = 80 X 80 (interpolated to 128 X
128, voxel size 2.75 X 2.75 X 4 mm?®) and with an accel-
eration factor of 2. We used an ascending interleaved
sequence with repetition time (TR) = 3000 ms (« = 82°)
measuring 32 contiguous axial slices that were placed
along the anterior-posterior commissure plane based on a
midsagittal scout image. A magnetization-prepared rapid
acquisition gradient echo T1-weighted image was ac-
quired using the following parameters: TR = 2000 ms, TE =
3.37 ms, TI = 1000 ms, flip angle = 8°, 176 slices, FOV
256 mm, and voxel size = 1 mm?>. Automatic segmenta-
tions of cortical and subcortical structures were obtained
using FreeSurfer 4.5 (v4.5, http://surfer.nmr.mgh.harvard-
.edu/; RRID:SCR_001847; Fischl, 2012), and labeling was
based on the Desikan Atlas (Desikan et al., 2006).

fMRI preprocessing and first-level analyses of the
n-back task

After visual inspection by three raters, 38 participants
were excluded due to corrupted T1-weighted images
(movement or anatomic abnormalities). MR images were
preprocessed with SPM8 (Statistical Parametric Mapping,
Wellcome Trust Center for Neuroimaging; http://www.fil.
ion.ucl.ac.uk/spm/) implemented in MATLAB R2011b
(MathWorks). Slice-time correction to the first slice and
realignment were applied using the “register to mean”
option. Coregistration of the averaged realigned time se-
ries to the structural image ensured spatial alignment of
functional and structural images. Subject-to-template
normalization was done using DARTEL (Ashburner, 2007),
which allows registration to both cortical and subcortical
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regions and has been shown to perform well in volume-
based alignment (Klein et al., 2009). Normalization incor-
porated the following four steps. (1) Structural images of
each subject were segmented using the “New Segment”
procedure in SPM8. (2) The resulting gray and white
matter images were used to derive a study-specific group
template. The template was computed from a subgroup
of 1000 subjects (Heck et al., 2014), which were part of
the 1369 subjects in the present study. (3) An affine
transformation was applied to map the group template
to MNI space. (4) Subject-to-template and template-to-
MNI transformations were combined to map the func-
tional images to MNI space. The functional images were
smoothed with an isotropic 8 mm full-width at half-
maximum (FWHM) Gaussian filter. Intrinsic autocorrela-
tions were accounted for by AR(1) and low-frequency
drifts were removed via high-pass filter (time constant 128
s). Separate regressors were constructed for the 0- and
2-back conditions comprising a boxcar reference wave
form convolved with a canonical hemodynamic re-
sponse function. Events during the presentation of the
instruction as well as movement regressors from spatial
realignment were modeled separately. To measure
WM-related brain activation we calculated the differ-
ence between the 2-back and 0-back parameter esti-
mates for each subject and voxel (first-level 2-back -
0-back contrast). Performance measurements were not
included in the first-level analyses.

fMRI group-level analysis

All further analyses were conducted using the statistical
software environment R (3.2.2; RRID:SCR_001905). The
2-back — 0-back contrast parameters from the first-level
analyses of N = 1375 subjects and of N = 71222 voxels
entered the group analyses. Data of six subjects were
removed from the analyses because of high numbers of
missing voxels (>4 SD above average). For the remaining
N = 1369 subjects, we then restricted all analyses to
voxels without missing values (N = 55,614 voxels). Based
on one-sample t tests, we identified all voxels that were
more active in the 2-back in comparison to the 0-back
condition when applying FDR correction (« = 5%).

Across the timespan of the data acquisition, the gra-
dient coils were changed twice (hardware batches), and
parts of the scanner’s software configuration were
changed once (software batches). Additionally, the
scanner console displayed irregularities during the data
acquisition in a small group of subjects (processing
batches). We regressed out these potential group-
effects from the voxel-signal; we used the standardized
residuals to perform the ICA decomposition and the
association analyses.

Identification of distinct WMN subnetworks by using
ICA decomposition

We investigated the distribution of 2-back - 0-back
contrast parameter estimates by measuring the skew-
ness, kurtosis, and Shapiro-Wilk tests. The data were
highly skewed across subjects (—2.59-2.34) and voxel
(—2.03-2.84), showed a high kurtosis across subjects
(2.98-49.11), and voxel (3.26-23.06) and deviated con-
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siderably from normal distribution across subjects (Sha-
piro-Wilk test: range W, 0.85-1.00; range -logo(p), 0.33—
33.72) and voxel (Shapiro-Wilk test: range W, 0.80-1.00,
range -logqy(p), 6.31-60.60). Because of the strong non-
Gaussian components of the 2-back — 0-back contrast
parameters, we used ICA as dimensionality reduction
method. Applied to a matrix X of m observations (sub-
jects) and n variables (voxels), ICA estimates a matrix of
k X n latent sources S that underlie the variables, holding
the source estimates (referred to as voxel loadings
throughout the paper) as statistically independent from
each other as possible (Engreitz et al., 2010). In addition
to the source estimates, ICA also yields a matrix of m X k
mixing coefficients A (referred to as subjects scores
throughout the paper) for each IC. The mixing coefficients
of a particular component depict the projection of the
original data onto this component’s estimated source,
such that X = AS (Hyvérinen and Oja, 2000). By applying
ICA decomposition to a matrix of 2-back — 0-back con-
trast estimates, containing rows of voxels and columns of
subjects, our source estimates (voxel loadings) described
statistically independent latent sources that underlie the
contrast estimates. Accordingly, each component’s mix-
ing coefficients described the activity strength of each
component for each subject (Chiappetta et al., 2004).
Subjects with high-contrast estimates in the voxels that
load highly onto a particular IC in the positive direction
obtained elevated scores for this IC. Hence, we inter-
preted the subject scores as a measure of coactivation in
the voxels that loaded onto the IC.

We first applied PCA to determine the number of com-
ponents to be extracted by the ICA. After visually inspect-
ing the scree plot of the Eigenvalues we decided to
retrieve six components. We performed ICA to retrieve
these six ICs using the fastICA algorithm (R-package
“fastlICA”; Hyvarinen and Oja, 2000) with centering and
scaling of the variables as well as applying a PCA and
whitening of the data. Since the direction of ICA estimates
is arbitrary, we recoded all estimated ICs with the result
that the voxels with the highest absolute loadings dis-
played positive loadings. We retained the source esti-
mates (“voxel loadings”) and mixing coefficients (“subject
scores”) of the extracted ICs (WMN-ICs) for further anal-
yses. Accordingly, every voxel exhibited a voxel loading
for each of the six WMN-ICs. For visualization purpose
and for anatomic annotation, we determined the voxel
loadings with the 10% most extreme absolute values (lzI >
1.47), when considering all six ICs. All association analyses
were conducted on unthresholded WMN-ICs.

Cortical and subcortical labeling of the WMN-ICs
Labeling of gray matter brain regions was based on a
population-averaged probabilistic atlas. The atlas com-
prises a total of N = 87 distinct cortical and subcortical
brain regions from both hemispheres. Each of the N =
55,614 voxels was assigned to one of these anatomic
brain regions. Voxels for which the probability to belong to
a given brain region was below 25% (N = 2926) or that
were not located within cortical or subcortical regions
(N = 21,451) were excluded, resulting in N = 31,237
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voxels used for anatomic labeling. For each WMN-IC, we
grouped voxels that showed the 10% most extreme val-
ues (see above) into clusters of adjacent voxels (WMN-IC
clusters). Within each WMN-IC cluster and for each ana-
tomic brain region, we determined the absolute number of
voxels that belonged to this cluster and were annotated
with this region. We report only brain regions comprising
>10 voxels of a WMN-IC cluster. We also calculated the
percentage of voxels per WMN-IC cluster and anatomic
brain region by dividing the absolute number of voxels by
the total number of voxels labeled with the anatomic brain
region across the N = 31,237 voxels.

The used population-average probabilistic anatomic at-
las was built by automatic gray matter segmentation of
the subjects’ T1-weighted images. Each participant’s T1-
weighted image was first automatically segmented into
cortical and subcortical structures using FreeSurfer (v4.5,
http://surfer.nmr.mgh.harvard.edu/; RRID:SCR_001847;
Fischl, 2012). Labeling of the cortical gyri was based on
the Desikan—Killiany Atlas (Desikan et al., 2006), yielding
35 regions per hemisphere. We also labeled 17 subcorti-
cal regions, following Fischl et al., (2002). The segmented
T1 image was then normalized to the study-specific
anatomic template space using the subject’s previously
computed warp field, and affine-registered to the MNI
(Montreal Neurologic Institute) space (see above, fMRI
preprocessing and first-level analyses of the n-back
task). Nearest-neighbor interpolation was applied, to
preserve labeling of the different structures. The nor-
malized segmentations were finally averaged across
subjects, to create a population-average probabilistic
atlas. Each voxel of the template could consequently be
assigned a probability of belonging to a given anatomic
gray matter-segmented structure, based on the infor-
mation of N = 1000 subjects that are part of the sam-
ples included in this study.

Association with task performance measures

We assessed the associations of each WMN-IC with
performance measurements of multiple behavioral tasks
and several covariates using a multiple linear regression
model for each WMN-IC. For each WMN-IC, the scores
per subject were used as the dependent variables. The
task performance measurements and covariates were as-
signed as independent variables. To reduce multicollinearity
between the independent variables and covariates, we ex-
cluded strongly correlated variables (Irpezrsonl = 0.5).

The following behavioral task performances were includ-
ed: (1) n-back performances (D-prime 2-back; D-prime
0-back), (2) n-back reaction time (difference between reac-
tion times during 2-back condition and 0-back condition), (3)
episodic memory, and (4) item familiarity. We first calcu-
lated linear models with the difference in 2-back and
0-back performances as a single predictor. To estimate
the associations with 2-back and 0-back performances
individually, we also included both performance measure-
ments separately in the model. We further included the
following covariates in the analyses: (5) Sex, (6) age at the
time of investigation, (7) hand used for task performance,
(8) motivation, (9) perceived task difficulty, (10) smoking
behavior, (11) usual sleep duration, (12) chronotype, and
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(13) BMI. Since the scores of the WMN-ICs were corre-
lated (r2 < 0.11; see results section “ldentification of
distinct WM-task networks”), we additionally included the
scores of the five remaining ICs as covariates in all anal-
yses. The regression models thus comprised 18 predic-
tors when including the difference in 2-back and 0-back
performances as a single predictor, and 19 predictors
when including separate predictors for 2-back and 0-back
performances.

To retrieve standardized regression coefficients (subse-
quently referred to as regression coefficient or ), all
variables were z-transformed. By including all predictors
and covariates in one linear model, we estimated the
association between each variable and the WMN-IC while
keeping all other included variables constant. Testing of
significance for the behavioral task performances was
conducted using t tests. We report FDR-corrected p val-
ues for associations of WMN-ICs with task performance
(e < 5%, correcting for 108 tests based on 18 predic-
tors X six WMN-ICs with the difference in 2-back and
0-back performances as a single predictor; correcting for
114 tests based on 19 predictors X six WMN-ICs with
2-back and 0-back performances as separate predictors).

We used the same linear models, but without including
the WMN-IC scores as covariates, to estimate the univar-
iate association of each voxel with D-prime 2-back and
D-prime 0-back performances. We applied FDR correc-
tion (« = 5%) to account for 371588 independent statis-
tical tests, based on 14 predictors X 26542 voxels.

ICA bootstrapping

We assessed the stability of the WMN-ICs and of their
associations with behavioral measures using a bootstrap-
ping approach. We repeated the following procedure 100
times for two different sizes of the subsamples N psampe =
[100, 684]. We (1) randomly divided the sample into two
subsamples of sizes Ngypsampre (S@Mpling without re-
placement, no intersection between the subsamples);
(2) for both subsamples, we estimated six ICs; and (3)
calculated linear models of the IC estimates against
behavioral measures and covariates as described
above; and (4) for each IC of both subsamples, we
identified the best-matching IC of the total sample. We
correlated the source estimates (i.e., voxel-loadings) of
these matched ICs from the two subsamples.

ICA cross-validation

We projected the information from WMN-ICs that were
estimated across N = 1269 subjects onto smaller groups
of N = 100 subjects. We repeated the following procedure
100 times: in each run, (1) we randomly divided the sam-
ple into the larger and the smaller subsamples; (2) we
estimated six ICs from the WMN in the larger subsample;
(8) the ICA estimates were then projected onto the 2-back
— 0-back contrast estimates of the smaller subsample;
and (4) the resulting projected scores of WMN-IC3 and
WMN-IC4 were then regressed against behavioral task
performances (D-prime 2-back, D-prime 0-back) and co-
variates (sex, age) in the smaller subsample. This yielded
the percentage of runs in which the projected scores
showed significant (0,,ominar < 0.05) associations with task
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performance measures. To retrieve empirical p values for
the cross-validation, we repeated the 100 cross-validations
1000 times, after permutation of the task performance mea-
surements. We used the percentages of associations
between projected scores and permuted performance mea-
surements as a null distribution.

Association of the WMN-ICs with white matter micro-
structure

Diffusion volumes were acquired for a subset of N =
657 subjects using a single-shot EPI sequence, and con-
sisted of 64 diffusion-weighted volumes with b = 900
s/mm? and one unweighted volume (b = 0). We used the
following acquisition parameters: TR = 9 s; TE = 82 ms;
FOV = 320 mm; GRAPPA R = 2.0; voxel size = 2.5 X
2.5 X 2.5 mm?®. Two participants were excluded due to
excessive movement during the DTI acquisition. Diffusion-
weighted images were analyzed using FSL (4.1.7; RRID:
SCR_002823; Jenkinson et al., 2012). Images were
coregistered to the reference unweighted volume (b = 0)
using an affine transformation for correction of head mo-
tion and eddy current induced image distortion. Maps of
fractional anisotropy (FA) were obtained from the diffusion
tensor model for further analyses. FA is an estimate of the
directional dependence of diffusion (Basser, 1995). It re-
flects aspects of white matter microstructure that are
related to fiber orientation (Jones et al., 2013) and can be
modulated by myelination (Beaulieu, 2002). We obtained
70 cortical white matter-segmented regions (35 regions
per hemisphere) from the FreeSurfer v4.5 wmparc files.
Anatomic labels for the white matter segmentations cor-
responded to the labels of gray matter segmentations
adjacent to the corresponding white matter segmentation.
We used the averaged FA values per region for the fol-
lowing analyses. Sixteen participants were excluded due
to missing FA measures in any of the white matter-
segmented brain regions. Complete datasets (behavior
and imaging) were available for N = 614 participants. For
each white matter-segmented brain region and each
WMN-IC, we calculated linear regression models with the
WMN-IC’s scores per subject as dependent variables and
the FA estimate as independent variable. Sex, age, hand-
edness, intracranial volume, and scores of the remaining
WMN-ICs were used as covariates. We tested separately
for each WMN-IC whether the p values of the associations
between the 70 FA values and WMN-IC scores deviate
from the uniform distribution that is expected for contin-
uous data under a simple null hypothesis (Murdoch et al.,
2008). The resulting p values were FDR corrected for six
tests (« < 0.05). We additionally calculated empirical p
values based on the number of nominally significant as-
sociations for each WMN-IC after permuting the WMN-IC
scores 10000 times, applying FDR correction (« < 0.05)
for six independent tests.

Description and analysis of the NeuroSynth database
NeuroSynth is a publicly available database currently
comprising data from 11406 fMRI studies summarized in
3107 fMRI meta-analyses for commonly used terms
(RRID:SCR_006798; Yarkoni et al., 2011). We obtained
the NeuroSynth data files (database.txt; features.txt; ver-

eNeuro.org


https://scicrunch.org/resolver/SCR_002823
https://scicrunch.org/resolver/SCR_006798

eMeuro

sion 0.6, released July, 2015) as well as the reverse
inference maps of all 3107 meta-analyses. The reverse
inference maps of the meta-analyses describe for each
voxel the probability of the term being used in the avail-
able studies given the activations in the voxel across the
studies; these inference maps contain estimates for vox-
els showing FDR-corrected (« = 0.01) significant associ-
ations. We first selected all terms that were reported in at
least 250 studies at a high frequency (>1 in 1000 words).
For these terms we filtered for all reverse inference maps
that comprise at least 1200 FDR-corrected significant
voxels (out of 228,453 voxels, > 0.5%; voxel size 2 X 2 X
2 mm). After applying these filter-steps we used the meta-
analytic results of 233 terms for the further analyses. We
applied z-transformation to the probability estimates for
each term before applying PCA. After visually inspecting
the scree plot of the PCA (see results section “Compari-
son of the WM-task networks with external datasets”), we
decided to extract 16 components. After whitening of the
data we applied ICA decomposition on the probability
estimates using the fastICA algorithm (R-package fas-
tICA; Hyvarinen and Oja, 2000) to retrieve 16 networks
that were based on the results of the 233 meta-analyses.
Since the direction of ICA estimates is arbitrary, we re-
coded all estimated ICs with the result that the voxels with
the highest absolute loadings displayed positive loadings.
The mixing coefficients (score per term) were used to
characterize each component (NeuroSynth |IC-topic).

The uncorrelated and statistically independent source
estimates (loadings per voxel) were coregistered to the
image space of our functional MRI data by applying affine
transformation with NiftyReg (http://cmictig.cs.ucl.ac.uk/
wiki/index.php/NiftyReg; RRID:SCR_006593; Modat et al.,
2010). We tested the overlap between the 16 NeuroSynth
networks and the WMN derived from our functional MRI
data by calculating the percentage of voxels that show
high loadings on the NeuroSynth networks (Iz > 0.70; i.e.,
the 10% most extreme absolute values across all Neu-
roSynth ICs; the same threshold was used to visualize the
NeuroSynth ICs) and were additionally located in the
WMN. Furthermore, we compared the loadings per voxel
between the NeuroSynth networks and the WMN-ICs
(shared variance r?). We retrieved subject-wise scores for
the NeuroSynth IC-topics in our study sample by project-
ing the NeuroSynth ICA estimates onto the 2-back -
0-back contrast parameter estimates of our subjects. The
projected scores for the NeuroSynth IC-topic were re-
gressed against the subjects’ task performance measures
using multiple linear regression models (including sex,
age, hand used for the task, motivation, perceived task
difficulty, smoking behavior, usual sleep duration, chro-
notype and BMI as covariates). The resulting p values
were FDR corrected (a = 0.05) for 224 independent tests,
based on 14 predictors X 16 NeuroSynth ICs.

Brain images

Figures of clustered voxels within a semitransparent
brain (MNI 152 template) were produced using MRIcroGL
(http://www.mccauslandcenter.sc.edu/mricrogl/;  RRID:
SCR_002403) after smoothing (3 mm smoothing kernel)
using the R-packages “fslr” (Muschelli et al., 2015) and
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“oro.nifti” (Whitcher et al., 2011). All brain images are dis-
played within the MNI152 template and according to neuro-
logic convention (left hemisphere displayed on the left side).

Data repository

Parametric maps of the main findings (group-activation
t values for the 2-back - 0-back contrast parameter; 3
values for associations between the 2-back — 0-back
contrast parameters and the 2-back as well as the 0-back
performances; z values describing voxel loadings of the
ICs) are stored online in the public repository NeuroVault
(RRID:SCR_003806; Gorgolewski et al., 2016) and can be
retrieved for use in future studies (http://neurovault.org/
collections/EYCSLZUZ/).

Results

We used two different conditions of a verbal n-back
task. The 0-back condition required participants to re-
spond to the occurrence of the letter x (both lower- and
uppercase) in a sequence of letters (e.g., N-p-X-g...).
This control condition requires very low WM load and was
used as a measure of attention. In the 2-back condition
subjects had to indicate whether the currently presented
letter and the letter two places prior in the sequence were
identical or not (e.g., S - f — s — g...). This condition
requires online monitoring, updating, and manipulation of
remembered information and is therefore assumed to
involve key WM-related processes (Owen et al., 2005).
Task performances were defined as D-prime measures
(Macmillan and Creelman, 1990) that account for false
alarms, calculated separately for the 0-back and 2-back
conditions. Both behavioral measurements were corre-
lated with a medium effect size (rpearson = 0.35; 12%
shared variance). The 0-back performance is also referred
to as “attention-related” and the 2-back performance is
also referred to as “WM-related” task performance in the
following sections.

fMRI group-level analysis of the WM-task activation

The fMRI analyses were based on the 2-back — 0-back
contrast parameter estimates. We first applied voxel-wise
(N = 55614 voxels) one-sample t tests to the contrast
parameter estimates. Here, due to the large sample size
(N = 1369), the whole-brain signal was virtually separated
into voxels that were more active in the 2-back condition,
and voxels that were more active in the 0-back condition
(see “t value contrast 2-back — 0-back” in NeuroVault).
The WMN is typically defined as voxels that are more
active in the 2-back condition in comparison to the 0-back
condition (Rottschy et al., 2012); the 0-back condition is
included to control for sensory-motor processes and at-
tention (Miller et al., 2009). The WMN identified with our
data were defined as the 2-back positive voxels of the
2-back - 0-back contrast parameter estimates (whole
brain FDR-corrected a < 5%; N = 26,542 voxels; Fig. 1A).
This WMN comprised most of the FDR-corrected meta-
analytic result for the term “working memory” acquired
from NeuroSynth (Yarkoni et al., 2011; Fig. 1B): 98% of
the WMN voxels derived from NeuroSynth were located
within the WMN obtained from our data.
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a Activated during WM performance ,WMN*

Figure 1. WMNSs. A, Brain regions that were more strongly activated during the 2-back condition in comparison to the 0-back
condition in our sample (2-back — 0-back contrast one-sample t tests FDR corrected, a = 0.05). B, Meta-analytic results for the term
working memory retrieved from NeuroSynth (reverse inference, FDR corrected, « = 0.01). The brain images are displayed within the

MNI152 template and according to neurologic convention.

Identification of distinct WM-task networks

To identify separable networks of brain activation within
the WMN we applied ICA as a dimensionality reduction
method. ICA decomposition is a data-driven unbiased
approach that models observations as a linear combina-
tion of latent components (Engreitz et al., 2010), which are
as statistically independent and uncorrelated as possible
(Hyvérinen and Oja, 2000). We applied ICA onto the
2-back — 0-back contrast estimates of our subjects. Each
voxel obtained one loading per IC, and each subject
obtained one score per IC. The ICs were statistically
independent and uncorrelated with regard to their voxel
loadings. Accordingly, a voxel’s loading in a particular IC
did not yield any information regarding this voxel’s loading
in any other IC. When illustrating the voxel loadings of the
ICs, we concentrated on the voxels with the most extreme

10% of loadings. Whenever a subject showed increased
activation in the brain regions that loaded highly onto an
IC in the positive direction, the subject received an ele-
vated positive score for the specific IC. Accordingly, the
subject scores of an IC represented a measure of coacti-
vation across the voxels that loaded onto this IC. We
therefore interpreted the estimated ICs as networks of
coactivated brain regions.

Whitening of the data was done based on a principal
component analysis (PCA) before applying the ICA. After
visually inspecting the Eigenvalues of the PCA (Fig. 2A)
we decided to extract six ICs from the WMN (“WMN-ICs”;
Fig. 2B). Each WMN-IC was functionally annotated using
multiple linear regression models including both D-prime
2-back and D-prime 0-back performances as well as
further covariates as independent variables (Table 1; Ex-

a b c
b 1 395 ¢t
100- IC1 . 03 015 013 0.18 021 %
4 =}
80 - 0.8 IC2 03 . 023 034 -0.01 0.12 %
8 o
=] 71 . ko]
T 60 | 0.6 |IC3 015 028 . 029 -0.03 0.13 e
c 4 . é
.8’ 4] °. 0.4 |IC4 0.13 034 029 . 0.07 0.25 s
. m-
— - 0.18 -0.01 -0.03 0.07 0.12 o
20 S, . 0.2 IC5 (2]
1 IC6 021 0.12 013 025 0.12 .
0 e T T T T T T 1
5 10 15 20 25 IC1 IC2 IC3 IC4 IC5 IC6 -3 -2 -1 0 1 2 3

Number of components

Normal scores

Figure 2. WMN ICA decomposition auxiliary information. A, The eigenvalues (purple, left y-axis) and cumulative variance (green, right
y-axis) of a PCA on the WMN. B, Pearson’s correlations between WMN-ICs on the subject-level (N = 1369). C, Quantile-quantile plots
comparing the standardized residuals (y-axis) from multiple linear regression models of each WMN-IC against behavioral measure-
ments and covariates (including the remaining WMN-ICs) with a normal distribution (x-axis); D-prime 2-back and D-prime 0-back
performances were included as separate predictors in these models. Models with the performance difference of D-prime 2-back and
D-prime 0-back as a single predictor yielded highly similar residuals (all rpearson > 0.98).
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Table 1. Associations of WMN-ICs with performances

D-prime D-prime D-prime Reaction time
2-back - 0-back 2-back 0-back 2-back — 0-back Episodic memory

(df = 1350) (df = 1349) (df = 1349) (df = 1349) (df = 1349)
IC# B p B p B p B p B p
IC1 0.01 0.85 0.02 0.55 0.03 0.35 -0.01 0.85 0.05 0.12
IC2  0.01 0.69 -0.01 0.74 -0.07 0.02: -0.02 0.66 0.08 0.006:
IC3 024 23X 10 "swwx 024 2.8 X 10 B 015 7.6 X 10 s 0.09 0.003+ 0.02 0.66
IC4 -0.13 2.8 X 10 %« -0.06 0.09 025 1.8 X 107 "G -0.02 0.52 -0.04 0.18
IC5 -0.01 0.75 -0.01 0.73 0.01 0.85 -0.06 0.09 -0.05 0.19
IC6 -0.05 0.14 -0.04 0.27 0.06 0.12 0.01 0.81 -0.10 9.0 X 10 %sex

The reported p values are FDR corrected (see Materials and Methods); #p < 0.05, ##p < 0.001, s##kp < 0.0001.
The results of the linear models with the WMN-ICs as dependent variables for n-back D-prime performances, n-back reaction time, and episodic memory
performance. For the remaining covariates, see Extended data Table 1-1. Voxel-wise associations are described in Extended data Table 1-2. The estimates of

statistical power for a voxel-wise analysis and an analysis using WMN-ICs are displayed in Extended data Table 1-3.

tended data Table 1-1; for the distributions of the resid-
uals of the models, see Fig. 2C).

Two of the six components were associated with the
difference of WM-related and attention-related perfor-
mances (D-prime 2-back - D-prime 0-back; Table 1).
WMN-IC3 was positively associated with the performance
difference (pgpr = 2.3 X 107'%, R? = 0.06) and WMN-IC4
was negatively associated with the performance differ-
ence (pgpr = 2.8 X 1078, R? = 0.02). We next calculated
multiple linear regression models with WM-related perfor-
mance and attention-related performance as separate
predictors. These models were used as main models for
all subsequent analyses. In these analyses, WMN-IC3
was significantly associated with both the D-prime 2-back
performance (ogpr = 2.8 X 107'%; Fig. 3B) and the
D-prime 0-back performance with opposite direction of
effects (0gpg = 7.6 X 1077). WMN-IC3 explained 5.8%
variance of D-prime 2-back performance, 2.2% variance
of D-prime 0-back performance and 0.8% variance of the

difference in reaction time between 2-back and 0-back.
This component exhibited the most extreme positive
loadings (z > 1.47, describing the most extreme 10% of
absolute values across the WMN-ICs) in bilateral parietal
regions, the bilateral middle frontal gyrus, as well as the
left precentral gyrus and pars opercularis (Fig. 3A; Ex-
tended data Fig. 3-1). WMN-IC3 was also associated with
sex (Prpr = 4.0 X 107°); separate analyses for each
gender yielded similar results for WM-related and
attention-related performances (males: N = 528, 2-back
performance R? = 0.04, prpr = 4.3 X 1075, 0-back
performance R? = 0.03, prpr = 4.0 X 107*, opposite
directions of effect; females: N = 841, 2-back perfor-
mance R? = 0.07, pepr = 3.4 X 1078, 0-back perfor-
mance R? = 0.02, pepr = 0.005, opposite directions of
effect). WMN-IC4 was markedly associated with D-prime
0-back performance (pgps = 1.8 X 1079, R? = 0.06; Fig.
3D) but not with D-prime 2-back performance (Pgpr =
0.09, R? = 0.004). This component exhibited main posi-

a Voxel loadings WMN-IC3 b 8 0.8 1
Z 04-
=
= 07
0
L 0.4 -
o
O
» -0.8 +—r—————
-1 012 3 45
D—prime 2—-back
c Voxel loadings WMN-IC4 d 0.8 -

@G

L2l

10123 45
D-prime 0-back

Scores WMN-IC4
o

Figure 3. WMN ICA decomposition main findings. Voxel loadings (A) of WMN-IC3 and (C) of WMN-IC4 illustrated for Izl > 1.47 showing the most
extreme 10% of the voxel loadings across all WMN-ICs; red depicts positive and blue negative voxel loadings. Associations (B) of WMN-IC3 with
D-prime 2-back and (D) of WMN-IC4 with D-prime 0-back task performances. Annotations of WMN-ICs with anatomic regions are listed in
Extended data Figure 3-1. The results of additional WMN ICA decompositions with varying numbers of components are illustrated in Extended
data Figures 3-2, 3-3. The brain images are displayed within the MNI152 template and according to neurologic convention.
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Figure 4. Overlap between WMN-IC3 and WMN-IC4. A, The effects of curtailing the voxel loadings of WMN-IC3 and WMN-IC4 using different
thresholds ranging from [zl > 0 to [zl > 5 (x-axis). Stacked bars (y-axis) depict the share of all N = 26542 voxels that load onto both WMN-IC3
and WMN-IC4 (yellow; i.e., overlap between WMN-IC3 and WMN-IC4), onto WMN-IC4 but not WMN-IC3 (blue), onto WMN-IC3 > thres but not
WMN-IC4 = thres (red), and onto neither WMN-IC (white) above the threshold indicated by the x-axis. The dashed vertical line highlights the share
of voxels loading onto the WMN-ICs above a threshold of Izl > 1.47. This threshold includes the most extreme 10% of values across all WMN-ICs
and was used for illustrating the brain images and to determine the overlap between WMN-IC3 and WMN-IC4 throughout the paper. B, Brain
regions loading with z > 1.47 onto both WMN-IC3 and WMN-IC4 (yellow; i.e., overlap between WMN-IC3 and WMN-IC4), only onto WMN-IC4
(blue), and only onto WMN-IC3 (red). The anatomic annotations of clusters loading onto both WMN-IC3 and WMN-IC4 when considering the most
extreme 10% of loadings are described in Extended data Figure 4-1. The brain images are displayed within the MNI152 template and according

to neurologic convention.

tive loadings bilaterally in frontal regions such as the
caudal anterior cingulate gyrus, the insula, and the middle
frontal gyrus (Fig. 3C; Extended data Fig. 3-1; focusing on
the most extreme 10% of loadings).

The voxel loadings of WMN-IC3 and WMN-IC4 showed
only minor overlaps when focusing on the most extreme
10% of loadings, with 1% of all WMN-voxels showing z >
1.47 in both WMN-IC3 and WMN-IC4. The overlaps of
WMN-IC3 and WMN-IC4 for this threshold, as well as for
a range of other thresholds, are illustrated in Figure 4
(yellow color). The overlaps between WMN-IC3 and
WMN-IC4 for the most extreme 10% of loadings com-
prised three distinct clusters of adjacent voxels (Extended
data Fig. 4-1). Two of these clusters were located bilat-
erally in the middle frontal gyrus and the posterior part of
the superior frontal gyrus. The third cluster was located in
the left superior parietal cortex.

The voxel loadings of the remaining WMN-ICs are shown
in Figure 5. Two components showed predominantly later-
alized loadings (WMN-IC5 left, WMN-IC6 right) in frontal
regions, inferior parietal regions and the cerebellum when

January/February 2018, 5(1) e0222-17.2018

focusing on the most extreme 10% of loadings. IC6 was
associated with episodic memory performance (Ogpr =
0.0009, R? = 0.010); IC5 did not show any FDR-corrected
significant associations with task performances. WMN-
IC2 loaded bilaterally onto occipital regions like the
fusiform gyrus and the lingual gyrus, as well as the cerebel-
lum and the thalamus when considering the most extreme
10% of loadings, and was associated with episodic memory
performance (orps = 0.006, R? = 0.006) and D-prime
0-back performance (ospr = 0.02, B> = 0.005). WMN-IC1
loaded bilaterally onto the precuneus, frontal and inferior
parietal regions when focusing on the most extreme 10% of
loadings and did not show any FDR-corrected significant
associations with task performances.

In summary, within the WMN, two out of six networks
functionally differentiated between WM performance and
attention. A parietally-centered network was mainly asso-
ciated with WM-related performance and a frontally-
centered network was mainly associated with attention-
related performance. We verified these results by applying
voxel-wise association analyses between the 2-back —

eNeuro.org
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Figure 5. WMN ICA decomposition voxel loadings of the remaining WMN-ICs. The threshold of IzI > 1.47 used for illustration displays
the most extreme 10% of the voxel loadings across all WMN-ICs; red depicts positive and blue negative voxel loadings. The brain
images are displayed within the MNI152 template and according to neurologic convention.

0-back contrast parameter estimates and D-prime 0-back
as well as D-prime 2-back performances (Fig. 6A,B;
see also “B performance 0-back” and “B8 performance
2-back” in NeuroVault; see Extended data Table 1-2 for
the remaining variables). On this voxel-wise level, mainly
parietal and superior frontal voxels showed positive as-
sociations with D-prime 2-back performance and mainly

frontal regions showed positive associations with D-prime
0-back performance.

To confirm the stability of the main results from the ICA
we applied bootstrapping and cross-validation proce-
dures. The bootstrapping revealed stable network de-
composition and robust associations of these networks
with task performances in subsamples of N = 100 (Fig.

Voxel-wise association with D-prime 2-back

Y X

Voxel-wise association with D-prime 0-back

Y Y

Figure 6. WMN voxel-wise association results. Univariate results for WMN voxels against D-prime 2-back (A) and D-prime 0-back (B)
task performances (N = 1369, df = 1354); red clusters show FDR-corrected significant positive associations. The brain images are
displayed within the MNI152 template and according to neurologic convention.
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Figure 7. WMN ICA decomposition bootstrapping results. Pearson’s correlation coefficients comparing the voxel loadings of ICA
decompositions between two nonintersecting subsamples of sizes (A) N = 100 each and (D) N = 684 each (i.e., split-halves).
Depicted are the averaged correlation coefficients across 100 runs. The associations of WMN-IC3 with task performances and
covariates averaged across the 2 X 100 random subsamples are shown for (B) N = 100 (df = 85) and (E) N = 684 (df = 669).
The associations of WMN-IC4 with task performances and covariates averaged across the 2 X 100 random subsamples are
shown for (C) N = 100 (df = 85) and (F) N = 684 (df = 669). Bars represent the averaged regression coefficients; error bars
denote the averaged standard errors of the regression coefficients; red colors in the bar plots describe the FDR-corrected
significance of the corresponding WMN-IC’s association with the independent variables in the total sample (see top-right

legend).

7A-C) and of N = 684 (i.e., split-half; Fig. 7D-F). Cross-
validations additionally demonstrated that ICA solutions
estimated in a larger subsample could predict task perfor-
mance in another nonintersecting smaller subsample (WMN-
IC3 and D-prime 2-back: averaged B = 0.25, p,omina < 0-05
in 64% of runs; WMN-IC4 and D-prime 0-back: averaged
B = 0.23 prominas < 0.05 in 61% of runs; expected under H,
is 5%, Pempiricar < 0.001 in both analyses). Additionally, we
repeated the ICA decomposition and the association
analyses with a varying number of extracted components
(between 2 and 10). The results remained very similar
when using more than three components (Extended data
Figs. 3-2, 3-3). The estimated WMN-ICs from the six-
components solution are provided in NeuroVault (“z value
voxel loadings WMN-IC”).

Association of WM-task networks with cortical white
matter microstructure

Differences in cortical white matter microstructure im-
pact the activity in functional brain networks (Andrews-

January/February 2018, 5(1) e0222-17.2018

Hanna et al., 2007; Burzynska et al., 2011; Palacios et al.,
2012; Marstaller et al.,, 2015). We tested for a global
association between white matter microstructure and dif-
ferences in WMN-IC scores in our sample, separately for
each WMN-IC. Cortical white matter microstructure was
measured by DTI. We used FA values that are related to
fiber orientation (Jones et al., 2013). Data were available
for 70 white matter-segmented brain regions in a sub-
sample of 614 subjects from our study. Out of the six
networks, the parietally-centered network WMN-IC3
showed a significant global association between white
matter microstructure and strength of network activation
(Kolmogorov-Smirnov: D = 0.37, pgpr = 1.6 X 1078, for
all remaining WMN-ICs prpr > 0.24; Empiric: pepg = 0.01,
for all remaining WMN-ICs pgpr > 0.32; Fig. 8). The
largest positive associations between WMN-IC3 and FA
values were found in white matter regions adjacent to the
posterior cingulum, the superior parietal cortex, and the
precentral gyrus (Table 2).
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Figure 8. WMN ICA associations with cortical white matter microstructure. A, Associations of WMN-IC3 with the averaged FA values
in 70 cortical white matter areas (N = 614, df = 602). B, C, Quantile-quantile plots of the -log10(p) values from the linear regressions
of averaged FA values against (B) WMN-IC3 and (C) the remaining five WMN-ICs. The Quantile-quantile plot compares the distribution
of -log10(p) values expected at random (x-axis) with the distribution of the observed -log10(p) values (y-axis). Gray curves indicate
95% confidence intervals. Detailed results for all 70 areas are listed in Table 2. R: right; L: left; lat.: lateral; med.: medial.

Comparison of the WM-task networks with external
datasets

Functional brain networks can be specifically activated
in one given task or can be involved in a variety of different
tasks (Cole et al., 2014). To assess the specificity of the
WMN-ICs we compared them with results from other
studies that cover a wider range of different tasks. We
investigated whether the networks derived from the verbal
n-back task had previously been identified in others stud-
ies using not only the n-back task but also different
WM-related paradigms.

We first compared our results with the results of an
extensive meta-analysis of heuroimaging studies that in-
cludes a number of different WM tasks (Rottschy et al.,
2012). The authors reported a “WM core network” of 10
regions that were consistently activated across distinct
WM tasks, designs and contrasts. Seven out of these 10
regions overlapped with voxels showing high loadings
(z>1.47) in WMN-IC3 or WMN-IC4 derived from our data
(Fig. 9): Three of these 10 regions showed high loadings
on WMN-IC3 only and three regions showed high load-
ings on IC4 when focusing on the most extreme 10% of
loadings. One region shared high loadings on both WMN-
IC3 and WMN-ICA4.

Next, we assessed whether the networks identified with
our data show similarities with networks derived from
NeuroSynth (Yarkoni et al., 2011). NeuroSynth is a meta-
analytical brain imaging resource that provides informa-
tion from 11406 fMRI studies covering a wide range of
distinct tasks. Based on a PCA (Fig. 10A) and ICA decom-
position, we retrieved 16 global networks of brain activa-
tions that were found across the included studies and
terms (all estimated networks are described in Table 3,
Extended data Fig. 10-1; the estimated NeuroSynth-ICs
are additionally provided in NeuroVault “z value voxel
loadings NeuroSynth-IC”). Two of these global networks
(NeuroSynth IC-topic 11 “DLPFC” and IC-topic 8 “pari-
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etal”) were to a large extent (> 80% of the voxels with z >
0.70; Izl > 0.7 described the most extreme 10% of abso-
lute values across the NeuroSynth-ICs) located within the
WMN derived from our data (Table 3). We compared the
loadings of these two networks with the loadings of
WMN-ICs of our data. We then retrieved scores of the two
NeuroSynth networks for our subjects and associated
them with the subjects’ task performances. The parietal
network (Fig. 10B) showed a profound similarity with
WMN-IC3 (42% shared variance when comparing voxel
loadings within the WMN). The subject-wise scores de-
rived for the NeuroSynth IC-topic parietal were very sim-
ilar to the scores of our WMN-IC3 (rpearson = 0.77; 59%
shared variance; Fig. 10D). Correspondingly, WM perfor-
mance also showed a highly significant association with
scores derived for the NeuroSynth IC-topic parietal in our
sample (D-prime 2-back: prpr = 2.4 X 107°, R? = 0.04;
D-prime 0-back: pepr = 0.20, R? = 0.002). We did not find
a profound similarity of the DLPFC network’s voxel load-
ings (Fig. 10C) with any of our WMN-ICs (shared vari-
ances < 3.3%). However, the subject-wise scores of the
DLPFC network were moderately correlated with the
scores of WMN-IC4 (fpearson = 0.25; 6% shared variance;
Fig. 10E) and were also associated with D-prime 0-back
performance in our sample (D-prime 0-back: pgpr = 1.6 X
1078, R? = 0.04; D-prime 2-back: pepr = 0.45, R? < 0.001).

Discussion

Studies on WM related brain activation typically de-
scribe a fronto-parietal network being implicated in WM
tasks (Klingberg et al., 2002; Owen et al., 2005; Rottschy
et al., 2012; Satterthwaite et al., 2013; Constantinidis and
Klingberg, 2016; Huang et al., 2016). Based on ICA de-
composition we have identified two networks within the
WMN that showed distinct functional characteristics. A
network with prominent parietal and smaller frontal fea-
tures was mainly associated with WM-related perfor-
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Table 2. Associations of WMN-IC 3 with DTI measurements

Association with WMN-IC3
White matter-

segmented region Both hemispheres Left hemisphere Right hemisphere
B p B P B P
Posterior cingulum FA 0.14 0.02x 0.13 0.02x 0.12 0.02x
Precentral FA 0.13 0.02:x 0.09 0.10 0.14 0.02:
Superiorparietal FA 0.12 0.02x 0.07 0.20 0.13 0.02x
Superiortemporal FA 0.11 0.05 0.10 0.07 0.09 0.09
Pars opercularis FA 0.09 0.08 0.03 0.54 0.12 0.02:x
Postcentral FA 0.09 0.08 0.04 0.44 0.12 0.02x
Caudal anterior cingulum FA 0.09 0.08 0.10 0.06 0.06 0.32
Inferiorparietal FA 0.09 0.10 0.07 0.23 0.08 0.12
Rostralmiddlefrontal FA 0.08 0.11 0.05 0.40 0.09 0.08
Transversetemporal FA 0.07 0.17 0.05 0.40 0.07 0.16
Fusiform gyrus FA -0.07 0.18 -0.03 0.63 —0.09 0.08
Insula FA 0.07 0.19 -0.03 0.61 0.12 0.02
Supramarginal gyrus FA 0.06 0.24 0.02 0.67 0.09 0.10
Isthmus of cingulum FA 0.06 0.25 0.09 0.10 0.02 0.77
Caudalmiddlefrontal FA 0.06 0.32 0.04 0.44 0.06 0.32
Pars triangularis FA 0.05 0.36 0.03 0.54 0.05 0.38
Inferiortemporal FA 0.05 0.38 0.02 0.73 0.06 0.24
Pars orbitalis FA 0.05 0.38 0.00 0.96 0.09 0.10
Cuneus FA 0.05 0.38 0.08 0.14 —0.01 0.96
Entorhinal FA 0.04 0.44 0.06 0.32 0.01 0.83
Lateral occipital FA —0.04 0.49 -0.07 0.19 0.00 0.96
Medial orbitofrontal FA 0.04 0.50 0.08 0.13 —0.04 0.50
Superiorfrontal FA 0.03 0.53 0.05 0.38 0.01 0.83
Paracentral FA -0.03 0.55 0.07 0.23 -0.10 0.06
Precuneus FA 0.03 0.56 0.11 0.02 -0.07 0.23
Temporal pole FA -0.03 0.62 0.00 0.96 -0.05 0.39
Pericalcarine FA —0.03 0.64 0.06 0.30 -0.10 0.06
Rostral anterior cingulum FA —0.02 0.68 0.02 0.64 —0.05 0.35
Frontal pole FA 0.02 0.73 —0.02 0.67 0.06 0.28
Parahippocampal FA —0.01 0.81 0.03 0.61 —-0.05 0.40
Corpus callosum FA —0.01 0.84 0.00 0.96 —-0.02 0.67
Middletemporal FA —0.01 0.96 —0.04 0.50 0.03 0.62
Banks of superior temporal sulcus FA 0.00 0.96 —0.03 0.55 0.03 0.61
Lateral orbitofrontal FA 0.00 0.96 —0.04 0.51 0.05 0.40
Lingual gyrus FA 0.00 0.98 0.04 0.44 -0.04 0.49

The reported p values are FDR corrected (« < 0.05) for three (both hemispheres, left hemisphere, right hemisphere) X 70 (anatomic regions) tests; #p < 0.05.
All df = 602.

Shown are FDR-corrected p values and regression coefficients describing the associations of FA measures (averaged across both hemispheres, for the left
hemisphere, and for the right hemisphere) with the estimates of WMN-IC3.

mance (5.8% variance explained), the associations with  ACC, both insulae) was merely relevant for attention-related
attention-related performance were smaller (2.2% vari-  behavior (6.2% variance explained).

ance explained) and in the opposite direction of effect. A Our findings of a frontally-centered and a parietally-
second network of predominantly frontal areas (left DLPFC,  centered network involved in different aspects of WM-

, WM core network* Rottschy et al. 2012

Figure 9. WMN-IC3 and WMN-IC4 in comparison with a WM core network described in Rottschy et al. (2012). Red regions overlap with
WMN-IC3 z > 1.47), blue regions overlap with WMN-IC4 z > 1.47), yellow region overlaps with WMN-IC3 and WMN-IC4; the green regions do
not overlap with WMN-IC3 or WMN-IC4. The brain images are displayed within the MNI152 template and according to neurologic convention.
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Figure 10. WMN-IC3 and WMN-IC4 compared to an ICA decomposition derived from NeuroSynth. A, The eigenvalues (purple, left
y-axis) and cumulative variance (green, right y-axis) of the PCA on voxel loadings of 233 NeuroSynth terms. Voxel loadings (B) of the
NeuroSynth IC-topic parietal (IC8) and voxel loadings (C) of the NeuroSynth IC-topic DLPFC (IC11) with Iz > 0.70. D, E, Comparison
of the subject-wise scores of the WMN-IC3 and WMN-IC4 with the subject-wise scores of the NeuroSynth IC-topic eight parietal

0.76) and IC-topic 11 DLPFC (rpearson =

(rPearson =

0.25). All 16 estimated NeuroSynth IC-topics are shown in Extended data Figure

10-1. The brain images are displayed within the MNI152 template and according to radiologic convention.

task performances are in line with recent ROI-based
studies that have reported distinct functional roles of
frontal and parietal regions on WM (Kundu et al., 2015;
Sarma et al., 2016; Li et al., 2017). The functional results
from our estimated networks were also consistent with
the voxel-wise results from our data. Notably, using ICA
decomposition to estimate brain networks resulted in sev-
eral advantages as compared to voxel-wise or ROI-based
analyses. Both voxel-wise and ROIl-based approaches
require prior knowledge for defining brain activation pat-
terns relevant for performance, either regarding the sub-
ject’s task performance or the anatomic ROls. In contrast,
the ICA decompositions applied here estimated brain
activation networks based on the WMN contrast esti-
mates and did neither include performance measures into
the estimation nor preselect voxels based on prior as-
sumptions. Thus, the WMN-ICs constitute data-driven
and unbiased measures of brain networks that underlie
the task performances. Importantly, ICA decomposition
optimized the detection rate of true effects for associating
brain activation with WM task performance by consider-
ably decreasing the number of tests performed, from N =
26,542 voxel-wise tests to 6 association analyses with the
WMN-ICs, effectively reducing the false-positive rate and
increasing statistical power. Furthermore, ICA decompo-
sition enabled us to represent brain networks that were
statistically maximally independent. By using the sub-
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ject’s performance measurements, we could show that
these networks exhibit distinct functional characteristics.
Subjects with high scores on a WMN-IC showed in-
creased coactivation of the voxels that loaded highly onto
this WMN-IC, we thus interpreted WMN-ICs as networks
of coactivating brain regions. The identification of distinct
functional networks within the WM brain activation is in
line with numerous recent studies demonstrating that the
brain activation at rest as well as during different tasks is
most likely based on distinct but possibly spatially over-
lapping networks (Power et al., 2011; Cole et al., 2014,
2016; Xu et al., 2016). In contrast, univariate voxel-wise
analyses or ROIl-based approaches would not allow to
identify data-driven and statistically independent sub-
networks of brain activation that underlie the brain acti-
vation during the WM task. Importantly, due to the large
sample size used here we can provide robust network
estimates that can also be applied to samples with smaller
sample sizes.

Sets of brain regions that appear similar to our
parietally-centered network have been described in past
studies as orienting system for visual events (Fan and
Posner, 2004) or dorsal attention network (Power et al.,
2011; Petersen and Posner, 2012). The frontally-centered
network derived from our data resembles the cingulo-
opercular network that has been linked to maintaining
alertness (Coste and Kleinschmidt, 2016). The two net-
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Table 3. Description of ICs estimated from NeuroSynth data

NeuroSynth % voxels

IC-topic IC# The 10 most-contributing NeuroSynth terms in WMN

DLPFC 11 Dorsolateral; dorsolateral_prefrontal; dipfc; cortex_dlpfc; working; 88%
working_memory; prefrontal; prefrontal_cortex; executive; load

Parietal 8 Intraparietal; intraparietal_sulcus; parietal_cortex; parietal; posterior_parietal; 83%
superior_parietal; spatial; fronto_parietal; attentional; sulcus

Morphometry 9 Voxel; matter; morphometry; voxel_morphometry; demands; volume; task; 71%

versus demand difficulty; working; working_memory

Inferior frontal 12 Inferior_frontal; semantic; word; inferior; language; frontal_gyrus; words; 59%
sentence; meaning; sentences

Fusiform gyrus 7 Fusiform; fusiform_gyrus; face; objects; faces; recognition; category; object; 54%
visual; occipital

Motion/observation 13 Motion; body; observation; viewed; perception; actions; visual; occipital_cortex; 52%
direction; viewing

Motor cortex 15 Motor; movement; motor_cortex; primary_motor; hand; finger; movements; 51%
premotor; sensorimotor; supplementary_motor

Sensory system 5 Secondary; somatosensory; pain; somatosensory_cortex; stimulation; insular; 42%
insula; primary; sensory; intensity

Basal ganglia 2 Basal_ganglia; ganglia; basal; putamen; subcortical; thalamus; striatal; caudate; 42%
striatum; nucleus

Temporal 4 Superior_temporal; superior; auditory; speech; temporal_gyrus; temporal_sulcus; 40%
temporal; posterior_superior; linguistic; gyrus

ACC 16 Anterior_cingulate; anterior; acc; cingulate_cortex; cingulate; cortex_acc; 40%
dorsal_anterior; anterior_insula; insula; cortex_anterior

Striatum 10 Ventral_striatum; reward; striatum; ventral; value; nucleus; striatal; 38%
decision_making; orbitofrontal; orbitofrontal_cortex

Medial prefrontal 6 Social; medial_prefrontal; junction; theory; temporo; medial; states; person; 35%
mental; prefrontal_cortex

Default mode 3 Default_mode; mode; default; mode_network; resting; resting_state; state; 33%
posterior_cingulate; independent_component; functional_connectivity

Hippocampus 14 Hippocampal; medial_temporal; hippocampus; parahippocampal; temporal_lobe; 20%
encoding; episodic; episodic_memory; parahippocampal_gyrus; lobe

Amygdala 1 Neutral; amygdala; emotion; fear; emotional; expressions; facial; affective; 14%

emotions; anxiety

IC-topics were assigned based on NeuroSynth terms with the highest loading. For voxels showing the highest loadings (z > 0.70), we calculated the percent-

age of voxels being located within the WMN (% voxels in WMN).

works identified in our study spatially overlap in three
separate clusters when focusing on the most extreme
10% of loadings. Two of these clusters were located
bilaterally in the middle frontal gyrus and the posterior part
of the superior frontal gyrus. The third cluster was located
in the left superior parietal cortex. Overlaps between brain
networks could represent regions of convergence be-
tween otherwise segregated functional networks (Sporns,
2013). Links between distinct networks are presumably
features of brain organization and important for complex
behaviors (Yeo et al., 2014). Accordingly, the lateral PFC
(which includes the middle frontal gyrus) has been pro-
posed to serve as a globally connected functional hub
that is involved in cognitive control (Cole et al., 2012).
Together, the most extreme 10% of voxel loadings of the
two networks relevant for WM task performance in our
study closely overlap with a WM core network identified in
an extensive meta-analysis of WM neuroimaging studies
by Rottschy et al. (2012) that included a number of other
WM tasks besides the verbal n-back task used here.
Importantly, both of the two networks estimated in our
study overlap with distinct parts of this global WM core
network. Furthermore, the parietally-centered network
identified in our study sample showed considerable sim-
ilarity with a parietal network derived from NeuroSynth
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(Yarkoni et al., 2011). This parietal network derived from
NeuroSynth was estimated across a large body of results
from neuroimaging studies using many different para-
digms. These results imply that especially the parietally-
centered network, which was associated with WM-related
task performance in our sample, is an important and
stable network implicated in WM-related cognitive func-
tioning.

This parietally-centered network was furthermore asso-
ciated with global differences in FA estimates in our
subjects. FA describes aspects of white matter micro-
structure related to fiber orientation (Jones et al., 2013)
and can be modulated by myelination (Beaulieu, 2002).
Measurements of FA have been observed to decrease
with increasing age (Inano et al., 2011) and after moderate
to severe traumatic brain injury (Kraus et al., 2007). Prop-
erties of white matter microstructure have also been
shown to affect large-scale functional networks such as
the default mode network (Andrews-Hanna et al., 2007),
the WMN (Burzynska et al., 2011; Palacios et al., 2012;
Darki and Klingberg, 2015), the salience network, and the
fronto-parietal network (Marstaller et al., 2015). The
parietally-centered network in our study was globally
associated with FA measures across the white matter-
segmented regions. Conversely, the other networks esti-
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mated here did not show any FA-associations. Positive
associations of FA with fMRI measurements or with con-
nectivity measures have been proposed to represent bet-
ter transmission and stronger functional connections
(Warbrick et al., 2017). FA measures in fronto-parietal
tracts have moreover been associated with WM perfor-
mance (Charlton et al., 2010; Vestergaard et al., 2011;
Darki and Klingberg, 2015). A recent large-scale study of
N = 1584 subjects reported that functional connectivity
between brain regions was influenced by lesions in white
matter tracts directly connecting the brain regions, but
also by white matter load in other, not directly connected
tracts (Langen et al., 2017). Thus, global white matter
integrity might contribute to the WM performance-re-
levant coactivation observed in our study. Additionally, we
observed that FA measures of single white matter-
segmented regions adjacent to the parietally-centered
network’s cortical main foci (specifically the posterior cin-
gulum, superior parietal, and precentral regions) were
associated with coactivation within the network.

WM and attention are closely related neurocognitive
domains (Eriksson et al., 2015; Constantinidis and Kling-
berg, 2016). Importantly, these neurocognitive domains
are also affected in neuropsychiatric disorders like schizo-
phrenia (Barch and Ceaser, 2012). A meta-analysis across
41 neuroimaging studies observed reduced activation of
the left DLPFC and the ACC in schizophrenia patients
during executive tasks (Minzenberg et al., 2009). Barch
and Ceaser (2012) depicted that the robustly observed
altered DLPFC activation in schizophrenia could either
directly impact cognitive functions such as WM or inter-
fere with top-down functions such as proactive control
that in turn mediate the effect on WM. Our observation
that a network of frontal regions including the DLPFC and
ACC was mainly associated with attention-related perfor-
mance coincides with the assumption of impaired general
executive functions rather than isolated WM function in
schizophrenia. Other studies investigating cognitive defi-
cits in schizophrenia have come to similar conclusions of
a deficit in general cognitive ability in schizophrenia (Haut
et al.,, 2015).

To summarize, we have identified two networks within
the WMN that showed distinct functional characteristics
with respect to attention-related and WM-related task
performances. Compared to voxel-wise analyses, using a
multivariate approach led to more specific results with
higher effect sizes and higher statistical power while min-
imizing the burden of multiple testing. Low statistical
power in combination with a large number of statistical
tests is a prevalent source of critique regarding the exist-
ing neuroimaging literature (Poldrack et al., 2017; Szucs
and loannidis, 2017), especially in combination with mul-
tiple high-dimensional datasets such as imaging genetic
studies (Bigos and Weinberger, 2010; Medland et al.,
2014; Poline et al., 2015). Van Snellenberg et al. (2016)
have stressed that finding replicable biomarkers of WM
will help to broaden our understanding of the associated
neural, molecular or genetic mechanisms. Our findings
take a step in this direction by providing stable network
estimates for application in independent samples (http://
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neurovault.org/collections/EYCSLZUZ/). This allows future
studies to investigate functional distinct brain networks that
are implicated in human cognition.

References

Alderson RM, Kasper LJ, Hudec KL, Patros CHG (2013) Attention-
deficit/hyperactivity disorder (ADHD) and working memory in
adults: a meta-analytic review. Neuropsychology 27:287-302.
CrossRef

Andrews-Hanna JR, Snyder AZ, Vincent JL, Lustig C, Head D,
Raichle ME, Buckner RL (2007) Disruption of large-scale brain
systems in advanced aging. Neuron 56:924-935. CrossRef Med-
line

Ashburner J (2007) A fast diffeomorphic image registration algorithm.
Neuroimage 38:95-113. CrossRef Medline

Baddeley A (2012) Working memory: theories, models, and contro-
versies. Annu Rev Psychol 63:1-29. CrossRef Medline

Barch DM, Ceaser A (2012) Cognition in schizophrenia: core psy-
chological and neural mechanisms. Trends Cogn Sci 16:27-34.
CrossRef Medline

Basser PJ (1995) Inferring microstructural features and the physio-
logical state of tissues from diffusion-weighted images. NMR
Biomed 8:333-344. Medline

Beaulieu C (2002) The basis of anisotropic water diffusion in the
nervous system - a technical review. NMR Biomed 15:435-455.
CrossRef Medline

Bigos KL, Weinberger DR (2010) Imaging genetics - days of future
past. Neuroimage 53:804-809. CrossRef Medline

Burzynska AZ, Nagel IE, Preuschhof C, Li S-C, Lindenberger U,
Backman L, Heekeren HR (2011) Microstructure of frontoparietal
connections predicts cortical responsivity and working memory
performance. Cereb Cortex 21:2261-2271. CrossRef Medline

Charlton RA, Barrick TR, Lawes INC, Markus HS, Morris RG (2010)
White matter pathways associated with working memory in normal
aging. Cortex 46:474-489. CrossRef

Chiappetta P, Roubaud MC, Torrésani B (2004) Blind source sepa-
ration and the analysis of microarray data. J Comput Biol 11:1090-
1109. CrossRef Medline

Cole MW, Yarkoni T, Repovs G, Anticevic A, Braver TS (2012) Global
connectivity of prefrontal cortex predicts cognitive control and
intelligence. J Neurosci 32:8988-8999. CrossRef Medline

Cole MW, Bassett DS, Power JD, Braver TS, Petersen SE (2014)
Intrinsic and task-evoked network architectures of the human
brain. Neuron 83:238-251. CrossRef Medline

Cole MW, Ito T, Bassett DS, Schultz DH (2016) Activity flow over
resting-state networks shapes cognitive task activations. Nat Neu-
rosci 19:1718-1726. CrossRef

Constantinidis C, Klingberg T (2016) The neuroscience of working
memory capacity and training. Nat Rev Neurosci 17:438-449.
CrossRef Medline

Coste CP, Kleinschmidt A (2016) Cingulo-opercular network activity
maintains alertness. Neuroimage 128:264-272. CrossRef Medline

Darki F, Klingberg T (2015) The role of fronto-parietal and fronto-
striatal networks in the development of working memory: a longi-
tudinal study. Cereb Cortex 25:1587-1595. CrossRef Medline

Desikan RS, Ségonne F, Fischl B, Quinn BT, Dickerson BC, Blacker
D, Buckner RL, Dale AM, Maguire RP, Hyman BT, Albert MS,
Killiany RJ (2006) An automated labeling system for subdividing
the human cerebral cortex on MRI scans into gyral based regions
of interest. Neuroimage 31:968-980. CrossRef Medline

Engreitz JM, Daigle BJ, Marshall JJ, Altman RB (2010) Independent
component analysis: mining microarray data for fundamental hu-
man gene expression modules. J Biomed Inform 43:932-944.
CrossRef Medline

Eriksson J, Vogel EK, Lansner A, Bergstrom F, Nyberg L (2015)
Neurocognitive architecture of working memory. Neuron 88:33-
46. CrossRef Medline

Fan J, Posner M (2004) Human attentional networks. Psychiatr Prax
31:210-214. CrossRef

eNeuro.org


http://neurovault.org/collections/EYCSLZUZ
http://neurovault.org/collections/EYCSLZUZ
http://dx.doi.org/10.1037/a0032371
http://dx.doi.org/10.1016/j.neuron.2007.10.038
http://www.ncbi.nlm.nih.gov/pubmed/18054866
http://www.ncbi.nlm.nih.gov/pubmed/18054866
http://dx.doi.org/10.1016/j.neuroimage.2007.07.007
http://www.ncbi.nlm.nih.gov/pubmed/17761438
http://dx.doi.org/10.1146/annurev-psych-120710-100422
http://www.ncbi.nlm.nih.gov/pubmed/21961947
http://dx.doi.org/10.1016/j.tics.2011.11.015
http://www.ncbi.nlm.nih.gov/pubmed/22169777
http://www.ncbi.nlm.nih.gov/pubmed/8739270
http://dx.doi.org/10.1002/nbm.782
http://www.ncbi.nlm.nih.gov/pubmed/12489094
http://dx.doi.org/10.1016/j.neuroimage.2010.01.035
http://www.ncbi.nlm.nih.gov/pubmed/20080192
http://dx.doi.org/10.1093/cercor/bhq293
http://www.ncbi.nlm.nih.gov/pubmed/21350048
http://dx.doi.org/10.1016/j.cortex.2009.07.005
http://dx.doi.org/10.1089/cmb.2004.11.1090
http://www.ncbi.nlm.nih.gov/pubmed/15662200
http://dx.doi.org/10.1523/JNEUROSCI.0536-12.2012
http://www.ncbi.nlm.nih.gov/pubmed/22745498
http://dx.doi.org/10.1016/j.neuron.2014.05.014
http://www.ncbi.nlm.nih.gov/pubmed/24991964
http://dx.doi.org/10.1038/nn.4406
http://dx.doi.org/10.1038/nrn.2016.43
http://www.ncbi.nlm.nih.gov/pubmed/27225070
http://dx.doi.org/10.1016/j.neuroimage.2016.01.026
http://www.ncbi.nlm.nih.gov/pubmed/26801604
http://dx.doi.org/10.1093/cercor/bht352
http://www.ncbi.nlm.nih.gov/pubmed/24414278
http://dx.doi.org/10.1016/j.neuroimage.2006.01.021
http://www.ncbi.nlm.nih.gov/pubmed/16530430
http://dx.doi.org/10.1016/j.jbi.2010.07.001
http://www.ncbi.nlm.nih.gov/pubmed/20619355
http://dx.doi.org/10.1016/j.neuron.2015.09.020
http://www.ncbi.nlm.nih.gov/pubmed/26447571
http://dx.doi.org/10.1055/s-2004-828484

leuro

Fischl B (2012) FreeSurfer. Neuroimage 62:774-781. CrossRef Med-
line

Fischl B, Salat DH, Busa E, Albert M, Dieterich M, Haselgrove C, Van
der Kouwe A, Killiany R, Kennedy D, Klaveness S, Montillo A,
Makris N, Rosen B, Dale AM (2002) Whole brain segmentation:
neurotechnique automated labeling of neuroanatomical structures
in the human brain. Neuron 33:341-355. CrossRef

Forbes NF, Carrick LA, McIntosh AM, Lawrie SM (2009) Working
memory in schizophrenia: a meta-analysis. Psychol Med 39:889-
905. CrossRef Medline

Gorgolewski KJ, Varoquaux G, Rivera G, Schwartz Y, Ghosh SS,
Maumet C, Sochat VV, Nichols TE, Poldrack RA, Poline J-B,
Yarkoni T, Margulies DS (2016) NeuroVault.org: a repository for
sharing unthresholded statistical maps, parcellations, and atlases
of the human brain. Neuroimage 124:1242-1244. CrossRef Med-
line

Haut KM, Karlsgodt KH, Bilder RM, Congdon E, Freimer NB, London
ED, Sabb FW, Ventura J, Cannon TD (2015) Memory systems in
schizophrenia: modularity is preserved but deficits are general-
ized. Schizophr Res 168:223-230. CrossRef Medline

Heck A, Fastenrath M, Ackermann S, Auschra B, Bickel H, Coynel D,
Gschwind L, Jessen F, Kaduszkiewicz H, Maier W, Milnik A,
Pentzek M, Riedel-Heller SG, Ripke S, Spalek K, Sullivan P, Vogler
C, Wagner M, Weyerer S, Wolfsgruber S, de Quervain DJ-F,
Papassotiropoulos A (2014) Converging genetic and functional
brain imaging evidence links neuronal excitability to working mem-
ory, psychiatric disease, and brain activity. Neuron 81:1203-1213.
CrossRef Medline

Huang AS, Klein DN, Leung H-C (2016) Load-related brain activation
predicts spatial working memory performance in youth aged 9-12
and is associated with executive function at earlier ages. Dev Cogn
Neurosci 17:1-9. CrossRef Medline

Hyvéarinen A, Oja E (2000) Independent component analysis: algo-
rithms and applications. Neural Netw 13:411-430. Medline

Inano S, Takao H, Hayashi N, Abe O, Ohtomo K (2011) Effects of age
and gender on white matter integrity. Am J Neuroradiol 32:2103-
2109. CrossRef Medline

Jenkinson M, Beckmann CF, Behrens TEJ, Woolrich MW, Smith SM
(2012) FSL. Neuroimage 62:782-790. CrossRef

Jones DK, Knésche TR, Turner R (2013) White matter integrity, fiber
count, and other fallacies: the do’s and don’ts of diffusion MRI.
Neuroimage 73:239-254. CrossRef Medline

Klein A, Andersson J, Ardekani BA, Ashburner J, Avants B, Chiang
M-C, Christensen GE, Collins DL, Gee J, Hellier P, Song JH,
Jenkinson M, Lepage C, Rueckert D, Thompson P, Vercauteren T,
Woods RP, Mann JJ, Parsey RV (2009) Evaluation of 14 nonlinear
deformation algorithms applied to human brain MRI registration.
Neuroimage 46:786-802. CrossRef Medline

Klingberg T, Forssberg H, Westerberg H (2002) Increased brain
activity in frontal and parietal cortex underlies the development of
visuospatial working memory capacity during childhood. J Cogn
Neurosci 14:1-10. CrossRef Medline

Kong W, Vanderburg CR, Gunshin H, Rogers JT, Huang X (2008) A
review of independent component analysis application to microar-
ray gene expression data. Biotechniques 45:501-520. CrossRef
Medline

Kraus MF, Susmaras T, Caughlin BP, Walker CJ, Sweeney JA, Little
DM (2007) White matter integrity and cognition in chronic trau-
matic brain injury: a diffusion tensor imaging study. Brain 130:
2508-2519. CrossRef Medline

Kundu B, Chang J-Y, Postle BR, Van Veen BD (2015) Context-
specific differences in fronto-parieto-occipital effective connectiv-
ity during short-term memory maintenance. Neuroimage 114:320—
327. CrossRef Medline

Lang PJ, Bradley MM, Cuthbert BN (2008) International affective
picture system (IAPS): affective ratings of pictures and instruction
manual. Technical report A-8. Gainesville, FL: University of Florida.
Available at http://www.unifesp.br/dpsicobio/adap/instruction-
s.pdf.

January/February 2018, 5(1) e0222-17.2018

Confirmation 18 of 19

Langen CD, Zonneveld HI, White T, Huizinga W, Cremers LGM, de
Groot M, lkram MA, Niessen WJ, Vernooij MW (2017) White matter
lesions relate to tract-specific reductions in functional connectiv-
ity. Neurobiol Aging 51:97-103. CrossRef Medline

Lee J, Park S (2005) Working memory impairments in schizophrenia:
a meta-analysis. J Abnorm Psychol 114:599-611. CrossRef Med-
line

Li S, Cai Y, Liu J, Li D, Feng Z, Chen C, Xue G (2017) Dissociated
roles of the parietal and frontal cortices in the scope and control of
attention during visual working memory. Neuroimage 149:210-
219. CrossRef Medline

Macmillan NA, Creelman CD (1990) Response bias: characteristics
of detection theory, threshold theory, and “nonparametric” in-
dexes. Psychol Bull 107:401-413. CrossRef

Marazziti D, Consoli G, Picchetti M, Carlini M, Faravelli L (2010)
Cognitive impairment in major depression. Eur J Pharmacol 626:
83-86. CrossRef Medline

Marstaller L, Williams M, Rich A, Savage G, Burianova H (2015) Aging
and large-scale functional networks: white matter integrity, gray
matter volume, and functional connectivity in the resting state.
Neuroscience 290:369-378. CrossRef Medline

Medland SE, Jahanshad N, Neale BM, Thompson PM (2014) Whole-
genome analyses of whole-brain data: working within an ex-
panded search space. Nat Neurosci 17:791-800. CrossRef
Medline

Mesholam-Gately RI, Giuliano AJ, Goff KP, Faraone SV, Seidman LJ
(2009) Neurocognition in first-episode schizophrenia: a meta-
analytic review. Neuropsychology 23:315-336. CrossRef Medline

Miller KM, Price CC, Okun MS, Montijo H, Bowers D (2009) Is the
N-back task a valid neuropsychological measure for assessing
working memory? Arch Clin Neuropsychol 24:711-717. CrossRef
Medline

Minzenberg MJ, Laird AR, Thelen S, Carter CS, Glahn DC (2009)
Meta-analysis of 41 functional neuroimaging studies of executive
function in schizophrenia. Arch Gen Psychiatry 66:811-822.
CrossRef

Modat M, Ridgway GR, Taylor ZA, Lehmann M, Barnes J, Hawkes
DJ, Fox NC, Ourselin S (2010) Fast free-form deformation using
graphics processing units. Comput Methods Programs Biomed
98:278-284. CrossRef Medline

Murdoch DJ, Tsai Y-L, Adcock J (2008) P-values are random vari-
ables. Am Stat 62:242-245. CrossRef

Muschelli J, Sweeney E, Lindquist M, Crainiceanu C (2015) fslr:
connecting the FSL software with R. R J 7:163-175. Medline

Nagel BJ, Barlett VC, Schweinsburg AD, Tapert SF (2005) Neuro-
psychological predictors of BOLD response during a spatial work-
ing memory task in adolescents: what can performance tell us
about fMRI response patterns? J Clin Exp Neuropsychol 27:823-
839. CrossRef Medline

Owen AM, McMillan KM, Laird AR, Bullmore E (2005) N-back work-
ing memory paradigm: a meta-analysis of normative functional
neuroimaging studies. Hum Brain Mapp 25:46-59. CrossRef Med-
line

Palacios EM, Sala-Llonch R, Junque C, Roig T, Tormos JM, Bargallo
N, Vendrell P (2012) White matter integrity related to functional
working memory networks in traumatic brain injury. Neurology
78:852-860. CrossRef Medline

Petersen SE, Posner MI (2012) The attention system of the human
brain: 20 years after. Annu Rev Neurosci 35:73-89. CrossRef
Medline

Poldrack RA, Baker Cl, Durnez J, Gorgolewski KJ, Matthews PM,
Munafo MR, Nichols TE, Poline J-B, Vul E, Yarkoni T (2017)
Scanning the horizon: towards transparent and reproducible neu-
roimaging research. Nat Rev Neurosci 18:115-126. CrossRef
Medline

Poline J-B, Breeze JL, Frouin V (2015) Imaging Genetics with fMRI.
In: fMRI: from nuclear spins to brain functions (Uludag L, Ugurbil K,
Berliner L, eds), pp. 699-738 New York, NY: Springer.

Power JD, Cohen AL, Nelson SM, Wig GS, Barnes KA, Church JA,
Vogel AC, Laumann TO, Miezin FM, Schlaggar BL, Petersen SE

eNeuro.org


http://dx.doi.org/10.1016/j.neuroimage.2012.01.021
http://www.ncbi.nlm.nih.gov/pubmed/22248573
http://www.ncbi.nlm.nih.gov/pubmed/22248573
http://dx.doi.org/10.1016/S0896-6273(02)00569-X
http://dx.doi.org/10.1017/S0033291708004558
http://www.ncbi.nlm.nih.gov/pubmed/18945379
http://dx.doi.org/10.1016/j.neuroimage.2015.04.016
http://www.ncbi.nlm.nih.gov/pubmed/25869863
http://www.ncbi.nlm.nih.gov/pubmed/25869863
http://dx.doi.org/10.1016/j.schres.2015.08.014
http://www.ncbi.nlm.nih.gov/pubmed/26299707
http://dx.doi.org/10.1016/j.neuron.2014.01.010
http://www.ncbi.nlm.nih.gov/pubmed/24529980
http://dx.doi.org/10.1016/j.dcn.2015.10.007
http://www.ncbi.nlm.nih.gov/pubmed/26562059
http://www.ncbi.nlm.nih.gov/pubmed/10946390
http://dx.doi.org/10.3174/ajnr.A2785
http://www.ncbi.nlm.nih.gov/pubmed/21998104
http://dx.doi.org/10.1016/j.neuroimage.2011.09.015
http://dx.doi.org/10.1016/j.neuroimage.2012.06.081
http://www.ncbi.nlm.nih.gov/pubmed/22846632
http://dx.doi.org/10.1016/j.neuroimage.2008.12.037
http://www.ncbi.nlm.nih.gov/pubmed/19195496
http://dx.doi.org/10.1162/089892902317205276
http://www.ncbi.nlm.nih.gov/pubmed/11798382
http://dx.doi.org/10.2144/000112950
http://www.ncbi.nlm.nih.gov/pubmed/19007336
http://dx.doi.org/10.1093/brain/awm216
http://www.ncbi.nlm.nih.gov/pubmed/17872928
http://dx.doi.org/10.1016/j.neuroimage.2015.04.001
http://www.ncbi.nlm.nih.gov/pubmed/25863155
http://www.unifesp.br/dpsicobio/adap/instructions.pdf
http://www.unifesp.br/dpsicobio/adap/instructions.pdf
http://dx.doi.org/10.1016/j.neurobiolaging.2016.12.004
http://www.ncbi.nlm.nih.gov/pubmed/28063366
http://dx.doi.org/10.1037/0021-843X.114.4.599
http://www.ncbi.nlm.nih.gov/pubmed/16351383
http://www.ncbi.nlm.nih.gov/pubmed/16351383
http://dx.doi.org/10.1016/j.neuroimage.2017.01.061
http://www.ncbi.nlm.nih.gov/pubmed/28131893
http://dx.doi.org/10.1037/0033-2909.107.3.401
http://dx.doi.org/10.1016/j.ejphar.2009.08.046
http://www.ncbi.nlm.nih.gov/pubmed/19835870
http://dx.doi.org/10.1016/j.neuroscience.2015.01.049
http://www.ncbi.nlm.nih.gov/pubmed/25644420
http://dx.doi.org/10.1038/nn.3718
http://www.ncbi.nlm.nih.gov/pubmed/24866045
http://dx.doi.org/10.1037/a0014708
http://www.ncbi.nlm.nih.gov/pubmed/19413446
http://dx.doi.org/10.1093/arclin/acp063
http://www.ncbi.nlm.nih.gov/pubmed/19767297
http://dx.doi.org/10.1001/archgenpsychiatry.2009.91
http://dx.doi.org/10.1016/j.cmpb.2009.09.002
http://www.ncbi.nlm.nih.gov/pubmed/19818524
http://dx.doi.org/10.1198/000313008X332421
http://www.ncbi.nlm.nih.gov/pubmed/27330830
http://dx.doi.org/10.1080/13803390490919038
http://www.ncbi.nlm.nih.gov/pubmed/16183616
http://dx.doi.org/10.1002/hbm.20131
http://www.ncbi.nlm.nih.gov/pubmed/15846822
http://www.ncbi.nlm.nih.gov/pubmed/15846822
http://dx.doi.org/10.1212/WNL.0b013e31824c465a
http://www.ncbi.nlm.nih.gov/pubmed/22345222
http://dx.doi.org/10.1146/annurev-neuro-062111-150525
http://www.ncbi.nlm.nih.gov/pubmed/22524787
http://dx.doi.org/10.1038/nrn.2016.167
http://www.ncbi.nlm.nih.gov/pubmed/28053326

leuro

(2011) Functional network organization of the human brain. Neuron
72:665-678. CrossRef Medline

Rottschy C, Langner R, Dogan |, Reetz K, Laird AR, Schulz JB, Fox
PT, Eickhoff SB (2012) Modelling neural correlates of working
memory: a coordinate-based meta-analysis. Neuroimage 60:830—
846. CrossRef Medline

Sarma A, Masse NY, Wang X-J, Freedman DJ (2016) Task-specific
versus generalized mnemonic representations in parietal and pre-
frontal cortices. Nat Neurosci 19:143-149. CrossRef

Satterthwaite TD, Wolf DH, Erus G, Ruparel K, Elliott MA, Gennatas
ED, Hopson R, Jackson C, Prabhakaran K, Bilker WB, Calkins ME,
Loughead J, Smith A, Roalf DR, Hakonarson H, Verma R, Da-
vatzikos C, Gur RC, Gur RE (2013) Functional maturation of the
executive system during adolescence. J Neurosci 33:16249-
16261. CrossRef Medline

Seeley WW, Crawford RK, Zhou J, Miller BL, Greicius MD (2009)
Neurodegenerative diseases target large-scale human brain net-
works. Neuron 62:42-52. CrossRef Medline

Sporns O (2013) Network attributes for segregation and integration in the
human brain. Curr Opin Neurobiol 23:162-171. CrossRef Medline

Szucs D, loannidis JPA (2017) Empirical assessment of published
effect sizes and power in the recent cognitive neuroscience and
psychology literature. PLoS Biol 15:e2000797. CrossRef

Todd JJ, Marois R (2004) Capacity limit of visual short-term memory
in human posterior parietal cortex. Nature 428:751-754. CrossRef
Medline

Todd JJ, Marois R (2005) Posterior parietal cortex activity predicts
individual differences in visual short-term memory capacity. Cogn
Affect Behav Neurosci 5:144-155. Medline

Ullman H, Almeida R, Klingberg T (2014) Structural maturation and
brain activity predict future working memory capacity during child-
hood development. J Neurosci 34:1592-1598. CrossRef Medline

Van Snellenberg JX, Girgis RR, Horga G, van de Giessen E, Slifstein
M, Ojeil N, Weinstein JJ, Moore H, Lieberman JA, Shohamy D,
Smith EE, Abi-Dargham A (2016) Mechanisms of working memory

January/February 2018, 5(1) e0222-17.2018

Confirmation 19 of 19

impairment in schizophrenia. Biol Psychiatry 80:617-626. Cross-
Ref Medline

Vestergaard M, Madsen KS, Baaré WFC, Skimminge A, Ejersbo LR,
Ramsey TZ, Gerlach C, Akeson P, Paulson OB, Jernigan TL (2011)
White matter microstructure in superior longitudinal fasciculus
associated with spatial working memory performance in children.
J Cogn Neurosci 23:2135-2146. CrossRef

Wager TD, Smith EE (2003) Neuroimaging studies of working mem-
ory: a meta-analysis. Cogn Affect Behav Neurosci 3:255-274.
Medline

Warbrick T, Rosenberg J, Shah NJ (2017) The relationship between
BOLD fMRI response and the underlying white matter as mea-
sured by fractional anisotropy (FA): a systematic review. Neuroim-
age 153:369-381. CrossRef Medline

Whitcher B, Schmid VJ, Thornton A (2011) Working with the DICOM
and NIfTI data standards in R. J Stat Softw 44:1-28. CrossRef

Xu J, Potenza MN, Calhoun VD, Zhang R, Yip SW, Wall JT, Pearlson
GD, Worhunsky PD, Garrison KA, Moran JM (2016) Large-scale
functional network overlap is a general property of brain functional
organization: reconciling inconsistent fMRI findings from general-
linear-model-based analyses. Neurosci Biobehav Rev 71:83-100.
CrossRef Medline

Yarkoni T, Poldrack RA, Nichols TE, Van Essen DC, Wager TD (2011)
Large-scale automated synthesis of human functional neuroimag-
ing data. Nat Methods 8:665-670. CrossRef Medline

Yeo BTT, Krienen FM, Chee MWL, Buckner RL (2014) Estimates of
segregation and overlap of functional connectivity networks in the
human cerebral cortex. Neuroimage 88:212-227. CrossRef

Zhou J, Gennatas ED, Kramer JH, Miller BL, Seeley WW (2012)
Predicting regional neurodegeneration from the healthy brain func-
tional connectome. Neuron 73:1216-1227. CrossRef Medline

Zou Q, Ross TJ, Gu H, Geng X, Zuo X-N, Hong LE, Gao J-H, Stein
EA, Zang Y-F, Yang Y (2013) Intrinsic resting-state activity predicts
working memory brain activation and behavioral performance.
Hum Brain Mapp 34:3204-3215. CrossRef Medline

eNeuro.org


http://dx.doi.org/10.1016/j.neuron.2011.09.006
http://www.ncbi.nlm.nih.gov/pubmed/22099467
http://dx.doi.org/10.1016/j.neuroimage.2011.11.050
http://www.ncbi.nlm.nih.gov/pubmed/22178808
http://dx.doi.org/10.1038/nn.4168
http://dx.doi.org/10.1523/JNEUROSCI.2345-13.2013
http://www.ncbi.nlm.nih.gov/pubmed/24107956
http://dx.doi.org/10.1016/j.neuron.2009.03.024
http://www.ncbi.nlm.nih.gov/pubmed/19376066
http://dx.doi.org/10.1016/j.conb.2012.11.015
http://www.ncbi.nlm.nih.gov/pubmed/23294553
http://dx.doi.org/10.1371/journal.pbio.2000797
http://dx.doi.org/10.1038/nature02466
http://www.ncbi.nlm.nih.gov/pubmed/15085133
http://www.ncbi.nlm.nih.gov/pubmed/16180621
http://dx.doi.org/10.1523/JNEUROSCI.0842-13.2014
http://www.ncbi.nlm.nih.gov/pubmed/24478343
http://dx.doi.org/10.1016/j.biopsych.2016.02.017
http://dx.doi.org/10.1016/j.biopsych.2016.02.017
http://www.ncbi.nlm.nih.gov/pubmed/27056754
http://dx.doi.org/10.1162/jocn.2010.21592
http://www.ncbi.nlm.nih.gov/pubmed/15040547
http://dx.doi.org/10.1016/j.neuroimage.2016.12.075
http://www.ncbi.nlm.nih.gov/pubmed/28082105
http://dx.doi.org/10.18637/jss.v044.i06
http://dx.doi.org/10.1016/j.neubiorev.2016.08.035
http://www.ncbi.nlm.nih.gov/pubmed/27592153
http://dx.doi.org/10.1038/nmeth.1635
http://www.ncbi.nlm.nih.gov/pubmed/21706013
http://dx.doi.org/10.1016/j.neuroimage.2013.10.046
http://dx.doi.org/10.1016/j.neuron.2012.03.004
http://www.ncbi.nlm.nih.gov/pubmed/22445348
http://dx.doi.org/10.1002/hbm.22136
http://www.ncbi.nlm.nih.gov/pubmed/22711376

ORIGINAL RESEARCH PAPERS

4.2 Exhaustive search for epistatic effects on the human methylome
Egli, T., Vukojevic, V., Sengstag, T., Jacquot, M., Cabezon, R., Coynel, D., Freytag, V.,
Heck, A., Vogler, C., de Quervain, D. J.-F., Papassotiropoulos, A., & Milnik, A. (2017).

Scientific Reports, 7, 13669

51



SCIENTIFIC REPLIRTS

Exhaustive search for epistatic
effects on the human methylome

Tobias Egli'?, Vanja Vukojevicl***, Thierry Sengstag®57’, Martin Jacquot®, Rubén Cabezdn(2s,
. David Coynel®?2>, Virginie Freytag'?, Angela Heck¥23, Christian Vogler®?3, Dominique J.-F.
Received: 9 May 2017 . de Quervain®3*, Andreas Papassotiropoulos’23* & Annette Milnik %3
Accepted: 22 September 2017 © Studies assessing the existence and magnitude of epistatic effects on complex human traits provide
Published online: 20 October 2017 . inconclusive results. The study of such effects is complicated by considerable increase in computational
. burden, model complexity, and model uncertainty, which in concert decrease model stability. An
additional source introducing significant uncertainty with regard to the detection of robust epistasis
is the biological distance between the genetic variation and the trait under study. Here we studied
CpG methylation, a genetically complex molecular trait that is particularly close to genomic variation,
and performed an exhaustive search for two-locus epistatic effects on the CpG-methylation signal
in two cohorts of healthy young subjects. We detected robust epistatic effects for a small number of
CpGs (N =404). Our results indicate that epistatic effects explain only a minor part of variation in DNA-
CpG methylation. Interestingly, these CpGs were more likely to be associated with gene-expression
of nearby genes, as also shown by their overrepresentation in DNase | hypersensitivity sites and
underrepresentation in CpG islands. Finally, gene ontology analysis showed a significant enrichment of
these CpGs in pathways related to HPV-infection and cancer.

Statistical epistasis describes a higher-order dependency in which the effect of a single-locus genotype depends on
the genotype at another locus, a phenomenon also called statistical interaction'. There is hitherto little evidence
for robust and replicable epistatic effects on complex human traits', although epistasis is often used as a potential
explanation for missing heritability or for the instability of main effects in genetic association studies®**. It has
been suggested that higher-order dependencies will explain only a minor part of complex phenotypic variation,
in comparison to independent additive genetic effects>®.

Genetic variation (e.g. single nucleotide polymorphisms, SNPs) and DNA-CpG methylation can be investi-
gated at high resolution and throughput, which allows a hypothesis-free and exhaustive screening for epistatic
effects on a genome-wide scale. However, the study of such epistatic effects is complicated by considerable
increase in computational burden”®, model complexity, and model uncertainty, which in concert decrease model
stability?!!. The success of these association analyses crucially relies on the expected effect size, a suitable sample
size and the availability of a well-matched replication study*”.

For the majority of complex human traits, such as neuropsychiatric diseases, only small effect sizes can be
expected for single genomic loci'?*>. Hence, such complex human traits and diseases'® are not well amenable to
screening for epistatic effects. Gene expression also represents a genetically complex trait, however it is functionally
closely related to the DNA sequence variation!’. Two-locus epistatic effects have been reported for gene expres-
sion™%1, although part of these effects might be due to spurious associations mediated by main effects of SNPs?.

To further investigate the relevance of two-locus epistatic effects on complex human traits, we focused on
the epigenome, a complex molecular phenotype under close genetic control?!-*, and here more specifically on
DNA-CpG methylation, measured with the Infinium HumanMethylation450 BeadChip Kit (Illumina 450 K),
with DNA derived from blood in two independent samples. We performed an exhaustive search of epistatic
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Sample size N 1174 533 1935 319

Sex female 59.8% 58.3% 66.1% 69.6%
Blood sampled 63.7% 100% 36.1% 100%
Affymetrix 6.0 data 84.3% 100% 89.9% 100%
Genetic outlier 6.5% 0% 7.8% 0%

Age at main investigation 22 (18-35) 22 (18-35) 23 (18-35) 23 (18-35)
Age at blood sampling 23 (18-36) 23 (18-36) 24 (18-39) 24 (18-36)
Days between main investigation and blood drawing 336 (1-1392) 350 (2-1385) | 642 (1-1992) 380 (1-954)
Smoking behavior at main investigation 1.6 (1-5) 1.6 (1-5) 1.8 (1-5) 1.7 (1-5)

Table 1. Sample description. Phenotypic information was collected at the time-point of the main investigation
(see Methods). Subjects were later re-invited for an additional blood sampling to investigate e.g. blood-related
methylation and expression values. Reported are the numbers from the data freezes used to select subjects

for the blood-DNA-methylation study (discovery sample 2013-08; replication sample 2014-04). Quantitative
variables are reported as mean (min - max). Smoking behavior was measured on a 5-point Likert-scale ranging
from 1 (never) up to 5 (20 cigarettes per day).

Power
Power

)

T T T T 1 T T T T T 1
0 200 400 600 800 1000 0 200 400 600 800 1000
Sample size Sample size

Figure 1. Power analysis exhaustive search for epistatic effects. In (a) we adjusted alpha to reach genome-wide
and methylome-wide Bonferroni correction (discovery phase, p=6.8 x 107!8). In (b) we adjusted alpha to reach
a per-CpG Bonferroni correction threshold (replication phase, p= 3.8 x 107°). The legends depict the variance
that can be explained (in percentage) for different effect sizes (r,,;,,=0.03, 0.1%; 7,,,, = 0.55, 30%). The vertical
gray bars correspond to a sample size of N=>533 (discovery sample) and N=319 (replication sample).

effects by applying several screening and replication steps and subsequent model-confirmation. Additionally,
we performed a search for epistatic effects based on SNPs proximal to CpGs, which are exhibiting main effects.

Results

We used data from two independent samples of healthy young adults from the general population (discovery
sample N=1533, replication sample N=319; see Table 1; DNA was derived from blood, see Methods)*. With
these sample-sizes we were adequately powered to detect and replicate medium to strong effect sizes in an
exhaustive search (see Fig. 1). Both samples have a comparable genetic (see Supplementary Fig. S1) and phe-
notypic background (see Table 1). SNP-data (N=517,504 SNPs) as well as CpG-data (N=395,431 CpGs; see
Supplementary Figs S2 and S3 for diagnostic plots of the data) was selected to reach high quality metrics in both
samples (see Methods).

Discovery phase of the exhaustive search. In the discovery sample, we applied a two-step approach
to first identify and then confirm interaction effects. First, based on a pruned set of SNPs (N = 192,955 SNPs)
with sufficient minor allele frequency (see Methods), we performed an exhaustive screening (N=7.36 x 10"
interaction analyses) with EpiGPU?. EpiGPU is optimized for high-speed genome-wide interaction analyses, but
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Nunique |AverageN | MaxNhits | Nhitsin | BothSNPs | One SNPincis | Both SNPs

CpGs hits per CpG | per CpG total in cis and in trans in trans
Before replication 13,112 657 46,314 8,608,567 | 0.03% 0.20% 99.78%
After replication 1,477 3 131 4,816 43.60% 10.36% 46.03%
+Permutation and sign-test | 802 3 49 2,262 90.45% 3.98% 5.57%
Per-CpG model approach 174 1 5 239 88.28% 4.18% 7.53%
+Exclusion of LD-block | 47 1 3 55 63.64% 18.18% 18.18%
associated effects

Table 2. Main results exhaustive search for epistatic effects. The results shown refer to significant interaction
effects, depending on the different analytical steps. cis is defined as 500 KB around the CpG.

uses a simplified parameterization of the interaction term (see Methods). We filtered SNP-pairs that fulfill basic
criteria with respect to the number of groups (all 3 x 3 genotype combinations existing) and estimated F-statistic
of their interaction term (F;,, > 22, which was close to Bonferroni correction). Analyses that survived this filter-
ing step (N=9.54 x 10°) entered a recalculation phase, in which we reproduced the interaction F-statistic with
a linear model approach featuring an increased accuracy at the cost of a higher computational burden. Only
analyses that survived genome-wide Bonferroni-correction (p;, < 6.8 x 107'3, correcting for all 7.36 x 10" initial
interaction analyses) after recalculation and in which the minimal group size was above 3 in both the discov-
ery and replication sample entered the replication phase (N = 8,608,567 analyses; N = 13,112 unique CpGs; see
Table 2). To rule out that the above described two-step procedure is overly conservative, we additionally applied
the Bonferroni-correction directly to the p-value derived from the original EpiGPU analysis, which resulted in a
nearly identical outcome: N = 8,658,122 analyses survived based on N= 13,214 unique CpGs.

Replication phase of the exhaustive search. Replication was also done in two steps. Firstly, we selected
interaction effects that survived a per-CpG Bonferroni-correction in the replication sample (i.e. correcting for at
least 13,112 tests; see Methods; p;,, < 3.8 x 10~ N=4,816 analyses survived). Because of the unequal distribution
of subjects in the 9 combined genotype-groups, assignment of few subjects with phenotypes from an extreme end
of the distribution to one cell may lead to false-positive findings. Hence, we additionally applied a per-CpG per-
mutation approach to confirm the significance of these findings with an empirical p-value (same per-CpG p-value
threshold with empirical p;,, < 3.8 X 107% 51% of analyses discarded), as well as a sign-test to filter out results that
show inconsistent directions of effect between samples (22% of analyses discarded; see Supplementary Figure S4).
2,262 analyses (47%), based on 802 unique CpGs survived both steps (see Table 2; see Methods for a comparison
between the above described procedure with a Bonferroni correction for all tests performed).

Per-CpG modeling. Importantly, two SNPs in linkage disequilibrium (LD) with a third SNP that shows
a main effect on the trait of interest might, under certain circumstances, mimic an interaction effect that is in
fact fully attributable to the main effect?®?’ (see Fig. 2 for one example). Therefore, in the next validation step of
epistatic effects, we aimed at simultaneously taking into account main effects as well as interaction effects by gen-
erating one comprehensive model of SNP-effects for each single CpG. For this analysis we used the entire SNP-set
yielding a higher resolution compared to the smaller SNP-set (N=517,504 SNPs instead of N=192,955 SNPs).
We applied a stepwise-forward regression approach, starting with main effects before adding interaction effects.
For N=174 CpGs at least one significant interaction effect was detectable (239 SNP-pairs in total; see Table 2) in
both samples, when also taking into account significant main effects of SNPs (see Supplementary Table S1 and
Supplementary Fig. S6 for the full models).

Estimation of epistatic effects can be biased for non-independent genomic loci?”*%. Therefore, we calculated
the LD for the SNP-pairs showing interaction effects. We empirically determined the threshold of LD that was
unlikely to occur by chance in the discovery sample (r* > 0.021, p < 0.001, see Supplementary Fig. S5). 184 out of
the 239 SNP-pairs (77%) showed an 2 >0.021 in the discovery sample; these pairs were all located in close prox-
imity (mean =53 KB, min = 0.5 KB, max =444 KB) to each other on the same chromosome. Hence, we classified
these effects as LD-block associated effects"*. After exclusion of LD-block associated effects 47 CpGs (based on
55 SNP-pairs) still showed at least one significant epistatic effect (see Table 2). For the remaining 127 CpGs we
identified only LD-block associated effects.

When considering all 174 CpGs, significant main effects explained on average 57% of variance from the CpG
signals whereas interaction effects additionally explained on average 8% of variance (see Table 3).

Search for epistatic effects based on SNPs exhibiting main effects. We performed an additional
search for interaction effects, based on SNPs in proximity to the CpG (defined as 3.5 MB window, number of
SNPs per CpG ranging from 1 to 3,290, mean = 1,223) that show a significant main effect. The 3.5 MB window
comprises >95% of all main effects from SNPs on CpGs?®. By focusing on SNPs being located in proximity to
CpGs and exhibiting main effects, this approach was computationally less expensive (N=4.84 x 10® main effects
and N=7,173,795 interaction effects tested) in comparison to the exhaustive search (N=7.36 x 10'° interaction
analyses).

We first applied Bonferroni-correction per CpG in the discovery sample (p-value ranging from 0.05 to
1.5 x 107°) to identify significant main effects and then tested all significant findings in the replication sample.
After replication, N=159,134 CpGs showed at least one significant main effect of a SNP in the 3.5 MB window
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Figure 2. Example of a main effect of a SNP causing a spurious significant interaction effect between two other
SNPs. Data is shown for cg00022866 from the discovery sample. (a) rs11231741 shows a strong main effect
(p=4.5 x 107112). This causes a spurious significant interaction (b p=3.3 x 107!8) because rs11231741 is in LD
with both interacting SNPs (rs11231740: r* = 0.55; rs2236648: r* =0.25). Of note, the two interacting SNPs show
low LD only (r>=0.024). Panel (c) depicts the dependencies between the 9 SNP-groups build from rs11231740
and rs2236648 and the 3 SNP-groups from rs11231741 (color-coded in black, red and green; a jitter has been
added to the data): the 9 SNP-groups of the interacting SNPs mimic the three SNP-groups of the main effect,
with 5 of the 9 groups mainly corresponding to the homozygous common allele carrier (black), 3 of the 9 groups
mainly corresponding to the heterozygous group (red) and 1 group mainly corresponding to the homozygous
rare allele carrier (green). Panel (d) shows the same data as in (b), but now with color-coding of the three SNP-
groups from rs11231741.

(mean =9, max = 508). The observation that ~15% of CpGs were associated with a genetic marker is in agreement
with previous results?**, considering differences in sample-sizes between studies and hence differences in power
to detect such effects.

Out of these 59,134 CpGs, N = 48,293 CpGs showed more than one significant main effect of a SNP. For
these CpGs, we identified all significant interaction effects between SNPs that show a significant main effect (see
Methods). N = 24,892 interaction effects based on N= 3,564 CpGs survived this step (number of interaction
effects per CpG: mean =7, max = 327). Based on these results, we again performed a forward regression approach
for each CpG. We included all identified main effects and interaction effects in this analysis, testing main effects
first. In the forward regression approach N =364 interaction effects remained significant, based on N=281
unique CpGs (number of interaction effects per CpG: mean = 1, max = 6; see Supplementary Table S2 for the full
models). N=255 SNP-pairs (70%) revealed an r> > 0.021, and were classified as LD-block associated effects. After
exclusion of LD-block associated effects, N=91 CpGs showed at least one epistatic effect. The remaining N= 190
CpGs showed LD-block associated effects only. We determined the amount of variance that can be explained by
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Discovery sample average | Replication sample average
variance explained variance explained

All significant main effects 57.1% 57.8%

- Most-significant main effect 44.9% 45.4%

All significant interaction effects | 8.2% 8.3%

- Mos't-51gn1ﬁcant LD-block 44% 45%

associated effect

- Most-significant epistatic effects | 7.8% 7.4%

{&ll 51gm.ﬁcant main effects and 65.2% 66%

interaction effects

Table 3. Exhaustive search average variance explained by main effects and interaction effects. The results are
based on the N= 174 CpGs that showed at least one significant interaction effect when taking into account also
main effects. For only 7 out of 174 CpGs (4%) no significant main effect of a SNP was detectable. 12 out of 174
CpGs (6.9%) showed both, a LD-block based effect as well as an epistatic effect. All significant main effects:
average variance explained by all main effects that were kept in the final model. Most-significant main effect:
average variance explained by the main effect that exhibited the smallest p-value. All significant interaction
effects: average variance explained by all interaction effects that were kept in the final model; these were further
separated in LD-block associated effects with SNP-pairs showing an r* > 0.021, or epistatic effects (12 <0.021),
most-significant corresponds to the effect with the smallest p-value, if more than one of these effects were kept
in the final model. All significant main effects and interaction effects: average variance explained by all main
effects and interaction effects that were kept in the final model.

single-SNPs, by all significant main effects of SNPs and by full models that include also interaction effects when
applying the forward regression approach (see Table 4). The overall variance explained and the variance explained
by single-SNP hits systematically increased with increased model complexity.

The detection rate for CpGs exhibiting significant interaction effects was comparable for the exhaustive search
(N=174,0.044% of all CpGs analyzed) and the search based on SNPs that show a main effect (N=281, 0.071% of
all CpGs analyzed). Taking both approaches together, we identified a total of N=404 CpGs showing interaction
effects (0.1% of all CpGs analyzed), with 51 CpGs being identified in both analyses (see Supplementary Table S3).

Enrichment analyses. The N=404 CpGs showing interaction effects could be assigned to N= 350 clus-
ters, when assigning CpGs with an r> 0.8 to one cluster (CpGs per cluster: mean = 1.15, max = 5; the maximal
base-pair distance per cluster was 4,820). For the following enrichment-analyses (see Table 5), we randomly chose
one CpG per cluster. These N=350 CpGs were significantly underrepresented in CpG islands (p=1.1 x 107°)
and significantly overrepresented in DNase I hypersensitivity sites (p =0.025). Furthermore, these CpGs showed
a strong enrichment in significant associations with gene expression (p=1.2 x 107'?7), with the top-hit of
the transcripts being located in cis of the CpG in all cases except two (see Supplementary Table S3). Gene-set
enrichment analysis (see Table 6) on those 350 CpGs showed significant association signals (pzpg < 0.05) for 7
KEGG-pathways, with the top-hits being associated with Human papillomavirus (HPV) infection (hsa05165,
Pr=0.0014) and cancer (hsa05200, py;, = 0.0036).

Discussion

Our results demonstrate the existence of higher-order genetic effects on DNA CpG methylation. However, it is
important to stress that the absolute number of CpGs that showed replicable higher-order genetic effects was low
(N=404 CpG in total, 0.1% of all CpGs). The major fraction of SNP-pairs showing significant interactions were
located in cis of the CpG, with both SNPs being in LD, which might lead to biased estimates?”-*%. Interestingly, for
CpGs exhibiting interaction effects we detected significant enrichment for DNase I hypersensitivity sites paral-
leled with strong enrichment of significant associations with gene expression. The underrepresentation of these
CpG-sites in CpG islands further support their association with transcriptionally active regions. Finally, these
CpGs were enriched in pathways related to HPV-infection and cancer.

We stress that the success of the analysis performed herein strongly relies on effect-sizes. With our data we
were adequately powered to detect and replicate medium to strong effect sizes in the exhaustive search. However,
especially for effects in frans we can expect a more complex picture with an accumulation of small effect sizes™.
Under this scenario, the sample size needed to detect these effects is considerably larger.

Despite the fact that we focused an a complex trait that is biologically very close to the genetic variation?!-%,
we did not find strong evidence for the existence of epistatic effects. This result adds to the ongoing debate of the
existence and relevance of epistasis>®. We note that the computational effort to approach questions related to
epistatic effects is considerably larger in comparison to investigating independent additive models, especially in
the context of an exhaustive search. This speaks more in favor of refining the simple additive model before adding
another level of complexity by including epistatic effects. Focusing on SNPs that show a significant main effect
on the CpG resulted in a similar detection rate in comparison to performing an exhaustive search. This strategy
optimizes the ratio between computational burden and the overall detection rate of interaction effects.

Taken together, our results demonstrate the existence of higher-order influences of structural genetic variation
on the CpG signal. However, they also show that the impact of these higher-order dependencies is much weaker
in comparison to main effects. Interestingly, filtering for CpGs that were under strong and more complex genetic
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- CpGsshowingatleast 5913, | 6o, 17.7% 17.7% 16% 18.1% 18.1%
one significant main effect
- CpGs showing at least 17,938 22.6% 28.2% 28.3% 22.3% 29% 29.1%
two significant main effect
- CpGs showing significant | ¢, 31.2% 41.9% 46.8% 31.2% 43.3% 49.1%

interaction effects

Table 4. Search for epistatic effects based on SNPs exhibiting main-effects. Average variance explained by
main effects of SNPs or interaction effects of SNP-pairs. Results are shown for three different filtering steps,
which were based on the number of significant main effects or interaction effects per CpG, identified with a
forward-linear regression approach. Most-signif. main effect: average variance explained by the main effect that
exhibited the smallest p-value. All signif. main effects: average variance explained by all main effects that were
kept in the final model. All signif. main effects and interaction effects: average variance explained by all main
effects and interaction effects that were kept in the final model. Signif.: significant.

CpG Island 32.9% 20.6% 1.1x10°¢
TFBS 63.3% 66.9% 0.19
DNase I 70.4% 76% 0.025

Gene expression 10.8% 50.9% 1.2x 10717

Table 5. Enrichment analyses. For N=404 CpGs we identified a significant interaction between SNPs.
These 404 CpGs could be assigned to N=350 clusters. For each cluster we randomly assigned one CpG as
representative. For these 350 CpGs we compared the observed percentage of being located in CpG-dense
regions (CpG Island), transcription factor binding sites (TFBS), DNase I hypersensitivity sites (DNase I) or
being associated with gene expression against the expected numbers that are based on all remaining CpGs
(N=395,027), by using Chi*-tests.

hsaostes | Human papillomavirus 303 10 17x10°7 0.0014
hsa05200 Pathways in cancer 384 10 1.1x107° 0.0036
hsa05224 Breast cancer 141 7 1.5x10°° 0.0036
hsa01100 Metabolic pathways 1190 14 1.7 x 107¢ 0.0036
hsa04014 Ras signaling pathway 217 7 9.9%107¢ 0.017
hsa04151 PI3K-Akt signaling pathway 317 8 1.2x107° 0.018
hsa05203 Viral carcinogenesis 191 6 29x107° 0.036

Table 6. Results for the gene-set enrichment analysis. Significant gene-sets (pypg < 0.05) are reported.

control increased the power to detect CpGs that are associated with gene expression and biological pathways
associated to HPV-infection and cancer.

Methods

Subjects and study design.  The subjects included in this blood-DNA-methylation study (see Table 1) rep-
resent subsets of two ongoing studies, which were described previously’>*. The purpose of the ongoing studies is
to identify biological correlates of cognitive performance by using genetics, electroencephalography and imaging
techniques in healthy young adults from the general population. Saliva samples and phenotypic information
were collected at the time-point of the main investigation. Subjects were later re-invited for additional saliva
and blood sampling (see Table 1). Aim of this re-invitation was to additionally collect high-quality DNA from
blood e.g. for the study of DNA-methylation and DNA-expression, without assessing further phenotypes. Blood
and saliva samples were collected between midday and evening (mean time =2:30 p.m., range 1:00 p.m.-8.00
p-m.). Hematological analysis, including blood cell counts, was performed with Sysmex pocH-100i"™ Automated
Hematology Analyzer (Sysmex Co, Kobe, Japan).

Subjects were of good general health, did not self-report any neurological or psychiatric illness and did not
take any medication (apart from oral contraception) at both time points. The phenotypic data reported here is
based on the data freezes that have been used to select the subjects for the blood-DNA-methylation study (discov-
ery sample data freeze 2013-08, N= 1,174 subjects; replication sample data freeze 2014-04, N = 1,935 subjects).
Subjects were only included in the DNA-methylation study if they had been genotyped previously (Affymetrix
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6.0, after QC, see below) and blood had been sampled. For the replication sample, additional requirements were a
European genetic background (see below) and a time-distance of less than four years between the main investiga-
tion and the blood sampling. About 55% of the subjects from the discovery sample and 28% of the subjects from
the replication sample fulfilled these requirements when planning the DNA-methylation study. Individuals were
selected randomly from these pools of subjects.

The ethics committee of the Cantons of Basel-Stadt and Basel-Landschaft approved the studies. All partici-
pants received general information about the study and gave written informed consent. All methods were per-
formed in accordance with the relevant guidelines and regulations of the participating institutions.

Affymetrix SNP 6.0 based genotyping and imputation. Saliva samples were collected using
the Oragene DNA Kit (DNA Genotek, Kanata, Canada). Saliva DNA was extracted from the Oragene DNA
Kit using the standard precipitation protocol recommended by the producer. DNA isolated from saliva was
investigated with Affymetrix SNP 6.0 array as described in the Genome-Wide Human SNP Nsp/Sty 6.0 User
Guide (Affymetrix, Santa Clara, CA USA; see Supplementary text). The mean call-rate per subject was 98.5%
(90.1-99.7%).

The genotypic data was projected on the two first PCA components inferred from HapMap reference popula-
tions (YRI, CEU and CHB-JPT populations). Outliers were identified using a Bayesian Clustering Algorithm®.
N =35 subjects out of the discovery sample for which DNA-methylation data was available were identified as
outliers and excluded from the statistical analyses.

To reduce the computational burden for the interaction analyses, we used stringent QC-criterion for the
exhaustive search for SNP-SNP-interactions: in both samples MAF > 2%, pywg > 0.001, missing rate per
SNP < 1%, size of smallest SNP-group > 15. To further eliminate highly redundant information, we addition-
ally applied LD-based-pruning in the discovery sample with the following settings: window-size 50 KB, number
of SNPs to shift 5, SNP-SNP r?=0.95, resulting in N= 192,955 SNPs. For the in-depth modeling of additional
main effects of SNPs we used a more-comprehensive SNP-set based on the following settings: in both samples
MAF > 2%, pywg > 0.001, missing rate per SNP < 1% (N=>517,504 SNPs).

To determine a sample-specific threshold for Linkage Disequilibrium, we estimated for 10,000 randomly
drawn SNPs from the larger SNP-set the association (r?) with 10,000 random SNPs located on a different chro-
mosome, based on the data from the discovery sample. We set the LD-threshold to > > 0.021, which was very
unlikely (p < 0.001) to happen by chance between independent SNPs in discovery sample (see Supplementary
Fig. S5).

HumanMethylation Infinium 450 K BeadChip based methylation analyses. DNA isolated from
peripheral blood was investigated with the Illumina 450K array (Illumina, Inc., San Diego, CA, U.S.A; see
Supplementary text). Postprocessing was done for each sample separately, combining the 3-values of the preproc-
essed data of all batches per sample (see Supplementary text). The 3-values were processed step-by-step in order
to correct for further influential and putative confounding factors: (1) using logit-transformation (M-value®,
done with the R-package car®); (2) z-transformation per plate (correcting for plate and batch effects); (3) regress-
ing out the first 8 (discovery sample) or 7 (replication sample) axes of a principal component analysis (PCA, done
with the R-package pcaMethods®”). The PCA was based on CpGs with no missing values ( >95% of the included
CpGs). The PCA-based approach corrected for technical biases as well as for part of the variability induced by
blood cell composition® (4) regressing out the effects of sex and age; (5) regressing out the effects of variants
in the 50mer probe sequence, if the total variance explained by these variants exceeded 0.1% (see below). The
accepted missing rate per CpG was set to <1% in both samples. We further excluded cross-hybridizing probes
and polymorphic CpGs sites*®*? (N, = 63,974). Only CpGs surviving all filtering steps in both samples were
used for the downstream analyses (N=2395,431).

Correction for genetic variants in the 50mer probe sequence. We performed imputation of
the genetic data: Prior to autosome-wide genotype imputation, haplotype estimation was performed using
SHAPEITv2%, allowing a per individual and a per SNP missing rate for observed markers of max. 5%. After
pre-phasing, genotype imputation was performed using IMPUTE v2.3.0, which imputes missing genotypes using
a multi-population reference panel**?. The integrated variant callset of 1,092 individuals from the 1000 Genomes
Project (release v3 in NCBI build 37/hg19 coordinates, March 2012) served as panel data (http://mathgen.stats.
ox.ac.uk/impute/ALL_1000G_phaselintegrated_v3_impute_macGT1.tgz).

Based on the genomic location we filtered for all 50mer probe-sequences that comprises imputed variants. As
a very basic QC, we excluded imputed variants with a minor allele frequency (MAF) <0.03% in our population
(based on information of N= 3,166 subjects). For each 50mer probe sequence containing at least one variant,
we build a linear model with the probability information of all imputed genotypes of this probe sequence as
independent variables, and the CpG signal as dependent variable. If the overall explained variance of this model
exceeded 0.1%, we used the residuals of this model as 50mer-corrected CpG signal. This procedure was done
independently for the discovery sample (N =533 subjects after outlier exclusion) and the replication sample
(N=319 subjects). Out of the 395,431 CpGs, N= 121,868 were corrected for 50mer variants in at least one of the
two studies (discovery sample N = 98,532; replication sample N = 103,462; overlap N = 80,126).

Exhaustive search for epistatic effects — Discovery phase. In the discovery sample we performed
an exhaustive genome-wide search for two-locus (SNP-SNP) epistatic effects (N= 192,955 SNPs; N=1.85 x 10'°
SNP-pairs) on single CpG methylation levels (N=395,431 CpGs), resulting in 7.36 x 10" tests (Ngygs * Nyps *
(Ngyps — 1)/2) to calculate. Accordingly, the Bonferroni-corrected threshold (alpha 5%) was set to p < 6.8 x 10718,
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The statistical analysis in the discovery phase was based on a simplified interaction analysis strategy that corre-
sponds to an analysis of variance based on 9 genotype groups as fixed effects?®. The 8 degrees of freedom (df) test
determines the joint genetic effects at two loci (combination of main and interaction effects). For the interaction
analyses only, the additive and dominance effects at each locus were subtracted from the mean effects of each
pairwise genotype. This 4 df parameterization is an approximation to a true interaction test"?*. Independence
between the SNPs is a prerequisite for an accurate 4 df test, which is often not fulfilled, especially for SNPs in
proximity to each other. Additionally, the accuracy of the interaction approximation decreases if there is a large
(additive or dominant) main effect of a SNP. To minimize the bias of the simplified interaction analysis on the
results, we recalculated all results with an F-value > 22 (4 df; pyprox < 8.0 X 1077) of the simplified EpiGPU inter-
action analysis strategy with a linear regression in combination with an ANOVA-approach. Only analyses that
remained significant after Bonferroni-correction entered the next analytical step. In most of these cases (99.89%)
the simplified F-value was larger than the F-value based on recalculation, indicating an over-estimation of the
true effects when using the simplified F-value only.

Exhaustive search for epistatic effects — Replication phase. In the replication sample we applied a
per-CpG Bonferroni-corrected p-value threshold. As baseline value for the multiple testing correction we used the
number of N=13'112 unique CpGs (p < 3.8 x 107°). In case a CpG showed multiple interaction signals, we applied
a more stringent correction by additionally accounting for the number of interaction hits per CpG (p,,, < [0.05/
(13112 + number of interaction hits per CpG]). This procedure resulted in a per-CpG p-value threshold ranging
from 3.8 x 1076 (one SNP-pair only) up to 8.4 x 107 (46’314 SNP-pairs). To additionally derive an empirical p-value
we performed on average 1.70 x 107 permutations of the CpG-signal and recalculated the interaction analysis with
the permuted signals to derive an empirical F-distribution, for each CpG separately. We performed a sign-test by
comparing the average methylation level of the 9 SNP-groups between the two samples with Pearson correlations r
(see Supplementary Fig. S4). Analyses had to pass all three filters (per-CpG Bonferroni correction based on p-value
derived from F-distribution and from empirical F-distribution and sign-test r > 0.85).

We tested the stringency of the per-CpG empirical p-value (p,,,, < 3.8 x 10~°) in comparison to a global
Bonferroni-correction for all tests (alpha 5%, Pronf < 5-8 X 107?, correcting for 8/608'567 tests, with p-values
derived from the F-distribution). The empirical p-value was as at least as stringent (49% of analysis results sur-
vived) as Bonferroni-correction for all tests (52% of all analysis results survived) and had a higher concordance
rate with the sign-test: only 4% of analysis surviving the empirical p-value failed the sign-test, in comparison to
10% when applying Bonferroni-correction for all tests.

Per CpG modeling. For this analysis we used the entire SNP-set (N=517/504 SNPs instead of N=192/955
SNPs), allowing for a better resolution. We applied a stepwise-forward regression approach, starting with
main-effects. For each CpG, we first tested main effects of SNPs in a 500 KB window around the CpG and around
the SNPs showing an interaction effect, as well as all SNPs that showed a significant main effect on a genome-wide
scale (Bonferroni correction pgin.eect < 9.7 X 10~%). We then also included interaction effects by testing all already
identified interacting SNP-pairs as well as all possible SNP-pairs for SNPs that were in LD (2> 0.021 in the
discovery sample) with at least one of the identified interacting SNPs. SNPs and SNP-pairs entering the forward
regression model were sorted by their main effect p-value and interaction effect p-value of the discovery sam-
ple. We kept SNPs in the model based on their main effect and SNP-pairs based on their interaction effect, if
their p-value in the forward-regression analysis was smaller than p = [0.05/(number of main-effects +number of
interaction-effects tested per CpG)] in both the discovery and the replication sample.

Search for epistatic effects based on SNPs exhibiting main effects. For each CpG we restricted
the analysis to SNPs located within a+ 3.5 MB window around the CpG, using the larger SNP-set (N= 517,504
SNPs). For these SNPs we evaluated linear models with ANOVAs by using a 2-df parameterization of the SNP’s
main effect on the CpG signal. We searched for main effects of SNPs that survived a per-CpG Bonferroni cor-
rection accepting an alpha error of 5% per CpG, by correcting for the number of main effects tested per CpG in
the discovery sample. SNP-effects surviving this analysis were tested in the replication sample, again by using a
per-CpG Bonferroni correction accepting an alpha error of 5%, correcting for the number of main effects tested in
the replication sample. For CpGs showing at least two significant main effects, we tested for significant interaction
effects in the discovery and replication sample, restricting the analyses to interaction effects in which the minimal
group size was larger than 3 in both, the discovery and replication sample. We applied a per-CpG Bonferroni
correction (alpha error 5%, correcting for the number of interaction effects tested) in both samples to identify
significant interactions. Next, for each CpG we run a stepwise forward regression approach that included all
significant main effects and interaction effects. We sorted all SNPs by their main effect and all SNP-pairs by their
interaction effect p-value of the discovery sample. Main effects entered the forward regression analysis first. In the
model we kept SNPs based on their main effect and SNP-pairs based on their interaction effect, if their p-value
in the forward-regression analysis was smaller than p=[0.05/(number of main effects + number of interaction
effects tested per CpG)] in both the discovery and the replication sample.

Affymetrix HTA 2.0 array transcriptome analysis. Blood samples were collected using PAXgene Blood
RNA Tubes (PreAnalytix Qiagen/BD, Switzerland). Expression profiles were measured with the Affymetrix
GeneChip Human Transcriptome Array 2.0 (see Supplementary text). Individual expression values of each tran-
script were adjusted for age, sex and 23 components of a PCA by using linear regression models, based on data
from N=416 unrelated subjects. The PCA was derived from the expression data, 23 components of the PCA were
chosen to optimize the signal-to-noise ratio for association analyses with genetic marker.
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Enrichment analyses. We used the genomic hg19 database (genome-mysql.cse.ucsc.edu; accessed 2016-
08) to retrieve data about the location of CpG Islands (table cpglslandExt), DNase I hypersensitivity sites (table
wgEncodeR- egDnaseClusteredV3) and transcription factor binding sites (table wgEncodeRegTfbsClusteredV3).
For N=408 of our subjects, phenotypic data (data freeze 2015-09), transcriptomic data (N = 63,280 transcripts;
see above) as well as DNA-methylation data (N= 395,431 CpGs) was available. For each CpG we calculated a
genome-wide association analysis (Pearson’s correlation coefficient) with the transcriptomic data (N=2.50 x 10
analyses). We identified significant CpG-transcriptome associations on a genome-wide scale (alpha = 5%,
Bonferroni correction, pj,, < 2.0 x 10~'?) and in cis (alpha = 5%, p;;= 0.05/Njocal_transcriptss Niocal_transcripts 1S the
number of transcripts per CpG within a 500 KB-window, mean =40, min =0, max = 186).

For CpGs showing significant interactions, we estimated the similarity between CpGs with Pearson’s corre-
lations. CpGs with an r > 0.8 were assigned to one cluster. For each cluster we randomly chose one CpG before
performing the enrichment analyses. Each CpG was classified as being located within a CpG Island, a DNase I
hypersensitivity site or a transcription factor binding site and whether it was significantly associated with a tran-
script. We compared the observed frequencies from CpGs that show an interaction effect against the expected
frequency from all other CpGs by using Chi*-tests.

We performed a gene ontology (GO) enrichment analysis using the ‘gometh’-function from the R-package
missMethyl*. The algorithm corrects for the varying numbers of CpGs that can be mapped to single genes. We
used both, the GO-database as well as the KEGG-database provided in the package missMethyl, restricting the
analysis to pathways with at least 10 members (N = 8,596 in total, GO-database N= 8,288 out of 21,671 path-
ways; KEGG-database N =308 out of 320 pathways). We applied FDR-correction based on the total number of
N=18,596 pathways included in the analysis.

Software. If not mentioned differently, analyses were conducted in R (version: 2.15.1 and higher, R
Development Core Team, 2012).

Data availability. The data that support the findings of this study are available from the corresponding
author upon request.
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DISCUSSION

5. Discussion

Large multidimensional datasets are increasingly becoming available for psychological
research. In this thesis, I have pointed out how complex analyses of large
multidimensional datasets may enable insights into the complex traits investigated in
psychology. I have also proposed requirements regarding informatics infrastructure
and data management for conducting such analyses comprehensibly and reproducibly.
[ have furthermore underlined the importance of counteracting false-positive results,
e.g. by applying dimensionality reduction as well as conducting apt validation
procedures, like replication and cross-validation. Finally, I have outlined how using
elaborate data visualizations, and integrating results or data from past studies alleviate
the interpretation of findings. Following these suggestions, we have conducted two
large-scale studies on highly multidimensional datasets from distinct modalities.

In the first study (Egli et al., 2018), we reduced the dimensionality of working
memory brain activation from ~1'000 x 50'000 data points per subject to six data points
per subject using ICA. This data reduction massively increased the statistical power
and reduced the false-positive rate for associating the task brain activation with other
measurements, such as task performances and structural brain characteristics.
Importantly, association analyses on the independent components showed that the
data reduction retained (or even slightly refined) the information from the brain
activation that is relevant for task performances. The statistically independent brain
activation networks estimated by the ICA correspond well to the common assumption
of intrinsic functional brain networks (Cole, Ito, Bassett, & Schultz, 2016). ICA
(respectively the underlying eigenvalue decomposition) is computationally expensive

when applied to large datasets; using a multi-level approach that computed the ICA on
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the group-level minimized the computational burden in our analysis. We further
assessed whether it is possible to generalize the estimated networks beyond our study
sample by comparing them with meta-analytic results from 11'406 fMRI studies
(Yarkoni et al., 2011). The comparisons suggested that the spatial characteristics of our
main finding, a parietally-centered network associated with working memory
performance, had been observed across a large number of prior studies and thus
represent a generalizable brain network. We furthermore demonstrated the robustness
and validity of our results using resampling and cross-validations. We publicly share
our brain networks for application in further studies. Future studies can therefore use
the reduced data or adopt our approach to efficiently combine brain activation with
other highly dimensional data, e.g. genetic and epigenetic measurements. We have
applied the dimensionality reduction to summary statistics of brain activation on the
group level (i.e. across all subjects) in order to reduce computational costs. The
observed working memory brain networks should be further validated by conducting
ICA decompositions on the level of individual subjects, as e.g. described in Erhardt et
al. (20m1), and comparing the results to our approach.

Our second study (Egli et al., 2017) assessed to which extent DNA methylation is
affected by two-locus epistatic effects of SNPs. The study aimed at exhaustively
searching for epistatic effects across the human genome. Therefore, reducing the
dimensionality of the data prior to the analysis would not have been purposeful in this
case. The exhaustive search resulted in well above 10” (a quadrillion) computations
and as a result was computationally extremely intensive with regards to speed and
time. We therefore conducted the exhaustive analyses on a supercomputer at the Swiss

National Supercomputing Centre. Because the exceptionally large number of

63



DISCUSSION

computed hypothesis tests likely led to numerous false-positive results, we firstly
applied stringent Bonferroni corrections, and secondly discarded results that did not
fully replicate in an independent sample. After taking into account additional sources
of biases, such as main effects of single SNPs and interaction effects of SNPs in LD that
could lead to spurious interaction effects, we identified N = 404 CpG-sites that were
robustly affected by pairwise SNP-SNP interactions. Of note, when we additionally
calculated interaction analyses only across the SNPs showing a main effect onto the
CpGs, we attained a similar detection rate for interaction effects as compared to the
exhaustive analysis. This cost-efficient approach could thus serve as an approximation
to the exhaustive analysis in future studies. Our additional gene-set enrichment
analyses suggested that the CpG-sites affected by epistasis were implicated in HPV-
infection and cancer. The identified CpG-sites were furthermore more strongly
associated with gene expression than expected at random. Because our interaction
analysis only had sufficient statistical power for detecting medium to strong effect
sizes, we cannot rule out a higher number of interactions with smaller effect sizes.
Considering on one hand the substantial computational effort and on the other hand
the small number of medium to large effects found in our study, our results indicate
that using simple additive models without adding SNP-SNP interaction terms should
largely suffice for investigating medium to strong genotypic effects onto DNA
methylation. Further epistasis analyses with larger samples are required for assessing
SNP-SNP interactions onto DNA methylation with smaller effect sizes.

Implementing the approaches described in this thesis allowed us to transform
the very large and multidimensional datasets of two studies into concise and

interpretable information: we identified independent networks of brain activation
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associated with working memory, and showed that DNA methylation-sites are not
strongly affected by epistatic effects of genetic markers. The absence of strong epistatic
effects on DNA methylation indicates that analyses on DNA methylation can largely
focus on additive effects. Alternatively, DNA methylation could be investigated using
multivariate approaches, similar to our approach on neuroimaging data in (Egli et al.,
2018). Importantly, Freytag et al. (2017) have successfully used dimensionality
reductions for associating DNA methylation with cortical thickness and memory
performance.

Of note, the datasets investigated in our studies were large and complex when
compared to the smaller datasets often analyzed in psychological research (Chen &
Woijcik, 2016; Cheung & Jak, 2016), yet relatively small as compared to big data analyses
in other scientific fields such as astronomy (Burns et al., 2014), or in tech industry
(Chen et al., 2013). Further incorporating techniques and knowledge from such fields
will prepare psychological research for investigating even larger and more complex
datasets in the future. This will be especially important in light of the decreasing costs
and rising efficiency in data acquisition, which will increasingly lead toward "large n,
really large p" problems in science (Spiegelhalter, 2014). Exploiting "new" and relatively
cost-efficient data resources like electronic health records, the behavior of individuals
in video games, activity on the internet and social media, or data submitted from
devices of daily use ("internet of things") will further increase the volume and
complexity of available research data in psychology and psychiatry (Monteith et al.,
2015).

Current research (in psychology and other fields) suffers from low

reproducibility (Munafo et al., 2017; Open Science Collaboration, 2015; Poldrack et al.,
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2017). Improving the reproducibility of future analyses should therefore be a decisive
objective in psychological research (Szucs & Ioannidis, 2017), especially in view of the
increasing complexity of investigated data. The methodological and statistical
precautions described in this thesis may serve as a basis for reproducible and
comprehensible research.

This thesis has demonstrated that conducting large-scale analyses of complex
datasets requires a broad set of methodologies and skills. Some of them exceed the
current training of psychological scientists (Chen & Wojcik, 2016; Cheung & Jak, 2016)
and need to be further integrated in educational strategies from undergraduate
through post-doctorate levels in psychology (Akil et al., 2011). Rigorous statistical and
methodological training is indispensable (Munafo et al., 2017; Schwartz et al., 2016) and
has to make up for fast advances in statistical methods (Cheung & Jak, 2016). In order
to exploit large multidimensional datasets, psychological scientists should broaden
their statistical versatility to include "newer" methods like machine learning
techniques (Yarkoni & Westfall, 2017). It will moreover be critical to assure proper
training in the management of research data (Kleppner & Sharp, 2009; Wilson et al.,
2017), as well as in programming languages and basic software development practices
(Wilson et al., 2014). Notably, psychological scientists working with large complex
datasets will not require expert-level abilities in all the methods and skills described in
this thesis. A wealth of software applications (e.g. R-packages or python libraries)
written by experts facilitates applying elaborate methods without acquiring full
expertise (Chen & Wojcik, 2016).

In conclusion, I have proposed approaches that can serve as a basis for

investigating large multidimensional datasets in psychology. On this basis, future
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analyses can be developed that investigate even larger or more complex datasets and
use even more elaborate methods, for instance advanced machine learning techniques.
Despite the relevance of large-scale analyses on multidimensional datasets for
psychology, it is and will continue to be indispensable for certain research questions to
investigate smaller and less complex datasets from well-designed, randomized,
controlled experiments - given that they are sufficiently powered (Ioannidis & Khoury,
2013; Monteith et al., 2015). The analysis of large and complex datasets will not replace,
but complement such investigations. By integrating a broad spectrum of information,
analyses of large multidimensional datasets may eventually help to elucidate the very

complex mechanisms underlying mental health and disease.
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