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Abstract	

The	 study	 of	 the	 genetic	 underpinnings	 of	 human	 cognitive	 traits	 is	 deemed	 an	

important	 tool	 to	 increase	 our	 understanding	 of	 molecular	 processes	 related	 to	

physiological	and	pathological	cognitive	functioning.	The	polygenic	architecture	of	such	

complex	traits	implies	that	multiple	naturally	occurring	genetic	variations,	each	of	small	

effect	 size,	 are	 likely	 to	 influence	 jointly	 the	 biological	 processes	 underlying	 cognitive	

ability.	Genetic	association	results	are	yet	devoid	of	biological	context,	thus	limiting	both	

the	identification	and	functional	interpretation	of	susceptibility	variants.	This	biological	

gap	 can	 be	 reduced	 by	 the	 integrative	 analysis	 of	 intermediate	 molecular	 traits,	 as	

mediators	 of	 genomic	 action.	 In	 this	 thesis,	 I	 present	 results	 from	 two	 such	 systems	

genomics	analyses,	as	attempts	to	identify	molecular	patterns	underlying	cognitive	trait	

variability.	 In	 the	 first	 study,	 we	 adopted	 a	 system-level	 approach	 to	 investigate	 the	

relationship	 between	 global	 age-related	 patterns	 of	 epigenetic	 variation	 and	 cortical	

thickness,	 a	 brain	morphometric	 measure	 that	 is	 linked	 to	 cognitive	 functioning.	 The	

integration	 of	 both	 genome-wide	 methylomic	 and	 genetic	 profiles	 allowed	 the	

identification	 of	 a	 peripheral	 molecular	 signature	 that	 showed	 association	 with	 both	

cortical	thickness	and	episodic	memory	performance.	In	the	second	study,	we	explicitly	

modeled	 the	 interdependencies	 between	 local	 genetic	 markers	 and	 peripherally	

measured	 epigenetic	 variations.	 We	 thus	 generated	 robust	 estimators	 of	 epigenetic	

regulation	and	showed	that	these	estimators	resulted	in	the	identification	of	epigenetic	

underpinnings	of	schizophrenia,	a	common	genetically	complex	disorder.	These	results	

underscore	 the	 potential	 of	 systems	 genomics	 approaches,	 capitalizing	 on	 the	

integration	 of	 high-dimensional	 multi-layered	 molecular	 data,	 for	 the	 study	 of	 brain-

related	complex	traits.		
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Introduction	
	

Neuro-psychiatric	 disorders	 are	 among	 the	 major	 causes	 of	 disability	 worldwide	

(Whiteford,	 Ferrari,	 Degenhardt,	 Feigin,	 &	 Vos,	 2015).	 The	 biological	 mechanisms	

underlying	mental	 diseases,	 such	 as	 e.g.	 schizophrenia,	 remain	 largely	 unknown,	 thus	

limiting	 our	 ability	 to	 find	 appropriate	 treatments.	 Given	 the	 importance	 of	 inherited	

genetic	 variations	 in	mental	 disease	 risk	 (Gatz	 et	 al.,	 2006;	 Gejman,	 Sanders,	 &	 Duan,	

2010),	human-centered	genetic	research	has	the	potential	to	expand	our	understanding	

of	their	molecular	underpinnings	(Papassotiropoulos	&	de	Quervain,	2015).		

Common	 neuro-psychiatric	 disorders	 represent	 genetically	 complex	 traits	 with	

numerous	genetic	variations	contributing	to	disease	liability	(Plomin,	Haworth,	&	Davis,	

2009).	 In	 this	 context,	 the	 genetic	 dissection	 of	 quantifiable	 phenotypes,	 genetically	

related	 to	 diseases,	 and	 putatively	 closer	 to	 the	 biological	 substrates	 than	 abstract	

diagnosis	 categories,	 is	 a	 proposed	 strategy	 to	 facilitate	 the	 identification	 of	 genetic	

susceptibility	 variants	 (Gottesman	 &	 Gould,	 2003;	 Papassotiropoulos	 &	 de	 Quervain,	

2015).	 Genetic	 factors	 account	 for	 a	 considerable	 part	 of	 physiological	 variation	 in	

cognitive	 traits	 (Kremen	 et	 al.,	 2007;	 Lee	 et	 al.,	 2012).	 From	 a	 genetic	 standpoint,	

cognitive	deficits,	 such	as	memory	 impairments,	 that	 are	manifest	 in	many	genetically	

complex	 neuro-psychiatric	 disorders,	 can	 be	 considered	 as	 the	 extreme	 ends	 of	 these	

heritable	 traits	 that	 follow	 normal	 distributions	 (Papassotiropoulos	 &	 de	 Quervain,	

2015).	Hence,	leveraging	naturally	occurring	genetic	variations	contributing	to	complex	

cognitive	 traits	 provides	 the	 means	 to	 gain	 insights	 into	 the	 molecular	 pathways	

implicated	in	specific	physiological	and	pathological	human	cognitive	processes.	In	turn,	

this	 might	 lead	 to	 the	 identification	 of	 new	 drug	 targets	 and	 treatment	 options	 in	

psychiatry	(Hyman,	2013;	Papassotiropoulos	et	al.,	2013).	

The	genetic	study	of	such	heritable	traits	represents	an	hypothesis-generating	exercise	

(Stranger,	 Stahl,	&	Raj,	2011)	aiming	at	prioritizing	new	genes	or	genomic	 regions	 for	
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further	investigation	that	eventually	may	allow	deciphering	the	molecular	mechanisms	

contributing	to	trait	variability.	This	requires	both	unbiased	analysis	of	possible	genetic	

contributions	 in	 regard	 of	 their	 genomic	 location	 and	 delivery	 of	 functionally	

interpretable	 solutions.	 Genome-wide	 association	 studies	 are	 such	 a	 proposed	 tool,	 in	

which	millions	 of	 common	 genetic	 variants	 can	 be	 individually	 tested	 for	 association	

with	a	trait	(Visscher,	Brown,	McCarthy,	&	Yang,	2012).	 	The	elucidation	of	the	genetic	

underpinnings	 of	 brain-related	 phenotypes	 has	 already	 been	 started	 using	 single-

marker	 analyses	 (Papassotiropoulos	 et	 al.,	 2011;	 Papassotiropoulos,	 Stephan,	

Huentelman,	Hoerndli,	Craig,	et	al.,	2006).	Yet,	this	approach	does	not	fully	account	for	

the	highly	polygenic	pattern	and	the	inherent	biological	complexity	underlying	cognitive	

complex	 traits	 (Papassotiropoulos	 &	 de	 Quervain,	 2011).	 The	 numerous	 variants	 of	

small	 effects,	 which	 together	 form	 the	 genetic	 substrate	 of	 many	 complex	 traits	 are	

unlikely	 to	 pass	 the	 significance	 threshold	 that	 results	 from	 the	 necessary	 multiple	

testing	 correction	 procedures.	 A	 pragmatic	 response	 to	 this	 power	 issue	 consists	 in	

increasing	 the	 sample	 sizes	 of	 genome-wide	 association	 studies.	 This	 initiated	 the	

development	of	large-scale	collaborative	efforts	aiming	at	gathering	multi-centric	GWAS	

data,	 allowing	 meta	 and	 mega-analysis	 of	 various	 complex	 disorders	 and	 traits.	

Increasing	 the	 sample	 sizes	 successfully	 led	 to	 the	 identification	 of	 additional	 loci	

associated	 with	 common	 neuro-psychiatric	 disorders	 (Ripke	 et	 al.,	 2013,	 2014)	 and	

neuro-anatomical	traits	(Hibar	et	al.,	2015,	2017;	Stein	et	al.,	2012).	

A	 majority	 of	 complex	 traits	 or	 diseases	 associated	 variants	 identified	 by	 GWAS	 are	

located	 in	 non-coding	 or	 intergenic	 regions	 of	 the	 genome	 (Hindorff	 et	 al.,	 2009)		

rendering	 their	 direct	 functional	 interpretation	 challenging	 (Paul,	 Soranzo,	 &	 Beck,	

2014).	We	 can	 also	 expect	 that	 with	 continuously	 increasing	 sample	 sizes,	 additional	

hits	will	be	identified	that	will	require	prioritization	of	the	genetic	association	signals.	

In	 sum,	 the	 highly	 polygenic	 pattern	 of	 complex	 cognitive	 traits	 and	 the	 gap	 between	

genetic	association	signals	and	their	biological	context	limit	both	the	identification	and	
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interpretation	 of	 trait	 related	 genetic	 variants.	 The	 polygeneicity	 of	 complex	 traits	 in	

turn	 suggests	 a	model	 in	 which	 phenotypic	 variability	 results	 from	 changes	 in	 global	

biological	 processes,	 arising	 from	 numerous	 genetic	 variations	 and	 environmental	

perturbations	on	the	underlying	molecular	processes	(Schadt,	2009;	Weiss	et	al.,	2012).	

Genetic	 variations	 are	 likely	 to	 contribute	 to	 phenotypic	 variability	 in	 complex	 traits	

through	their	effect	on	distinct	aspects	of	gene	regulation	(Albert	&	Kruglyak,	2015;	Li	et	

al.,	2016;	Richards	et	al.,	2012;	Roussos	et	al.,	2014).	High-throughput	 -omics	profiling	

technologies	enable	population-based	assessment	of	these	different	layers	of	molecular	

information,	 such	 as	 gene	 expression	 levels	 or	 epigenetic	 variations.	 These	 traits	

represent	 intermediate	 molecular	 traits	 putatively	 mediating	 the	 effect	 of	 genetic	

variations	 on	 complex	 phenotypes	 (van	 der	 Sijde,	 Ng,	 &	 Fu,	 2014).	 In	 turn,	 systems	

genomics	 approaches	 that	 rely	 on	 the	 integration	 of	 such	 intermediate	 traits	 and	

genotypic	 data	 have	 the	 potential	 to	 facilitate	 identification	 of	 molecular	 patterns	

associated	with	complex	traits	(Ritchie,	Holzinger,	Li,	Pendergrass,	&	Kim,	2015).	

This	 doctoral	 thesis	 includes	 two	 studies	 representing	 examples	 of	 such	 systems	

genomics	 approaches,	 aiming	 at	 gaining	 insights	 into	 the	 molecular	 processes	

underlying	cognitive	complex	 traits.	Specifically,	 the	 two	studies	relied	on	 two	distinct	

integrative	 analysis	 of	 genotypic	 data	 and	 peripherally	 measured	 epigenetic	 markers	

assessed	in	healthy	young	adults:	 in	a	first	study	we	adopted	a	systems-level	approach	

to	 investigate	 the	 relationship	 between	 global	 age-related	 epigenetic	 patterns	 and	

cortical	thickness,	further	amenable	to	genetic	analysis;	in	a	second	study	we	explicitly	

integrated	 genotypic	 and	 epigenetic	 markers	 to	 allow	 the	 investigation	 of	 epigenetic	

underpinnings	of	complex	cognitive	traits.	

	

	

	

	



8	8	

This	thesis	includes	the	following	two	publications:	

• Freytag	 V.,	 Carillo-Roa	 T.,	 Milnik	 A.,	 Sämann	 PG.,	 Vukojevic	 V.,	 Coynel	 D.,

Demougin	P.,	Egli	T.,	Gschwind	L.,	Jessen	F.,	Loos	E.,	Maier	W.,	Riedel-Heller	SG.,

Scherer	M.,	Vogler	C.,	Wagner	M.,	Binder	EB.,	de	Quervain	DJ.,	Papassotiropoulos

A.	(2017)	A	peripheral	epigenetic	signature	of	immune	system	genes	is	linked	to

neocortical	 thickness	 and	 episodic	 memory.	 Nature	 Communications

26;8:15193.	doi:	10.1038/ncomms15193.

• Freytag	V,	Vukojevic	V,	Milnik	A,	Vogler	C,	de	Quervain	DJ,	Papassotiropoulos	A.

submitted.	 Genetic	 estimators	 of	 DNA	 methylation	 provide	 insights	 into	 the

molecular	basis	of	polygenic	traits.

Contributions	to:	design	of	the	experiment,	data	analysis,	paper	writing.	
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1	Complex	brain-related	phenotypes	
	

The	 endophenotype	 concept	 was	 introduced	 in	 the	 field	 of	 psychiatry	 as	 a	 means	 to	

reduce	 the	 biological	 gap	 between	 susceptibility	 variants	 and	 genetically	 complex	

neuro-psychiatric	 diseases	 (Gottesman	 &	 Gould,	 2003).	 A	 putative	 endophenotype	

amenable	 to	 genetic	 research	 should	 be	 quantifiable,	 heritable,	 genetically	 related	 to	

neuro-psychiatric	 diseases,	 and	 linked	 to	 clear	 neuro-physiological	 correlates	 to	 allow	

further	 substantiating	 a	 detected	 genetic	 association	 (Gottesman	 &	 Gould,	 2003;	

Papassotiropoulos	&	de	Quervain,	2015).	The	genetic	study	of	such	endophenotypes	in	

healthy	 homogeneous	 populations	 circumvents	 potential	 confounding	 of	 genetic	

associations	by	disease-related	factors.			

	

1.1	Episodic	memory		

	

Episodic	 memory	 (EM)	 which	 refers	 to	 the	 capability	 allowing	 conscious	 retrieval	 of	

past	 experiences	 (Tulving,	 2002)	 is	 a	 heritable	 complex	 trait	 amenable	 to	 genetic	

research	(Papassotiropoulos	&	de	Quervain,	2011).	At	the	neural	level,	episodic	memory	

depends	 tightly	 on	 the	 integrity	 of	 the	 medial	 temporal	 lobe	 comprising	 the	

hippocampus	 and	 adjacent	 cortices	 (Squire	 &	 Zola-Morgan,	 1991;	 Tulving,	 2002).	

Phenotypic	assessment	of	 episodic	memory	capacity	 is	 typically	achieved	by	means	of	

delayed	 free	 recall	 tasks,	 in	which	 participants	 are	 required	 to	 retrieve	 visual	 stimuli	

(e.g.	 words,	 pictures)	 within	 minutes	 or	 hours	 following	 stimulus	 presentation.	

Heritability	 estimates	 for	 such	 episodic	 memory	 phenotypes	 suggest	 that	 naturally	

occurring	 genetic	 variations	 account	 for	 30	 to	 60	%	 of	 observed	 phenotypic	 variance	

(Kremen	 et	 al.,	 2014;	 Panizzon	 et	 al.,	 2011;	 Volk,	 McDermott,	 Roediger	 III,	 &	 Todd,	

2006).	 Impaired	episodic	memory	 is	a	hall-mark	 feature	and	an	early	manifestation	of	

Alzheimer's	 disease.	 EM	 deficits	 have	 also	 been	 reported	 in	 schizophrenia	 patients	
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(Danion,	 Huron,	 Vidailhet,	 &	 Berna,	 2007),	 thus	 supporting	 the	 relevance	 of	 this	

cognitive	 trait	 relative	 to	 neuro-psychiatric	 diseases.	 Hence,	 the	 genetic	 dissection	 of	

molecular	pathways	underlying	episodic	memory	 in	healthy	young	adults	may	help	 to	

elucidate	biological	mechanisms	implicated	in	neuro-psychiatric	disease	etiology	(Heck	

et	al.,	2015).	

	

1.2	Cortical	thickness	

	

The	 advances	 in	 Magnetic	 Resonance	 Imaging	 techniques	 coupled	 with	 automated	

algorithms	 enable	 quantitative	 assessment	 of	 brain	 sub-cortical	 and	 cortical	

morphometric	 measures	 allowing	 population	 based	 investigation	 of	 structural	 data	

(Lerch	et	al.,	2017).		

Inter-individual	 variability	 in	 such	 measures	 is	 linked	 to	 differences	 in	 cognitive	

functioning	 (Kanai	 &	 Rees,	 2011),	 possibly	 through	 shared	 genetic	 factors	 (Toga	 &	

Thompson,	 2005;	 Vuoksimaa	 et	 al.,	 2015;	 Wallace	 et	 al.,	 2010).	 Even	 tough	 the	

directionality	of	these	effects	remain	unclear	(Glahn,	Thompson,	&	Blangero,	2007),	the	

genetic	dissection	of	brain	neuro-anatomical	phenotypes	can	provide	an	additional	path	

to	expand	understanding	of	the	molecular	processes	underlying	cognitive	functioning.		

Cortical	thickness	is	a	brain	structural	phenotype,	reflecting	the	amount	of	neurons	and	

neuropil	within	the	horizontal	layers	along	the	cerebral	cortex	(Rakic,	2009).	Substantial	

heritability	values	have	been	reported	for	global	cortical	thickness	with	genetic	factors	

estimated	 to	 account	 for	~70	 to	 80%	of	 phenotypic	 variability	 (Panizzon	 et	 al.,	 2009;	

Winkler	et	al.,	2010).	Recent	data	have	also	described	widespread	decrease	of	 cortical	

thickness	with	increasing	age,	observed	too	during	early	adulthood		(Storsve	et	al.,	2014;	

Fjell	et	al.,	2015).		
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2	Genetic	association	analysis	of	complex	traits	
	

2.1	Genome-wide	association	studies		
	

	

The	 genetic	 basis	 of	 a	 given	 trait,	 that	 is,	 the	 number,	 penetrance,	 and	 frequency	 of	

genetic	 variations	 affecting	 the	 phenotype,	 is	 key	 for	 the	 success	 of	 the	 implemented	

genetic	 mapping	 strategy.	 Rare	 disorders	 such	 as	 Cystic	 Fibrosis	*	can	 be	 caused	 by	

genetic	 variations	 within	 a	 single	 gene	 (Knowles	 &	 Drumm,	 2012),	 with	 sufficiently	

strong	 effects	 to	 follow	 a	 classical	 Mendelian	 pattern	 of	 dominant	 or	 recessive	

inheritance.	Linkage	studies	which	rely	on	the	co-segregation	of	genetic	markers	and	a	

trait	within	families	have	successfully	allowed	chromosomal	mapping	and	identification	

of	highly-penetrant	variants	(Altshuler,	Daly,	&	Lander,	2008).	

Yet,	the	genetic	basis	of	complex	quantitative	traits	is	likely	to	be	formed	by	numerous	

genetic	 variations	 each	 of	 low	 effect	 relative	 to	 genetic	 variations	 implicated	 in	

Mendelian	 traits	 (Fisher,	1918).	Given	 this	scenario,	association	analysis,	which	allows	

testing	the	correlation	between	genetic	markers	and	a	phenotype	in	large	populations	of	

unrelated	individuals,	represents	a	powerful	alternative	to	linkage	analysis	(Visscher	et	

al.,	2012).		

Genome-wide	 association	 studies	 (GWAS)	 represent	 a	 population-based	 genetic	

analyses	tool	that	can	capture	genetic	variations	underlying	complex	traits	**.	The	most	

common	genetic	variations	in	the	human	genome	are	single-nucleotides	polymorphisms	

(SNPs)(International	 HapMap	 Consortium,	 2003),	 i.e.	 differences	 in	 a	 single	 base	 pair	

between	chromosomes	at	a	specific	 location	along	 the	DNA	sequence,	observed	with	a	

frequency	of	 at	 least	1%	 in	 a	 given	population.	 SNP	alleles,	which	are	physically	 close	

along	the	DNA	sequence,	tend	to	be	co-inherited.	This	gives	rise	to	a	limited	number	of	

																																																								
*	Estimated	prevalence	in	European	Union:	0.737/10,000	(Farrell,	2008)	
**	See	(Visscher	et	al.,	2012)	for	review	of	the	'Common-disease/Common	variant'		theoretical	

rationale	that	initiated	the	GWAS	approach.	
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allele	 combinations	 within	 chromosomal	 stretches,	 termed	 haplotypes.	 This	

correlational	 pattern,	 referred	 to	 as	 linkage	 disequilibrium	 (LD),	 has	 practical	

implications,	as	 in	a	given	population,	only	a	 limited	number	of	SNPs	-	 'tag	SNPs'	 -	are	

needed	 to	 identify	 the	 haplotypes	 in	 given	 genomic	 region.	 A	 first	 characterization	 of	

these	 patterns	 of	 variations	 across	 human	 populations	 was	 achieved	 by	 the	

International	 HapMap	 project	 (International	 HapMap	 Consortium,	 2003).	 This	 effort	

pushed	 the	 development	 of	 high-throughput	 genotyping	 platforms,	 allowing	 the	 cost-

efficient	assessment	of	an	individual's	genotypes.	Simultaneously	it	gave	rise	achieving	

an	 even	 higher	 resolution	 by	 employing	 genotype	 imputation	 at	 untyped	marker	 loci,	

based	 on	 known	 LD	 patterns.	 Today,	 GWAS	 typically	 test	 genotypes	 at	 millions	 of	

individual	 SNPs	 for	 association	with	 a	 dichotomous	 or	 continuous	 phenotype	 in	 large	

samples	of	unrelated	individuals.	Multiple-testing	correction	is	necessary	for	controlling	

the	 inflation	of	 false	positives	 induced	by	 the	 large	number	of	 tests	 conducted.	This	 is	

typically	 done	 by	 Bonferroni	 adjustment	 for	 the	 total	 number	 of	 markers	 examined	

yielding	to	stringent	significance	thresholds.		

The	unbiased	and	hypothesis-free	GWAS	approach	allows	to	pinpoint	to	circumscribed	

genetic	 loci	 associated	 with	 complex	 trait	 variability,	 as	 a	 first	 step	 for	 gaining	

understanding	of	the	molecular	underpinnings	of	those	complex	traits.	

	

2.2	Complex	genetic	architecture	
	

Beyond	 the	 identification	 of	 individual	 susceptibility	 loci,	 GWAS	 have	 provided	

important	insights	into	the	genetic	architecture	of	complex	polygenic	traits.			

Firstly,	for	a	given	trait,	the	variants	identified	by	GWAS	generally	account	for	a	modest	

fraction	 of	 the	 estimated	 trait's	 heritability	 (Price,	 Spencer,	 &	 Donnelly,	 2015).	 For	

example,	 a	 recent	 meta-analysis	 testing	 the	 association	 between	 an	 intronic	 variant	

located	 in	 the	 KIBRA	 gene	 and	 episodic	 memory	 (Papassotiropoulos,	 Stephan,	

Huentelman,	 Hoerndli,	 Craig,	 et	 al.,	 2006),	 reported	 an	 estimated	 0.5%	 of	 phenotypic	
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variance	 accounted	 by	 the	 SNP	 (Milnik	 et	 al.,	 2012).	 This	 putative	 gap	 can	 be	 partly	

explained	 by	 the	 necessary	 stringent	 significance	 thresholds	 implied	 by	 genome-wide	

single-marker	testing	(Manolio	et	al.,	2009).	Recent	tools	have	indeed	been	proposed	to	

estimate	 the	 fraction	 of	 phenotypic	 variance	 jointly	 accounted	 for	 by	 common	 SNPs,	

irrespective	of	their	statistical	significance	(Yang	et	al.,	2010).	In	this	seminal	work,	the	

authors	 could	 show	 that	 45%	 of	 phenotypic	 variance	 in	 height,	 a	 complex	 trait	 with	

estimated	heritability	of	~	80%	(Visscher	et	al.,	2008),	could	be	retrieved	by	considering	

all	 SNPs	 simultaneously.	 Similarly,	 a	 large	 number	 of	 common	 SNPs	 with	 individual	

effects	 too	 small	 to	 have	 reached	 stringent	 significance	 thresholds,	 might	 collectively	

account	 for	 a	 considerable	 heritability	 fraction	 of	 cognitive	 traits	 or	 neuro-psychiatric	

diseases	(Plomin,	Haworth,	Meaburn,	Price,	&	Davis,	2013;	Vogler	et	al.,	2014).	

Secondly,	 a	majority	of	 the	 variants	 identified	by	GWAS	map	 to	non-coding	 regions	of	

the	 genome	 (Hindorff	 et	 al.,	 2009).	 Yet,	 the	 over-representation	 of	 complex	 trait	

associated	 variants	 within	 regulatory	 regions	 of	 the	 genome	 suggest	 that	 genetic	

variations	 are	 likely	 to	 exert	 their	 effect	 through	 gene	 regulation	 processes	 (Albert	 &	

Kruglyak,	2015).	
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3	A	systems	genomics	perspective	
	

	

3.1	Gene	set	enrichment	analysis	
	

	

The	 polygenic	 pattern	 of	 complex	 trait	 implies	 that	 phenotypic	 variability	 arises	 from	

the	joint	effect	of	multiple	markers	as	perturbations	of	molecular	networks.	Under	this	

rationale,	gene	set	enrichment	analyses	(GSEAs)	have	been	proposed	as	a	powerful	tool	

to	 capitalize	 on	 GWAS	 data	 (Wang,	 Jia,	 Wolfinger,	 Chen,	 &	 Zhao,	 2011).	 These	

approaches	 rely	 on	 prior	 biological	 knowledge	 about	 molecular	 pathways.	 Statistical	

analysis	 consists	 in	 examining	 whether	 the	 aggregate	 of	 association	 signals	 at	 SNPs	

mapping	to	genes	within	a	pre-specified	molecular	pathway,	significantly	deviates	from	

random	 expectations.	 Such	methods	 have	 successfully	 identified	meaningful	 gene-sets	

associated	with	complex	cognitive	traits	and	related	neuro-psychiatric	disorders	(Heck	

et	 al.,	 2014,	 2015;	 Petrovska	 et	 al.,	 2017;	Ripke	 et	 al.,	 2014).	Hence	 these	 approaches	

represent	an	example	of	 integrating	genotypic	data	and	pre-existing	biological	 context	

information.		

	

3.2	DNA	methylation	as	intermediate	molecular	trait		
	

Apart	 from	 the	 accumulation	 of	 somatic	mutations,	 all	 cells	 of	 an	 organism	 carry	 the	

same	DNA	sequence.	These	cells	though	have	diverse	functions.	The	proper	and	specific	

functioning	 of	 a	 given	 cell	 requires	 accurate	 gene	 regulation,	 which	 is	 in	 part	

orchestrated	 by	 epigenetic	 modifications.	 By	 definition,	 such	 modifications	 have	 the	

potential	to	be	maintained	during	somatic	cell	division	(Berger,	Kouzarides,	Shiekhattar,	

&	 Shilatifard,	 2009).	 Beyond	 the	 heterogeneity	 of	 epigenetic	 signatures	 between	

different	cells	of	an	 individual,	 there	 is	considerable	 inter-individual	variation	 in	 these	
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epigenetic	 marks.	 The	 differences	 can	 be	 triggered	 by	 genetic	 determinants,	 or	

environmental	 factors	 that	 possibly	 can	 lead	 to	 long	 lasting	 imprints	 on	 the	 genome	

(Fraga	et	al.,	2005;	Heijmans	et	al.,	2008;	Kaminsky	et	al.,	2009).	

Methylation	 of	 the	 DNA	 sequence	 is	 a	 form	 of	 epigenetic	 modification,	 which	 in	

eukaryotes,	 occurs	 only	 at	 cytosine	 residues,	 primarily	 in	 the	 context	 of	 CpG	

dinucleotides.	DNA	methylation	is	implicated	in	gene	expression	and	imprinting	(Deaton	

&	 Bird,	 2011).	 More	 broadly,	 inter-individual	 variation	 in	 DNA	 methylation	 can	 be	

viewed	 as	 a	 proxy	 for	 differential	 gene	 regulation	 processes	 (Schübeler,	 2015).	 High-

throughput	methylomic	 technology	 allows	quantification	of	DNA	methylation	 levels	 at	

up	to	hundred	thousands	of	individual	CpG	sites	(Bibikova	et	al.,	2011)	in	a	given	tissue.		

Likewise	in	GWAS,	DNAm	variation	at	each	single	CpG	site	can	be	tested	for	association	

with	a	given	population	trait.	Epigenome-wide	association	studies	 investigating	neuro-

psychiatric	 disorders	 and	 related	 traits	 typically	 have	 to	 rely	 on	 available	 peripheral	

tissues	 such	 as	whole-blood	or	 saliva.	 Yet,	 given	 the	 tissue	 specificity	 of	DNAm,	 inter-

individual	 variation	 in	 whole-blood	 does	 not	 generally	 coincide	 with	 inter-individual	

variation	in	brain	tissues	(Hannon,	Lunnon,	Schalkwyk,	&	Mill,	2015).		

Recent	 data	 from	 twins	 have	 reported	 an	 average	 heritability	 estimate	 of	 ~20%	 for	

whole-blood	 DNAm	 variation	 across	 all	 interrogated	 sites,	 with	 common	 genetic	

variations	accounting	on	average	for	~7%	of	the	observed	variance	(van	Dongen	et	al.,	

2016).	Methylomic	markers	thus	represent	potentially	highly-informative	intermediate	

molecular	 traits,	 relative	 to	 the	 molecular	 effects	 of	 common	 genetic	 variants	

contributing	to	complex	traits'	variability	(Kilpinen	&	Dermitzakis,	2012).		

The	 methylome	 also	 undergoes	 profound	 changes	 with	 increasing	 age	 (Teschendorff,	

West,	 &	 Beck,	 2013).	 Epigenome-wide	 association	 studies	 (EWAS)	 have	 repeatedly	

identified	 numerous	 individual	 markers	 robustly	 differentially	 methylated	 with	 age	

(Bell	 et	 al.,	 2012;	 Garagnani	 et	 al.,	 2012;	 Hannum	 et	 al.,	 2013;	 Zaghlool	 et	 al.,	 2015),	

allowing	 the	 derivation	 of	 epigenetic	 predictors	 for	 chronological	 age	 (Hannum	 et	 al.,	
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2013;	Horvath,	2013).	These	predictors	have	been	shown	 to	 represent	heritable	 traits	

per	se	and	to	be	correlated	with	all-cause	mortality	(Marioni	et	al.,	2015).		

	

	

3.3	System-level	analysis	
	

In	 the	 scope	 of	 this	 thesis,	 a	 system-level	 approach	 is	 used	 to	model	 global	 biological	

processes	 by	 considering	 intra	 and	 inter-individual	 variability	 within	 a	 given	 multi-

dimensional	molecular	dataset.	Such	an	endeavor	broadly	relies	on	analytical	methods	

that	 allow	extracting	 groups	of	 related	variables	 (e.g.	 genes,	 or	CpGs)	 into	biologically	

relevant	units.	 Inter-individual	variation	across	 these	modeled	patterns	 is	 in	 turn	seen	

as	 reflecting	 inter-individual	 variation	 across	 the	 distinct	 biological	 processes	 that	

underlie	 the	 phenotypic	 variability.	 The	 representation	 of	 these	 patterns	 across	

individuals	 can	 subsequently	 be	 tested	 for	 association	 with	 the	 trait	 under	 study.	 As	

intermediate	molecular	traits,	these	patterns	are	also	per	se	amenable	to	further	genetic	

analysis	within	the	same	population.		

In	 Paper	 1	 (A	 peripheral	 epigenetic	 signature	 of	 immune	 system	 genes	 is	 linked	 to	

neocortical	thickness	and	memory)	we	investigated	the	relationship	between	global	age-

related	methylomic	 patterns	 and	 cortical	 thickness	 by	 employing	 such	 a	 system-level	

modelling	approach.		

We	 applied	 an	 Independent	 Component	 Analysis	 method	 which	 has	 been	 shown	 	 to	

possibly	 identify	 relevant	 biological	 processes	 from	 -omics	 data	 (Biton	 et	 al.,	 2014;	

Rotival	 et	 al.,	 2011;	Teschendorff,	 Journée,	Absil,	 Sepulchre,	&	Caldas,	2007;	Wexler	et	

al.,	2011).	Independent	Component	Analysis	relies	on	theoretical	assumptions	regarding	

the	 generative	model	 of	 observed	molecular	 signals:	 	 under	 this	model,	 the	 observed	

molecular	 profiles	 are	 viewed	 as	 a	 mixture	 of	 independent	 biological	 processes	

(Liebermeister,	 2002).	 In	 turn,	 the	 inferred	 components	 are	 simultaneously	

characterized	by	a	restricted	number	of	variables,	and	by	their	representation	across	the	
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study	samples.	Here,	we	used	this	approach	to	extract	age-related	methylomic	patterns	

putatively	 reflecting	 distinct	 biological	 processes.	 These	 patterns	 were	 subsequently	

amenable	to	association	testing	with	our	population	study	traits	and	genetic	analysis.		

	

3.4	Integrative	mQTL	analysis	
	

Given	the	supposed	role	of	variants	associated	with	complex	traits	on	gene	regulation,	

expression	 and	methylation	 genetic	 associations	 studies	 can	 be	 conducted	 to	 identify	

new	 functional	 SNPs	 related	 to	 phenotypic	 variation	 in	 these	molecular	 traits	 (Nica	&	

Dermitzakis,	2013).	Such	loci	are	referred	to	methylation	quantitative	trait	loci	(mQTLs)	

or	 expression	 quantitative	 trait	 loci	 (eQTLs),	 and	 further	 categorized	 relative	 to	 their	

genomic	distance	from	the	associated	molecular	marker,	as	-cis	(typically	within	1Mbp)	

or	 -trans	 (>	 1Mbp).	 Yet,	 the	 identification	 of	 -trans	 SNPs	 is	 hampered	 by	 the	multiple	

testing	burden	implied	by	the	number	of	SNP-marker	combinations	tested,	and	tend	to	

have	 lower	 effect	 sizes	 than	 -cis	 SNPs	 (Lemire	 et	 al.,	 2015;	Mackay,	 Stone,	 &	 Ayroles,	

2009).		

Provided	 availability	 of	 molecular,	 genotypic	 and	 phenotypic	 data,	 a	 multi-staged	

strategy	 can	 be	 adopted	 to	 examine	 the	 relationship	 between	 phenotype	 associated	

SNPs	and	 the	molecular	 trait	at	 the	population	 level	 (Ritchie	et	al.,	2015).	 In	 this	case,	

trait	 associated	 variants	 identified	 by	 GWAS	 can	 for	 instance	 be	 examined	 for	 their	

association	with	molecular	traits	(eQTL	or	mQTL);	potential	molecular	traits	related	to	

the	 SNPs	 can	be	 tested	back	 for	 association	with	 the	phenotype	under	 study	 enabling	

functional	annotation	of	 the	trait-related	SNPs.	Yet,	multi-stage	based	analyses	have	to	

rely	 on	 stringent	 significance	 thresholds	 brought	 about	 by	 the	 single-SNP	 marker	

analyses,	thus	limiting	the	power	for	detecting	markers	of	functional	relevance	(Ritchie	

et	al.,	2015).		



	 	 18	18	

Intermediate	 molecular	 traits	 can	 be	 influenced	 by	 multiple	 -cis	 genetic	 variants	

(Bonder	 et	 al.,	 2017).	Recently,	 genetic	 estimators	 that	 capitalize	 on	 the	 joint	 additive	

effects	of	markers	on	gene	expression	 level	have	been	proposed	 for	 further	enhancing	

functional	 annotation	 of	 susceptibility	 variants	 (Gamazon	 et	 al.,	 2015).	 These	 models	

rely	on	a	multiple	penalized	regression	framework	(Zou	&	Hastie,	2005),	which	allows	

modeling	the	joint	effect	of		SNPs	in	-cis	on	the	trait	and	selecting	a	subset	of	predictive	

markers.	This	approach	enables	estimation	of	 the	genetically	driven	component	of	 the	

observed	signal,	even	in	moderately-sized	samples.	In	turn,	each	derived	estimator	can	

serve	 as	 an	 intermediate	 trait	 amenable	 to	 genetic	 association	 testing	with	 a	 complex	

phenotype	 in	 an	 independent	 population.	 This	 allows	 investigating	 the	 relationship	

between	 genetically	 driven	 expression	 or	 a	 methylation	 trait	 and	 a	 population	 trait,	

without	 requiring	 individuals'	molecular	 trait	measurements.	 In	Publication	2	 (Genetic	

estimators	 of	 DNA	 methylation	 provide	 insights	 into	 the	 molecular	 basis	 of	 polygenic	

traits)	we	 derived	 such	 robust	 genetic	 estimators	 of	whole-blood	DNAm	 as	 a	 tool	 for	

investigating	 the	epigenetic	underpinnings	of	complex	cognitive	 traits.	The	association	

between	 a	 given	 trait	 and	 each	 estimator	 can	 also	 be	 estimated	 using	 GWAS	 single-

markers	association	statistics	together	with	a	reference	population	correlation	structure	

between	SNPs	markers	(e.g.	publically	available	HapMap	panel	see	2.1)(Barbeira	et	al.,	

2016;	Gusev	et	al.,	2016).	Provided	congruence	of	the	GWAS	studies	population	and	LD	

reference	panel,	this	extension	allows	investigation	of	the	wealth	of	currently	available	

GWAS	summary	results,	even	in	absence	of	genotypic	data.	
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Original	research	papers	
	

Publication	1		A	peripheral	epigenetic	signature	of	immune	system	genes	is	
linked	to	neocortical	thickness	and	memory	
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thickness (Po0.001). A multilocus genetic score reflecting genetic variability of this

signature is associated with memory performance (P¼0.0003) in 3,346 young and elderly
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Human cortical thickness, a brain morphometric measure
that is linked to cognitive functioning, reflects the amount
of neurons and neuropil in the horizontal layers of

the cortical columns that are responsible for the organization of
cortical connectivity1–3. Recent data suggest a monotonic
decrease in cortical thickness (cortical thinning) from preschool
age throughout the lifespan4, but previous studies have also
described patterns of regional increase in cortical thickness
during childhood5–7.

Studies in twins and in unrelated individuals provide
consistently high heritability estimates for cortical thickness
(B80%), demonstrating the importance of naturally occurring
genetic variation for this physiological trait8,9. Despite the
well-known and substantial impact of age on cortical thinning,
the biological mechanisms that mediate this effect are hitherto
unknown. It is reasonable to assume that age-related, dynamic
processes, such as epigenetic changes, represent good candidates
for such mediators.

DNA methylation, the most extensively studied epigenetic
modification to date, regulates important processes such as
imprinting, chromosomal inactivation and gene expression10.
Age represents one of the most potent factors known to correlate
with physiological variation of global DNA methylation11,12.
High-throughput quantification of DNA methylation at several
hundreds of thousands of C-phosphate-G (CpG) sites has
detected numerous CpG loci across various tissues undergoing
differential methylation with age13–16. Interestingly, such loci
have been identified within regulatory regions of genes that are
known to undergo differential expression in such age-related
conditions as Alzheimer’s disease13 and cancer17. Recently, DNA
methylation markers predicting chronological age were shown to
correlate with all-cause mortality18. DNA methylation levels can
also be influenced by genetic variations19,20 and age-related DNA
methylation signatures represent heritable traits18.

Thus, the existing data suggest that peripherally measured
DNA methylation patterns might contribute to the identification
of molecular underpinnings of age-related complex traits relevant
to health and disease.

Here, we investigated the relation between peripherally
measured DNA methylation and cortical thickness in healthy
young adults. In a first step, we performed Independent
Component Analysis (ICA)-based decomposition of whole-blood
methylomic profiles to identify independent signatures of
physiological variation of global DNA methylation. ICA is
a decomposition method, which provides a representation of
complex relationships arising from high-dimensional data, such
as genome-wide expression21,22 and brain imaging data23. After
ICA-based decomposition, the identified methylation patterns
were first tested for association with age. Age-associated
methylation patterns were subsequently tested for correlation
with global cortical thickness and, in case of such correlation,
mediation analysis followed to assess whether these methylation
patterns mediated significantly the effect of age on cortical
thickness. Significant findings were subjected to further analyses,
including functional annotation of CpGs contributing to the
observed methylation patterns, testing for pattern association
with region-specific cortical thickness and cognitive performance,
and a genome-wide investigation of common genetic variations
(single nucleotide polymorphisms, SNPs) that contribute to the
variability of the methylomic patterns.

Results
ICA-based identification of methylomic patterns. We
performed methylomic profiling (Illumina 450K Human Methy-
lation array) of blood samples collected from N¼ 533 healthy

young individuals (Supplementary Table 1). After quality control,
DNA methylation levels (DNAm) were quantified at 397,947
autosomal CpG sites and subsequently corrected for sex
and sources of variation inferred from Surrogate Variable Analysis
(see Methods).

Next, we performed ICA to achieve a low-dimensional
representation of genome-wide methylation profiles. Following
the ICA paradigm introduced first for gene expression data
analysis21, an individual’s methylomic profile is treated as
a mixture of latent variables (that is, methylomic signatures),
each reflecting a combination of biological processes and exerting
independent effects on DNAm. Specifically, ICA provides
a representation of these signatures by decomposing the
original DNAm signals into components, whose statistical
inter-dependence is minimized. This property is typically
achieved by favouring heavy-tailed non-gaussian distribution of
the components’ loadings; thus each component is characterized
by a restricted set of CpGs exhibiting loadings at the extreme of
the distribution. Simultaneously, each component is characterized
by its representation across the study sample, giving rise
to individual methylation patterns. Each of these patterns is
a low-dimensional representation of a global mode of DNAm
variations. Importantly, these patterns can be tested for
association with traits of the study sample (Fig. 1a).

Using ICA decomposition, we obtained a total of k¼ 126
independent components (see Methods). The majority of the
inferred components (n¼ 111) were driven by single individuals
contributing to more than 10% of the pattern’s variability.
Given that such components represent rather singular modes of
variation24, subsequent analyses were restricted to the remaining
15 components. These components represent global modes of
DNAm variation across the individuals of the study population.

Methylomic patterns related to age and cortical thickness.
Participants from the methylomic profiling study underwent
brain magnetic resonance imaging (MRI)(Supplementary
Table 1). Global measures of cortical thickness—that is, the
distance between the grey matter and white-matter boundary and
the pial surface—were obtained using cortical surface-based
analysis implemented in FreeSurfer (see Methods), for N¼ 514
participants. Consistent with previous findings in healthy young
adults4,25, cortical thickness was negatively correlated with
age (r¼ " 0.27, P¼ 3.12# 10" 10).

Two out of 15 ICA methylomic patterns (termed ICA1 and ICA2)
were significantly correlated with age, after Bonferroni correction
for 15 comparisons (ICA1: r¼ 0.54, Pnominal¼ 1.54# 10" 42,
Pcorrected¼ 2.31# 10" 41; ICA2: r¼ 0.29, Pnominal¼ 4.68# 10" 12,
Pcorrected¼ 7.02# 10" 11; Fig. 1c and Supplementary Table 2).
These methylomic patterns were also significantly associated with
cortical thickness (ICA2: r¼ " 0.24, Pnominal¼ 3.86# 10" 8,
Pcorrected¼ 5.79# 10" 7; ICA1: r¼ " 0.14, Pnominal¼ 0.00162,
Pcorrected¼ 0.0243; Fig. 1b and Supplementary Table 2). No
significant correlation was observed between ICA1 and ICA2
(r¼ 0.048; nominal P¼ 0.27), suggesting that the corresponding
independent components capture distinct methylomic processes.

To test whether the significant correlations between ICA2 and
cortical thickness were merely attributable to the correlation
between age and both types of measurements, age effects were
partialled out from ICA2 and cortical thickness (see Methods).
After this adjustment, a significant correlation was exclusively
detected between ICA2 and cortical thickness (r¼ " 0.18;
P¼ 6.55# 10" 5, Supplementary Table 2). The correlation
remained significant (r¼ " 0.17; P¼ 8.74# 10" 5) also after
correcting for individual white blood cell count (see Methods).
We also examined which other available variables (that is, body
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mass index, smoking, alcohol consumption, frequency of
cannabis use) were significantly associated with ICA2 in addition
to age. Smoking frequency was also significantly associated with
ICA2 (r¼ 0.17, P¼ 0.0001) but not with cortical thickness
(r¼ " 0.072, P¼ 0.11). After adjusting ICA2 for both age and
smoking frequency, its association with cortical thickness
remained nearly unchanged (r¼ " 0.17). No significant correla-
tions were detected between ICA2 and alcohol consumption
(P¼ 0.97), cannabis use (P¼ 0.1) or body mass index (P¼ 0.25).

In order to capture possible non-linear age effects, we also
performed an F-test analysis to compare the fit of a model

predicting cortical thickness from a fifth degree polynomial of age
(ageþ age^2þyþ age^5) to the fit of the same model
augmented by ICA2. We observed a highly significant increase
in adjusted R2 with the addition of ICA2 to the model
(F(1,507)¼ 15.6, P¼ 8.8$ 10" 5). Thus, the association between
ICA2 and cortical thickness is not driven by non-linear age
effects.

We also used in silico annotation of blood cell types as
described by Jaffe and Irizarry26. After this adjustment, ICA2
associations with both chronological age and cortical thickness
remained highly significant (P¼ 2$ 10" 11 and P¼ 8.3$ 10" 7,
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Figure 1 | ICA-based identification of DNAm patterns. (a) Schematic representation of the analysis workflow; ICA decomposition of genome-wide
methylomic profiles (matrix X, n¼ 533 samples$ 397,947 CpGs sites) into k independent components, simultaneously represented across CpGs
(matrix S of CpGs loadings) and samples (matrix A of individual weights). A total of 15 components, whose corresponding weights represent global modes
of DNAm across samples, were tested for association with cortical thickness and chronological age. (b) Two components, ICA1 and ICA2, are significantly
associated with cortical thickness. Horizontal axis: cortical thickness adjusted for sex, intra-cranial volume and MR-batches. Vertical axis: individual weights
on ICA component. (c) ICA1 and ICA2 show significant association with chronological age. P: P value of association (Pearson’s correlation, two-sided test);
r2: fraction of variance in component weights explained by chronological age (in %).
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respectively). We also examined the association between ICA1
and ICA2 and chronological age in two publicly available data
sets of purified blood cells (N¼ 1,202 monocyte samples, age
range: 44–83, mean age: 60; N¼ 214 CD4þ T-cell samples,
age range: 45–79, mean age: 59)15. In each data set, ICA1 and
ICA2 were estimated as the linear combinations between ICA1
and ICA2 loadings, respectively (as inferred from the Swiss
DNAm sample), and blood samples’ DNAm values, adjusted
for main confounders (see Supplementary Methods). In both
cell-specific data sets, we observed a significant positive
correlation between ICA patterns and chronological age
(monocyte samples, N¼ 1,202: ICA1: r¼ 0.67, Po2.2# 10$ 16;
ICA2 r¼ 0.32, Po2.2# 10$ 16; CD4þ T-cell samples, N¼ 214:
ICA1: r¼ 0.70, Po2.2# 10$ 16; ICA2: r¼ 0.49; P¼ 8.6# 10$ 15),
suggesting that the ICA–age correlations identified in
whole-blood are also detectable in individual cell types.
Altogether these results substantiate the lack of influence of
blood cell counts on the reported associations. The correlation
between cortical thickness and ICA1, that showed the strongest
correlation with age, was not significant after adjusting for
chronological age (r¼ 0.01, P¼ 0.83, Supplementary Table 2).

In addition to chronological age, we also calculated epigenetic
cross-tissue- and whole-blood-based predictors in our sample as
described by Horvath27 and Hannum et al.14, respectively. Both
estimators yielded DNA methylation age values (that is,
predictors for chronological age based on CpG methylation)
that significantly correlated with actual participants’ age
(Horvath’s predictor: r¼ 0.70, Po10$ 60; Hannum’s predictor:
r¼ 0.71, Po10$ 60). Neither predictor was associated with
cortical thickness after adjustment for chronological age
(Horvath’s: r¼ 0.04, P¼ 0.32; Hannum’s: r¼ 0.01, P¼ 0.77),
suggesting that these predictors (like ICA1 but, importantly,
unlike ICA2) do not mediate the effect of age on cortical
thickness.

Finally, we examined the association of ICA2 with age and
age-adjusted cortical thickness after covarying for 111 individuals
who contributed more than 10% to 111 inferred components
not further studied herein. Both associations remained
highly significant (age: P¼ 4.91# 10$ 12; age-adjusted cortical
thickness: P¼ 4.8# 10$ 5).

Replication study. To test the generalizability of the association
between ICA2 and cortical thickness, we studied an independent
sample (termed herein the Munich sample) comprising
596 participants with major depressive disorder (MDD) and
healthy controls (see Methods). The ICA2 pattern was estimated
as the linear combination between ICA2 loadings (as inferred
from the Swiss DNAm sample) and individual DNAm values of
the Munich sample. In this independent sample, we observed a
significant positive correlation between ICA2 and chronological
age (N¼ 596, r¼ 0.48, Po10$ 10) and a negative correlation with
global cortical thickness (N¼ 596, r¼ $ 0.31, Po10$ 10). After
adjustment for chronological age and controlling for potential
confounders (diagnosis, sex, intracranial volume, MRI batch
effects, time difference between MRI examination and blood
drawing), the association between ICA2 and cortical thickness
remained significant (r¼ $ 0.094, P¼ 0.011). The same analysis
in a sub-sample of N¼ 163 participants younger than 40 years
(that is, within an age range similar to that of the Swiss partici-
pants) revealed an almost identical effect size (r¼ $ 0.19,
P¼ 0.009) compared to that observed in the Swiss sample.

ICA2 partially mediates the age–cortical thickness relation.
ICA2 showed significant positive correlation with age and
negative correlation with global cortical thickness. To investigate

whether ICA2 mediates the negative correlation between age and
global cortical thickness, we conducted a mediation analysis28.
The association between chronological age and global cortical
thickness was partially (that is, k2¼ 5.1% of the maximum
possible mediation effect) and significantly mediated by the
methylomic pattern ICA2 (indirect effect¼ $ 0.051, Po0.001)
(Fig. 2).

ICA2 is related to a specific pattern of cortical thickness.
Having detected an association between ICA2 and global
cortical thickness we next explored possible links between this
methylomic pattern and regional variations in cortical thickness.
Inter-individual variations in delineated brain regions often
coincide with latent structural covariance patterns29. Exploratory
factor analysis (EFA) allows depicting such distinct patterns
of volumetric covariance among brain regions that can be
subsequently tested for association with additional phenotypes
of the population under study30. We therefore performed
EFA, considering 68 regional brain measures of thickness
(34 per hemisphere) obtained from automated parcellation of
the cerebral cortex (Desikan-Killiany atlas)31–33. Before analysis,
effects of intra-cranial volume, sex, processing batches and age,
which possibly drive global correlations among brain regions,
were regressed out from individual measures (see Methods).
Using parallel analysis34, we determined eight extractable factors,
altogether accounting for 48.9% of variance across regional
measures (Supplementary Data 1, see Methods). Factor extraction
was followed by varimax orthogonal rotation. Subjects’ factor
scores were subsequently tested for association with the age-
adjusted ICA2 pattern. After correction for multiple testing, we
identified one factor score, F6, that showed significant correlation
with ICA2 (r¼ $ 0.13, P¼ 0.00314, Bonferroni-adjusted
P¼ 0.025 for eight tests conducted)(Fig. 3a and Supplementary
Table 3). This factor, accounting for 4% of variance in cortical
thickness measures, was characterized by a spatial pattern
comprising mainly temporal areas (loadings40.3), with the
highest loadings observed for left and right temporal poles and

Indirect effect:
–0.051 [–0.11; –0.01 ], P < 0.001

 Pb = 7.6×10–5

  rb = –0.17 
[–0.32;–0.03]

Pa = 1.5×10–11

ra = 0.29 
[0.15;0.43]

Age

Methylation pattern
ICA2

Global
cortical thickness 

a b

c, c’

  Pc = 3.1×10–10, rc = –0.27 [–0.41;–0.13] 

 Pc’ = 5.7×10-7 , rc’ = –0.22  [–0.37;–0.08]  

k2= 0.051 [0.01;0.11]

Figure 2 | Mediation analysis of methylomic pattern ICA2 on the
association between chronological age and global cortical thickness. Path
a represents the effect of chronological age on ICA2. Path b represents the
effect of ICA2 on global cortical thickness after removing the effect of
chronological age. Path c denotes the total effect of chronological age
on global cortical thickness. Path c’ represents the direct effect of
chronological age on cortical thickness while controlling for the indirect
effect (a multiplied by b). r: correlation coefficient; 99.9% confidence
interval for the parameters are shown in brackets; P: P value of association.
k2: kappa-squared standardized maximum possible mediation effect.
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entorhinal cortices (mean loadings across the four temporal
regions: 0.58) (Fig. 4 and Supplementary Data 1). We also run
EFA under most conservative adjustment of the 68 regional brain
measures of thickness for mean global thickness, to study whether
the significant regional effects observed herein are fully explained

by mean global cortical thickness. We observed high mean
correlation between factor loadings across the two EFA solutions
(r¼ 0.78); importantly, F6 remained stable across the two
solutions with an r¼ 0.89 (P¼ 6.9" 10# 24) between loadings
before/after adjustment for mean thickness. In addition, F6 scores
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Figure 3 | Correlations between ICA2 weights, EM performance and cortical thickness score F6. (a) Correlation between cortical thickness factor score
F6 and ICA2 weights in the methylomic profiling sample. (b) Correlation between ICA2 weights and EM performance in the methylomic profiling sample.
(c) Correlation between cortical thickness factor score F6 and EM performance in the combined sample (N¼ 1,234). Subjects from the methylomic
profiling sample are shown in blue. ICA2 and the EM/imaging phenotypes are adjusted for chronological age effects.
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Figure 4 | Regional cortical thickness loadings on factor F6 associated with ICA2 methylomic profile. Absolute values for loadings are considered.
Loadingso|0.3| are not shown.
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obtained from the mean thickness-adjusted EFA solution were
still significantly associated with ICA2 (r¼ " 0.09, P¼ 0.042),
suggesting that the results presented herein were not driven solely
by global mean thickness.

Thus, higher values of ICA2 are related to thinning of
a circumscribed cortical pattern that harbours neuroanatomical
correlates of episodic memory (EM). Therefore, we investigated
the relationship between this methylomic pattern and EM.
Behavioural assessment was obtained for a total of N¼ 531
subjects from the methylomic profiling study (see Methods,
Supplementary Table 1). We detected a significant negative
correlation between ICA2 and EM performance (r¼ " 0.138,
P¼ 0.00147) (Supplementary Table 4). This association remained
significant after partialling out age effects (r¼ " 0.122,
P¼ 0.00491) (Supplementary Table 4 and Fig. 3b) and after
adjustment for white blood cell types abundance (r¼ " 0.105,
P¼ 0.016 after adjusting for age).

Complete MRI and EM assessments were obtained for N¼ 512
participants from the methylomic profiling sample
(Supplementary Table 1). In this sample, the correlation between
F6 regional thickness score and EM performance was not
significant (r¼ 0.048, P¼ 0.283)(Supplementary Table 5). In an
additional independent sample of N¼ 722 healthy young adults
(Basel imaging sample, Supplementary Table 1), who underwent
identical MRI (in the same scanner) and cognitive assessment
as the methylomic profiling sample (see Methods), the correlation
between F6 regional thickness score and EM performance was
significant (r¼ 0.102, P¼ 0.00617)(Supplementary Table 5).
Importantly, subjects’ F6 factor scores from this additional
MRI sample were predicted based on the factor solution inferred
from the methylomic profiling sample. In the combined sample
(N¼ 1,234 participants), the correlation between F6 and
EM performance was significant (r¼ 0.079, P¼ 0.00574)
(Fig. 3c and Supplementary Table 5).

Functional and genomic characterization of ICA2 CpGs.
Contributions to a given ICA component are commonly
identified by selecting features (here: CpG sites) whose loadings, in
absolute value, exceed a cut-off threshold of ns standard deviations
from the mean of the loadings’ distribution22. In gene expression
studies, such a typical threshold ranges between 2 and 3
(ref. 35). Given the pronounced multidimensionality of the
methylomic profiles, we used a stringent cut-off of ns¼ 4, which
led to the selection of 970 CpGs for ICA2 (Supplementary
Data 2). The selected ICA2 CpGs mapped to 593 genes
(see Methods). Among the 970 CpGs constituting ICA2, one
marker (cg18055007) was part of the 353 Horvath age-predicting
markers27, and four (cg20822990, cg16054275, cg16867657,
cg21139312) were part of the 71 CpGs included in Hannum’s
DNAm age model14. We also examined whether, and to what
extent, ICA2 CpGs (N¼ 970) overlapped with those reported as
being differentially methylated (N¼ 2,037) in smokers36–39. This
was the case for a small fraction (3%) of the ICA2 CpGs.

Enrichment analysis for gene ontology (GO) terms,
molecular pathways and gene expression patterns, as catalogued
in the Molecular Signatures Database (MsiGDB, www.broadin-
stitute.org/gsea/msigdb/index.jsp), was performed using the
GOseq algorithm40, which corrects for multiple CpG mapping
per gene (see Methods). Using an FDR thresholdo0.05
(Benjamini–Hochberg adjustment), analysis of ICA2 revealed
significant enrichment for 76 highly overlapping gene sets,
which mainly encompassed genes related to immune system
function, inflammatory response and hematopoietic system
(Supplementary Data 3). To explore further the nature of the
immune component related to cortical thickness, we compared

the DNA methylation of the 970 most prominent ICA2 CpGs
to that of blood cell subtypes and their progenitors using
public data sets on 19 cell types (see Methods)41. We observed
consistently highly significant correlations (N¼ 970 CpG sites,
Po10" 60 for all correlations) between average whole-blood
DNAm values of the ICA2 CpGs and all various cell subtypes
examined (Supplementary Figs 3–5). The lowest correlation
coefficients (albeit still highly significant with Po10" 60) were
observed for regulator and memory CD4þ T-cells
(Supplementary Fig. 5). Generally, the correlation coefficients
might suggest high concordance of the cortical thickness-related
blood DNAm patterns with DNAm of B lymphocytes and
of the common myeloid progenitor lineage, and relatively
less concordance with DNAm of natural killer cells and
T lymphocytes.

We next characterized the ICA2-contributing CpGs with
respect to their topographical distribution across the
genome (that is, island, shore, shelf, open sea regions) and
to their relative location to gene transcripts. Given that a CpG
site may map to multiple transcripts, each site was uniquely
characterized according to following rules42: CpGs annotated
within 1,500 bp upstream the transcription start site of at least
one transcript were flagged as ‘TSS’; CpGs not flagged as ‘TSS’ but
located within a transcript (including 30UTR, 50UTR) were
flagged as ‘Genic’; all remaining CpGs were flagged as ‘Intergenic’.
We observed a significant shift in the distribution of CpG
topographical categories as compared to the genome-wide
background expectations (w2 test P¼ 2.7$ 10" 53) with 50% of
all CpGs annotated as Open Sea, while Islands CpGs were
clearly under-represented (10%)(Supplementary Fig. 1A). The
distribution of CpG sites across genomic context categories
differed from the genome-wide background distribution
(w2 test P¼ 1.65$ 10" 6), with an increased fraction of ‘Genic’
CpGs and a decreased fraction of ‘TSS’ CpGs. We also observed
a lower fraction of intergenic CpGs as compared to the
background distribution (Supplementary Fig. 1B).

Finally, to test between-sample comparability of the identified
ICA patterns, we performed ICA of the study population
reported in Hannum et al.14, which consists of 656 blood
DNAm profiles of participants spanning a wide age-range
(19–101 years, mean age: 64 years). We identified five ICA
patterns that were significantly associated with age (N¼ 656,
P¼ 0.000043 – Po10" 60). We then examined the overlap
between ICA1 and ICA2 CpGs identified in our sample and
CpGs contributing to each of the Hannum age-associated
IC pattern. A significant overlap with ICA1 was observed for
one pattern (termed here HICa, OR¼ 91, Po10" 60). For ICA2,
we observed a significant overlap with three age-associated
Hannum patterns (P¼ 1.9$ 10" 6 – Po10" 60), with said
overlap being particularly strong for one pattern (termed here
HICb, OR¼ 49, Po10" 60). The correlation of loadings between
CpGs contributing to ICA2 and CpGs contributing to the HICb
pattern was positive and of substantial magnitude (r¼ 0.87,
Po10" 60). Thus, we observed highly significant between-sample
overlap of ICA patterns despite the differences in age structure
of the two populations.

ICA2-derived multigenic score associated with EM performance.
Given that DNA methylation patterns per se represent complex
traits18,43, we studied the genetic underpinnings of the ICA2
pattern. As for any genetically complex trait, several genetic variants
are likely to contribute jointly to inter-individual variability of
DNAm variation as represented by ICA2. Therefore, we employed
gene set enrichment analysis (GSEA)44–46 to disentangle
biologically meaningful subsets of genetic contributions to ICA2.
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DNA from all individuals participating in the methylomic
profiling study was processed on the Affymetrix Genome-wide
Human SNP Array 6.0. After standard QC, correction for
minor allele frequency and deviation from Hardy–Weinberg
equilibrium, a total of 733,370 autosomal SNPs were used for
association analysis (see Methods).

Age-adjusted single-marker P values for association with ICA2,
under an additive model, were tested for gene set enrichment
using MAGENTA44 (see Methods). Across the 1,411 tested sets
we detected a significant over-representation of association
signals (FDRo0.05) in six gene sets mainly related to immune
system regulation (Table 1). Given the substantial overlap
between the identified gene sets, we further combined these sets
into two gene groups with minimum overlap: genes from
categories GO: Lymphocyte differentiation, GO: Leukocyte
differentiation and GO: Haemopoiesis were grouped into
GO:0048534 (Haemopoietic or lymphoid organ development)
which comprised 73 unique genes; the two remaining gene sets,
that contained 12 overlapping genes, Biocarta: Pyk2 pathway
and Biocarta: Keratinocyte pathway were grouped into
‘Pyk2/Keratinocyte pathway’, which comprised 60 unique genes.
These two distinct gene groups had one gene in common.

For each of the gene groups we calculated multilocus genetic
scores to capture their contributions to individual ICA2
variability. The scores comprised 39 and 33 significant SNPs
mapping to an equal number of genes from the ‘GO:0048534’
and ‘Pyk2/Keratinocyte’ groups respectively (Supplementary
Data 4 and 5). Genetic scores were weighted by the direction of
effect of single-marker association statistics, resulting in positive
correlation of each score with the ICA2 pattern (see Methods).
As expected, both scores correlated significantly with
ICA2 variability (‘GO:0048534’: r¼ 0.53, P¼ 3.26" 10# 40;
‘Pyk2/Keratinocyte’: r¼ 0.45, P¼ 5.9" 10# 28).

The genetic score derived from the Haemopoietic and
Lymphoid Organ development set (GO:0048534) was
significantly correlated with EM performance (r¼ # 0.10,
P¼ 0.01). No significant correlation was detected for the
‘Pyk2/Keratinocyte’-derived genetic score (r¼ 0.02, P¼ 0.7).

To test the robustness of this association, we studied
the correlation between the GO:0048534-derived genetic score
and EM in four additional independent samples (N¼ 3,346):
three samples, including subjects from the Basel imaging
sample, comprised a total of N¼ 2,603 healthy young
subjects who performed either a picture free recall or
a word free recall task; an additional sample included N¼ 743
elderly healthy individuals who performed a word free recall task
(age range: 74–91 years, see Methods and Table 2). The
genetic score correlated negatively with EM performance,
resulting in a significant combined association P¼ 0.0003
(Stouffer Meta-analysis, Table 2).

To test whether GSEA-derived genetic score SNPs are enriched
for mQTLs of the ICA2 CpGs, we first examined the location of

these SNPs relative to the 970 CpGs constituting ICA2. We
observed a significant over-representation (53%, Po0.0002) of
gene score SNPs in cis (that is, ±1 Mbp) to ICA2 CpGs as
compared to a genome-wide random distribution (see Methods).
Next, we performed mQTL analysis for each of the score
SNP–ICA2 CpG pairs. We observed significant deviation from
the null uniform distribution with particular over-representation
of genetic associations with effect sizes ranging from small to
moderate (Supplementary Fig. 2). Thus, GSEA-derived SNPs
collectively exert multiple genetic effects of small to moderate
magnitude on the CpGs contributing to ICA2.

We also studied the association between the genetic score
and cortical thickness in the methylomic sample (N¼ 514).
No significant correlation was observed with cortical thickness
(r¼ # 0.06, P¼ 0.08).

Discussion
In the present study we applied ICA decomposition of
whole-blood genome-wide methylomic profiles in healthy young
adults (22.9±3.3 years, mean±s.d.) and detected a specific
pattern of DNAm (ICA2) that was associated with cortical
thinning and decreased EM performance. We also observed that
a significant part of the well-known negative correlation
between age and cortical thickness was partially mediated
by ICA2. CpG sites that contributed to this methylation
pattern mapped to genes involved in immune system regulation
and inflammatory response.

Notwithstanding the robust and replicated findings presented
herein, we would like to stress some limitations, which are
inherent to the study design. First, the mediation analysis
suggests that ICA2 significantly, albeit partially, mediates the
effect of age on cortical thickness. Given the associative nature of
the data, we cannot exclude the possibility that the correlation
observed between ICA2 and cortical thickness might also be
partially driven by additional non-modelled variables. Second,
decomposition of genome-wide methylomic profiles comes at the

Table 1 | GSEA results for ICA2 pattern.

Database Gene set No. of genes* Nominal GSEA Pw FDR

Gene ontology Leukocyte differentiation 38 7.1" 10# 5 0.0124
Biocarta PYK2 pathway 27 6" 10#4 0.0183
Gene ontology Lymphocyte differentiation 26 8.6" 10# 5 0.0234
Biocarta Keratinocyte pathway 44 2" 10#4 0.024
Gene ontology Haemopoiesis 71 3.22" 10#4 0.0407
Gene ontology Haemopoietic or lymphoid organ development 73 2" 10#4 0.044

*Number of genes in gene set mapped by at least one SNP.
wEmpirical enrichment P value at a 75th percentile cut-off.

Table 2 | Association of Haemopoetic or Lymphoid Organ
development genetic score and EM-related traits in
independent samples.

Sample N Age range EM task r P

Basel cognitive 1,445 18–35 Pictures #0.062 0.00912
Basel imaging 534 18–35 Pictures #0.02 0.32
Zurich 624 18–45 Words #0.073 0.0349
AgeCode 743 74–91 Words #0.076 0.0191
Stouffer’s method meta-analysis #0.06* 0.0003

r: Pearson’s correlation coefficient. P: one-sided correlation test P value.
*sample size weighted r.
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cost of specificity of the inferred solution towards the genomic
localization of CpG markers. The detection of CpGs contributing
to the methylomic signature relies on a fixed threshold on the
distribution of the components’ loadings. In our case, this
approach allowed relating ICA2 broadly to genes involved in
immune system function. However, the specific relationships
between the identified marker sets and the phenotypes of interest
can be studied only in downstream experiments focusing on
single CpG sites. Third, the ICA model relies on the assumption
that methylomic signals arise from a fixed set of independent
sources. In the absence of a priori knowledge about the
source signal, the number of inferred components must be
determined empirically, which might impact negatively on
generalizability. Integration of multiple-layers of molecular traits,
such as genotypic data used in this study, is therefore important
to address whether the identified patterns represent relevant
features of the data set.

The cellular mechanisms underlying changes in cortical
thickness are not entirely clear; however, they are most likely
life phase-dependent. During development, cortical thinning
might be related to events mirroring cortical maturation, such as
synaptic pruning47, whereas shrinkage of neurons, reductions of
synaptic spines and lower numbers of synapses probably account
for adult age-related cortical thinning48. In addition, myelination
of lower cortical layers might cause the cortical mantle to appear
thinner on MR scans49. This phenomenon might account for
a substantial part of the observed cortical thinning during
development. The correlation between cortical thickness and
cognitive function also seems to be age-dependent. In adulthood
and old age, cortical thinning is associated with a decline in
cognitive function3, whereas during development this
relationship is dynamic with predominantly negative correlation
between cognitive function and cortical thickness in early
childhood to a positive correlation in late childhood and
beyond6. Importantly, a substantial proportion of the strength
of the relation between cortical thinning and cognitive decline
in adults is attributable to the influence of age in each type
of measure3.

The association of ICA2 with cortical thickness and
EM performance reported herein supports observations relating
the peripheral immune system to brain morphology and
cognition50,51 and is coherent with the notion that the brain
and its functions is directly linked to peripheral tissues relevant to
the function of the immune system52. The data presented herein
might suggest high concordance of the cortical thickness-related
blood DNAm patterns with DNAm of B lymphocytes and
of the common myeloid progenitor lineage, and relatively
less concordance with DNAm of natural killer cells and
T lymphocytes. Nevertheless, it is important to stress that we
cannot draw any mechanistic conclusions about the relationship
between peripheral methylation on the one side and cortical
thickness and EM performance on the other, and that no further
inference can be drawn towards the contribution of a specific
immune cell type to the reported associations. Indeed, the
mechanisms through which the peripheral immune system exerts
an influence on the central nervous system remain elusive. Direct
cytokine-induced central responses or indirect cytokine-mediated
changes within the central nervous system via activation of
vagal-nerve afferents are being discussed among possible
scenarios53,54. Of note, methylation sites related to IL6R
(encoding interleukin 6 receptor), ZC3H12D (encoding zinc
finger CCCH-type containing 12D) and CD4 (encoding CD4
molecule) are listed among the top ten ICA2 contributing CpGs
(Supplementary Data 2) in our data. The products of these genes
are centrally implicated in cytokine signalling, mRNA stability of
cytokine genes and immunological response. It will be interesting

to investigate whether direct measurement of the immune factors
implicated herein along with traditional blood markers of the
immune system will provide additional information with regard
to the relation between these immune factors and cortical
thickness. We speculate that this might not be the case, given the
substantial volatility of such direct measurements, which mostly
reflect acute state of the immune system, whereas methylation
profiles reflect, at least partially, a record of past immune
regulation. Nevertheless, further experimental work is warranted
to test this hypothesis.

Inter-individual variability in blood cell composition is known
to influence whole-blood DNAm measurements55. In our
population of healthy young adults, no significant association
between blood cell sub-types and cortical thickness or EM
performance was observed (Supplementary Table 6). Moreover,
the associations between ICA2, cortical thickness and EM were
significant also after correction for blood cell composition. In
addition, we observed a significant positive correlation between
ICA patterns (ICA1 and ICA2) and chronological age in the
examined blood cell-specific data sets. Thus, it is unlikely that the
detected associations are driven by inter-individual variability
in composition of blood cell types.

In addition to studying methylation patterns, we also
performed a genome-wide SNP-based analysis of ICA2. The
reasons for this analysis were two-fold: (1) Given the fact that
genetic variation is related to DNA methylation, we tested
whether ICA2-related genetic variation can be used as a proxy for
DNA methylation in larger samples, where such epigenetic
measures were unavailable. (2) We hypothesized that the
biological processes revealed through gene set enrichment
would be similar regardless of the nature of the data input
(that is, genetic versus epigenetic variation). Interestingly, the
SNP-based analysis of ICA2 revealed a robust association between
variants of genes involved in the regulation of the immune system
and EM in independent cohorts of young and elderly healthy
adults. This suggests that the association between ICA2,
which reflects epigenetic variation, and EM performance is, at
least partially, genetically driven.

In conclusion, we adopted an ICA approach to achieve
a tractable and biologically meaningful representation of
genome-wide methylation profiles that are amenable to
association testing. To this end we searched for methylomic
profiles that arise from putatively independent biological
processes, each reflected by a restricted number of CpG sites.
By decomposing genome-wide DNAm profiles we identified an
epigenetic mark of immune system genes linked to cortical
thickness and to human memory. The well-known effect of age
on cortical thinning is partially mediated by this epigenetic mark,
and its genetic underpinnings also point to genes involved in
immune system regulation. Thus, the decomposition of blood
methylome-wide patterns bears considerable potential for
the study of brain-related physiological traits. For example,
peripheral markers of systemic inflammation are associated with
reduced grey matter volume, both in midlife adults50 and in the
elderly56. Moreover, such grey matter reduction seems to mediate
the negative effects of peripheral inflammation on age-related
cognitive decline50. It will be interesting to investigate whether
the peripheral DNAm profiles identified herein might be used to
differentiate between physiological and pathological age-related
cognitive decline and cortical thinning.

Methods
Samples. Methylomic profiling sample. This sample is part of an ongoing,
continuously recruiting imaging genetics study of healthy young adults in the city
of Basel, Switzerland. Aim of the study is to recruit large samples of healthy young
adults for assessing cognitive performance measurements, personality traits,
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functional and anatomical MRI and genetics (based on saliva DNA) at the
time-point of the main investigation. Advertising for the main investigation was
done mainly in the University of Basel. Subjects were re-invited via email or at the
time-point of the main investigation to an additional blood and saliva sampling.
The time point of this second investigation was on average 348 days (min 1 day;
max 1,384 days; median 314 days) after the main investigation. For the purpose
of this study, a total of N¼ 568 subjects underwent blood methylomic profiling
(Data lock Apr. 2014). After pre-processing of methylomic data and genetic
outliers exclusion, a total of N¼ 533 subjects were included in the methylomic
profiling sample (Supplementary Table 1).

Basel imaging sample. This sample is part of the same ongoing, continuously
recruiting imaging genetics study as the methylomic profiling sample. A total of
N¼ 753 participants who were not part of the N¼ 533 methylomic profiling
sample underwent imaging and EM assessment. A total of N¼ 722 subjects with
complete imaging and EM assessment were included in the Basel imaging sample
(Supplementary Table 1), among which N¼ 623 subjects underwent genotyping.

Basel cognitive sample. This sample is part of an ongoing, continuously
recruiting genetics study in the city of Basel, Switzerland, independent from the
methylomic profiling and Basel imaging samples. A total of N¼ 1,622 healthy
young subjects underwent EM performance assessment and genotyping (mean age:
22.4; 66% female).

Zurich sample. This sample included a total of N¼ 706 healthy young subjects
recruited in Zurich, who underwent EM assessment and genotyping (mean age:
21.8; 70% female).

All participants were free of any neurological or psychiatric illness, and did not
take any medication at the time of the experiment (except hormonal
contraceptives). The ethics committee of the Cantons of Zurich, Basel-Stadt and
Basel-Landschaft approved the experiments. All participants received general
information about the study and gave their written informed consent for
participation.

AgeCode sample. This sample consisted of elderly participants of the German
Study on Ageing, Cognition and Dementia in primary care patients (AgeCoDe).
The AgeCoDe study is an ongoing primary care-based prospective longitudinal
study on early detection of mild cognitive impairment and dementia established by
the German Competence Network Dementia. The sampling frame and sample
selection process of the AgeCoDe study have been described in detail previously57

(see Supplementary Methods for complete description). Sufficient DNA-samples
for genome-wide genotyping were available for 782 subjects. The complete
description of EM phenotypes can be found in Supplementary Methods. The
AgeCoDe-study was approved by the local ethic committees of all participating
centres (Ethics Committee of the Medical Association Hamburg; Ethics Committee
of the University of Bonn; Medical Ethics Committee II, University of Heidelberg
at the University Medical Center of Mannheim; Ethics Committee at the Medical
Center of the University of Leipzig; Ethics Committee of the Medical Faculty of the
Heinrich-Heine-University Düsseldorf; Ethics Committee of the TUM School of
Medicine, Munich). All participants received general information about the study
and gave their written informed consent for participation.

Munich sample. The Munich sample consisted of patients with first episode and
recurrent unipolar depression treated as in-patients at the Max Planck Institute of
Psychiatry, Munich, and healthy control subjects (N¼ 627 with combined MRI
and DNA availability; 423 patients, age 47.9 (s.d. 13.8) years; control subjects age
49.5 (s.d. 13.3) years), for the most part overlapping with imaging genetic and
MDD association studies reported in collaboration with the ENIGMA
consortium58,59. Other than in the flagship study58, no bipolar patients were
included for reasons of clinical homogeneity59. MDD diagnoses were based on
clinical consensus in addition to M-CIDI or SCAN interviews, depending
on the original study protocols. After pre-processing of methylomic data, and
MRI-QC-based exclusions, combined data of N¼ 596 subjects was available for
statistical analysis. Description of methylomic profiling and structural imaging of
the Munich sample are provided in Supplementary Methods. All participants gave
their written informed consent after receiving general information about the study.
Study protocols and the transition of anonymous data into the biobank of the Max
Planck Institute of Psychiatry were approved by the ethics committee of the Ludwig
Maximilian University in Munich, Germany.

Methylomic profiling. Blood samples were collected from all the subjects using
BD Vaccutainer Push Button blood collection set and 10.0 ml BD Vacutainer Plus
plastic whole blood tube, BD Hemogard closure with spray-coated K2EDTA
(Becton, Dickinson and Company, New Jersey, USA). DNA was isolated from the
remaining fraction, upon plasma removal. The isolation was performed with
QIAmp Blood Maxi Kit (Qiagen AG, Hilden, Germany), using the recommended
spin protocol. Subject’s DNA was extracted between midday and evening
(mean time¼ 14:30, range 13:00–20.00). Microarray-based DNA methylomic
profiling from whole-blood samples was performed at ServiceXS (ServiceXS B.V.,
Leiden, the Netherlands). In brief, the bisulfite conversion was performed
with 500 ng genomic DNA input using the EZ DNA Methylation Gold Kit
(Zymo Research, Irvine, CA, USA). A bisulfite conversion quality control on the
samples was performed with DNA qPCR reaction and subsequent melting curve
analysis60. The bisulfite-converted DNA was processed and hybridized to the
HumanMethylation450 BeadChip (Illumina, Inc.), according to the manufacturer’s

instructions. Methylation data were pre-processed using the R package RnBeads61.
Beta values were calculated from SWAN normalized intensities62. Beta-values with
detection P valueZ0.05 were considered as missing. Individual probes were
excluded based on the following criteria: (1) non-CpG context probes, polymorphic
probes, probes harbouring three or more SNPs in their 50mer extension
(MAFZ0.01), and cross-hybridizing probes, based on the annotation provided
with the RnBeads package61, (2) cross-hybridizing probes and polymorphic
CpGs sites referenced in refs 63, 64, (3) detected by iterative Greedycut algorithm,
(4) missing rateZ5% in final samples. After quality control a total of 397,947
autosomal probes remained for analysis. Samples showing divergent genetic
background from the majority of Caucasian samples were excluded; these genetic
outliers were identified using Bayesian Clustering Algorithm65 on genotypic
projections onto the two first principal components inferred from reference
Hapmap populations (CEU, JPT, CHB). Exclusion of samples yielded a total
of 533 samples entering methylomic analyses.

To rule out systematic shift in DNA methylation values induced by SWAN
normalization, we compared the correlation between summary statistics of CpG
sites before and after normalization. We observed high correlation for both average
(r40.99) and variance (r40.95) of DNA methylation values across samples. We
also observed high average correlation between DNAm values before and after
normalization per-CpG site (average r¼ 0.87), and per-sample (average r¼ 0.89
after mean-centring DNAm values per CpG).

DNA methylation profiles were obtained on average 1 year after imaging
acquisition. We performed a sensitivity analysis examining the association between
ICA2 and cortical thickness after regressing out the difference (Dage) between age
at blood sampling and age at MRI assessment from the methylomic pattern. The
association remained significant (P¼ 6.4" 10# 5, r¼ # 0.18 after adjustment for
age) indicating that Dage did not affect the results of the study.

Primary phenotypes (age, cortical thickness, EM performance) were not
confounded with methylomic processing covariates (plate, sentrix ID, position)
(linear model minimum observed P40.04).

ICA2 showed weak nominal association with Sentrix ID (Supplementary
Data 6). After adjustment of ICA2 for this technical covariate, the association
with age, cortical thickness and EM performance remained highly significant
(age: P¼ 1.6" 10# 11; age-adjusted thickness: P¼ 1.3" 10# 4, EM: P¼ 0.0096).

Blood cell counting. Haematological analysis, including blood cell counts, was
performed at the collection time point with Sysmex pocH-100i Automated
Hematology Analyzer (Sysmex Co, Kobe, Japan).

Lymphocytes, neutrophils and overall count of basophils, monocytes and
eosinophils (mixture) were available for N¼ 527 participants from the methylomic
profiling sample.

Structural imaging. Participants from the methylomic and Basel imaging samples
underwent identical MRI assessment.

Measurements were performed on a Siemens Magnetom Verio 3T wholebody
MR unit equipped with a 12-channel head coil. A high-resolution T1-weighted
anatomical image was acquired using a magnetization prepared gradient echo
sequence (MPRAGE) sequence with the following parameter: TE (echo
time)¼ 3.37 ms, FOV (field of view)¼ 25.6 cm, acquisition
matrix¼ 256" 256" 176, voxel size¼ 1 mm" 1 mm" 1 mm. Using a midsaggital
scout image, 176 contiguous axial slices were placed along the anterior# posterior
commissure (AC#PC) plane covering the entire brain with a TR¼ 2,000 ms
(flip angle¼ 8!).

From the initial N¼ 533 participants from the methylomic profiling sample and
N¼ 753 from the Basel imaging sample, a total of 50 participants were excluded
due to excessive movement or scanner noise by visual inspection of T1-weighted
images, or technical reasons. This yielded a total of N¼ 514 from the methylomic
profiling sample entering structural imaging analysis, and N¼ 722 subjects from
the Basel imaging sample.

T1-weighted images were processed using the publicly available FreeSurfer
software (v4.5) (refs 31–33). This processing includes motion correction, removal
of nonbrain tissue, automated Talairach transformation, intensity correction,
volumetric segmentation, and cortical surface reconstruction and parcellation.
Specifically, the three-dimensional cortical surface was reconstructed to measure
volume, surface area and thickness at each surface location or vertex. After the
initial surface model was constructed, a refinement procedure was applied to
obtain a triangulated representation of the grey/white (GM/WM) boundary. The
GM/WM boundary was then deformed outwards to obtain an explicit
representation of the pial surface. Thickness measurements were obtained by
calculating the distance between the GM/WM boundary and pial surfaces at each
vertex across the cortical mantle31. Global individual measures for thickness were
computed by averaging cortical vertices measurements for both hemispheres.
Individual measures were adjusted for sex, intra-cranial volume and MR-technical
batches (software and gradient batches) using linear regression.

ICA based identification of methylomic patterns. After probes and samples
quality control, missing Beta values were imputed using the R package impute.
In order to adjust the methylation signals for technical confounders and preserve
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effects of chronological age on methylation sites, we applied the iteratively
re-weighted surrogate variable analysis algorithm implemented in the SVAR
package66, considering age at blood sampling as the outcome. Beta values were
adjusted for sex and 40 inferred surrogate variables using linear regression. For
each CpG, the residuals from this linear model were standardized across samples.

ICA decomposition of the standardized residuals was performed using the
R package fastICA. The number of components to extract was estimated using the
Random Matrix Theory algorithm67 implemented in the R package isva68. Given
the stochastic initialization of fastICA algorithm, we performed 30 repeats of the
ICA components’ estimation. All realizations of the mixing matrix (A) were
clustered using hierarchical clustering, with complete linkage agglomeration, based
on Pearson’s correlation similarity. Final components were determined as the
centrotypes of the inferred clusters.

When using such decomposition methods as ICA, multiple-correction depends
on the number of identified components, which in not known a priori. In our case,
the genome-wide methylomic data set was decomposed into 15 components
that were amenable to downstream association testing. Hence, traits correlated
with these 15 components were subjected to following a level adjustment:
P¼ 0.05/15¼ 0.0033. After having identified ICA2 as the only pattern associated
with cortical thickness, we further investigated its relationship with eight regional
thickness factor scores. The a level was thus adjusted for eight tests conducted
(P¼ 0.05/8¼ 0.00625).

Association testing of methylomic patterns. Swiss sample. The association
between ICA patterns and imaging or behavioural phenotypes was assessed using
Pearson’s correlation, with two-sided association test. Given the delta between
age at methylomic profiling and age at main investigation, chronological age
adjustment was achieved by partialling out age effects: effect of age at methylomic
profiling was regressed out from methylomic patterns and age at main
investigation was regressed out from the phenotypic measure, using linear
regression. Adjustment of methylomic patterns for blood cell counts was
performed by regressing out effects of chronological age at blood sampling and
effects of each of the three white-blood cell parameters using linear regression. The
obtained residuals were subsequently tested for association with the relevant
imaging or EM phenotypes.

Self-reported smoking frequency was measured on a 4-point Likert scale
(0¼ never, 1¼ occasionally, 2¼ 1–5 cigarettes per day, 3¼ 6–20 cigarettes per day,
4¼ 20 or more cigarettes per day). Self-reported alcohol consumption and
cannabis use frequencies were measured on a 3-point Likert scale (0¼ never,
1¼ occasionally, 2¼ daily). Association testing for each indicator was performed
using linear regression.

Munich sample. ICA2 patterns were calculated separately for the whole Munich
sample and a subsample ofo40-year-old subjects (N¼ 163). DNA methylation
values were first adjusted for sex using linear regression. ICA2 patterns were then
calculated as linear combination between the scaled residuals and the inverse ICA2
loadings inferred from the Swiss sample (Supplementary Data 8). Separate Pearson’s
correlation analyses were performed between ICA2-scores and biographical age, and
ICA2-scores and cortical thickness. In addition, partial correlation analyses were
performed between ICA2-scores and cortical thickness, correcting for age at MRI,
difference between age at MRI and age at blood-drawing, sex, intracranial volume
and MRI batch effects. All P values reported in the replication sample are one-sided.

Exploratory factor analysis of cortical thickness measures. Average regional
cortical thickness in 68 areas (34 per hemisphere) were obtained from FreeSurfer
automated parcellation method based on Desikan-Atlas31–33. Individual measures in
each sample (methylomic profiling and Basel imaging samples) were adjusted for sex,
intra-cranial volume, MR-technical batches and chronological age using linear
regression. EFA was performed on regional cortical thickness measures from the
methylomic profiling sample (N¼ 514). Factor extraction was based on principal axis
factoring method. The number of factors to extract was determined using the parallel
method implemented in R package psych. The factor analysis solution was rotated
using the varimax method. A variable was considered to load on a factor if its
absolute loading on the factor was 0.3 or greater. Based on the factor solution inferred
from the methylomic profiling sample, we extracted factor scores predictions for both
the methylomic profiling sample and the independent Basel imaging sample, using
regression method. For each sample, factor scores were tested for association with
EM performance using Pearson’s correlation, with a two-sided association test. The
same association analysis was conducted combining factor scores and EM
performance of the two samples (combined sample, N¼ 1,234).

Mediation analysis. Chronological age at main investigation, ICA2 methylomic
pattern and global cortical thickness were entered in a mediation analysis28 using
the R package MBESS. To represent the strength of the mediation we computed the
indirect effect (a multiplied by b, see Fig. 1) and the k2 square value which is
interpreted as the proportion of the maximum possible indirect effect that could
have occurred69. The 99.9% confidence intervals for these parameters were
obtained on bias-corrected and accelerated bootstrapping procedure with 10,000
resamplings. Significance of the indirect effect was assessed by testing whether the

confidence interval of the indirect effect excludes 0, considering interval limits from
90 to 99.9%.

Gene-set enrichment analysis of methylomic component. CpGs were mapped
to transcripts based on Illumina’s annotation; EntrezID gene identifiers were
downloaded from the UCSC genome database. Enrichment testing was performed
using the GOseq package40 which applies stringent correction towards genes
mapped by multiple CpGs across the array. Enrichment statistics were obtained
using Wallenius approximation. A total of 19,518 genes mapped by the 397,947
CpGs entering the analysis were used as background. Gene sets were downloaded
from the MSig DB (www.broadinstitute.org/gsea/msigdb/, curated gene lists
C2 and C5).

Genetic association analyses. Genotyping. DNA was extracted from saliva or
blood using standard protocols. All subjects were individually genotyped using the
Affymetrix Human SNP Assay 6.0 according to the manufacturer’s recommen-
dation. In the methylomic profiling sample, subjects with unusual ancestry
according to the majority of the sample were excluded using Bayesian clustering
algorithm and Hapmap reference populations (see Methylomic profiling). Subjects
were also checked for inconsistency between reported and genetically inferred sex.
Individual call rate averaged to 98.3%. For the purpose of scoring analyses, subjects
from the Basel imaging, Basel cognitive, Zurich and AgeCode samples were
additionally excluded based on the following criteria: genome-wide call rateo95%;
IBD sharing defined by PI_HAT40.2 (one-sample of each detected pair was
excluded); Bayesian Clustering65 outlier detection on genome-wide call rate and
heterozygosity rate. This yielded a total of N¼ 1,445 individuals entering the
genetic scoring analysis for Basel cognitive sample, N¼ 534 for Basel imaging
sample, N¼ 624 for Zurich sample and N¼ 743 for AgeCode sample.

Validation of the link between methylation and genotype data. A per-subject
crosscheck between phenotypic data, methylation data and genetic data was
performed using the reported sex and sex-predictions based on the array data, as
well as matching of all SNPs represented on the Illumina 450 K array to the
corresponding Affymetrix SNP 6.0 genotype calls. This crosscheck allowed an
unambiguous assignment of each methylation data set to the corresponding genetic
and phenotypic data set.

Gene set enrichment analysis of ICA2 pattern. GSEA was performed using the
MAGENTA44 software which derives gene-centric association statistics from
single-SNP association P values, while controlling for potential confounders
(gene size, number of SNPs, number of independent SNPs, number of
recombination hotspots, linkage disequilibrium and genetic distance). Genome-
wide single-SNP association analysis was conducted on ICA2 pattern adjusted for
chronological age (at blood sampling), using an additive model. A total of 773,330
autosomal SNPs that passed individual SNP quality control in the methylomic
profiling sample (exclusion criteria MAFo0.01; HWE P valuer0.0001;
call-rateo0.90) entered the analysis.

In order to capture signals from potentially regulatory variants, MAGENTA-
derived gene scores were based on SNPs lying within 20 kb upstream and
downstream of the extreme transcript boundaries. The GSEA algorithm includes
a built-in procedure controlling for physical proximity of SNPs within a given gene
set (automatic exclusion of the gene exhibiting a lower association signal in case of
one SNP mapped to multiple genes within a gene set). Gene set enrichment statistic
was based on the 75th percentile cut-off of the observed genome-wide gene-score
distribution, which has been proposed to show optimal power for weak genetic
effects as expected for complex polygenetic traits. Empirical P values were adjusted
for multiple testing using FDR. Gene sets were extracted from the MSigDB v3.1
database (http://www.broadinstitute.org/gsea/msigdb), including gene sets from
different online databases (KEGG, Gene Ontology GO, BioCarta and Reactome).
We used a gene set size ranging between 20 and 200 genes to avoid both overly
narrow and broad gene set categories, resulting in 1,411 gene sets to be analysed.
Genes from the extended major histocompatibility complex region were excluded
from the analysis.

Genetic scoring association analyses. The scores comprised SNPs associated with
ICA2 pattern (Po0.05) mapping to an equal number of genes (that is, one most
significant SNP per gene). Genetic scores were computed using the PLINK70 score
profile procedure. Scores were weighted by the direction of effect of association
(þ 1 or # 1) of each minor allele with ICA2 pattern inferred from the methylomic
profiling sample. Genetic score calculations were restricted to SNPs meeting the
inclusion criteria: MAFZ0.01; HWE P40.0001; call-rateZ90% within a sample.
Resulting genetic profiles were adjusted by regressing out the effect of the number
of missing SNPs per-subject included in the scoring procedure. Associations
between the inferred scores and behavioural or imaging phenotypes were assessed
using Pearson’s correlation. Given the negative correlation observed between ICA2
methylomic pattern and EM performance in the methylomic sample, genetic score
correlation tests with EM performance were one-sided (lower tail).

Description of additional analyses of ICA methylomic patterns can be found in
Supplementary Methods.

Data availability. The data that support the findings of this study are available
from the corresponding authors on request.
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Supplementary	Figures	
	
	
Supplementary	 Figure	 1:	 Distribution	 of	 ICA2-contributing	 CpGs	 based	 on	
topographical	distribution	(A)	and	relative	location	to	gene	transcript	(B).	
		
Background	 corresponds	 to	 the	 genome-wide	 distribution	 of	 CpGs	 across	 the	 arrays.	 ICA2	
distribution	was	compared	to	background	distributions	using	goodness	of	 fit	χ2	test:	p:	p-value;	
stars	indicates	the	magnitude	of	the	bins	standardized	residuals:	*:	>	|2|,	**:	>|3|,	***:	>	|4|.		
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Supplementary	 Figure	 2:	Q-Q	plot	of	mQTL	analysis	between	71	GSEA	genetic	 score	
SNPs	and	ICA2	CpGs.	
	
Red	line	shows	expected	uniform	distribution.	
Blue	dashed	line	indicates	the	95	%	quantiles	obtained	from	1000	repeats	of	association	testing	
between	ICA2	CpGs	and	randomly	selected	cis-SNPs.	
	
	

	
	
	 	



	 3	

Supplementary	 Figure	 3:	 Average	 whole-blood	 DNAm	 at	 970	 ICA2	 CpGs	 versus	

progenitor	cell	specific	DNAm.	

Horizontal	axis:	average	whole-blood	DNAm	observed	in	the	methylomic	Swiss	sample	(n=533).	

Vertical	axis:	average	DNAm	observed	in	progenitor	cells.	
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Supplementary	 Figure	 4:	 Average	whole-blood	 DNAm	 at	 970	 ICA2	 CpGs	 versus	 cell	

subtypes	specific	DNAm.	

Horizontal	axis:	average	whole-blood	DNAm	observed	in	the	methylomic	Swiss	sample	(n=533).	

Vertical	axis:	average	DNAm	observed	in	specific	cell	subtypes.	
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	 5	

Supplementary	 Figure	 5:	 Average	 whole-blood	 DNAm	 at	 970	 ICA2	 CpGs	 versus	

lymphocytes	subtypes	specific	DNAm.	

Horizontal	axis:	average	whole-blood	DNAm	observed	in	the	methylomic	Swiss	sample	(n=533).	

Vertical	axis:	average	DNAm	observed	in	specific	cell	subtypes.	

 

 
 
 
 
	
	
	
	
	
	

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

r=0.71
S���Hï��

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
ICA2 CpGs Swiss sample DNAm

&
'
��
��
1
.�
FH
OOV
�'
1
$P

1DWXUDO�NLOOHU�FHOO

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

r=0.87
S���Hï��

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
ICA2 CpGs Swiss sample DNAm

&
'
��
��
%ï

&
HO
OV
�'
1
$P

%�O\PSKRF\WH

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

r=0.75
S���Hï��

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
ICA2 CpGs Swiss sample DNAm

&
'
��
�7
ïF
HO
OV
�'
1
$P

&'���7�FHOOV

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

r=0.77
S���Hï��

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
ICA2 CpGs Swiss sample DNAm

&
'
��
�7
ïF
HO
OV
�'
1
$P

&'���7�FHOOV

●●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

r=0.77
S���Hï��

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
ICA2 CpGs Swiss sample DNAm

&
'
��
5
2
ï5

$�
�1
DL
YH
�7
ïF
HO
OV
�'
1
$P

1DLYH�&'���7�FHOOV

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

r=0.44
S���Hï��

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
ICA2 CpGs Swiss sample DNAm

&
'
��
5
2
�5

$ï
�0
HP

RU
\�
7ï

FH
OOV
�'
1
$P

0HPRU\�&'���7�FHOOV

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

U ����
S���Hï��

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
ICA2 CpGs Swiss sample DNAm

&
'
��
�&

'
��
�ï
�5
HJ
XO
DW
RU
\�
7ï

FH
OOV
�'
1
$P

5HJXODWRU\�7�FHOOV



	 6	

Supplementary	Tables	
	
Supplementary	Table	1:	Description	of	methylomic	profiling	and	imaging	
analysis	samples.	

	
	 Methylomic	

profiling	
sample	

Basel	imaging	
sample	

N	 533	 722	

Age	 at	 MRI/behavioral	 assessment	

in	years	(mean	±	SD)	
22.9	±	3.3	 22.9	±	3.3	

Age	blood	sampling	in	years	(*)	 23.9	±3.5	 /	

Number	of	females	(%)	 311	(58.3%)	 447	(61.9%)	

Episodic	Memory-N		 531	 722	

Structural	imaging-N		
(including	Episodic	Memory-N)	 514	(512)	 722	(722)	

	

(*):	blood	sampling	for	methylomic	profiling.	

	

	
Supplementary	Table	2:	Correlations	between	15	ICA	methylomic	patterns	and	
global	thickness.	

	
(a)	Cortical	measures	were	adjusted	for	sex,	intracranial	volume	and	MR-technical	

batches	using	linear	regression.	(b)	Chronological	age	effects	were	further	partialled	out	

from	cortical	measures	and	ICA	component.	r:	Pearson's	correlation	coefficient;	p:	two-
sided	test	p-value.	
	

ICA	

Thickness	
N	=	514	 Age	

N	=	533	No	age	adjustment	 Age	adjustment	

r	 p	 r	 p	 r	 p	
ICA1	 -0.14	 0.00162	 0.01	 0.83	 0.54	 1.54E-42	

ICA2	 -0.24	 3.86E-08	 -0.18	 6.55E-05	 0.29	 4.68E-12	

ICA3	 -0.03	 0.548	 -0.01	 0.901	 0.08	 0.0578	

ICA4	 0.01	 0.837	 -0.01	 0.806	 -0.08	 0.0691	

ICA5	 -0.06	 0.166	 -0.08	 0.0721	 -0.06	 0.166	

ICA6	 0.1	 0.0282	 0.08	 0.0545	 -0.06	 0.166	

ICA7	 0.01	 0.819	 0	 0.937	 -0.05	 0.281	

ICA8	 0.04	 0.414	 0.04	 0.396	 -0.04	 0.337	

ICA9	 0.09	 0.0368	 0.08	 0.0585	 -0.04	 0.339	

ICA10	 -0.03	 0.467	 -0.03	 0.566	 0.03	 0.42	

ICA11	 0.03	 0.465	 0.04	 0.311	 0.03	 0.454	

ICA12	 -0.05	 0.224	 -0.06	 0.153	 -0.02	 0.608	

ICA13	 -0.06	 0.171	 -0.06	 0.148	 -0.02	 0.647	

ICA14	 0	 0.992	 0.01	 0.885	 0.02	 0.68	

ICA15	 -0.04	 0.369	 -0.04	 0.339	 -0.02	 0.695	
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Supplementary	Table	3:	Correlations	between	cortical	thickness	factor	scores	
and	ICA2.	
	
r:	Pearson's	correlation	coefficient.	p:	two-sided	correlation	test	p-value.	
	

	
Factor	

ICA2	
N	=	514		

r	 p	
F1	 -0.112	 0.0108	
F2	 -0.09	 0.0406	
F3	 -0.065	 0.142	
F4	 -0.08	 0.0707	
F5	 -0.013	 0.774	
F6	 -0.13	 0.00314	
F7	 0.004	 0.935	
F8	 -0.013	 0.776	

	
	
	
Supplementary	Table	4:	Correlations	between	15	ICA	methylomic	components	
and	EM	performance.		
	
Age	adjustment:	chronological	age	effects	were	partialled	out	from	each	measure.		
r:	Pearson's	correlation	coefficient.	p:	two-sided	correlation	test	p-value.	
	

ICA	

Methylomic	profiling	sample	
N=	531	

No	Age	adjustment	 Age	adjustment	

r	 p	 r	 p	
ICA1	 -0.043	 0.328	 -0.003	 0.944	
ICA2	 -0.138	 0.00147	 -0.122	 0.00491	
ICA3	 0.011	 0.809	 0.017	 0.696	
ICA4	 -0.018	 0.683	 -0.024	 0.586	
ICA5	 0.021	 0.627	 0.017	 0.699	
ICA6	 0.06	 0.165	 0.057	 0.19	
ICA7	 -0.007	 0.875	 -0.009	 0.829	
ICA8	 0.09	 0.0375	 0.089	 0.0404	
ICA9	 -0.002	 0.972	 -0.005	 0.909	
ICA10	 -0.015	 0.739	 -0.012	 0.785	
ICA11	 -0.068	 0.119	 -0.066	 0.13	
ICA12	 -0.011	 0.804	 -0.013	 0.763	
ICA13	 0.017	 0.691	 0.016	 0.711	
ICA14	 -0.023	 0.598	 -0.021	 0.622	

ICA15	 0.039	 0.364	 0.039	 0.374	
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Supplementary	Table	5:	Correlations	between	cortical	thickness	factor	scores	
and	EM	performance.		
	
r:	Pearson's	r	correlation	coefficient;	p:	two-sided	correlation	test	p-value.	
	

Factor	 Combined		
sample	
(N=1234)	

Basel	imaging		
sample		
(N=722)	

Methylomic	profiling	
sample	
(N=512)	

r	 p	 r	 p	 r	 p	
F1	 -0.054	 0.0575	 -0.086	 0.0215	 -0.01	 0.823	
F2	 -0.045	 0.115	 -0.072	 0.0548	 -0.006	 0.901	
F3	 -0.012	 0.663	 -0.023	 0.541	 0.001	 0.973	
F4	 -0.024	 0.395	 0.006	 0.869	 -0.071	 0.107	
F5	 -0.05	 0.0812	 -0.04	 0.288	 -0.066	 0.139	
F6	 0.079	 0.00574	 0.102	 0.00617	 0.048	 0.283	
F7	 -0.007	 0.814	 -0.018	 0.634	 0.008	 0.85	
F8	 0.026	 0.361	 0.05	 0.183	 -0.009	 0.839	

	
	
	
Supplementary	Table	6:	Association	between	age,	global	cortical	thickness	and	
EM	performance	and	WBC	counts.	
	
Results	 from	 linear	 models	 analysis	 with	 phenotype	 as	 dependent	 variable	 and	WBC	
counts	as	explanatory	variables.	t:	 t-statistic	value;	F:	Overall	effect	F-statistic	value;	p:	
p-value	
(a):	Adjustment	for	sex,	intra-cranial	volume,	MR	batches	and	chronological	age.	
(b):	Adjustment	for	sex	and	chronological	age.	
(c):	Basophils,	Eosinophils	and	Monocytes.	
	
	

Phenotype	 N	 	 t	 p	

Age	 527	 Lymphocytes	 0.84	 0.40	
	 	 Neutrophils	 0.31	 0.76	
	 	 Mixture	(c)	 0.57	 0.57	
	 	 																																												F(3,523)	=	0.60,	p	=	0.62	
Global	cortical	thickness	(a)	 509	 Lymphocytes	 -0.87	 0.39	
	 	 Neutrophils	 -2.32	 0.02	
	 	 Mixture	(c)	 0.31	 0.75	
	 	 																																F(3,505)	=	2.2,	p	=	0.087	
EM	performance	(b)	 525	 Lymphocytes	 1.69	 0.093	
	 	 Neutrophils	 0.21	 0.84	
	 	 Mixture	(c)	 1.1	 0.29	
	 	 																													F(3,521)	=	2.1,	p	=	0.10	
Cortical	thickness	F6	 509	 Lymphocytes	 0.65	 0.51	
	 	 Neutrophils	 -0.66	 0.51	
	 	 Mixture	(c)	 -0.28	 0.78	
	 	 																																F(3,505)	=	0.28,	p	=	0.84	
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Supplementary	Notes	

1.	Description	of	Munich	sample	
	

1.1	Structural	imaging	
	

MRI	 acquisition:	 High	 resolution	 T1-weighted	 images	 were	 acquired	 at	 the	 Neuro-

imaging	Core	Unit	of	 the	MPIP	on	a	 clinical	1.5	Tesla	MR	scanner	 (Signa/Signa	Excite,	

General	Electric,	for	sequence	details	see	1,2).	MRI	data	processing:	Gross	morphological	

abnormalities	 such	 as	 tumor	 or	 territorial	 infarction,	 ventricle	 asymmetries	 or	

arachnoid	cysts	preventing	automated	image	processing,	extensive	white	matter	disease	

or	 motion	 artefacts	 were	 exclusion	 criteria	 prior	 to	 the	 formation	 of	 this	 combined	

sample.	The	surface-based	segmentation	stream	of	FreeSurfer	(version	5.3,	installed	on	

64-bit	 Linux	 workstations)	 was	 applied	 to	 all	 T1-weighted	 images,	 with	 substeps	 as	

described	 in	 the	Structural	 Imaging	section.	Visual	QC	of	 cortical	 segmentation	quality	

was	 performed	 on	 the	 basis	 of	 standardized	 protocols	

(http://enigma.ini.usc.edu/protocols/imaging-protocols)	 and	 led	 to	 exclusion	 of	 12	

subjects.	 As	 phenotypes	 of	 interest,	 left	 and	 right	 cortical	 thickness	 (the	 average	 of	

which	 is	 ref.	 to	 as	 cortical	 thickess	 [CT]),	 and	 intracranial	 volume	 derived	 indirectly	

from	the	spatial	registration	procedure.	

1.2	Methylomic	profiling	
	
DNA	was	 extracted	 from	whole	blood	using	 the	Gentra	Puregene	Blood	Kit	 (QIAGEN).	

Quality	and	quantity	of	the	DNA	were	assessed	by	NanoDrop	2000	Spectrophotometer	

(Thermo	 Scientific)	 and	 Quant-iT	 Picogreen	 (Invitrogen).	 Genomic	 DNA	 was	 bisulfite	

converted	 using	 the	 Zymo	 EZ-96	DNA	Methylation	 Kit	 (Zymo	Research)	 and	 genome-

wide	methylome	 levels	were	 assessed	with	 the	 Illumina	 Infimium	HumanMethylation	

450K	 BeadChip	 array.	 Hybridization	 and	 processing	 was	 performed	 according	 to	

manufacturer’	 s	 instructions.	 	 Intensity	 read	 outs,	 normalization	 and	 estimation	 and	



	 10	

beta	values	were	obtained	using	 the	Minfi	package	 (version	1.21.0)	 in	Bioconductor	 3.	

Beta	values	for	the	pre-selected	397,947	autosomal	probes	from	the	Swiss	sample	were	

calculated	from	SWAN	normalized	intensities.	After	pre-processing	of	methylomic	data,	

and	 MRI-QC	 based	 exclusions,	 combined	 data	 of	 N=596	 subjects	 was	 available	 for	

statistical	analysis.	

2.	Description	of	AgeCode	sample	
	

Briefly,	 participants	were	 recruited	between	 January	2003	 and	November	2004	 in	 six	

German	 study	 centers	 (Bonn,	 Düsseldorf,	 Hamburg,	 Leipzig,	 Mannheim,	 Munich)	 via	

general	 practitioners	 (GP)	 connected	 to	 the	 respective	 study	 sites.	 Inclusion	 criteria	

were	age	of	75	years	and	older,	absence	of	dementia	(according	to	the	GP’s	 judgment)	

and	at	least	one	contact	with	the	GP	within	the	last	12	months.	Exclusion	criteria	were	

GP	consultations	by	home	visits	only,	residence	in	a	nursing	home,	presence	of	a	severe	

illness	 with	 an	 anticipated	 fatal	 outcome	 within	 three	 months,	 insufficient	 German	

language	abilities,	deafness	or	blindness,	lack	of	ability	to	provide	an	informed	consent	

and	status	as	being	only	an	occasional	patient	of	 the	participating	GP.	A	 total	of	3’327	

subjects	were	successfully	contacted	and	assessed	with	structured	clinical	interviews	at	

their	 homes.	 A	 total	 of	 110	 individuals	were	 excluded	 after	 the	 first	 interview	 due	 to	

presence	of	dementia	or	an	actual	age	below	75	(falsely	classified	as	75	or	older	in	the	

sample	 selection	 process).	 For	 the	 present	 analyses,	 data	 from	 baseline	 and	 three	

follow-up	measurements	with	 18	months	 intervals	were	 available.	 In	 a	 primary	 care-

based	 sample	of	 older	 individuals,	 conditions	 can	be	present	 that	 affect	 cognition	 and	

the	 reliability	 of	 neuropsychological	 tests.	 In	 order	 to	 generate	 a	 sample	 of	 healthy	

elderly	individuals	we	further	employed	the	following	selection	criteria	at	baseline:	Age	

between	75	and	90	years,	German	as	native	language,	at	least	school-leaving	certificate,	

absence	of	severe	hearing	or	vision	impairments,	absence	of	insufficient	test	motivation	
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as	 judged	by	 the	 interviewer,	 absence	of	disturbing	 factors	during	neuropsychological	

testing	 and	 absence	 of	 all	 of	 the	 following	 comorbid	 conditions:	 Parkinson's	 disease,	

epilepsy,	alcohol	abuse,	stroke,	multiple	sclerosis,	evidence	of	depression	(a	score	of	6	

or	 higher	 on	 the	 Geriatric	 Depression	 Scale	 4),	 traumatic	 brain	 injury	 with	

unconsciousness	 of	 more	 than	 30	 minutes,	 visible	 neurological	 malfunctions	 and	

dementia	 according	 to	 DSM-IV	 criteria	 5.	 In	 addition,	 we	 excluded	 subjects	 who	

converted	to	dementia	up	to	the	third	follow-up	or	without	neuropsychological	test	data	

available	on	baseline	and	all	follow-up	visits.	After	application	of	these	selection	criteria,	

a	 total	 of	 1244	 subjects	 remained	 in	 the	 sample.	 Sufficient	 DNA-samples	 for	 genome-

wide	genotyping	were	available	for	782	subjects.	

3.	Description	Episodic	Memory	phenotypes	
	

3.1	Methylomic	and	Basel	imaging	samples	
	

	While	 undergoing	 fMRI	 acquisition,	 all	 participants	 completed	 a	 picture	 delayed	 free	

recall	 task.	 Stimuli	 consisted	 of	 72	 emotional	 and	 neutral	 pictures	 (24	 negative,	 24	

positive	and	24	neutral)	taken	from	the	International	Affective	Picture	System	(IAPS)	6	

and	 from	in-house	standardized	picture	sets.	Four	additional	pictures	showing	neutral	

objects	were	used	to	control	for	primacy	and	recency	effects	in	memory.	These	pictures	

were	 not	 included	 in	 the	 analysis.	 Additionally,	 24	 scrambled	 pictures	were	 included.	

Their	background	contained	the	color	information	of	all	pictures	used	in	the	experiment	

and	 was	 overlaid	 with	 a	 crystal	 and	 distortion	 filter	 (Adobe	 Photoshop	 CS3,	 Adobe	

Systems	Inc.,	San	Jose,	CA,	USA).	On	the	foreground	geometrical	figures	of	varying	shape,	

size	 and	 orientation	 were	 shown.	 Pictures	 were	 presented	 for	 2.5	 s	 each	 in	 a	 quasi-

randomized	order	so	that	a	maximum	of	four	pictures	of	the	same	category	(e.g.	animals,	

humans,	 landscape)	 and	 valence	 occurred	 consecutively.	 Between	 the	 pictures	 a	

fixation-cross	 appeared	 on	 the	 screen	 for	 500ms	 and	 the	 trials	 were	 separated	 by	 a	
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variable	 intertrial	 period	 of	 9-12	 s.	 During	 this	 time	 subjects	 were	 asked	 to	 rate	 the	

presented	picture	 for	valence	 (negative,	neutral,	positive)	and	arousal	 (large,	medium,	

small)	 on	 a	 three-point	 rating	 scales	 (Self	 Assessment	 Manikin).	 Scrambled	 pictures	

were	rated	according	to	their	shape	(vertical,	symmetric	or	horizontal)	and	size	(large,	

medium,	 small).	 Subjects	 were	 not	 instructed	 to	 recall	 the	 pictures	 later	 (incidental	

recall).	 The	 delayed	 free	 recall	 was	 performed	 outside	 of	 the	 scanner,	 10	 min	 after	

presentation	 of	 all	 photographs.	 To	 document	 performance	 for	 the	 delayed	 recall	 of	

positive,	negative,	and	neutral	pictures,	subjects	had	to	describe	each	picture	by	writing	

it	 down	 in	 a	 few	words.	 A	 picture	was	 judged	 as	 correctly	 recalled	 if	 the	 rater	 could	

identify	 the	 presented	 picture	 based	 on	 the	 subject's	 description.	 Two	 blinded	

investigators	 independently	 rated	 the	 descriptions	 for	 recall	 success	 (inter-rater	

reliability	>	99%).	For	the	pictures,	which	were	judged	differently	by	the	two	raters	(i.e.	

a	particular	picture	was	 judged	as	correctly	recalled	by	one	rater	but	not	 the	other),	a	

third	 independent	and	blinded	rater	made	a	 final	decision	with	regard	 to	whether	 the	

particular	picture	could	be	considered	as	successfully	recalled.	The	number	of	correctly	

recalled	pictures	served	as	a	phenotype.	For	initial	association	testing	with	ICA2	pattern,	

EM	 performance	 was	 adjusted	 for	 sex	 effects	 using	 linear	 regression.	 For	 additional	

analyses,	 including	genetic	scoring	analyses,	EM	performance	was	 further	adjusted	 for	

chronological	age	effect.	

3.2	Basel	cognitive	sample	
	
Participants	 performed	 the	 same	 pictures	 free	 recall	 task	 as	 described	 for	 the	

methylomic	 profiling	 sample,	 without	 fMRI	 assessment.	 EM	 performance,	 used	 in	

genetic	scoring	analysis,	was	adjusted	for	sex	and	chronological	age	effects	using	linear	

regression.	
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3.3	Zurich	sample	
	
Subjects	 viewed	 six	 series	 of	 five	 semantically	 unrelated	 nouns	 presented	 at	 a	 rate	 of	

one	word	per	second	with	the	 instruction	to	 learn	the	words	for	 immediate	free	recall	

after	each	series.	In	addition,	subjects	underwent	an	unexpected	delayed	free-recall	test	

of	 the	 learned	words	after	5min	 (episodic	memory).	The	number	of	 correctly	 recalled	

words	(hits)	was	the	relevant	output.	EM	performance,	used	in	genetic	scoring	analysis,	

was	adjusted	for	sex	and	chronological	age	effects	using	linear	regression.	

3.4	AgeCode	
	
Delayed	recall	performance	as	quantified	by	the	Consortium	to	Establish	a	Registry	for	

Alzheimer’s	Disease	(CERAD)	battery	7	served	as	phenotype.	Subjects	were	presented	a	

list	of	10	words	three	times	(presentation	per	word:	2	seconds),	each	time	presented	in	

a	different	order.	After	each	run,	subjects	freely	recalled	as	many	words	as	possible.	The	

number	of	correctly	remembered	items	(free	recall)	after	a	10	min	delay	served	as	the	

phenotypic	measure.	EM	performance,	used	in	genetic	scoring	analysis,	was	adjusted	for	

sex	and	chronological	age	effects	using	linear	regression.	

4.	Analysis	of	ICA	methylomic	patterns	
	

4.1	Comparison	of	whole-blood	and	cell-specific	DNAm	values	
	
Average	DNA	methylation	values	were	obtained	from	four	publically	available	datasets	

from	19	cell	types.	Average	DNAm	values	from	hematopoietic	stem	cells	and	progenitor	

cells	were	obtained	 from	GSE63409	 8	 considering	only	normal	bone	marrow	samples.	

Average	DNAm	 from	whole-blood,	 PBMCs,	Natural	 Killer	 cells,	 B-lymphocytes,	 CD4	T-

cells,	CD8	T-cells,	monocytes,	neutrophils,	eosinophils	and	granulocytes	were	obtained	

from	GSE3560	9.	Average	DNAm	from	specific	sub-types	of	CD4	T-cells	(naive,	memory	

and	 regulatory	 CD4	 T-cells)	 were	 obtained	 from	 GSE59250	 10	 considering	 control	
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samples	only.		Average	DNAm	in	dendritic	cells	and	macrophage	(in	vitro	induced)	were	

obtained	from	GSE75937	11.	

	

4.2	ICA	analysis	of	publically	available	whole-blood	methylomic	profiles	
	

We	analyzed	whole-blood	methylomic	profiles	from	656	samples	reported	in	Hannum	et	

al.,	2013	12.	In	analogy	to	our	methylomic	dataset,	multi-mapping	or	polymorphic	probes	

were	 excluded	 from	 analysis.	 Raw	 intensities	 (methylated	 and	 unmethylated	 signals)	

were	 normalized	 using	 the	 lumi	 package	 (color-bias	 adjustment	 and	 quantile	

normalization).	 The	 BMIQ	 algorithm	 was	 finally	 applied	 to	 adjust	 for	 the	 difference	

between	 Type	 I	 and	 Type	 II	 probes	 used	 in	 the	 450K	 array.	 Given	 substantial	 non-

randomness	 of	 between-plate	 distribution	 of	 chronological	 age	 in	 this	 sample,	 we	

performed	 CoMbat	 adjustment	 for	 plate	 effect.	 DNA	 methylation	 values	 were	

subsequently	 adjusted	 for	 sex	 and	 98	 surrogate	 variables	 inferred	 from	 surrogate	

variable	analysis	(SVA).	ICA	decomposition	on	the	adjusted	signals	yielded	a	total	of	175	

components,	 among	 which	 19	 were	 retained	 based	 on	 the	 per-subject	 10%	 variance	

criterion	 used	 in	 our	 methylomic	 dataset.	 The	 retained	 ICA	 patterns	 were	 tested	 for	

association	with	age,	after	adjustment	for	estimated	cell	counts	(CD4T,	CD8T,	NK,	Gran,	

Mono,	 Bcell).	 Five	 patterns	 were	 significantly	 associated	 with	 age.	 In	 analogy	 to	 our	

study,	 CpGs	 contributing	 to	 these	 patterns	 were	 chosen	 so	 as	 to	 exhibit	 an	 absolute	

loading	>	|4|	on	the	respective	pattern.	

4.3	 Association	 of	 ICA	 patterns	 with	 chronological	 age	 in	 cell-specific	
methylomic	profiles		
	

We	 used	 publically	 available	 methylomic	 profiles	 from	 N=1202	 monocytes	 samples	

(GSE56046)	 and	 N=214	 CD4	 T-cells	 samples	 (GSE56581)	 13.	 Normalized	 datasets	

deposited	on	GEO	repository	were	considered	for	analysis.	In	each	dataset	a	Surrogate	

Variable	 Analysis	 preserving	 for	 chronological	 age	 was	 performed.	 Individual	

methylomic	values	were	adjusted	 for	 the	 inferred	SVs	using	 linear	 regression.	 In	 each	
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dataset,	ICA1	and	ICA2	patterns	were	estimated	as	the	linear	combination	between	the	

inverse	of	 genome-wide	 ICA1	and	 ICA2	 loadings	 (inferred	 from	 the	Swiss	 sample)	 and	

scaled	 SV-adjusted	 DNAm	 values.	 This	 score	 was	 subsequently	 tested	 for	 association	

with	chronological	age.		

5.	mQTL	analysis		
	

5.1	Testing	over-representation	of	genetic	score	SNPs	in	-cis	to	ICA2	CpGs	
	

	We	 randomly	 selected	 an	 equal	 number	 of	 SNPs	 from	 genome-wide	 genotyped	 SNPs	

and	assessed	the	occurence	of	SNPs	found	in	-cis	(±	1	Mbp)	to	ICA2	CpGs.	This	sampling	

procedure	was	repeated	5000	times	to	establish	the	null	distribution	and	calculate	the	

corresponding	p-value.	

5.2	Null	distribution	of	cis-mQTL	association	statistics	
	

First	we	determined	all	SNPs	 located	within	±	1Mbp	of	any	of	 the	ICA2	CpGs	('cis-SNP	

pool').	Association	statistics	were	computed	between	 ICA2	CpGs	and	n	 SNPs	randomly	

selected	from	the	cis-SNP	pool,	with	n	equal	to	the	number	of	GSEA	genetic	score	SNPs	

(i.e.	71	SNPs),	thus	providing	one	realization	of	the	baseline	quantile	distribution.	This	

sampling	procedure	was	repeated	1000	times.	
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ABSTRACT	

	

The	 large	 biological	 distance	 between	 genetic	 risk	 loci	 and	 their	 mechanistic	

consequences	 in	 the	 tissue	 of	 interest	 limits	 the	 ability	 to	 establish	 functionality	 of	

susceptibility	 variants	 for	 genetically	 complex	 traits.	 Such	 a	 biological	 gap	 may	 be	

reduced	through	the	systematic	study	of	molecular	mediators	of	genomic	action,	such	as	

epigenetic	modification.	Here,	we	report	the	identification	of	robust	genetic	estimators	

of	 whole-blood	 CpG	 methylation,	 which	 can	 serve	 as	 intermediate	 molecular	 traits	

amenable	 to	association	 testing	with	other	genetically	complex	 traits.	We	describe	 the	

relationship	between	these	estimators	and	gene	expression,	demonstrate	their	genome-

wide	applicability	to	association	testing	even	in	the	absence	of	individual	genotypic	data,	

and	 show	 that	 these	 estimators	 powerfully	 identify	 methylation-related	 genomic	 loci	

associated	with	the	risk	for	schizophrenia,	a	common	and	genetically	complex	disorder.	

The	 use	 of	 genetic	 estimators	 for	 blood	 DNA	methylation,	 which	 are	made	 publically	

available	 (http://mcn.unibas.ch/files/EstiMeth_Distribution_v1.zip	 ,	 password:	

mcnEstiMeth140510),	 can	 serve	 as	 a	 valuable	 tool	 for	 the	 identification	 of	 epigenetic	

underpinnings	of	complex	traits.	
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INTRODUCTION	

	

Improving	understanding,	diagnosis,	and	therapy	of	human	disease	has	been	one	of	the	

central	promises	of	 the	human	genome	project	(Editorial	2011).	This	promise	 is	being	

increasingly	fulfilled.	For	example,	cancer	research	has	benefited	dramatically	from	the	

discoveries	 related	 to	 the	human	genome	(Lander	2011),	mainly	because	 the	genomic	

mechanisms	 leading	 to	 the	 development	 of	 many	 cancers	 are	 amenable	 to	 direct	

observation.	 However,	 the	 situation	 is	 slightly	 different	 in	 disorders	 for	 which	 the	

underlying	molecular	events	are	not	easily	accessible,	as	is	the	case	for	mental	disorders	

(Papassotiropoulos	 and	 de	 Quervain	 2015).	 Advances	 in	 the	 development	 of	 high-

throughput	 genotyping	 and	 analytical	 software,	 and	 the	 launch	 of	 large	 collaborative	

efforts	have	led	to	the	identification	of	numerous	well-validated	genetic	risk	factors	for	

such	common	disorders.	However,	the	functional	relevance	of	most	discovered	loci	and	

the	 molecular	 mechanisms	 behind	 the	 reported	 genetic	 association	 signals	 remain	

elusive	(Gamazon	et	al.	2015).	

One	of	the	main	reasons	for	the	limited	ability	to	establish	functionality	of	susceptibility	

variants	is	the	large	biological	distance	between	a	genetic	polymorphism	and	its	related	

mechanistic	consequences	in	the	tissue	of	interest.	Such	biological	gap	may	be	reduced	

by	 the	 study	 of	 molecular	 mediators	 of	 genomic	 action,	 such	 as	 gene	 expression	

(Gamazon	 et	 al.	 2015).	 For	 example,	 in	 such	 common	 neuropsychiatric	 disorders	 as	

schizophrenia,	genetic	susceptibility	variants	are	significantly	enriched	in	promoter	and	

enhancer	regions	and	point	 to	a	 functional	 link	between	disease-associated	noncoding	

single	 nucleotide	 polymorphisms	 (SNPs)	 and	 transcriptional	 regulation	 in	 the	 brain	

(Roussos	et	al.	2014).	The	integration	of	transcriptomics	data	in	the	study	of	the	genetic	

factors	of	complex	traits	has	significantly	 improved	our	understanding	of	 their	genetic	

basis	 (Lonsdale	 et	 al.	 2013).	 Thus,	 methods	 that	 reduce	 the	 gap	 between	 genetic	
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susceptibility	 and	 its	 functional	 consequences	 are	 expected	 to	 increase	 our	

understanding	of	the	genetic	underpinnings	of	genetically	complex	traits.		

Genetic	 estimators	 for	 gene	 expression	 have	 been	 recently	 proposed	 in	 this	 context	

(Gamazon	et	al.	2015;	Gusev	et	al.	2016)	.	These	methods	capitalize	on	the	joint	additive	

effects	 of	 cis	 markers	 on	 a	 given	 expression	 trait	 to	 estimate	 gene	 expression	 from	

individual	genotypes.	At	the	population	level,	the	derived	genetic	estimates	represent	an	

intermediate	molecular	trait,	amenable	to	association	testing	with	the	phenotype	under	

study.	This	approach	can	be	viewed	as	genetic	correlation	testing	for	which	a	significant	

association	 is	 interpreted	 as	 existence	 of	 shared	 co-localizing	 genetic	 factors	 between	

the	complex	phenotype	and	the	investigated	expression	trait.		

Here	we	report	 the	generation	of	robust	genetic	estimators	of	epigenetic	regulation	as	

an	attempt	to	provide	insights	into	the	molecular	basis	of	polygenic	traits	by	minimizing	

the	biological	 gap	between	genetic	 variation	 and	 its	 functional	 impact.	We	 focused	on	

DNA	methylation	 (specifically	 on	 the	methylation	 of	 5'-C-phosphate-G-3'	 (CpG)	 sites),	

the	most	 extensively	 studied	 epigenetic	modification	 to	 date,	which	 directly	 regulates	

important	molecular	processes	such	as	gene	expression,	 imprinting,	and	chromosomal	

inactivation	 (Deaton	 and	 Bird	 2011;	 Schübeler	 2015;	 Lev	 Maor	 et	 al.	 2015).	 High-

throughput	 methylomic	 profiling	 studies	 have	 highlighted	 the	 strong	 local	 genetic	

regulation	of	DNA	methylation	(Bell	et	al.	2011;	Gutierrez-Arcelus	et	al.	2013;	Hannon	et	

al.	 2016b;	 Jaffe	 et	 al.	 2016;	 Lemire	 et	 al.	 2015),	 with	 possibly	 multiple	 co-localized	

markers	contributing	independently	to	variation	in	DNA	methylation	at	 individual	CpG	

sites	(Bonder	et	al.	2017).		

We	 generated	 genetic	 estimators	 of	 DNA	methylation	 (DNAm),	 that	 allow	 testing	 for	

localized	shared	genetic	contributions	between	DNAm	variation	and	complex	traits.	We	

demonstrate	their	applicability	even	to	studies	providing	summary	SNP	statistics	only,	

and	 show	 exemplarily	 that	 such	 estimators	 result	 in	 the	 identification	 of	 epigenetic	

underpinnings	of	a	common	neuropsychiatric	disease.	



	 5	

RESULTS	

Estimation	of	genetically	driven	DNA	methylation		

We	 estimated,	 under	 an	 additive	 genetic	 model,	 the	 genetically	 driven	 proportion	 of	

DNAm	at	a	given	CpG	site,	 as	a	 linear	combination	of	SNPs	 in	 -cis	 of	 that	 site.	 Starting	

from	a	reference	dataset	of	samples	for	which	both	methylation	and	genotypic	data	are	

measured,	 the	 weights	 of	 this	 linear	 combination	 can	 be	 obtained	 using	 a	 multiple	

regression	 approach	 between	 SNPs	 and	 corresponding	 DNAm.	 In	 analogy	 to	 the	

approach	adopted	previously	for	gene	expression	(Gamazon	et	al.	2015),	we	opted	for	a	

elastic	 net	 penalized	multiple	 regression	method	 (Zou	 and	 Hastie	 2005)	 to	 infer	 SNP	

weights	of	the	DNAm	estimators	(Figure	1-A).		This	method	comes	with	the	advantage	

of	 performing	 marker	 selection,	 thus	 providing	 sparse	 solutions.	 Subsequently,	 the	

genetically	 driven	 DNAm	 signal	 can	 be	 estimated	 in	 independent	 individuals	 as	 the	

linear	 combinations	 of	 the	 inferred	weights	 and	 observed	 genotypes	 (Figure	 1-B).	 In	

this	 independent	 sample,	 the	 derived	 genetic	 estimate	 of	 DNAm	 at	 a	 given	 CpG	 is	

amenable	to	genetic	correlation	testing	with	the	phenotype	under	study	(Figure	1-B).	

Our	 reference	 dataset	 comprised	 N=533	 healthy	 young	 adults	 (BASEL1	 sample,	 see	

Methods),	 who	 underwent	 both	 whole-blood	 methylomic	 profiling	 and	 genome-wide	

SNP	 assessment.	 Prior	 to	 analysis,	 the	 DNAm	 signal	 was	 adjusted	 for	 technical	 and	

biological	confounders	(see	Methods),	and	genotypes	were	imputed	using	the	Michigan	

imputation	server	(https://imputationserver.sph.umich.edu/index.html,	see	Methods).	

In	 the	 reference	 sample,	 a	 elastic	 net	 model	 was	 trained	 between	 common	 cis-SNPs	

(MAF>0.05,	 located	 within	 ±	 1Mbp	 of	 a	 CpG	 site)	 and	 adjusted	 DNAm	 signal	 at	 each	

individual	 CpG	 site	 (see	 Methods).	 From	 395,014	 CpG	 sites	 investigated,	 a	 total	 of	

236,923	non-null	models	(i.e.,	at	 least	one	site	selected	by	penalized	regression)	could	

be	 fitted,	 with	 cross-validation	 r2	 accounting	 on	 average	 for	 6.9	%	 of	 variance	 of	 the	

DNAm	signal.		
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Figure	1:	Estimation	of	genetically	driven	DNAm	for	genetic	association	testing	

with	complex	traits		

(A)	 In	 a	 reference	 sample,	 a	 elastic	 net	 penalized	multiple	 regression	model	 is	 built	 between	

SNPs	in	-cis	of	a	given	CpG	site,	and	DNAm	signal	(blue).	The	linear	combination	of	the	inferred	

weights	w	at	selected	genotypes	(encircled	in	yellow)	represents	the	genetically	driven	estimate	

of	DNAm	signal	 (grey).	 	 (B)	The	genetic	model	 is	used	 to	estimate	genetically	driven	DNAm	 in	

independent	 individuals,	 from	observed	genotypes	 ;	 this	estimate	can	be	 tested	 for	association	

with	a	sample's	trait.	In	case	genotypic	data	are	not	accessible	(C),	the	association	statistic	can	be	

approximated	 using	 the	 model's	 weights,	 the	 trait	 GWAS	 summary	 statistics	 (SNP	 to	 trait	

association)	 and	 the	 covariance	 structure	 of	 model's	 SNPs	 inferred	 from	 a	 reference	 sample	

(different	 blue	 dot	 sizes	 represent	 different	 covariance	 levels	 between	 pairs	 of	 SNPs	 in	 the	

reference	 sample).	 Figure	1	 from	Gusev	et	 al.	 (Gusev	et	 al.	 2016)	 served	as	a	 template	 for	 this	

figure.	
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Unlike	univariate	testing,	the	elastic	net	approach	allows	for	simultaneous	modeling	of	

the	 joint	 effects	 of	multiple	 cis-markers,	 that	 are	 likely	 to	 impact	 on	DNAm	at	 a	 given	

CpG	site	(Bonder	et	al.	2017).	We	compared	the	fraction	of	variance	of	DNAm	explained	

by	the	elastic	net	models	(cross-validation	r2)	with	the	fraction	of	variance	explained	by	

the	 single	 best	 mQTL	 identified	 at	 each	 CpG	 site.	 We	 observed	 substantial	 gain	 in	

average	r2	retrieved	by	the	multiple	regression	elastic	net	over	single-marker	univariate	

testing	(Figure	2).	At	the	modeled	CpGs	(i.e.	236,923	non-null	elastic	net	models),	SNP-

based	 heritability	 derived	 from	 recently	 published	 estimates	 in	 whole-blood	 samples	

(van	 Dongen	 et	 al.	 2016)	 averaged	 9%.	 Thus,	 at	 these	 CpGs,	 the	 implemented	

performance	of	 our	models	 (6.9%)	was	 close	 to	 the	maximum	variance	 in	DNAm	 that	

can	theoretically	be	explained	by	common	SNPs.	In	addition,	per-CpG	cross-validation	r2	

showed	 high	 correlation	 with	 reported	 SNP-based	 (r=0.53)	 and	 total	 heritability	

(r=0.62)	estimates	across	all	modeled	CpGs.	Among	CpGs	for	which	no	elastic	net	model	

could	be	fitted	(N=158,091	CpG	sites),	lower	SNP-based	heritability	was	observed,	with	

an	average	of	4%.		

To	assess	the	validity	of	the	inferred	genetic	estimators	we	examined	their	accuracy	to	

predict	DNAm	 in	an	 independent	 sample	comprising	whole-blood	methylomic	profiles	

from	N=319	 healthy	 young	 adults	 (BASEL2	 sample,	 see	 Methods).	 The	 correlation	 of	

model	performance	between	training	and	testing	samples	across	all	modeled	CpGs	was	

high	 (r=0.96)(Supplementary	 Figure	 1).	 Moreover,	 the	 average	 performance	 (i.e.	

proportion	 of	 variance	 of	 the	 DNAm	 signal	 explained	 by	 the	 genetic	 models)	 of	 the	

testing	 sample	 (r2:	 7.6%)	 was	 very	 close	 to	 the	 corresponding	 performance	 of	 the	

training	sample	(r2:	6.9%).	These	findings	demonstrate	high	stability	and	generalization	

capability	of	the	implemented	genetic	models.	A	set	of	86,710	genetic	models	for	DNAm	

estimation	 was	 identified	 as	 highly	 robust,	 showing	 significant	 (FDR<0.05)	 and	

consistent	 correlation	 with	 DNAm	 across	 the	 two	 independent	 BASEL1	 and	 BASEL2	
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samples	(see	Methods)(example	shown	in	Figure	3).	These	genetic	estimators	of	DNAm	

are	termed	hereafter	EstiMeth	models.	

	

Figure	2:	Comparison	of	average	fraction	of	variance	of	DNAm	variance	explained	by	

penalized	multiple	or	univariate	regression		

Mean	 r2	 corresponds	 to	 cross-validation	 performance	 of	 the	 elastic	 net	 model	 in	 the	 BASEL1	

sample,	 averaged	 across	 the	 top	 -n	CpGs	 (yellow),	 and	 r2	 for	 the	 top	 identified	mQTL	per	 CpG	

average	across	the	top	-n	CpGs	(blue).	

	
	

Figure	3:	Example	of	a	robust	EstiMeth	model	

Horizontal	axis	represents	the	DNAm	value	estimated	from	the	EstiMeth	model	at	the	CpG	site.	

Vertical	axis	represents	the	observed	DNAm	value	(adjusted	for	main	confounders).	r2:	 fraction	

of	variance	of	DNAm	signal	explained	by	the	EstiMeth	model	(in	%).	
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In	 real-life	 applications,	 not	 every	 SNP	 for	 a	 given	 EstiMeth	might	 be	 available	 in	 the	

sample	under	 study.	On	 the	other	hand,	EstiMeth	 SNPs	 in	pair-	 or	 group-wise	 linkage	

disequilibrium	 might	 ensure	 robustness	 of	 the	 estimates	 also	 under	 incomplete	 SNP		

coverage.	Therefore,	we	examined	the	performance	of	EstiMeth	models	after	repeatedly	

discarding	 at	 random	 10%	 of	 markers	 in	 the	 BASEL2	 sample	 (see	 Methods).	 This	

resulted	 in	 an	 overall	 average	 distribution	 of	 r2	 that	 was	 very	 close	 to	 the	 original	

distribution	(Supplementary	Figure	2),	indicating	high	stability	of	most	of	the	models	

under	 incomplete	SNP	coverage.	We	provide	EstiMeth	models	 together	with	summary	

statistics	 of	 their	 performance	 under	 varying	 missing	 rates,	 thereby	 enabling	 the	

estimation	 of	 the	 stability	 of	 each	 individual	 model	

(http://mcn.unibas.ch/files/EstiMeth_Distribution_v1.zip	 ,	 password:	

mcnEstiMeth140510).	

	

Genetically	driven	DNAm	is	associated	with	gene	expression	of	co-localizing	genes	

Each	 EstiMeth	 model	 corresponds	 to	 a	 CpG	 that	 is	 likely	 to	 be	 under	 strong	 genetic	

control.	Given	the	role	of	DNAm	in	the	regulation	of	gene	expression	(Deaton	and	Bird	

2011)	we	investigated	the	relationship	between	EstiMeth	CpGs	and	expression	levels	of	

neighboring	 genes.	 Expression	 levels	 at	 ~20K	 genes	 were	 obtained	 for	 N=408	

individuals	from	the	BASEL1	dataset	(see	Methods).		

First,	 we	 performed	 genome-wide	 association	 testing	 between	 DNAm	 and	 expression	

levels	of	genes	 located	within	±1Mbp	of	any	CpG	site	 (N=397,731	sites).	We	 identified	

26,925	 significant	 associations	 (FDR<0.05),	 involving	 6,160	 genes	 and	 17,867	 CpGs.	

Among	these	CpGs,	we	observed	significant	over-representation	of	EstiMeth	CpGs	(78%	

of	 EstiMeth	 CpGs	 among	 17,867	 CpGs	 associated	 with	 expression;	 22	 %	 of	 EstiMeth	

CpGs	across	all	investigated	CpGs	sites;	Fisher's	test	p	<	2.2e-16).		

We	 also	 observed	 that	 EstiMeth	 CpGs,	 which	 were	 associated	 significantly	 with	 gene	

expression,	were	 over-represented	 in	 shores	 (Supplementary	 Figure	 3),	 which	 is	 in	
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line	with	previous	reports	(van	Eijk	et	al.	2012).	These	results	indicate	that	genetically	

driven	(i.e.	EstiMeth)	CpGs	are	more	likely	to	correlate	with	expression	of	co-localizing	

genes.	This	observation	might	also	reflect	the	existence	of	shared	genetic	contributions	

between	EstiMeth	CpGs	and	the	expression	of	their	co-localizing	genes.		

To	 test	 this	 hypothesis,	 we	 performed	 association	 testing	 between	 estimated	 DNAm	

values	 of	 each	 EstiMeth	model	 and	 gene	 expression	 in	 -cis	 (±1Mbp).	 Given	 that	 gene	

expression	 was	 measured	 in	 the	 BASEL1	 dataset,	 all	 EstiMeth	 models	 were	 re-

implemented	using	the	independent	BASEL2	dataset	as	reference	to	prevent	overfitting	

(see	Methods).	 Subsequently,	 a	 total	 of	 2	million	 EstiMeth-gene	 pairs	were	 tested	 for	

association.	We	 observed	 substantial	 deviation	 of	 genetic	 association	 signals	 from	 the	

null	 uniform	 distribution	 (Figure	 4-B),	 with	 particular	 over-representation	 of	 large	

effect	 sizes.	 	 To	 further	 test	 whether	 EstiMeth	models	 account	 for	 part	 of	 the	 shared	

variance	 observed	 between	 DNAm	 and	 expression,	 we	 also	 examined	 the	 DNAm-

expression	 associations	 after	 regressing	 out	 the	 effect	 of	 EstiMeth	 estimated	 DNAm	

values.	 We	 observed	 a	 consistent	 and	 substantial	 decrease	 of	 detected	 association	

signals	 (Figure	 4-B).	 Notably,	 within	 CpG-gene	 pairs	 identified	 as	 genome-wide	

significant	 (FDR<0.05),	 the	 average	 fraction	 of	 shared	 variance	 between	 DNAm	 and	

expression	traits	dropped	from	r2=	9.6	%	to	2.3%	after	adjustment	for	EstiMeth	models	

effects.	 These	 results	 support	 the	 existence	 of	 shared	 genetic	 contribution	 between	

DNAm	and	gene	expression	in	-cis	,	captured	by	the	EstiMeth	models.	

Interestingly,	the	fraction	of	expression	variance	explained	by	the	EstiMeth	models	was	

on	average	higher	than	the	corresponding	fraction	explained	by	the	DNAm	signal	alone	

(all	 EstiMeth	CpG-gene	pairs:	 r2=0.6	%	vs.	 r2=0.4	%,	 Student	 t-test	p-value	 <2.2x10-16;	

genome-wide	significant	CpG-gene	pairs:	r2=16.9	%	vs.	r2=9.6%		Student	t-test	p-value	

<2.2x10-16)	 (Figure	 4-B).	 This	 suggests	 that	 the	 EstiMeth	 models	 are	 also	 likely	 to	

include	SNPs	having	DNAm-independent	effects	on	gene	expression	in	-cis.	Of	note,	this	

increase	 in	 shared	 variance	 was	 mostly	 observed	 for	 CpGs	 located	 nearby	 the	
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transcription	start	site	of	their	associated	gene	(Supplementary	Figure	4),	a	genomic	

location	more	likely	to	harbor	cis-eQTLs	(Wagner	et	al.	2014).	

	

Figure	4:	Relationship	between	DNAm,	gene	expression	and	EstiMeth	

A:	Overlap	between	CpGs	associated	with	gene	expression	(FDR<0.05)	and	EstiMeth	CpGs.	B:	QQ-

plots	for	association	between	gene	expression	vs.	EstiMeth	estimates	(blue),	vs.	DNAm	(yellow)	

and	vs.	DNAm	after	adjustment	for	EstiMeth	models	(black).	p-values	<	1x10-10	not	shown	

	

	

Genetic	correlation	testing	based	on	GWAS	summary	statistics	

Provided	 availability	 of	 individual	 genotypic	 data	 in	 a	 given	 study	 sample,	 EstiMeth	

values	can	be	readily	obtained	as	the	linear	combination	between	the	weights	provided	

herein	(derived	from	the	BASEL1	sample)	and	the	observed	SNPs	(Figure	1-B).	

Yet,	 genotypic	 data	 from	 large-scale	 genome-wide	 association	 studies	 are	 often	 not	

directly	 accessible.	 Recently,	 methods	 have	 been	 proposed,	 that	 allow	 imputation	 of	

association	 statistics	 between	 genetic	 estimates	 of	 gene	 expression	 and	 a	 given	 trait,	

based	 solely	 on	 GWAS	 summary	 statistics	 (Gusev	 et	 al.	 2016)(Barbeira	 et	 al.	 2016).	

Based	on	this	body	of	work,	we	extended	the	EstiMeth	models	to	a	'MetaMeth'	approach	

that	allows	genetic	correlation	testing	from	GWAS	summary	statistics	(Figure	1-C)(see	

Methods).	The	t-value	for	association	between	the	EstiMeth	estimated	DNAm	values	and	
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the	trait	can	be	approximated	using	simultaneously:	(1)	EstiMeth		SNPs'	weights,	(2)	the	

standardized	GWAS	summary	statistics	(i.e.	results	from	SNP	to	phenotype	association),	

(3)	 the	 covariance	 structure	 of	 the	 SNPs	 included	 in	 the	 EstiMeth	 model	 (see	

Methods)(Figure	 1-C).	 The	 implementation	 relies	 on	 the	 covariance	 structure	 from	 a	

reference	population,	provided	it	is	genetically	congruent	to	the	population	under	study	

(Figure	 1-C).	 This	 latter	 assumption	 represents	 a	 critical	 issue	 of	 the	 MetaMeth	

implementation,	as	slight	shifts	between	the	reference	and	actual	population	structures	

may	 potentially	 induce	 biased	 estimates.	 In	 order	 to	 mimic	 such	 discrepancies,	 we	

systematically	assessed	 the	validity	of	 the	MetaMeth	approach	on	 the	BASEL2	sample,	

while	 using	 the	 SNP	 covariance	 structure	 inferred	 from	 the	 genetically	 close,	 yet	 not	

identical,	Hapmap	CEU	population.	Of	note,	all	EstiMeth	models	were	re-trained	on	the	

BASEL1	 sample,	 restricted	 to	 SNPs	 present	 in	 both	 Hapmap	 and	 BASEL1	 datasets,	

yielding	a	total	of	81,807	retained	models	(see	Methods).		

Firstly,	 we	 examined	 the	 convergence	 of	 the	 EstiMeth	 (i.e.,	 genotype-based)	 and	

MetaMeth	 (i.e.,	 summary	 statistics-based)	 genetic	 correlation	 approaches	 by	

considering	height	as	 the	complex	 trait	under	study.	Under	quasi-interchangeability	of	

the	two	approaches,	the	MetaMeth	Z-statistic	should	be	close	to	the	T-value	obtained	by	

testing	directly	 association	between	height	 and	 the	 corresponding	EstiMeth	 estimated	

DNAm	 values.	 Using	 the	 SNP	 covariance	 structure	 from	 the	 BASEL2	 sample,	 i.e.	 the	

actual	 population	 structure,	 the	 correlation	 between	 genetic	 correlation	 statistics	was	

close	 to	 1	 (Figure	 5).	 We	 next	 used	 the	 SNP	 covariance	 structure	 derived	 from	 two	

independent	 population	 panels	 (i.e.	 BASEL1	 sample	 and	 Hapmap	 CEU	 sample).	 The	

correlation	between	statistics	obtained	from	the	two	approaches	remained	greater	than	

0.997	(Figure	5),	supporting	the	validity	of	the	MetaMeth	approach.		
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Figure	5:	Comparison	of	EstiMeth	and	MetaMeth	association	statistics	with	height	in	the	

BASEL2	sample	

Each	 dot	 corresponds	 to	 an	 individual	 CpG	 included	 in	 EstiMeth	 models.	 Horizontal	 axis	

represents	 the	 T	 statistic	 obtained	 from	 the	 correlation	 between	 sex-adjusted	 height	 and	

genotypes	based	EstiMeth	estimate.	The	vertical	axis	represents	the	MetaMeth	Z	statistic	based	

on	 the	 SNPs	 covariance	 structure	 observed	 within	 the	 BASEL2	 sample	 (A),	 from	 external	

independent	BASEL1	sample	(B),	from	external	independent	reference	HapMap	CEU	sample	(C).	

Red	dashed	 lines	 represent	 critical	 statistics	 at	Bonferroni	 adjusted	 significance	 threshold	 (p	 <	

0.05/81807).	

	

	

	

In	 a	 second	 stage,	we	 estimated	 the	 Type	 I	 error	 rate	 of	 the	MetaMeth	 approach.	We	

performed	 a	 genome-wide	 MetaMeth	 scan	 on	 1000	 phenotypes	 generated	 from	 a	

normal	distribution.	The	distribution	of	the	minimum	p-value	obtained	per	run	yielded	a	

5%	quantile	equal	to	1.1e-06	(Supplementary	Figure	5),	which	is	above	a	Bonferroni	

adjusted	significance	threshold	for	a	given	genome-wide	scan	(p	=	6.1e-7).	This	indicates	

that	 under	 realistic	 settings	 the	 proposed	 MetaMeth	 yields	 conservative	 association	

statistics.	

We	next	compared	the	power	of	the	MetaMeth	and	EstiMeth	methods.	At	each	CpG	we	

repeatedly	generated	a	trait	that	was	associated	with	EstiMeth	estimated	DNAm	values	

at	large	effect	sizes	(i.e.	r2=7.3%	yielding	an	association	detectable	at	50%	power	under	

Bonferroni	adjustment	for	multiple	testing).	Over	all	CpGs,	the	MetaMeth	achieved	lower	
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average	power	(42.8%)	as	compared	to	the	EstiMeth	method	(Supplementary	Figure	

6).	Yet,	we	observed	that	for	17.5%	of	CpGs,	the	power	of	MetaMeth	exceeded	the	power	

reached	 with	 the	 EstiMeth	 approach.	 	 These	 results	 indicate	 that	 in	 case	 of	 genuine	

association	 between	 EstiMeth	 and	 a	 trait,	 provided	 large	 effect	 sizes,	 the	 MetaMeth	

approach	 can	 lead	 to	 biased	 estimates	 of	 T-statistics,	 resulting	 in	 globally	 reduced	

power	of	detection.	

	

MetaMeth	application	to	large-scale	GWAS	of	schizophrenia	

We	 applied	 MetaMeth	 on	 summary	 statistics	 obtained	 from	 the	 recently	 published	

schizophrenia	PGC	Consortium	 large-scale	mega-analysis	of	GWAS-results	 (Ripke	et	al.	

2014).	 MetaMeth	 statistics	 were	 derived	 considering	 the	 86,710	 EstiMeth	 models	

implemented	 on	 the	 BASEL1	 SNPs	 panel	 and	 the	 corresponding	 BASEL1	 covariance	

structure	(see	Methods).	

We	observed	a	highly	significant	deviation	of	MetaMeth	statistics	from	the	null	uniform	

distribution	 (Figure	 6).	 In	 particular,	 we	 identified	 a	 total	 of	 469	 associations	

withstanding	genome-wide	Bonferroni	adjustment	(unadjusted	p-value	<	5.7e-07).	For	

the	majority	of	these	hits	(n=412,	87.8	%),	the	corresponding	EstiMeth	model	included	

at	 least	 one	marker	 exhibiting	 a	GWAS	association	p-value	 that	would	have	 reached	a	

genome-wide	 GWAS	 Bonferroni	 adjustment	 significance	 threshold	 (p	 <5e-

08)(Supplementary	Table	1).	The	majority	of	the	identified	CpGs	(460	out	of	469)	lie	

within	±	1Mbp	of	47	regions	out	of	the	105	reported	as	independent	autosomal	genomic	

loci	 associated	with	 schizophrenia	 (average	 genomic	 loci	 size:	 202	 kbp),	 or	 are	 found	

within	the	extended	MHC	region	(Supplementary	Table	1).		

Thus,	 these	 results	demonstrate	 that	MetaMeth	 identified,	 among	 the	 large	number	of	

significant	 susceptibility	 variants	 for	 such	 polygenic	 disorders	 as	 schizophrenia,	 the	

ones	that	impact	on	disease	risk	probably	through	regulation	of	site-specific	DNAm.	
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Figure	6:		MetaMeth	analysis	of	large-scale	GWAS	for	schizophrenia	
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DISCUSSION	

	

We	 generated	 genetic	 estimators	 of	 epigenetic	 regulation	 -	 EstiMeth	 -	 that	 leverage	

genetic	 contributions	 to	DNAm	 in	whole-blood	 to	 identify	epigenetic	underpinnings	of	

complex	 traits.	 EstiMeth	 models	 together	 with	 MetaMeth	 and	 Hapmap	 reference	

structure	 programs	 are	 made	 publicly	 available	

(http://mcn.unibas.ch/files/EstiMeth_Distribution_v1.zip	 ,	 password:	

mcnEstiMeth140510).	 By	 capitalizing	 on	 multiple	 co-localized	 genomic	 loci	 likely	 to	

impact	 on	 the	 DNAm	 signal,	 we	 identified	 a	 set	 of	 genetic	 estimators	 accounting	 on	

average	 for	 a	 modest,	 yet	 highly	 consistent	 fraction	 of	 variance	 in	 DNAm	 across	

independent	samples.		

Inter-individual	variation	in	DNAm	correlates	with	variation	in	expression	levels	of	co-

localizing	 genes	 possibly	 through	 shared	 genetic	 factors	 (Bell	 et	 al.	 2011;	 Gutierrez-

Arcelus	et	al.	2013).	Here,	integration	of	both	methylomic	profiles	and	gene	expression	

data	 revealed	 that	 EstiMeth	models	 accounted	 for	 a	 substantial	 fraction	 of	 the	 shared	

phenotypic	 variance	 between	 both	molecular	 traits.	 This	 suggests	 that,	 in	 line	with	 a	

recent	 report	 (Shakhbazov	 et	 al.	 2016),	 local	 genetic	 variations	 represent	 an	 essential	

factor	underlying	the	observable	inter-individual	relationship	between	gene	expression	

and	DNAm	at	adjacent	CpG	sites.	Importantly,	the	identified	associations	do	not	always	

imply	 direct	 causality	 between	 genetically	 driven	 DNAm	 and	 gene	 expression,	 as	 the	

EstiMeth	models	possibly	include	SNPs	exerting	independent	effects	on	each	trait	(Bell	

et	al.	2011;	Gutierrez-Arcelus	et	al.	2013).		

We	 also	 combined	 the	 genetic	 estimators	 for	DNAm	with	 recently	 proposed	methods,	

that	allow	applicability	of	these	estimators	to	SNP	summary	statistics	solely	(i.e.	 in	the	

absence	 of	 individual	 genotypic	 data)(Gusev	 et	 al.	 2016;	 Barbeira	 et	 al.	 2016).	 This	

approach,	 applied	 to	 recent	 large-scale	 GWAS-results	 for	 schizophrenia	 (Ripke	 et	 al.	

2014),	 resulted	 in	 the	 identification	 of	 469	 significant	 associations.	 This	 suggests	 the	



	 17	

existence	 of	 shared	 genetic	 contributions	 between	 whole-blood	 DNAm	 and	

schizophrenia	risk	which	is	consistent	with	recent	reports	(Hannon	et	al.	2016a;	Gaunt	

et	 al.	2016).	Of	note,	 it	 cannot	be	excluded	 that	 the	 identified	associations	 can	also	be	

partly	driven	by	genetic	loci	exerting	independent	effects	on	each	trait.	A	majority	of	the	

identified	 associations	 implicated	 genome-wide	 significant	 GWAS	 hits,	 whilst	

encompassing	 slightly	 less	 than	 half	 of	 the	 105	 genomic	 regions	 associated	 with	

schizophrenia	(Ripke	et	al.	2014).	Importantly,	each	association	suggests	shared	genetic	

contributions	between	schizophrenia	risk	and	DNAm	variation	at	a	specific	CpG	site.	We	

also	 note	 that	MetaMeth	 identified	 significant	 association	 signals	 at	 CpGs	mapping	 to	

AS3MT	-	arsenite	methyltransferase	(Supplementary	 Table	 1).	Schizophrenia	 genetic	

risk	variants	have	been	recently	shown	associated	with	expression	of	an	AS3MT	isoform	

(AS3MTd2d3)	and	DNA	methylation	variation	at	 this	 locus	(Li	et	al.	2016).	These	results	

highlight	 the	 potential	 of	MetaMeth	 to	 decipher,	 from	 large-scale	 GWAS	 results,	 trait-

associated	 loci	 that	 are	putatively	mediating	 their	 effect	 through	methylation	 at	 given	

CpG	sites,	and	to	prioritize	specific	genomic	loci	for	downstream	functional	validation.	

On	the	side	of	limitations,	it	should	be	stressed	that	the	EstiMeth	models	were	inferred	

and	 tested	 on	 moderately-sized	 whole-blood	 samples.	 For	 about	 one	 third	 of	 the	

investigated	 CpGs,	 characterized	 though	 by	 lower	 average	 SNP-based	 heritability,	 no	

elastic	net	model	could	be	fitted	from	our	training	sample.	Thus,	additional	local	genetic	

contributions	to	DNAm	might	be	detected	with	increasing	sample	sizes.	

The	fraction	of	variance	explained	by	the	EstiMeth	models	refers	to	DNAm	signal	after	

adjustment	 for	 main	 confounders.	 As	 for	 any	 -omics	 dataset,	 such	 confounders	 are	

usually	 unknown	 and	 estimated	 empirically	 in	 a	 study-specific	 manner.	 	 This	 might	

ultimately	 impact	 on	 the	 fraction	 of	 variance	 in	 DNAm	 that	 can	 be	 retrieved	 by	 the	

derived	 genetic	 estimators.	 For	 instance,	 in	 our	 study,	 we	 observed	 that	 these	

estimators	showed,	on	average,	higher	performance	on	the	testing	sample	as	compared	

to	 the	 training	 sample.	 Thus,	 although	 high	 stability	 was	 globally	 observed	 between	
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performance	of	the	models	across	both	samples,	inference	on	multiple	independent	data	

sets,	and	multiple	tissues,	is	warranted	to	fully	appreciate	their	generalizability.		

We	 also	 note	 that	we	 generated	 a	 genetic	 estimator	 of	DNAm	at	 each	 single	 CpG	 site.	

Although	this	provides	a	straightforward	way	of	annotating	the	models,	it	also	results	in	

certain	redundancy	of	the	estimators	for	highly	correlated	CpGs	sites.	This	in	turn	leads	

to	 a	 number	 of	 inferred	 estimators,	 which,	 unlike	 genetic	 estimators	 for	 gene	

expression,	 allow	 only	 for	 a	 moderate	 reduction	 of	 multiple	 testing	 burden	 in	 GWAS	

(Gamazon	 et	 al.	 2015;	 Gusev	 et	 al.	 2016).	 In	 addition,	 the	 derived	 genetic	 estimators	

were	 built	 on	 -cis	 neighboring	 SNPs	 only.	 Although	 we	 globally	 observed	 high	

consistency	of	the	inferred	models'	performance	with	published	SNP-based	heritability	

estimates,	 the	 performance	 was	 on	 average	 lower	 than	 the	 reported	 common	 SNP	

heritability.	This	gap	might	be	explained	by	additional	trans	genetic	components	 likely	

to	 contribute	 to	 inter-individual	 variability	 in	 DNAm	 (Lemire	 et	 al.	 2015;	 Gaunt	 et	 al.	

2016;	Bonder	et	al.	2017).	Improved	accuracy	might	thus	be	achieved	by	extending	the	

modeling	 to	 trans	 genetic	 components,	 as	 was	 recently	 shown	 for	 gene	 expression	

(Vervier	and	Michaelson	2016).		

Concerning	 the	 MetaMeth	 extension,	 we	 could	 derive	 empirical	 settings	 that	 showed	

appropriate	 control	 of	 Type	 I	 error	 in	 the	 investigated	 sample,	 yet	 at	 the	 cost	 of	

decreased	average	power	of	detecting	genuine	associations.	Robustness	of	 the	derived	

statistic	is	also	tightly	linked	to	the	genetic	discrepancy	between	the	reference	and	study	

population,	which	might	not	be	easily	evaluated	in	practice.	This	calls	for	assessment	of	

the	stability	of	the	approach	on	larger	independent	samples	from	varying	populations.		

In	 conclusion,	 we	 provide	 genetic	 estimators	 for	 DNAm	 in	 whole-blood,	 that	 can	

effectively	complement	genetic	estimators	 for	gene	expression,	 to	gain	 insight	 into	 the	

molecular	underpinnings	of	complex	traits.	
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METHODS	

Study	datasets	

Whole-blood	methylomic	profiles	and	genotypic	data	were	obtained	from	healthy	young	

adults	 recruited	 in	 the	 course	 of	 two	 separate	 studies	 conducted	 in	 Basel,	 previously	

described	 (Milnik	 et	 al.	 2016).	 The	 Basel	 Imaging	 dataset	 (BASEL1)	 included	 N=533	

participants	 (age	 range:	18-37	years	old;	222	males),	 the	 independent	Basel	Cognitive	

dataset	(BASEL2)	included	a	total	of	N=319	participants	(age	range:	18-37	years	old;	97	

males).	The	 study	protocols	were	 approved	by	 the	 ethics	 committee	of	 the	 cantons	of	

Basel-Stadt	and	Basel-Landschaft.	All	participants	gave	written	 informed	consent	after	

complete	description	of	 the	 study	protocols.	 Subjects	were	 free	of	 any	neurological	or	

psychiatric	condition	and	did	not	take	medication	at	the	time	of	the	experiment.	

	

Methylomic	profiling	

A	 detailed	 description	 of	methylomic	 profiling	 protocols	 can	 be	 found	 in	Milnik	 et	 al.	

(Milnik	 et	 al.	 2016).	 Briefly,	 methylomic	 profiling	 was	 performed	 using	 the	 Illumina	

HumanMethylation450	array.	Samples	of	non-European	ancestry	were	 identified	using	

Hapmap	references	population	genotypes	and	excluded	from	analysis	(n=35	in	BASEL1	

sample,	 yielding	 N=533	 remaining	 for	 analysis;	 none	 identified	 in	 BASEL2	 sample).	

Beta-values	 were	 calculated	 from	 SWAN	 normalized	 intensities	 (Maksimovic	 et	 al.	

2012).	Subsequently,	beta-values	were	M-transformed	and	adjusted	for	processing	plate	

effect	(z-transformation),	age,	sex	and	the	main	sources	of	technical	variations	inferred	

from	principal	 components	analysis	 (Milnik	et	al.	2016).	Beta-values	with	detection	p-

value	>	0.05	were	considered	as	missing.	Individual	CpGs	sites	were	excluded	based	on	

the	 following	 criteria:	 non-CpG	 context,	 non-autosomal	 probes,	 probes	 with	 a	 SNP	

mapping	to	the	target	CpG	site	or	with	three	or	more	SNPs	within	the	50mer	probe	(maf	

>0.01)(based	 on	 RnBeads	 package	 annotation),	 multi-mapping	 or	 polymorphic	 CpGs	

(maf	>0.01	in	European	population)	reported	in	(Price	et	al.	2013;	Chen	et	al.	2013),	and	
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probes	with	missing	rate	 	≥	5%	in	final	samples.	Prior	to	analysis,	missing	values	were	

imputed	 using	 the	 R	 package	 impute	

(https://bioconductor.org/packages/release/bioc/html/impute.html)	with	k=10.	

	

Genotyping	

DNA	was	isolated	from	saliva	sample	and	genotyped	using	the	Affymetrix	Genome-Wide	

Human	SNP	array	6.0	following	the	manufacturer's	protocol.	Genotype	imputation	was	

performed	 independently	 for	 each	 BASEL1	 and	 BASEL2	 sample,	 on	 the	 University	 of	

Michigan	 Imputation	 Server	 (settings	 for	 markers	 imputation:	 maf	 >0.01,	 call	 rate	

>95%).	In	the	BASEL1	sample,	approximately	5	Million	imputed	SNPs	with	minor	allele	

frequency	>0.05,	Hardy-Weinberg	equilibrium	(HWE)	p-value	>	0.0001	and	imputation	

score	R2>0.8	were	retained	 for	 training	genetic	models	of	DNAm	estimation.	 	To	allow	

complete	evaluation	of	the	trained	models,	all	selected	markers	were	considered	in	the	

BASEL2	sample.		

	

EstiMeth	models	implementation		

A	 total	 of	 395,014	 CpGs,	 measured	 in	 both	 BASEL1	 and	 BASEL2	 samples	 and	

surrounded	by	more	than	one	cis-SNPs	within	±	1Mbp	were	considered	for	analysis.	At	

each	of	 these	 individual	CpG	 site,	 a	 elastic	net	 (Zou	and	Hastie	2005)	 genetic	 additive	

model	 was	 fitted	 between	 all	 surrounding	 imputed	 cis-SNPs,	 and	 adjusted	 DNA	

methylation	signal.	

Genotypes	were	 coded	 as	0:	 homozygous	 for	 the	major	 allele,	1:	 heterozygous,	 and	2:	

homozygous	for	the	minor	allele.	Models	were	implemented	using	the	glmnet	R	package	

with	 α	 elastic	 net	 constraint	 fixed	 to	 0.5.	 Default	 standardization	 of	 genotypes	 (mean	

centering	and	unit	variance)	was	applied	within	the	training	procedure	which	resulted	

in	 slight	 improvement	 of	 models	 performance	 (Supplementary	 Table	 1).	 Beta	

coefficients	were	returned	on	the	original	genotype	scale.	The	λ	tuning	parameter	was	
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determined	 using	 a	 10-fold	 cross-validation	 scheme.	 This	 modeling	 allowed	

simultaneous	 shrinkage	 of	 individual	 Beta	 coefficients	 and	 selection	 of	 variables,	 thus	

drastically	 reducing	 the	 number	 of	 SNPs	 finally	 included	 in	 each	 model	 (average	

n=3,522	 SNPs	 before	 selection,	 average	 n=26	 SNPs	 after	 selection	 across	 all	 non-null	

models).		

Model	 performance	was	 assessed	 using	 Pearson's	 squared	 correlation	 r2	 between	 the	

model	estimate	 -	 linear	combination	between	elastic	net	 inferred	Beta	coefficients	and	

observed	genotypes	-	and	the	actual	adjusted	DNAm	signal;	for	the	training	data	set,	r2	

refers	to	cross-validation	performance.	

We	derived	a	set	of	robust	genotypes-based	estimators	for	DNAm	-	i.e.	EstiMeth	models	

-	 as	 follows:	 (1)	 all	models	 exhibiting	 a	 significant	 association	between	 the	 elastic	net	

derived	cross-validation	estimator	and	the	actual	values	in	the	BASEL1	training	sample	

(FDR<0.05	 across	 all	 non-null	 models);	 (2)	 among	 those,	 all	 models	 exhibiting	 a	

significant	association	between	the	elastic	net	derived	estimator	and	the	actual	values	in	

the	BASEL2	testing	sample	(FDR<0.05);	(3)	all	models	resulting	in	a	positive	correlation	

between	actual	and	genotypes	based	estimated	value	in	the	testing	sample.	This	yielded	

a	total	of	86,710	models	likely	reflecting	a	robust	genetically	driven	DNAm	signal	at	the	

corresponding	CpG	 (minimum	observed	 r2	 in	 training	 sample	 =0.94%;	minimum	 r2	 in	

testing	sample	=	1.37%).	

	

MetaMeth	implementation	

Statistical	 model:	We	 relied	 on	 the	 approach	 recently	 proposed	 by	 Barbeira	 et	 al.	

(Barbeira	et	al.	2016)	for	estimating	genetic	correlation	between	EstiMeth	model	and	a	

trait	 based	on	GWAS	 summary	 statistics	 solely.	 Specifically,	 consider	 a	 given	EstiMeth	

model	comprising	weights	W	at	p	SNPs.	Let	!!	denotes	the	t-value	between	the	EstiMeth	

linear	combination	and	the	trait.	Let	∑p	be	the	observed	covariance	matrix	of	the	p	SNPs,	
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and	 Z	 the	 vector	 of	 standardized	 coefficients	 obtained	 from	 testing	 each	 SNP	 for	

association	with	the	trait	(GWAS	summary	statistics,	β/se(β)	).		

As	described	by	Barbeira	et	al.	(Barbeira	et	al.	2016),	!! is	equivalent	to		!! :	

!!  =  !! =  !! !!!!
!
!!!  !!

!"(!!)
!!!!!
!!!!!

							(Equation	1)	

with		

!!  = !′Σ! ! 				

	!! 	the	standard	deviation	at	SNP	k	

!!!	the	proportion	of	phenotypic	variance	explained	by	SNP	k	

!!!	the	proportion	of	phenotypic	variance	explained	by	EstiMeth	estimator		

In	absence	of	genotypes,	the	!!!	term	cannot	be	estimated	and	the	covariance	structure	

Σ!	has	to	be	estimated	from	a	reference	population,	which	leads	to	the	approximation:	

!!  ≈  !!"#$!"ℎ !! = !! !!
!!"#$

!
!!!  !!

!"(!!)
			(Equation	2)	

with	!!"#$  =  !′ Σ!"#$  !				

This	approximation	has	two	potential	caveats.	

Firstly,	 as	 pointed	 by	 Barbeira	 et	 al,	 removal	 of	 the	 R2	ratio	 can	 lead	 to	 remarkable	

underestimation	 of	 Tg	 for	 SNPs	 with	 large	 effect	 sizes.	 This	 deviation	 was	 notably	

observed	when	comparing	EstiMeth	and	MetaMeth	approaches	on	DNAm	signal,	which	

implicate	large	effect	sizes.	Considering	the	actual	sample's	covariance	matrix,	the	exact	

statistic	derived	from	Equation	1	is	equal	to	Tg	(Supplementary	Figure	7-A).	Removal	

of	the	R2	ratio	in	Equation	2,	while	still	using	the	exact	sample's	covariance	matrix,	leads	

to	 deviation	 from	 the	 original	 Tg	 with	 a	 global	 decrease	 of	 derived	 statistics	

(Supplementary	Figure	7-B).	The	same	observation	was	drawn	from	the	power	study	

presented	in	Supplementary	Figure	6.	
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Secondly,	 the	 divergence	 between	 the	 reference	 population	 and	 actual	 covariance	

structures	 can	 lead	 to	 biased	 estimates.	 Using	 Equation	 2,	 we	 observed	 inflation	 of	

genome-wide	 level	 Type	 I	 error	 (Supplementary	 Figure	 5).	 To	 account	 for	 this	

uncertainty,	 we	 penalized	 the	 denominator	!! 	by	 multiplying	 the	 diagonal	 of	 the	

Σ!"#$  matrix	 (Σ!"#$  =  Σ!"#$  +  λ! diag(Σ!"#$) with	λ!  =  0.1)	 (Gusev	 et	 al.	 2016).	We	

found	 empirically	λ!  =  0.1	to	 achieve	 conservative	 results,	 at	 the	 cost	 of	 decreased	

power.	Unless	otherwise	specified,	all	reported	results	were	obtained	using		λ!  =  0.1.	

Hapmap	reference	panel:	The	SNPs	covariance	matrices	∑pref	were	 inferred	 from	 the	

publicly	 available	 Hapmap	 reference	 genotypes	 panel	 (Phase	 II-III,	 2010-08)	 of	 CEU	

unrelated	 individuals).	 Individual	 markers	 were	 filtered	 on	 the	 following	 criteria:	

genotype	missing	 rate	 >	 0.05,	HWE	p-value	 <	 0.0001,	MAF	 <	 0.01	 excluded).	 Selected	

SNPs	were	mapped	from	hg18	to	hg19	annotation	using	the	UCSC	lift	over	tool.	Finally,	a	

total	 of	 1,046,075	 markers	 overlapping	 with	 the	 BASEL1	 sample	 imputed	 markers	

remained	for	analysis.		

Implementation	 of	 EstiMeth	 models	 on	 Hapmap	 SNPs:	 elastic	 net	 models	 were	 re-

trained	 on	 the	 BASEL1	 sample,	 using	 the	 restricted	 Hapmap	 SNP	 panel.	 Overall,	 we	

observed	 comparable	 performance	 of	 EstiMeth	 models	 between	 the	 full	 panel	 of	 5M	

imputed	 SNPs	 and	 the	 restricted	 Hapmap	 SNPs	 panel	 (correlation	 between	 cross-

validation	 r2	 across	 all	EstiMeth	CpGs	>	0.99;	 correlation	between	 testing	 r2	>	0.96);	 a	

small	proportion	of	models	 (5.6%)	showed	performance	not	reaching	 the	minimum	r2	

initially	 observed	 in	 the	 training	 and	 testing	 samples	 and	 were	 thus	 excluded	 from	

MetaMeth	benchmarking	analyses	(n=81,807	models	remaining).	

Simulation	studies:	 	Type	 I	 error	 rate	was	assessed	on	1000	 repeats	of	 genome-wide	

MetaMeth	scan,	using	phenotypes	randomly	generated	from	a	normal	distribution.	The	

power	 study	 was	 performed	 by	 generating,	 for	 each	 CpG,	 a	 phenotype	 showing	 an	

average	r=	0.27	with	the	EstiMeth	estimate.	This	corresponds	to	an	effect	size	of	7.3%,	

detectable	with	 50%	power	 considering	 the	BASEL2	 sample	 size	N=319	 and	 genome-



	 24	

wide	 significance	 threshold	 α	 =	 0.05/81,807.	 This	 procedure	was	 repeated	 300	 times	

per	CpG.	

	

Transcriptomic	analyses	

Data	 processing:	 Blood	 samples	 were	 collected	 using	 PAXgene	 Blood	 RNA	 Tubes	

(PreAnalytix	 Qiagen/BD,	 Switzerland).	 Expression	 profiles	 were	 obtained	 for	 N=408	

individuals	 of	 the	 BASEL1	 sample	 using	 with	 the	 Affymetrix	 GeneChip	 Human	

Transcriptome	 Array	 2.0	 (see	 Supplementary	 text),	 providing	 quantification	 of	

expression	levels	for	~67K	transcript	clusters	(referred	as	genes).	Individual	expression	

values	were	adjusted	 for	 age	and	 sex	using	 linear	 regression.	Expression	 signals	were	

adjusted	 for	 unknown	 technical	 confounders	 while	 preserving	 local	 genuine	 genetic	

effects.		This	was	achieved	by	examining	the	number	of	identified	cis-eQTL	while	further	

adjusting	expression	values	for	increasing	number	of	principal	components	(Pickrell	et	

al.	2010;	Liang	et	al.	2013);	this	procedure	was	repeated	until	no	increase	in	the	number	

of	identified	eQTLs	was	observed	anymore,	leading	to	23	components	retained	for	final	

adjustment	 of	 expression	 values.	 Only	 genes	 annotated	 to	 RefSeq	 identifiers	 were	

considered	 for	 analysis.	 The	 annotation	 was	 based	 on	 manufacturer's	 information		

(GPL17586-45144)	 curated	 using	 the	 UCSC	 database	 version	 oct.2015.	 This	 yielded	 a	

total	of	21,186	autosomal	genes	entering	subsequent	analyses.		

Association	 testing	between	DNAm	and	expression	 traits:	The	 relationship	between	

DNAm	and	expression	 traits	was	examined	considering	 for	each	gene	all	CpGs	 located	

within	 ±	 1Mbp	 from	 gene	 boundaries	 (N=397,731	 sites	 out	 of	 397,947	 CpGs	 from	

BASEL1	 sample).	 	 Statistical	 association	 testing	 was	 performed	 using	 Pearson's	

correlation	test.	Genome-wide	significant	associations	were	identified	using	Benjamini-

Hochberg	FDR	correction.	Expression	 signals	were	optimally	processed	 for	preserving	

genetic	 effects	 (see	 paragraph	 Data	 processing).	 In	 order	 to	 check	 whether	 this	

procedure	possibly	biased	the	over-representation	of	EstiMeth	genetically	driven	CpGs	
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among	 identified	 associations,	 the	 genome-wide	 CpG-gene	 association	 scan	 was	 re-

conducted	 on	 expression	 data	 adjusted	 for	 main	 confounders	 only	 (batch	 effect	

adjustment	using	ComBat	method	implemented	in	the	sva	R	package	(Leek	et	al.	2012)	

age,	sex,	and	the	seven	first	principal	components	axes,	that	showed	strong	association	

with	blood	cell	subtypes	composition).	This	analysis	 led	to	the	 identification	of	11,760	

significant	 associations	 (FDR	 <0.05),	 implicating	 8,530	 CpGs,	 among	 which	 74	 %	

involved	EstiMeth	CpGs,	convergent	with	results	obtained	from	the	primary	analysis.	

Genetic	association	analysis	of	DNA	methylation	and	gene	expression:	For	ensuring	

independence	 of	 the	 expression	 trait	 and	 the	 EstiMeth	 models,	 all	 models	 were	 re-

trained	on	 the	BASEL2	sample	using	 the	same	methodology	as	 for	 the	 initial	EstiMeth	

implementation.	 Out	 of	 86,710	 models,	 a	 total	 of	 83,337	 non-null	 models	 could	 be	

inferred	 in	 the	 BASEL2	 sample	 and	 entered	 subsequent	 analyses.	 In	 turn,	 estimated	

DNAm	 values	 were	 obtained	 in	 the	 BASEL1	 sample	 using	 these	 EstiMeth	 models	

implemented	on	the	BASEL2	sample.	These	estimated	values	were	subsequently	tested	

for	 association	with	 expression	 trait	 at	 their	 co-localizing	 gene	 (s).	 DNAm-expression	

associations	 were	 also	 examined	 under	 adjustment	 for	 EstiMeth	 models:	 DNAm	 was	

adjusted	 for	 EstiMeth	 estimated	 values	 using	 linear	 regression,	 and	 next	 tested	 for	

association	with	gene	expression.	

	

MetaMeth	application	to	PGC	data	

GWAS	 summary	 statistics	 of	 PGC	 schizophrenia	 analysis	 (52	 samples;	 34,241	 cases,	

45,604	 controls	 and	 1,235	 parent-affected	 offspring	 trios)	 were	 downloaded	 from	

https://www.med.unc.edu/pgc/files/resultfiles/scz2.snp.results.txt.gz.		

MetaMeth	association	statistics	were	obtained	for	the	more	exhaustive	EstiMeth	models	

inferred	 from	 the	 5M	 SNPs	 panel,	 considering	 the	 BASEL1	 covariance	 structure	 as	

reference.	
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DATA	 ACCESS:	 The	 genetic	 estimators	 are	 made	 publically	 available	

(http://mcn.unibas.ch/files/EstiMeth_Distribution_v1.zip,	 password:	

mcnEstiMeth140510).	
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SUPPLEMENTARY	FIGURES	
	

Supplementary	Figure	1:	Elastic	net	models	testing	vs.	training	performance	
	

Horizontal	axis	denotes	training	cross-validation	r2	performance	in	the	BASEL1	sample.	Vertical	
axis	represents	performance	of	the	models	in	the	independent	testing	BASEL2	sample.	Dashed	
line	represents	regression	line.		
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Supplementary	Figure	2:	Distribution	of	EstiMeth	models'	testing	r2	for	varying	

genotyping	missing	rates	

	 	

EstiMeth	models	were	 evaluated	 on	 the	BASEL2	 testing	 sample	with	 10%	 (left	 panel)	 or	 20%	

(right	 panel)	 of	 genotypes	 randomly	 discarded.	 For	 each	 model,	 the	 mean,	 and	 5th	 and	 25th	

quantiles	 of	 the	 r2	distribution	 obtained	 from	 1000	 runs	 was	 recorded.	 Graphs	 represent	 the	

density	distribution	of	all	EstiMeth	models	r2	(in	%)	for	the	complete	models	(red	dashed	line)	or	

from	simulations	(blue,	green	and	orange	lines).	

	
Supplementary	 Figure	 3:	 Distribution	 of	 EstiMeth	 CpGs	 associated	 with	 gene	

expression	across	genomic	context		

	 	

Grey:	Background	CpGs	(n	=	397,947).	Orange:	EstiMeth	CpGs	associated	with	gene	expression	(n	

=	13,894).	Blue:	EstiMeth	CpGs	 (n	=	86,710).	Green:	CpGs	associated	with	gene	expression	not	

included	in	EstiMeth	CpGs	(n	=	3,973).		
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Supplementary	 Figure	 4:	 	 Comparison	 of	 shared	 variance	 between	 gene	 expression,		

DNAm	and	EstiMeth	genetic	contributions	across	genomic	locations	

	 	

Horizontal	axis:	genomic	location	;	bins	correspond	to	the	distance	of	a	given	CpG	relative	to	its	

associated	 gene	 in	 kbp.	 TSS	 is	 defined	 as	 1.5kb	 upstream	 gene	 start.	 Vertical	 axis:	 fraction	 of	

shared	variance	(in	%)	between	gene	expression	and	EstiMeth	(blue),	DNAm	(orange)	or	DNAm	

adjusted	for	EstiMeth	effects	(black).	A:	Average	across	~2M	EstiMeth	CpG-gene	association	pairs	

.	B:	 Average	 across	 EstiMeth	 CpG-gene	 association	 pairs	 identified	 as	 genome-wide	 significant	

(FDR<0.05).	
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Supplementary	Figure	5:	Distribution	of	the	minimum	MetaMeth	p-value	per	genome-

wide	scan	under	H0	

	 	

Phenotypes	 were	 drawn	 from	 a	 standard	 normal	 distribution	 (1000	 runs).	 For	 each	 run,	 a	

MetaMeth	 analysis	 was	 performed	 across	 all	 modeled	 CpGs	 (n	 =	 81,807)	 and	 the	 random	

phenotype	in	the	BASEL2	sample,	using	the	covariance	structures	from	HapMap	CEU	population.	

The	 minimum	 p-value	 obtained	 across	 all	 CpGs	 was	 retained.	 The	 left	 panel	 represents	 the	

distribution	of	minimum	p-values,	obtained	without	penalization	of	the	Z	statistics	(Equation	2,	

main	text);	right	panel	represents	the	distribution	obtained	using	the	penalty	factor	retained	in	

the	MetaMeth	implementation.	
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Supplementary	Figure	6:	Comparison	of	EstiMeth	and	MetaMeth	power	in	the	BASEL2	

sample	
	 	

For	each	EstiMeth	CpG,	phenotypes	were	generated	to	be	associated	with	EstiMeth	estimate	with	

50%	power	of	being	detected	(at	α	=	p	<0.05/81807).	The	graph	represents	the	density	curves	of	

power	 achieved	 across	 all	 CpGs,	 for	 EstiMeth	 (blue),	MetaMeth	 using	HapMap	CEU	 covariance	

structure	(orange),	and	MetaMeth	using	actual	sample's	covariance	structure	(green).	
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Supplementary	Figure	7:	Comparison	of	EstiMeth	and	MetaMeth	association	statistics	
for	DNAm	in	the	BASEL2	sample	
	 	
Each	 dot	 corresponds	 to	 an	 individual	 CpG	 included	 in	 EstiMeth	 models.	 Horizontal	 axis	
represents	 the	 T-value	 obtained	 from	 the	 correlation	 between	 DNAm	 signal	 and	 EstiMeth	
estimate.	In	panel	(A)	the	vertical	axis	represents	Z	statistic	retrieved	from	Equation	1,	based	on	
the	 sample's	 SNPs	 covariance	 structure,	 which	 is	 equivalent	 to	 the	 T-value;	 in	 panel	 (B),	 the	
vertical	 axis	 represents	 the	 approximation	 MetaMeth	 Z	 statistic	 (Equation	 2),	 based	 on	 the	
sample's	covariance	structure.	In	panels	(C)	and	(D),	the	vertical	axis	represents	the	MetaMeth	Z	
statistics	 based	 on	 SNPs	 covariance	 structure	 inferred	 from	 external	 samples	 BASEL1	 and	
HapMap-CEU	respectively.	Black	line	represents	regression	line.	

	

	
	

	

	

	

	



	 8 

SUPPLEMENTARY	TABLES	
	
Supplementary	Table	1:	Comparison	of	elastic	net	performance	with/without	

standardization	of	the	genotypes		

	

	 Genotypes		

standardization	

No	Genotypes	

standardization	

Number	of	Non	null	models	 236,923	 236,602	

r2		Training	in	%	(M	±	SD)	 6.9	±	14.2	 6.8	±14.1	

r2	Testing	in	%	(M	±	SD)	 7.6	±	15	 7.4	±	14.9	

Selected	SNPs	(M	±	SD)	 25.6	±	26.9	 27.6	±	30	

All	non-null	models	were	considered.	M:	mean;	SD:	standard	deviation.	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	



	 9 

SUPPLEMENTARY	TEXT	
	

	
Affymetrix	 HTA	 2.0	 array	 transcriptome	 analysis.	 Total	 RNA	was	 further	 isolated	

with	 the	 PAXgene	 Blood	 miRNA	 Kit	 (PreAnalytix,	 Switzerland).	 Following,	 a	 second,	

additional	purification	was	performed	with	the	miRNeasy	Micro	Kit	(Qiagen,	Germany).	

The	 concentration	 and	 quality	 of	 the	 RNA	 was	 determined	 using	 Nanodrop	 2000	

(ThermoScientific,	 USA)	 and	 RNA	 Nano	 6000	 Kit	 on	 Bioanalyzer	 2100	 instrument	

(Agilent,	 USA).	 Next,	 GLOBINclear™-Human	 Kit	 (Ambion,	 USA)	 was	 used	 for	 a	 non-

enzymatic	depletion	of	the	alpha	and	beta	globin	mRNA	starting	from	1µg	of	total	RNA	

preparations	 derived	 from	 whole	 blood,	 following	 a	 standard	 procedure.	 The	

concentration	 and	 quality	 of	 the	 “globin-free”	 RNA	was	 assessed	 as	 described	 above.	

Following,	the	alpha	and	beta	globin	mRNA	depletion	was	measured	by	qPCR.	In	brief:	

for	 reverse	 transcription,	 350ng	 of	 total	 RNA	 was	 denaturized	 for	 8	 min	 at	 70°C	

followed	 by	 ice	 incubation	 in	 the	 presence	 of	 25ng	 Anchored	 Oligo(dT)20	 Primer	

(Invitrogen,	 USA)	 and	 75ng	 Random	 Decamers	 Primers	 (Ambion,	 USA).	 In	 the	 RT	

reaction,	 cDNA	was	 generated	 in	25µl	 reaction	using	 Super	RT	kit	 (HT	Biotechnology,	

Santa	Cruz,	CA	USA).	Upon	completion	of	the	reaction,	the	volume	was	adjusted	to	200µl	

in	Lambda	DNA	solution	(5ng/µl	final	concentration;	Promega,	Fitchburg,	WI	USA).	The	

primers	 were	 designed	 against	 splice	 variants	 that	 contain	 alpha-Globin	 gene:	 alpha-

Globin	 Forward:	 5’-	 GCACGCGCACAAGCT-3’,	 and	 alpha-Globin	 Reverse:	 5’-	

GGGTCACCAGCAGGCA-3’	 (Microsynth,	 Switzerland).	 The	 expression	 levels	 were	

normalized	 to	 RPLPO	 gene	 (human	 large	 ribosomal	 protein)	 using	 the	 following	

primers:	 RPLP0-Ex3-4_FW,	 5’-CTCTGGAGAAACTGCTGC-3’	 and	 RPLP0-Ex3-4_RV,	 5’-

CTGATCTCAGTGAGGTCC-3’	(Sigma	Aldrich,	USA).	qPCR	was	performed	using	the	Power	

SYBR	 Green	 PCR	 Master	 Mix	 (Life	 Technologies,	 USA)	 according	 to	 standard	

recommendations,	 in	 12µl	 final	 volume	 of	 reaction,	 using	 2µl	 of	 cDNA	 template,	 on	

RotorGene	 6000A	 instrument	 (Corbett	 Research	 Pty	 Ltd,	 Sydney	 Australia).	 Cycling	

conditions	were	as	follows:	95°C,	60s	–	40x	(95°C,	3s	-	56°C,	10s	–	72°C,	4s)	followed	by	

a	 melting	 curve	 analysis	 (61°C	 to	 95°C,	 rising	 by	 0.7°C	 /	 3s)	 to	 attest	 amplification	

specificity.	 Threshold	 cycles	 (crossing	 point)	 were	 determined	 using	 Rotor-Gene	

software	 version	 6.1	 (Corbett	 Research,	 Australia).	 RPLPO	 was	 selected	 as	 reference	

gene	 for	normalization	after	we	 tested	several	candidate-reference	genes,	as	had	been	

previously	described	1.	Expression	levels	were	normalized	using	a	geometric	mean	level	
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of	expression	1.	Fold	differences	were	calculated	using	the	delta-delta	Ct	method	2	with	

the	help	of	qBasePlus	software	(Biogazelle,	Ghent,	Belgium).	

Target	 synthesis	 was	 performed	 using	 Ambion®	WT	 Expression	 Kit	 (Ambion,	

Life	Technologies,	USA)	starting	from	250ng	of	high-quality	“globin-free”	RNA,	following	

the	standard	procedure.	Next,	5.16µg	of	target	cDNA	was	further	labeled	and	prepared	

for	 hybridization	 with	 the	 GeneChip®	 WT	 Terminal	 Labeling	 and	 Hybridization	 Kit	

(Affymetrix,	USA).	The	prepared	samples	were	 loaded	on	Affymetrix	GeneChip	Human	

Transcriptome	Array	2.0	(Cat#	902162)	and	hybridized	for	16	hours	(45°C,	60rpm)	in	

Hybridization	 oven	 640	 (Affymetrix,	 USA).	 The	 arrays	 were	 washed	 and	 stained	 on	

Fluidics	 Stations	 450	 (Affymetrix)	 by	 using	 the	 Hybridization	 Wash	 and	 Stain	 Kit	

(Affymetrix,	USA)	under	FS450_0001	protocol.	The	GeneChips	were	processed	with	an	

Affymetrix	GeneChip	Scanner	3000	7G	 (Affymetrix,	USA).	DAT	 images	and	CEL	 files	of	

the	microarrays	were	generated	using	Affymetrix	GeneChip	Command	Control	software	

(Affymetrix,	USA).	In	order	to	account	for	technical	inter-array	variation	we	performed	a	

full	quantile-normalization;	feature	quantification	was	conducted	using	a	median-polish	

on	 transcript-level	 according	 to	 the	 HTA	 2.0.	 lib-set-version	 0.3.	 (Affymetrix	 Power	

Tools	version:	1.16.0).	Cross-platform	validation	of	genotyping	and	expression	data	was	

assessed	using	the	MixUpMaper	algorithm	3.	
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Discussion	
	

A	large	number	of	common	genetic	variations	of	small	effect	are	likely	to	contribute	to	

the	 observed	 phenotypic	 variability	 in	 complex	 cognitive	 traits.	 Disentangling	

interpretable	 molecular	 patterns	 from	 this	 highly	 polygenic	 architecture	 requires	

investigating	 the	 molecular	 systems	 in	 which	 common	 genetic	 variations	 exert	 their	

effects.	The	work	presented	in	this	thesis	relied	on	two	different	integrative	strategies	to	

leverage	epigenetic	variations,	as	intermediate	molecular	traits	of	genomic	action.	

In	 the	 first	 study,	we	adopted	a	 system-level	 approach	 that	 aimed	at	 investigating	 the	

relationship	 of	 global	 age-related	 molecular	 epigenetic	 patterns	 and	 physiological	

variation	 in	 cortical	 thickness.	 Decomposition	 of	 whole-blood	 methylomic	 profiles	 in	

(N=533)	healthy	young	adults	 allowed	 identification	of	 a	 global	 age-related	epigenetic	

signature	associated	with	 cortical	 thickness	and	episodic	memory.	 Subsequent	genetic	

analysis	of	this	methylomic	pattern	further	showed	association	of	genetic	contributions	

to	episodic	memory	in	an	independent	sample	of	(N=3346)	healthy	individuals.	Finally,	

functional	annotation	and	genetic	study	of	the	methylomic	signature	both	converged	in	

pointing	to	the	possible	involvement	in	immune	system	and	function	genes.		

In	the	second	study,	we	directly	modeled	the	relationship	between	DNA	methylation	at	a	

given	 CpG	 site	 and	 its	 local	 common	 genetic	 contributions.	 As	 recently	 proposed	 for	

studying	 gene	 expression,	 we	 applied	 a	 multiple	 penalized	 regression	 method	 to	

leverage	 the	 joint	 effect	 of	 multiple	 genetic	 variants	 that	 are	 likely	 to	 contribute	 to	

variability	in	DNA	methylation	signal.	Thus,	using	the	same	dataset	as	in	the	first	study,	

we	 could	 derive	 genetic	 estimators	 that	 accounted	 for	 a	 consistent	 fraction	 of	 DNAm	

signal	 across	 two	 independent	 samples.	 This	 approach	 applied	 to	 recent	 large-scale	

GWAS-results	 for	 schizophrenia,	 a	 common	 genetically	 complex	 disorder,	 led	 to	 the	

identification	of	significant	associations	between	genetically	driven	whole-blood	DNAm	

and	disease	risk.	
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The	two	studies	presented	in	this	thesis	underscore	the	integration	of	high-throughput	

intermediate	 molecular	 profiles	 with	 genotypic	 data	 as	 an	 effective	 and	 essential	

approach	to	capitalize	on	information	about	molecular	features	for	the	investigation	of	

complex	cognitive	 traits.	The	analysis	of	 -omics	data	 in	healthy	young	adults	 is	 indeed	

challenging	 in	 different	 aspects.	 Firstly,	 statistical	 limitations	 such	 as	 over-fitting	 are	

inherent	 to	 the	multidimensional	nature	of	 these	datasets.	Secondly,	 the	quantification	

of	individual	molecular	signals,	such	as	DNA	methylation,	is	prone	to	technical	variation	

(Milnik	et	 al.,	 2016)	and	biological	noise.	 In	bulk	 tissue	 samples,	 such	as	whole-blood,	

inter-individual	 differences	 in	 cell	 composition	 notably	 represent	 a	 potent	 factor	

impacting	on	the	signal	(Jaffe	&	Irizarry,	2014).	Such	confounders	are	usually	unknown	

and	 statistical	 methods	 aiming	 at	 reducing	 their	 impact	 have	 to	 rely	 on	 empirical	

evaluation,	 in	a	study-specific	manner.	From	a	system-level	standpoint,	 the	 integration	

of	 genotypic	 data	 as	 anchor	 of	 molecular	 variation	 appears	 instrumental	 to	 address	

whether	 the	 identified	 molecular	 patterns	 might	 represent	 relevant	 features	 of	 the	

dataset.	 The	 results	 from	 the	 second	 study	 indicate	 that	 focusing	 on	 the	 strong	 local	

genetic	 components	 of	 DNAm	 allows	 the	 derivation	 of	 stable	 molecular	 patterns	

putatively	associated	with	complex	traits.	This	suggests	that	future	analytical	strategies	

that	 explicitly	 incorporate	 genetic	 information	 into	 the	 modeling	 of	 global	 molecular	

systems	 (Civelek	 &	 Lusis,	 2014;	 Sieberts	 &	 Schadt,	 2007),	 might	 further	 enhance	 the	

identification	 of	 relevant	molecular	 patterns	 associated	with	 phenotypic	 variability	 in	

complex	cognitive	traits.		One	draw-back	of	system-level	approaches	is	the	broadness	of	

the	 identified	molecular	 signatures.	 In	 this	 context	 focusing	 on	 the	 genetically	 driven	

part	 of	 these	 molecular	 networks	 might	 also	 help	 narrowing	 down	 the	 identified	

molecular	patterns.	

Importantly,	whatever	 the	 level	 of	 complexity	 of	 the	 inferred	models	 is,	 replication	 of	

the	 identified	 associations	 in	 independent	 samples	 must	 be	 undertaken,	 as	 it	 is	 a	

necessary	step	of	genetic	research	(Kraft,	Zeggini,	&	Ioannidis,	2009).		
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In	 our	 second	 study,	 we	 observed	 limited	 overlap	 between	 the	 derived	 genetic	

estimators	 and	 gene	 expression	 levels,	 consistent	 with	 the	 reported	 limited	 overlap	

between	methylation	QTL	 and	 expression	QTL,	 at	 least	 in	 bulk	 tissues	 such	 as	whole-

blood	 (Gaunt	 et	 al.,	 2016)	 or	 brain	 (Gibbs	 et	 al.,	 2010).	 Recently,	 common	 genetic	

variants	 underlying	 complex	 trait	 variability	 have	 been	 shown	 to	 act	 on	 multiple	

components	 of	 gene	 regulation,	 detectable	 at	 the	 level	 of	 transcript	 abundance,	

alternative	 splicing,	 epigenetic	modifications	 or	 protein	 levels	 (Li	 et	 al.,	 2016).	Hence,	

these	 different	 layers	 of	 molecular	 data	 represent	 complementary	 sources	 of	

information	for	the	functional	annotation	of	genetic	variations	associated	with	complex	

traits.	In	this	context,	systematic	population-based	assessment	of	multi-layer	data	is	key	

for	a	more	comprehensive	 investigation	of	 the	molecular	systems	 impacted	by	genetic	

variations.		

In	the	present	work,	we	relied	on	peripherally	measured	epigenetic	markers	measured	

in	 whole-blood	 samples.	 The	 relevance	 of	 peripheral	 profiles	 for	 the	 study	 of	

neuropsychiatric	 related	 traits	 is	 still	 an	 open	 question.	 The	 results	 presented	 herein	

support	the	potential	of	investigating	easily	accessible	peripheral	molecular	markers	for	

the	study	of	brain-related	traits.	There	 is	notably	growing	 interest	 in	 the	 link	between	

the	 immune	 and	 central	 nervous	 systems	 and	 its	 possible	 role	 in	 neuro-psychiatric	

disease.	At	 the	phenotypic	 level,	 immune	system	peripheral	markers	have	 for	 instance	

been	 correlated	 with	 schizophrenia	 status	 (Miller,	 Buckley,	 Seabolt,	 Mellor,	 &	

Kirkpatrick,	 2011)	 and	 Alzheimer's	 disease	 (Swardfager	 et	 al.,	 2010).	 From	 a	 genetic	

standpoint,	 enrichment	 of	 schizophrenia	 associated	 variants	 has	 been	 described	 in	

immune	 related	 pathways	 (O’Dushlaine	 et	 al.,	 2015)	 and	 immune	markers	 associated	

variants	 (Astle	 et	 al.,	 2016).	 Recently,	 complex	 genetic	 variations	 underlying	 risk	 for	

schizophrenia	 in	 complement	 4	 (C4)	 genes,	 located	 in	 the	 major	 histocompatibility	

complex,	and	critical	for	immune	function,	have	also	been	linked	to	disease	risk	and	the	

level	 of	 expression	 in	 the	 brain	 (Sekar	 et	 al.,	 2016).	 A	 recent	 study	 conducted	 by	 our	
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group	 identified	association	between	genetic	 variants	 in	TROVE2,	a	gene	 implicated	 in	

autoimmunity,	and	aversive	memory	performance	 in	healthy	subjects	and	additionally	

with	traumatic	memory	and	risk	for	posttraumatic	stress	disorder	in	genocide	survivors	

(Heck	et	al.,	2017).	At	the	moment	we	cannot	draw	a	conclusion	about	the	mechanistic	

link	between	human	brain	and	immune	system	functions.	However,	the	convergence	of	

these	 findings	 suggests	 that	 identification	 of	 peripheral	molecular	 patterns	 associated	

with	 brain-related	 traits	 might	 serve	 as	 a	 first	 step	 towards	 further	 functional	

investigation	of	this	relationship.	

In	 sum,	 the	work	 presented	 in	 this	 thesis	 suggests	 that	 systems	 genomics	 analyses	 of	

peripheral	molecular	markers	represent	a	valuable	approach	to	expand	understanding	

of	the	molecular	underpinnings	of	complex	brain-related	traits.		
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